Btrfs: fix enospc problems with delalloc
[deliverable/linux.git] / fs / btrfs / file.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
39279cc3
CM
19#include <linux/fs.h>
20#include <linux/pagemap.h>
21#include <linux/highmem.h>
22#include <linux/time.h>
23#include <linux/init.h>
24#include <linux/string.h>
39279cc3
CM
25#include <linux/backing-dev.h>
26#include <linux/mpage.h>
2fe17c10 27#include <linux/falloc.h>
39279cc3
CM
28#include <linux/swap.h>
29#include <linux/writeback.h>
30#include <linux/statfs.h>
31#include <linux/compat.h>
5a0e3ad6 32#include <linux/slab.h>
39279cc3
CM
33#include "ctree.h"
34#include "disk-io.h"
35#include "transaction.h"
36#include "btrfs_inode.h"
37#include "ioctl.h"
38#include "print-tree.h"
e02119d5
CM
39#include "tree-log.h"
40#include "locking.h"
12fa8ec6 41#include "compat.h"
39279cc3 42
4cb5300b
CM
43/*
44 * when auto defrag is enabled we
45 * queue up these defrag structs to remember which
46 * inodes need defragging passes
47 */
48struct inode_defrag {
49 struct rb_node rb_node;
50 /* objectid */
51 u64 ino;
52 /*
53 * transid where the defrag was added, we search for
54 * extents newer than this
55 */
56 u64 transid;
57
58 /* root objectid */
59 u64 root;
60
61 /* last offset we were able to defrag */
62 u64 last_offset;
63
64 /* if we've wrapped around back to zero once already */
65 int cycled;
66};
67
68/* pop a record for an inode into the defrag tree. The lock
69 * must be held already
70 *
71 * If you're inserting a record for an older transid than an
72 * existing record, the transid already in the tree is lowered
73 *
74 * If an existing record is found the defrag item you
75 * pass in is freed
76 */
77static int __btrfs_add_inode_defrag(struct inode *inode,
78 struct inode_defrag *defrag)
79{
80 struct btrfs_root *root = BTRFS_I(inode)->root;
81 struct inode_defrag *entry;
82 struct rb_node **p;
83 struct rb_node *parent = NULL;
84
85 p = &root->fs_info->defrag_inodes.rb_node;
86 while (*p) {
87 parent = *p;
88 entry = rb_entry(parent, struct inode_defrag, rb_node);
89
90 if (defrag->ino < entry->ino)
91 p = &parent->rb_left;
92 else if (defrag->ino > entry->ino)
93 p = &parent->rb_right;
94 else {
95 /* if we're reinserting an entry for
96 * an old defrag run, make sure to
97 * lower the transid of our existing record
98 */
99 if (defrag->transid < entry->transid)
100 entry->transid = defrag->transid;
101 if (defrag->last_offset > entry->last_offset)
102 entry->last_offset = defrag->last_offset;
103 goto exists;
104 }
105 }
106 BTRFS_I(inode)->in_defrag = 1;
107 rb_link_node(&defrag->rb_node, parent, p);
108 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
109 return 0;
110
111exists:
112 kfree(defrag);
113 return 0;
114
115}
116
117/*
118 * insert a defrag record for this inode if auto defrag is
119 * enabled
120 */
121int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
122 struct inode *inode)
123{
124 struct btrfs_root *root = BTRFS_I(inode)->root;
125 struct inode_defrag *defrag;
126 int ret = 0;
127 u64 transid;
128
129 if (!btrfs_test_opt(root, AUTO_DEFRAG))
130 return 0;
131
7841cb28 132 if (btrfs_fs_closing(root->fs_info))
4cb5300b
CM
133 return 0;
134
135 if (BTRFS_I(inode)->in_defrag)
136 return 0;
137
138 if (trans)
139 transid = trans->transid;
140 else
141 transid = BTRFS_I(inode)->root->last_trans;
142
143 defrag = kzalloc(sizeof(*defrag), GFP_NOFS);
144 if (!defrag)
145 return -ENOMEM;
146
a4689d2b 147 defrag->ino = btrfs_ino(inode);
4cb5300b
CM
148 defrag->transid = transid;
149 defrag->root = root->root_key.objectid;
150
151 spin_lock(&root->fs_info->defrag_inodes_lock);
152 if (!BTRFS_I(inode)->in_defrag)
153 ret = __btrfs_add_inode_defrag(inode, defrag);
154 spin_unlock(&root->fs_info->defrag_inodes_lock);
155 return ret;
156}
157
158/*
159 * must be called with the defrag_inodes lock held
160 */
161struct inode_defrag *btrfs_find_defrag_inode(struct btrfs_fs_info *info, u64 ino,
162 struct rb_node **next)
163{
164 struct inode_defrag *entry = NULL;
165 struct rb_node *p;
166 struct rb_node *parent = NULL;
167
168 p = info->defrag_inodes.rb_node;
169 while (p) {
170 parent = p;
171 entry = rb_entry(parent, struct inode_defrag, rb_node);
172
173 if (ino < entry->ino)
174 p = parent->rb_left;
175 else if (ino > entry->ino)
176 p = parent->rb_right;
177 else
178 return entry;
179 }
180
181 if (next) {
182 while (parent && ino > entry->ino) {
183 parent = rb_next(parent);
184 entry = rb_entry(parent, struct inode_defrag, rb_node);
185 }
186 *next = parent;
187 }
188 return NULL;
189}
190
191/*
192 * run through the list of inodes in the FS that need
193 * defragging
194 */
195int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
196{
197 struct inode_defrag *defrag;
198 struct btrfs_root *inode_root;
199 struct inode *inode;
200 struct rb_node *n;
201 struct btrfs_key key;
202 struct btrfs_ioctl_defrag_range_args range;
203 u64 first_ino = 0;
204 int num_defrag;
205 int defrag_batch = 1024;
206
207 memset(&range, 0, sizeof(range));
208 range.len = (u64)-1;
209
210 atomic_inc(&fs_info->defrag_running);
211 spin_lock(&fs_info->defrag_inodes_lock);
212 while(1) {
213 n = NULL;
214
215 /* find an inode to defrag */
216 defrag = btrfs_find_defrag_inode(fs_info, first_ino, &n);
217 if (!defrag) {
218 if (n)
219 defrag = rb_entry(n, struct inode_defrag, rb_node);
220 else if (first_ino) {
221 first_ino = 0;
222 continue;
223 } else {
224 break;
225 }
226 }
227
228 /* remove it from the rbtree */
229 first_ino = defrag->ino + 1;
230 rb_erase(&defrag->rb_node, &fs_info->defrag_inodes);
231
7841cb28 232 if (btrfs_fs_closing(fs_info))
4cb5300b
CM
233 goto next_free;
234
235 spin_unlock(&fs_info->defrag_inodes_lock);
236
237 /* get the inode */
238 key.objectid = defrag->root;
239 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
240 key.offset = (u64)-1;
241 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
242 if (IS_ERR(inode_root))
243 goto next;
244
245 key.objectid = defrag->ino;
246 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
247 key.offset = 0;
248
249 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
250 if (IS_ERR(inode))
251 goto next;
252
253 /* do a chunk of defrag */
254 BTRFS_I(inode)->in_defrag = 0;
255 range.start = defrag->last_offset;
256 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
257 defrag_batch);
258 /*
259 * if we filled the whole defrag batch, there
260 * must be more work to do. Queue this defrag
261 * again
262 */
263 if (num_defrag == defrag_batch) {
264 defrag->last_offset = range.start;
265 __btrfs_add_inode_defrag(inode, defrag);
266 /*
267 * we don't want to kfree defrag, we added it back to
268 * the rbtree
269 */
270 defrag = NULL;
271 } else if (defrag->last_offset && !defrag->cycled) {
272 /*
273 * we didn't fill our defrag batch, but
274 * we didn't start at zero. Make sure we loop
275 * around to the start of the file.
