Btrfs: fix em leak in find_first_block_group
[deliverable/linux.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
55e301fd 42#include <linux/btrfs.h>
53b381b3 43#include <linux/blkdev.h>
f23b5a59 44#include <linux/posix_acl_xattr.h>
e2e40f2c 45#include <linux/uio.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
dda3245e 63#include "dedupe.h"
39279cc3
CM
64
65struct btrfs_iget_args {
90d3e592 66 struct btrfs_key *location;
39279cc3
CM
67 struct btrfs_root *root;
68};
69
f28a4928
FM
70struct btrfs_dio_data {
71 u64 outstanding_extents;
72 u64 reserve;
73 u64 unsubmitted_oe_range_start;
74 u64 unsubmitted_oe_range_end;
75};
76
6e1d5dcc
AD
77static const struct inode_operations btrfs_dir_inode_operations;
78static const struct inode_operations btrfs_symlink_inode_operations;
79static const struct inode_operations btrfs_dir_ro_inode_operations;
80static const struct inode_operations btrfs_special_inode_operations;
81static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
82static const struct address_space_operations btrfs_aops;
83static const struct address_space_operations btrfs_symlink_aops;
828c0950 84static const struct file_operations btrfs_dir_file_operations;
20e5506b 85static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
86
87static struct kmem_cache *btrfs_inode_cachep;
88struct kmem_cache *btrfs_trans_handle_cachep;
89struct kmem_cache *btrfs_transaction_cachep;
39279cc3 90struct kmem_cache *btrfs_path_cachep;
dc89e982 91struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
92
93#define S_SHIFT 12
4d4ab6d6 94static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
102};
103
3972f260 104static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 105static int btrfs_truncate(struct inode *inode);
5fd02043 106static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
107static noinline int cow_file_range(struct inode *inode,
108 struct page *locked_page,
dda3245e
WX
109 u64 start, u64 end, u64 delalloc_end,
110 int *page_started, unsigned long *nr_written,
111 int unlock, struct btrfs_dedupe_hash *hash);
70c8a91c
JB
112static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
113 u64 len, u64 orig_start,
114 u64 block_start, u64 block_len,
cc95bef6
JB
115 u64 orig_block_len, u64 ram_bytes,
116 int type);
7b128766 117
48a3b636 118static int btrfs_dirty_inode(struct inode *inode);
7b128766 119
6a3891c5
JB
120#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
121void btrfs_test_inode_set_ops(struct inode *inode)
122{
123 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
124}
125#endif
126
f34f57a3 127static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
128 struct inode *inode, struct inode *dir,
129 const struct qstr *qstr)
0279b4cd
JO
130{
131 int err;
132
f34f57a3 133 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 134 if (!err)
2a7dba39 135 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
136 return err;
137}
138
c8b97818
CM
139/*
140 * this does all the hard work for inserting an inline extent into
141 * the btree. The caller should have done a btrfs_drop_extents so that
142 * no overlapping inline items exist in the btree
143 */
40f76580 144static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 145 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
146 struct btrfs_root *root, struct inode *inode,
147 u64 start, size_t size, size_t compressed_size,
fe3f566c 148 int compress_type,
c8b97818
CM
149 struct page **compressed_pages)
150{
c8b97818
CM
151 struct extent_buffer *leaf;
152 struct page *page = NULL;
153 char *kaddr;
154 unsigned long ptr;
155 struct btrfs_file_extent_item *ei;
156 int err = 0;
157 int ret;
158 size_t cur_size = size;
c8b97818 159 unsigned long offset;
c8b97818 160
fe3f566c 161 if (compressed_size && compressed_pages)
c8b97818 162 cur_size = compressed_size;
c8b97818 163
1acae57b 164 inode_add_bytes(inode, size);
c8b97818 165
1acae57b
FDBM
166 if (!extent_inserted) {
167 struct btrfs_key key;
168 size_t datasize;
c8b97818 169
1acae57b
FDBM
170 key.objectid = btrfs_ino(inode);
171 key.offset = start;
962a298f 172 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 173
1acae57b
FDBM
174 datasize = btrfs_file_extent_calc_inline_size(cur_size);
175 path->leave_spinning = 1;
176 ret = btrfs_insert_empty_item(trans, root, path, &key,
177 datasize);
178 if (ret) {
179 err = ret;
180 goto fail;
181 }
c8b97818
CM
182 }
183 leaf = path->nodes[0];
184 ei = btrfs_item_ptr(leaf, path->slots[0],
185 struct btrfs_file_extent_item);
186 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
187 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
188 btrfs_set_file_extent_encryption(leaf, ei, 0);
189 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
190 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
191 ptr = btrfs_file_extent_inline_start(ei);
192
261507a0 193 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
194 struct page *cpage;
195 int i = 0;
d397712b 196 while (compressed_size > 0) {
c8b97818 197 cpage = compressed_pages[i];
5b050f04 198 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 199 PAGE_SIZE);
c8b97818 200
7ac687d9 201 kaddr = kmap_atomic(cpage);
c8b97818 202 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 203 kunmap_atomic(kaddr);
c8b97818
CM
204
205 i++;
206 ptr += cur_size;
207 compressed_size -= cur_size;
208 }
209 btrfs_set_file_extent_compression(leaf, ei,
261507a0 210 compress_type);
c8b97818
CM
211 } else {
212 page = find_get_page(inode->i_mapping,
09cbfeaf 213 start >> PAGE_SHIFT);
c8b97818 214 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 215 kaddr = kmap_atomic(page);
09cbfeaf 216 offset = start & (PAGE_SIZE - 1);
c8b97818 217 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 218 kunmap_atomic(kaddr);
09cbfeaf 219 put_page(page);
c8b97818
CM
220 }
221 btrfs_mark_buffer_dirty(leaf);
1acae57b 222 btrfs_release_path(path);
c8b97818 223
c2167754
YZ
224 /*
225 * we're an inline extent, so nobody can
226 * extend the file past i_size without locking
227 * a page we already have locked.
228 *
229 * We must do any isize and inode updates
230 * before we unlock the pages. Otherwise we
231 * could end up racing with unlink.
232 */
c8b97818 233 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 234 ret = btrfs_update_inode(trans, root, inode);
c2167754 235
79787eaa 236 return ret;
c8b97818 237fail:
c8b97818
CM
238 return err;
239}
240
241
242/*
243 * conditionally insert an inline extent into the file. This
244 * does the checks required to make sure the data is small enough
245 * to fit as an inline extent.
246 */
00361589
JB
247static noinline int cow_file_range_inline(struct btrfs_root *root,
248 struct inode *inode, u64 start,
249 u64 end, size_t compressed_size,
250 int compress_type,
251 struct page **compressed_pages)
c8b97818 252{
00361589 253 struct btrfs_trans_handle *trans;
c8b97818
CM
254 u64 isize = i_size_read(inode);
255 u64 actual_end = min(end + 1, isize);
256 u64 inline_len = actual_end - start;
fda2832f 257 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
258 u64 data_len = inline_len;
259 int ret;
1acae57b
FDBM
260 struct btrfs_path *path;
261 int extent_inserted = 0;
262 u32 extent_item_size;
c8b97818
CM
263
264 if (compressed_size)
265 data_len = compressed_size;
266
267 if (start > 0 ||
0c29ba99 268 actual_end > root->sectorsize ||
354877be 269 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
270 (!compressed_size &&
271 (actual_end & (root->sectorsize - 1)) == 0) ||
272 end + 1 < isize ||
273 data_len > root->fs_info->max_inline) {
274 return 1;
275 }
276
1acae57b
FDBM
277 path = btrfs_alloc_path();
278 if (!path)
279 return -ENOMEM;
280
00361589 281 trans = btrfs_join_transaction(root);
1acae57b
FDBM
282 if (IS_ERR(trans)) {
283 btrfs_free_path(path);
00361589 284 return PTR_ERR(trans);
1acae57b 285 }
00361589
JB
286 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
287
1acae57b
FDBM
288 if (compressed_size && compressed_pages)
289 extent_item_size = btrfs_file_extent_calc_inline_size(
290 compressed_size);
291 else
292 extent_item_size = btrfs_file_extent_calc_inline_size(
293 inline_len);
294
295 ret = __btrfs_drop_extents(trans, root, inode, path,
296 start, aligned_end, NULL,
297 1, 1, extent_item_size, &extent_inserted);
00361589 298 if (ret) {
66642832 299 btrfs_abort_transaction(trans, ret);
00361589
JB
300 goto out;
301 }
c8b97818
CM
302
303 if (isize > actual_end)
304 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
305 ret = insert_inline_extent(trans, path, extent_inserted,
306 root, inode, start,
c8b97818 307 inline_len, compressed_size,
fe3f566c 308 compress_type, compressed_pages);
2adcac1a 309 if (ret && ret != -ENOSPC) {
66642832 310 btrfs_abort_transaction(trans, ret);
00361589 311 goto out;
2adcac1a 312 } else if (ret == -ENOSPC) {
00361589
JB
313 ret = 1;
314 goto out;
79787eaa 315 }
2adcac1a 316
bdc20e67 317 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 318 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 319 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 320out:
94ed938a
QW
321 /*
322 * Don't forget to free the reserved space, as for inlined extent
323 * it won't count as data extent, free them directly here.
324 * And at reserve time, it's always aligned to page size, so
325 * just free one page here.
326 */
09cbfeaf 327 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
1acae57b 328 btrfs_free_path(path);
00361589
JB
329 btrfs_end_transaction(trans, root);
330 return ret;
c8b97818
CM
331}
332
771ed689
CM
333struct async_extent {
334 u64 start;
335 u64 ram_size;
336 u64 compressed_size;
337 struct page **pages;
338 unsigned long nr_pages;
261507a0 339 int compress_type;
771ed689
CM
340 struct list_head list;
341};
342
343struct async_cow {
344 struct inode *inode;
345 struct btrfs_root *root;
346 struct page *locked_page;
347 u64 start;
348 u64 end;
349 struct list_head extents;
350 struct btrfs_work work;
351};
352
353static noinline int add_async_extent(struct async_cow *cow,
354 u64 start, u64 ram_size,
355 u64 compressed_size,
356 struct page **pages,
261507a0
LZ
357 unsigned long nr_pages,
358 int compress_type)
771ed689
CM
359{
360 struct async_extent *async_extent;
361
362 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 363 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
364 async_extent->start = start;
365 async_extent->ram_size = ram_size;
366 async_extent->compressed_size = compressed_size;
367 async_extent->pages = pages;
368 async_extent->nr_pages = nr_pages;
261507a0 369 async_extent->compress_type = compress_type;
771ed689
CM
370 list_add_tail(&async_extent->list, &cow->extents);
371 return 0;
372}
373
f79707b0
WS
374static inline int inode_need_compress(struct inode *inode)
375{
376 struct btrfs_root *root = BTRFS_I(inode)->root;
377
378 /* force compress */
3cdde224 379 if (btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
f79707b0
WS
380 return 1;
381 /* bad compression ratios */
382 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
383 return 0;
3cdde224 384 if (btrfs_test_opt(root->fs_info, COMPRESS) ||
f79707b0
WS
385 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
386 BTRFS_I(inode)->force_compress)
387 return 1;
388 return 0;
389}
390
d352ac68 391/*
771ed689
CM
392 * we create compressed extents in two phases. The first
393 * phase compresses a range of pages that have already been
394 * locked (both pages and state bits are locked).
c8b97818 395 *
771ed689
CM
396 * This is done inside an ordered work queue, and the compression
397 * is spread across many cpus. The actual IO submission is step
398 * two, and the ordered work queue takes care of making sure that
399 * happens in the same order things were put onto the queue by
400 * writepages and friends.
c8b97818 401 *
771ed689
CM
402 * If this code finds it can't get good compression, it puts an
403 * entry onto the work queue to write the uncompressed bytes. This
404 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
405 * are written in the same order that the flusher thread sent them
406 * down.
d352ac68 407 */
c44f649e 408static noinline void compress_file_range(struct inode *inode,
771ed689
CM
409 struct page *locked_page,
410 u64 start, u64 end,
411 struct async_cow *async_cow,
412 int *num_added)
b888db2b
CM
413{
414 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 415 u64 num_bytes;
db94535d 416 u64 blocksize = root->sectorsize;
c8b97818 417 u64 actual_end;
42dc7bab 418 u64 isize = i_size_read(inode);
e6dcd2dc 419 int ret = 0;
c8b97818
CM
420 struct page **pages = NULL;
421 unsigned long nr_pages;
422 unsigned long nr_pages_ret = 0;
423 unsigned long total_compressed = 0;
424 unsigned long total_in = 0;
ee22184b
BL
425 unsigned long max_compressed = SZ_128K;
426 unsigned long max_uncompressed = SZ_128K;
c8b97818
CM
427 int i;
428 int will_compress;
261507a0 429 int compress_type = root->fs_info->compress_type;
4adaa611 430 int redirty = 0;
b888db2b 431
4cb13e5d 432 /* if this is a small write inside eof, kick off a defrag */
ee22184b 433 if ((end - start + 1) < SZ_16K &&
4cb13e5d 434 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
435 btrfs_add_inode_defrag(NULL, inode);
436
42dc7bab 437 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
438again:
439 will_compress = 0;
09cbfeaf
KS
440 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
441 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
be20aa9d 442
f03d9301
CM
443 /*
444 * we don't want to send crud past the end of i_size through
445 * compression, that's just a waste of CPU time. So, if the
446 * end of the file is before the start of our current
447 * requested range of bytes, we bail out to the uncompressed
448 * cleanup code that can deal with all of this.
449 *
450 * It isn't really the fastest way to fix things, but this is a
451 * very uncommon corner.
452 */
453 if (actual_end <= start)
454 goto cleanup_and_bail_uncompressed;
455
c8b97818
CM
456 total_compressed = actual_end - start;
457
4bcbb332
SW
458 /*
459 * skip compression for a small file range(<=blocksize) that
01327610 460 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
461 */
462 if (total_compressed <= blocksize &&
463 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
464 goto cleanup_and_bail_uncompressed;
465
c8b97818
CM
466 /* we want to make sure that amount of ram required to uncompress
467 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
468 * of a compressed extent to 128k. This is a crucial number
469 * because it also controls how easily we can spread reads across
470 * cpus for decompression.
471 *
472 * We also want to make sure the amount of IO required to do
473 * a random read is reasonably small, so we limit the size of
474 * a compressed extent to 128k.
c8b97818
CM
475 */
476 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 477 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 478 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
479 total_in = 0;
480 ret = 0;
db94535d 481
771ed689
CM
482 /*
483 * we do compression for mount -o compress and when the
484 * inode has not been flagged as nocompress. This flag can
485 * change at any time if we discover bad compression ratios.
c8b97818 486 */
f79707b0 487 if (inode_need_compress(inode)) {
c8b97818 488 WARN_ON(pages);
31e818fe 489 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
490 if (!pages) {
491 /* just bail out to the uncompressed code */
492 goto cont;
493 }
c8b97818 494
261507a0
LZ
495 if (BTRFS_I(inode)->force_compress)
496 compress_type = BTRFS_I(inode)->force_compress;
497
4adaa611
CM
498 /*
499 * we need to call clear_page_dirty_for_io on each
500 * page in the range. Otherwise applications with the file
501 * mmap'd can wander in and change the page contents while
502 * we are compressing them.
503 *
504 * If the compression fails for any reason, we set the pages
505 * dirty again later on.
506 */
507 extent_range_clear_dirty_for_io(inode, start, end);
508 redirty = 1;
261507a0
LZ
509 ret = btrfs_compress_pages(compress_type,
510 inode->i_mapping, start,
511 total_compressed, pages,
512 nr_pages, &nr_pages_ret,
513 &total_in,
514 &total_compressed,
515 max_compressed);
c8b97818
CM
516
517 if (!ret) {
518 unsigned long offset = total_compressed &
09cbfeaf 519 (PAGE_SIZE - 1);
c8b97818
CM
520 struct page *page = pages[nr_pages_ret - 1];
521 char *kaddr;
522
523 /* zero the tail end of the last page, we might be
524 * sending it down to disk
525 */
526 if (offset) {
7ac687d9 527 kaddr = kmap_atomic(page);
c8b97818 528 memset(kaddr + offset, 0,
09cbfeaf 529 PAGE_SIZE - offset);
7ac687d9 530 kunmap_atomic(kaddr);
c8b97818
CM
531 }
532 will_compress = 1;
533 }
534 }
560f7d75 535cont:
c8b97818
CM
536 if (start == 0) {
537 /* lets try to make an inline extent */
771ed689 538 if (ret || total_in < (actual_end - start)) {
c8b97818 539 /* we didn't compress the entire range, try
771ed689 540 * to make an uncompressed inline extent.
c8b97818 541 */
00361589
JB
542 ret = cow_file_range_inline(root, inode, start, end,
543 0, 0, NULL);
c8b97818 544 } else {
771ed689 545 /* try making a compressed inline extent */
00361589 546 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
547 total_compressed,
548 compress_type, pages);
c8b97818 549 }
79787eaa 550 if (ret <= 0) {
151a41bc
JB
551 unsigned long clear_flags = EXTENT_DELALLOC |
552 EXTENT_DEFRAG;
e6eb4314
FM
553 unsigned long page_error_op;
554
151a41bc 555 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 556 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 557
771ed689 558 /*
79787eaa
JM
559 * inline extent creation worked or returned error,
560 * we don't need to create any more async work items.
561 * Unlock and free up our temp pages.
