Btrfs: fix off-by-one in lseek
[deliverable/linux.git] / fs / btrfs / file.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
39279cc3
CM
19#include <linux/fs.h>
20#include <linux/pagemap.h>
21#include <linux/highmem.h>
22#include <linux/time.h>
23#include <linux/init.h>
24#include <linux/string.h>
39279cc3
CM
25#include <linux/backing-dev.h>
26#include <linux/mpage.h>
2fe17c10 27#include <linux/falloc.h>
39279cc3
CM
28#include <linux/swap.h>
29#include <linux/writeback.h>
30#include <linux/statfs.h>
31#include <linux/compat.h>
5a0e3ad6 32#include <linux/slab.h>
39279cc3
CM
33#include "ctree.h"
34#include "disk-io.h"
35#include "transaction.h"
36#include "btrfs_inode.h"
37#include "ioctl.h"
38#include "print-tree.h"
e02119d5
CM
39#include "tree-log.h"
40#include "locking.h"
12fa8ec6 41#include "compat.h"
2aaa6655 42#include "volumes.h"
39279cc3 43
9247f317 44static struct kmem_cache *btrfs_inode_defrag_cachep;
4cb5300b
CM
45/*
46 * when auto defrag is enabled we
47 * queue up these defrag structs to remember which
48 * inodes need defragging passes
49 */
50struct inode_defrag {
51 struct rb_node rb_node;
52 /* objectid */
53 u64 ino;
54 /*
55 * transid where the defrag was added, we search for
56 * extents newer than this
57 */
58 u64 transid;
59
60 /* root objectid */
61 u64 root;
62
63 /* last offset we were able to defrag */
64 u64 last_offset;
65
66 /* if we've wrapped around back to zero once already */
67 int cycled;
68};
69
762f2263
MX
70static int __compare_inode_defrag(struct inode_defrag *defrag1,
71 struct inode_defrag *defrag2)
72{
73 if (defrag1->root > defrag2->root)
74 return 1;
75 else if (defrag1->root < defrag2->root)
76 return -1;
77 else if (defrag1->ino > defrag2->ino)
78 return 1;
79 else if (defrag1->ino < defrag2->ino)
80 return -1;
81 else
82 return 0;
83}
84
4cb5300b
CM
85/* pop a record for an inode into the defrag tree. The lock
86 * must be held already
87 *
88 * If you're inserting a record for an older transid than an
89 * existing record, the transid already in the tree is lowered
90 *
91 * If an existing record is found the defrag item you
92 * pass in is freed
93 */
8ddc4734 94static int __btrfs_add_inode_defrag(struct inode *inode,
4cb5300b
CM
95 struct inode_defrag *defrag)
96{
97 struct btrfs_root *root = BTRFS_I(inode)->root;
98 struct inode_defrag *entry;
99 struct rb_node **p;
100 struct rb_node *parent = NULL;
762f2263 101 int ret;
4cb5300b
CM
102
103 p = &root->fs_info->defrag_inodes.rb_node;
104 while (*p) {
105 parent = *p;
106 entry = rb_entry(parent, struct inode_defrag, rb_node);
107
762f2263
MX
108 ret = __compare_inode_defrag(defrag, entry);
109 if (ret < 0)
4cb5300b 110 p = &parent->rb_left;
762f2263 111 else if (ret > 0)
4cb5300b
CM
112 p = &parent->rb_right;
113 else {
114 /* if we're reinserting an entry for
115 * an old defrag run, make sure to
116 * lower the transid of our existing record
117 */
118 if (defrag->transid < entry->transid)
119 entry->transid = defrag->transid;
120 if (defrag->last_offset > entry->last_offset)
121 entry->last_offset = defrag->last_offset;
8ddc4734 122 return -EEXIST;
4cb5300b
CM
123 }
124 }
72ac3c0d 125 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
126 rb_link_node(&defrag->rb_node, parent, p);
127 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
8ddc4734
MX
128 return 0;
129}
4cb5300b 130
8ddc4734
MX
131static inline int __need_auto_defrag(struct btrfs_root *root)
132{
133 if (!btrfs_test_opt(root, AUTO_DEFRAG))
134 return 0;
135
136 if (btrfs_fs_closing(root->fs_info))
137 return 0;
4cb5300b 138
8ddc4734 139 return 1;
4cb5300b
CM
140}
141
142/*
143 * insert a defrag record for this inode if auto defrag is
144 * enabled
145 */
146int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147 struct inode *inode)
148{
149 struct btrfs_root *root = BTRFS_I(inode)->root;
150 struct inode_defrag *defrag;
4cb5300b 151 u64 transid;
8ddc4734 152 int ret;
4cb5300b 153
8ddc4734 154 if (!__need_auto_defrag(root))
4cb5300b
CM
155 return 0;
156
72ac3c0d 157 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
4cb5300b
CM
158 return 0;
159
160 if (trans)
161 transid = trans->transid;
162 else
163 transid = BTRFS_I(inode)->root->last_trans;
164
9247f317 165 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
4cb5300b
CM
166 if (!defrag)
167 return -ENOMEM;
168
a4689d2b 169 defrag->ino = btrfs_ino(inode);
4cb5300b
CM
170 defrag->transid = transid;
171 defrag->root = root->root_key.objectid;
172
173 spin_lock(&root->fs_info->defrag_inodes_lock);
8ddc4734
MX
174 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175 /*
176 * If we set IN_DEFRAG flag and evict the inode from memory,
177 * and then re-read this inode, this new inode doesn't have
178 * IN_DEFRAG flag. At the case, we may find the existed defrag.
179 */
180 ret = __btrfs_add_inode_defrag(inode, defrag);
181 if (ret)
182 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183 } else {
9247f317 184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
8ddc4734 185 }
4cb5300b 186 spin_unlock(&root->fs_info->defrag_inodes_lock);
a0f98dde 187 return 0;
4cb5300b
CM
188}
189
8ddc4734
MX
190/*
191 * Requeue the defrag object. If there is a defrag object that points to
192 * the same inode in the tree, we will merge them together (by
193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
194 */
195void btrfs_requeue_inode_defrag(struct inode *inode,
196 struct inode_defrag *defrag)
197{
198 struct btrfs_root *root = BTRFS_I(inode)->root;
199 int ret;
200
201 if (!__need_auto_defrag(root))
202 goto out;
203
204 /*
205 * Here we don't check the IN_DEFRAG flag, because we need merge
206 * them together.
207 */
208 spin_lock(&root->fs_info->defrag_inodes_lock);
209 ret = __btrfs_add_inode_defrag(inode, defrag);
210 spin_unlock(&root->fs_info->defrag_inodes_lock);
211 if (ret)
212 goto out;
213 return;
214out:
215 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216}
217
4cb5300b 218/*
26176e7c
MX
219 * pick the defragable inode that we want, if it doesn't exist, we will get
220 * the next one.
4cb5300b 221 */
26176e7c
MX
222static struct inode_defrag *
223btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
4cb5300b
CM
224{
225 struct inode_defrag *entry = NULL;
762f2263 226 struct inode_defrag tmp;
4cb5300b
CM
227 struct rb_node *p;
228 struct rb_node *parent = NULL;
762f2263
MX
229 int ret;
230
231 tmp.ino = ino;
232 tmp.root = root;
4cb5300b 233
26176e7c
MX
234 spin_lock(&fs_info->defrag_inodes_lock);
235 p = fs_info->defrag_inodes.rb_node;
4cb5300b
CM
236 while (p) {
237 parent = p;
238 entry = rb_entry(parent, struct inode_defrag, rb_node);
239
762f2263
MX
240 ret = __compare_inode_defrag(&tmp, entry);
241 if (ret < 0)
4cb5300b 242 p = parent->rb_left;
762f2263 243 else if (ret > 0)
4cb5300b
CM
244 p = parent->rb_right;
245 else
26176e7c 246 goto out;
4cb5300b
CM
247 }
248
26176e7c
MX
249 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250 parent = rb_next(parent);
251 if (parent)
4cb5300b 252 entry = rb_entry(parent, struct inode_defrag, rb_node);
26176e7c
MX
253 else
254 entry = NULL;
4cb5300b 255 }
26176e7c
MX
256out:
257 if (entry)
258 rb_erase(parent, &fs_info->defrag_inodes);
259 spin_unlock(&fs_info->defrag_inodes_lock);
260 return entry;
4cb5300b
CM
261}
262
26176e7c 263void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
4cb5300b
CM
264{
265 struct inode_defrag *defrag;
26176e7c
MX
266 struct rb_node *node;
267
268 spin_lock(&fs_info->defrag_inodes_lock);
269 node = rb_first(&fs_info->defrag_inodes);
270 while (node) {
271 rb_erase(node, &fs_info->defrag_inodes);
272 defrag = rb_entry(node, struct inode_defrag, rb_node);
273 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
274
275 if (need_resched()) {
276 spin_unlock(&fs_info->defrag_inodes_lock);
277 cond_resched();
278 spin_lock(&fs_info->defrag_inodes_lock);
279 }
280
281 node = rb_first(&fs_info->defrag_inodes);
282 }
283 spin_unlock(&fs_info->defrag_inodes_lock);
284}
285
286#define BTRFS_DEFRAG_BATCH 1024
287
288static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289 struct inode_defrag *defrag)
290{
4cb5300b
CM
291 struct btrfs_root *inode_root;
292 struct inode *inode;
4cb5300b
CM
293 struct btrfs_key key;
294 struct btrfs_ioctl_defrag_range_args range;
4cb5300b 295 int num_defrag;
4cb5300b 296
26176e7c
MX
297 /* get the inode */
298 key.objectid = defrag->root;
299 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
300 key.offset = (u64)-1;
301 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
302 if (IS_ERR(inode_root)) {
303 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
304 return PTR_ERR(inode_root);
305 }
306
307 key.objectid = defrag->ino;
308 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
309 key.offset = 0;
310 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
311 if (IS_ERR(inode)) {
312 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
313 return PTR_ERR(inode);
314 }
315
316 /* do a chunk of defrag */
317 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
318 memset(&range, 0, sizeof(range));
319 range.len = (u64)-1;
26176e7c 320 range.start = defrag->last_offset;
b66f00da
MX
321
322 sb_start_write(fs_info->sb);
26176e7c
MX
323 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
324 BTRFS_DEFRAG_BATCH);
b66f00da 325 sb_end_write(fs_info->sb);
26176e7c
MX
326 /*
327 * if we filled the whole defrag batch, there
328 * must be more work to do. Queue this defrag
329 * again
330 */
331 if (num_defrag == BTRFS_DEFRAG_BATCH) {
332 defrag->last_offset = range.start;
333 btrfs_requeue_inode_defrag(inode, defrag);
334 } else if (defrag->last_offset && !defrag->cycled) {
335 /*
336 * we didn't fill our defrag batch, but
337 * we didn't start at zero. Make sure we loop
338 * around to the start of the file.