276 */
277 defrag->last_offset = 0;
278 defrag->cycled = 1;
279 __btrfs_add_inode_defrag(inode, defrag);
280 defrag = NULL;
281 }
282
283 iput(inode);
284next:
285 spin_lock(&fs_info->defrag_inodes_lock);
286next_free:
287 kfree(defrag);
288 }
289 spin_unlock(&fs_info->defrag_inodes_lock);
290
291 atomic_dec(&fs_info->defrag_running);
292
293 /*
294 * during unmount, we use the transaction_wait queue to
295 * wait for the defragger to stop
296 */
297 wake_up(&fs_info->transaction_wait);
298 return 0;
299}
39279cc3 300
d352ac68
CM
301/* simple helper to fault in pages and copy. This should go away
302 * and be replaced with calls into generic code.
303 */
d397712b 304static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
d0215f3e 305 size_t write_bytes,
a1b32a59 306 struct page **prepared_pages,
11c65dcc 307 struct iov_iter *i)
39279cc3 308{
914ee295 309 size_t copied = 0;
d0215f3e 310 size_t total_copied = 0;
11c65dcc 311 int pg = 0;
39279cc3
CM
312 int offset = pos & (PAGE_CACHE_SIZE - 1);
313
11c65dcc 314 while (write_bytes > 0) {
39279cc3
CM
315 size_t count = min_t(size_t,
316 PAGE_CACHE_SIZE - offset, write_bytes);
11c65dcc 317 struct page *page = prepared_pages[pg];
914ee295
XZ
318 /*
319 * Copy data from userspace to the current page
320 *
321 * Disable pagefault to avoid recursive lock since
322 * the pages are already locked
323 */
324 pagefault_disable();
325 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
326 pagefault_enable();
11c65dcc 327
39279cc3
CM
328 /* Flush processor's dcache for this page */
329 flush_dcache_page(page);
31339acd
CM
330
331 /*
332 * if we get a partial write, we can end up with
333 * partially up to date pages. These add
334 * a lot of complexity, so make sure they don't
335 * happen by forcing this copy to be retried.
336 *
337 * The rest of the btrfs_file_write code will fall
338 * back to page at a time copies after we return 0.
339 */
340 if (!PageUptodate(page) && copied < count)
341 copied = 0;
342
11c65dcc
JB
343 iov_iter_advance(i, copied);
344 write_bytes -= copied;
914ee295 345 total_copied += copied;
39279cc3 346
914ee295 347 /* Return to btrfs_file_aio_write to fault page */
9f570b8d 348 if (unlikely(copied == 0))
914ee295 349 break;
11c65dcc
JB
350
351 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
352 offset += copied;
353 } else {
354 pg++;
355 offset = 0;
356 }
39279cc3 357 }
914ee295 358 return total_copied;
39279cc3
CM
359}
360
d352ac68
CM
361/*
362 * unlocks pages after btrfs_file_write is done with them
363 */
be1a12a0 364void btrfs_drop_pages(struct page **pages, size_t num_pages)
39279cc3
CM
365{
366 size_t i;
367 for (i = 0; i < num_pages; i++) {
d352ac68
CM
368 /* page checked is some magic around finding pages that
369 * have been modified without going through btrfs_set_page_dirty
370 * clear it here
371 */
4a096752 372 ClearPageChecked(pages[i]);
39279cc3
CM
373 unlock_page(pages[i]);
374 mark_page_accessed(pages[i]);
375 page_cache_release(pages[i]);
376 }
377}
378
d352ac68
CM
379/*
380 * after copy_from_user, pages need to be dirtied and we need to make
381 * sure holes are created between the current EOF and the start of
382 * any next extents (if required).
383 *
384 * this also makes the decision about creating an inline extent vs
385 * doing real data extents, marking pages dirty and delalloc as required.
386 */
be1a12a0
JB
387int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
388 struct page **pages, size_t num_pages,
389 loff_t pos, size_t write_bytes,
390 struct extent_state **cached)
39279cc3 391{
39279cc3 392 int err = 0;
a52d9a80 393 int i;
db94535d 394 u64 num_bytes;
a52d9a80
CM
395 u64 start_pos;
396 u64 end_of_last_block;
397 u64 end_pos = pos + write_bytes;
398 loff_t isize = i_size_read(inode);
39279cc3 399
5f39d397 400 start_pos = pos & ~((u64)root->sectorsize - 1);
db94535d
CM
401 num_bytes = (write_bytes + pos - start_pos +
402 root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
39279cc3 403
db94535d 404 end_of_last_block = start_pos + num_bytes - 1;
2ac55d41 405 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
be1a12a0 406 cached);
d0215f3e
JB
407 if (err)
408 return err;
9ed74f2d 409
c8b97818
CM
410 for (i = 0; i < num_pages; i++) {
411 struct page *p = pages[i];
412 SetPageUptodate(p);
413 ClearPageChecked(p);
414 set_page_dirty(p);
a52d9a80 415 }
9f570b8d
JB
416
417 /*
418 * we've only changed i_size in ram, and we haven't updated
419 * the disk i_size. There is no need to log the inode
420 * at this time.
421 */
422 if (end_pos > isize)
a52d9a80 423 i_size_write(inode, end_pos);
a22285a6 424 return 0;
39279cc3
CM
425}
426
d352ac68
CM
427/*
428 * this drops all the extents in the cache that intersect the range
429 * [start, end]. Existing extents are split as required.
