Btrfs: send, fix more issues related to directory renames
[deliverable/linux.git] / fs / btrfs / file.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
39279cc3
CM
19#include <linux/fs.h>
20#include <linux/pagemap.h>
21#include <linux/highmem.h>
22#include <linux/time.h>
23#include <linux/init.h>
24#include <linux/string.h>
39279cc3
CM
25#include <linux/backing-dev.h>
26#include <linux/mpage.h>
a27bb332 27#include <linux/aio.h>
2fe17c10 28#include <linux/falloc.h>
39279cc3
CM
29#include <linux/swap.h>
30#include <linux/writeback.h>
31#include <linux/statfs.h>
32#include <linux/compat.h>
5a0e3ad6 33#include <linux/slab.h>
55e301fd 34#include <linux/btrfs.h>
39279cc3
CM
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39279cc3 39#include "print-tree.h"
e02119d5
CM
40#include "tree-log.h"
41#include "locking.h"
2aaa6655 42#include "volumes.h"
39279cc3 43
9247f317 44static struct kmem_cache *btrfs_inode_defrag_cachep;
4cb5300b
CM
45/*
46 * when auto defrag is enabled we
47 * queue up these defrag structs to remember which
48 * inodes need defragging passes
49 */
50struct inode_defrag {
51 struct rb_node rb_node;
52 /* objectid */
53 u64 ino;
54 /*
55 * transid where the defrag was added, we search for
56 * extents newer than this
57 */
58 u64 transid;
59
60 /* root objectid */
61 u64 root;
62
63 /* last offset we were able to defrag */
64 u64 last_offset;
65
66 /* if we've wrapped around back to zero once already */
67 int cycled;
68};
69
762f2263
MX
70static int __compare_inode_defrag(struct inode_defrag *defrag1,
71 struct inode_defrag *defrag2)
72{
73 if (defrag1->root > defrag2->root)
74 return 1;
75 else if (defrag1->root < defrag2->root)
76 return -1;
77 else if (defrag1->ino > defrag2->ino)
78 return 1;
79 else if (defrag1->ino < defrag2->ino)
80 return -1;
81 else
82 return 0;
83}
84
4cb5300b
CM
85/* pop a record for an inode into the defrag tree. The lock
86 * must be held already
87 *
88 * If you're inserting a record for an older transid than an
89 * existing record, the transid already in the tree is lowered
90 *
91 * If an existing record is found the defrag item you
92 * pass in is freed
93 */
8ddc4734 94static int __btrfs_add_inode_defrag(struct inode *inode,
4cb5300b
CM
95 struct inode_defrag *defrag)
96{
97 struct btrfs_root *root = BTRFS_I(inode)->root;
98 struct inode_defrag *entry;
99 struct rb_node **p;
100 struct rb_node *parent = NULL;
762f2263 101 int ret;
4cb5300b
CM
102
103 p = &root->fs_info->defrag_inodes.rb_node;
104 while (*p) {
105 parent = *p;
106 entry = rb_entry(parent, struct inode_defrag, rb_node);
107
762f2263
MX
108 ret = __compare_inode_defrag(defrag, entry);
109 if (ret < 0)
4cb5300b 110 p = &parent->rb_left;
762f2263 111 else if (ret > 0)
4cb5300b
CM
112 p = &parent->rb_right;
113 else {
114 /* if we're reinserting an entry for
115 * an old defrag run, make sure to
116 * lower the transid of our existing record
117 */
118 if (defrag->transid < entry->transid)
119 entry->transid = defrag->transid;
120 if (defrag->last_offset > entry->last_offset)
121 entry->last_offset = defrag->last_offset;
8ddc4734 122 return -EEXIST;
4cb5300b
CM
123 }
124 }
72ac3c0d 125 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
126 rb_link_node(&defrag->rb_node, parent, p);
127 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
8ddc4734
MX
128 return 0;
129}
4cb5300b 130
8ddc4734
MX
131static inline int __need_auto_defrag(struct btrfs_root *root)
132{
133 if (!btrfs_test_opt(root, AUTO_DEFRAG))
134 return 0;
135
136 if (btrfs_fs_closing(root->fs_info))
137 return 0;
4cb5300b 138
8ddc4734 139 return 1;
4cb5300b
CM
140}
141
142/*
143 * insert a defrag record for this inode if auto defrag is
144 * enabled
145 */
146int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147 struct inode *inode)
148{
149 struct btrfs_root *root = BTRFS_I(inode)->root;
150 struct inode_defrag *defrag;
4cb5300b 151 u64 transid;
8ddc4734 152 int ret;
4cb5300b 153
8ddc4734 154 if (!__need_auto_defrag(root))
4cb5300b
CM
155 return 0;
156
72ac3c0d 157 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
4cb5300b
CM
158 return 0;
159
160 if (trans)
161 transid = trans->transid;
162 else
163 transid = BTRFS_I(inode)->root->last_trans;
164
9247f317 165 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
4cb5300b
CM
166 if (!defrag)
167 return -ENOMEM;
168
a4689d2b 169 defrag->ino = btrfs_ino(inode);
4cb5300b
CM
170 defrag->transid = transid;
171 defrag->root = root->root_key.objectid;
172
173 spin_lock(&root->fs_info->defrag_inodes_lock);
8ddc4734
MX
174 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175 /*
176 * If we set IN_DEFRAG flag and evict the inode from memory,
177 * and then re-read this inode, this new inode doesn't have
178 * IN_DEFRAG flag. At the case, we may find the existed defrag.
179 */
180 ret = __btrfs_add_inode_defrag(inode, defrag);
181 if (ret)
182 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183 } else {
9247f317 184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
8ddc4734 185 }
4cb5300b 186 spin_unlock(&root->fs_info->defrag_inodes_lock);
a0f98dde 187 return 0;
4cb5300b
CM
188}
189
190/*
8ddc4734
MX
191 * Requeue the defrag object. If there is a defrag object that points to
192 * the same inode in the tree, we will merge them together (by
193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
4cb5300b 194 */
48a3b636
ES
195static void btrfs_requeue_inode_defrag(struct inode *inode,
196 struct inode_defrag *defrag)
8ddc4734
MX
197{
198 struct btrfs_root *root = BTRFS_I(inode)->root;
199 int ret;
200
201 if (!__need_auto_defrag(root))
202 goto out;
203
204 /*
205 * Here we don't check the IN_DEFRAG flag, because we need merge
206 * them together.
207 */
208 spin_lock(&root->fs_info->defrag_inodes_lock);
209 ret = __btrfs_add_inode_defrag(inode, defrag);
210 spin_unlock(&root->fs_info->defrag_inodes_lock);
211 if (ret)
212 goto out;
213 return;
214out:
215 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216}
217
4cb5300b 218/*
26176e7c
MX
219 * pick the defragable inode that we want, if it doesn't exist, we will get
220 * the next one.
4cb5300b 221 */
26176e7c
MX
222static struct inode_defrag *
223btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
4cb5300b
CM
224{
225 struct inode_defrag *entry = NULL;
762f2263 226 struct inode_defrag tmp;
4cb5300b
CM
227 struct rb_node *p;
228 struct rb_node *parent = NULL;
762f2263
MX
229 int ret;
230
231 tmp.ino = ino;
232 tmp.root = root;
4cb5300b 233
26176e7c
MX
234 spin_lock(&fs_info->defrag_inodes_lock);
235 p = fs_info->defrag_inodes.rb_node;
4cb5300b
CM
236 while (p) {
237 parent = p;
238 entry = rb_entry(parent, struct inode_defrag, rb_node);
239
762f2263
MX
240 ret = __compare_inode_defrag(&tmp, entry);
241 if (ret < 0)
4cb5300b 242 p = parent->rb_left;
762f2263 243 else if (ret > 0)
4cb5300b
CM
244 p = parent->rb_right;
245 else
26176e7c 246 goto out;
4cb5300b
CM
247 }
248
26176e7c
MX
249 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250 parent = rb_next(parent);
251 if (parent)
4cb5300b 252 entry = rb_entry(parent, struct inode_defrag, rb_node);
26176e7c
MX
253 else
254 entry = NULL;
4cb5300b 255 }
26176e7c
MX
256out:
257 if (entry)
258 rb_erase(parent, &fs_info->defrag_inodes);
259 spin_unlock(&fs_info->defrag_inodes_lock);
260 return entry;
4cb5300b
CM
261}
262
26176e7c 263void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
4cb5300b
CM
264{
265 struct inode_defrag *defrag;
26176e7c
MX
266 struct rb_node *node;
267
268 spin_lock(&fs_info->defrag_inodes_lock);
269 node = rb_first(&fs_info->defrag_inodes);
270 while (node) {
271 rb_erase(node, &fs_info->defrag_inodes);
272 defrag = rb_entry(node, struct inode_defrag, rb_node);
273 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
274
275 if (need_resched()) {
276 spin_unlock(&fs_info->defrag_inodes_lock);
277 cond_resched();
278 spin_lock(&fs_info->defrag_inodes_lock);
279 }
280
281 node = rb_first(&fs_info->defrag_inodes);
282 }
283 spin_unlock(&fs_info->defrag_inodes_lock);
284}
285
286#define BTRFS_DEFRAG_BATCH 1024
287
288static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289 struct inode_defrag *defrag)
290{
4cb5300b
CM
291 struct btrfs_root *inode_root;
292 struct inode *inode;
4cb5300b
CM
293 struct btrfs_key key;
294 struct btrfs_ioctl_defrag_range_args range;
4cb5300b 295 int num_defrag;
6f1c3605
LB
296 int index;
297 int ret;
4cb5300b 298
26176e7c
MX
299 /* get the inode */
300 key.objectid = defrag->root;
301 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302 key.offset = (u64)-1;
6f1c3605
LB
303
304 index = srcu_read_lock(&fs_info->subvol_srcu);
305
26176e7c
MX
306 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307 if (IS_ERR(inode_root)) {
6f1c3605
LB
308 ret = PTR_ERR(inode_root);
309 goto cleanup;
310 }
26176e7c
MX
311
312 key.objectid = defrag->ino;
313 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
314 key.offset = 0;
315 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
316 if (IS_ERR(inode)) {
6f1c3605
LB
317 ret = PTR_ERR(inode);
318 goto cleanup;
26176e7c 319 }
6f1c3605 320 srcu_read_unlock(&fs_info->subvol_srcu, index);
26176e7c
MX
321
322 /* do a chunk of defrag */
323 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
324 memset(&range, 0, sizeof(range));
325 range.len = (u64)-1;
26176e7c 326 range.start = defrag->last_offset;
b66f00da
MX
327
328 sb_start_write(fs_info->sb);
26176e7c
MX
329 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
330 BTRFS_DEFRAG_BATCH);
b66f00da 331 sb_end_write(fs_info->sb);
26176e7c
MX
332 /*
333 * if we filled the whole defrag batch, there
334 * must be more work to do. Queue this defrag
335 * again
336 */
337 if (num_defrag == BTRFS_DEFRAG_BATCH) {
338 defrag->last_offset = range.start;
339 btrfs_requeue_inode_defrag(inode, defrag);
340 } else if (defrag->last_offset && !defrag->cycled) {
341 /*
342 * we didn't fill our defrag batch, but
343 * we didn't start at zero. Make sure we loop
344 * around to the start of the file.