339 */
340 defrag->last_offset = 0;
341 defrag->cycled = 1;
342 btrfs_requeue_inode_defrag(inode, defrag);
343 } else {
344 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
345 }
346
347 iput(inode);
348 return 0;
349}
350
351/*
352 * run through the list of inodes in the FS that need
353 * defragging
354 */
355int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
356{
357 struct inode_defrag *defrag;
358 u64 first_ino = 0;
359 u64 root_objectid = 0;
4cb5300b
CM
360
361 atomic_inc(&fs_info->defrag_running);
4cb5300b 362 while(1) {
26176e7c
MX
363 if (!__need_auto_defrag(fs_info->tree_root))
364 break;
4cb5300b
CM
365
366 /* find an inode to defrag */
26176e7c
MX
367 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
368 first_ino);
4cb5300b 369 if (!defrag) {
26176e7c 370 if (root_objectid || first_ino) {
762f2263 371 root_objectid = 0;
4cb5300b
CM
372 first_ino = 0;
373 continue;
374 } else {
375 break;
376 }
377 }
378
4cb5300b 379 first_ino = defrag->ino + 1;
762f2263 380 root_objectid = defrag->root;
4cb5300b 381
26176e7c 382 __btrfs_run_defrag_inode(fs_info, defrag);
4cb5300b 383 }
4cb5300b
CM
384 atomic_dec(&fs_info->defrag_running);
385
386 /*
387 * during unmount, we use the transaction_wait queue to
388 * wait for the defragger to stop
389 */
390 wake_up(&fs_info->transaction_wait);
391 return 0;
392}
39279cc3 393
d352ac68
CM
394/* simple helper to fault in pages and copy. This should go away
395 * and be replaced with calls into generic code.
396 */
d397712b 397static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
d0215f3e 398 size_t write_bytes,
a1b32a59 399 struct page **prepared_pages,
11c65dcc 400 struct iov_iter *i)
39279cc3 401{
914ee295 402 size_t copied = 0;
d0215f3e 403 size_t total_copied = 0;
11c65dcc 404 int pg = 0;
39279cc3
CM
405 int offset = pos & (PAGE_CACHE_SIZE - 1);
406
11c65dcc 407 while (write_bytes > 0) {
39279cc3
CM
408 size_t count = min_t(size_t,
409 PAGE_CACHE_SIZE - offset, write_bytes);
11c65dcc 410 struct page *page = prepared_pages[pg];
914ee295
XZ
411 /*
412 * Copy data from userspace to the current page
413 *
414 * Disable pagefault to avoid recursive lock since
415 * the pages are already locked
416 */
417 pagefault_disable();
418 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
419 pagefault_enable();
11c65dcc 420
39279cc3
CM
421 /* Flush processor's dcache for this page */
422 flush_dcache_page(page);
31339acd
CM
423
424 /*
425 * if we get a partial write, we can end up with
426 * partially up to date pages. These add
427 * a lot of complexity, so make sure they don't
428 * happen by forcing this copy to be retried.
429 *
430 * The rest of the btrfs_file_write code will fall
431 * back to page at a time copies after we return 0.
432 */
433 if (!PageUptodate(page) && copied < count)
434 copied = 0;
435
11c65dcc
JB
436 iov_iter_advance(i, copied);
437 write_bytes -= copied;
914ee295 438 total_copied += copied;
39279cc3 439
914ee295 440 /* Return to btrfs_file_aio_write to fault page */
9f570b8d 441 if (unlikely(copied == 0))
914ee295 442 break;
11c65dcc
JB
443
444 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
445 offset += copied;
446 } else {
447 pg++;
448 offset = 0;
449 }
39279cc3 450 }
914ee295 451 return total_copied;
39279cc3
CM
452}
453
d352ac68
CM
454/*
455 * unlocks pages after btrfs_file_write is done with them
456 */
be1a12a0 457void btrfs_drop_pages(struct page **pages, size_t num_pages)
39279cc3
CM
458{
459 size_t i;
460 for (i = 0; i < num_pages; i++) {
d352ac68
CM
461 /* page checked is some magic around finding pages that
462 * have been modified without going through btrfs_set_page_dirty
463 * clear it here
464 */
4a096752 465 ClearPageChecked(pages[i]);
39279cc3
CM
466 unlock_page(pages[i]);
467 mark_page_accessed(pages[i]);
468 page_cache_release(pages[i]);
469 }
470}
471
d352ac68
CM
472/*
473 * after copy_from_user, pages need to be dirtied and we need to make
474 * sure holes are created between the current EOF and the start of
475 * any next extents (if required).
476 *
477 * this also makes the decision about creating an inline extent vs
478 * doing real data extents, marking pages dirty and delalloc as required.
479 */
be1a12a0
JB
480int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
481 struct page **pages, size_t num_pages,
482 loff_t pos, size_t write_bytes,
483 struct extent_state **cached)
39279cc3 484{
39279cc3 485 int err = 0;
a52d9a80 486 int i;
db94535d 487 u64 num_bytes;
a52d9a80
CM
488 u64 start_pos;
489 u64 end_of_last_block;
490 u64 end_pos = pos + write_bytes;
491 loff_t isize = i_size_read(inode);
39279cc3 492
5f39d397 493 start_pos = pos & ~((u64)root->sectorsize - 1);
db94535d
CM
494 num_bytes = (write_bytes + pos - start_pos +
495 root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
39279cc3 496
db94535d 497 end_of_last_block = start_pos + num_bytes - 1;
2ac55d41 498 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
be1a12a0 499 cached);
d0215f3e
JB
500 if (err)
501 return err;
9ed74f2d 502
c8b97818
CM
503 for (i = 0; i < num_pages; i++) {
504 struct page *p = pages[i];
505 SetPageUptodate(p);
506 ClearPageChecked(p);
507 set_page_dirty(p);
a52d9a80 508 }
9f570b8d
JB
509
510 /*
511 * we've only changed i_size in ram, and we haven't updated
512 * the disk i_size. There is no need to log the inode
513 * at this time.
514 */
515 if (end_pos > isize)
a52d9a80 516 i_size_write(inode, end_pos);
a22285a6 517 return 0;
39279cc3
CM
518}
519
d352ac68
CM
520/*
521 * this drops all the extents in the cache that intersect the range
522 * [start, end]. Existing extents are split as required.
523 */
7014cdb4
JB
524void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
525 int skip_pinned)
a52d9a80
CM
526{
527 struct extent_map *em;
3b951516
CM
528 struct extent_map *split = NULL;
529 struct extent_map *split2 = NULL;
a52d9a80 530 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
39b5637f 531 u64 len = end - start + 1;
5dc562c5 532 u64 gen;
3b951516
CM
533 int ret;
534 int testend = 1;
5b21f2ed 535 unsigned long flags;
c8b97818 536 int compressed = 0;
a52d9a80 537
e6dcd2dc 538 WARN_ON(end < start);
3b951516 539 if (end == (u64)-1) {
39b5637f 540 len = (u64)-1;
3b951516
CM
541 testend = 0;
542 }
d397712b 543 while (1) {
7014cdb4
JB
544 int no_splits = 0;
545
3b951516 546 if (!split)
172ddd60 547 split = alloc_extent_map();
3b951516 548 if (!split2)
172ddd60 549 split2 = alloc_extent_map();
7014cdb4
JB
550 if (!split || !split2)
551 no_splits = 1;
3b951516 552
890871be 553 write_lock(&em_tree->lock);
39b5637f 554 em = lookup_extent_mapping(em_tree, start, len);
d1310b2e 555 if (!em) {
890871be 556 write_unlock(&em_tree->lock);
a52d9a80 557 break;
d1310b2e 558 }
5b21f2ed 559 flags = em->flags;
5dc562c5 560 gen = em->generation;
5b21f2ed 561 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
55ef6899 562 if (testend && em->start + em->len >= start + len) {
5b21f2ed 563 free_extent_map(em);
a1ed835e 564 write_unlock(&em_tree->lock);
5b21f2ed
ZY
565 break;
566 }
55ef6899
YZ
567 start = em->start + em->len;
568 if (testend)
5b21f2ed 569 len = start + len - (em->start + em->len);
5b21f2ed 570 free_extent_map(em);
a1ed835e 571 write_unlock(&em_tree->lock);
5b21f2ed
ZY
572 continue;
573 }
c8b97818 574 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3ce7e67a 575 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
a52d9a80 576 remove_extent_mapping(em_tree, em);
7014cdb4
JB
577 if (no_splits)
578 goto next;
3b951516
CM
579
580 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
581 em->start < start) {
582 split->start = em->start;
583 split->len = start - em->start;
ff5b7ee3 584 split->orig_start = em->orig_start;
3b951516 585 split->block_start = em->block_start;
c8b97818
CM
586
587 if (compressed)
588 split->block_len = em->block_len;
589 else
590 split->block_len = split->len;
b4939680
JB
591 split->orig_block_len = max(split->block_len,
592 em->orig_block_len);
5dc562c5 593 split->generation = gen;
3b951516 594 split->bdev = em->bdev;
5b21f2ed 595 split->flags = flags;
261507a0 596 split->compress_type = em->compress_type;
3b951516 597 ret = add_extent_mapping(em_tree, split);
79787eaa 598 BUG_ON(ret); /* Logic error */
5dc562c5 599 list_move(&split->list, &em_tree->modified_extents);
3b951516
CM
600 free_extent_map(split);
601 split = split2;
602 split2 = NULL;
603 }
604 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
605 testend && em->start + em->len > start + len) {
606 u64 diff = start + len - em->start;
607
608 split->start = start + len;
609 split->len = em->start + em->len - (start + len);
610 split->bdev = em->bdev;
5b21f2ed 611 split->flags = flags;
261507a0 612 split->compress_type = em->compress_type;
5dc562c5 613 split->generation = gen;
b4939680
JB
614 split->orig_block_len = max(em->block_len,
615 em->orig_block_len);
3b951516 616
c8b97818
CM
617 if (compressed) {
618 split->block_len = em->block_len;
619 split->block_start = em->block_start;
445a6944 620 split->orig_start = em->orig_start;
c8b97818
CM
621 } else {
622 split->block_len = split->len;
623 split->block_start = em->block_start + diff;
70c8a91c 624 split->orig_start = em->orig_start;
c8b97818 625 }
3b951516
CM
626
627 ret = add_extent_mapping(em_tree, split);
79787eaa 628 BUG_ON(ret); /* Logic error */
5dc562c5 629 list_move(&split->list, &em_tree->modified_extents);
3b951516
CM
630 free_extent_map(split);
631 split = NULL;
632 }
7014cdb4 633next:
890871be 634 write_unlock(&em_tree->lock);
d1310b2e 635
a52d9a80
CM
636 /* once for us */
637 free_extent_map(em);
638 /* once for the tree*/
639 free_extent_map(em);
640 }
3b951516
CM
641 if (split)
642 free_extent_map(split);
643 if (split2)
644 free_extent_map(split2);
a52d9a80
CM
645}
646
39279cc3
CM
647/*
648 * this is very complex, but the basic idea is to drop all extents
649 * in the range start - end. hint_block is filled in with a block number
650 * that would be a good hint to the block allocator for this file.