771ed689 562 */
c2790a2e 563 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 564 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
565 PAGE_CLEAR_DIRTY |
566 PAGE_SET_WRITEBACK |
e6eb4314 567 page_error_op |
c2790a2e 568 PAGE_END_WRITEBACK);
18513091
WX
569 btrfs_free_reserved_data_space_noquota(inode, start,
570 end - start + 1);
c8b97818
CM
571 goto free_pages_out;
572 }
573 }
574
575 if (will_compress) {
576 /*
577 * we aren't doing an inline extent round the compressed size
578 * up to a block size boundary so the allocator does sane
579 * things
580 */
fda2832f 581 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
582
583 /*
584 * one last check to make sure the compression is really a
585 * win, compare the page count read with the blocks on disk
586 */
09cbfeaf 587 total_in = ALIGN(total_in, PAGE_SIZE);
c8b97818
CM
588 if (total_compressed >= total_in) {
589 will_compress = 0;
590 } else {
c8b97818 591 num_bytes = total_in;
c8bb0c8b
AS
592 *num_added += 1;
593
594 /*
595 * The async work queues will take care of doing actual
596 * allocation on disk for these compressed pages, and
597 * will submit them to the elevator.
598 */
599 add_async_extent(async_cow, start, num_bytes,
600 total_compressed, pages, nr_pages_ret,
601 compress_type);
602
603 if (start + num_bytes < end) {
604 start += num_bytes;
605 pages = NULL;
606 cond_resched();
607 goto again;
608 }
609 return;
c8b97818
CM
610 }
611 }
c8bb0c8b 612 if (pages) {
c8b97818
CM
613 /*
614 * the compression code ran but failed to make things smaller,
615 * free any pages it allocated and our page pointer array
616 */
617 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 618 WARN_ON(pages[i]->mapping);
09cbfeaf 619 put_page(pages[i]);
c8b97818
CM
620 }
621 kfree(pages);
622 pages = NULL;
623 total_compressed = 0;
624 nr_pages_ret = 0;
625
626 /* flag the file so we don't compress in the future */
3cdde224 627 if (!btrfs_test_opt(root->fs_info, FORCE_COMPRESS) &&
1e701a32 628 !(BTRFS_I(inode)->force_compress)) {
a555f810 629 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 630 }
c8b97818 631 }
f03d9301 632cleanup_and_bail_uncompressed:
c8bb0c8b
AS
633 /*
634 * No compression, but we still need to write the pages in the file
635 * we've been given so far. redirty the locked page if it corresponds
636 * to our extent and set things up for the async work queue to run
637 * cow_file_range to do the normal delalloc dance.
638 */
639 if (page_offset(locked_page) >= start &&
640 page_offset(locked_page) <= end)
641 __set_page_dirty_nobuffers(locked_page);
642 /* unlocked later on in the async handlers */
643
644 if (redirty)
645 extent_range_redirty_for_io(inode, start, end);
646 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
647 BTRFS_COMPRESS_NONE);
648 *num_added += 1;
3b951516 649
c44f649e 650 return;
771ed689
CM
651
652free_pages_out:
653 for (i = 0; i < nr_pages_ret; i++) {
654 WARN_ON(pages[i]->mapping);
09cbfeaf 655 put_page(pages[i]);
771ed689 656 }
d397712b 657 kfree(pages);
771ed689 658}
771ed689 659
40ae837b
FM
660static void free_async_extent_pages(struct async_extent *async_extent)
661{
662 int i;
663
664 if (!async_extent->pages)
665 return;
666
667 for (i = 0; i < async_extent->nr_pages; i++) {
668 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 669 put_page(async_extent->pages[i]);
40ae837b
FM
670 }
671 kfree(async_extent->pages);
672 async_extent->nr_pages = 0;
673 async_extent->pages = NULL;
771ed689
CM
674}
675
676/*
677 * phase two of compressed writeback. This is the ordered portion
678 * of the code, which only gets called in the order the work was
679 * queued. We walk all the async extents created by compress_file_range
680 * and send them down to the disk.
681 */
dec8f175 682static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
683 struct async_cow *async_cow)
684{
685 struct async_extent *async_extent;
686 u64 alloc_hint = 0;
771ed689
CM
687 struct btrfs_key ins;
688 struct extent_map *em;
689 struct btrfs_root *root = BTRFS_I(inode)->root;
690 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
691 struct extent_io_tree *io_tree;
f5a84ee3 692 int ret = 0;
771ed689 693
3e04e7f1 694again:
d397712b 695 while (!list_empty(&async_cow->extents)) {
771ed689
CM
696 async_extent = list_entry(async_cow->extents.next,
697 struct async_extent, list);
698 list_del(&async_extent->list);
c8b97818 699
771ed689
CM
700 io_tree = &BTRFS_I(inode)->io_tree;
701
f5a84ee3 702retry:
771ed689
CM
703 /* did the compression code fall back to uncompressed IO? */
704 if (!async_extent->pages) {
705 int page_started = 0;
706 unsigned long nr_written = 0;
707
708 lock_extent(io_tree, async_extent->start,
2ac55d41 709 async_extent->start +
d0082371 710 async_extent->ram_size - 1);
771ed689
CM
711
712 /* allocate blocks */
f5a84ee3
JB
713 ret = cow_file_range(inode, async_cow->locked_page,
714 async_extent->start,
715 async_extent->start +
716 async_extent->ram_size - 1,
dda3245e
WX
717 async_extent->start +
718 async_extent->ram_size - 1,
719 &page_started, &nr_written, 0,
720 NULL);
771ed689 721
79787eaa
JM
722 /* JDM XXX */
723
771ed689
CM
724 /*
725 * if page_started, cow_file_range inserted an
726 * inline extent and took care of all the unlocking
727 * and IO for us. Otherwise, we need to submit
728 * all those pages down to the drive.
729 */
f5a84ee3 730 if (!page_started && !ret)
771ed689
CM
731 extent_write_locked_range(io_tree,
732 inode, async_extent->start,
d397712b 733 async_extent->start +
771ed689
CM
734 async_extent->ram_size - 1,
735 btrfs_get_extent,
736 WB_SYNC_ALL);
3e04e7f1
JB
737 else if (ret)
738 unlock_page(async_cow->locked_page);
771ed689
CM
739 kfree(async_extent);
740 cond_resched();
741 continue;
742 }
743
744 lock_extent(io_tree, async_extent->start,
d0082371 745 async_extent->start + async_extent->ram_size - 1);
771ed689 746
18513091 747 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
748 async_extent->compressed_size,
749 async_extent->compressed_size,
e570fd27 750 0, alloc_hint, &ins, 1, 1);
f5a84ee3 751 if (ret) {
40ae837b 752 free_async_extent_pages(async_extent);
3e04e7f1 753
fdf8e2ea
JB
754 if (ret == -ENOSPC) {
755 unlock_extent(io_tree, async_extent->start,
756 async_extent->start +
757 async_extent->ram_size - 1);
ce62003f
LB
758
759 /*
760 * we need to redirty the pages if we decide to
761 * fallback to uncompressed IO, otherwise we
762 * will not submit these pages down to lower
763 * layers.
764 */
765 extent_range_redirty_for_io(inode,
766 async_extent->start,
767 async_extent->start +
768 async_extent->ram_size - 1);
769
79787eaa 770 goto retry;
fdf8e2ea 771 }
3e04e7f1 772 goto out_free;
f5a84ee3 773 }
c2167754
YZ
774 /*
775 * here we're doing allocation and writeback of the
776 * compressed pages
777 */
778 btrfs_drop_extent_cache(inode, async_extent->start,
779 async_extent->start +
780 async_extent->ram_size - 1, 0);
781
172ddd60 782 em = alloc_extent_map();
b9aa55be
LB
783 if (!em) {
784 ret = -ENOMEM;
3e04e7f1 785 goto out_free_reserve;
b9aa55be 786 }
771ed689
CM
787 em->start = async_extent->start;
788 em->len = async_extent->ram_size;
445a6944 789 em->orig_start = em->start;
2ab28f32
JB
790 em->mod_start = em->start;
791 em->mod_len = em->len;
c8b97818 792
771ed689
CM
793 em->block_start = ins.objectid;
794 em->block_len = ins.offset;
b4939680 795 em->orig_block_len = ins.offset;
cc95bef6 796 em->ram_bytes = async_extent->ram_size;
771ed689 797 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 798 em->compress_type = async_extent->compress_type;
771ed689
CM
799 set_bit(EXTENT_FLAG_PINNED, &em->flags);
800 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 801 em->generation = -1;
771ed689 802
d397712b 803 while (1) {
890871be 804 write_lock(&em_tree->lock);
09a2a8f9 805 ret = add_extent_mapping(em_tree, em, 1);
890871be 806 write_unlock(&em_tree->lock);
771ed689
CM
807 if (ret != -EEXIST) {
808 free_extent_map(em);
809 break;
810 }
811 btrfs_drop_extent_cache(inode, async_extent->start,
812 async_extent->start +
813 async_extent->ram_size - 1, 0);
814 }
815
3e04e7f1
JB
816 if (ret)
817 goto out_free_reserve;
818
261507a0
LZ
819 ret = btrfs_add_ordered_extent_compress(inode,
820 async_extent->start,
821 ins.objectid,
822 async_extent->ram_size,
823 ins.offset,
824 BTRFS_ORDERED_COMPRESSED,
825 async_extent->compress_type);
d9f85963
FM
826 if (ret) {
827 btrfs_drop_extent_cache(inode, async_extent->start,
828 async_extent->start +
829 async_extent->ram_size - 1, 0);
3e04e7f1 830 goto out_free_reserve;
d9f85963 831 }
9cfa3e34 832 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
771ed689 833
771ed689
CM
834 /*
835 * clear dirty, set writeback and unlock the pages.
836 */
c2790a2e 837 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
838 async_extent->start +
839 async_extent->ram_size - 1,
151a41bc
JB
840 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
841 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 842 PAGE_SET_WRITEBACK);
771ed689 843 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
844 async_extent->start,
845 async_extent->ram_size,
846 ins.objectid,
847 ins.offset, async_extent->pages,
848 async_extent->nr_pages);
fce2a4e6
FM
849 if (ret) {
850 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
851 struct page *p = async_extent->pages[0];
852 const u64 start = async_extent->start;
853 const u64 end = start + async_extent->ram_size - 1;
854
855 p->mapping = inode->i_mapping;
856 tree->ops->writepage_end_io_hook(p, start, end,
857 NULL, 0);
858 p->mapping = NULL;
859 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
860 PAGE_END_WRITEBACK |
861 PAGE_SET_ERROR);
40ae837b 862 free_async_extent_pages(async_extent);
fce2a4e6 863 }
771ed689
CM
864 alloc_hint = ins.objectid + ins.offset;
865 kfree(async_extent);
866 cond_resched();
867 }
dec8f175 868 return;
3e04e7f1 869out_free_reserve:
9cfa3e34 870 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
e570fd27 871 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 872out_free:
c2790a2e 873 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
874 async_extent->start +
875 async_extent->ram_size - 1,
c2790a2e 876 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
877 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
878 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
879 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
880 PAGE_SET_ERROR);
40ae837b 881 free_async_extent_pages(async_extent);
79787eaa 882 kfree(async_extent);
3e04e7f1 883 goto again;
771ed689
CM
884}
885
4b46fce2
JB
886static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
887 u64 num_bytes)
888{
889 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
890 struct extent_map *em;
891 u64 alloc_hint = 0;
892
893 read_lock(&em_tree->lock);
894 em = search_extent_mapping(em_tree, start, num_bytes);
895 if (em) {
896 /*
897 * if block start isn't an actual block number then find the
898 * first block in this inode and use that as a hint. If that
899 * block is also bogus then just don't worry about it.
900 */
901 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
902 free_extent_map(em);
903 em = search_extent_mapping(em_tree, 0, 0);
904 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
905 alloc_hint = em->block_start;
906 if (em)
907 free_extent_map(em);
908 } else {
909 alloc_hint = em->block_start;
910 free_extent_map(em);
911 }
912 }
913 read_unlock(&em_tree->lock);
914
915 return alloc_hint;
916}
917
771ed689
CM
918/*
919 * when extent_io.c finds a delayed allocation range in the file,
920 * the call backs end up in this code. The basic idea is to
921 * allocate extents on disk for the range, and create ordered data structs
922 * in ram to track those extents.
923 *
924 * locked_page is the page that writepage had locked already. We use
925 * it to make sure we don't do extra locks or unlocks.
926 *
927 * *page_started is set to one if we unlock locked_page and do everything
928 * required to start IO on it. It may be clean and already done with
929 * IO when we return.