345 */
346 defrag->last_offset = 0;
347 defrag->cycled = 1;
348 btrfs_requeue_inode_defrag(inode, defrag);
349 } else {
350 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
351 }
352
353 iput(inode);
354 return 0;
6f1c3605
LB
355cleanup:
356 srcu_read_unlock(&fs_info->subvol_srcu, index);
357 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
358 return ret;
26176e7c
MX
359}
360
361/*
362 * run through the list of inodes in the FS that need
363 * defragging
364 */
365int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
366{
367 struct inode_defrag *defrag;
368 u64 first_ino = 0;
369 u64 root_objectid = 0;
4cb5300b
CM
370
371 atomic_inc(&fs_info->defrag_running);
67871254 372 while (1) {
dc81cdc5
MX
373 /* Pause the auto defragger. */
374 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
375 &fs_info->fs_state))
376 break;
377
26176e7c
MX
378 if (!__need_auto_defrag(fs_info->tree_root))
379 break;
4cb5300b
CM
380
381 /* find an inode to defrag */
26176e7c
MX
382 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
383 first_ino);
4cb5300b 384 if (!defrag) {
26176e7c 385 if (root_objectid || first_ino) {
762f2263 386 root_objectid = 0;
4cb5300b
CM
387 first_ino = 0;
388 continue;
389 } else {
390 break;
391 }
392 }
393
4cb5300b 394 first_ino = defrag->ino + 1;
762f2263 395 root_objectid = defrag->root;
4cb5300b 396
26176e7c 397 __btrfs_run_defrag_inode(fs_info, defrag);
4cb5300b 398 }
4cb5300b
CM
399 atomic_dec(&fs_info->defrag_running);
400
401 /*
402 * during unmount, we use the transaction_wait queue to
403 * wait for the defragger to stop
404 */
405 wake_up(&fs_info->transaction_wait);
406 return 0;
407}
39279cc3 408
d352ac68
CM
409/* simple helper to fault in pages and copy. This should go away
410 * and be replaced with calls into generic code.
411 */
d397712b 412static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
d0215f3e 413 size_t write_bytes,
a1b32a59 414 struct page **prepared_pages,
11c65dcc 415 struct iov_iter *i)
39279cc3 416{
914ee295 417 size_t copied = 0;
d0215f3e 418 size_t total_copied = 0;
11c65dcc 419 int pg = 0;
39279cc3
CM
420 int offset = pos & (PAGE_CACHE_SIZE - 1);
421
11c65dcc 422 while (write_bytes > 0) {
39279cc3
CM
423 size_t count = min_t(size_t,
424 PAGE_CACHE_SIZE - offset, write_bytes);
11c65dcc 425 struct page *page = prepared_pages[pg];
914ee295
XZ
426 /*
427 * Copy data from userspace to the current page
914ee295 428 */
914ee295 429 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
11c65dcc 430
39279cc3
CM
431 /* Flush processor's dcache for this page */
432 flush_dcache_page(page);
31339acd
CM
433
434 /*
435 * if we get a partial write, we can end up with
436 * partially up to date pages. These add
437 * a lot of complexity, so make sure they don't
438 * happen by forcing this copy to be retried.
439 *
440 * The rest of the btrfs_file_write code will fall
441 * back to page at a time copies after we return 0.
442 */
443 if (!PageUptodate(page) && copied < count)
444 copied = 0;
445
11c65dcc
JB
446 iov_iter_advance(i, copied);
447 write_bytes -= copied;
914ee295 448 total_copied += copied;
39279cc3 449
914ee295 450 /* Return to btrfs_file_aio_write to fault page */
9f570b8d 451 if (unlikely(copied == 0))
914ee295 452 break;
11c65dcc
JB
453
454 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
455 offset += copied;
456 } else {
457 pg++;
458 offset = 0;
459 }
39279cc3 460 }
914ee295 461 return total_copied;
39279cc3
CM
462}
463
d352ac68
CM
464/*
465 * unlocks pages after btrfs_file_write is done with them
466 */
48a3b636 467static void btrfs_drop_pages(struct page **pages, size_t num_pages)
39279cc3
CM
468{
469 size_t i;
470 for (i = 0; i < num_pages; i++) {
d352ac68
CM
471 /* page checked is some magic around finding pages that
472 * have been modified without going through btrfs_set_page_dirty
473 * clear it here
474 */
4a096752 475 ClearPageChecked(pages[i]);
39279cc3
CM
476 unlock_page(pages[i]);
477 mark_page_accessed(pages[i]);
478 page_cache_release(pages[i]);
479 }
480}
481
d352ac68
CM
482/*
483 * after copy_from_user, pages need to be dirtied and we need to make
484 * sure holes are created between the current EOF and the start of
485 * any next extents (if required).
486 *
487 * this also makes the decision about creating an inline extent vs
488 * doing real data extents, marking pages dirty and delalloc as required.
489 */
be1a12a0 490int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
48a3b636
ES
491 struct page **pages, size_t num_pages,
492 loff_t pos, size_t write_bytes,
493 struct extent_state **cached)
39279cc3 494{
39279cc3 495 int err = 0;
a52d9a80 496 int i;
db94535d 497 u64 num_bytes;
a52d9a80
CM
498 u64 start_pos;
499 u64 end_of_last_block;
500 u64 end_pos = pos + write_bytes;
501 loff_t isize = i_size_read(inode);
39279cc3 502
5f39d397 503 start_pos = pos & ~((u64)root->sectorsize - 1);
fda2832f 504 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
39279cc3 505
db94535d 506 end_of_last_block = start_pos + num_bytes - 1;
2ac55d41 507 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
be1a12a0 508 cached);
d0215f3e
JB
509 if (err)
510 return err;
9ed74f2d 511
c8b97818
CM
512 for (i = 0; i < num_pages; i++) {
513 struct page *p = pages[i];
514 SetPageUptodate(p);
515 ClearPageChecked(p);
516 set_page_dirty(p);
a52d9a80 517 }
9f570b8d
JB
518
519 /*
520 * we've only changed i_size in ram, and we haven't updated
521 * the disk i_size. There is no need to log the inode
522 * at this time.
523 */
524 if (end_pos > isize)
a52d9a80 525 i_size_write(inode, end_pos);
a22285a6 526 return 0;
39279cc3
CM
527}
528
d352ac68
CM
529/*
530 * this drops all the extents in the cache that intersect the range
531 * [start, end]. Existing extents are split as required.
532 */
7014cdb4
JB
533void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
534 int skip_pinned)
a52d9a80
CM
535{
536 struct extent_map *em;
3b951516
CM
537 struct extent_map *split = NULL;
538 struct extent_map *split2 = NULL;
a52d9a80 539 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
39b5637f 540 u64 len = end - start + 1;
5dc562c5 541 u64 gen;
3b951516
CM
542 int ret;
543 int testend = 1;
5b21f2ed 544 unsigned long flags;
c8b97818 545 int compressed = 0;
09a2a8f9 546 bool modified;
a52d9a80 547
e6dcd2dc 548 WARN_ON(end < start);
3b951516 549 if (end == (u64)-1) {
39b5637f 550 len = (u64)-1;
3b951516
CM
551 testend = 0;
552 }
d397712b 553 while (1) {
7014cdb4
JB
554 int no_splits = 0;
555
09a2a8f9 556 modified = false;
3b951516 557 if (!split)
172ddd60 558 split = alloc_extent_map();
3b951516 559 if (!split2)
172ddd60 560 split2 = alloc_extent_map();
7014cdb4
JB
561 if (!split || !split2)
562 no_splits = 1;
3b951516 563
890871be 564 write_lock(&em_tree->lock);
39b5637f 565 em = lookup_extent_mapping(em_tree, start, len);
d1310b2e 566 if (!em) {
890871be 567 write_unlock(&em_tree->lock);
a52d9a80 568 break;
d1310b2e 569 }
5b21f2ed 570 flags = em->flags;
5dc562c5 571 gen = em->generation;
5b21f2ed 572 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
55ef6899 573 if (testend && em->start + em->len >= start + len) {
5b21f2ed 574 free_extent_map(em);
a1ed835e 575 write_unlock(&em_tree->lock);
5b21f2ed
ZY
576 break;
577 }
55ef6899
YZ
578 start = em->start + em->len;
579 if (testend)
5b21f2ed 580 len = start + len - (em->start + em->len);
5b21f2ed 581 free_extent_map(em);
a1ed835e 582 write_unlock(&em_tree->lock);
5b21f2ed
ZY
583 continue;
584 }
c8b97818 585 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3ce7e67a 586 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
3b277594 587 clear_bit(EXTENT_FLAG_LOGGING, &flags);
09a2a8f9 588 modified = !list_empty(&em->list);
7014cdb4
JB
589 if (no_splits)
590 goto next;
3b951516 591
ee20a983 592 if (em->start < start) {
3b951516
CM
593 split->start = em->start;
594 split->len = start - em->start;
ee20a983
JB
595
596 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
597 split->orig_start = em->orig_start;
598 split->block_start = em->block_start;
599
600 if (compressed)
601 split->block_len = em->block_len;
602 else
603 split->block_len = split->len;
604 split->orig_block_len = max(split->block_len,
605 em->orig_block_len);
606 split->ram_bytes = em->ram_bytes;
607 } else {
608 split->orig_start = split->start;
609 split->block_len = 0;
610 split->block_start = em->block_start;
611 split->orig_block_len = 0;
612 split->ram_bytes = split->len;
613 }
614
5dc562c5 615 split->generation = gen;
3b951516 616 split->bdev = em->bdev;
5b21f2ed 617 split->flags = flags;
261507a0 618 split->compress_type = em->compress_type;
176840b3 619 replace_extent_mapping(em_tree, em, split, modified);
3b951516
CM
620 free_extent_map(split);
621 split = split2;
622 split2 = NULL;
623 }
ee20a983 624 if (testend && em->start + em->len > start + len) {
3b951516
CM
625 u64 diff = start + len - em->start;
626
627 split->start = start + len;
628 split->len = em->start + em->len - (start + len);
629 split->bdev = em->bdev;
5b21f2ed 630 split->flags = flags;
261507a0 631 split->compress_type = em->compress_type;
5dc562c5 632 split->generation = gen;
ee20a983
JB
633
634 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
635 split->orig_block_len = max(em->block_len,
b4939680 636 em->orig_block_len);
3b951516 637
ee20a983
JB
638 split->ram_bytes = em->ram_bytes;
639 if (compressed) {
640 split->block_len = em->block_len;
641 split->block_start = em->block_start;
642 split->orig_start = em->orig_start;
643 } else {
644 split->block_len = split->len;
645 split->block_start = em->block_start
646 + diff;
647 split->orig_start = em->orig_start;
648 }
c8b97818 649 } else {
ee20a983
JB
650 split->ram_bytes = split->len;
651 split->orig_start = split->start;
652 split->block_len = 0;
653 split->block_start = em->block_start;
654 split->orig_block_len = 0;
c8b97818 655 }
3b951516 656
176840b3
FM
657 if (extent_map_in_tree(em)) {
658 replace_extent_mapping(em_tree, em, split,
659 modified);
660 } else {
661 ret = add_extent_mapping(em_tree, split,
662 modified);
663 ASSERT(ret == 0); /* Logic error */
664 }
3b951516
CM
665 free_extent_map(split);
666 split = NULL;
667 }
7014cdb4 668next:
176840b3
FM
669 if (extent_map_in_tree(em))
670 remove_extent_mapping(em_tree, em);
890871be 671 write_unlock(&em_tree->lock);
d1310b2e 672
a52d9a80
CM
673 /* once for us */
674 free_extent_map(em);
675 /* once for the tree*/
676 free_extent_map(em);
677 }
3b951516
CM
678 if (split)
679 free_extent_map(split);
680 if (split2)
681 free_extent_map(split2);
a52d9a80
CM
682}
683
39279cc3
CM
684/*
685 * this is very complex, but the basic idea is to drop all extents
686 * in the range start - end. hint_block is filled in with a block number
687 * that would be a good hint to the block allocator for this file.
688 *
689 * If an extent intersects the range but is not entirely inside the range
690 * it is either truncated or split. Anything entirely inside the range
691 * is deleted from the tree.