651 *
652 * If an extent intersects the range but is not entirely inside the range
653 * it is either truncated or split. Anything entirely inside the range
654 * is deleted from the tree.
655 */
5dc562c5
JB
656int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root, struct inode *inode,
658 struct btrfs_path *path, u64 start, u64 end,
2aaa6655 659 u64 *drop_end, int drop_cache)
39279cc3 660{
5f39d397 661 struct extent_buffer *leaf;
920bbbfb 662 struct btrfs_file_extent_item *fi;
00f5c795 663 struct btrfs_key key;
920bbbfb 664 struct btrfs_key new_key;
33345d01 665 u64 ino = btrfs_ino(inode);
920bbbfb
YZ
666 u64 search_start = start;
667 u64 disk_bytenr = 0;
668 u64 num_bytes = 0;
669 u64 extent_offset = 0;
670 u64 extent_end = 0;
671 int del_nr = 0;
672 int del_slot = 0;
673 int extent_type;
ccd467d6 674 int recow;
00f5c795 675 int ret;
dc7fdde3 676 int modify_tree = -1;
5dc562c5 677 int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
c3308f84 678 int found = 0;
39279cc3 679
a1ed835e
CM
680 if (drop_cache)
681 btrfs_drop_extent_cache(inode, start, end - 1, 0);
a52d9a80 682
dc7fdde3
CM
683 if (start >= BTRFS_I(inode)->disk_i_size)
684 modify_tree = 0;
685
d397712b 686 while (1) {
ccd467d6 687 recow = 0;
33345d01 688 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 689 search_start, modify_tree);
39279cc3 690 if (ret < 0)
920bbbfb
YZ
691 break;
692 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
693 leaf = path->nodes[0];
694 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 695 if (key.objectid == ino &&
920bbbfb
YZ
696 key.type == BTRFS_EXTENT_DATA_KEY)
697 path->slots[0]--;
39279cc3 698 }
920bbbfb 699 ret = 0;
8c2383c3 700next_slot:
5f39d397 701 leaf = path->nodes[0];
920bbbfb
YZ
702 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
703 BUG_ON(del_nr > 0);
704 ret = btrfs_next_leaf(root, path);
705 if (ret < 0)
706 break;
707 if (ret > 0) {
708 ret = 0;
709 break;
8c2383c3 710 }
920bbbfb
YZ
711 leaf = path->nodes[0];
712 recow = 1;
713 }
714
715 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
33345d01 716 if (key.objectid > ino ||
920bbbfb
YZ
717 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
718 break;
719
720 fi = btrfs_item_ptr(leaf, path->slots[0],
721 struct btrfs_file_extent_item);
722 extent_type = btrfs_file_extent_type(leaf, fi);
723
724 if (extent_type == BTRFS_FILE_EXTENT_REG ||
725 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
726 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
727 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
728 extent_offset = btrfs_file_extent_offset(leaf, fi);
729 extent_end = key.offset +
730 btrfs_file_extent_num_bytes(leaf, fi);
731 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
732 extent_end = key.offset +
733 btrfs_file_extent_inline_len(leaf, fi);
8c2383c3 734 } else {
920bbbfb 735 WARN_ON(1);
8c2383c3 736 extent_end = search_start;
39279cc3
CM
737 }
738
920bbbfb
YZ
739 if (extent_end <= search_start) {
740 path->slots[0]++;
8c2383c3 741 goto next_slot;
39279cc3
CM
742 }
743
c3308f84 744 found = 1;
920bbbfb 745 search_start = max(key.offset, start);
dc7fdde3
CM
746 if (recow || !modify_tree) {
747 modify_tree = -1;
b3b4aa74 748 btrfs_release_path(path);
920bbbfb 749 continue;
39279cc3 750 }
6643558d 751
920bbbfb
YZ
752 /*
753 * | - range to drop - |
754 * | -------- extent -------- |
755 */
756 if (start > key.offset && end < extent_end) {
757 BUG_ON(del_nr > 0);
758 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
759
760 memcpy(&new_key, &key, sizeof(new_key));
761 new_key.offset = start;
762 ret = btrfs_duplicate_item(trans, root, path,
763 &new_key);
764 if (ret == -EAGAIN) {
b3b4aa74 765 btrfs_release_path(path);
920bbbfb 766 continue;
6643558d 767 }
920bbbfb
YZ
768 if (ret < 0)
769 break;
770
771 leaf = path->nodes[0];
772 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
773 struct btrfs_file_extent_item);
774 btrfs_set_file_extent_num_bytes(leaf, fi,
775 start - key.offset);
776
777 fi = btrfs_item_ptr(leaf, path->slots[0],
778 struct btrfs_file_extent_item);
779
780 extent_offset += start - key.offset;
781 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
782 btrfs_set_file_extent_num_bytes(leaf, fi,
783 extent_end - start);
784 btrfs_mark_buffer_dirty(leaf);
785
5dc562c5 786 if (update_refs && disk_bytenr > 0) {
771ed689 787 ret = btrfs_inc_extent_ref(trans, root,
920bbbfb
YZ
788 disk_bytenr, num_bytes, 0,
789 root->root_key.objectid,
790 new_key.objectid,
66d7e7f0 791 start - extent_offset, 0);
79787eaa 792 BUG_ON(ret); /* -ENOMEM */
771ed689 793 }
920bbbfb 794 key.offset = start;
6643558d 795 }
920bbbfb
YZ
796 /*
797 * | ---- range to drop ----- |
798 * | -------- extent -------- |
799 */
800 if (start <= key.offset && end < extent_end) {
801 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
6643558d 802
920bbbfb
YZ
803 memcpy(&new_key, &key, sizeof(new_key));
804 new_key.offset = end;
805 btrfs_set_item_key_safe(trans, root, path, &new_key);
6643558d 806
920bbbfb
YZ
807 extent_offset += end - key.offset;
808 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
809 btrfs_set_file_extent_num_bytes(leaf, fi,
810 extent_end - end);
811 btrfs_mark_buffer_dirty(leaf);
2671485d 812 if (update_refs && disk_bytenr > 0)
920bbbfb 813 inode_sub_bytes(inode, end - key.offset);
920bbbfb 814 break;
39279cc3 815 }
771ed689 816
920bbbfb
YZ
817 search_start = extent_end;
818 /*
819 * | ---- range to drop ----- |
820 * | -------- extent -------- |
821 */
822 if (start > key.offset && end >= extent_end) {
823 BUG_ON(del_nr > 0);
824 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
8c2383c3 825
920bbbfb
YZ
826 btrfs_set_file_extent_num_bytes(leaf, fi,
827 start - key.offset);
828 btrfs_mark_buffer_dirty(leaf);
2671485d 829 if (update_refs && disk_bytenr > 0)
920bbbfb 830 inode_sub_bytes(inode, extent_end - start);
920bbbfb
YZ
831 if (end == extent_end)
832 break;
c8b97818 833
920bbbfb
YZ
834 path->slots[0]++;
835 goto next_slot;
31840ae1
ZY
836 }
837
920bbbfb
YZ
838 /*
839 * | ---- range to drop ----- |
840 * | ------ extent ------ |
841 */
842 if (start <= key.offset && end >= extent_end) {
843 if (del_nr == 0) {
844 del_slot = path->slots[0];
845 del_nr = 1;
846 } else {
847 BUG_ON(del_slot + del_nr != path->slots[0]);
848 del_nr++;
849 }
31840ae1 850
5dc562c5
JB
851 if (update_refs &&
852 extent_type == BTRFS_FILE_EXTENT_INLINE) {
a76a3cd4 853 inode_sub_bytes(inode,
920bbbfb
YZ
854 extent_end - key.offset);
855 extent_end = ALIGN(extent_end,
856 root->sectorsize);
5dc562c5 857 } else if (update_refs && disk_bytenr > 0) {
31840ae1 858 ret = btrfs_free_extent(trans, root,
920bbbfb
YZ
859 disk_bytenr, num_bytes, 0,
860 root->root_key.objectid,
5d4f98a2 861 key.objectid, key.offset -
66d7e7f0 862 extent_offset, 0);
79787eaa 863 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
864 inode_sub_bytes(inode,
865 extent_end - key.offset);
31840ae1 866 }
31840ae1 867
920bbbfb
YZ
868 if (end == extent_end)
869 break;
870
871 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
872 path->slots[0]++;
873 goto next_slot;
874 }
875
876 ret = btrfs_del_items(trans, root, path, del_slot,
877 del_nr);
79787eaa
JM
878 if (ret) {
879 btrfs_abort_transaction(trans, root, ret);
5dc562c5 880 break;
79787eaa 881 }
920bbbfb
YZ
882
883 del_nr = 0;
884 del_slot = 0;
885
b3b4aa74 886 btrfs_release_path(path);
920bbbfb 887 continue;
39279cc3 888 }
920bbbfb
YZ
889
890 BUG_ON(1);
39279cc3 891 }
920bbbfb 892
79787eaa 893 if (!ret && del_nr > 0) {
920bbbfb 894 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa
JM
895 if (ret)
896 btrfs_abort_transaction(trans, root, ret);
6643558d 897 }
920bbbfb 898
2aaa6655 899 if (drop_end)
c3308f84 900 *drop_end = found ? min(end, extent_end) : end;
5dc562c5
JB
901 btrfs_release_path(path);
902 return ret;
903}
904
905int btrfs_drop_extents(struct btrfs_trans_handle *trans,
906 struct btrfs_root *root, struct inode *inode, u64 start,
2671485d 907 u64 end, int drop_cache)
5dc562c5
JB
908{
909 struct btrfs_path *path;
910 int ret;
911
912 path = btrfs_alloc_path();
913 if (!path)
914 return -ENOMEM;
2aaa6655 915 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
2671485d 916 drop_cache);
920bbbfb 917 btrfs_free_path(path);
39279cc3
CM
918 return ret;
919}
920
d899e052 921static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
922 u64 objectid, u64 bytenr, u64 orig_offset,
923 u64 *start, u64 *end)
d899e052
YZ
924{
925 struct btrfs_file_extent_item *fi;
926 struct btrfs_key key;
927 u64 extent_end;
928
929 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
930 return 0;
931
932 btrfs_item_key_to_cpu(leaf, &key, slot);
933 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
934 return 0;
935
936 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
937 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
938 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 939 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
940 btrfs_file_extent_compression(leaf, fi) ||
941 btrfs_file_extent_encryption(leaf, fi) ||
942 btrfs_file_extent_other_encoding(leaf, fi))
943 return 0;
944
945 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
946 if ((*start && *start != key.offset) || (*end && *end != extent_end))
947 return 0;
948
949 *start = key.offset;
950 *end = extent_end;
951 return 1;
952}
953
954/*
955 * Mark extent in the range start - end as written.