430 */
5b21f2ed
ZY
431int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
432 int skip_pinned)
a52d9a80
CM
433{
434 struct extent_map *em;
3b951516
CM
435 struct extent_map *split = NULL;
436 struct extent_map *split2 = NULL;
a52d9a80 437 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
39b5637f 438 u64 len = end - start + 1;
3b951516
CM
439 int ret;
440 int testend = 1;
5b21f2ed 441 unsigned long flags;
c8b97818 442 int compressed = 0;
a52d9a80 443
e6dcd2dc 444 WARN_ON(end < start);
3b951516 445 if (end == (u64)-1) {
39b5637f 446 len = (u64)-1;
3b951516
CM
447 testend = 0;
448 }
d397712b 449 while (1) {
3b951516 450 if (!split)
172ddd60 451 split = alloc_extent_map();
3b951516 452 if (!split2)
172ddd60 453 split2 = alloc_extent_map();
c26a9203 454 BUG_ON(!split || !split2);
3b951516 455
890871be 456 write_lock(&em_tree->lock);
39b5637f 457 em = lookup_extent_mapping(em_tree, start, len);
d1310b2e 458 if (!em) {
890871be 459 write_unlock(&em_tree->lock);
a52d9a80 460 break;
d1310b2e 461 }
5b21f2ed
ZY
462 flags = em->flags;
463 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
55ef6899 464 if (testend && em->start + em->len >= start + len) {
5b21f2ed 465 free_extent_map(em);
a1ed835e 466 write_unlock(&em_tree->lock);
5b21f2ed
ZY
467 break;
468 }
55ef6899
YZ
469 start = em->start + em->len;
470 if (testend)
5b21f2ed 471 len = start + len - (em->start + em->len);
5b21f2ed 472 free_extent_map(em);
a1ed835e 473 write_unlock(&em_tree->lock);
5b21f2ed
ZY
474 continue;
475 }
c8b97818 476 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3ce7e67a 477 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
a52d9a80 478 remove_extent_mapping(em_tree, em);
3b951516
CM
479
480 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
481 em->start < start) {
482 split->start = em->start;
483 split->len = start - em->start;
ff5b7ee3 484 split->orig_start = em->orig_start;
3b951516 485 split->block_start = em->block_start;
c8b97818
CM
486
487 if (compressed)
488 split->block_len = em->block_len;
489 else
490 split->block_len = split->len;
491
3b951516 492 split->bdev = em->bdev;
5b21f2ed 493 split->flags = flags;
261507a0 494 split->compress_type = em->compress_type;
3b951516
CM
495 ret = add_extent_mapping(em_tree, split);
496 BUG_ON(ret);
497 free_extent_map(split);
498 split = split2;
499 split2 = NULL;
500 }
501 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
502 testend && em->start + em->len > start + len) {
503 u64 diff = start + len - em->start;
504
505 split->start = start + len;
506 split->len = em->start + em->len - (start + len);
507 split->bdev = em->bdev;
5b21f2ed 508 split->flags = flags;
261507a0 509 split->compress_type = em->compress_type;
3b951516 510
c8b97818
CM
511 if (compressed) {
512 split->block_len = em->block_len;
513 split->block_start = em->block_start;
445a6944 514 split->orig_start = em->orig_start;
c8b97818
CM
515 } else {
516 split->block_len = split->len;
517 split->block_start = em->block_start + diff;
445a6944 518 split->orig_start = split->start;
c8b97818 519 }
3b951516
CM
520
521 ret = add_extent_mapping(em_tree, split);
522 BUG_ON(ret);
523 free_extent_map(split);
524 split = NULL;
525 }
890871be 526 write_unlock(&em_tree->lock);
d1310b2e 527
a52d9a80
CM
528 /* once for us */
529 free_extent_map(em);
530 /* once for the tree*/
531 free_extent_map(em);
532 }
3b951516
CM
533 if (split)
534 free_extent_map(split);
535 if (split2)
536 free_extent_map(split2);
a52d9a80
CM
537 return 0;
538}
539
39279cc3
CM
540/*
541 * this is very complex, but the basic idea is to drop all extents
542 * in the range start - end. hint_block is filled in with a block number
543 * that would be a good hint to the block allocator for this file.
544 *
545 * If an extent intersects the range but is not entirely inside the range
546 * it is either truncated or split. Anything entirely inside the range
547 * is deleted from the tree.
548 */
920bbbfb
YZ
549int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
550 u64 start, u64 end, u64 *hint_byte, int drop_cache)
39279cc3 551{
920bbbfb 552 struct btrfs_root *root = BTRFS_I(inode)->root;
5f39d397 553 struct extent_buffer *leaf;
920bbbfb 554 struct btrfs_file_extent_item *fi;
39279cc3 555 struct btrfs_path *path;
00f5c795 556 struct btrfs_key key;
920bbbfb 557 struct btrfs_key new_key;
33345d01 558 u64 ino = btrfs_ino(inode);
920bbbfb
YZ
559 u64 search_start = start;
560 u64 disk_bytenr = 0;
561 u64 num_bytes = 0;
562 u64 extent_offset = 0;
563 u64 extent_end = 0;
564 int del_nr = 0;
565 int del_slot = 0;
566 int extent_type;
ccd467d6 567 int recow;
00f5c795 568 int ret;
39279cc3 569
a1ed835e
CM
570 if (drop_cache)
571 btrfs_drop_extent_cache(inode, start, end - 1, 0);
a52d9a80 572
39279cc3
CM
573 path = btrfs_alloc_path();
574 if (!path)
575 return -ENOMEM;
920bbbfb 576
d397712b 577 while (1) {
ccd467d6 578 recow = 0;
33345d01 579 ret = btrfs_lookup_file_extent(trans, root, path, ino,
39279cc3
CM
580 search_start, -1);
581 if (ret < 0)
920bbbfb
YZ
582 break;
583 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
584 leaf = path->nodes[0];
585 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 586 if (key.objectid == ino &&
920bbbfb
YZ
587 key.type == BTRFS_EXTENT_DATA_KEY)
588 path->slots[0]--;
39279cc3 589 }
920bbbfb 590 ret = 0;
8c2383c3 591next_slot:
5f39d397 592 leaf = path->nodes[0];
920bbbfb
YZ
593 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
594 BUG_ON(del_nr > 0);
595 ret = btrfs_next_leaf(root, path);
596 if (ret < 0)
597 break;
598 if (ret > 0) {
599 ret = 0;
600 break;
8c2383c3 601 }
920bbbfb
YZ
602 leaf = path->nodes[0];
603 recow = 1;
604 }
605
606 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
33345d01 607 if (key.objectid > ino ||
920bbbfb
YZ
608 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
609 break;
610
611 fi = btrfs_item_ptr(leaf, path->slots[0],
612 struct btrfs_file_extent_item);
613 extent_type = btrfs_file_extent_type(leaf, fi);
614
615 if (extent_type == BTRFS_FILE_EXTENT_REG ||
616 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
617 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
618 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
619 extent_offset = btrfs_file_extent_offset(leaf, fi);
620 extent_end = key.offset +
621 btrfs_file_extent_num_bytes(leaf, fi);
622 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
623 extent_end = key.offset +
624 btrfs_file_extent_inline_len(leaf, fi);
8c2383c3 625 } else {
920bbbfb 626 WARN_ON(1);
8c2383c3 627 extent_end = search_start;