692 */
5dc562c5
JB
693int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
694 struct btrfs_root *root, struct inode *inode,
695 struct btrfs_path *path, u64 start, u64 end,
1acae57b
FDBM
696 u64 *drop_end, int drop_cache,
697 int replace_extent,
698 u32 extent_item_size,
699 int *key_inserted)
39279cc3 700{
5f39d397 701 struct extent_buffer *leaf;
920bbbfb 702 struct btrfs_file_extent_item *fi;
00f5c795 703 struct btrfs_key key;
920bbbfb 704 struct btrfs_key new_key;
33345d01 705 u64 ino = btrfs_ino(inode);
920bbbfb
YZ
706 u64 search_start = start;
707 u64 disk_bytenr = 0;
708 u64 num_bytes = 0;
709 u64 extent_offset = 0;
710 u64 extent_end = 0;
711 int del_nr = 0;
712 int del_slot = 0;
713 int extent_type;
ccd467d6 714 int recow;
00f5c795 715 int ret;
dc7fdde3 716 int modify_tree = -1;
5dc562c5 717 int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
c3308f84 718 int found = 0;
1acae57b 719 int leafs_visited = 0;
39279cc3 720
a1ed835e
CM
721 if (drop_cache)
722 btrfs_drop_extent_cache(inode, start, end - 1, 0);
a52d9a80 723
d5f37527 724 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
dc7fdde3
CM
725 modify_tree = 0;
726
d397712b 727 while (1) {
ccd467d6 728 recow = 0;
33345d01 729 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 730 search_start, modify_tree);
39279cc3 731 if (ret < 0)
920bbbfb
YZ
732 break;
733 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
734 leaf = path->nodes[0];
735 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 736 if (key.objectid == ino &&
920bbbfb
YZ
737 key.type == BTRFS_EXTENT_DATA_KEY)
738 path->slots[0]--;
39279cc3 739 }
920bbbfb 740 ret = 0;
1acae57b 741 leafs_visited++;
8c2383c3 742next_slot:
5f39d397 743 leaf = path->nodes[0];
920bbbfb
YZ
744 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
745 BUG_ON(del_nr > 0);
746 ret = btrfs_next_leaf(root, path);
747 if (ret < 0)
748 break;
749 if (ret > 0) {
750 ret = 0;
751 break;
8c2383c3 752 }
1acae57b 753 leafs_visited++;
920bbbfb
YZ
754 leaf = path->nodes[0];
755 recow = 1;
756 }
757
758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
33345d01 759 if (key.objectid > ino ||
920bbbfb
YZ
760 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
761 break;
762
763 fi = btrfs_item_ptr(leaf, path->slots[0],
764 struct btrfs_file_extent_item);
765 extent_type = btrfs_file_extent_type(leaf, fi);
766
767 if (extent_type == BTRFS_FILE_EXTENT_REG ||
768 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
769 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
770 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
771 extent_offset = btrfs_file_extent_offset(leaf, fi);
772 extent_end = key.offset +
773 btrfs_file_extent_num_bytes(leaf, fi);
774 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
775 extent_end = key.offset +
514ac8ad
CM
776 btrfs_file_extent_inline_len(leaf,
777 path->slots[0], fi);
8c2383c3 778 } else {
920bbbfb 779 WARN_ON(1);
8c2383c3 780 extent_end = search_start;
39279cc3
CM
781 }
782
fc19c5e7
FM
783 /*
784 * Don't skip extent items representing 0 byte lengths. They
785 * used to be created (bug) if while punching holes we hit
786 * -ENOSPC condition. So if we find one here, just ensure we
787 * delete it, otherwise we would insert a new file extent item
788 * with the same key (offset) as that 0 bytes length file
789 * extent item in the call to setup_items_for_insert() later
790 * in this function.
791 */
792 if (extent_end == key.offset && extent_end >= search_start)
793 goto delete_extent_item;
794
920bbbfb
YZ
795 if (extent_end <= search_start) {
796 path->slots[0]++;
8c2383c3 797 goto next_slot;
39279cc3
CM
798 }
799
c3308f84 800 found = 1;
920bbbfb 801 search_start = max(key.offset, start);
dc7fdde3
CM
802 if (recow || !modify_tree) {
803 modify_tree = -1;
b3b4aa74 804 btrfs_release_path(path);
920bbbfb 805 continue;
39279cc3 806 }
6643558d 807
920bbbfb
YZ
808 /*
809 * | - range to drop - |
810 * | -------- extent -------- |
811 */
812 if (start > key.offset && end < extent_end) {
813 BUG_ON(del_nr > 0);
00fdf13a 814 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 815 ret = -EOPNOTSUPP;
00fdf13a
LB
816 break;
817 }
920bbbfb
YZ
818
819 memcpy(&new_key, &key, sizeof(new_key));
820 new_key.offset = start;
821 ret = btrfs_duplicate_item(trans, root, path,
822 &new_key);
823 if (ret == -EAGAIN) {
b3b4aa74 824 btrfs_release_path(path);
920bbbfb 825 continue;
6643558d 826 }
920bbbfb
YZ
827 if (ret < 0)
828 break;
829
830 leaf = path->nodes[0];
831 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
832 struct btrfs_file_extent_item);
833 btrfs_set_file_extent_num_bytes(leaf, fi,
834 start - key.offset);
835
836 fi = btrfs_item_ptr(leaf, path->slots[0],
837 struct btrfs_file_extent_item);
838
839 extent_offset += start - key.offset;
840 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
841 btrfs_set_file_extent_num_bytes(leaf, fi,
842 extent_end - start);
843 btrfs_mark_buffer_dirty(leaf);
844
5dc562c5 845 if (update_refs && disk_bytenr > 0) {
771ed689 846 ret = btrfs_inc_extent_ref(trans, root,
920bbbfb
YZ
847 disk_bytenr, num_bytes, 0,
848 root->root_key.objectid,
849 new_key.objectid,
66d7e7f0 850 start - extent_offset, 0);
79787eaa 851 BUG_ON(ret); /* -ENOMEM */
771ed689 852 }
920bbbfb 853 key.offset = start;
6643558d 854 }
920bbbfb
YZ
855 /*
856 * | ---- range to drop ----- |
857 * | -------- extent -------- |
858 */
859 if (start <= key.offset && end < extent_end) {
00fdf13a 860 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 861 ret = -EOPNOTSUPP;
00fdf13a
LB
862 break;
863 }
6643558d 864
920bbbfb
YZ
865 memcpy(&new_key, &key, sizeof(new_key));
866 new_key.offset = end;
afe5fea7 867 btrfs_set_item_key_safe(root, path, &new_key);
6643558d 868
920bbbfb
YZ
869 extent_offset += end - key.offset;
870 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
871 btrfs_set_file_extent_num_bytes(leaf, fi,
872 extent_end - end);
873 btrfs_mark_buffer_dirty(leaf);
2671485d 874 if (update_refs && disk_bytenr > 0)
920bbbfb 875 inode_sub_bytes(inode, end - key.offset);
920bbbfb 876 break;
39279cc3 877 }
771ed689 878
920bbbfb
YZ
879 search_start = extent_end;
880 /*
881 * | ---- range to drop ----- |
882 * | -------- extent -------- |
883 */
884 if (start > key.offset && end >= extent_end) {
885 BUG_ON(del_nr > 0);
00fdf13a 886 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 887 ret = -EOPNOTSUPP;
00fdf13a
LB
888 break;
889 }
8c2383c3 890
920bbbfb
YZ
891 btrfs_set_file_extent_num_bytes(leaf, fi,
892 start - key.offset);
893 btrfs_mark_buffer_dirty(leaf);
2671485d 894 if (update_refs && disk_bytenr > 0)
920bbbfb 895 inode_sub_bytes(inode, extent_end - start);
920bbbfb
YZ
896 if (end == extent_end)
897 break;
c8b97818 898
920bbbfb
YZ
899 path->slots[0]++;
900 goto next_slot;
31840ae1
ZY
901 }
902
920bbbfb
YZ
903 /*
904 * | ---- range to drop ----- |
905 * | ------ extent ------ |
906 */
907 if (start <= key.offset && end >= extent_end) {
fc19c5e7 908delete_extent_item:
920bbbfb
YZ
909 if (del_nr == 0) {
910 del_slot = path->slots[0];
911 del_nr = 1;
912 } else {
913 BUG_ON(del_slot + del_nr != path->slots[0]);
914 del_nr++;
915 }
31840ae1 916
5dc562c5
JB
917 if (update_refs &&
918 extent_type == BTRFS_FILE_EXTENT_INLINE) {
a76a3cd4 919 inode_sub_bytes(inode,
920bbbfb
YZ
920 extent_end - key.offset);
921 extent_end = ALIGN(extent_end,
922 root->sectorsize);
5dc562c5 923 } else if (update_refs && disk_bytenr > 0) {
31840ae1 924 ret = btrfs_free_extent(trans, root,
920bbbfb
YZ
925 disk_bytenr, num_bytes, 0,
926 root->root_key.objectid,
5d4f98a2 927 key.objectid, key.offset -
66d7e7f0 928 extent_offset, 0);
79787eaa 929 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
930 inode_sub_bytes(inode,
931 extent_end - key.offset);
31840ae1 932 }
31840ae1 933
920bbbfb
YZ
934 if (end == extent_end)
935 break;
936
937 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
938 path->slots[0]++;
939 goto next_slot;
940 }
941
942 ret = btrfs_del_items(trans, root, path, del_slot,
943 del_nr);
79787eaa
JM
944 if (ret) {
945 btrfs_abort_transaction(trans, root, ret);
5dc562c5 946 break;
79787eaa 947 }
920bbbfb
YZ
948
949 del_nr = 0;
950 del_slot = 0;
951
b3b4aa74 952 btrfs_release_path(path);
920bbbfb 953 continue;
39279cc3 954 }
920bbbfb
YZ
955
956 BUG_ON(1);
39279cc3 957 }
920bbbfb 958
79787eaa 959 if (!ret && del_nr > 0) {
1acae57b
FDBM
960 /*
961 * Set path->slots[0] to first slot, so that after the delete
962 * if items are move off from our leaf to its immediate left or
963 * right neighbor leafs, we end up with a correct and adjusted
d5f37527 964 * path->slots[0] for our insertion (if replace_extent != 0).
1acae57b
FDBM
965 */
966 path->slots[0] = del_slot;
920bbbfb 967 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa
JM
968 if (ret)
969 btrfs_abort_transaction(trans, root, ret);
d5f37527 970 }
1acae57b 971
d5f37527
FDBM
972 leaf = path->nodes[0];
973 /*
974 * If btrfs_del_items() was called, it might have deleted a leaf, in
975 * which case it unlocked our path, so check path->locks[0] matches a
976 * write lock.
977 */
978 if (!ret && replace_extent && leafs_visited == 1 &&
979 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
980 path->locks[0] == BTRFS_WRITE_LOCK) &&
981 btrfs_leaf_free_space(root, leaf) >=
982 sizeof(struct btrfs_item) + extent_item_size) {
983
984 key.objectid = ino;
985 key.type = BTRFS_EXTENT_DATA_KEY;
986 key.offset = start;
987 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
988 struct btrfs_key slot_key;
989
990 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
991 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
992 path->slots[0]++;
1acae57b 993 }
d5f37527
FDBM
994 setup_items_for_insert(root, path, &key,
995 &extent_item_size,
996 extent_item_size,
997 sizeof(struct btrfs_item) +
998 extent_item_size, 1);
999 *key_inserted = 1;
6643558d 1000 }
920bbbfb 1001
1acae57b
FDBM
1002 if (!replace_extent || !(*key_inserted))
1003 btrfs_release_path(path);
2aaa6655 1004 if (drop_end)
c3308f84 1005 *drop_end = found ? min(end, extent_end) : end;
5dc562c5
JB
1006 return ret;
1007}
1008
1009int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1010 struct btrfs_root *root, struct inode *inode, u64 start,
2671485d 1011 u64 end, int drop_cache)
5dc562c5
JB
1012{
1013 struct btrfs_path *path;
1014 int ret;
1015
1016 path = btrfs_alloc_path();
1017 if (!path)
1018 return -ENOMEM;
2aaa6655 1019 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1acae57b 1020 drop_cache, 0, 0, NULL);
920bbbfb 1021 btrfs_free_path(path);
39279cc3
CM
1022 return ret;
1023}
1024
d899e052 1025static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
1026 u64 objectid, u64 bytenr, u64 orig_offset,
1027 u64 *start, u64 *end)
d899e052
YZ
1028{
1029 struct btrfs_file_extent_item *fi;
1030 struct btrfs_key key;
1031 u64 extent_end;
1032
1033 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1034 return 0;
1035
1036 btrfs_item_key_to_cpu(leaf, &key, slot);
1037 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1038 return 0;
1039
1040 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1041 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1042 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 1043 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
1044 btrfs_file_extent_compression(leaf, fi) ||
1045 btrfs_file_extent_encryption(leaf, fi) ||
1046 btrfs_file_extent_other_encoding(leaf, fi))
1047 return 0;
1048
1049 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1050 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1051 return 0;
1052
1053 *start = key.offset;
1054 *end = extent_end;
1055 return 1;
1056}
1057
1058/*
1059 * Mark extent in the range start - end as written.