956 *
957 * This changes extent type from 'pre-allocated' to 'regular'. If only
958 * part of extent is marked as written, the extent will be split into
959 * two or three.
960 */
961int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
d899e052
YZ
962 struct inode *inode, u64 start, u64 end)
963{
920bbbfb 964 struct btrfs_root *root = BTRFS_I(inode)->root;
d899e052
YZ
965 struct extent_buffer *leaf;
966 struct btrfs_path *path;
967 struct btrfs_file_extent_item *fi;
968 struct btrfs_key key;
920bbbfb 969 struct btrfs_key new_key;
d899e052
YZ
970 u64 bytenr;
971 u64 num_bytes;
972 u64 extent_end;
5d4f98a2 973 u64 orig_offset;
d899e052
YZ
974 u64 other_start;
975 u64 other_end;
920bbbfb
YZ
976 u64 split;
977 int del_nr = 0;
978 int del_slot = 0;
6c7d54ac 979 int recow;
d899e052 980 int ret;
33345d01 981 u64 ino = btrfs_ino(inode);
d899e052 982
d899e052 983 path = btrfs_alloc_path();
d8926bb3
MF
984 if (!path)
985 return -ENOMEM;
d899e052 986again:
6c7d54ac 987 recow = 0;
920bbbfb 988 split = start;
33345d01 989 key.objectid = ino;
d899e052 990 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 991 key.offset = split;
d899e052
YZ
992
993 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
994 if (ret < 0)
995 goto out;
d899e052
YZ
996 if (ret > 0 && path->slots[0] > 0)
997 path->slots[0]--;
998
999 leaf = path->nodes[0];
1000 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
33345d01 1001 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
d899e052
YZ
1002 fi = btrfs_item_ptr(leaf, path->slots[0],
1003 struct btrfs_file_extent_item);
920bbbfb
YZ
1004 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1005 BTRFS_FILE_EXTENT_PREALLOC);
d899e052
YZ
1006 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1007 BUG_ON(key.offset > start || extent_end < end);
1008
1009 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1010 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 1011 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
1012 memcpy(&new_key, &key, sizeof(new_key));
1013
1014 if (start == key.offset && end < extent_end) {
1015 other_start = 0;
1016 other_end = start;
1017 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1018 ino, bytenr, orig_offset,
6c7d54ac
YZ
1019 &other_start, &other_end)) {
1020 new_key.offset = end;
1021 btrfs_set_item_key_safe(trans, root, path, &new_key);
1022 fi = btrfs_item_ptr(leaf, path->slots[0],
1023 struct btrfs_file_extent_item);
224ecce5
JB
1024 btrfs_set_file_extent_generation(leaf, fi,
1025 trans->transid);
6c7d54ac
YZ
1026 btrfs_set_file_extent_num_bytes(leaf, fi,
1027 extent_end - end);
1028 btrfs_set_file_extent_offset(leaf, fi,
1029 end - orig_offset);
1030 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1031 struct btrfs_file_extent_item);
224ecce5
JB
1032 btrfs_set_file_extent_generation(leaf, fi,
1033 trans->transid);
6c7d54ac
YZ
1034 btrfs_set_file_extent_num_bytes(leaf, fi,
1035 end - other_start);
1036 btrfs_mark_buffer_dirty(leaf);
1037 goto out;
1038 }
1039 }
1040
1041 if (start > key.offset && end == extent_end) {
1042 other_start = end;
1043 other_end = 0;
1044 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1045 ino, bytenr, orig_offset,
6c7d54ac
YZ
1046 &other_start, &other_end)) {
1047 fi = btrfs_item_ptr(leaf, path->slots[0],
1048 struct btrfs_file_extent_item);
1049 btrfs_set_file_extent_num_bytes(leaf, fi,
1050 start - key.offset);
224ecce5
JB
1051 btrfs_set_file_extent_generation(leaf, fi,
1052 trans->transid);
6c7d54ac
YZ
1053 path->slots[0]++;
1054 new_key.offset = start;
1055 btrfs_set_item_key_safe(trans, root, path, &new_key);
1056
1057 fi = btrfs_item_ptr(leaf, path->slots[0],
1058 struct btrfs_file_extent_item);
224ecce5
JB
1059 btrfs_set_file_extent_generation(leaf, fi,
1060 trans->transid);
6c7d54ac
YZ
1061 btrfs_set_file_extent_num_bytes(leaf, fi,
1062 other_end - start);
1063 btrfs_set_file_extent_offset(leaf, fi,
1064 start - orig_offset);
1065 btrfs_mark_buffer_dirty(leaf);
1066 goto out;
1067 }
1068 }
d899e052 1069
920bbbfb
YZ
1070 while (start > key.offset || end < extent_end) {
1071 if (key.offset == start)
1072 split = end;
1073
920bbbfb
YZ
1074 new_key.offset = split;
1075 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1076 if (ret == -EAGAIN) {
b3b4aa74 1077 btrfs_release_path(path);
920bbbfb 1078 goto again;
d899e052 1079 }
79787eaa
JM
1080 if (ret < 0) {
1081 btrfs_abort_transaction(trans, root, ret);
1082 goto out;
1083 }
d899e052 1084
920bbbfb
YZ
1085 leaf = path->nodes[0];
1086 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 1087 struct btrfs_file_extent_item);
224ecce5 1088 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 1089 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
1090 split - key.offset);
1091
1092 fi = btrfs_item_ptr(leaf, path->slots[0],
1093 struct btrfs_file_extent_item);
1094
224ecce5 1095 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
1096 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1097 btrfs_set_file_extent_num_bytes(leaf, fi,
1098 extent_end - split);
d899e052
YZ
1099 btrfs_mark_buffer_dirty(leaf);
1100
920bbbfb
YZ
1101 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1102 root->root_key.objectid,
66d7e7f0 1103 ino, orig_offset, 0);
79787eaa 1104 BUG_ON(ret); /* -ENOMEM */
d899e052 1105
920bbbfb
YZ
1106 if (split == start) {
1107 key.offset = start;
1108 } else {
1109 BUG_ON(start != key.offset);
d899e052 1110 path->slots[0]--;
920bbbfb 1111 extent_end = end;
d899e052 1112 }
6c7d54ac 1113 recow = 1;
d899e052
YZ
1114 }
1115
920bbbfb
YZ
1116 other_start = end;
1117 other_end = 0;
6c7d54ac 1118 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1119 ino, bytenr, orig_offset,
6c7d54ac
YZ
1120 &other_start, &other_end)) {
1121 if (recow) {
b3b4aa74 1122 btrfs_release_path(path);
6c7d54ac
YZ
1123 goto again;
1124 }
920bbbfb
YZ
1125 extent_end = other_end;
1126 del_slot = path->slots[0] + 1;
1127 del_nr++;
1128 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1129 0, root->root_key.objectid,
66d7e7f0 1130 ino, orig_offset, 0);
79787eaa 1131 BUG_ON(ret); /* -ENOMEM */
d899e052 1132 }
920bbbfb
YZ
1133 other_start = 0;
1134 other_end = start;
6c7d54ac 1135 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1136 ino, bytenr, orig_offset,
6c7d54ac
YZ
1137 &other_start, &other_end)) {
1138 if (recow) {
b3b4aa74 1139 btrfs_release_path(path);
6c7d54ac
YZ
1140 goto again;
1141 }
920bbbfb
YZ
1142 key.offset = other_start;
1143 del_slot = path->slots[0];
1144 del_nr++;
1145 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1146 0, root->root_key.objectid,
66d7e7f0 1147 ino, orig_offset, 0);
79787eaa 1148 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
1149 }
1150 if (del_nr == 0) {
3f6fae95
SL
1151 fi = btrfs_item_ptr(leaf, path->slots[0],
1152 struct btrfs_file_extent_item);
920bbbfb
YZ
1153 btrfs_set_file_extent_type(leaf, fi,
1154 BTRFS_FILE_EXTENT_REG);
224ecce5 1155 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 1156 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 1157 } else {
3f6fae95
SL
1158 fi = btrfs_item_ptr(leaf, del_slot - 1,
1159 struct btrfs_file_extent_item);
6c7d54ac
YZ
1160 btrfs_set_file_extent_type(leaf, fi,
1161 BTRFS_FILE_EXTENT_REG);
224ecce5 1162 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
1163 btrfs_set_file_extent_num_bytes(leaf, fi,
1164 extent_end - key.offset);
1165 btrfs_mark_buffer_dirty(leaf);
920bbbfb 1166
6c7d54ac 1167 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa
JM
1168 if (ret < 0) {
1169 btrfs_abort_transaction(trans, root, ret);
1170 goto out;
1171 }
6c7d54ac 1172 }
920bbbfb 1173out:
d899e052
YZ
1174 btrfs_free_path(path);
1175 return 0;
1176}
1177
b1bf862e
CM
1178/*
1179 * on error we return an unlocked page and the error value
1180 * on success we return a locked page and 0
1181 */
b6316429
JB
1182static int prepare_uptodate_page(struct page *page, u64 pos,
1183 bool force_uptodate)
b1bf862e
CM
1184{
1185 int ret = 0;
1186
b6316429
JB
1187 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1188 !PageUptodate(page)) {
b1bf862e
CM
1189 ret = btrfs_readpage(NULL, page);
1190 if (ret)
1191 return ret;
1192 lock_page(page);
1193 if (!PageUptodate(page)) {
1194 unlock_page(page);
1195 return -EIO;
1196 }
1197 }
1198 return 0;
1199}
1200
39279cc3 1201/*
d352ac68
CM
1202 * this gets pages into the page cache and locks them down, it also properly
1203 * waits for data=ordered extents to finish before allowing the pages to be
1204 * modified.