39279cc3
CM
628 }
629
920bbbfb
YZ
630 if (extent_end <= search_start) {
631 path->slots[0]++;
8c2383c3 632 goto next_slot;
39279cc3
CM
633 }
634
920bbbfb
YZ
635 search_start = max(key.offset, start);
636 if (recow) {
b3b4aa74 637 btrfs_release_path(path);
920bbbfb 638 continue;
39279cc3 639 }
6643558d 640
920bbbfb
YZ
641 /*
642 * | - range to drop - |
643 * | -------- extent -------- |
644 */
645 if (start > key.offset && end < extent_end) {
646 BUG_ON(del_nr > 0);
647 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
648
649 memcpy(&new_key, &key, sizeof(new_key));
650 new_key.offset = start;
651 ret = btrfs_duplicate_item(trans, root, path,
652 &new_key);
653 if (ret == -EAGAIN) {
b3b4aa74 654 btrfs_release_path(path);
920bbbfb 655 continue;
6643558d 656 }
920bbbfb
YZ
657 if (ret < 0)
658 break;
659
660 leaf = path->nodes[0];
661 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
662 struct btrfs_file_extent_item);
663 btrfs_set_file_extent_num_bytes(leaf, fi,
664 start - key.offset);
665
666 fi = btrfs_item_ptr(leaf, path->slots[0],
667 struct btrfs_file_extent_item);
668
669 extent_offset += start - key.offset;
670 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
671 btrfs_set_file_extent_num_bytes(leaf, fi,
672 extent_end - start);
673 btrfs_mark_buffer_dirty(leaf);
674
675 if (disk_bytenr > 0) {
771ed689 676 ret = btrfs_inc_extent_ref(trans, root,
920bbbfb
YZ
677 disk_bytenr, num_bytes, 0,
678 root->root_key.objectid,
679 new_key.objectid,
680 start - extent_offset);
771ed689 681 BUG_ON(ret);
920bbbfb 682 *hint_byte = disk_bytenr;
771ed689 683 }
920bbbfb 684 key.offset = start;
6643558d 685 }
920bbbfb
YZ
686 /*
687 * | ---- range to drop ----- |
688 * | -------- extent -------- |
689 */
690 if (start <= key.offset && end < extent_end) {
691 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
6643558d 692
920bbbfb
YZ
693 memcpy(&new_key, &key, sizeof(new_key));
694 new_key.offset = end;
695 btrfs_set_item_key_safe(trans, root, path, &new_key);
6643558d 696
920bbbfb
YZ
697 extent_offset += end - key.offset;
698 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
699 btrfs_set_file_extent_num_bytes(leaf, fi,
700 extent_end - end);
701 btrfs_mark_buffer_dirty(leaf);
702 if (disk_bytenr > 0) {
703 inode_sub_bytes(inode, end - key.offset);
704 *hint_byte = disk_bytenr;
39279cc3 705 }
920bbbfb 706 break;
39279cc3 707 }
771ed689 708
920bbbfb
YZ
709 search_start = extent_end;
710 /*
711 * | ---- range to drop ----- |
712 * | -------- extent -------- |
713 */
714 if (start > key.offset && end >= extent_end) {
715 BUG_ON(del_nr > 0);
716 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
8c2383c3 717
920bbbfb
YZ
718 btrfs_set_file_extent_num_bytes(leaf, fi,
719 start - key.offset);
720 btrfs_mark_buffer_dirty(leaf);
721 if (disk_bytenr > 0) {
722 inode_sub_bytes(inode, extent_end - start);
723 *hint_byte = disk_bytenr;
724 }
725 if (end == extent_end)
726 break;
c8b97818 727
920bbbfb
YZ
728 path->slots[0]++;
729 goto next_slot;
31840ae1
ZY
730 }
731
920bbbfb
YZ
732 /*
733 * | ---- range to drop ----- |
734 * | ------ extent ------ |
735 */
736 if (start <= key.offset && end >= extent_end) {
737 if (del_nr == 0) {
738 del_slot = path->slots[0];
739 del_nr = 1;
740 } else {
741 BUG_ON(del_slot + del_nr != path->slots[0]);
742 del_nr++;
743 }
31840ae1 744
920bbbfb 745 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
a76a3cd4 746 inode_sub_bytes(inode,
920bbbfb
YZ
747 extent_end - key.offset);
748 extent_end = ALIGN(extent_end,
749 root->sectorsize);
750 } else if (disk_bytenr > 0) {
31840ae1 751 ret = btrfs_free_extent(trans, root,
920bbbfb
YZ
752 disk_bytenr, num_bytes, 0,
753 root->root_key.objectid,
5d4f98a2 754 key.objectid, key.offset -
920bbbfb 755 extent_offset);
31840ae1 756 BUG_ON(ret);
920bbbfb
YZ
757 inode_sub_bytes(inode,
758 extent_end - key.offset);
759 *hint_byte = disk_bytenr;
31840ae1 760 }
31840ae1 761
920bbbfb
YZ
762 if (end == extent_end)
763 break;
764
765 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
766 path->slots[0]++;
767 goto next_slot;
768 }
769
770 ret = btrfs_del_items(trans, root, path, del_slot,
771 del_nr);
772 BUG_ON(ret);
773
774 del_nr = 0;
775 del_slot = 0;
776
b3b4aa74 777 btrfs_release_path(path);
920bbbfb 778 continue;
39279cc3 779 }
920bbbfb
YZ
780
781 BUG_ON(1);
39279cc3 782 }
920bbbfb
YZ
783
784 if (del_nr > 0) {
785 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
786 BUG_ON(ret);
6643558d 787 }
920bbbfb
YZ
788
789 btrfs_free_path(path);
39279cc3
CM
790 return ret;
791}
792
d899e052 793static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
794 u64 objectid, u64 bytenr, u64 orig_offset,
795 u64 *start, u64 *end)
d899e052
YZ
796{
797 struct btrfs_file_extent_item *fi;
798 struct btrfs_key key;
799 u64 extent_end;
800
801 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
802 return 0;
803
804 btrfs_item_key_to_cpu(leaf, &key, slot);
805 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
806 return 0;
807
808 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
809 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
810 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 811 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
812 btrfs_file_extent_compression(leaf, fi) ||
813 btrfs_file_extent_encryption(leaf, fi) ||
814 btrfs_file_extent_other_encoding(leaf, fi))
815 return 0;
816
817 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
818 if ((*start && *start != key.offset) || (*end && *end != extent_end))
819 return 0;
820
821 *start = key.offset;
822 *end = extent_end;
823 return 1;
824}
825
826/*
827 * Mark extent in the range start - end as written.
828 *
829 * This changes extent type from 'pre-allocated' to 'regular'. If only
830 * part of extent is marked as written, the extent will be split into
831 * two or three.
832 */
833int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
d899e052
YZ
834 struct inode *inode, u64 start, u64 end)
835{
920bbbfb 836 struct btrfs_root *root = BTRFS_I(inode)->root;
d899e052
YZ
837 struct extent_buffer *leaf;
838 struct btrfs_path *path;
839 struct btrfs_file_extent_item *fi;
840 struct btrfs_key key;
920bbbfb 841 struct btrfs_key new_key;
d899e052
YZ
842 u64 bytenr;
843 u64 num_bytes;
844 u64 extent_end;
5d4f98a2 845 u64 orig_offset;
d899e052
YZ
846 u64 other_start;
847 u64 other_end;
920bbbfb
YZ
848 u64 split;
849 int del_nr = 0;
850 int del_slot = 0;
6c7d54ac 851 int recow;
d899e052 852 int ret;
33345d01 853 u64 ino = btrfs_ino(inode);
d899e052
YZ
854