1060 *
1061 * This changes extent type from 'pre-allocated' to 'regular'. If only
1062 * part of extent is marked as written, the extent will be split into
1063 * two or three.
1064 */
1065int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
d899e052
YZ
1066 struct inode *inode, u64 start, u64 end)
1067{
920bbbfb 1068 struct btrfs_root *root = BTRFS_I(inode)->root;
d899e052
YZ
1069 struct extent_buffer *leaf;
1070 struct btrfs_path *path;
1071 struct btrfs_file_extent_item *fi;
1072 struct btrfs_key key;
920bbbfb 1073 struct btrfs_key new_key;
d899e052
YZ
1074 u64 bytenr;
1075 u64 num_bytes;
1076 u64 extent_end;
5d4f98a2 1077 u64 orig_offset;
d899e052
YZ
1078 u64 other_start;
1079 u64 other_end;
920bbbfb
YZ
1080 u64 split;
1081 int del_nr = 0;
1082 int del_slot = 0;
6c7d54ac 1083 int recow;
d899e052 1084 int ret;
33345d01 1085 u64 ino = btrfs_ino(inode);
d899e052 1086
d899e052 1087 path = btrfs_alloc_path();
d8926bb3
MF
1088 if (!path)
1089 return -ENOMEM;
d899e052 1090again:
6c7d54ac 1091 recow = 0;
920bbbfb 1092 split = start;
33345d01 1093 key.objectid = ino;
d899e052 1094 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 1095 key.offset = split;
d899e052
YZ
1096
1097 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
1098 if (ret < 0)
1099 goto out;
d899e052
YZ
1100 if (ret > 0 && path->slots[0] > 0)
1101 path->slots[0]--;
1102
1103 leaf = path->nodes[0];
1104 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
33345d01 1105 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
d899e052
YZ
1106 fi = btrfs_item_ptr(leaf, path->slots[0],
1107 struct btrfs_file_extent_item);
920bbbfb
YZ
1108 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1109 BTRFS_FILE_EXTENT_PREALLOC);
d899e052
YZ
1110 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1111 BUG_ON(key.offset > start || extent_end < end);
1112
1113 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1114 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 1115 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
1116 memcpy(&new_key, &key, sizeof(new_key));
1117
1118 if (start == key.offset && end < extent_end) {
1119 other_start = 0;
1120 other_end = start;
1121 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1122 ino, bytenr, orig_offset,
6c7d54ac
YZ
1123 &other_start, &other_end)) {
1124 new_key.offset = end;
afe5fea7 1125 btrfs_set_item_key_safe(root, path, &new_key);
6c7d54ac
YZ
1126 fi = btrfs_item_ptr(leaf, path->slots[0],
1127 struct btrfs_file_extent_item);
224ecce5
JB
1128 btrfs_set_file_extent_generation(leaf, fi,
1129 trans->transid);
6c7d54ac
YZ
1130 btrfs_set_file_extent_num_bytes(leaf, fi,
1131 extent_end - end);
1132 btrfs_set_file_extent_offset(leaf, fi,
1133 end - orig_offset);
1134 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1135 struct btrfs_file_extent_item);
224ecce5
JB
1136 btrfs_set_file_extent_generation(leaf, fi,
1137 trans->transid);
6c7d54ac
YZ
1138 btrfs_set_file_extent_num_bytes(leaf, fi,
1139 end - other_start);
1140 btrfs_mark_buffer_dirty(leaf);
1141 goto out;
1142 }
1143 }
1144
1145 if (start > key.offset && end == extent_end) {
1146 other_start = end;
1147 other_end = 0;
1148 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1149 ino, bytenr, orig_offset,
6c7d54ac
YZ
1150 &other_start, &other_end)) {
1151 fi = btrfs_item_ptr(leaf, path->slots[0],
1152 struct btrfs_file_extent_item);
1153 btrfs_set_file_extent_num_bytes(leaf, fi,
1154 start - key.offset);
224ecce5
JB
1155 btrfs_set_file_extent_generation(leaf, fi,
1156 trans->transid);
6c7d54ac
YZ
1157 path->slots[0]++;
1158 new_key.offset = start;
afe5fea7 1159 btrfs_set_item_key_safe(root, path, &new_key);
6c7d54ac
YZ
1160
1161 fi = btrfs_item_ptr(leaf, path->slots[0],
1162 struct btrfs_file_extent_item);
224ecce5
JB
1163 btrfs_set_file_extent_generation(leaf, fi,
1164 trans->transid);
6c7d54ac
YZ
1165 btrfs_set_file_extent_num_bytes(leaf, fi,
1166 other_end - start);
1167 btrfs_set_file_extent_offset(leaf, fi,
1168 start - orig_offset);
1169 btrfs_mark_buffer_dirty(leaf);
1170 goto out;
1171 }
1172 }
d899e052 1173
920bbbfb
YZ
1174 while (start > key.offset || end < extent_end) {
1175 if (key.offset == start)
1176 split = end;
1177
920bbbfb
YZ
1178 new_key.offset = split;
1179 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1180 if (ret == -EAGAIN) {
b3b4aa74 1181 btrfs_release_path(path);
920bbbfb 1182 goto again;
d899e052 1183 }
79787eaa
JM
1184 if (ret < 0) {
1185 btrfs_abort_transaction(trans, root, ret);
1186 goto out;
1187 }
d899e052 1188
920bbbfb
YZ
1189 leaf = path->nodes[0];
1190 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 1191 struct btrfs_file_extent_item);
224ecce5 1192 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 1193 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
1194 split - key.offset);
1195
1196 fi = btrfs_item_ptr(leaf, path->slots[0],
1197 struct btrfs_file_extent_item);
1198
224ecce5 1199 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
1200 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1201 btrfs_set_file_extent_num_bytes(leaf, fi,
1202 extent_end - split);
d899e052
YZ
1203 btrfs_mark_buffer_dirty(leaf);
1204
920bbbfb
YZ
1205 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1206 root->root_key.objectid,
66d7e7f0 1207 ino, orig_offset, 0);
79787eaa 1208 BUG_ON(ret); /* -ENOMEM */
d899e052 1209
920bbbfb
YZ
1210 if (split == start) {
1211 key.offset = start;
1212 } else {
1213 BUG_ON(start != key.offset);
d899e052 1214 path->slots[0]--;
920bbbfb 1215 extent_end = end;
d899e052 1216 }
6c7d54ac 1217 recow = 1;
d899e052
YZ
1218 }
1219
920bbbfb
YZ
1220 other_start = end;
1221 other_end = 0;
6c7d54ac 1222 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1223 ino, bytenr, orig_offset,
6c7d54ac
YZ
1224 &other_start, &other_end)) {
1225 if (recow) {
b3b4aa74 1226 btrfs_release_path(path);
6c7d54ac
YZ
1227 goto again;
1228 }
920bbbfb
YZ
1229 extent_end = other_end;
1230 del_slot = path->slots[0] + 1;
1231 del_nr++;
1232 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1233 0, root->root_key.objectid,
66d7e7f0 1234 ino, orig_offset, 0);
79787eaa 1235 BUG_ON(ret); /* -ENOMEM */
d899e052 1236 }
920bbbfb
YZ
1237 other_start = 0;
1238 other_end = start;
6c7d54ac 1239 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1240 ino, bytenr, orig_offset,
6c7d54ac
YZ
1241 &other_start, &other_end)) {
1242 if (recow) {
b3b4aa74 1243 btrfs_release_path(path);
6c7d54ac
YZ
1244 goto again;
1245 }
920bbbfb
YZ
1246 key.offset = other_start;
1247 del_slot = path->slots[0];
1248 del_nr++;
1249 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1250 0, root->root_key.objectid,
66d7e7f0 1251 ino, orig_offset, 0);
79787eaa 1252 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
1253 }
1254 if (del_nr == 0) {
3f6fae95
SL
1255 fi = btrfs_item_ptr(leaf, path->slots[0],
1256 struct btrfs_file_extent_item);
920bbbfb
YZ
1257 btrfs_set_file_extent_type(leaf, fi,
1258 BTRFS_FILE_EXTENT_REG);
224ecce5 1259 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 1260 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 1261 } else {
3f6fae95
SL
1262 fi = btrfs_item_ptr(leaf, del_slot - 1,
1263 struct btrfs_file_extent_item);
6c7d54ac
YZ
1264 btrfs_set_file_extent_type(leaf, fi,
1265 BTRFS_FILE_EXTENT_REG);
224ecce5 1266 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
1267 btrfs_set_file_extent_num_bytes(leaf, fi,
1268 extent_end - key.offset);
1269 btrfs_mark_buffer_dirty(leaf);
920bbbfb 1270
6c7d54ac 1271 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa
JM
1272 if (ret < 0) {
1273 btrfs_abort_transaction(trans, root, ret);
1274 goto out;
1275 }
6c7d54ac 1276 }
920bbbfb 1277out:
d899e052
YZ
1278 btrfs_free_path(path);
1279 return 0;
1280}
1281
b1bf862e
CM
1282/*
1283 * on error we return an unlocked page and the error value
1284 * on success we return a locked page and 0
1285 */
b6316429
JB
1286static int prepare_uptodate_page(struct page *page, u64 pos,
1287 bool force_uptodate)
b1bf862e
CM
1288{
1289 int ret = 0;
1290
b6316429
JB
1291 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1292 !PageUptodate(page)) {
b1bf862e
CM
1293 ret = btrfs_readpage(NULL, page);
1294 if (ret)
1295 return ret;
1296 lock_page(page);
1297 if (!PageUptodate(page)) {
1298 unlock_page(page);
1299 return -EIO;
1300 }
1301 }
1302 return 0;
1303}
1304
39279cc3 1305/*
376cc685 1306 * this just gets pages into the page cache and locks them down.
39279cc3 1307 */
b37392ea
MX
1308static noinline int prepare_pages(struct inode *inode, struct page **pages,
1309 size_t num_pages, loff_t pos,
1310 size_t write_bytes, bool force_uptodate)
39279cc3
CM
1311{
1312 int i;
1313 unsigned long index = pos >> PAGE_CACHE_SHIFT;
3b16a4e3 1314 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
fc28b62d 1315 int err = 0;
376cc685 1316 int faili;
8c2383c3 1317
39279cc3 1318 for (i = 0; i < num_pages; i++) {
a94733d0 1319 pages[i] = find_or_create_page(inode->i_mapping, index + i,
e3a41a5b 1320 mask | __GFP_WRITE);
39279cc3 1321 if (!pages[i]) {
b1bf862e
CM
1322 faili = i - 1;
1323 err = -ENOMEM;
1324 goto fail;
1325 }
1326
1327 if (i == 0)
b6316429
JB
1328 err = prepare_uptodate_page(pages[i], pos,
1329 force_uptodate);
b1bf862e
CM
1330 if (i == num_pages - 1)
1331 err = prepare_uptodate_page(pages[i],
b6316429 1332 pos + write_bytes, false);
b1bf862e
CM
1333 if (err) {
1334 page_cache_release(pages[i]);
1335 faili = i - 1;
1336 goto fail;
39279cc3 1337 }
ccd467d6 1338 wait_on_page_writeback(pages[i]);
39279cc3 1339 }
376cc685
MX
1340
1341 return 0;
1342fail:
1343 while (faili >= 0) {
1344 unlock_page(pages[faili]);
1345 page_cache_release(pages[faili]);
1346 faili--;
1347 }
1348 return err;
1349
1350}
1351
1352/*
1353 * This function locks the extent and properly waits for data=ordered extents
1354 * to finish before allowing the pages to be modified if need.