930 */
00361589
JB
931static noinline int cow_file_range(struct inode *inode,
932 struct page *locked_page,
dda3245e
WX
933 u64 start, u64 end, u64 delalloc_end,
934 int *page_started, unsigned long *nr_written,
935 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 936{
00361589 937 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
938 u64 alloc_hint = 0;
939 u64 num_bytes;
940 unsigned long ram_size;
941 u64 disk_num_bytes;
942 u64 cur_alloc_size;
943 u64 blocksize = root->sectorsize;
771ed689
CM
944 struct btrfs_key ins;
945 struct extent_map *em;
946 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
947 int ret = 0;
948
02ecd2c2
JB
949 if (btrfs_is_free_space_inode(inode)) {
950 WARN_ON_ONCE(1);
29bce2f3
JB
951 ret = -EINVAL;
952 goto out_unlock;
02ecd2c2 953 }
771ed689 954
fda2832f 955 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
956 num_bytes = max(blocksize, num_bytes);
957 disk_num_bytes = num_bytes;
771ed689 958
4cb5300b 959 /* if this is a small write inside eof, kick off defrag */
ee22184b 960 if (num_bytes < SZ_64K &&
4cb13e5d 961 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 962 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 963
771ed689
CM
964 if (start == 0) {
965 /* lets try to make an inline extent */
00361589
JB
966 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
967 NULL);
771ed689 968 if (ret == 0) {
c2790a2e
JB
969 extent_clear_unlock_delalloc(inode, start, end, NULL,
970 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 971 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
972 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
973 PAGE_END_WRITEBACK);
18513091
WX
974 btrfs_free_reserved_data_space_noquota(inode, start,
975 end - start + 1);
771ed689 976 *nr_written = *nr_written +
09cbfeaf 977 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 978 *page_started = 1;
771ed689 979 goto out;
79787eaa 980 } else if (ret < 0) {
79787eaa 981 goto out_unlock;
771ed689
CM
982 }
983 }
984
985 BUG_ON(disk_num_bytes >
6c41761f 986 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 987
4b46fce2 988 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
989 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
990
d397712b 991 while (disk_num_bytes > 0) {
a791e35e
CM
992 unsigned long op;
993
287a0ab9 994 cur_alloc_size = disk_num_bytes;
18513091 995 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
771ed689 996 root->sectorsize, 0, alloc_hint,
e570fd27 997 &ins, 1, 1);
00361589 998 if (ret < 0)
79787eaa 999 goto out_unlock;
d397712b 1000
172ddd60 1001 em = alloc_extent_map();
b9aa55be
LB
1002 if (!em) {
1003 ret = -ENOMEM;
ace68bac 1004 goto out_reserve;
b9aa55be 1005 }
e6dcd2dc 1006 em->start = start;
445a6944 1007 em->orig_start = em->start;
771ed689
CM
1008 ram_size = ins.offset;
1009 em->len = ins.offset;
2ab28f32
JB
1010 em->mod_start = em->start;
1011 em->mod_len = em->len;
c8b97818 1012
e6dcd2dc 1013 em->block_start = ins.objectid;
c8b97818 1014 em->block_len = ins.offset;
b4939680 1015 em->orig_block_len = ins.offset;
cc95bef6 1016 em->ram_bytes = ram_size;
e6dcd2dc 1017 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 1018 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 1019 em->generation = -1;
c8b97818 1020
d397712b 1021 while (1) {
890871be 1022 write_lock(&em_tree->lock);
09a2a8f9 1023 ret = add_extent_mapping(em_tree, em, 1);
890871be 1024 write_unlock(&em_tree->lock);
e6dcd2dc
CM
1025 if (ret != -EEXIST) {
1026 free_extent_map(em);
1027 break;
1028 }
1029 btrfs_drop_extent_cache(inode, start,
c8b97818 1030 start + ram_size - 1, 0);
e6dcd2dc 1031 }
ace68bac
LB
1032 if (ret)
1033 goto out_reserve;
e6dcd2dc 1034
98d20f67 1035 cur_alloc_size = ins.offset;
e6dcd2dc 1036 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1037 ram_size, cur_alloc_size, 0);
ace68bac 1038 if (ret)
d9f85963 1039 goto out_drop_extent_cache;
c8b97818 1040
17d217fe
YZ
1041 if (root->root_key.objectid ==
1042 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1043 ret = btrfs_reloc_clone_csums(inode, start,
1044 cur_alloc_size);
00361589 1045 if (ret)
d9f85963 1046 goto out_drop_extent_cache;
17d217fe
YZ
1047 }
1048
9cfa3e34
FM
1049 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1050
d397712b 1051 if (disk_num_bytes < cur_alloc_size)
3b951516 1052 break;
d397712b 1053
c8b97818
CM
1054 /* we're not doing compressed IO, don't unlock the first
1055 * page (which the caller expects to stay locked), don't
1056 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1057 *
1058 * Do set the Private2 bit so we know this page was properly
1059 * setup for writepage
c8b97818 1060 */
c2790a2e
JB
1061 op = unlock ? PAGE_UNLOCK : 0;
1062 op |= PAGE_SET_PRIVATE2;
a791e35e 1063
c2790a2e
JB
1064 extent_clear_unlock_delalloc(inode, start,
1065 start + ram_size - 1, locked_page,
1066 EXTENT_LOCKED | EXTENT_DELALLOC,
1067 op);
c8b97818 1068 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1069 num_bytes -= cur_alloc_size;
1070 alloc_hint = ins.objectid + ins.offset;
1071 start += cur_alloc_size;
b888db2b 1072 }
79787eaa 1073out:
be20aa9d 1074 return ret;
b7d5b0a8 1075
d9f85963
FM
1076out_drop_extent_cache:
1077 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1078out_reserve:
9cfa3e34 1079 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
e570fd27 1080 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1081out_unlock:
c2790a2e 1082 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1083 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1084 EXTENT_DELALLOC | EXTENT_DEFRAG,
1085 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1086 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1087 goto out;
771ed689 1088}
c8b97818 1089
771ed689
CM
1090/*
1091 * work queue call back to started compression on a file and pages
1092 */
1093static noinline void async_cow_start(struct btrfs_work *work)
1094{
1095 struct async_cow *async_cow;
1096 int num_added = 0;
1097 async_cow = container_of(work, struct async_cow, work);
1098
1099 compress_file_range(async_cow->inode, async_cow->locked_page,
1100 async_cow->start, async_cow->end, async_cow,
1101 &num_added);
8180ef88 1102 if (num_added == 0) {
cb77fcd8 1103 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1104 async_cow->inode = NULL;
8180ef88 1105 }
771ed689
CM
1106}
1107
1108/*
1109 * work queue call back to submit previously compressed pages
1110 */
1111static noinline void async_cow_submit(struct btrfs_work *work)
1112{
1113 struct async_cow *async_cow;
1114 struct btrfs_root *root;
1115 unsigned long nr_pages;
1116
1117 async_cow = container_of(work, struct async_cow, work);
1118
1119 root = async_cow->root;
09cbfeaf
KS
1120 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1121 PAGE_SHIFT;
771ed689 1122
ee863954
DS
1123 /*
1124 * atomic_sub_return implies a barrier for waitqueue_active
1125 */
66657b31 1126 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
ee22184b 1127 5 * SZ_1M &&
771ed689
CM
1128 waitqueue_active(&root->fs_info->async_submit_wait))
1129 wake_up(&root->fs_info->async_submit_wait);
1130
d397712b 1131 if (async_cow->inode)
771ed689 1132 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1133}
c8b97818 1134
771ed689
CM
1135static noinline void async_cow_free(struct btrfs_work *work)
1136{
1137 struct async_cow *async_cow;
1138 async_cow = container_of(work, struct async_cow, work);
8180ef88 1139 if (async_cow->inode)
cb77fcd8 1140 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1141 kfree(async_cow);
1142}
1143
1144static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1145 u64 start, u64 end, int *page_started,
1146 unsigned long *nr_written)
1147{
1148 struct async_cow *async_cow;
1149 struct btrfs_root *root = BTRFS_I(inode)->root;
1150 unsigned long nr_pages;
1151 u64 cur_end;
ee22184b 1152 int limit = 10 * SZ_1M;
771ed689 1153
a3429ab7
CM
1154 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1155 1, 0, NULL, GFP_NOFS);
d397712b 1156 while (start < end) {
771ed689 1157 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1158 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1159 async_cow->inode = igrab(inode);
771ed689
CM
1160 async_cow->root = root;
1161 async_cow->locked_page = locked_page;
1162 async_cow->start = start;
1163
f79707b0 1164 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
3cdde224 1165 !btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
771ed689
CM
1166 cur_end = end;
1167 else
ee22184b 1168 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1169
1170 async_cow->end = cur_end;
1171 INIT_LIST_HEAD(&async_cow->extents);
1172
9e0af237
LB
1173 btrfs_init_work(&async_cow->work,
1174 btrfs_delalloc_helper,
1175 async_cow_start, async_cow_submit,
1176 async_cow_free);
771ed689 1177
09cbfeaf
KS
1178 nr_pages = (cur_end - start + PAGE_SIZE) >>
1179 PAGE_SHIFT;
771ed689
CM
1180 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1181
afe3d242
QW
1182 btrfs_queue_work(root->fs_info->delalloc_workers,
1183 &async_cow->work);
771ed689
CM
1184
1185 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1186 wait_event(root->fs_info->async_submit_wait,
1187 (atomic_read(&root->fs_info->async_delalloc_pages) <
1188 limit));
1189 }
1190
d397712b 1191 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1192 atomic_read(&root->fs_info->async_delalloc_pages)) {
1193 wait_event(root->fs_info->async_submit_wait,
1194 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1195 0));
1196 }
1197
1198 *nr_written += nr_pages;
1199 start = cur_end + 1;
1200 }
1201 *page_started = 1;
1202 return 0;
be20aa9d
CM
1203}
1204
d397712b 1205static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1206 u64 bytenr, u64 num_bytes)
1207{
1208 int ret;
1209 struct btrfs_ordered_sum *sums;
1210 LIST_HEAD(list);
1211
07d400a6 1212 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1213 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1214 if (ret == 0 && list_empty(&list))
1215 return 0;
1216
1217 while (!list_empty(&list)) {
1218 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1219 list_del(&sums->list);
1220 kfree(sums);
1221 }
1222 return 1;
1223}
1224
d352ac68
CM
1225/*
1226 * when nowcow writeback call back. This checks for snapshots or COW copies
1227 * of the extents that exist in the file, and COWs the file as required.
1228 *
1229 * If no cow copies or snapshots exist, we write directly to the existing
1230 * blocks on disk
1231 */
7f366cfe
CM
1232static noinline int run_delalloc_nocow(struct inode *inode,
1233 struct page *locked_page,
771ed689
CM
1234 u64 start, u64 end, int *page_started, int force,
1235 unsigned long *nr_written)
be20aa9d 1236{
be20aa9d 1237 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1238 struct btrfs_trans_handle *trans;
be20aa9d 1239 struct extent_buffer *leaf;
be20aa9d 1240 struct btrfs_path *path;
80ff3856 1241 struct btrfs_file_extent_item *fi;
be20aa9d 1242 struct btrfs_key found_key;
80ff3856
YZ
1243 u64 cow_start;
1244 u64 cur_offset;
1245 u64 extent_end;
5d4f98a2 1246 u64 extent_offset;
80ff3856
YZ
1247 u64 disk_bytenr;
1248 u64 num_bytes;
b4939680 1249 u64 disk_num_bytes;
cc95bef6 1250 u64 ram_bytes;
80ff3856 1251 int extent_type;
79787eaa 1252 int ret, err;
d899e052 1253 int type;
80ff3856
YZ
1254 int nocow;
1255 int check_prev = 1;
82d5902d 1256 bool nolock;
33345d01 1257 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1258
1259 path = btrfs_alloc_path();
17ca04af 1260 if (!path) {
c2790a2e
JB
1261 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1262 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1263 EXTENT_DO_ACCOUNTING |
1264 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1265 PAGE_CLEAR_DIRTY |
1266 PAGE_SET_WRITEBACK |
1267 PAGE_END_WRITEBACK);
d8926bb3 1268 return -ENOMEM;
17ca04af 1269 }
82d5902d 1270
83eea1f1 1271 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1272
1273 if (nolock)
7a7eaa40 1274 trans = btrfs_join_transaction_nolock(root);
82d5902d 1275 else
7a7eaa40 1276 trans = btrfs_join_transaction(root);
ff5714cc 1277
79787eaa 1278 if (IS_ERR(trans)) {
c2790a2e
JB
1279 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1280 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1281 EXTENT_DO_ACCOUNTING |
1282 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1283 PAGE_CLEAR_DIRTY |
1284 PAGE_SET_WRITEBACK |
1285 PAGE_END_WRITEBACK);
79787eaa
JM
1286 btrfs_free_path(path);
1287 return PTR_ERR(trans);
1288 }
1289
74b21075 1290 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1291
80ff3856
YZ
1292 cow_start = (u64)-1;
1293 cur_offset = start;
1294 while (1) {
33345d01 1295 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1296 cur_offset, 0);
d788a349 1297 if (ret < 0)
79787eaa 1298 goto error;
80ff3856
YZ
1299 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1300 leaf = path->nodes[0];
1301 btrfs_item_key_to_cpu(leaf, &found_key,
1302 path->slots[0] - 1);
33345d01 1303 if (found_key.objectid == ino &&
80ff3856
YZ
1304 found_key.type == BTRFS_EXTENT_DATA_KEY)
1305 path->slots[0]--;
1306 }
1307 check_prev = 0;
1308next_slot:
1309 leaf = path->nodes[0];
1310 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1311 ret = btrfs_next_leaf(root, path);
d788a349 1312 if (ret < 0)
79787eaa 1313 goto error;
80ff3856
YZ
1314 if (ret > 0)
1315 break;
1316 leaf = path->nodes[0];
1317 }
be20aa9d 1318
80ff3856
YZ
1319 nocow = 0;
1320 disk_bytenr = 0;
17d217fe 1321 num_bytes = 0;
80ff3856
YZ
1322 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1323
1d512cb7
FM
1324 if (found_key.objectid > ino)
1325 break;
1326 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1327 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1328 path->slots[0]++;
1329 goto next_slot;
1330 }
1331 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1332 found_key.offset > end)
1333 break;
1334
1335 if (found_key.offset > cur_offset) {
1336 extent_end = found_key.offset;
e9061e21 1337 extent_type = 0;
80ff3856
YZ
1338 goto out_check;
1339 }
1340
1341 fi = btrfs_item_ptr(leaf, path->slots[0],
1342 struct btrfs_file_extent_item);
1343 extent_type = btrfs_file_extent_type(leaf, fi);
1344
cc95bef6 1345 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1346 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1347 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1348 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1349 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1350 extent_end = found_key.offset +
1351 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1352 disk_num_bytes =
1353 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1354 if (extent_end <= start) {
1355 path->slots[0]++;
1356 goto next_slot;
1357 }
17d217fe
YZ
1358 if (disk_bytenr == 0)
1359 goto out_check;
80ff3856
YZ
1360 if (btrfs_file_extent_compression(leaf, fi) ||
1361 btrfs_file_extent_encryption(leaf, fi) ||
1362 btrfs_file_extent_other_encoding(leaf, fi))
1363 goto out_check;
d899e052
YZ
1364 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1365 goto out_check;
d2fb3437 1366 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1367 goto out_check;
33345d01 1368 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1369 found_key.offset -
1370 extent_offset, disk_bytenr))
17d217fe 1371 goto out_check;
5d4f98a2 1372 disk_bytenr += extent_offset;
17d217fe
YZ
1373 disk_bytenr += cur_offset - found_key.offset;
1374 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1375 /*
1376 * if there are pending snapshots for this root,
1377 * we fall into common COW way.
1378 */
1379 if (!nolock) {
9ea24bbe 1380 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1381 if (!err)
1382 goto out_check;
1383 }
17d217fe
YZ
1384 /*
1385 * force cow if csum exists in the range.
1386 * this ensure that csum for a given extent are
1387 * either valid or do not exist.
1388 */
1389 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1390 goto out_check;
f78c436c
FM
1391 if (!btrfs_inc_nocow_writers(root->fs_info,
1392 disk_bytenr))
1393 goto out_check;
80ff3856
YZ
1394 nocow = 1;
1395 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1396 extent_end = found_key.offset +
514ac8ad
CM
1397 btrfs_file_extent_inline_len(leaf,
1398 path->slots[0], fi);
80ff3856
YZ
1399 extent_end = ALIGN(extent_end, root->sectorsize);
1400 } else {
1401 BUG_ON(1);
1402 }
1403out_check:
1404 if (extent_end <= start) {
1405 path->slots[0]++;
e9894fd3 1406 if (!nolock && nocow)
9ea24bbe 1407 btrfs_end_write_no_snapshoting(root);
f78c436c
FM
1408 if (nocow)
1409 btrfs_dec_nocow_writers(root->fs_info,
1410 disk_bytenr);
80ff3856
YZ
1411 goto next_slot;
1412 }
1413 if (!nocow) {
1414 if (cow_start == (u64)-1)
1415 cow_start = cur_offset;
1416 cur_offset = extent_end;
1417 if (cur_offset > end)
1418 break;
1419 path->slots[0]++;
1420 goto next_slot;
7ea394f1
YZ
1421 }
1422
b3b4aa74 1423 btrfs_release_path(path);
80ff3856 1424 if (cow_start != (u64)-1) {
00361589
JB
1425 ret = cow_file_range(inode, locked_page,
1426 cow_start, found_key.offset - 1,
dda3245e
WX
1427 end, page_started, nr_written, 1,
1428 NULL);
e9894fd3
WS
1429 if (ret) {
1430 if (!nolock && nocow)
9ea24bbe 1431 btrfs_end_write_no_snapshoting(root);
f78c436c
FM
1432 if (nocow)
1433 btrfs_dec_nocow_writers(root->fs_info,
1434 disk_bytenr);
79787eaa 1435 goto error;
e9894fd3 1436 }
80ff3856 1437 cow_start = (u64)-1;
7ea394f1 1438 }
80ff3856 1439
d899e052
YZ
1440 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1441 struct extent_map *em;
1442 struct extent_map_tree *em_tree;
1443 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1444 em = alloc_extent_map();
79787eaa 1445 BUG_ON(!em); /* -ENOMEM */
d899e052 1446 em->start = cur_offset;
70c8a91c 1447 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1448 em->len = num_bytes;
1449 em->block_len = num_bytes;
1450 em->block_start = disk_bytenr;
b4939680 1451 em->orig_block_len = disk_num_bytes;
cc95bef6 1452 em->ram_bytes = ram_bytes;
d899e052 1453 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1454 em->mod_start = em->start;
1455 em->mod_len = em->len;
d899e052 1456 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1457 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1458 em->generation = -1;
d899e052 1459 while (1) {
890871be 1460 write_lock(&em_tree->lock);
09a2a8f9 1461 ret = add_extent_mapping(em_tree, em, 1);
890871be 1462 write_unlock(&em_tree->lock);
d899e052
YZ
1463 if (ret != -EEXIST) {
1464 free_extent_map(em);
1465 break;
1466 }
1467 btrfs_drop_extent_cache(inode, em->start,
1468 em->start + em->len - 1, 0);
1469 }
1470 type = BTRFS_ORDERED_PREALLOC;
1471 } else {
1472 type = BTRFS_ORDERED_NOCOW;
1473 }
80ff3856
YZ
1474
1475 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1476 num_bytes, num_bytes, type);
f78c436c
FM
1477 if (nocow)
1478 btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
79787eaa 1479 BUG_ON(ret); /* -ENOMEM */
771ed689 1480
efa56464
YZ
1481 if (root->root_key.objectid ==
1482 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1483 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1484 num_bytes);
e9894fd3
WS
1485 if (ret) {
1486 if (!nolock && nocow)
9ea24bbe 1487 btrfs_end_write_no_snapshoting(root);
79787eaa 1488 goto error;
e9894fd3 1489 }
efa56464
YZ
1490 }
1491
c2790a2e
JB
1492 extent_clear_unlock_delalloc(inode, cur_offset,
1493 cur_offset + num_bytes - 1,
1494 locked_page, EXTENT_LOCKED |
18513091
WX
1495 EXTENT_DELALLOC |
1496 EXTENT_CLEAR_DATA_RESV,
1497 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1498
e9894fd3 1499 if (!nolock && nocow)
9ea24bbe 1500 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1501 cur_offset = extent_end;
1502 if (cur_offset > end)
1503 break;
be20aa9d 1504 }
b3b4aa74 1505 btrfs_release_path(path);
80ff3856 1506
17ca04af 1507 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1508 cow_start = cur_offset;
17ca04af
JB
1509 cur_offset = end;
1510 }
1511
80ff3856 1512 if (cow_start != (u64)-1) {
dda3245e
WX
1513 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1514 page_started, nr_written, 1, NULL);
d788a349 1515 if (ret)
79787eaa 1516 goto error;
80ff3856
YZ
1517 }
1518
79787eaa 1519error:
a698d075 1520 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1521 if (!ret)
1522 ret = err;
1523
17ca04af 1524 if (ret && cur_offset < end)
c2790a2e
JB
1525 extent_clear_unlock_delalloc(inode, cur_offset, end,
1526 locked_page, EXTENT_LOCKED |
151a41bc
JB
1527 EXTENT_DELALLOC | EXTENT_DEFRAG |
1528 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1529 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1530 PAGE_SET_WRITEBACK |
1531 PAGE_END_WRITEBACK);
7ea394f1 1532 btrfs_free_path(path);
79787eaa 1533 return ret;
be20aa9d
CM
1534}
1535
47059d93
WS
1536static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1537{
1538
1539 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1540 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1541 return 0;
1542
1543 /*
1544 * @defrag_bytes is a hint value, no spinlock held here,
1545 * if is not zero, it means the file is defragging.
1546 * Force cow if given extent needs to be defragged.