855 btrfs_drop_extent_cache(inode, start, end - 1, 0);
856
857 path = btrfs_alloc_path();
858 BUG_ON(!path);
859again:
6c7d54ac 860 recow = 0;
920bbbfb 861 split = start;
33345d01 862 key.objectid = ino;
d899e052 863 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 864 key.offset = split;
d899e052
YZ
865
866 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
867 if (ret < 0)
868 goto out;
d899e052
YZ
869 if (ret > 0 && path->slots[0] > 0)
870 path->slots[0]--;
871
872 leaf = path->nodes[0];
873 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
33345d01 874 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
d899e052
YZ
875 fi = btrfs_item_ptr(leaf, path->slots[0],
876 struct btrfs_file_extent_item);
920bbbfb
YZ
877 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
878 BTRFS_FILE_EXTENT_PREALLOC);
d899e052
YZ
879 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
880 BUG_ON(key.offset > start || extent_end < end);
881
882 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
883 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 884 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
885 memcpy(&new_key, &key, sizeof(new_key));
886
887 if (start == key.offset && end < extent_end) {
888 other_start = 0;
889 other_end = start;
890 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 891 ino, bytenr, orig_offset,
6c7d54ac
YZ
892 &other_start, &other_end)) {
893 new_key.offset = end;
894 btrfs_set_item_key_safe(trans, root, path, &new_key);
895 fi = btrfs_item_ptr(leaf, path->slots[0],
896 struct btrfs_file_extent_item);
897 btrfs_set_file_extent_num_bytes(leaf, fi,
898 extent_end - end);
899 btrfs_set_file_extent_offset(leaf, fi,
900 end - orig_offset);
901 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
902 struct btrfs_file_extent_item);
903 btrfs_set_file_extent_num_bytes(leaf, fi,
904 end - other_start);
905 btrfs_mark_buffer_dirty(leaf);
906 goto out;
907 }
908 }
909
910 if (start > key.offset && end == extent_end) {
911 other_start = end;
912 other_end = 0;
913 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 914 ino, bytenr, orig_offset,
6c7d54ac
YZ
915 &other_start, &other_end)) {
916 fi = btrfs_item_ptr(leaf, path->slots[0],
917 struct btrfs_file_extent_item);
918 btrfs_set_file_extent_num_bytes(leaf, fi,
919 start - key.offset);
920 path->slots[0]++;
921 new_key.offset = start;
922 btrfs_set_item_key_safe(trans, root, path, &new_key);
923
924 fi = btrfs_item_ptr(leaf, path->slots[0],
925 struct btrfs_file_extent_item);
926 btrfs_set_file_extent_num_bytes(leaf, fi,
927 other_end - start);
928 btrfs_set_file_extent_offset(leaf, fi,
929 start - orig_offset);
930 btrfs_mark_buffer_dirty(leaf);
931 goto out;
932 }
933 }
d899e052 934
920bbbfb
YZ
935 while (start > key.offset || end < extent_end) {
936 if (key.offset == start)
937 split = end;
938
920bbbfb
YZ
939 new_key.offset = split;
940 ret = btrfs_duplicate_item(trans, root, path, &new_key);
941 if (ret == -EAGAIN) {
b3b4aa74 942 btrfs_release_path(path);
920bbbfb 943 goto again;
d899e052 944 }
920bbbfb 945 BUG_ON(ret < 0);
d899e052 946
920bbbfb
YZ
947 leaf = path->nodes[0];
948 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 949 struct btrfs_file_extent_item);
d899e052 950 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
951 split - key.offset);
952
953 fi = btrfs_item_ptr(leaf, path->slots[0],
954 struct btrfs_file_extent_item);
955
956 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
957 btrfs_set_file_extent_num_bytes(leaf, fi,
958 extent_end - split);
d899e052
YZ
959 btrfs_mark_buffer_dirty(leaf);
960
920bbbfb
YZ
961 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
962 root->root_key.objectid,
33345d01 963 ino, orig_offset);
d899e052 964 BUG_ON(ret);
d899e052 965
920bbbfb
YZ
966 if (split == start) {
967 key.offset = start;
968 } else {
969 BUG_ON(start != key.offset);
d899e052 970 path->slots[0]--;
920bbbfb 971 extent_end = end;
d899e052 972 }
6c7d54ac 973 recow = 1;
d899e052
YZ
974 }
975
920bbbfb
YZ
976 other_start = end;
977 other_end = 0;
6c7d54ac 978 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 979 ino, bytenr, orig_offset,
6c7d54ac
YZ
980 &other_start, &other_end)) {
981 if (recow) {
b3b4aa74 982 btrfs_release_path(path);
6c7d54ac
YZ
983 goto again;
984 }
920bbbfb
YZ
985 extent_end = other_end;
986 del_slot = path->slots[0] + 1;
987 del_nr++;
988 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
989 0, root->root_key.objectid,
33345d01 990 ino, orig_offset);
920bbbfb 991 BUG_ON(ret);
d899e052 992 }
920bbbfb
YZ
993 other_start = 0;
994 other_end = start;
6c7d54ac 995 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 996 ino, bytenr, orig_offset,
6c7d54ac
YZ
997 &other_start, &other_end)) {
998 if (recow) {
b3b4aa74 999 btrfs_release_path(path);
6c7d54ac
YZ
1000 goto again;
1001 }
920bbbfb
YZ
1002 key.offset = other_start;
1003 del_slot = path->slots[0];
1004 del_nr++;
1005 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1006 0, root->root_key.objectid,
33345d01 1007 ino, orig_offset);
920bbbfb
YZ
1008 BUG_ON(ret);
1009 }
1010 if (del_nr == 0) {
3f6fae95
SL
1011 fi = btrfs_item_ptr(leaf, path->slots[0],
1012 struct btrfs_file_extent_item);
920bbbfb
YZ
1013 btrfs_set_file_extent_type(leaf, fi,
1014 BTRFS_FILE_EXTENT_REG);
1015 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 1016 } else {
3f6fae95
SL
1017 fi = btrfs_item_ptr(leaf, del_slot - 1,
1018 struct btrfs_file_extent_item);
6c7d54ac
YZ
1019 btrfs_set_file_extent_type(leaf, fi,
1020 BTRFS_FILE_EXTENT_REG);
1021 btrfs_set_file_extent_num_bytes(leaf, fi,
1022 extent_end - key.offset);
1023 btrfs_mark_buffer_dirty(leaf);
920bbbfb 1024
6c7d54ac
YZ
1025 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1026 BUG_ON(ret);
1027 }
920bbbfb 1028out:
d899e052
YZ
1029 btrfs_free_path(path);
1030 return 0;
1031}
1032
b1bf862e
CM
1033/*
1034 * on error we return an unlocked page and the error value
1035 * on success we return a locked page and 0
1036 */
1037static int prepare_uptodate_page(struct page *page, u64 pos)
1038{
1039 int ret = 0;
1040
1041 if ((pos & (PAGE_CACHE_SIZE - 1)) && !PageUptodate(page)) {
1042 ret = btrfs_readpage(NULL, page);
1043 if (ret)
1044 return ret;
1045 lock_page(page);
1046 if (!PageUptodate(page)) {
1047 unlock_page(page);
1048 return -EIO;
1049 }
1050 }
1051 return 0;
1052}
1053
39279cc3 1054/*
d352ac68
CM
1055 * this gets pages into the page cache and locks them down, it also properly
1056 * waits for data=ordered extents to finish before allowing the pages to be
1057 * modified.