1355 *
1356 * The return value:
1357 * 1 - the extent is locked
1358 * 0 - the extent is not locked, and everything is OK
1359 * -EAGAIN - need re-prepare the pages
1360 * the other < 0 number - Something wrong happens
1361 */
1362static noinline int
1363lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1364 size_t num_pages, loff_t pos,
1365 u64 *lockstart, u64 *lockend,
1366 struct extent_state **cached_state)
1367{
1368 u64 start_pos;
1369 u64 last_pos;
1370 int i;
1371 int ret = 0;
1372
1373 start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1374 last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1375
0762704b 1376 if (start_pos < inode->i_size) {
e6dcd2dc 1377 struct btrfs_ordered_extent *ordered;
2ac55d41 1378 lock_extent_bits(&BTRFS_I(inode)->io_tree,
376cc685 1379 start_pos, last_pos, 0, cached_state);
b88935bf
MX
1380 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1381 last_pos - start_pos + 1);
e6dcd2dc
CM
1382 if (ordered &&
1383 ordered->file_offset + ordered->len > start_pos &&
376cc685 1384 ordered->file_offset <= last_pos) {
2ac55d41 1385 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
376cc685
MX
1386 start_pos, last_pos,
1387 cached_state, GFP_NOFS);
e6dcd2dc
CM
1388 for (i = 0; i < num_pages; i++) {
1389 unlock_page(pages[i]);
1390 page_cache_release(pages[i]);
1391 }
b88935bf
MX
1392 btrfs_start_ordered_extent(inode, ordered, 1);
1393 btrfs_put_ordered_extent(ordered);
1394 return -EAGAIN;
e6dcd2dc
CM
1395 }
1396 if (ordered)
1397 btrfs_put_ordered_extent(ordered);
1398
2ac55d41 1399 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
376cc685 1400 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b 1401 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
376cc685
MX
1402 0, 0, cached_state, GFP_NOFS);
1403 *lockstart = start_pos;
1404 *lockend = last_pos;
1405 ret = 1;
0762704b 1406 }
376cc685 1407
e6dcd2dc 1408 for (i = 0; i < num_pages; i++) {
32c7f202
WF
1409 if (clear_page_dirty_for_io(pages[i]))
1410 account_page_redirty(pages[i]);
e6dcd2dc
CM
1411 set_page_extent_mapped(pages[i]);
1412 WARN_ON(!PageLocked(pages[i]));
1413 }
b1bf862e 1414
376cc685 1415 return ret;
39279cc3
CM
1416}
1417
7ee9e440
JB
1418static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1419 size_t *write_bytes)
1420{
7ee9e440
JB
1421 struct btrfs_root *root = BTRFS_I(inode)->root;
1422 struct btrfs_ordered_extent *ordered;
1423 u64 lockstart, lockend;
1424 u64 num_bytes;
1425 int ret;
1426
8257b2dc
MX
1427 ret = btrfs_start_nocow_write(root);
1428 if (!ret)
1429 return -ENOSPC;
1430
7ee9e440 1431 lockstart = round_down(pos, root->sectorsize);
c933956d 1432 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
7ee9e440
JB
1433
1434 while (1) {
1435 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1436 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1437 lockend - lockstart + 1);
1438 if (!ordered) {
1439 break;
1440 }
1441 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1442 btrfs_start_ordered_extent(inode, ordered, 1);
1443 btrfs_put_ordered_extent(ordered);
1444 }
1445
7ee9e440 1446 num_bytes = lockend - lockstart + 1;
00361589 1447 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
7ee9e440
JB
1448 if (ret <= 0) {
1449 ret = 0;
8257b2dc 1450 btrfs_end_nocow_write(root);
7ee9e440 1451 } else {
c933956d
MX
1452 *write_bytes = min_t(size_t, *write_bytes ,
1453 num_bytes - pos + lockstart);
7ee9e440
JB
1454 }
1455
1456 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1457
1458 return ret;
1459}
1460
d0215f3e
JB
1461static noinline ssize_t __btrfs_buffered_write(struct file *file,
1462 struct iov_iter *i,
1463 loff_t pos)
4b46fce2 1464{
496ad9aa 1465 struct inode *inode = file_inode(file);
11c65dcc 1466 struct btrfs_root *root = BTRFS_I(inode)->root;
11c65dcc 1467 struct page **pages = NULL;
376cc685 1468 struct extent_state *cached_state = NULL;
7ee9e440 1469 u64 release_bytes = 0;
376cc685
MX
1470 u64 lockstart;
1471 u64 lockend;
39279cc3 1472 unsigned long first_index;
d0215f3e
JB
1473 size_t num_written = 0;
1474 int nrptrs;
c9149235 1475 int ret = 0;
7ee9e440 1476 bool only_release_metadata = false;
b6316429 1477 bool force_page_uptodate = false;
376cc685 1478 bool need_unlock;
4b46fce2 1479
d0215f3e 1480 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
11c65dcc
JB
1481 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1482 (sizeof(struct page *)));
142349f5
WF
1483 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1484 nrptrs = max(nrptrs, 8);
8c2383c3 1485 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
d0215f3e
JB
1486 if (!pages)
1487 return -ENOMEM;
ab93dbec 1488
39279cc3 1489 first_index = pos >> PAGE_CACHE_SHIFT;
39279cc3 1490
d0215f3e 1491 while (iov_iter_count(i) > 0) {
39279cc3 1492 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
d0215f3e 1493 size_t write_bytes = min(iov_iter_count(i),
11c65dcc 1494 nrptrs * (size_t)PAGE_CACHE_SIZE -
8c2383c3 1495 offset);
3a90983d
YZ
1496 size_t num_pages = (write_bytes + offset +
1497 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
7ee9e440 1498 size_t reserve_bytes;
d0215f3e
JB
1499 size_t dirty_pages;
1500 size_t copied;
39279cc3 1501
8c2383c3 1502 WARN_ON(num_pages > nrptrs);
1832a6d5 1503
914ee295
XZ
1504 /*
1505 * Fault pages before locking them in prepare_pages
1506 * to avoid recursive lock
1507 */
d0215f3e 1508 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
914ee295 1509 ret = -EFAULT;
d0215f3e 1510 break;
914ee295
XZ
1511 }
1512
7ee9e440
JB
1513 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1514 ret = btrfs_check_data_free_space(inode, reserve_bytes);
1515 if (ret == -ENOSPC &&
1516 (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1517 BTRFS_INODE_PREALLOC))) {
1518 ret = check_can_nocow(inode, pos, &write_bytes);
1519 if (ret > 0) {
1520 only_release_metadata = true;
1521 /*
1522 * our prealloc extent may be smaller than
1523 * write_bytes, so scale down.
1524 */
1525 num_pages = (write_bytes + offset +
1526 PAGE_CACHE_SIZE - 1) >>
1527 PAGE_CACHE_SHIFT;
1528 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1529 ret = 0;
1530 } else {
1531 ret = -ENOSPC;
1532 }
1533 }
1534
1832a6d5 1535 if (ret)
d0215f3e 1536 break;
1832a6d5 1537
7ee9e440
JB
1538 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1539 if (ret) {
1540 if (!only_release_metadata)
1541 btrfs_free_reserved_data_space(inode,
1542 reserve_bytes);
8257b2dc
MX
1543 else
1544 btrfs_end_nocow_write(root);
7ee9e440
JB
1545 break;
1546 }
1547
1548 release_bytes = reserve_bytes;
376cc685
MX
1549 need_unlock = false;
1550again:
4a64001f
JB
1551 /*
1552 * This is going to setup the pages array with the number of
1553 * pages we want, so we don't really need to worry about the
1554 * contents of pages from loop to loop
1555 */
b37392ea
MX
1556 ret = prepare_pages(inode, pages, num_pages,
1557 pos, write_bytes,
b6316429 1558 force_page_uptodate);
7ee9e440 1559 if (ret)
d0215f3e 1560 break;
39279cc3 1561
376cc685
MX
1562 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1563 pos, &lockstart, &lockend,
1564 &cached_state);
1565 if (ret < 0) {
1566 if (ret == -EAGAIN)
1567 goto again;
1568 break;
1569 } else if (ret > 0) {
1570 need_unlock = true;
1571 ret = 0;
1572 }
1573
914ee295 1574 copied = btrfs_copy_from_user(pos, num_pages,
d0215f3e 1575 write_bytes, pages, i);
b1bf862e
CM
1576
1577 /*
1578 * if we have trouble faulting in the pages, fall
1579 * back to one page at a time
1580 */
1581 if (copied < write_bytes)
1582 nrptrs = 1;
1583
b6316429
JB
1584 if (copied == 0) {
1585 force_page_uptodate = true;
b1bf862e 1586 dirty_pages = 0;
b6316429
JB
1587 } else {
1588 force_page_uptodate = false;
b1bf862e
CM
1589 dirty_pages = (copied + offset +
1590 PAGE_CACHE_SIZE - 1) >>
1591 PAGE_CACHE_SHIFT;
b6316429 1592 }
914ee295 1593
d0215f3e
JB
1594 /*
1595 * If we had a short copy we need to release the excess delaloc
1596 * bytes we reserved. We need to increment outstanding_extents
1597 * because btrfs_delalloc_release_space will decrement it, but
1598 * we still have an outstanding extent for the chunk we actually
1599 * managed to copy.