1547 */
1548 if (BTRFS_I(inode)->defrag_bytes &&
1549 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1550 EXTENT_DEFRAG, 0, NULL))
1551 return 1;
1552
1553 return 0;
1554}
1555
d352ac68
CM
1556/*
1557 * extent_io.c call back to do delayed allocation processing
1558 */
c8b97818 1559static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1560 u64 start, u64 end, int *page_started,
1561 unsigned long *nr_written)
be20aa9d 1562{
be20aa9d 1563 int ret;
47059d93 1564 int force_cow = need_force_cow(inode, start, end);
a2135011 1565
47059d93 1566 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1567 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1568 page_started, 1, nr_written);
47059d93 1569 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1570 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1571 page_started, 0, nr_written);
7816030e 1572 } else if (!inode_need_compress(inode)) {
dda3245e
WX
1573 ret = cow_file_range(inode, locked_page, start, end, end,
1574 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1575 } else {
1576 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1577 &BTRFS_I(inode)->runtime_flags);
771ed689 1578 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1579 page_started, nr_written);
7ddf5a42 1580 }
b888db2b
CM
1581 return ret;
1582}
1583
1bf85046
JM
1584static void btrfs_split_extent_hook(struct inode *inode,
1585 struct extent_state *orig, u64 split)
9ed74f2d 1586{
dcab6a3b
JB
1587 u64 size;
1588
0ca1f7ce 1589 /* not delalloc, ignore it */
9ed74f2d 1590 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1591 return;
9ed74f2d 1592
dcab6a3b
JB
1593 size = orig->end - orig->start + 1;
1594 if (size > BTRFS_MAX_EXTENT_SIZE) {
1595 u64 num_extents;
1596 u64 new_size;
1597
1598 /*
ba117213
JB
1599 * See the explanation in btrfs_merge_extent_hook, the same
1600 * applies here, just in reverse.
dcab6a3b
JB
1601 */
1602 new_size = orig->end - split + 1;
ba117213 1603 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
dcab6a3b 1604 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1605 new_size = split - orig->start;
1606 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1607 BTRFS_MAX_EXTENT_SIZE);
1608 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1609 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1610 return;
1611 }
1612
9e0baf60
JB
1613 spin_lock(&BTRFS_I(inode)->lock);
1614 BTRFS_I(inode)->outstanding_extents++;
1615 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1616}
1617
1618/*
1619 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1620 * extents so we can keep track of new extents that are just merged onto old
1621 * extents, such as when we are doing sequential writes, so we can properly
1622 * account for the metadata space we'll need.
1623 */
1bf85046
JM
1624static void btrfs_merge_extent_hook(struct inode *inode,
1625 struct extent_state *new,
1626 struct extent_state *other)
9ed74f2d 1627{
dcab6a3b
JB
1628 u64 new_size, old_size;
1629 u64 num_extents;
1630
9ed74f2d
JB
1631 /* not delalloc, ignore it */
1632 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1633 return;
9ed74f2d 1634
8461a3de
JB
1635 if (new->start > other->start)
1636 new_size = new->end - other->start + 1;
1637 else
1638 new_size = other->end - new->start + 1;
dcab6a3b
JB
1639
1640 /* we're not bigger than the max, unreserve the space and go */
1641 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1642 spin_lock(&BTRFS_I(inode)->lock);
1643 BTRFS_I(inode)->outstanding_extents--;
1644 spin_unlock(&BTRFS_I(inode)->lock);
1645 return;
1646 }
1647
1648 /*
ba117213
JB
1649 * We have to add up either side to figure out how many extents were
1650 * accounted for before we merged into one big extent. If the number of
1651 * extents we accounted for is <= the amount we need for the new range
1652 * then we can return, otherwise drop. Think of it like this
1653 *
1654 * [ 4k][MAX_SIZE]
1655 *
1656 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1657 * need 2 outstanding extents, on one side we have 1 and the other side
1658 * we have 1 so they are == and we can return. But in this case
1659 *
1660 * [MAX_SIZE+4k][MAX_SIZE+4k]
1661 *
1662 * Each range on their own accounts for 2 extents, but merged together
1663 * they are only 3 extents worth of accounting, so we need to drop in
1664 * this case.
dcab6a3b 1665 */
ba117213 1666 old_size = other->end - other->start + 1;
dcab6a3b
JB
1667 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1668 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1669 old_size = new->end - new->start + 1;
1670 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1671 BTRFS_MAX_EXTENT_SIZE);
1672
dcab6a3b 1673 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
ba117213 1674 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1675 return;
1676
9e0baf60
JB
1677 spin_lock(&BTRFS_I(inode)->lock);
1678 BTRFS_I(inode)->outstanding_extents--;
1679 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1680}
1681
eb73c1b7
MX
1682static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1683 struct inode *inode)
1684{
1685 spin_lock(&root->delalloc_lock);
1686 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1687 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1688 &root->delalloc_inodes);
1689 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1690 &BTRFS_I(inode)->runtime_flags);
1691 root->nr_delalloc_inodes++;
1692 if (root->nr_delalloc_inodes == 1) {
1693 spin_lock(&root->fs_info->delalloc_root_lock);
1694 BUG_ON(!list_empty(&root->delalloc_root));
1695 list_add_tail(&root->delalloc_root,
1696 &root->fs_info->delalloc_roots);
1697 spin_unlock(&root->fs_info->delalloc_root_lock);
1698 }
1699 }
1700 spin_unlock(&root->delalloc_lock);
1701}
1702
1703static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1704 struct inode *inode)
1705{
1706 spin_lock(&root->delalloc_lock);
1707 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1708 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1709 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1710 &BTRFS_I(inode)->runtime_flags);
1711 root->nr_delalloc_inodes--;
1712 if (!root->nr_delalloc_inodes) {
1713 spin_lock(&root->fs_info->delalloc_root_lock);
1714 BUG_ON(list_empty(&root->delalloc_root));
1715 list_del_init(&root->delalloc_root);
1716 spin_unlock(&root->fs_info->delalloc_root_lock);
1717 }
1718 }
1719 spin_unlock(&root->delalloc_lock);
1720}
1721
d352ac68
CM
1722/*
1723 * extent_io.c set_bit_hook, used to track delayed allocation
1724 * bytes in this file, and to maintain the list of inodes that
1725 * have pending delalloc work to be done.
1726 */
1bf85046 1727static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1728 struct extent_state *state, unsigned *bits)
291d673e 1729{
9ed74f2d 1730
47059d93
WS
1731 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1732 WARN_ON(1);
75eff68e
CM
1733 /*
1734 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1735 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1736 * bit, which is only set or cleared with irqs on
1737 */
0ca1f7ce 1738 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1739 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1740 u64 len = state->end + 1 - state->start;
83eea1f1 1741 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1742
9e0baf60 1743 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1744 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1745 } else {
1746 spin_lock(&BTRFS_I(inode)->lock);
1747 BTRFS_I(inode)->outstanding_extents++;
1748 spin_unlock(&BTRFS_I(inode)->lock);
1749 }
287a0ab9 1750
6a3891c5 1751 /* For sanity tests */
f5ee5c9a 1752 if (btrfs_is_testing(root->fs_info))
6a3891c5
JB
1753 return;
1754
963d678b
MX
1755 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1756 root->fs_info->delalloc_batch);
df0af1a5 1757 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1758 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1759 if (*bits & EXTENT_DEFRAG)
1760 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1761 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1762 &BTRFS_I(inode)->runtime_flags))
1763 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1764 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1765 }
291d673e
CM
1766}
1767
d352ac68
CM
1768/*
1769 * extent_io.c clear_bit_hook, see set_bit_hook for why
1770 */
1bf85046 1771static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1772 struct extent_state *state,
9ee49a04 1773 unsigned *bits)
291d673e 1774{
47059d93 1775 u64 len = state->end + 1 - state->start;
dcab6a3b
JB
1776 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1777 BTRFS_MAX_EXTENT_SIZE);
47059d93
WS
1778
1779 spin_lock(&BTRFS_I(inode)->lock);
1780 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1781 BTRFS_I(inode)->defrag_bytes -= len;
1782 spin_unlock(&BTRFS_I(inode)->lock);
1783
75eff68e
CM
1784 /*
1785 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1786 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1787 * bit, which is only set or cleared with irqs on
1788 */
0ca1f7ce 1789 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1790 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1791 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1792
9e0baf60 1793 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1794 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1795 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1796 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 1797 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60
JB
1798 spin_unlock(&BTRFS_I(inode)->lock);
1799 }
0ca1f7ce 1800
b6d08f06
JB
1801 /*
1802 * We don't reserve metadata space for space cache inodes so we
1803 * don't need to call dellalloc_release_metadata if there is an
1804 * error.
1805 */
1806 if (*bits & EXTENT_DO_ACCOUNTING &&
1807 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1808 btrfs_delalloc_release_metadata(inode, len);
1809
6a3891c5 1810 /* For sanity tests. */
f5ee5c9a 1811 if (btrfs_is_testing(root->fs_info))
6a3891c5
JB
1812 return;
1813
0cb59c99 1814 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
18513091
WX
1815 && do_list && !(state->state & EXTENT_NORESERVE)
1816 && (*bits & (EXTENT_DO_ACCOUNTING |
1817 EXTENT_CLEAR_DATA_RESV)))
51773bec
QW
1818 btrfs_free_reserved_data_space_noquota(inode,
1819 state->start, len);
9ed74f2d 1820
963d678b
MX
1821 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1822 root->fs_info->delalloc_batch);
df0af1a5 1823 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1824 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1825 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1826 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1827 &BTRFS_I(inode)->runtime_flags))
1828 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1829 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1830 }
291d673e
CM
1831}
1832
d352ac68
CM
1833/*
1834 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1835 * we don't create bios that span stripes or chunks
6f034ece
LB
1836 *
1837 * return 1 if page cannot be merged to bio
1838 * return 0 if page can be merged to bio
1839 * return error otherwise
d352ac68 1840 */
64a16701 1841int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1842 size_t size, struct bio *bio,
1843 unsigned long bio_flags)
239b14b3
CM
1844{
1845 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1846 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1847 u64 length = 0;
1848 u64 map_length;
239b14b3
CM
1849 int ret;
1850
771ed689
CM
1851 if (bio_flags & EXTENT_BIO_COMPRESSED)
1852 return 0;
1853
4f024f37 1854 length = bio->bi_iter.bi_size;
239b14b3 1855 map_length = length;
64a16701 1856 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1857 &map_length, NULL, 0);
6f034ece
LB
1858 if (ret < 0)
1859 return ret;
d397712b 1860 if (map_length < length + size)
239b14b3 1861 return 1;
3444a972 1862 return 0;
239b14b3
CM
1863}
1864
d352ac68
CM
1865/*
1866 * in order to insert checksums into the metadata in large chunks,
1867 * we wait until bio submission time. All the pages in the bio are
1868 * checksummed and sums are attached onto the ordered extent record.
1869 *
1870 * At IO completion time the cums attached on the ordered extent record
1871 * are inserted into the btree
1872 */
d397712b
CM
1873static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1874 struct bio *bio, int mirror_num,
eaf25d93
CM
1875 unsigned long bio_flags,
1876 u64 bio_offset)
065631f6 1877{
065631f6 1878 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1879 int ret = 0;
e015640f 1880
d20f7043 1881 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1882 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1883 return 0;
1884}
e015640f 1885
4a69a410
CM
1886/*
1887 * in order to insert checksums into the metadata in large chunks,
1888 * we wait until bio submission time. All the pages in the bio are
1889 * checksummed and sums are attached onto the ordered extent record.
1890 *
1891 * At IO completion time the cums attached on the ordered extent record
1892 * are inserted into the btree
1893 */
b2950863 1894static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1895 int mirror_num, unsigned long bio_flags,
1896 u64 bio_offset)
4a69a410
CM
1897{
1898 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1899 int ret;
1900
1901 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
4246a0b6
CH
1902 if (ret) {
1903 bio->bi_error = ret;
1904 bio_endio(bio);
1905 }
61891923 1906 return ret;
44b8bd7e
CM
1907}
1908
d352ac68 1909/*
cad321ad
CM
1910 * extent_io.c submission hook. This does the right thing for csum calculation
1911 * on write, or reading the csums from the tree before a read
d352ac68 1912 */
b2950863 1913static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1914 int mirror_num, unsigned long bio_flags,
1915 u64 bio_offset)
44b8bd7e
CM
1916{
1917 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1918 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1919 int ret = 0;
19b9bdb0 1920 int skip_sum;
b812ce28 1921 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1922
6cbff00f 1923 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1924
83eea1f1 1925 if (btrfs_is_free_space_inode(inode))
0d51e28a 1926 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1927
7b6d91da 1928 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1929 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1930 if (ret)
61891923 1931 goto out;
5fd02043 1932
d20f7043 1933 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1934 ret = btrfs_submit_compressed_read(inode, bio,
1935 mirror_num,
1936 bio_flags);
1937 goto out;
c2db1073
TI
1938 } else if (!skip_sum) {
1939 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1940 if (ret)
61891923 1941 goto out;
c2db1073 1942 }
4d1b5fb4 1943 goto mapit;
b812ce28 1944 } else if (async && !skip_sum) {
17d217fe
YZ
1945 /* csum items have already been cloned */
1946 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1947 goto mapit;
19b9bdb0 1948 /* we're doing a write, do the async checksumming */
61891923 1949 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1950 inode, rw, bio, mirror_num,
eaf25d93
CM
1951 bio_flags, bio_offset,
1952 __btrfs_submit_bio_start,
4a69a410 1953 __btrfs_submit_bio_done);
61891923 1954 goto out;
b812ce28
JB
1955 } else if (!skip_sum) {
1956 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1957 if (ret)
1958 goto out;
19b9bdb0
CM
1959 }
1960
0b86a832 1961mapit:
61891923
SB
1962 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1963
1964out:
4246a0b6
CH
1965 if (ret < 0) {
1966 bio->bi_error = ret;
1967 bio_endio(bio);
1968 }
61891923 1969 return ret;
065631f6 1970}
6885f308 1971
d352ac68
CM
1972/*
1973 * given a list of ordered sums record them in the inode. This happens
1974 * at IO completion time based on sums calculated at bio submission time.
1975 */
ba1da2f4 1976static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1977 struct inode *inode, u64 file_offset,
1978 struct list_head *list)
1979{
e6dcd2dc
CM
1980 struct btrfs_ordered_sum *sum;
1981
c6e30871 1982 list_for_each_entry(sum, list, list) {
39847c4d 1983 trans->adding_csums = 1;
d20f7043
CM
1984 btrfs_csum_file_blocks(trans,
1985 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1986 trans->adding_csums = 0;
e6dcd2dc
CM
1987 }
1988 return 0;
1989}
1990
2ac55d41
JB
1991int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1992 struct extent_state **cached_state)
ea8c2819 1993{
09cbfeaf 1994 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 1995 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
7cd8c752 1996 cached_state);
ea8c2819
CM
1997}
1998
d352ac68 1999/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2000struct btrfs_writepage_fixup {
2001 struct page *page;
2002 struct btrfs_work work;
2003};
2004
b2950863 2005static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2006{
2007 struct btrfs_writepage_fixup *fixup;
2008 struct btrfs_ordered_extent *ordered;
2ac55d41 2009 struct extent_state *cached_state = NULL;
247e743c
CM
2010 struct page *page;
2011 struct inode *inode;
2012 u64 page_start;
2013 u64 page_end;
87826df0 2014 int ret;
247e743c
CM
2015
2016 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2017 page = fixup->page;
4a096752 2018again:
247e743c
CM
2019 lock_page(page);
2020 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2021 ClearPageChecked(page);
2022 goto out_page;
2023 }
2024
2025 inode = page->mapping->host;
2026 page_start = page_offset(page);
09cbfeaf 2027 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2028
ff13db41 2029 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2030 &cached_state);
4a096752
CM
2031
2032 /* already ordered? We're done */
8b62b72b 2033 if (PagePrivate2(page))
247e743c 2034 goto out;
4a096752 2035
dbfdb6d1 2036 ordered = btrfs_lookup_ordered_range(inode, page_start,
09cbfeaf 2037 PAGE_SIZE);
4a096752 2038 if (ordered) {
2ac55d41
JB
2039 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2040 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2041 unlock_page(page);
2042 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2043 btrfs_put_ordered_extent(ordered);
4a096752
CM
2044 goto again;
2045 }
247e743c 2046
7cf5b976 2047 ret = btrfs_delalloc_reserve_space(inode, page_start,
09cbfeaf 2048 PAGE_SIZE);
87826df0
JM
2049 if (ret) {
2050 mapping_set_error(page->mapping, ret);
2051 end_extent_writepage(page, ret, page_start, page_end);
2052 ClearPageChecked(page);
2053 goto out;
2054 }
2055
2ac55d41 2056 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 2057 ClearPageChecked(page);
87826df0 2058 set_page_dirty(page);
247e743c 2059out:
2ac55d41
JB
2060 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2061 &cached_state, GFP_NOFS);
247e743c
CM
2062out_page:
2063 unlock_page(page);
09cbfeaf 2064 put_page(page);
b897abec 2065 kfree(fixup);
247e743c
CM
2066}
2067
2068/*
2069 * There are a few paths in the higher layers of the kernel that directly
2070 * set the page dirty bit without asking the filesystem if it is a
2071 * good idea. This causes problems because we want to make sure COW
2072 * properly happens and the data=ordered rules are followed.
2073 *
c8b97818 2074 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2075 * hasn't been properly setup for IO. We kick off an async process
2076 * to fix it up. The async helper will wait for ordered extents, set
2077 * the delalloc bit and make it safe to write the page.