39279cc3 1205 */
d397712b 1206static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
98ed5174
CM
1207 struct page **pages, size_t num_pages,
1208 loff_t pos, unsigned long first_index,
b6316429 1209 size_t write_bytes, bool force_uptodate)
39279cc3 1210{
2ac55d41 1211 struct extent_state *cached_state = NULL;
39279cc3
CM
1212 int i;
1213 unsigned long index = pos >> PAGE_CACHE_SHIFT;
6da6abae 1214 struct inode *inode = fdentry(file)->d_inode;
3b16a4e3 1215 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
39279cc3 1216 int err = 0;
b1bf862e 1217 int faili = 0;
8c2383c3 1218 u64 start_pos;
e6dcd2dc 1219 u64 last_pos;
8c2383c3 1220
5f39d397 1221 start_pos = pos & ~((u64)root->sectorsize - 1);
e6dcd2dc 1222 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
39279cc3 1223
e6dcd2dc 1224again:
39279cc3 1225 for (i = 0; i < num_pages; i++) {
a94733d0 1226 pages[i] = find_or_create_page(inode->i_mapping, index + i,
e3a41a5b 1227 mask | __GFP_WRITE);
39279cc3 1228 if (!pages[i]) {
b1bf862e
CM
1229 faili = i - 1;
1230 err = -ENOMEM;
1231 goto fail;
1232 }
1233
1234 if (i == 0)
b6316429
JB
1235 err = prepare_uptodate_page(pages[i], pos,
1236 force_uptodate);
b1bf862e
CM
1237 if (i == num_pages - 1)
1238 err = prepare_uptodate_page(pages[i],
b6316429 1239 pos + write_bytes, false);
b1bf862e
CM
1240 if (err) {
1241 page_cache_release(pages[i]);
1242 faili = i - 1;
1243 goto fail;
39279cc3 1244 }
ccd467d6 1245 wait_on_page_writeback(pages[i]);
39279cc3 1246 }
b1bf862e 1247 err = 0;
0762704b 1248 if (start_pos < inode->i_size) {
e6dcd2dc 1249 struct btrfs_ordered_extent *ordered;
2ac55d41 1250 lock_extent_bits(&BTRFS_I(inode)->io_tree,
d0082371 1251 start_pos, last_pos - 1, 0, &cached_state);
d397712b
CM
1252 ordered = btrfs_lookup_first_ordered_extent(inode,
1253 last_pos - 1);
e6dcd2dc
CM
1254 if (ordered &&
1255 ordered->file_offset + ordered->len > start_pos &&
1256 ordered->file_offset < last_pos) {
1257 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
1258 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1259 start_pos, last_pos - 1,
1260 &cached_state, GFP_NOFS);
e6dcd2dc
CM
1261 for (i = 0; i < num_pages; i++) {
1262 unlock_page(pages[i]);
1263 page_cache_release(pages[i]);
1264 }
1265 btrfs_wait_ordered_range(inode, start_pos,
1266 last_pos - start_pos);
1267 goto again;
1268 }
1269 if (ordered)
1270 btrfs_put_ordered_extent(ordered);
1271
2ac55d41 1272 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
32c00aff 1273 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
1274 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1275 0, 0, &cached_state, GFP_NOFS);
2ac55d41
JB
1276 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1277 start_pos, last_pos - 1, &cached_state,
1278 GFP_NOFS);
0762704b 1279 }
e6dcd2dc 1280 for (i = 0; i < num_pages; i++) {
32c7f202
WF
1281 if (clear_page_dirty_for_io(pages[i]))
1282 account_page_redirty(pages[i]);
e6dcd2dc
CM
1283 set_page_extent_mapped(pages[i]);
1284 WARN_ON(!PageLocked(pages[i]));
1285 }
39279cc3 1286 return 0;
b1bf862e
CM
1287fail:
1288 while (faili >= 0) {
1289 unlock_page(pages[faili]);
1290 page_cache_release(pages[faili]);
1291 faili--;
1292 }
1293 return err;
1294
39279cc3
CM
1295}
1296
d0215f3e
JB
1297static noinline ssize_t __btrfs_buffered_write(struct file *file,
1298 struct iov_iter *i,
1299 loff_t pos)
4b46fce2 1300{
11c65dcc
JB
1301 struct inode *inode = fdentry(file)->d_inode;
1302 struct btrfs_root *root = BTRFS_I(inode)->root;
11c65dcc 1303 struct page **pages = NULL;
39279cc3 1304 unsigned long first_index;
d0215f3e
JB
1305 size_t num_written = 0;
1306 int nrptrs;
c9149235 1307 int ret = 0;
b6316429 1308 bool force_page_uptodate = false;
4b46fce2 1309
d0215f3e 1310 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
11c65dcc
JB
1311 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1312 (sizeof(struct page *)));
142349f5
WF
1313 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1314 nrptrs = max(nrptrs, 8);
8c2383c3 1315 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
d0215f3e
JB
1316 if (!pages)
1317 return -ENOMEM;
ab93dbec 1318
39279cc3 1319 first_index = pos >> PAGE_CACHE_SHIFT;
39279cc3 1320
d0215f3e 1321 while (iov_iter_count(i) > 0) {
39279cc3 1322 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
d0215f3e 1323 size_t write_bytes = min(iov_iter_count(i),
11c65dcc 1324 nrptrs * (size_t)PAGE_CACHE_SIZE -
8c2383c3 1325 offset);
3a90983d
YZ
1326 size_t num_pages = (write_bytes + offset +
1327 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
d0215f3e
JB
1328 size_t dirty_pages;
1329 size_t copied;
39279cc3 1330
8c2383c3 1331 WARN_ON(num_pages > nrptrs);
1832a6d5 1332
914ee295
XZ
1333 /*
1334 * Fault pages before locking them in prepare_pages
1335 * to avoid recursive lock
1336 */
d0215f3e 1337 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
914ee295 1338 ret = -EFAULT;
d0215f3e 1339 break;
914ee295
XZ
1340 }
1341
1342 ret = btrfs_delalloc_reserve_space(inode,
1343 num_pages << PAGE_CACHE_SHIFT);
1832a6d5 1344 if (ret)
d0215f3e 1345 break;
1832a6d5 1346
4a64001f
JB
1347 /*
1348 * This is going to setup the pages array with the number of
1349 * pages we want, so we don't really need to worry about the
1350 * contents of pages from loop to loop
1351 */
39279cc3 1352 ret = prepare_pages(root, file, pages, num_pages,
b6316429
JB
1353 pos, first_index, write_bytes,
1354 force_page_uptodate);
6a63209f 1355 if (ret) {
914ee295
XZ
1356 btrfs_delalloc_release_space(inode,
1357 num_pages << PAGE_CACHE_SHIFT);
d0215f3e 1358 break;
6a63209f 1359 }
39279cc3 1360
914ee295 1361 copied = btrfs_copy_from_user(pos, num_pages,
d0215f3e 1362 write_bytes, pages, i);
b1bf862e
CM
1363
1364 /*
1365 * if we have trouble faulting in the pages, fall
1366 * back to one page at a time
1367 */
1368 if (copied < write_bytes)
1369 nrptrs = 1;
1370
b6316429
JB
1371 if (copied == 0) {
1372 force_page_uptodate = true;
b1bf862e 1373 dirty_pages = 0;
b6316429
JB
1374 } else {
1375 force_page_uptodate = false;
b1bf862e
CM
1376 dirty_pages = (copied + offset +
1377 PAGE_CACHE_SIZE - 1) >>
1378 PAGE_CACHE_SHIFT;
b6316429 1379 }
914ee295 1380
d0215f3e
JB
1381 /*
1382 * If we had a short copy we need to release the excess delaloc
1383 * bytes we reserved. We need to increment outstanding_extents
1384 * because btrfs_delalloc_release_space will decrement it, but
1385 * we still have an outstanding extent for the chunk we actually
1386 * managed to copy.
1387 */
914ee295 1388 if (num_pages > dirty_pages) {
9e0baf60
JB
1389 if (copied > 0) {
1390 spin_lock(&BTRFS_I(inode)->lock);
1391 BTRFS_I(inode)->outstanding_extents++;
1392 spin_unlock(&BTRFS_I(inode)->lock);
1393 }
914ee295
XZ
1394 btrfs_delalloc_release_space(inode,
1395 (num_pages - dirty_pages) <<
1396 PAGE_CACHE_SHIFT);
1397 }
1398
1399 if (copied > 0) {
be1a12a0
JB
1400 ret = btrfs_dirty_pages(root, inode, pages,
1401 dirty_pages, pos, copied,
1402 NULL);
d0215f3e
JB
1403 if (ret) {
1404 btrfs_delalloc_release_space(inode,
1405 dirty_pages << PAGE_CACHE_SHIFT);
1406 btrfs_drop_pages(pages, num_pages);
1407 break;
1408 }
54aa1f4d 1409 }
39279cc3 1410
39279cc3
CM
1411 btrfs_drop_pages(pages, num_pages);
1412
d0215f3e
JB
1413 cond_resched();
1414
1415 balance_dirty_pages_ratelimited_nr(inode->i_mapping,
1416 dirty_pages);
1417 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
b53d3f5d 1418 btrfs_btree_balance_dirty(root);
cb843a6f 1419
914ee295
XZ
1420 pos += copied;
1421 num_written += copied;
d0215f3e 1422 }
39279cc3 1423
d0215f3e
JB
1424 kfree(pages);
1425
1426 return num_written ? num_written : ret;
1427}
1428
1429static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1430 const struct iovec *iov,
1431 unsigned long nr_segs, loff_t pos,
1432 loff_t *ppos, size_t count, size_t ocount)
1433{
1434 struct file *file = iocb->ki_filp;
d0215f3e
JB
1435 struct iov_iter i;
1436 ssize_t written;
1437 ssize_t written_buffered;
1438 loff_t endbyte;
1439 int err;
1440
1441 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1442 count, ocount);
1443
d0215f3e
JB
1444 if (written < 0 || written == count)
1445 return written;
1446
1447 pos += written;
1448 count -= written;
1449 iov_iter_init(&i, iov, nr_segs, count, written);
1450 written_buffered = __btrfs_buffered_write(file, &i, pos);
1451 if (written_buffered < 0) {
1452 err = written_buffered;
1453 goto out;
39279cc3 1454 }
d0215f3e
JB
1455 endbyte = pos + written_buffered - 1;
1456 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1457 if (err)
1458 goto out;
1459 written += written_buffered;
1460 *ppos = pos + written_buffered;
1461 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1462 endbyte >> PAGE_CACHE_SHIFT);
39279cc3 1463out:
d0215f3e
JB
1464 return written ? written : err;
1465}
5b92ee72 1466
6c760c07
JB
1467static void update_time_for_write(struct inode *inode)
1468{
1469 struct timespec now;
1470
1471 if (IS_NOCMTIME(inode))
1472 return;
1473
1474 now = current_fs_time(inode->i_sb);
1475 if (!timespec_equal(&inode->i_mtime, &now))
1476 inode->i_mtime = now;
1477
1478 if (!timespec_equal(&inode->i_ctime, &now))
1479 inode->i_ctime = now;
1480
1481 if (IS_I_VERSION(inode))
1482 inode_inc_iversion(inode);
1483}
1484
d0215f3e
JB
1485static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1486 const struct iovec *iov,
1487 unsigned long nr_segs, loff_t pos)
1488{
1489 struct file *file = iocb->ki_filp;
1490 struct inode *inode = fdentry(file)->d_inode;
1491 struct btrfs_root *root = BTRFS_I(inode)->root;
1492 loff_t *ppos = &iocb->ki_pos;
0c1a98c8 1493 u64 start_pos;
d0215f3e
JB
1494 ssize_t num_written = 0;
1495 ssize_t err = 0;
1496 size_t count, ocount;
b812ce28 1497 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
d0215f3e 1498
b2b5ef5c 1499 sb_start_write(inode->i_sb);
d0215f3e
JB
1500
1501 mutex_lock(&inode->i_mutex);
1502
1503 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1504 if (err) {
1505 mutex_unlock(&inode->i_mutex);
1506 goto out;
1507 }
1508 count = ocount;
1509
1510 current->backing_dev_info = inode->i_mapping->backing_dev_info;
1511 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1512 if (err) {
1513 mutex_unlock(&inode->i_mutex);
1514 goto out;
1515 }
1516
1517 if (count == 0) {
1518 mutex_unlock(&inode->i_mutex);
1519 goto out;
1520 }
1521
1522 err = file_remove_suid(file);
1523 if (err) {
1524 mutex_unlock(&inode->i_mutex);
1525 goto out;
1526 }
1527
1528 /*
1529 * If BTRFS flips readonly due to some impossible error
1530 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1531 * although we have opened a file as writable, we have
1532 * to stop this write operation to ensure FS consistency.