1600 */
914ee295 1601 if (num_pages > dirty_pages) {
7ee9e440
JB
1602 release_bytes = (num_pages - dirty_pages) <<
1603 PAGE_CACHE_SHIFT;
9e0baf60
JB
1604 if (copied > 0) {
1605 spin_lock(&BTRFS_I(inode)->lock);
1606 BTRFS_I(inode)->outstanding_extents++;
1607 spin_unlock(&BTRFS_I(inode)->lock);
1608 }
7ee9e440
JB
1609 if (only_release_metadata)
1610 btrfs_delalloc_release_metadata(inode,
1611 release_bytes);
1612 else
1613 btrfs_delalloc_release_space(inode,
1614 release_bytes);
914ee295
XZ
1615 }
1616
7ee9e440 1617 release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
376cc685
MX
1618
1619 if (copied > 0)
be1a12a0
JB
1620 ret = btrfs_dirty_pages(root, inode, pages,
1621 dirty_pages, pos, copied,
1622 NULL);
376cc685
MX
1623 if (need_unlock)
1624 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1625 lockstart, lockend, &cached_state,
1626 GFP_NOFS);
f1de9683
MX
1627 if (ret) {
1628 btrfs_drop_pages(pages, num_pages);
376cc685 1629 break;
f1de9683 1630 }
39279cc3 1631
376cc685 1632 release_bytes = 0;
8257b2dc
MX
1633 if (only_release_metadata)
1634 btrfs_end_nocow_write(root);
1635
7ee9e440
JB
1636 if (only_release_metadata && copied > 0) {
1637 u64 lockstart = round_down(pos, root->sectorsize);
1638 u64 lockend = lockstart +
1639 (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1640
1641 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1642 lockend, EXTENT_NORESERVE, NULL,
1643 NULL, GFP_NOFS);
1644 only_release_metadata = false;
1645 }
1646
f1de9683
MX
1647 btrfs_drop_pages(pages, num_pages);
1648
d0215f3e
JB
1649 cond_resched();
1650
d0e1d66b 1651 balance_dirty_pages_ratelimited(inode->i_mapping);
d0215f3e 1652 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
b53d3f5d 1653 btrfs_btree_balance_dirty(root);
cb843a6f 1654
914ee295
XZ
1655 pos += copied;
1656 num_written += copied;
d0215f3e 1657 }
39279cc3 1658
d0215f3e
JB
1659 kfree(pages);
1660
7ee9e440 1661 if (release_bytes) {
8257b2dc
MX
1662 if (only_release_metadata) {
1663 btrfs_end_nocow_write(root);
7ee9e440 1664 btrfs_delalloc_release_metadata(inode, release_bytes);
8257b2dc 1665 } else {
7ee9e440 1666 btrfs_delalloc_release_space(inode, release_bytes);
8257b2dc 1667 }
7ee9e440
JB
1668 }
1669
d0215f3e
JB
1670 return num_written ? num_written : ret;
1671}
1672
1673static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1674 const struct iovec *iov,
1675 unsigned long nr_segs, loff_t pos,
867c4f93 1676 size_t count, size_t ocount)
d0215f3e
JB
1677{
1678 struct file *file = iocb->ki_filp;
d0215f3e
JB
1679 struct iov_iter i;
1680 ssize_t written;
1681 ssize_t written_buffered;
1682 loff_t endbyte;
1683 int err;
1684
5cb6c6c7 1685 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
d0215f3e
JB
1686 count, ocount);
1687
d0215f3e
JB
1688 if (written < 0 || written == count)
1689 return written;
1690
1691 pos += written;
1692 count -= written;
1693 iov_iter_init(&i, iov, nr_segs, count, written);
1694 written_buffered = __btrfs_buffered_write(file, &i, pos);
1695 if (written_buffered < 0) {
1696 err = written_buffered;
1697 goto out;
39279cc3 1698 }
d0215f3e
JB
1699 endbyte = pos + written_buffered - 1;
1700 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1701 if (err)
1702 goto out;
1703 written += written_buffered;
867c4f93 1704 iocb->ki_pos = pos + written_buffered;
d0215f3e
JB
1705 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1706 endbyte >> PAGE_CACHE_SHIFT);
39279cc3 1707out:
d0215f3e
JB
1708 return written ? written : err;
1709}
5b92ee72 1710
6c760c07
JB
1711static void update_time_for_write(struct inode *inode)
1712{
1713 struct timespec now;
1714
1715 if (IS_NOCMTIME(inode))
1716 return;
1717
1718 now = current_fs_time(inode->i_sb);
1719 if (!timespec_equal(&inode->i_mtime, &now))
1720 inode->i_mtime = now;
1721
1722 if (!timespec_equal(&inode->i_ctime, &now))
1723 inode->i_ctime = now;
1724
1725 if (IS_I_VERSION(inode))
1726 inode_inc_iversion(inode);
1727}
1728
d0215f3e
JB
1729static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1730 const struct iovec *iov,
1731 unsigned long nr_segs, loff_t pos)
1732{
1733 struct file *file = iocb->ki_filp;
496ad9aa 1734 struct inode *inode = file_inode(file);
d0215f3e 1735 struct btrfs_root *root = BTRFS_I(inode)->root;
0c1a98c8 1736 u64 start_pos;
3ac0d7b9 1737 u64 end_pos;
d0215f3e
JB
1738 ssize_t num_written = 0;
1739 ssize_t err = 0;
1740 size_t count, ocount;
b812ce28 1741 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
d0215f3e 1742
d0215f3e
JB
1743 mutex_lock(&inode->i_mutex);
1744
1745 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1746 if (err) {
1747 mutex_unlock(&inode->i_mutex);
1748 goto out;
1749 }
1750 count = ocount;
1751
1752 current->backing_dev_info = inode->i_mapping->backing_dev_info;
1753 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1754 if (err) {
1755 mutex_unlock(&inode->i_mutex);
1756 goto out;
1757 }
1758
1759 if (count == 0) {
1760 mutex_unlock(&inode->i_mutex);
1761 goto out;
1762 }
1763
1764 err = file_remove_suid(file);
1765 if (err) {
1766 mutex_unlock(&inode->i_mutex);
1767 goto out;
1768 }
1769
1770 /*
1771 * If BTRFS flips readonly due to some impossible error
1772 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1773 * although we have opened a file as writable, we have
1774 * to stop this write operation to ensure FS consistency.
1775 */
87533c47 1776 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
d0215f3e
JB
1777 mutex_unlock(&inode->i_mutex);
1778 err = -EROFS;
1779 goto out;
1780 }
1781
6c760c07
JB
1782 /*
1783 * We reserve space for updating the inode when we reserve space for the
1784 * extent we are going to write, so we will enospc out there. We don't
1785 * need to start yet another transaction to update the inode as we will
1786 * update the inode when we finish writing whatever data we write.
1787 */
1788 update_time_for_write(inode);
d0215f3e 1789
0c1a98c8
MX
1790 start_pos = round_down(pos, root->sectorsize);
1791 if (start_pos > i_size_read(inode)) {
3ac0d7b9 1792 /* Expand hole size to cover write data, preventing empty gap */
c5f7d0bb 1793 end_pos = round_up(pos + count, root->sectorsize);
3ac0d7b9 1794 err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
0c1a98c8
MX
1795 if (err) {
1796 mutex_unlock(&inode->i_mutex);
1797 goto out;
1798 }
1799 }
1800
b812ce28
JB
1801 if (sync)
1802 atomic_inc(&BTRFS_I(inode)->sync_writers);
1803
d0215f3e
JB
1804 if (unlikely(file->f_flags & O_DIRECT)) {
1805 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
867c4f93 1806 pos, count, ocount);
d0215f3e
JB
1807 } else {
1808 struct iov_iter i;
1809
1810 iov_iter_init(&i, iov, nr_segs, count, num_written);
1811
1812 num_written = __btrfs_buffered_write(file, &i, pos);
1813 if (num_written > 0)
867c4f93 1814 iocb->ki_pos = pos + num_written;
d0215f3e
JB
1815 }
1816
1817 mutex_unlock(&inode->i_mutex);
2ff3e9b6 1818
5a3f23d5
CM
1819 /*
1820 * we want to make sure fsync finds this change
1821 * but we haven't joined a transaction running right now.
1822 *
1823 * Later on, someone is sure to update the inode and get the
1824 * real transid recorded.
1825 *
1826 * We set last_trans now to the fs_info generation + 1,
1827 * this will either be one more than the running transaction
1828 * or the generation used for the next transaction if there isn't
1829 * one running right now.
6c760c07
JB
1830 *
1831 * We also have to set last_sub_trans to the current log transid,
1832 * otherwise subsequent syncs to a file that's been synced in this
1833 * transaction will appear to have already occured.
5a3f23d5
CM
1834 */
1835 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
6c760c07 1836 BTRFS_I(inode)->last_sub_trans = root->log_transid;
02afc27f 1837 if (num_written > 0) {
d0215f3e 1838 err = generic_write_sync(file, pos, num_written);
45d4f855 1839 if (err < 0)
2ff3e9b6
CM
1840 num_written = err;
1841 }
0a3404dc 1842
b812ce28
JB
1843 if (sync)
1844 atomic_dec(&BTRFS_I(inode)->sync_writers);
0a3404dc 1845out:
39279cc3 1846 current->backing_dev_info = NULL;
39279cc3
CM
1847 return num_written ? num_written : err;
1848}
1849
d397712b 1850int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1851{
5a3f23d5
CM
1852 /*
1853 * ordered_data_close is set by settattr when we are about to truncate
1854 * a file from a non-zero size to a zero size. This tries to
1855 * flush down new bytes that may have been written if the
1856 * application were using truncate to replace a file in place.
1857 */
72ac3c0d
JB
1858 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1859 &BTRFS_I(inode)->runtime_flags)) {
569e0f35
JB
1860 struct btrfs_trans_handle *trans;
1861 struct btrfs_root *root = BTRFS_I(inode)->root;
1862
1863 /*
1864 * We need to block on a committing transaction to keep us from
1865 * throwing a ordered operation on to the list and causing
1866 * something like sync to deadlock trying to flush out this
1867 * inode.
1868 */
1869 trans = btrfs_start_transaction(root, 0);
1870 if (IS_ERR(trans))
1871 return PTR_ERR(trans);
1872 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1873 btrfs_end_transaction(trans, root);
5a3f23d5
CM
1874 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1875 filemap_flush(inode->i_mapping);
1876 }
6bf13c0c
SW
1877 if (filp->private_data)
1878 btrfs_ioctl_trans_end(filp);
e1b81e67
M
1879 return 0;
1880}
1881
d352ac68
CM
1882/*
1883 * fsync call for both files and directories. This logs the inode into
1884 * the tree log instead of forcing full commits whenever possible.
1885 *
1886 * It needs to call filemap_fdatawait so that all ordered extent updates are
1887 * in the metadata btree are up to date for copying to the log.
1888 *
1889 * It drops the inode mutex before doing the tree log commit. This is an
1890 * important optimization for directories because holding the mutex prevents
1891 * new operations on the dir while we write to disk.
1892 */
02c24a82 1893int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 1894{
7ea80859 1895 struct dentry *dentry = file->f_path.dentry;
39279cc3
CM
1896 struct inode *inode = dentry->d_inode;
1897 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3 1898 struct btrfs_trans_handle *trans;
8b050d35
MX
1899 struct btrfs_log_ctx ctx;
1900 int ret = 0;
2ab28f32 1901 bool full_sync = 0;
39279cc3 1902
1abe9b8a 1903 trace_btrfs_sync_file(file, datasync);
257c62e1 1904
90abccf2
MX
1905 /*
1906 * We write the dirty pages in the range and wait until they complete
1907 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
1908 * multi-task, and make the performance up. See
1909 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 1910 */
b812ce28 1911 atomic_inc(&BTRFS_I(inode)->sync_writers);
2ab28f32
JB
1912 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1913 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1914 &BTRFS_I(inode)->runtime_flags))
1915 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
b812ce28 1916 atomic_dec(&BTRFS_I(inode)->sync_writers);
90abccf2
MX
1917 if (ret)
1918 return ret;
1919
02c24a82
JB
1920 mutex_lock(&inode->i_mutex);
1921
0885ef5b 1922 /*
90abccf2
MX
1923 * We flush the dirty pages again to avoid some dirty pages in the
1924 * range being left.
0885ef5b 1925 */
2ecb7923 1926 atomic_inc(&root->log_batch);
2ab28f32
JB
1927 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1928 &BTRFS_I(inode)->runtime_flags);
0ef8b726
JB
1929 if (full_sync) {
1930 ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1931 if (ret) {
1932 mutex_unlock(&inode->i_mutex);
1933 goto out;
1934 }
1935 }
2ecb7923 1936 atomic_inc(&root->log_batch);
257c62e1 1937
39279cc3 1938 /*
15ee9bc7
JB
1939 * check the transaction that last modified this inode
1940 * and see if its already been committed
39279cc3 1941 */
02c24a82
JB
1942 if (!BTRFS_I(inode)->last_trans) {
1943 mutex_unlock(&inode->i_mutex);
15ee9bc7 1944 goto out;
02c24a82 1945 }
a2135011 1946
257c62e1
CM
1947 /*
1948 * if the last transaction that changed this file was before
1949 * the current transaction, we can bail out now without any
1950 * syncing
1951 */
a4abeea4 1952 smp_mb();
22ee6985
JB
1953 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1954 BTRFS_I(inode)->last_trans <=
15ee9bc7
JB
1955 root->fs_info->last_trans_committed) {
1956 BTRFS_I(inode)->last_trans = 0;
5dc562c5
JB
1957
1958 /*
1959 * We'v had everything committed since the last time we were
1960 * modified so clear this flag in case it was set for whatever
1961 * reason, it's no longer relevant.
1962 */
1963 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1964 &BTRFS_I(inode)->runtime_flags);
02c24a82 1965 mutex_unlock(&inode->i_mutex);
15ee9bc7
JB
1966 goto out;
1967 }
15ee9bc7
JB
1968
1969 /*
a52d9a80
CM
1970 * ok we haven't committed the transaction yet, lets do a commit
1971 */
6f902af4 1972 if (file->private_data)
6bf13c0c
SW
1973 btrfs_ioctl_trans_end(file);
1974
5039eddc
JB
1975 /*
1976 * We use start here because we will need to wait on the IO to complete
1977 * in btrfs_sync_log, which could require joining a transaction (for
1978 * example checking cross references in the nocow path). If we use join
1979 * here we could get into a situation where we're waiting on IO to
1980 * happen that is blocked on a transaction trying to commit. With start
1981 * we inc the extwriter counter, so we wait for all extwriters to exit
1982 * before we start blocking join'ers. This comment is to keep somebody
1983 * from thinking they are super smart and changing this to
1984 * btrfs_join_transaction *cough*Josef*cough*.