2078 */
b2950863 2079static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2080{
2081 struct inode *inode = page->mapping->host;
2082 struct btrfs_writepage_fixup *fixup;
2083 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 2084
8b62b72b
CM
2085 /* this page is properly in the ordered list */
2086 if (TestClearPagePrivate2(page))
247e743c
CM
2087 return 0;
2088
2089 if (PageChecked(page))
2090 return -EAGAIN;
2091
2092 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2093 if (!fixup)
2094 return -EAGAIN;
f421950f 2095
247e743c 2096 SetPageChecked(page);
09cbfeaf 2097 get_page(page);
9e0af237
LB
2098 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2099 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2100 fixup->page = page;
dc6e3209 2101 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 2102 return -EBUSY;
247e743c
CM
2103}
2104
d899e052
YZ
2105static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2106 struct inode *inode, u64 file_pos,
2107 u64 disk_bytenr, u64 disk_num_bytes,
2108 u64 num_bytes, u64 ram_bytes,
2109 u8 compression, u8 encryption,
2110 u16 other_encoding, int extent_type)
2111{
2112 struct btrfs_root *root = BTRFS_I(inode)->root;
2113 struct btrfs_file_extent_item *fi;
2114 struct btrfs_path *path;
2115 struct extent_buffer *leaf;
2116 struct btrfs_key ins;
1acae57b 2117 int extent_inserted = 0;
d899e052
YZ
2118 int ret;
2119
2120 path = btrfs_alloc_path();
d8926bb3
MF
2121 if (!path)
2122 return -ENOMEM;
d899e052 2123
a1ed835e
CM
2124 /*
2125 * we may be replacing one extent in the tree with another.
2126 * The new extent is pinned in the extent map, and we don't want
2127 * to drop it from the cache until it is completely in the btree.
2128 *
2129 * So, tell btrfs_drop_extents to leave this extent in the cache.
2130 * the caller is expected to unpin it and allow it to be merged
2131 * with the others.
2132 */
1acae57b
FDBM
2133 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2134 file_pos + num_bytes, NULL, 0,
2135 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2136 if (ret)
2137 goto out;
d899e052 2138
1acae57b
FDBM
2139 if (!extent_inserted) {
2140 ins.objectid = btrfs_ino(inode);
2141 ins.offset = file_pos;
2142 ins.type = BTRFS_EXTENT_DATA_KEY;
2143
2144 path->leave_spinning = 1;
2145 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2146 sizeof(*fi));
2147 if (ret)
2148 goto out;
2149 }
d899e052
YZ
2150 leaf = path->nodes[0];
2151 fi = btrfs_item_ptr(leaf, path->slots[0],
2152 struct btrfs_file_extent_item);
2153 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2154 btrfs_set_file_extent_type(leaf, fi, extent_type);
2155 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2156 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2157 btrfs_set_file_extent_offset(leaf, fi, 0);
2158 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2159 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2160 btrfs_set_file_extent_compression(leaf, fi, compression);
2161 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2162 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2163
d899e052 2164 btrfs_mark_buffer_dirty(leaf);
ce195332 2165 btrfs_release_path(path);
d899e052
YZ
2166
2167 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2168
2169 ins.objectid = disk_bytenr;
2170 ins.offset = disk_num_bytes;
2171 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2172 ret = btrfs_alloc_reserved_file_extent(trans, root,
2173 root->root_key.objectid,
5846a3c2
QW
2174 btrfs_ino(inode), file_pos,
2175 ram_bytes, &ins);
297d750b 2176 /*
5846a3c2
QW
2177 * Release the reserved range from inode dirty range map, as it is
2178 * already moved into delayed_ref_head
297d750b
QW
2179 */
2180 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
79787eaa 2181out:
d899e052 2182 btrfs_free_path(path);
b9473439 2183
79787eaa 2184 return ret;
d899e052
YZ
2185}
2186
38c227d8
LB
2187/* snapshot-aware defrag */
2188struct sa_defrag_extent_backref {
2189 struct rb_node node;
2190 struct old_sa_defrag_extent *old;
2191 u64 root_id;
2192 u64 inum;
2193 u64 file_pos;
2194 u64 extent_offset;
2195 u64 num_bytes;
2196 u64 generation;
2197};
2198
2199struct old_sa_defrag_extent {
2200 struct list_head list;
2201 struct new_sa_defrag_extent *new;
2202
2203 u64 extent_offset;
2204 u64 bytenr;
2205 u64 offset;
2206 u64 len;
2207 int count;
2208};
2209
2210struct new_sa_defrag_extent {
2211 struct rb_root root;
2212 struct list_head head;
2213 struct btrfs_path *path;
2214 struct inode *inode;
2215 u64 file_pos;
2216 u64 len;
2217 u64 bytenr;
2218 u64 disk_len;
2219 u8 compress_type;
2220};
2221
2222static int backref_comp(struct sa_defrag_extent_backref *b1,
2223 struct sa_defrag_extent_backref *b2)
2224{
2225 if (b1->root_id < b2->root_id)
2226 return -1;
2227 else if (b1->root_id > b2->root_id)
2228 return 1;
2229
2230 if (b1->inum < b2->inum)
2231 return -1;
2232 else if (b1->inum > b2->inum)
2233 return 1;
2234
2235 if (b1->file_pos < b2->file_pos)
2236 return -1;
2237 else if (b1->file_pos > b2->file_pos)
2238 return 1;
2239
2240 /*
2241 * [------------------------------] ===> (a range of space)
2242 * |<--->| |<---->| =============> (fs/file tree A)
2243 * |<---------------------------->| ===> (fs/file tree B)
2244 *
2245 * A range of space can refer to two file extents in one tree while
2246 * refer to only one file extent in another tree.
2247 *
2248 * So we may process a disk offset more than one time(two extents in A)
2249 * and locate at the same extent(one extent in B), then insert two same
2250 * backrefs(both refer to the extent in B).
2251 */
2252 return 0;
2253}
2254
2255static void backref_insert(struct rb_root *root,
2256 struct sa_defrag_extent_backref *backref)
2257{
2258 struct rb_node **p = &root->rb_node;
2259 struct rb_node *parent = NULL;
2260 struct sa_defrag_extent_backref *entry;
2261 int ret;
2262
2263 while (*p) {
2264 parent = *p;
2265 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2266
2267 ret = backref_comp(backref, entry);
2268 if (ret < 0)
2269 p = &(*p)->rb_left;
2270 else
2271 p = &(*p)->rb_right;
2272 }
2273
2274 rb_link_node(&backref->node, parent, p);
2275 rb_insert_color(&backref->node, root);
2276}
2277
2278/*
2279 * Note the backref might has changed, and in this case we just return 0.
2280 */
2281static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2282 void *ctx)
2283{
2284 struct btrfs_file_extent_item *extent;
2285 struct btrfs_fs_info *fs_info;
2286 struct old_sa_defrag_extent *old = ctx;
2287 struct new_sa_defrag_extent *new = old->new;
2288 struct btrfs_path *path = new->path;
2289 struct btrfs_key key;
2290 struct btrfs_root *root;
2291 struct sa_defrag_extent_backref *backref;
2292 struct extent_buffer *leaf;
2293 struct inode *inode = new->inode;
2294 int slot;
2295 int ret;
2296 u64 extent_offset;
2297 u64 num_bytes;
2298
2299 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2300 inum == btrfs_ino(inode))
2301 return 0;
2302
2303 key.objectid = root_id;
2304 key.type = BTRFS_ROOT_ITEM_KEY;
2305 key.offset = (u64)-1;
2306
2307 fs_info = BTRFS_I(inode)->root->fs_info;
2308 root = btrfs_read_fs_root_no_name(fs_info, &key);
2309 if (IS_ERR(root)) {
2310 if (PTR_ERR(root) == -ENOENT)
2311 return 0;
2312 WARN_ON(1);
2313 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2314 inum, offset, root_id);
2315 return PTR_ERR(root);
2316 }
2317
2318 key.objectid = inum;
2319 key.type = BTRFS_EXTENT_DATA_KEY;
2320 if (offset > (u64)-1 << 32)
2321 key.offset = 0;
2322 else
2323 key.offset = offset;
2324
2325 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2326 if (WARN_ON(ret < 0))
38c227d8 2327 return ret;
50f1319c 2328 ret = 0;
38c227d8
LB
2329
2330 while (1) {
2331 cond_resched();
2332
2333 leaf = path->nodes[0];
2334 slot = path->slots[0];
2335
2336 if (slot >= btrfs_header_nritems(leaf)) {
2337 ret = btrfs_next_leaf(root, path);
2338 if (ret < 0) {
2339 goto out;
2340 } else if (ret > 0) {
2341 ret = 0;
2342 goto out;
2343 }
2344 continue;
2345 }
2346
2347 path->slots[0]++;
2348
2349 btrfs_item_key_to_cpu(leaf, &key, slot);
2350
2351 if (key.objectid > inum)
2352 goto out;
2353
2354 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2355 continue;
2356
2357 extent = btrfs_item_ptr(leaf, slot,
2358 struct btrfs_file_extent_item);
2359
2360 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2361 continue;
2362
e68afa49
LB
2363 /*
2364 * 'offset' refers to the exact key.offset,
2365 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2366 * (key.offset - extent_offset).
2367 */
2368 if (key.offset != offset)
38c227d8
LB
2369 continue;
2370
e68afa49 2371 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2372 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2373
38c227d8
LB
2374 if (extent_offset >= old->extent_offset + old->offset +
2375 old->len || extent_offset + num_bytes <=
2376 old->extent_offset + old->offset)
2377 continue;
38c227d8
LB
2378 break;
2379 }
2380
2381 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2382 if (!backref) {
2383 ret = -ENOENT;
2384 goto out;
2385 }
2386
2387 backref->root_id = root_id;
2388 backref->inum = inum;
e68afa49 2389 backref->file_pos = offset;
38c227d8
LB
2390 backref->num_bytes = num_bytes;
2391 backref->extent_offset = extent_offset;
2392 backref->generation = btrfs_file_extent_generation(leaf, extent);
2393 backref->old = old;
2394 backref_insert(&new->root, backref);
2395 old->count++;
2396out:
2397 btrfs_release_path(path);
2398 WARN_ON(ret);
2399 return ret;
2400}
2401
2402static noinline bool record_extent_backrefs(struct btrfs_path *path,
2403 struct new_sa_defrag_extent *new)
2404{
2405 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2406 struct old_sa_defrag_extent *old, *tmp;
2407 int ret;
2408
2409 new->path = path;
2410
2411 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2412 ret = iterate_inodes_from_logical(old->bytenr +
2413 old->extent_offset, fs_info,
38c227d8
LB
2414 path, record_one_backref,
2415 old);
4724b106
JB
2416 if (ret < 0 && ret != -ENOENT)
2417 return false;
38c227d8
LB
2418
2419 /* no backref to be processed for this extent */
2420 if (!old->count) {
2421 list_del(&old->list);
2422 kfree(old);
2423 }
2424 }
2425
2426 if (list_empty(&new->head))
2427 return false;
2428
2429 return true;
2430}
2431
2432static int relink_is_mergable(struct extent_buffer *leaf,
2433 struct btrfs_file_extent_item *fi,
116e0024 2434 struct new_sa_defrag_extent *new)
38c227d8 2435{
116e0024 2436 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2437 return 0;
2438
2439 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2440 return 0;
2441
116e0024
LB
2442 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2443 return 0;
2444
2445 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2446 btrfs_file_extent_other_encoding(leaf, fi))
2447 return 0;
2448
2449 return 1;
2450}
2451
2452/*
2453 * Note the backref might has changed, and in this case we just return 0.
2454 */
2455static noinline int relink_extent_backref(struct btrfs_path *path,
2456 struct sa_defrag_extent_backref *prev,
2457 struct sa_defrag_extent_backref *backref)
2458{
2459 struct btrfs_file_extent_item *extent;
2460 struct btrfs_file_extent_item *item;
2461 struct btrfs_ordered_extent *ordered;
2462 struct btrfs_trans_handle *trans;
2463 struct btrfs_fs_info *fs_info;
2464 struct btrfs_root *root;
2465 struct btrfs_key key;
2466 struct extent_buffer *leaf;
2467 struct old_sa_defrag_extent *old = backref->old;
2468 struct new_sa_defrag_extent *new = old->new;
2469 struct inode *src_inode = new->inode;
2470 struct inode *inode;
2471 struct extent_state *cached = NULL;
2472 int ret = 0;
2473 u64 start;
2474 u64 len;
2475 u64 lock_start;
2476 u64 lock_end;
2477 bool merge = false;
2478 int index;
2479
2480 if (prev && prev->root_id == backref->root_id &&
2481 prev->inum == backref->inum &&
2482 prev->file_pos + prev->num_bytes == backref->file_pos)
2483 merge = true;
2484
2485 /* step 1: get root */
2486 key.objectid = backref->root_id;
2487 key.type = BTRFS_ROOT_ITEM_KEY;
2488 key.offset = (u64)-1;
2489
2490 fs_info = BTRFS_I(src_inode)->root->fs_info;
2491 index = srcu_read_lock(&fs_info->subvol_srcu);
2492
2493 root = btrfs_read_fs_root_no_name(fs_info, &key);
2494 if (IS_ERR(root)) {
2495 srcu_read_unlock(&fs_info->subvol_srcu, index);
2496 if (PTR_ERR(root) == -ENOENT)
2497 return 0;
2498 return PTR_ERR(root);
2499 }
38c227d8 2500
bcbba5e6
WS
2501 if (btrfs_root_readonly(root)) {
2502 srcu_read_unlock(&fs_info->subvol_srcu, index);
2503 return 0;
2504 }
2505
38c227d8
LB
2506 /* step 2: get inode */
2507 key.objectid = backref->inum;
2508 key.type = BTRFS_INODE_ITEM_KEY;
2509 key.offset = 0;
2510
2511 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2512 if (IS_ERR(inode)) {
2513 srcu_read_unlock(&fs_info->subvol_srcu, index);
2514 return 0;
2515 }
2516
2517 srcu_read_unlock(&fs_info->subvol_srcu, index);
2518
2519 /* step 3: relink backref */
2520 lock_start = backref->file_pos;
2521 lock_end = backref->file_pos + backref->num_bytes - 1;
2522 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2523 &cached);
38c227d8
LB
2524
2525 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2526 if (ordered) {
2527 btrfs_put_ordered_extent(ordered);
2528 goto out_unlock;
2529 }
2530
2531 trans = btrfs_join_transaction(root);
2532 if (IS_ERR(trans)) {
2533 ret = PTR_ERR(trans);
2534 goto out_unlock;
2535 }
2536
2537 key.objectid = backref->inum;
2538 key.type = BTRFS_EXTENT_DATA_KEY;
2539 key.offset = backref->file_pos;
2540
2541 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2542 if (ret < 0) {
2543 goto out_free_path;
2544 } else if (ret > 0) {
2545 ret = 0;
2546 goto out_free_path;
2547 }
2548
2549 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2550 struct btrfs_file_extent_item);
2551
2552 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2553 backref->generation)
2554 goto out_free_path;
2555
2556 btrfs_release_path(path);
2557
2558 start = backref->file_pos;
2559 if (backref->extent_offset < old->extent_offset + old->offset)
2560 start += old->extent_offset + old->offset -
2561 backref->extent_offset;
2562
2563 len = min(backref->extent_offset + backref->num_bytes,
2564 old->extent_offset + old->offset + old->len);
2565 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2566
2567 ret = btrfs_drop_extents(trans, root, inode, start,
2568 start + len, 1);
2569 if (ret)
2570 goto out_free_path;
2571again:
2572 key.objectid = btrfs_ino(inode);
2573 key.type = BTRFS_EXTENT_DATA_KEY;
2574 key.offset = start;
2575
a09a0a70 2576 path->leave_spinning = 1;
38c227d8
LB
2577 if (merge) {
2578 struct btrfs_file_extent_item *fi;
2579 u64 extent_len;
2580 struct btrfs_key found_key;
2581
3c9665df 2582 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2583 if (ret < 0)
2584 goto out_free_path;
2585
2586 path->slots[0]--;
2587 leaf = path->nodes[0];
2588 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2589
2590 fi = btrfs_item_ptr(leaf, path->slots[0],
2591 struct btrfs_file_extent_item);
2592 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2593
116e0024
LB
2594 if (extent_len + found_key.offset == start &&
2595 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2596 btrfs_set_file_extent_num_bytes(leaf, fi,
2597 extent_len + len);
2598 btrfs_mark_buffer_dirty(leaf);
2599 inode_add_bytes(inode, len);
2600
2601 ret = 1;
2602 goto out_free_path;
2603 } else {
2604 merge = false;
2605 btrfs_release_path(path);
2606 goto again;
2607 }
2608 }
2609
2610 ret = btrfs_insert_empty_item(trans, root, path, &key,
2611 sizeof(*extent));
2612 if (ret) {
66642832 2613 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2614 goto out_free_path;
2615 }
2616
2617 leaf = path->nodes[0];
2618 item = btrfs_item_ptr(leaf, path->slots[0],
2619 struct btrfs_file_extent_item);
2620 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2621 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2622 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2623 btrfs_set_file_extent_num_bytes(leaf, item, len);
2624 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2625 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2626 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2627 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2628 btrfs_set_file_extent_encryption(leaf, item, 0);
2629 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2630
2631 btrfs_mark_buffer_dirty(leaf);
2632 inode_add_bytes(inode, len);
a09a0a70 2633 btrfs_release_path(path);
38c227d8
LB
2634
2635 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2636 new->disk_len, 0,
2637 backref->root_id, backref->inum,
b06c4bf5 2638 new->file_pos); /* start - extent_offset */
38c227d8 2639 if (ret) {
66642832 2640 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2641 goto out_free_path;
2642 }
2643
2644 ret = 1;
2645out_free_path:
2646 btrfs_release_path(path);
a09a0a70 2647 path->leave_spinning = 0;
38c227d8
LB
2648 btrfs_end_transaction(trans, root);
2649out_unlock:
2650 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2651 &cached, GFP_NOFS);
2652 iput(inode);
2653 return ret;