1533 */
1534 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
1535 mutex_unlock(&inode->i_mutex);
1536 err = -EROFS;
1537 goto out;
1538 }
1539
6c760c07
JB
1540 /*
1541 * We reserve space for updating the inode when we reserve space for the
1542 * extent we are going to write, so we will enospc out there. We don't
1543 * need to start yet another transaction to update the inode as we will
1544 * update the inode when we finish writing whatever data we write.
1545 */
1546 update_time_for_write(inode);
d0215f3e 1547
0c1a98c8
MX
1548 start_pos = round_down(pos, root->sectorsize);
1549 if (start_pos > i_size_read(inode)) {
1550 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1551 if (err) {
1552 mutex_unlock(&inode->i_mutex);
1553 goto out;
1554 }
1555 }
1556
b812ce28
JB
1557 if (sync)
1558 atomic_inc(&BTRFS_I(inode)->sync_writers);
1559
d0215f3e
JB
1560 if (unlikely(file->f_flags & O_DIRECT)) {
1561 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1562 pos, ppos, count, ocount);
1563 } else {
1564 struct iov_iter i;
1565
1566 iov_iter_init(&i, iov, nr_segs, count, num_written);
1567
1568 num_written = __btrfs_buffered_write(file, &i, pos);
1569 if (num_written > 0)
1570 *ppos = pos + num_written;
1571 }
1572
1573 mutex_unlock(&inode->i_mutex);
2ff3e9b6 1574
5a3f23d5
CM
1575 /*
1576 * we want to make sure fsync finds this change
1577 * but we haven't joined a transaction running right now.
1578 *
1579 * Later on, someone is sure to update the inode and get the
1580 * real transid recorded.
1581 *
1582 * We set last_trans now to the fs_info generation + 1,
1583 * this will either be one more than the running transaction
1584 * or the generation used for the next transaction if there isn't
1585 * one running right now.
6c760c07
JB
1586 *
1587 * We also have to set last_sub_trans to the current log transid,
1588 * otherwise subsequent syncs to a file that's been synced in this
1589 * transaction will appear to have already occured.
5a3f23d5
CM
1590 */
1591 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
6c760c07 1592 BTRFS_I(inode)->last_sub_trans = root->log_transid;
d0215f3e
JB
1593 if (num_written > 0 || num_written == -EIOCBQUEUED) {
1594 err = generic_write_sync(file, pos, num_written);
1595 if (err < 0 && num_written > 0)
2ff3e9b6
CM
1596 num_written = err;
1597 }
d0215f3e 1598out:
b812ce28
JB
1599 if (sync)
1600 atomic_dec(&BTRFS_I(inode)->sync_writers);
b2b5ef5c 1601 sb_end_write(inode->i_sb);
39279cc3 1602 current->backing_dev_info = NULL;
39279cc3
CM
1603 return num_written ? num_written : err;
1604}
1605
d397712b 1606int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1607{
5a3f23d5
CM
1608 /*
1609 * ordered_data_close is set by settattr when we are about to truncate
1610 * a file from a non-zero size to a zero size. This tries to
1611 * flush down new bytes that may have been written if the
1612 * application were using truncate to replace a file in place.
1613 */
72ac3c0d
JB
1614 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1615 &BTRFS_I(inode)->runtime_flags)) {
5a3f23d5
CM
1616 btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1617 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1618 filemap_flush(inode->i_mapping);
1619 }
6bf13c0c
SW
1620 if (filp->private_data)
1621 btrfs_ioctl_trans_end(filp);
e1b81e67
M
1622 return 0;
1623}
1624
d352ac68
CM
1625/*
1626 * fsync call for both files and directories. This logs the inode into
1627 * the tree log instead of forcing full commits whenever possible.
1628 *
1629 * It needs to call filemap_fdatawait so that all ordered extent updates are
1630 * in the metadata btree are up to date for copying to the log.
1631 *
1632 * It drops the inode mutex before doing the tree log commit. This is an
1633 * important optimization for directories because holding the mutex prevents
1634 * new operations on the dir while we write to disk.
1635 */
02c24a82 1636int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 1637{
7ea80859 1638 struct dentry *dentry = file->f_path.dentry;
39279cc3
CM
1639 struct inode *inode = dentry->d_inode;
1640 struct btrfs_root *root = BTRFS_I(inode)->root;
15ee9bc7 1641 int ret = 0;
39279cc3
CM
1642 struct btrfs_trans_handle *trans;
1643
1abe9b8a 1644 trace_btrfs_sync_file(file, datasync);
257c62e1 1645
90abccf2
MX
1646 /*
1647 * We write the dirty pages in the range and wait until they complete
1648 * out of the ->i_mutex. If so, we can flush the dirty pages by
1649 * multi-task, and make the performance up.
1650 */
b812ce28 1651 atomic_inc(&BTRFS_I(inode)->sync_writers);
90abccf2 1652 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
b812ce28 1653 atomic_dec(&BTRFS_I(inode)->sync_writers);
90abccf2
MX
1654 if (ret)
1655 return ret;
1656
02c24a82
JB
1657 mutex_lock(&inode->i_mutex);
1658
0885ef5b 1659 /*
90abccf2
MX
1660 * We flush the dirty pages again to avoid some dirty pages in the
1661 * range being left.
0885ef5b 1662 */
2ecb7923 1663 atomic_inc(&root->log_batch);
9f3959c5 1664 btrfs_wait_ordered_range(inode, start, end - start + 1);
2ecb7923 1665 atomic_inc(&root->log_batch);
257c62e1 1666
39279cc3 1667 /*
15ee9bc7
JB
1668 * check the transaction that last modified this inode
1669 * and see if its already been committed
39279cc3 1670 */
02c24a82
JB
1671 if (!BTRFS_I(inode)->last_trans) {
1672 mutex_unlock(&inode->i_mutex);
15ee9bc7 1673 goto out;
02c24a82 1674 }
a2135011 1675
257c62e1
CM
1676 /*
1677 * if the last transaction that changed this file was before
1678 * the current transaction, we can bail out now without any
1679 * syncing
1680 */
a4abeea4 1681 smp_mb();
22ee6985
JB
1682 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1683 BTRFS_I(inode)->last_trans <=
15ee9bc7
JB
1684 root->fs_info->last_trans_committed) {
1685 BTRFS_I(inode)->last_trans = 0;
5dc562c5
JB
1686
1687 /*
1688 * We'v had everything committed since the last time we were
1689 * modified so clear this flag in case it was set for whatever
1690 * reason, it's no longer relevant.
1691 */
1692 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1693 &BTRFS_I(inode)->runtime_flags);
02c24a82 1694 mutex_unlock(&inode->i_mutex);
15ee9bc7
JB
1695 goto out;
1696 }
15ee9bc7
JB
1697
1698 /*
a52d9a80
CM
1699 * ok we haven't committed the transaction yet, lets do a commit
1700 */
6f902af4 1701 if (file->private_data)
6bf13c0c
SW
1702 btrfs_ioctl_trans_end(file);
1703
a22285a6
YZ
1704 trans = btrfs_start_transaction(root, 0);
1705 if (IS_ERR(trans)) {
1706 ret = PTR_ERR(trans);
02c24a82 1707 mutex_unlock(&inode->i_mutex);
39279cc3
CM
1708 goto out;
1709 }
e02119d5 1710
2cfbd50b 1711 ret = btrfs_log_dentry_safe(trans, root, dentry);
02c24a82
JB
1712 if (ret < 0) {
1713 mutex_unlock(&inode->i_mutex);
e02119d5 1714 goto out;
02c24a82 1715 }
49eb7e46
CM
1716
1717 /* we've logged all the items and now have a consistent
1718 * version of the file in the log. It is possible that
1719 * someone will come in and modify the file, but that's
1720 * fine because the log is consistent on disk, and we
1721 * have references to all of the file's extents
1722 *
1723 * It is possible that someone will come in and log the
1724 * file again, but that will end up using the synchronization
1725 * inside btrfs_sync_log to keep things safe.