1985 */
a22285a6
YZ
1986 trans = btrfs_start_transaction(root, 0);
1987 if (IS_ERR(trans)) {
1988 ret = PTR_ERR(trans);
02c24a82 1989 mutex_unlock(&inode->i_mutex);
39279cc3
CM
1990 goto out;
1991 }
5039eddc 1992 trans->sync = true;
e02119d5 1993
8b050d35
MX
1994 btrfs_init_log_ctx(&ctx);
1995
1996 ret = btrfs_log_dentry_safe(trans, root, dentry, &ctx);
02c24a82 1997 if (ret < 0) {
a0634be5
FDBM
1998 /* Fallthrough and commit/free transaction. */
1999 ret = 1;
02c24a82 2000 }
49eb7e46
CM
2001
2002 /* we've logged all the items and now have a consistent
2003 * version of the file in the log. It is possible that
2004 * someone will come in and modify the file, but that's
2005 * fine because the log is consistent on disk, and we
2006 * have references to all of the file's extents
2007 *
2008 * It is possible that someone will come in and log the
2009 * file again, but that will end up using the synchronization
2010 * inside btrfs_sync_log to keep things safe.
2011 */
02c24a82 2012 mutex_unlock(&inode->i_mutex);
49eb7e46 2013
257c62e1 2014 if (ret != BTRFS_NO_LOG_SYNC) {
0ef8b726 2015 if (!ret) {
8b050d35 2016 ret = btrfs_sync_log(trans, root, &ctx);
0ef8b726 2017 if (!ret) {
257c62e1 2018 ret = btrfs_end_transaction(trans, root);
0ef8b726 2019 goto out;
2ab28f32 2020 }
257c62e1 2021 }
0ef8b726
JB
2022 if (!full_sync) {
2023 ret = btrfs_wait_ordered_range(inode, start,
2024 end - start + 1);
2025 if (ret)
2026 goto out;
2027 }
2028 ret = btrfs_commit_transaction(trans, root);
257c62e1
CM
2029 } else {
2030 ret = btrfs_end_transaction(trans, root);
e02119d5 2031 }
39279cc3 2032out:
014e4ac4 2033 return ret > 0 ? -EIO : ret;
39279cc3
CM
2034}
2035
f0f37e2f 2036static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 2037 .fault = filemap_fault,
f1820361 2038 .map_pages = filemap_map_pages,
9ebefb18 2039 .page_mkwrite = btrfs_page_mkwrite,
0b173bc4 2040 .remap_pages = generic_file_remap_pages,
9ebefb18
CM
2041};
2042
2043static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2044{
058a457e
MX
2045 struct address_space *mapping = filp->f_mapping;
2046
2047 if (!mapping->a_ops->readpage)
2048 return -ENOEXEC;
2049
9ebefb18 2050 file_accessed(filp);
058a457e 2051 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2052
9ebefb18
CM
2053 return 0;
2054}
2055
2aaa6655
JB
2056static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2057 int slot, u64 start, u64 end)
2058{
2059 struct btrfs_file_extent_item *fi;
2060 struct btrfs_key key;
2061
2062 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2063 return 0;
2064
2065 btrfs_item_key_to_cpu(leaf, &key, slot);
2066 if (key.objectid != btrfs_ino(inode) ||
2067 key.type != BTRFS_EXTENT_DATA_KEY)
2068 return 0;
2069
2070 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2071
2072 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2073 return 0;
2074
2075 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2076 return 0;
2077
2078 if (key.offset == end)
2079 return 1;
2080 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2081 return 1;
2082 return 0;
2083}
2084
2085static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2086 struct btrfs_path *path, u64 offset, u64 end)
2087{
2088 struct btrfs_root *root = BTRFS_I(inode)->root;
2089 struct extent_buffer *leaf;
2090 struct btrfs_file_extent_item *fi;
2091 struct extent_map *hole_em;
2092 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2093 struct btrfs_key key;
2094 int ret;
2095
16e7549f
JB
2096 if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2097 goto out;
2098
2aaa6655
JB
2099 key.objectid = btrfs_ino(inode);
2100 key.type = BTRFS_EXTENT_DATA_KEY;
2101 key.offset = offset;
2102
2aaa6655
JB
2103 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2104 if (ret < 0)
2105 return ret;
2106 BUG_ON(!ret);
2107
2108 leaf = path->nodes[0];
2109 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2110 u64 num_bytes;
2111
2112 path->slots[0]--;
2113 fi = btrfs_item_ptr(leaf, path->slots[0],
2114 struct btrfs_file_extent_item);
2115 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2116 end - offset;
2117 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2118 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2119 btrfs_set_file_extent_offset(leaf, fi, 0);
2120 btrfs_mark_buffer_dirty(leaf);
2121 goto out;
2122 }
2123
2124 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
2125 u64 num_bytes;
2126
2127 path->slots[0]++;
2128 key.offset = offset;
afe5fea7 2129 btrfs_set_item_key_safe(root, path, &key);
2aaa6655
JB
2130 fi = btrfs_item_ptr(leaf, path->slots[0],
2131 struct btrfs_file_extent_item);
2132 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2133 offset;
2134 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2135 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2136 btrfs_set_file_extent_offset(leaf, fi, 0);
2137 btrfs_mark_buffer_dirty(leaf);
2138 goto out;
2139 }
2140 btrfs_release_path(path);
2141
2142 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2143 0, 0, end - offset, 0, end - offset,
2144 0, 0, 0);
2145 if (ret)
2146 return ret;
2147
2148out:
2149 btrfs_release_path(path);
2150
2151 hole_em = alloc_extent_map();
2152 if (!hole_em) {
2153 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2154 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2155 &BTRFS_I(inode)->runtime_flags);
2156 } else {
2157 hole_em->start = offset;
2158 hole_em->len = end - offset;
cc95bef6 2159 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2160 hole_em->orig_start = offset;
2161
2162 hole_em->block_start = EXTENT_MAP_HOLE;
2163 hole_em->block_len = 0;
b4939680 2164 hole_em->orig_block_len = 0;
2aaa6655
JB
2165 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2166 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2167 hole_em->generation = trans->transid;
2168
2169 do {
2170 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2171 write_lock(&em_tree->lock);
09a2a8f9 2172 ret = add_extent_mapping(em_tree, hole_em, 1);
2aaa6655
JB
2173 write_unlock(&em_tree->lock);
2174 } while (ret == -EEXIST);
2175 free_extent_map(hole_em);
2176 if (ret)
2177 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2178 &BTRFS_I(inode)->runtime_flags);
2179 }
2180
2181 return 0;
2182}
2183
2184static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2185{
2186 struct btrfs_root *root = BTRFS_I(inode)->root;
2187 struct extent_state *cached_state = NULL;
2188 struct btrfs_path *path;
2189 struct btrfs_block_rsv *rsv;
2190 struct btrfs_trans_handle *trans;
0061280d
MX
2191 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2192 u64 lockend = round_down(offset + len,
2193 BTRFS_I(inode)->root->sectorsize) - 1;
2aaa6655
JB
2194 u64 cur_offset = lockstart;
2195 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2196 u64 drop_end;
2aaa6655
JB
2197 int ret = 0;
2198 int err = 0;
16e7549f 2199 int rsv_count;
6347b3c4
MX
2200 bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2201 ((offset + len - 1) >> PAGE_CACHE_SHIFT));
16e7549f 2202 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
a1a50f60 2203 u64 ino_size;
2aaa6655 2204
0ef8b726
JB
2205 ret = btrfs_wait_ordered_range(inode, offset, len);
2206 if (ret)
2207 return ret;
2aaa6655
JB
2208
2209 mutex_lock(&inode->i_mutex);
a1a50f60 2210 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
7426cc04
MX
2211 /*
2212 * We needn't truncate any page which is beyond the end of the file
2213 * because we are sure there is no data there.
2214 */
2aaa6655
JB
2215 /*
2216 * Only do this if we are in the same page and we aren't doing the
2217 * entire page.
2218 */
2219 if (same_page && len < PAGE_CACHE_SIZE) {
12870f1c 2220 if (offset < ino_size)
7426cc04 2221 ret = btrfs_truncate_page(inode, offset, len, 0);
2aaa6655
JB
2222 mutex_unlock(&inode->i_mutex);
2223 return ret;
2224 }
2225
2226 /* zero back part of the first page */
12870f1c 2227 if (offset < ino_size) {
7426cc04
MX
2228 ret = btrfs_truncate_page(inode, offset, 0, 0);
2229 if (ret) {
2230 mutex_unlock(&inode->i_mutex);
2231 return ret;
2232 }
2aaa6655
JB
2233 }
2234
2235 /* zero the front end of the last page */
12870f1c 2236 if (offset + len < ino_size) {
0061280d
MX
2237 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2238 if (ret) {
2239 mutex_unlock(&inode->i_mutex);
2240 return ret;
2241 }
2aaa6655
JB
2242 }
2243
2244 if (lockend < lockstart) {
2245 mutex_unlock(&inode->i_mutex);
2246 return 0;
2247 }
2248
2249 while (1) {
2250 struct btrfs_ordered_extent *ordered;
2251
2252 truncate_pagecache_range(inode, lockstart, lockend);
2253
2254 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2255 0, &cached_state);
2256 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2257
2258 /*
2259 * We need to make sure we have no ordered extents in this range
2260 * and nobody raced in and read a page in this range, if we did
2261 * we need to try again.
2262 */
2263 if ((!ordered ||
6126e3ca 2264 (ordered->file_offset + ordered->len <= lockstart ||
2aaa6655
JB
2265 ordered->file_offset > lockend)) &&
2266 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2267 lockend, EXTENT_UPTODATE, 0,
2268 cached_state)) {
2269 if (ordered)
2270 btrfs_put_ordered_extent(ordered);
2271 break;
2272 }
2273 if (ordered)
2274 btrfs_put_ordered_extent(ordered);
2275 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2276 lockend, &cached_state, GFP_NOFS);
0ef8b726
JB
2277 ret = btrfs_wait_ordered_range(inode, lockstart,
2278 lockend - lockstart + 1);
2279 if (ret) {
2280 mutex_unlock(&inode->i_mutex);
2281 return ret;
2282 }
2aaa6655
JB
2283 }
2284
2285 path = btrfs_alloc_path();
2286 if (!path) {
2287 ret = -ENOMEM;
2288 goto out;
2289 }
2290
66d8f3dd 2291 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2aaa6655
JB
2292 if (!rsv) {
2293 ret = -ENOMEM;
2294 goto out_free;
2295 }
2296 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2297 rsv->failfast = 1;
2298
2299 /*
2300 * 1 - update the inode
2301 * 1 - removing the extents in the range
16e7549f 2302 * 1 - adding the hole extent if no_holes isn't set
2aaa6655 2303 */
16e7549f
JB
2304 rsv_count = no_holes ? 2 : 3;
2305 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2306 if (IS_ERR(trans)) {
2307 err = PTR_ERR(trans);
2308 goto out_free;
2309 }
2310
2311 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2312 min_size);
2313 BUG_ON(ret);
2314 trans->block_rsv = rsv;
2315
2316 while (cur_offset < lockend) {
2317 ret = __btrfs_drop_extents(trans, root, inode, path,
2318 cur_offset, lockend + 1,
1acae57b 2319 &drop_end, 1, 0, 0, NULL);
2aaa6655
JB
2320 if (ret != -ENOSPC)
2321 break;
2322
2323 trans->block_rsv = &root->fs_info->trans_block_rsv;
2324
12870f1c
FM
2325 if (cur_offset < ino_size) {
2326 ret = fill_holes(trans, inode, path, cur_offset,
2327 drop_end);
2328 if (ret) {
2329 err = ret;
2330 break;
2331 }
2aaa6655
JB
2332 }
2333
2334 cur_offset = drop_end;
2335
2336 ret = btrfs_update_inode(trans, root, inode);
2337 if (ret) {
2338 err = ret;
2339 break;
2340 }
2341
2aaa6655 2342 btrfs_end_transaction(trans, root);
b53d3f5d 2343 btrfs_btree_balance_dirty(root);
2aaa6655 2344
16e7549f 2345 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2346 if (IS_ERR(trans)) {
2347 ret = PTR_ERR(trans);
2348 trans = NULL;
2349 break;
2350 }
2351
2352 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2353 rsv, min_size);
2354 BUG_ON(ret); /* shouldn't happen */
2355 trans->block_rsv = rsv;
2356 }
2357
2358 if (ret) {
2359 err = ret;
2360 goto out_trans;
2361 }
2362
2363 trans->block_rsv = &root->fs_info->trans_block_rsv;
fc19c5e7
FM
2364 /*
2365 * Don't insert file hole extent item if it's for a range beyond eof
2366 * (because it's useless) or if it represents a 0 bytes range (when
2367 * cur_offset == drop_end).