2654}
2655
6f519564
LB
2656static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2657{
2658 struct old_sa_defrag_extent *old, *tmp;
2659
2660 if (!new)
2661 return;
2662
2663 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2664 kfree(old);
2665 }
2666 kfree(new);
2667}
2668
38c227d8
LB
2669static void relink_file_extents(struct new_sa_defrag_extent *new)
2670{
2671 struct btrfs_path *path;
38c227d8
LB
2672 struct sa_defrag_extent_backref *backref;
2673 struct sa_defrag_extent_backref *prev = NULL;
2674 struct inode *inode;
2675 struct btrfs_root *root;
2676 struct rb_node *node;
2677 int ret;
2678
2679 inode = new->inode;
2680 root = BTRFS_I(inode)->root;
2681
2682 path = btrfs_alloc_path();
2683 if (!path)
2684 return;
2685
2686 if (!record_extent_backrefs(path, new)) {
2687 btrfs_free_path(path);
2688 goto out;
2689 }
2690 btrfs_release_path(path);
2691
2692 while (1) {
2693 node = rb_first(&new->root);
2694 if (!node)
2695 break;
2696 rb_erase(node, &new->root);
2697
2698 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2699
2700 ret = relink_extent_backref(path, prev, backref);
2701 WARN_ON(ret < 0);
2702
2703 kfree(prev);
2704
2705 if (ret == 1)
2706 prev = backref;
2707 else
2708 prev = NULL;
2709 cond_resched();
2710 }
2711 kfree(prev);
2712
2713 btrfs_free_path(path);
38c227d8 2714out:
6f519564
LB
2715 free_sa_defrag_extent(new);
2716
38c227d8
LB
2717 atomic_dec(&root->fs_info->defrag_running);
2718 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2719}
2720
2721static struct new_sa_defrag_extent *
2722record_old_file_extents(struct inode *inode,
2723 struct btrfs_ordered_extent *ordered)
2724{
2725 struct btrfs_root *root = BTRFS_I(inode)->root;
2726 struct btrfs_path *path;
2727 struct btrfs_key key;
6f519564 2728 struct old_sa_defrag_extent *old;
38c227d8
LB
2729 struct new_sa_defrag_extent *new;
2730 int ret;
2731
2732 new = kmalloc(sizeof(*new), GFP_NOFS);
2733 if (!new)
2734 return NULL;
2735
2736 new->inode = inode;
2737 new->file_pos = ordered->file_offset;
2738 new->len = ordered->len;
2739 new->bytenr = ordered->start;
2740 new->disk_len = ordered->disk_len;
2741 new->compress_type = ordered->compress_type;
2742 new->root = RB_ROOT;
2743 INIT_LIST_HEAD(&new->head);
2744
2745 path = btrfs_alloc_path();
2746 if (!path)
2747 goto out_kfree;
2748
2749 key.objectid = btrfs_ino(inode);
2750 key.type = BTRFS_EXTENT_DATA_KEY;
2751 key.offset = new->file_pos;
2752
2753 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2754 if (ret < 0)
2755 goto out_free_path;
2756 if (ret > 0 && path->slots[0] > 0)
2757 path->slots[0]--;
2758
2759 /* find out all the old extents for the file range */
2760 while (1) {
2761 struct btrfs_file_extent_item *extent;
2762 struct extent_buffer *l;
2763 int slot;
2764 u64 num_bytes;
2765 u64 offset;
2766 u64 end;
2767 u64 disk_bytenr;
2768 u64 extent_offset;
2769
2770 l = path->nodes[0];
2771 slot = path->slots[0];
2772
2773 if (slot >= btrfs_header_nritems(l)) {
2774 ret = btrfs_next_leaf(root, path);
2775 if (ret < 0)
6f519564 2776 goto out_free_path;
38c227d8
LB
2777 else if (ret > 0)
2778 break;
2779 continue;
2780 }
2781
2782 btrfs_item_key_to_cpu(l, &key, slot);
2783
2784 if (key.objectid != btrfs_ino(inode))
2785 break;
2786 if (key.type != BTRFS_EXTENT_DATA_KEY)
2787 break;
2788 if (key.offset >= new->file_pos + new->len)
2789 break;
2790
2791 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2792
2793 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2794 if (key.offset + num_bytes < new->file_pos)
2795 goto next;
2796
2797 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2798 if (!disk_bytenr)
2799 goto next;
2800
2801 extent_offset = btrfs_file_extent_offset(l, extent);
2802
2803 old = kmalloc(sizeof(*old), GFP_NOFS);
2804 if (!old)
6f519564 2805 goto out_free_path;
38c227d8
LB
2806
2807 offset = max(new->file_pos, key.offset);
2808 end = min(new->file_pos + new->len, key.offset + num_bytes);
2809
2810 old->bytenr = disk_bytenr;
2811 old->extent_offset = extent_offset;
2812 old->offset = offset - key.offset;
2813 old->len = end - offset;
2814 old->new = new;
2815 old->count = 0;
2816 list_add_tail(&old->list, &new->head);
2817next:
2818 path->slots[0]++;
2819 cond_resched();
2820 }
2821
2822 btrfs_free_path(path);
2823 atomic_inc(&root->fs_info->defrag_running);
2824
2825 return new;
2826
38c227d8
LB
2827out_free_path:
2828 btrfs_free_path(path);
2829out_kfree:
6f519564 2830 free_sa_defrag_extent(new);
38c227d8
LB
2831 return NULL;
2832}
2833
e570fd27
MX
2834static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2835 u64 start, u64 len)
2836{
2837 struct btrfs_block_group_cache *cache;
2838
2839 cache = btrfs_lookup_block_group(root->fs_info, start);
2840 ASSERT(cache);
2841
2842 spin_lock(&cache->lock);
2843 cache->delalloc_bytes -= len;
2844 spin_unlock(&cache->lock);
2845
2846 btrfs_put_block_group(cache);
2847}
2848
d352ac68
CM
2849/* as ordered data IO finishes, this gets called so we can finish
2850 * an ordered extent if the range of bytes in the file it covers are
2851 * fully written.
2852 */
5fd02043 2853static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2854{
5fd02043 2855 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2856 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2857 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2858 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2859 struct extent_state *cached_state = NULL;
38c227d8 2860 struct new_sa_defrag_extent *new = NULL;
261507a0 2861 int compress_type = 0;
77cef2ec
JB
2862 int ret = 0;
2863 u64 logical_len = ordered_extent->len;
82d5902d 2864 bool nolock;
77cef2ec 2865 bool truncated = false;
e6dcd2dc 2866
83eea1f1 2867 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2868
5fd02043
JB
2869 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2870 ret = -EIO;
2871 goto out;
2872 }
2873
f612496b
MX
2874 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2875 ordered_extent->file_offset +
2876 ordered_extent->len - 1);
2877
77cef2ec
JB
2878 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2879 truncated = true;
2880 logical_len = ordered_extent->truncated_len;
2881 /* Truncated the entire extent, don't bother adding */
2882 if (!logical_len)
2883 goto out;
2884 }
2885
c2167754 2886 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2887 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2888
2889 /*
2890 * For mwrite(mmap + memset to write) case, we still reserve
2891 * space for NOCOW range.
2892 * As NOCOW won't cause a new delayed ref, just free the space
2893 */
2894 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2895 ordered_extent->len);
6c760c07
JB
2896 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2897 if (nolock)
2898 trans = btrfs_join_transaction_nolock(root);
2899 else
2900 trans = btrfs_join_transaction(root);
2901 if (IS_ERR(trans)) {
2902 ret = PTR_ERR(trans);
2903 trans = NULL;
2904 goto out;
c2167754 2905 }
6c760c07
JB
2906 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2907 ret = btrfs_update_inode_fallback(trans, root, inode);
2908 if (ret) /* -ENOMEM or corruption */
66642832 2909 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2910 goto out;
2911 }
e6dcd2dc 2912
2ac55d41
JB
2913 lock_extent_bits(io_tree, ordered_extent->file_offset,
2914 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2915 &cached_state);
e6dcd2dc 2916
38c227d8
LB
2917 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2918 ordered_extent->file_offset + ordered_extent->len - 1,
2919 EXTENT_DEFRAG, 1, cached_state);
2920 if (ret) {
2921 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2922 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2923 /* the inode is shared */
2924 new = record_old_file_extents(inode, ordered_extent);
2925
2926 clear_extent_bit(io_tree, ordered_extent->file_offset,
2927 ordered_extent->file_offset + ordered_extent->len - 1,
2928 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2929 }
2930
0cb59c99 2931 if (nolock)
7a7eaa40 2932 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2933 else
7a7eaa40 2934 trans = btrfs_join_transaction(root);
79787eaa
JM
2935 if (IS_ERR(trans)) {
2936 ret = PTR_ERR(trans);
2937 trans = NULL;
2938 goto out_unlock;
2939 }
a79b7d4b 2940
0ca1f7ce 2941 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2942
c8b97818 2943 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2944 compress_type = ordered_extent->compress_type;
d899e052 2945 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2946 BUG_ON(compress_type);
920bbbfb 2947 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2948 ordered_extent->file_offset,
2949 ordered_extent->file_offset +
77cef2ec 2950 logical_len);
d899e052 2951 } else {
0af3d00b 2952 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2953 ret = insert_reserved_file_extent(trans, inode,
2954 ordered_extent->file_offset,
2955 ordered_extent->start,
2956 ordered_extent->disk_len,
77cef2ec 2957 logical_len, logical_len,
261507a0 2958 compress_type, 0, 0,
d899e052 2959 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2960 if (!ret)
2961 btrfs_release_delalloc_bytes(root,
2962 ordered_extent->start,
2963 ordered_extent->disk_len);
d899e052 2964 }
5dc562c5
JB
2965 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2966 ordered_extent->file_offset, ordered_extent->len,
2967 trans->transid);
79787eaa 2968 if (ret < 0) {
66642832 2969 btrfs_abort_transaction(trans, ret);
5fd02043 2970 goto out_unlock;
79787eaa 2971 }
2ac55d41 2972
e6dcd2dc
CM
2973 add_pending_csums(trans, inode, ordered_extent->file_offset,
2974 &ordered_extent->list);
2975
6c760c07
JB
2976 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2977 ret = btrfs_update_inode_fallback(trans, root, inode);
2978 if (ret) { /* -ENOMEM or corruption */
66642832 2979 btrfs_abort_transaction(trans, ret);
6c760c07 2980 goto out_unlock;
1ef30be1
JB
2981 }
2982 ret = 0;
5fd02043
JB
2983out_unlock:
2984 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2985 ordered_extent->file_offset +
2986 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2987out:
5b0e95bf 2988 if (root != root->fs_info->tree_root)
0cb59c99 2989 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2990 if (trans)
2991 btrfs_end_transaction(trans, root);
0cb59c99 2992
77cef2ec
JB
2993 if (ret || truncated) {
2994 u64 start, end;
2995
2996 if (truncated)
2997 start = ordered_extent->file_offset + logical_len;
2998 else
2999 start = ordered_extent->file_offset;
3000 end = ordered_extent->file_offset + ordered_extent->len - 1;
3001 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3002
3003 /* Drop the cache for the part of the extent we didn't write. */
3004 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 3005
0bec9ef5
JB
3006 /*
3007 * If the ordered extent had an IOERR or something else went
3008 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3009 * back to the allocator. We only free the extent in the
3010 * truncated case if we didn't write out the extent at all.
0bec9ef5 3011 */
77cef2ec
JB
3012 if ((ret || !logical_len) &&
3013 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
3014 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3015 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 3016 ordered_extent->disk_len, 1);
0bec9ef5
JB
3017 }
3018
3019
5fd02043 3020 /*
8bad3c02
LB
3021 * This needs to be done to make sure anybody waiting knows we are done
3022 * updating everything for this ordered extent.
5fd02043
JB
3023 */
3024 btrfs_remove_ordered_extent(inode, ordered_extent);
3025
38c227d8 3026 /* for snapshot-aware defrag */
6f519564
LB
3027 if (new) {
3028 if (ret) {
3029 free_sa_defrag_extent(new);
3030 atomic_dec(&root->fs_info->defrag_running);
3031 } else {
3032 relink_file_extents(new);
3033 }
3034 }
38c227d8 3035
e6dcd2dc
CM
3036 /* once for us */
3037 btrfs_put_ordered_extent(ordered_extent);
3038 /* once for the tree */
3039 btrfs_put_ordered_extent(ordered_extent);
3040
5fd02043
JB
3041 return ret;
3042}
3043
3044static void finish_ordered_fn(struct btrfs_work *work)
3045{
3046 struct btrfs_ordered_extent *ordered_extent;
3047 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3048 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3049}
3050
b2950863 3051static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3052 struct extent_state *state, int uptodate)
3053{
5fd02043
JB
3054 struct inode *inode = page->mapping->host;
3055 struct btrfs_root *root = BTRFS_I(inode)->root;
3056 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3057 struct btrfs_workqueue *wq;
3058 btrfs_work_func_t func;
5fd02043 3059
1abe9b8a 3060 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3061
8b62b72b 3062 ClearPagePrivate2(page);
5fd02043
JB
3063 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3064 end - start + 1, uptodate))
3065 return 0;
3066
9e0af237
LB
3067 if (btrfs_is_free_space_inode(inode)) {
3068 wq = root->fs_info->endio_freespace_worker;
3069 func = btrfs_freespace_write_helper;
3070 } else {
3071 wq = root->fs_info->endio_write_workers;
3072 func = btrfs_endio_write_helper;
3073 }
5fd02043 3074
9e0af237
LB
3075 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3076 NULL);
3077 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
3078
3079 return 0;
211f90e6
CM
3080}
3081
dc380aea
MX
3082static int __readpage_endio_check(struct inode *inode,
3083 struct btrfs_io_bio *io_bio,
3084 int icsum, struct page *page,
3085 int pgoff, u64 start, size_t len)
3086{
3087 char *kaddr;
3088 u32 csum_expected;
3089 u32 csum = ~(u32)0;
dc380aea
MX
3090
3091 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3092
3093 kaddr = kmap_atomic(page);
3094 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3095 btrfs_csum_final(csum, (char *)&csum);
3096 if (csum != csum_expected)
3097 goto zeroit;
3098
3099 kunmap_atomic(kaddr);
3100 return 0;
3101zeroit:
94647322
DS
3102 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3103 "csum failed ino %llu off %llu csum %u expected csum %u",
dc380aea
MX
3104 btrfs_ino(inode), start, csum, csum_expected);
3105 memset(kaddr + pgoff, 1, len);
3106 flush_dcache_page(page);
3107 kunmap_atomic(kaddr);
3108 if (csum_expected == 0)
3109 return 0;
3110 return -EIO;
3111}
3112
d352ac68
CM
3113/*
3114 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3115 * if there's a match, we allow the bio to finish. If not, the code in
3116 * extent_io.c will try to find good copies for us.
d352ac68 3117 */
facc8a22
MX
3118static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3119 u64 phy_offset, struct page *page,
3120 u64 start, u64 end, int mirror)
07157aac 3121{
4eee4fa4 3122 size_t offset = start - page_offset(page);
07157aac 3123 struct inode *inode = page->mapping->host;
d1310b2e 3124 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3125 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3126
d20f7043
CM
3127 if (PageChecked(page)) {
3128 ClearPageChecked(page);
dc380aea 3129 return 0;
d20f7043 3130 }
6cbff00f
CH
3131
3132 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3133 return 0;
17d217fe
YZ
3134
3135 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3136 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3137 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3138 return 0;
17d217fe 3139 }
d20f7043 3140
facc8a22 3141 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3142 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3143 start, (size_t)(end - start + 1));
07157aac 3144}
b888db2b 3145
24bbcf04
YZ
3146void btrfs_add_delayed_iput(struct inode *inode)
3147{
3148 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
8089fe62 3149 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3150
3151 if (atomic_add_unless(&inode->i_count, -1, 1))
3152 return;
3153
24bbcf04 3154 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3155 if (binode->delayed_iput_count == 0) {
3156 ASSERT(list_empty(&binode->delayed_iput));
3157 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3158 } else {
3159 binode->delayed_iput_count++;
3160 }
24bbcf04
YZ
3161 spin_unlock(&fs_info->delayed_iput_lock);
3162}
3163
3164void btrfs_run_delayed_iputs(struct btrfs_root *root)
3165{
24bbcf04 3166 struct btrfs_fs_info *fs_info = root->fs_info;
24bbcf04 3167
24bbcf04 3168 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3169 while (!list_empty(&fs_info->delayed_iputs)) {
3170 struct btrfs_inode *inode;
3171
3172 inode = list_first_entry(&fs_info->delayed_iputs,
3173 struct btrfs_inode, delayed_iput);
3174 if (inode->delayed_iput_count) {
3175 inode->delayed_iput_count--;
3176 list_move_tail(&inode->delayed_iput,
3177 &fs_info->delayed_iputs);
3178 } else {
3179 list_del_init(&inode->delayed_iput);
3180 }
3181 spin_unlock(&fs_info->delayed_iput_lock);
3182 iput(&inode->vfs_inode);
3183 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3184 }
8089fe62 3185 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3186}
3187
d68fc57b 3188/*
42b2aa86 3189 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3190 * files in the subvolume, it removes orphan item and frees block_rsv
3191 * structure.