1726 */
02c24a82 1727 mutex_unlock(&inode->i_mutex);
49eb7e46 1728
257c62e1
CM
1729 if (ret != BTRFS_NO_LOG_SYNC) {
1730 if (ret > 0) {
12fcfd22 1731 ret = btrfs_commit_transaction(trans, root);
257c62e1
CM
1732 } else {
1733 ret = btrfs_sync_log(trans, root);
1734 if (ret == 0)
1735 ret = btrfs_end_transaction(trans, root);
1736 else
1737 ret = btrfs_commit_transaction(trans, root);
1738 }
1739 } else {
1740 ret = btrfs_end_transaction(trans, root);
e02119d5 1741 }
39279cc3 1742out:
014e4ac4 1743 return ret > 0 ? -EIO : ret;
39279cc3
CM
1744}
1745
f0f37e2f 1746static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 1747 .fault = filemap_fault,
9ebefb18 1748 .page_mkwrite = btrfs_page_mkwrite,
0b173bc4 1749 .remap_pages = generic_file_remap_pages,
9ebefb18
CM
1750};
1751
1752static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
1753{
058a457e
MX
1754 struct address_space *mapping = filp->f_mapping;
1755
1756 if (!mapping->a_ops->readpage)
1757 return -ENOEXEC;
1758
9ebefb18 1759 file_accessed(filp);
058a457e 1760 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 1761
9ebefb18
CM
1762 return 0;
1763}
1764
2aaa6655
JB
1765static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
1766 int slot, u64 start, u64 end)
1767{
1768 struct btrfs_file_extent_item *fi;
1769 struct btrfs_key key;
1770
1771 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1772 return 0;
1773
1774 btrfs_item_key_to_cpu(leaf, &key, slot);
1775 if (key.objectid != btrfs_ino(inode) ||
1776 key.type != BTRFS_EXTENT_DATA_KEY)
1777 return 0;
1778
1779 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1780
1781 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1782 return 0;
1783
1784 if (btrfs_file_extent_disk_bytenr(leaf, fi))
1785 return 0;
1786
1787 if (key.offset == end)
1788 return 1;
1789 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1790 return 1;
1791 return 0;
1792}
1793
1794static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
1795 struct btrfs_path *path, u64 offset, u64 end)
1796{
1797 struct btrfs_root *root = BTRFS_I(inode)->root;
1798 struct extent_buffer *leaf;
1799 struct btrfs_file_extent_item *fi;
1800 struct extent_map *hole_em;
1801 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1802 struct btrfs_key key;
1803 int ret;
1804
1805 key.objectid = btrfs_ino(inode);
1806 key.type = BTRFS_EXTENT_DATA_KEY;
1807 key.offset = offset;
1808
1809
1810 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1811 if (ret < 0)
1812 return ret;
1813 BUG_ON(!ret);
1814
1815 leaf = path->nodes[0];
1816 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
1817 u64 num_bytes;
1818
1819 path->slots[0]--;
1820 fi = btrfs_item_ptr(leaf, path->slots[0],
1821 struct btrfs_file_extent_item);
1822 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
1823 end - offset;
1824 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1825 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1826 btrfs_set_file_extent_offset(leaf, fi, 0);
1827 btrfs_mark_buffer_dirty(leaf);
1828 goto out;
1829 }
1830
1831 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
1832 u64 num_bytes;
1833
1834 path->slots[0]++;
1835 key.offset = offset;
1836 btrfs_set_item_key_safe(trans, root, path, &key);
1837 fi = btrfs_item_ptr(leaf, path->slots[0],
1838 struct btrfs_file_extent_item);
1839 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
1840 offset;
1841 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1842 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1843 btrfs_set_file_extent_offset(leaf, fi, 0);
1844 btrfs_mark_buffer_dirty(leaf);
1845 goto out;
1846 }
1847 btrfs_release_path(path);
1848
1849 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
1850 0, 0, end - offset, 0, end - offset,
1851 0, 0, 0);
1852 if (ret)
1853 return ret;
1854
1855out:
1856 btrfs_release_path(path);
1857
1858 hole_em = alloc_extent_map();
1859 if (!hole_em) {
1860 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1861 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1862 &BTRFS_I(inode)->runtime_flags);
1863 } else {
1864 hole_em->start = offset;
1865 hole_em->len = end - offset;
1866 hole_em->orig_start = offset;
1867
1868 hole_em->block_start = EXTENT_MAP_HOLE;
1869 hole_em->block_len = 0;
b4939680 1870 hole_em->orig_block_len = 0;
2aaa6655
JB
1871 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
1872 hole_em->compress_type = BTRFS_COMPRESS_NONE;
1873 hole_em->generation = trans->transid;
1874
1875 do {
1876 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1877 write_lock(&em_tree->lock);
1878 ret = add_extent_mapping(em_tree, hole_em);
1879 if (!ret)
1880 list_move(&hole_em->list,
1881 &em_tree->modified_extents);
1882 write_unlock(&em_tree->lock);
1883 } while (ret == -EEXIST);
1884 free_extent_map(hole_em);
1885 if (ret)
1886 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1887 &BTRFS_I(inode)->runtime_flags);
1888 }
1889
1890 return 0;
1891}
1892
1893static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1894{
1895 struct btrfs_root *root = BTRFS_I(inode)->root;
1896 struct extent_state *cached_state = NULL;
1897 struct btrfs_path *path;
1898 struct btrfs_block_rsv *rsv;
1899 struct btrfs_trans_handle *trans;
0061280d
MX
1900 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
1901 u64 lockend = round_down(offset + len,
1902 BTRFS_I(inode)->root->sectorsize) - 1;
2aaa6655
JB
1903 u64 cur_offset = lockstart;
1904 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
1905 u64 drop_end;
2aaa6655
JB
1906 int ret = 0;
1907 int err = 0;
6347b3c4
MX
1908 bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
1909 ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2aaa6655
JB
1910
1911 btrfs_wait_ordered_range(inode, offset, len);
1912
1913 mutex_lock(&inode->i_mutex);
7426cc04
MX
1914 /*
1915 * We needn't truncate any page which is beyond the end of the file
1916 * because we are sure there is no data there.
1917 */
2aaa6655
JB
1918 /*
1919 * Only do this if we are in the same page and we aren't doing the
1920 * entire page.
1921 */
1922 if (same_page && len < PAGE_CACHE_SIZE) {
7426cc04
MX
1923 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
1924 ret = btrfs_truncate_page(inode, offset, len, 0);
2aaa6655
JB
1925 mutex_unlock(&inode->i_mutex);
1926 return ret;
1927 }
1928
1929 /* zero back part of the first page */
7426cc04
MX
1930 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
1931 ret = btrfs_truncate_page(inode, offset, 0, 0);
1932 if (ret) {
1933 mutex_unlock(&inode->i_mutex);
1934 return ret;
1935 }
2aaa6655
JB
1936 }
1937
1938 /* zero the front end of the last page */
0061280d
MX
1939 if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
1940 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
1941 if (ret) {
1942 mutex_unlock(&inode->i_mutex);
1943 return ret;
1944 }
2aaa6655
JB
1945 }
1946
1947 if (lockend < lockstart) {
1948 mutex_unlock(&inode->i_mutex);
1949 return 0;
1950 }
1951
1952 while (1) {
1953 struct btrfs_ordered_extent *ordered;
1954
1955 truncate_pagecache_range(inode, lockstart, lockend);
1956
1957 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1958 0, &cached_state);
1959 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
1960
1961 /*
1962 * We need to make sure we have no ordered extents in this range
1963 * and nobody raced in and read a page in this range, if we did
1964 * we need to try again.
1965 */
1966 if ((!ordered ||
1967 (ordered->file_offset + ordered->len < lockstart ||
1968 ordered->file_offset > lockend)) &&
1969 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
1970 lockend, EXTENT_UPTODATE, 0,
1971 cached_state)) {
1972 if (ordered)
1973 btrfs_put_ordered_extent(ordered);
1974 break;
1975 }
1976 if (ordered)
1977 btrfs_put_ordered_extent(ordered);
1978 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
1979 lockend, &cached_state, GFP_NOFS);
1980 btrfs_wait_ordered_range(inode, lockstart,
1981 lockend - lockstart + 1);
1982 }
1983
1984 path = btrfs_alloc_path();
1985 if (!path) {
1986 ret = -ENOMEM;
1987 goto out;
1988 }
1989
66d8f3dd 1990 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2aaa6655
JB
1991 if (!rsv) {
1992 ret = -ENOMEM;
1993 goto out_free;
1994 }
1995 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
1996 rsv->failfast = 1;
1997
1998 /*
1999 * 1 - update the inode
2000 * 1 - removing the extents in the range
2001 * 1 - adding the hole extent
2002 */
2003 trans = btrfs_start_transaction(root, 3);
2004 if (IS_ERR(trans)) {
2005 err = PTR_ERR(trans);
2006 goto out_free;
2007 }
2008
2009 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2010 min_size);
2011 BUG_ON(ret);
2012 trans->block_rsv = rsv;
2013
2014 while (cur_offset < lockend) {
2015 ret = __btrfs_drop_extents(trans, root, inode, path,
2016 cur_offset, lockend + 1,
2017 &drop_end, 1);
2018 if (ret != -ENOSPC)
2019 break;
2020
2021 trans->block_rsv = &root->fs_info->trans_block_rsv;
2022
2023 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2024 if (ret) {
2025 err = ret;
2026 break;
2027 }
2028
2029 cur_offset = drop_end;
2030
2031 ret = btrfs_update_inode(trans, root, inode);
2032 if (ret) {
2033 err = ret;
2034 break;
2035 }
2036
2aaa6655 2037 btrfs_end_transaction(trans, root);
b53d3f5d 2038 btrfs_btree_balance_dirty(root);
2aaa6655
JB
2039
2040 trans = btrfs_start_transaction(root, 3);
2041 if (IS_ERR(trans)) {
2042 ret = PTR_ERR(trans);
2043 trans = NULL;
2044 break;
2045 }
2046
2047 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2048 rsv, min_size);
2049 BUG_ON(ret); /* shouldn't happen */
2050 trans->block_rsv = rsv;
2051 }
2052
2053 if (ret) {
2054 err = ret;
2055 goto out_trans;
2056 }
2057
2058 trans->block_rsv = &root->fs_info->trans_block_rsv;
2059 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2060 if (ret) {
2061 err = ret;
2062 goto out_trans;
2063 }
2064
2065out_trans:
2066 if (!trans)
2067 goto out_free;
2068
e1f5790e
TI
2069 inode_inc_iversion(inode);
2070 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2071
2aaa6655
JB
2072 trans->block_rsv = &root->fs_info->trans_block_rsv;
2073 ret = btrfs_update_inode(trans, root, inode);
2aaa6655 2074 btrfs_end_transaction(trans, root);
b53d3f5d 2075 btrfs_btree_balance_dirty(root);
2aaa6655
JB
2076out_free:
2077 btrfs_free_path(path);
2078 btrfs_free_block_rsv(root, rsv);
2079out:
2080 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2081 &cached_state, GFP_NOFS);
2082 mutex_unlock(&inode->i_mutex);
2083 if (ret && !err)
2084 err = ret;
2085 return err;
2086}
2087
2fe17c10
CH
2088static long btrfs_fallocate(struct file *file, int mode,
2089 loff_t offset, loff_t len)
2090{
2091 struct inode *inode = file->f_path.dentry->d_inode;
2092 struct extent_state *cached_state = NULL;
2093 u64 cur_offset;
2094 u64 last_byte;
2095 u64 alloc_start;
2096 u64 alloc_end;
2097 u64 alloc_hint = 0;
2098 u64 locked_end;
2fe17c10 2099 struct extent_map *em;
797f4277 2100 int blocksize = BTRFS_I(inode)->root->sectorsize;
2fe17c10
CH
2101 int ret;
2102
797f4277
MX
2103 alloc_start = round_down(offset, blocksize);
2104 alloc_end = round_up(offset + len, blocksize);
2fe17c10 2105
2aaa6655
JB
2106 /* Make sure we aren't being give some crap mode */
2107 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2fe17c10
CH
2108 return -EOPNOTSUPP;
2109
2aaa6655
JB
2110 if (mode & FALLOC_FL_PUNCH_HOLE)
2111 return btrfs_punch_hole(inode, offset, len);
2112
d98456fc
CM
2113 /*
2114 * Make sure we have enough space before we do the
2115 * allocation.