39279cc3 1058 */
d397712b 1059static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
98ed5174
CM
1060 struct page **pages, size_t num_pages,
1061 loff_t pos, unsigned long first_index,
1062 unsigned long last_index, size_t write_bytes)
39279cc3 1063{
2ac55d41 1064 struct extent_state *cached_state = NULL;
39279cc3
CM
1065 int i;
1066 unsigned long index = pos >> PAGE_CACHE_SHIFT;
6da6abae 1067 struct inode *inode = fdentry(file)->d_inode;
39279cc3 1068 int err = 0;
b1bf862e 1069 int faili = 0;
8c2383c3 1070 u64 start_pos;
e6dcd2dc 1071 u64 last_pos;
8c2383c3 1072
5f39d397 1073 start_pos = pos & ~((u64)root->sectorsize - 1);
e6dcd2dc 1074 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
39279cc3 1075
9036c102 1076 if (start_pos > inode->i_size) {
a41ad394 1077 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
9036c102
YZ
1078 if (err)
1079 return err;
1080 }
1081
e6dcd2dc 1082again:
39279cc3 1083 for (i = 0; i < num_pages; i++) {
a94733d0
JB
1084 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1085 GFP_NOFS);
39279cc3 1086 if (!pages[i]) {
b1bf862e
CM
1087 faili = i - 1;
1088 err = -ENOMEM;
1089 goto fail;
1090 }
1091
1092 if (i == 0)
1093 err = prepare_uptodate_page(pages[i], pos);
1094 if (i == num_pages - 1)
1095 err = prepare_uptodate_page(pages[i],
1096 pos + write_bytes);
1097 if (err) {
1098 page_cache_release(pages[i]);
1099 faili = i - 1;
1100 goto fail;
39279cc3 1101 }
ccd467d6 1102 wait_on_page_writeback(pages[i]);
39279cc3 1103 }
b1bf862e 1104 err = 0;
0762704b 1105 if (start_pos < inode->i_size) {
e6dcd2dc 1106 struct btrfs_ordered_extent *ordered;
2ac55d41
JB
1107 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1108 start_pos, last_pos - 1, 0, &cached_state,
1109 GFP_NOFS);
d397712b
CM
1110 ordered = btrfs_lookup_first_ordered_extent(inode,
1111 last_pos - 1);
e6dcd2dc
CM
1112 if (ordered &&
1113 ordered->file_offset + ordered->len > start_pos &&
1114 ordered->file_offset < last_pos) {
1115 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
1116 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1117 start_pos, last_pos - 1,
1118 &cached_state, GFP_NOFS);
e6dcd2dc
CM
1119 for (i = 0; i < num_pages; i++) {
1120 unlock_page(pages[i]);
1121 page_cache_release(pages[i]);
1122 }
1123 btrfs_wait_ordered_range(inode, start_pos,
1124 last_pos - start_pos);
1125 goto again;
1126 }
1127 if (ordered)
1128 btrfs_put_ordered_extent(ordered);
1129
2ac55d41 1130 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
32c00aff 1131 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 1132 EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
0762704b 1133 GFP_NOFS);
2ac55d41
JB
1134 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1135 start_pos, last_pos - 1, &cached_state,
1136 GFP_NOFS);
0762704b 1137 }
e6dcd2dc 1138 for (i = 0; i < num_pages; i++) {
f87f057b 1139 clear_page_dirty_for_io(pages[i]);
e6dcd2dc
CM
1140 set_page_extent_mapped(pages[i]);
1141 WARN_ON(!PageLocked(pages[i]));
1142 }
39279cc3 1143 return 0;
b1bf862e
CM
1144fail:
1145 while (faili >= 0) {
1146 unlock_page(pages[faili]);
1147 page_cache_release(pages[faili]);
1148 faili--;
1149 }
1150 return err;
1151
39279cc3
CM
1152}
1153
d0215f3e
JB
1154static noinline ssize_t __btrfs_buffered_write(struct file *file,
1155 struct iov_iter *i,
1156 loff_t pos)
4b46fce2 1157{
11c65dcc
JB
1158 struct inode *inode = fdentry(file)->d_inode;
1159 struct btrfs_root *root = BTRFS_I(inode)->root;
11c65dcc 1160 struct page **pages = NULL;
39279cc3
CM
1161 unsigned long first_index;
1162 unsigned long last_index;
d0215f3e
JB
1163 size_t num_written = 0;
1164 int nrptrs;
c9149235 1165 int ret = 0;
4b46fce2 1166
d0215f3e 1167 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
11c65dcc
JB
1168 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1169 (sizeof(struct page *)));
8c2383c3 1170 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
d0215f3e
JB
1171 if (!pages)
1172 return -ENOMEM;
ab93dbec 1173
39279cc3 1174 first_index = pos >> PAGE_CACHE_SHIFT;
d0215f3e 1175 last_index = (pos + iov_iter_count(i)) >> PAGE_CACHE_SHIFT;
39279cc3 1176
d0215f3e 1177 while (iov_iter_count(i) > 0) {
39279cc3 1178 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
d0215f3e 1179 size_t write_bytes = min(iov_iter_count(i),
11c65dcc 1180 nrptrs * (size_t)PAGE_CACHE_SIZE -
8c2383c3 1181 offset);
3a90983d
YZ
1182 size_t num_pages = (write_bytes + offset +
1183 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
d0215f3e
JB
1184 size_t dirty_pages;
1185 size_t copied;
39279cc3 1186
8c2383c3 1187 WARN_ON(num_pages > nrptrs);
1832a6d5 1188
914ee295
XZ
1189 /*
1190 * Fault pages before locking them in prepare_pages
1191 * to avoid recursive lock
1192 */
d0215f3e 1193 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
914ee295 1194 ret = -EFAULT;
d0215f3e 1195 break;
914ee295
XZ
1196 }
1197
1198 ret = btrfs_delalloc_reserve_space(inode,
1199 num_pages << PAGE_CACHE_SHIFT);
1832a6d5 1200 if (ret)
d0215f3e 1201 break;
1832a6d5 1202
4a64001f
JB
1203 /*
1204 * This is going to setup the pages array with the number of
1205 * pages we want, so we don't really need to worry about the
1206 * contents of pages from loop to loop
1207 */
39279cc3
CM
1208 ret = prepare_pages(root, file, pages, num_pages,
1209 pos, first_index, last_index,
8c2383c3 1210 write_bytes);
6a63209f 1211 if (ret) {
914ee295
XZ
1212 btrfs_delalloc_release_space(inode,
1213 num_pages << PAGE_CACHE_SHIFT);
d0215f3e 1214 break;
6a63209f 1215 }
39279cc3 1216
914ee295 1217 copied = btrfs_copy_from_user(pos, num_pages,
d0215f3e 1218 write_bytes, pages, i);
b1bf862e
CM
1219
1220 /*
1221 * if we have trouble faulting in the pages, fall
1222 * back to one page at a time
1223 */
1224 if (copied < write_bytes)
1225 nrptrs = 1;
1226
1227 if (copied == 0)
1228 dirty_pages = 0;
1229 else
1230 dirty_pages = (copied + offset +
1231 PAGE_CACHE_SIZE - 1) >>
1232 PAGE_CACHE_SHIFT;
914ee295 1233
d0215f3e
JB
1234 /*
1235 * If we had a short copy we need to release the excess delaloc
1236 * bytes we reserved. We need to increment outstanding_extents
1237 * because btrfs_delalloc_release_space will decrement it, but
1238 * we still have an outstanding extent for the chunk we actually
1239 * managed to copy.