3192 */
3193void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3194 struct btrfs_root *root)
3195{
90290e19 3196 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3197 int ret;
3198
8a35d95f 3199 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3200 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3201 return;
3202
90290e19 3203 spin_lock(&root->orphan_lock);
8a35d95f 3204 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3205 spin_unlock(&root->orphan_lock);
3206 return;
3207 }
3208
3209 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3210 spin_unlock(&root->orphan_lock);
3211 return;
3212 }
3213
3214 block_rsv = root->orphan_block_rsv;
3215 root->orphan_block_rsv = NULL;
3216 spin_unlock(&root->orphan_lock);
3217
27cdeb70 3218 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3219 btrfs_root_refs(&root->root_item) > 0) {
3220 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3221 root->root_key.objectid);
4ef31a45 3222 if (ret)
66642832 3223 btrfs_abort_transaction(trans, ret);
4ef31a45 3224 else
27cdeb70
MX
3225 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3226 &root->state);
d68fc57b
YZ
3227 }
3228
90290e19
JB
3229 if (block_rsv) {
3230 WARN_ON(block_rsv->size > 0);
3231 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3232 }
3233}
3234
7b128766
JB
3235/*
3236 * This creates an orphan entry for the given inode in case something goes
3237 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3238 *
3239 * NOTE: caller of this function should reserve 5 units of metadata for
3240 * this function.
7b128766
JB
3241 */
3242int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3243{
3244 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3245 struct btrfs_block_rsv *block_rsv = NULL;
3246 int reserve = 0;
3247 int insert = 0;
3248 int ret;
7b128766 3249
d68fc57b 3250 if (!root->orphan_block_rsv) {
66d8f3dd 3251 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3252 if (!block_rsv)
3253 return -ENOMEM;
d68fc57b 3254 }
7b128766 3255
d68fc57b
YZ
3256 spin_lock(&root->orphan_lock);
3257 if (!root->orphan_block_rsv) {
3258 root->orphan_block_rsv = block_rsv;
3259 } else if (block_rsv) {
3260 btrfs_free_block_rsv(root, block_rsv);
3261 block_rsv = NULL;
7b128766 3262 }
7b128766 3263
8a35d95f
JB
3264 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3265 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3266#if 0
3267 /*
3268 * For proper ENOSPC handling, we should do orphan
3269 * cleanup when mounting. But this introduces backward
3270 * compatibility issue.
3271 */
3272 if (!xchg(&root->orphan_item_inserted, 1))
3273 insert = 2;
3274 else
3275 insert = 1;
3276#endif
3277 insert = 1;
321f0e70 3278 atomic_inc(&root->orphan_inodes);
7b128766
JB
3279 }
3280
72ac3c0d
JB
3281 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3282 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3283 reserve = 1;
d68fc57b 3284 spin_unlock(&root->orphan_lock);
7b128766 3285
d68fc57b
YZ
3286 /* grab metadata reservation from transaction handle */
3287 if (reserve) {
3288 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3289 ASSERT(!ret);
3290 if (ret) {
3291 atomic_dec(&root->orphan_inodes);
3292 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3293 &BTRFS_I(inode)->runtime_flags);
3294 if (insert)
3295 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3296 &BTRFS_I(inode)->runtime_flags);
3297 return ret;
3298 }
d68fc57b 3299 }
7b128766 3300
d68fc57b
YZ
3301 /* insert an orphan item to track this unlinked/truncated file */
3302 if (insert >= 1) {
33345d01 3303 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3304 if (ret) {
703c88e0 3305 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3306 if (reserve) {
3307 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3308 &BTRFS_I(inode)->runtime_flags);
3309 btrfs_orphan_release_metadata(inode);
3310 }
3311 if (ret != -EEXIST) {
e8e7cff6
JB
3312 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3313 &BTRFS_I(inode)->runtime_flags);
66642832 3314 btrfs_abort_transaction(trans, ret);
4ef31a45
JB
3315 return ret;
3316 }
79787eaa
JM
3317 }
3318 ret = 0;
d68fc57b
YZ
3319 }
3320
3321 /* insert an orphan item to track subvolume contains orphan files */
3322 if (insert >= 2) {
3323 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3324 root->root_key.objectid);
79787eaa 3325 if (ret && ret != -EEXIST) {
66642832 3326 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3327 return ret;
3328 }
d68fc57b
YZ
3329 }
3330 return 0;
7b128766
JB
3331}
3332
3333/*
3334 * We have done the truncate/delete so we can go ahead and remove the orphan
3335 * item for this particular inode.
3336 */
48a3b636
ES
3337static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3338 struct inode *inode)
7b128766
JB
3339{
3340 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3341 int delete_item = 0;
3342 int release_rsv = 0;
7b128766
JB
3343 int ret = 0;
3344
d68fc57b 3345 spin_lock(&root->orphan_lock);
8a35d95f
JB
3346 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3347 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3348 delete_item = 1;
7b128766 3349
72ac3c0d
JB
3350 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3351 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3352 release_rsv = 1;
d68fc57b 3353 spin_unlock(&root->orphan_lock);
7b128766 3354
703c88e0 3355 if (delete_item) {
8a35d95f 3356 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3357 if (trans)
3358 ret = btrfs_del_orphan_item(trans, root,
3359 btrfs_ino(inode));
8a35d95f 3360 }
7b128766 3361
703c88e0
FDBM
3362 if (release_rsv)
3363 btrfs_orphan_release_metadata(inode);
3364
4ef31a45 3365 return ret;
7b128766
JB
3366}
3367
3368/*
3369 * this cleans up any orphans that may be left on the list from the last use
3370 * of this root.
3371 */
66b4ffd1 3372int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3373{
3374 struct btrfs_path *path;
3375 struct extent_buffer *leaf;
7b128766
JB
3376 struct btrfs_key key, found_key;
3377 struct btrfs_trans_handle *trans;
3378 struct inode *inode;
8f6d7f4f 3379 u64 last_objectid = 0;
7b128766
JB
3380 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3381
d68fc57b 3382 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3383 return 0;
c71bf099
YZ
3384
3385 path = btrfs_alloc_path();
66b4ffd1
JB
3386 if (!path) {
3387 ret = -ENOMEM;
3388 goto out;
3389 }
e4058b54 3390 path->reada = READA_BACK;
7b128766
JB
3391
3392 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3393 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3394 key.offset = (u64)-1;
3395
7b128766
JB
3396 while (1) {
3397 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3398 if (ret < 0)
3399 goto out;
7b128766
JB
3400
3401 /*
3402 * if ret == 0 means we found what we were searching for, which
25985edc 3403 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3404 * find the key and see if we have stuff that matches
3405 */
3406 if (ret > 0) {
66b4ffd1 3407 ret = 0;
7b128766
JB
3408 if (path->slots[0] == 0)
3409 break;
3410 path->slots[0]--;
3411 }
3412
3413 /* pull out the item */
3414 leaf = path->nodes[0];
7b128766
JB
3415 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3416
3417 /* make sure the item matches what we want */
3418 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3419 break;
962a298f 3420 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3421 break;
3422
3423 /* release the path since we're done with it */
b3b4aa74 3424 btrfs_release_path(path);
7b128766
JB
3425
3426 /*
3427 * this is where we are basically btrfs_lookup, without the
3428 * crossing root thing. we store the inode number in the
3429 * offset of the orphan item.
3430 */
8f6d7f4f
JB
3431
3432 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3433 btrfs_err(root->fs_info,
3434 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3435 ret = -EINVAL;
3436 goto out;
3437 }
3438
3439 last_objectid = found_key.offset;
3440
5d4f98a2
YZ
3441 found_key.objectid = found_key.offset;
3442 found_key.type = BTRFS_INODE_ITEM_KEY;
3443 found_key.offset = 0;
73f73415 3444 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3445 ret = PTR_ERR_OR_ZERO(inode);
67710892 3446 if (ret && ret != -ENOENT)
66b4ffd1 3447 goto out;
7b128766 3448
67710892 3449 if (ret == -ENOENT && root == root->fs_info->tree_root) {
f8e9e0b0
AJ
3450 struct btrfs_root *dead_root;
3451 struct btrfs_fs_info *fs_info = root->fs_info;
3452 int is_dead_root = 0;
3453
3454 /*
3455 * this is an orphan in the tree root. Currently these
3456 * could come from 2 sources:
3457 * a) a snapshot deletion in progress
3458 * b) a free space cache inode
3459 * We need to distinguish those two, as the snapshot
3460 * orphan must not get deleted.
3461 * find_dead_roots already ran before us, so if this
3462 * is a snapshot deletion, we should find the root
3463 * in the dead_roots list
3464 */
3465 spin_lock(&fs_info->trans_lock);
3466 list_for_each_entry(dead_root, &fs_info->dead_roots,
3467 root_list) {
3468 if (dead_root->root_key.objectid ==
3469 found_key.objectid) {
3470 is_dead_root = 1;
3471 break;
3472 }
3473 }
3474 spin_unlock(&fs_info->trans_lock);
3475 if (is_dead_root) {
3476 /* prevent this orphan from being found again */
3477 key.offset = found_key.objectid - 1;
3478 continue;
3479 }
3480 }
7b128766 3481 /*
a8c9e576
JB
3482 * Inode is already gone but the orphan item is still there,
3483 * kill the orphan item.
7b128766 3484 */
67710892 3485 if (ret == -ENOENT) {
a8c9e576 3486 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3487 if (IS_ERR(trans)) {
3488 ret = PTR_ERR(trans);
3489 goto out;
3490 }
c2cf52eb
SK
3491 btrfs_debug(root->fs_info, "auto deleting %Lu",
3492 found_key.objectid);
a8c9e576
JB
3493 ret = btrfs_del_orphan_item(trans, root,
3494 found_key.objectid);
5b21f2ed 3495 btrfs_end_transaction(trans, root);
4ef31a45
JB
3496 if (ret)
3497 goto out;
7b128766
JB
3498 continue;
3499 }
3500
a8c9e576
JB
3501 /*
3502 * add this inode to the orphan list so btrfs_orphan_del does
3503 * the proper thing when we hit it
3504 */
8a35d95f
JB
3505 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3506 &BTRFS_I(inode)->runtime_flags);
925396ec 3507 atomic_inc(&root->orphan_inodes);
a8c9e576 3508
7b128766
JB
3509 /* if we have links, this was a truncate, lets do that */
3510 if (inode->i_nlink) {
fae7f21c 3511 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3512 iput(inode);
3513 continue;
3514 }
7b128766 3515 nr_truncate++;
f3fe820c
JB
3516
3517 /* 1 for the orphan item deletion. */
3518 trans = btrfs_start_transaction(root, 1);
3519 if (IS_ERR(trans)) {
c69b26b0 3520 iput(inode);
f3fe820c
JB
3521 ret = PTR_ERR(trans);
3522 goto out;
3523 }
3524 ret = btrfs_orphan_add(trans, inode);
3525 btrfs_end_transaction(trans, root);
c69b26b0
JB
3526 if (ret) {
3527 iput(inode);
f3fe820c 3528 goto out;
c69b26b0 3529 }
f3fe820c 3530
66b4ffd1 3531 ret = btrfs_truncate(inode);
4a7d0f68
JB
3532 if (ret)
3533 btrfs_orphan_del(NULL, inode);
7b128766
JB
3534 } else {
3535 nr_unlink++;
3536 }
3537
3538 /* this will do delete_inode and everything for us */
3539 iput(inode);
66b4ffd1
JB
3540 if (ret)
3541 goto out;
7b128766 3542 }
3254c876
MX
3543 /* release the path since we're done with it */
3544 btrfs_release_path(path);
3545
d68fc57b
YZ
3546 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3547
3548 if (root->orphan_block_rsv)
3549 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3550 (u64)-1);
3551
27cdeb70
MX
3552 if (root->orphan_block_rsv ||
3553 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3554 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3555 if (!IS_ERR(trans))
3556 btrfs_end_transaction(trans, root);
d68fc57b 3557 }
7b128766
JB
3558
3559 if (nr_unlink)
4884b476 3560 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3561 if (nr_truncate)
4884b476 3562 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3563
3564out:
3565 if (ret)
68b663d1 3566 btrfs_err(root->fs_info,
c2cf52eb 3567 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3568 btrfs_free_path(path);
3569 return ret;
7b128766
JB
3570}
3571
46a53cca
CM
3572/*
3573 * very simple check to peek ahead in the leaf looking for xattrs. If we
3574 * don't find any xattrs, we know there can't be any acls.
3575 *
3576 * slot is the slot the inode is in, objectid is the objectid of the inode
3577 */
3578static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3579 int slot, u64 objectid,
3580 int *first_xattr_slot)
46a53cca
CM
3581{
3582 u32 nritems = btrfs_header_nritems(leaf);
3583 struct btrfs_key found_key;
f23b5a59
JB
3584 static u64 xattr_access = 0;
3585 static u64 xattr_default = 0;
46a53cca
CM
3586 int scanned = 0;
3587
f23b5a59 3588 if (!xattr_access) {
97d79299
AG
3589 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3590 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3591 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3592 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3593 }
3594
46a53cca 3595 slot++;
63541927 3596 *first_xattr_slot = -1;
46a53cca
CM
3597 while (slot < nritems) {
3598 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3599
3600 /* we found a different objectid, there must not be acls */
3601 if (found_key.objectid != objectid)
3602 return 0;
3603
3604 /* we found an xattr, assume we've got an acl */
f23b5a59 3605 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3606 if (*first_xattr_slot == -1)
3607 *first_xattr_slot = slot;
f23b5a59
JB
3608 if (found_key.offset == xattr_access ||
3609 found_key.offset == xattr_default)
3610 return 1;
3611 }
46a53cca
CM
3612
3613 /*
3614 * we found a key greater than an xattr key, there can't
3615 * be any acls later on
3616 */
3617 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3618 return 0;
3619
3620 slot++;
3621 scanned++;
3622
3623 /*
3624 * it goes inode, inode backrefs, xattrs, extents,
3625 * so if there are a ton of hard links to an inode there can
3626 * be a lot of backrefs. Don't waste time searching too hard,
3627 * this is just an optimization
3628 */
3629 if (scanned >= 8)
3630 break;
3631 }
3632 /* we hit the end of the leaf before we found an xattr or
3633 * something larger than an xattr. We have to assume the inode
3634 * has acls
3635 */
63541927
FDBM
3636 if (*first_xattr_slot == -1)
3637 *first_xattr_slot = slot;
46a53cca
CM
3638 return 1;
3639}
3640
d352ac68
CM
3641/*
3642 * read an inode from the btree into the in-memory inode
3643 */
67710892 3644static int btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3645{
3646 struct btrfs_path *path;
5f39d397 3647 struct extent_buffer *leaf;
39279cc3
CM
3648 struct btrfs_inode_item *inode_item;
3649 struct btrfs_root *root = BTRFS_I(inode)->root;
3650 struct btrfs_key location;
67de1176 3651 unsigned long ptr;
46a53cca 3652 int maybe_acls;
618e21d5 3653 u32 rdev;
39279cc3 3654 int ret;
2f7e33d4 3655 bool filled = false;
63541927 3656 int first_xattr_slot;
2f7e33d4
MX
3657
3658 ret = btrfs_fill_inode(inode, &rdev);
3659 if (!ret)
3660 filled = true;
39279cc3
CM
3661
3662 path = btrfs_alloc_path();
67710892
FM
3663 if (!path) {
3664 ret = -ENOMEM;
1748f843 3665 goto make_bad;
67710892 3666 }
1748f843 3667
39279cc3 3668 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3669
39279cc3 3670 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3671 if (ret) {
3672 if (ret > 0)
3673 ret = -ENOENT;
39279cc3 3674 goto make_bad;
67710892 3675 }
39279cc3 3676
5f39d397 3677 leaf = path->nodes[0];
2f7e33d4
MX
3678
3679 if (filled)
67de1176 3680 goto cache_index;
2f7e33d4 3681
5f39d397
CM
3682 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3683 struct btrfs_inode_item);
5f39d397 3684 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3685 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3686 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3687 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3688 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397 3689
a937b979
DS
3690 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3691 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3692
a937b979
DS
3693 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3694 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3695
a937b979
DS
3696 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3697 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3698
9cc97d64 3699 BTRFS_I(inode)->i_otime.tv_sec =
3700 btrfs_timespec_sec(leaf, &inode_item->otime);
3701 BTRFS_I(inode)->i_otime.tv_nsec =
3702 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3703
a76a3cd4 3704 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3705 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3706 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3707
6e17d30b
YD
3708 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3709 inode->i_generation = BTRFS_I(inode)->generation;
3710 inode->i_rdev = 0;
3711 rdev = btrfs_inode_rdev(leaf, inode_item);
3712
3713 BTRFS_I(inode)->index_cnt = (u64)-1;
3714 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3715
3716cache_index:
5dc562c5
JB
3717 /*
3718 * If we were modified in the current generation and evicted from memory
3719 * and then re-read we need to do a full sync since we don't have any
3720 * idea about which extents were modified before we were evicted from
3721 * cache.
6e17d30b
YD
3722 *
3723 * This is required for both inode re-read from disk and delayed inode
3724 * in delayed_nodes_tree.
5dc562c5
JB
3725 */
3726 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3727 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3728 &BTRFS_I(inode)->runtime_flags);
3729
bde6c242
FM
3730 /*
3731 * We don't persist the id of the transaction where an unlink operation
3732 * against the inode was last made. So here we assume the inode might
3733 * have been evicted, and therefore the exact value of last_unlink_trans
3734 * lost, and set it to last_trans to avoid metadata inconsistencies
3735 * between the inode and its parent if the inode is fsync'ed and the log
3736 * replayed. For example, in the scenario:
3737 *
3738 * touch mydir/foo
3739 * ln mydir/foo mydir/bar
3740 * sync
3741 * unlink mydir/bar
3742 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3743 * xfs_io -c fsync mydir/foo
3744 * <power failure>
3745 * mount fs, triggers fsync log replay
3746 *
3747 * We must make sure that when we fsync our inode foo we also log its
3748 * parent inode, otherwise after log replay the parent still has the
3749 * dentry with the "bar" name but our inode foo has a link count of 1
3750 * and doesn't have an inode ref with the name "bar" anymore.