2116 */
0ff6fabd 2117 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
d98456fc
CM
2118 if (ret)
2119 return ret;
2120
2fe17c10
CH
2121 /*
2122 * wait for ordered IO before we have any locks. We'll loop again
2123 * below with the locks held.
2124 */
2125 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
2126
2127 mutex_lock(&inode->i_mutex);
2128 ret = inode_newsize_ok(inode, alloc_end);
2129 if (ret)
2130 goto out;
2131
2132 if (alloc_start > inode->i_size) {
a41ad394
JB
2133 ret = btrfs_cont_expand(inode, i_size_read(inode),
2134 alloc_start);
2fe17c10
CH
2135 if (ret)
2136 goto out;
2137 }
2138
2fe17c10
CH
2139 locked_end = alloc_end - 1;
2140 while (1) {
2141 struct btrfs_ordered_extent *ordered;
2142
2143 /* the extent lock is ordered inside the running
2144 * transaction
2145 */
2146 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
d0082371 2147 locked_end, 0, &cached_state);
2fe17c10
CH
2148 ordered = btrfs_lookup_first_ordered_extent(inode,
2149 alloc_end - 1);
2150 if (ordered &&
2151 ordered->file_offset + ordered->len > alloc_start &&
2152 ordered->file_offset < alloc_end) {
2153 btrfs_put_ordered_extent(ordered);
2154 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2155 alloc_start, locked_end,
2156 &cached_state, GFP_NOFS);
2157 /*
2158 * we can't wait on the range with the transaction
2159 * running or with the extent lock held
2160 */
2161 btrfs_wait_ordered_range(inode, alloc_start,
2162 alloc_end - alloc_start);
2163 } else {
2164 if (ordered)
2165 btrfs_put_ordered_extent(ordered);
2166 break;
2167 }
2168 }
2169
2170 cur_offset = alloc_start;
2171 while (1) {
f1e490a7
JB
2172 u64 actual_end;
2173
2fe17c10
CH
2174 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2175 alloc_end - cur_offset, 0);
79787eaa
JM
2176 if (IS_ERR_OR_NULL(em)) {
2177 if (!em)
2178 ret = -ENOMEM;
2179 else
2180 ret = PTR_ERR(em);
2181 break;
2182 }
2fe17c10 2183 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 2184 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 2185 last_byte = ALIGN(last_byte, blocksize);
f1e490a7 2186
2fe17c10
CH
2187 if (em->block_start == EXTENT_MAP_HOLE ||
2188 (cur_offset >= inode->i_size &&
2189 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2190 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2191 last_byte - cur_offset,
2192 1 << inode->i_blkbits,
2193 offset + len,
2194 &alloc_hint);
1b9c332b 2195
2fe17c10
CH
2196 if (ret < 0) {
2197 free_extent_map(em);
2198 break;
2199 }
f1e490a7
JB
2200 } else if (actual_end > inode->i_size &&
2201 !(mode & FALLOC_FL_KEEP_SIZE)) {
2202 /*
2203 * We didn't need to allocate any more space, but we
2204 * still extended the size of the file so we need to
2205 * update i_size.
2206 */
2207 inode->i_ctime = CURRENT_TIME;
2208 i_size_write(inode, actual_end);
2209 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2fe17c10
CH
2210 }
2211 free_extent_map(em);
2212
2213 cur_offset = last_byte;
2214 if (cur_offset >= alloc_end) {
2215 ret = 0;
2216 break;
2217 }
2218 }
2219 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2220 &cached_state, GFP_NOFS);
2fe17c10
CH
2221out:
2222 mutex_unlock(&inode->i_mutex);
d98456fc 2223 /* Let go of our reservation. */
0ff6fabd 2224 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2fe17c10
CH
2225 return ret;
2226}
2227
b2675157
JB
2228static int find_desired_extent(struct inode *inode, loff_t *offset, int origin)
2229{
2230 struct btrfs_root *root = BTRFS_I(inode)->root;
2231 struct extent_map *em;
2232 struct extent_state *cached_state = NULL;
2233 u64 lockstart = *offset;
2234 u64 lockend = i_size_read(inode);
2235 u64 start = *offset;
2236 u64 orig_start = *offset;
2237 u64 len = i_size_read(inode);
2238 u64 last_end = 0;
2239 int ret = 0;
2240
2241 lockend = max_t(u64, root->sectorsize, lockend);
2242 if (lockend <= lockstart)
2243 lockend = lockstart + root->sectorsize;
2244
1214b53f 2245 lockend--;
b2675157
JB
2246 len = lockend - lockstart + 1;
2247
2248 len = max_t(u64, len, root->sectorsize);
2249 if (inode->i_size == 0)
2250 return -ENXIO;
2251
2252 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
d0082371 2253 &cached_state);
b2675157
JB
2254
2255 /*
2256 * Delalloc is such a pain. If we have a hole and we have pending
2257 * delalloc for a portion of the hole we will get back a hole that
2258 * exists for the entire range since it hasn't been actually written
2259 * yet. So to take care of this case we need to look for an extent just
2260 * before the position we want in case there is outstanding delalloc
2261 * going on here.
2262 */
2263 if (origin == SEEK_HOLE && start != 0) {
2264 if (start <= root->sectorsize)
2265 em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
2266 root->sectorsize, 0);
2267 else
2268 em = btrfs_get_extent_fiemap(inode, NULL, 0,
2269 start - root->sectorsize,
2270 root->sectorsize, 0);
2271 if (IS_ERR(em)) {
6af021d8 2272 ret = PTR_ERR(em);
b2675157
JB
2273 goto out;
2274 }
2275 last_end = em->start + em->len;
2276 if (em->block_start == EXTENT_MAP_DELALLOC)
2277 last_end = min_t(u64, last_end, inode->i_size);
2278 free_extent_map(em);
2279 }
2280
2281 while (1) {
2282 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2283 if (IS_ERR(em)) {
6af021d8 2284 ret = PTR_ERR(em);
b2675157
JB
2285 break;
2286 }
2287
2288 if (em->block_start == EXTENT_MAP_HOLE) {
2289 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2290 if (last_end <= orig_start) {
2291 free_extent_map(em);
2292 ret = -ENXIO;
2293 break;
2294 }
2295 }
2296
2297 if (origin == SEEK_HOLE) {
2298 *offset = start;
2299 free_extent_map(em);
2300 break;
2301 }
2302 } else {
2303 if (origin == SEEK_DATA) {
2304 if (em->block_start == EXTENT_MAP_DELALLOC) {
2305 if (start >= inode->i_size) {
2306 free_extent_map(em);
2307 ret = -ENXIO;
2308 break;
2309 }
2310 }
2311
2312 *offset = start;
2313 free_extent_map(em);
2314 break;
2315 }
2316 }
2317
2318 start = em->start + em->len;
2319 last_end = em->start + em->len;
2320
2321 if (em->block_start == EXTENT_MAP_DELALLOC)
2322 last_end = min_t(u64, last_end, inode->i_size);
2323
2324 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2325 free_extent_map(em);
2326 ret = -ENXIO;
2327 break;
2328 }
2329 free_extent_map(em);
2330 cond_resched();
2331 }
2332 if (!ret)
2333 *offset = min(*offset, inode->i_size);
2334out:
2335 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2336 &cached_state, GFP_NOFS);
2337 return ret;
2338}
2339
2340static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int origin)
2341{
2342 struct inode *inode = file->f_mapping->host;
2343 int ret;
2344
2345 mutex_lock(&inode->i_mutex);
2346 switch (origin) {
2347 case SEEK_END:
2348 case SEEK_CUR:
ef3d0fd2 2349 offset = generic_file_llseek(file, offset, origin);
b2675157
JB
2350 goto out;
2351 case SEEK_DATA:
2352 case SEEK_HOLE:
48802c8a
JL
2353 if (offset >= i_size_read(inode)) {
2354 mutex_unlock(&inode->i_mutex);
2355 return -ENXIO;
2356 }
2357
b2675157
JB
2358 ret = find_desired_extent(inode, &offset, origin);
2359 if (ret) {
2360 mutex_unlock(&inode->i_mutex);
2361 return ret;
2362 }
2363 }
2364
9a4327ca 2365 if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
48802c8a 2366 offset = -EINVAL;
9a4327ca
DC
2367 goto out;
2368 }
2369 if (offset > inode->i_sb->s_maxbytes) {
48802c8a 2370 offset = -EINVAL;
9a4327ca
DC
2371 goto out;
2372 }
b2675157
JB
2373
2374 /* Special lock needed here? */
2375 if (offset != file->f_pos) {
2376 file->f_pos = offset;
2377 file->f_version = 0;
2378 }
2379out:
2380 mutex_unlock(&inode->i_mutex);
2381 return offset;
2382}
2383
828c0950 2384const struct file_operations btrfs_file_operations = {
b2675157 2385 .llseek = btrfs_file_llseek,
39279cc3 2386 .read = do_sync_read,
4a001071 2387 .write = do_sync_write,
9ebefb18 2388 .aio_read = generic_file_aio_read,
e9906a98 2389 .splice_read = generic_file_splice_read,
11c65dcc 2390 .aio_write = btrfs_file_aio_write,
9ebefb18 2391 .mmap = btrfs_file_mmap,
39279cc3 2392 .open = generic_file_open,
e1b81e67 2393 .release = btrfs_release_file,
39279cc3 2394 .fsync = btrfs_sync_file,
2fe17c10 2395 .fallocate = btrfs_fallocate,
34287aa3 2396 .unlocked_ioctl = btrfs_ioctl,
39279cc3 2397#ifdef CONFIG_COMPAT
34287aa3 2398 .compat_ioctl = btrfs_ioctl,
39279cc3
CM
2399#endif
2400};
9247f317
MX
2401
2402void btrfs_auto_defrag_exit(void)
2403{
2404 if (btrfs_inode_defrag_cachep)
2405 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2406}
2407
2408int btrfs_auto_defrag_init(void)
2409{
2410 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2411 sizeof(struct inode_defrag), 0,
2412 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2413 NULL);
2414 if (!btrfs_inode_defrag_cachep)
2415 return -ENOMEM;
2416
2417 return 0;
2418}
This page took 0.359035 seconds and 5 git commands to generate.