1240 */
914ee295 1241 if (num_pages > dirty_pages) {
9e0baf60
JB
1242 if (copied > 0) {
1243 spin_lock(&BTRFS_I(inode)->lock);
1244 BTRFS_I(inode)->outstanding_extents++;
1245 spin_unlock(&BTRFS_I(inode)->lock);
1246 }
914ee295
XZ
1247 btrfs_delalloc_release_space(inode,
1248 (num_pages - dirty_pages) <<
1249 PAGE_CACHE_SHIFT);
1250 }
1251
1252 if (copied > 0) {
be1a12a0
JB
1253 ret = btrfs_dirty_pages(root, inode, pages,
1254 dirty_pages, pos, copied,
1255 NULL);
d0215f3e
JB
1256 if (ret) {
1257 btrfs_delalloc_release_space(inode,
1258 dirty_pages << PAGE_CACHE_SHIFT);
1259 btrfs_drop_pages(pages, num_pages);
1260 break;
1261 }
54aa1f4d 1262 }
39279cc3 1263
39279cc3
CM
1264 btrfs_drop_pages(pages, num_pages);
1265
d0215f3e
JB
1266 cond_resched();
1267
1268 balance_dirty_pages_ratelimited_nr(inode->i_mapping,
1269 dirty_pages);
1270 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1271 btrfs_btree_balance_dirty(root, 1);
1272 btrfs_throttle(root);
cb843a6f 1273
914ee295
XZ
1274 pos += copied;
1275 num_written += copied;
d0215f3e 1276 }
39279cc3 1277
d0215f3e
JB
1278 kfree(pages);
1279
1280 return num_written ? num_written : ret;
1281}
1282
1283static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1284 const struct iovec *iov,
1285 unsigned long nr_segs, loff_t pos,
1286 loff_t *ppos, size_t count, size_t ocount)
1287{
1288 struct file *file = iocb->ki_filp;
1289 struct inode *inode = fdentry(file)->d_inode;
1290 struct iov_iter i;
1291 ssize_t written;
1292 ssize_t written_buffered;
1293 loff_t endbyte;
1294 int err;
1295
1296 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1297 count, ocount);
1298
1299 /*
1300 * the generic O_DIRECT will update in-memory i_size after the
1301 * DIOs are done. But our endio handlers that update the on
1302 * disk i_size never update past the in memory i_size. So we
1303 * need one more update here to catch any additions to the
1304 * file
1305 */
1306 if (inode->i_size != BTRFS_I(inode)->disk_i_size) {
1307 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
1308 mark_inode_dirty(inode);
1309 }
1310
1311 if (written < 0 || written == count)
1312 return written;
1313
1314 pos += written;
1315 count -= written;
1316 iov_iter_init(&i, iov, nr_segs, count, written);
1317 written_buffered = __btrfs_buffered_write(file, &i, pos);
1318 if (written_buffered < 0) {
1319 err = written_buffered;
1320 goto out;
39279cc3 1321 }
d0215f3e
JB
1322 endbyte = pos + written_buffered - 1;
1323 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1324 if (err)
1325 goto out;
1326 written += written_buffered;
1327 *ppos = pos + written_buffered;
1328 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1329 endbyte >> PAGE_CACHE_SHIFT);
39279cc3 1330out:
d0215f3e
JB
1331 return written ? written : err;
1332}
5b92ee72 1333
d0215f3e
JB
1334static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1335 const struct iovec *iov,
1336 unsigned long nr_segs, loff_t pos)
1337{
1338 struct file *file = iocb->ki_filp;
1339 struct inode *inode = fdentry(file)->d_inode;
1340 struct btrfs_root *root = BTRFS_I(inode)->root;
1341 loff_t *ppos = &iocb->ki_pos;
1342 ssize_t num_written = 0;
1343 ssize_t err = 0;
1344 size_t count, ocount;
1345
1346 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
1347
1348 mutex_lock(&inode->i_mutex);
1349
1350 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1351 if (err) {
1352 mutex_unlock(&inode->i_mutex);
1353 goto out;
1354 }
1355 count = ocount;
1356
1357 current->backing_dev_info = inode->i_mapping->backing_dev_info;
1358 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1359 if (err) {
1360 mutex_unlock(&inode->i_mutex);
1361 goto out;
1362 }
1363
1364 if (count == 0) {
1365 mutex_unlock(&inode->i_mutex);
1366 goto out;
1367 }
1368
1369 err = file_remove_suid(file);
1370 if (err) {
1371 mutex_unlock(&inode->i_mutex);
1372 goto out;
1373 }
1374
1375 /*
1376 * If BTRFS flips readonly due to some impossible error
1377 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1378 * although we have opened a file as writable, we have
1379 * to stop this write operation to ensure FS consistency.
1380 */
1381 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
1382 mutex_unlock(&inode->i_mutex);
1383 err = -EROFS;
1384 goto out;
1385 }
1386
1387 file_update_time(file);
1388 BTRFS_I(inode)->sequence++;
1389
1390 if (unlikely(file->f_flags & O_DIRECT)) {
1391 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1392 pos, ppos, count, ocount);
1393 } else {
1394 struct iov_iter i;
1395
1396 iov_iter_init(&i, iov, nr_segs, count, num_written);
1397
1398 num_written = __btrfs_buffered_write(file, &i, pos);
1399 if (num_written > 0)
1400 *ppos = pos + num_written;
1401 }
1402
1403 mutex_unlock(&inode->i_mutex);
2ff3e9b6 1404
5a3f23d5
CM
1405 /*
1406 * we want to make sure fsync finds this change
1407 * but we haven't joined a transaction running right now.
1408 *
1409 * Later on, someone is sure to update the inode and get the
1410 * real transid recorded.
1411 *
1412 * We set last_trans now to the fs_info generation + 1,
1413 * this will either be one more than the running transaction
1414 * or the generation used for the next transaction if there isn't
1415 * one running right now.
1416 */
1417 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
d0215f3e
JB
1418 if (num_written > 0 || num_written == -EIOCBQUEUED) {
1419 err = generic_write_sync(file, pos, num_written);
1420 if (err < 0 && num_written > 0)
2ff3e9b6
CM
1421 num_written = err;
1422 }
d0215f3e 1423out:
39279cc3 1424 current->backing_dev_info = NULL;
39279cc3
CM
1425 return num_written ? num_written : err;
1426}
1427
d397712b 1428int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1429{
5a3f23d5
CM
1430 /*
1431 * ordered_data_close is set by settattr when we are about to truncate
1432 * a file from a non-zero size to a zero size. This tries to
1433 * flush down new bytes that may have been written if the
1434 * application were using truncate to replace a file in place.
1435 */
1436 if (BTRFS_I(inode)->ordered_data_close) {
1437 BTRFS_I(inode)->ordered_data_close = 0;
1438 btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1439 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1440 filemap_flush(inode->i_mapping);
1441 }
6bf13c0c
SW
1442 if (filp->private_data)
1443 btrfs_ioctl_trans_end(filp);
e1b81e67
M
1444 return 0;
1445}
1446
d352ac68
CM
1447/*
1448 * fsync call for both files and directories. This logs the inode into
1449 * the tree log instead of forcing full commits whenever possible.
1450 *
1451 * It needs to call filemap_fdatawait so that all ordered extent updates are
1452 * in the metadata btree are up to date for copying to the log.
1453 *
1454 * It drops the inode mutex before doing the tree log commit. This is an
1455 * important optimization for directories because holding the mutex prevents
1456 * new operations on the dir while we write to disk.
1457 */
7ea80859 1458int btrfs_sync_file(struct file *file, int datasync)
39279cc3 1459{
7ea80859 1460 struct dentry *dentry = file->f_path.dentry;
39279cc3
CM
1461 struct inode *inode = dentry->d_inode;
1462 struct btrfs_root *root = BTRFS_I(inode)->root;
15ee9bc7 1463 int ret = 0;
39279cc3
CM
1464 struct btrfs_trans_handle *trans;
1465
1abe9b8a 1466 trace_btrfs_sync_file(file, datasync);
257c62e1
CM
1467
1468 /* we wait first, since the writeback may change the inode */
1469 root->log_batch++;
1470 /* the VFS called filemap_fdatawrite for us */
1471 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1472 root->log_batch++;
1473
39279cc3 1474 /*
15ee9bc7
JB
1475 * check the transaction that last modified this inode
1476 * and see if its already been committed
39279cc3 1477 */
15ee9bc7
JB
1478 if (!BTRFS_I(inode)->last_trans)
1479 goto out;
a2135011 1480
257c62e1
CM
1481 /*
1482 * if the last transaction that changed this file was before
1483 * the current transaction, we can bail out now without any
1484 * syncing
1485 */
a4abeea4 1486 smp_mb();
15ee9bc7
JB
1487 if (BTRFS_I(inode)->last_trans <=
1488 root->fs_info->last_trans_committed) {
1489 BTRFS_I(inode)->last_trans = 0;
15ee9bc7
JB
1490 goto out;
1491 }
15ee9bc7
JB
1492
1493 /*
a52d9a80
CM
1494 * ok we haven't committed the transaction yet, lets do a commit
1495 */
6f902af4 1496 if (file->private_data)
6bf13c0c
SW
1497 btrfs_ioctl_trans_end(file);
1498
a22285a6
YZ
1499 trans = btrfs_start_transaction(root, 0);
1500 if (IS_ERR(trans)) {
1501 ret = PTR_ERR(trans);
39279cc3
CM
1502 goto out;
1503 }
e02119d5 1504
2cfbd50b 1505 ret = btrfs_log_dentry_safe(trans, root, dentry);
d397712b 1506 if (ret < 0)
e02119d5 1507 goto out;
49eb7e46
CM
1508
1509 /* we've logged all the items and now have a consistent
1510 * version of the file in the log. It is possible that
1511 * someone will come in and modify the file, but that's
1512 * fine because the log is consistent on disk, and we
1513 * have references to all of the file's extents
1514 *
1515 * It is possible that someone will come in and log the
1516 * file again, but that will end up using the synchronization
1517 * inside btrfs_sync_log to keep things safe.