2368 */
2369 if (cur_offset < ino_size && cur_offset < drop_end) {
12870f1c
FM
2370 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2371 if (ret) {
2372 err = ret;
2373 goto out_trans;
2374 }
2aaa6655
JB
2375 }
2376
2377out_trans:
2378 if (!trans)
2379 goto out_free;
2380
e1f5790e
TI
2381 inode_inc_iversion(inode);
2382 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2383
2aaa6655
JB
2384 trans->block_rsv = &root->fs_info->trans_block_rsv;
2385 ret = btrfs_update_inode(trans, root, inode);
2aaa6655 2386 btrfs_end_transaction(trans, root);
b53d3f5d 2387 btrfs_btree_balance_dirty(root);
2aaa6655
JB
2388out_free:
2389 btrfs_free_path(path);
2390 btrfs_free_block_rsv(root, rsv);
2391out:
2392 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2393 &cached_state, GFP_NOFS);
2394 mutex_unlock(&inode->i_mutex);
2395 if (ret && !err)
2396 err = ret;
2397 return err;
2398}
2399
2fe17c10
CH
2400static long btrfs_fallocate(struct file *file, int mode,
2401 loff_t offset, loff_t len)
2402{
496ad9aa 2403 struct inode *inode = file_inode(file);
2fe17c10 2404 struct extent_state *cached_state = NULL;
6113077c 2405 struct btrfs_root *root = BTRFS_I(inode)->root;
2fe17c10
CH
2406 u64 cur_offset;
2407 u64 last_byte;
2408 u64 alloc_start;
2409 u64 alloc_end;
2410 u64 alloc_hint = 0;
2411 u64 locked_end;
2fe17c10 2412 struct extent_map *em;
797f4277 2413 int blocksize = BTRFS_I(inode)->root->sectorsize;
2fe17c10
CH
2414 int ret;
2415
797f4277
MX
2416 alloc_start = round_down(offset, blocksize);
2417 alloc_end = round_up(offset + len, blocksize);
2fe17c10 2418
2aaa6655
JB
2419 /* Make sure we aren't being give some crap mode */
2420 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2fe17c10
CH
2421 return -EOPNOTSUPP;
2422
2aaa6655
JB
2423 if (mode & FALLOC_FL_PUNCH_HOLE)
2424 return btrfs_punch_hole(inode, offset, len);
2425
d98456fc
CM
2426 /*
2427 * Make sure we have enough space before we do the
2428 * allocation.
2429 */
0ff6fabd 2430 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
d98456fc
CM
2431 if (ret)
2432 return ret;
6113077c
WS
2433 if (root->fs_info->quota_enabled) {
2434 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2435 if (ret)
2436 goto out_reserve_fail;
2437 }
d98456fc 2438
2fe17c10
CH
2439 mutex_lock(&inode->i_mutex);
2440 ret = inode_newsize_ok(inode, alloc_end);
2441 if (ret)
2442 goto out;
2443
2444 if (alloc_start > inode->i_size) {
a41ad394
JB
2445 ret = btrfs_cont_expand(inode, i_size_read(inode),
2446 alloc_start);
2fe17c10
CH
2447 if (ret)
2448 goto out;
a71754fc
JB
2449 } else {
2450 /*
2451 * If we are fallocating from the end of the file onward we
2452 * need to zero out the end of the page if i_size lands in the
2453 * middle of a page.
2454 */
2455 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2456 if (ret)
2457 goto out;
2fe17c10
CH
2458 }
2459
a71754fc
JB
2460 /*
2461 * wait for ordered IO before we have any locks. We'll loop again
2462 * below with the locks held.
2463 */
0ef8b726
JB
2464 ret = btrfs_wait_ordered_range(inode, alloc_start,
2465 alloc_end - alloc_start);
2466 if (ret)
2467 goto out;
a71754fc 2468
2fe17c10
CH
2469 locked_end = alloc_end - 1;
2470 while (1) {
2471 struct btrfs_ordered_extent *ordered;
2472
2473 /* the extent lock is ordered inside the running
2474 * transaction
2475 */
2476 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
d0082371 2477 locked_end, 0, &cached_state);
2fe17c10
CH
2478 ordered = btrfs_lookup_first_ordered_extent(inode,
2479 alloc_end - 1);
2480 if (ordered &&
2481 ordered->file_offset + ordered->len > alloc_start &&
2482 ordered->file_offset < alloc_end) {
2483 btrfs_put_ordered_extent(ordered);
2484 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2485 alloc_start, locked_end,
2486 &cached_state, GFP_NOFS);
2487 /*
2488 * we can't wait on the range with the transaction
2489 * running or with the extent lock held
2490 */
0ef8b726
JB
2491 ret = btrfs_wait_ordered_range(inode, alloc_start,
2492 alloc_end - alloc_start);
2493 if (ret)
2494 goto out;
2fe17c10
CH
2495 } else {
2496 if (ordered)
2497 btrfs_put_ordered_extent(ordered);
2498 break;
2499 }
2500 }
2501
2502 cur_offset = alloc_start;
2503 while (1) {
f1e490a7
JB
2504 u64 actual_end;
2505
2fe17c10
CH
2506 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2507 alloc_end - cur_offset, 0);
79787eaa
JM
2508 if (IS_ERR_OR_NULL(em)) {
2509 if (!em)
2510 ret = -ENOMEM;
2511 else
2512 ret = PTR_ERR(em);
2513 break;
2514 }
2fe17c10 2515 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 2516 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 2517 last_byte = ALIGN(last_byte, blocksize);
f1e490a7 2518
2fe17c10
CH
2519 if (em->block_start == EXTENT_MAP_HOLE ||
2520 (cur_offset >= inode->i_size &&
2521 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2522 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2523 last_byte - cur_offset,
2524 1 << inode->i_blkbits,
2525 offset + len,
2526 &alloc_hint);
1b9c332b 2527
2fe17c10
CH
2528 if (ret < 0) {
2529 free_extent_map(em);
2530 break;
2531 }
f1e490a7
JB
2532 } else if (actual_end > inode->i_size &&
2533 !(mode & FALLOC_FL_KEEP_SIZE)) {
2534 /*
2535 * We didn't need to allocate any more space, but we
2536 * still extended the size of the file so we need to
2537 * update i_size.
2538 */
2539 inode->i_ctime = CURRENT_TIME;
2540 i_size_write(inode, actual_end);
2541 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2fe17c10
CH
2542 }
2543 free_extent_map(em);
2544
2545 cur_offset = last_byte;
2546 if (cur_offset >= alloc_end) {
2547 ret = 0;
2548 break;
2549 }
2550 }
2551 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2552 &cached_state, GFP_NOFS);
2fe17c10
CH
2553out:
2554 mutex_unlock(&inode->i_mutex);
6113077c
WS
2555 if (root->fs_info->quota_enabled)
2556 btrfs_qgroup_free(root, alloc_end - alloc_start);
2557out_reserve_fail:
d98456fc 2558 /* Let go of our reservation. */
0ff6fabd 2559 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2fe17c10
CH
2560 return ret;
2561}
2562
965c8e59 2563static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
b2675157
JB
2564{
2565 struct btrfs_root *root = BTRFS_I(inode)->root;
7f4ca37c 2566 struct extent_map *em = NULL;
b2675157
JB
2567 struct extent_state *cached_state = NULL;
2568 u64 lockstart = *offset;
2569 u64 lockend = i_size_read(inode);
2570 u64 start = *offset;
b2675157 2571 u64 len = i_size_read(inode);
b2675157
JB
2572 int ret = 0;
2573
2574 lockend = max_t(u64, root->sectorsize, lockend);
2575 if (lockend <= lockstart)
2576 lockend = lockstart + root->sectorsize;
2577
1214b53f 2578 lockend--;
b2675157
JB
2579 len = lockend - lockstart + 1;
2580
2581 len = max_t(u64, len, root->sectorsize);
2582 if (inode->i_size == 0)
2583 return -ENXIO;
2584
2585 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
d0082371 2586 &cached_state);
b2675157 2587
7f4ca37c 2588 while (start < inode->i_size) {
b2675157
JB
2589 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2590 if (IS_ERR(em)) {
6af021d8 2591 ret = PTR_ERR(em);
7f4ca37c 2592 em = NULL;
b2675157
JB
2593 break;
2594 }
2595
7f4ca37c
JB
2596 if (whence == SEEK_HOLE &&
2597 (em->block_start == EXTENT_MAP_HOLE ||
2598 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2599 break;
2600 else if (whence == SEEK_DATA &&
2601 (em->block_start != EXTENT_MAP_HOLE &&
2602 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2603 break;
b2675157
JB
2604
2605 start = em->start + em->len;
b2675157 2606 free_extent_map(em);
7f4ca37c 2607 em = NULL;
b2675157
JB
2608 cond_resched();
2609 }
7f4ca37c
JB
2610 free_extent_map(em);
2611 if (!ret) {
2612 if (whence == SEEK_DATA && start >= inode->i_size)
2613 ret = -ENXIO;
2614 else
2615 *offset = min_t(loff_t, start, inode->i_size);
2616 }
b2675157
JB
2617 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2618 &cached_state, GFP_NOFS);
2619 return ret;
2620}
2621
965c8e59 2622static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
2623{
2624 struct inode *inode = file->f_mapping->host;
2625 int ret;
2626
2627 mutex_lock(&inode->i_mutex);
965c8e59 2628 switch (whence) {
b2675157
JB
2629 case SEEK_END:
2630 case SEEK_CUR:
965c8e59 2631 offset = generic_file_llseek(file, offset, whence);
b2675157
JB
2632 goto out;
2633 case SEEK_DATA:
2634 case SEEK_HOLE:
48802c8a
JL
2635 if (offset >= i_size_read(inode)) {
2636 mutex_unlock(&inode->i_mutex);
2637 return -ENXIO;
2638 }
2639
965c8e59 2640 ret = find_desired_extent(inode, &offset, whence);
b2675157
JB
2641 if (ret) {
2642 mutex_unlock(&inode->i_mutex);
2643 return ret;
2644 }
2645 }
2646
46a1c2c7 2647 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157
JB
2648out:
2649 mutex_unlock(&inode->i_mutex);
2650 return offset;
2651}
2652
828c0950 2653const struct file_operations btrfs_file_operations = {
b2675157 2654 .llseek = btrfs_file_llseek,
39279cc3 2655 .read = do_sync_read,
4a001071 2656 .write = do_sync_write,
9ebefb18 2657 .aio_read = generic_file_aio_read,
e9906a98 2658 .splice_read = generic_file_splice_read,
11c65dcc 2659 .aio_write = btrfs_file_aio_write,
9ebefb18 2660 .mmap = btrfs_file_mmap,
39279cc3 2661 .open = generic_file_open,
e1b81e67 2662 .release = btrfs_release_file,
39279cc3 2663 .fsync = btrfs_sync_file,
2fe17c10 2664 .fallocate = btrfs_fallocate,
34287aa3 2665 .unlocked_ioctl = btrfs_ioctl,
39279cc3 2666#ifdef CONFIG_COMPAT
34287aa3 2667 .compat_ioctl = btrfs_ioctl,
39279cc3
CM
2668#endif
2669};
9247f317
MX
2670
2671void btrfs_auto_defrag_exit(void)
2672{
2673 if (btrfs_inode_defrag_cachep)
2674 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2675}
2676
2677int btrfs_auto_defrag_init(void)
2678{
2679 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2680 sizeof(struct inode_defrag), 0,
2681 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2682 NULL);
2683 if (!btrfs_inode_defrag_cachep)
2684 return -ENOMEM;
2685
2686 return 0;
2687}
This page took 0.501167 seconds and 5 git commands to generate.