1518 */
2cfbd50b 1519 mutex_unlock(&dentry->d_inode->i_mutex);
49eb7e46 1520
257c62e1
CM
1521 if (ret != BTRFS_NO_LOG_SYNC) {
1522 if (ret > 0) {
12fcfd22 1523 ret = btrfs_commit_transaction(trans, root);
257c62e1
CM
1524 } else {
1525 ret = btrfs_sync_log(trans, root);
1526 if (ret == 0)
1527 ret = btrfs_end_transaction(trans, root);
1528 else
1529 ret = btrfs_commit_transaction(trans, root);
1530 }
1531 } else {
1532 ret = btrfs_end_transaction(trans, root);
e02119d5 1533 }
2cfbd50b 1534 mutex_lock(&dentry->d_inode->i_mutex);
39279cc3 1535out:
014e4ac4 1536 return ret > 0 ? -EIO : ret;
39279cc3
CM
1537}
1538
f0f37e2f 1539static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 1540 .fault = filemap_fault,
9ebefb18
CM
1541 .page_mkwrite = btrfs_page_mkwrite,
1542};
1543
1544static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
1545{
058a457e
MX
1546 struct address_space *mapping = filp->f_mapping;
1547
1548 if (!mapping->a_ops->readpage)
1549 return -ENOEXEC;
1550
9ebefb18 1551 file_accessed(filp);
058a457e
MX
1552 vma->vm_ops = &btrfs_file_vm_ops;
1553 vma->vm_flags |= VM_CAN_NONLINEAR;
1554
9ebefb18
CM
1555 return 0;
1556}
1557
2fe17c10
CH
1558static long btrfs_fallocate(struct file *file, int mode,
1559 loff_t offset, loff_t len)
1560{
1561 struct inode *inode = file->f_path.dentry->d_inode;
1562 struct extent_state *cached_state = NULL;
1563 u64 cur_offset;
1564 u64 last_byte;
1565 u64 alloc_start;
1566 u64 alloc_end;
1567 u64 alloc_hint = 0;
1568 u64 locked_end;
1569 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
1570 struct extent_map *em;
1571 int ret;
1572
1573 alloc_start = offset & ~mask;
1574 alloc_end = (offset + len + mask) & ~mask;
1575
1576 /* We only support the FALLOC_FL_KEEP_SIZE mode */
1577 if (mode & ~FALLOC_FL_KEEP_SIZE)
1578 return -EOPNOTSUPP;
1579
1580 /*
1581 * wait for ordered IO before we have any locks. We'll loop again
1582 * below with the locks held.
1583 */
1584 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
1585
1586 mutex_lock(&inode->i_mutex);
1587 ret = inode_newsize_ok(inode, alloc_end);
1588 if (ret)
1589 goto out;
1590
1591 if (alloc_start > inode->i_size) {
a41ad394
JB
1592 ret = btrfs_cont_expand(inode, i_size_read(inode),
1593 alloc_start);
2fe17c10
CH
1594 if (ret)
1595 goto out;
1596 }
1597
1598 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
1599 if (ret)
1600 goto out;
1601
1602 locked_end = alloc_end - 1;
1603 while (1) {
1604 struct btrfs_ordered_extent *ordered;
1605
1606 /* the extent lock is ordered inside the running
1607 * transaction
1608 */
1609 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
1610 locked_end, 0, &cached_state, GFP_NOFS);
1611 ordered = btrfs_lookup_first_ordered_extent(inode,
1612 alloc_end - 1);
1613 if (ordered &&
1614 ordered->file_offset + ordered->len > alloc_start &&
1615 ordered->file_offset < alloc_end) {
1616 btrfs_put_ordered_extent(ordered);
1617 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1618 alloc_start, locked_end,
1619 &cached_state, GFP_NOFS);
1620 /*
1621 * we can't wait on the range with the transaction
1622 * running or with the extent lock held
1623 */
1624 btrfs_wait_ordered_range(inode, alloc_start,
1625 alloc_end - alloc_start);
1626 } else {
1627 if (ordered)
1628 btrfs_put_ordered_extent(ordered);
1629 break;
1630 }
1631 }
1632
1633 cur_offset = alloc_start;
1634 while (1) {
1635 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
1636 alloc_end - cur_offset, 0);
c704005d 1637 BUG_ON(IS_ERR_OR_NULL(em));
2fe17c10
CH
1638 last_byte = min(extent_map_end(em), alloc_end);
1639 last_byte = (last_byte + mask) & ~mask;
1640 if (em->block_start == EXTENT_MAP_HOLE ||
1641 (cur_offset >= inode->i_size &&
1642 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
1643 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
1644 last_byte - cur_offset,
1645 1 << inode->i_blkbits,
1646 offset + len,
1647 &alloc_hint);
1648 if (ret < 0) {
1649 free_extent_map(em);
1650 break;
1651 }
1652 }
1653 free_extent_map(em);
1654
1655 cur_offset = last_byte;
1656 if (cur_offset >= alloc_end) {
1657 ret = 0;
1658 break;
1659 }
1660 }
1661 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
1662 &cached_state, GFP_NOFS);
1663
1664 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
1665out:
1666 mutex_unlock(&inode->i_mutex);
1667 return ret;
1668}
1669
828c0950 1670const struct file_operations btrfs_file_operations = {
39279cc3
CM
1671 .llseek = generic_file_llseek,
1672 .read = do_sync_read,
4a001071 1673 .write = do_sync_write,
9ebefb18 1674 .aio_read = generic_file_aio_read,
e9906a98 1675 .splice_read = generic_file_splice_read,
11c65dcc 1676 .aio_write = btrfs_file_aio_write,
9ebefb18 1677 .mmap = btrfs_file_mmap,
39279cc3 1678 .open = generic_file_open,
e1b81e67 1679 .release = btrfs_release_file,
39279cc3 1680 .fsync = btrfs_sync_file,
2fe17c10 1681 .fallocate = btrfs_fallocate,
34287aa3 1682 .unlocked_ioctl = btrfs_ioctl,
39279cc3 1683#ifdef CONFIG_COMPAT
34287aa3 1684 .compat_ioctl = btrfs_ioctl,
39279cc3
CM
1685#endif
1686};
This page took 0.501706 seconds and 5 git commands to generate.