3751 *
3752 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3753 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3754 * transaction commits on fsync if our inode is a directory, or if our
3755 * inode is not a directory, logging its parent unnecessarily.
3756 */
3757 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3758
67de1176
MX
3759 path->slots[0]++;
3760 if (inode->i_nlink != 1 ||
3761 path->slots[0] >= btrfs_header_nritems(leaf))
3762 goto cache_acl;
3763
3764 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3765 if (location.objectid != btrfs_ino(inode))
3766 goto cache_acl;
3767
3768 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3769 if (location.type == BTRFS_INODE_REF_KEY) {
3770 struct btrfs_inode_ref *ref;
3771
3772 ref = (struct btrfs_inode_ref *)ptr;
3773 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3774 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3775 struct btrfs_inode_extref *extref;
3776
3777 extref = (struct btrfs_inode_extref *)ptr;
3778 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3779 extref);
3780 }
2f7e33d4 3781cache_acl:
46a53cca
CM
3782 /*
3783 * try to precache a NULL acl entry for files that don't have
3784 * any xattrs or acls
3785 */
33345d01 3786 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3787 btrfs_ino(inode), &first_xattr_slot);
3788 if (first_xattr_slot != -1) {
3789 path->slots[0] = first_xattr_slot;
3790 ret = btrfs_load_inode_props(inode, path);
3791 if (ret)
3792 btrfs_err(root->fs_info,
351fd353 3793 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3794 btrfs_ino(inode),
3795 root->root_key.objectid, ret);
3796 }
3797 btrfs_free_path(path);
3798
72c04902
AV
3799 if (!maybe_acls)
3800 cache_no_acl(inode);
46a53cca 3801
39279cc3 3802 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3803 case S_IFREG:
3804 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3805 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3806 inode->i_fop = &btrfs_file_operations;
3807 inode->i_op = &btrfs_file_inode_operations;
3808 break;
3809 case S_IFDIR:
3810 inode->i_fop = &btrfs_dir_file_operations;
3811 if (root == root->fs_info->tree_root)
3812 inode->i_op = &btrfs_dir_ro_inode_operations;
3813 else
3814 inode->i_op = &btrfs_dir_inode_operations;
3815 break;
3816 case S_IFLNK:
3817 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3818 inode_nohighmem(inode);
39279cc3
CM
3819 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3820 break;
618e21d5 3821 default:
0279b4cd 3822 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3823 init_special_inode(inode, inode->i_mode, rdev);
3824 break;
39279cc3 3825 }
6cbff00f
CH
3826
3827 btrfs_update_iflags(inode);
67710892 3828 return 0;
39279cc3
CM
3829
3830make_bad:
39279cc3 3831 btrfs_free_path(path);
39279cc3 3832 make_bad_inode(inode);
67710892 3833 return ret;
39279cc3
CM
3834}
3835
d352ac68
CM
3836/*
3837 * given a leaf and an inode, copy the inode fields into the leaf
3838 */
e02119d5
CM
3839static void fill_inode_item(struct btrfs_trans_handle *trans,
3840 struct extent_buffer *leaf,
5f39d397 3841 struct btrfs_inode_item *item,
39279cc3
CM
3842 struct inode *inode)
3843{
51fab693
LB
3844 struct btrfs_map_token token;
3845
3846 btrfs_init_map_token(&token);
5f39d397 3847
51fab693
LB
3848 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3849 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3850 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3851 &token);
3852 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3853 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3854
a937b979 3855 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3856 inode->i_atime.tv_sec, &token);
a937b979 3857 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3858 inode->i_atime.tv_nsec, &token);
5f39d397 3859
a937b979 3860 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3861 inode->i_mtime.tv_sec, &token);
a937b979 3862 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3863 inode->i_mtime.tv_nsec, &token);
5f39d397 3864
a937b979 3865 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3866 inode->i_ctime.tv_sec, &token);
a937b979 3867 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3868 inode->i_ctime.tv_nsec, &token);
5f39d397 3869
9cc97d64 3870 btrfs_set_token_timespec_sec(leaf, &item->otime,
3871 BTRFS_I(inode)->i_otime.tv_sec, &token);
3872 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3873 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3874
51fab693
LB
3875 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3876 &token);
3877 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3878 &token);
3879 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3880 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3881 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3882 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3883 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3884}
3885
d352ac68
CM
3886/*
3887 * copy everything in the in-memory inode into the btree.
3888 */
2115133f 3889static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3890 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3891{
3892 struct btrfs_inode_item *inode_item;
3893 struct btrfs_path *path;
5f39d397 3894 struct extent_buffer *leaf;
39279cc3
CM
3895 int ret;
3896
3897 path = btrfs_alloc_path();
16cdcec7
MX
3898 if (!path)
3899 return -ENOMEM;
3900
b9473439 3901 path->leave_spinning = 1;
16cdcec7
MX
3902 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3903 1);
39279cc3
CM
3904 if (ret) {
3905 if (ret > 0)
3906 ret = -ENOENT;
3907 goto failed;
3908 }
3909
5f39d397
CM
3910 leaf = path->nodes[0];
3911 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3912 struct btrfs_inode_item);
39279cc3 3913
e02119d5 3914 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3915 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3916 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3917 ret = 0;
3918failed:
39279cc3
CM
3919 btrfs_free_path(path);
3920 return ret;
3921}
3922
2115133f
CM
3923/*
3924 * copy everything in the in-memory inode into the btree.
3925 */
3926noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3927 struct btrfs_root *root, struct inode *inode)
3928{
3929 int ret;
3930
3931 /*
3932 * If the inode is a free space inode, we can deadlock during commit
3933 * if we put it into the delayed code.
3934 *
3935 * The data relocation inode should also be directly updated
3936 * without delay
3937 */
83eea1f1 3938 if (!btrfs_is_free_space_inode(inode)
1d52c78a
JB
3939 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3940 && !root->fs_info->log_root_recovering) {
8ea05e3a
AB
3941 btrfs_update_root_times(trans, root);
3942
2115133f
CM
3943 ret = btrfs_delayed_update_inode(trans, root, inode);
3944 if (!ret)
3945 btrfs_set_inode_last_trans(trans, inode);
3946 return ret;
3947 }
3948
3949 return btrfs_update_inode_item(trans, root, inode);
3950}
3951
be6aef60
JB
3952noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3953 struct btrfs_root *root,
3954 struct inode *inode)
2115133f
CM
3955{
3956 int ret;
3957
3958 ret = btrfs_update_inode(trans, root, inode);
3959 if (ret == -ENOSPC)
3960 return btrfs_update_inode_item(trans, root, inode);
3961 return ret;
3962}
3963
d352ac68
CM
3964/*
3965 * unlink helper that gets used here in inode.c and in the tree logging
3966 * recovery code. It remove a link in a directory with a given name, and
3967 * also drops the back refs in the inode to the directory
3968 */
92986796
AV
3969static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3970 struct btrfs_root *root,
3971 struct inode *dir, struct inode *inode,
3972 const char *name, int name_len)
39279cc3
CM
3973{
3974 struct btrfs_path *path;
39279cc3 3975 int ret = 0;
5f39d397 3976 struct extent_buffer *leaf;
39279cc3 3977 struct btrfs_dir_item *di;
5f39d397 3978 struct btrfs_key key;
aec7477b 3979 u64 index;
33345d01
LZ
3980 u64 ino = btrfs_ino(inode);
3981 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3982
3983 path = btrfs_alloc_path();
54aa1f4d
CM
3984 if (!path) {
3985 ret = -ENOMEM;
554233a6 3986 goto out;
54aa1f4d
CM
3987 }
3988
b9473439 3989 path->leave_spinning = 1;
33345d01 3990 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3991 name, name_len, -1);
3992 if (IS_ERR(di)) {
3993 ret = PTR_ERR(di);
3994 goto err;
3995 }
3996 if (!di) {
3997 ret = -ENOENT;
3998 goto err;
3999 }
5f39d397
CM
4000 leaf = path->nodes[0];
4001 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 4002 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4003 if (ret)
4004 goto err;
b3b4aa74 4005 btrfs_release_path(path);
39279cc3 4006
67de1176
MX
4007 /*
4008 * If we don't have dir index, we have to get it by looking up
4009 * the inode ref, since we get the inode ref, remove it directly,
4010 * it is unnecessary to do delayed deletion.
4011 *
4012 * But if we have dir index, needn't search inode ref to get it.
4013 * Since the inode ref is close to the inode item, it is better
4014 * that we delay to delete it, and just do this deletion when
4015 * we update the inode item.
4016 */
4017 if (BTRFS_I(inode)->dir_index) {
4018 ret = btrfs_delayed_delete_inode_ref(inode);
4019 if (!ret) {
4020 index = BTRFS_I(inode)->dir_index;
4021 goto skip_backref;
4022 }
4023 }
4024
33345d01
LZ
4025 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4026 dir_ino, &index);
aec7477b 4027 if (ret) {
c2cf52eb
SK
4028 btrfs_info(root->fs_info,
4029 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4030 name_len, name, ino, dir_ino);
66642832 4031 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4032 goto err;
4033 }
67de1176 4034skip_backref:
16cdcec7 4035 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa 4036 if (ret) {
66642832 4037 btrfs_abort_transaction(trans, ret);
39279cc3 4038 goto err;
79787eaa 4039 }
39279cc3 4040
e02119d5 4041 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 4042 inode, dir_ino);
79787eaa 4043 if (ret != 0 && ret != -ENOENT) {
66642832 4044 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4045 goto err;
4046 }
e02119d5
CM
4047
4048 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4049 dir, index);
6418c961
CM
4050 if (ret == -ENOENT)
4051 ret = 0;
d4e3991b 4052 else if (ret)
66642832 4053 btrfs_abort_transaction(trans, ret);
39279cc3
CM
4054err:
4055 btrfs_free_path(path);
e02119d5
CM
4056 if (ret)
4057 goto out;
4058
4059 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
4060 inode_inc_iversion(inode);
4061 inode_inc_iversion(dir);
04b285f3
DD
4062 inode->i_ctime = dir->i_mtime =
4063 dir->i_ctime = current_fs_time(inode->i_sb);
b9959295 4064 ret = btrfs_update_inode(trans, root, dir);
e02119d5 4065out:
39279cc3
CM
4066 return ret;
4067}
4068
92986796
AV
4069int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4070 struct btrfs_root *root,
4071 struct inode *dir, struct inode *inode,
4072 const char *name, int name_len)
4073{
4074 int ret;
4075 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4076 if (!ret) {
8b558c5f 4077 drop_nlink(inode);
92986796
AV
4078 ret = btrfs_update_inode(trans, root, inode);
4079 }
4080 return ret;
4081}
39279cc3 4082
a22285a6
YZ
4083/*
4084 * helper to start transaction for unlink and rmdir.
4085 *
d52be818
JB
4086 * unlink and rmdir are special in btrfs, they do not always free space, so
4087 * if we cannot make our reservations the normal way try and see if there is
4088 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4089 * allow the unlink to occur.
a22285a6 4090 */
d52be818 4091static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4092{
a22285a6 4093 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4094
e70bea5f
JB
4095 /*
4096 * 1 for the possible orphan item
4097 * 1 for the dir item
4098 * 1 for the dir index
4099 * 1 for the inode ref
e70bea5f
JB
4100 * 1 for the inode
4101 */
8eab77ff 4102 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4103}
4104
4105static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4106{
4107 struct btrfs_root *root = BTRFS_I(dir)->root;
4108 struct btrfs_trans_handle *trans;
2b0143b5 4109 struct inode *inode = d_inode(dentry);
a22285a6 4110 int ret;
a22285a6 4111
d52be818 4112 trans = __unlink_start_trans(dir);
a22285a6
YZ
4113 if (IS_ERR(trans))
4114 return PTR_ERR(trans);
5f39d397 4115
2b0143b5 4116 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
12fcfd22 4117
2b0143b5 4118 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4119 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
4120 if (ret)
4121 goto out;
7b128766 4122
a22285a6 4123 if (inode->i_nlink == 0) {
7b128766 4124 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
4125 if (ret)
4126 goto out;
a22285a6 4127 }
7b128766 4128
b532402e 4129out:
d52be818 4130 btrfs_end_transaction(trans, root);
b53d3f5d 4131 btrfs_btree_balance_dirty(root);
39279cc3
CM
4132 return ret;
4133}
4134
4df27c4d
YZ
4135int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4136 struct btrfs_root *root,
4137 struct inode *dir, u64 objectid,
4138 const char *name, int name_len)
4139{
4140 struct btrfs_path *path;
4141 struct extent_buffer *leaf;
4142 struct btrfs_dir_item *di;
4143 struct btrfs_key key;
4144 u64 index;
4145 int ret;
33345d01 4146 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
4147
4148 path = btrfs_alloc_path();
4149 if (!path)
4150 return -ENOMEM;
4151
33345d01 4152 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4153 name, name_len, -1);
79787eaa
JM
4154 if (IS_ERR_OR_NULL(di)) {
4155 if (!di)
4156 ret = -ENOENT;
4157 else
4158 ret = PTR_ERR(di);
4159 goto out;
4160 }
4df27c4d
YZ
4161
4162 leaf = path->nodes[0];
4163 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4164 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4165 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4166 if (ret) {
66642832 4167 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4168 goto out;
4169 }
b3b4aa74 4170 btrfs_release_path(path);
4df27c4d
YZ
4171
4172 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4173 objectid, root->root_key.objectid,
33345d01 4174 dir_ino, &index, name, name_len);
4df27c4d 4175 if (ret < 0) {
79787eaa 4176 if (ret != -ENOENT) {
66642832 4177 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4178 goto out;
4179 }
33345d01 4180 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4181 name, name_len);
79787eaa
JM
4182 if (IS_ERR_OR_NULL(di)) {
4183 if (!di)
4184 ret = -ENOENT;
4185 else
4186 ret = PTR_ERR(di);
66642832 4187 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4188 goto out;
4189 }
4df27c4d
YZ
4190
4191 leaf = path->nodes[0];
4192 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4193 btrfs_release_path(path);
4df27c4d
YZ
4194 index = key.offset;
4195 }
945d8962 4196 btrfs_release_path(path);
4df27c4d 4197
16cdcec7 4198 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa 4199 if (ret) {
66642832 4200 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4201 goto out;
4202 }
4df27c4d
YZ
4203
4204 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4205 inode_inc_iversion(dir);
04b285f3 4206 dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb);
5a24e84c 4207 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4208 if (ret)
66642832 4209 btrfs_abort_transaction(trans, ret);
79787eaa 4210out:
71d7aed0 4211 btrfs_free_path(path);
79787eaa 4212 return ret;
4df27c4d
YZ
4213}
4214
39279cc3
CM
4215static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4216{
2b0143b5 4217 struct inode *inode = d_inode(dentry);
1832a6d5 4218 int err = 0;
39279cc3 4219 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4220 struct btrfs_trans_handle *trans;
44f714da 4221 u64 last_unlink_trans;
39279cc3 4222
b3ae244e 4223 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4224 return -ENOTEMPTY;
b3ae244e
DS
4225 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4226 return -EPERM;
134d4512 4227
d52be818 4228 trans = __unlink_start_trans(dir);
a22285a6 4229 if (IS_ERR(trans))
5df6a9f6 4230 return PTR_ERR(trans);
5df6a9f6 4231
33345d01 4232 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4233 err = btrfs_unlink_subvol(trans, root, dir,
4234 BTRFS_I(inode)->location.objectid,
4235 dentry->d_name.name,
4236 dentry->d_name.len);
4237 goto out;
4238 }
4239
7b128766
JB
4240 err = btrfs_orphan_add(trans, inode);
4241 if (err)
4df27c4d 4242 goto out;
7b128766 4243
44f714da
FM
4244 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4245
39279cc3 4246 /* now the directory is empty */
2b0143b5 4247 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4248 dentry->d_name.name, dentry->d_name.len);
44f714da 4249 if (!err) {
dbe674a9 4250 btrfs_i_size_write(inode, 0);
44f714da
FM
4251 /*
4252 * Propagate the last_unlink_trans value of the deleted dir to
4253 * its parent directory. This is to prevent an unrecoverable
4254 * log tree in the case we do something like this:
4255 * 1) create dir foo
4256 * 2) create snapshot under dir foo
4257 * 3) delete the snapshot
4258 * 4) rmdir foo
4259 * 5) mkdir foo
4260 * 6) fsync foo or some file inside foo
4261 */
4262 if (last_unlink_trans >= trans->transid)
4263 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4264 }
4df27c4d 4265out:
d52be818 4266 btrfs_end_transaction(trans, root);
b53d3f5d 4267 btrfs_btree_balance_dirty(root);
3954401f 4268
39279cc3
CM
4269 return err;
4270}
4271
28f75a0e
CM
4272static int truncate_space_check(struct btrfs_trans_handle *trans,
4273 struct btrfs_root *root,
4274 u64 bytes_deleted)
4275{
4276 int ret;
4277
dc95f7bf
JB
4278 /*
4279 * This is only used to apply pressure to the enospc system, we don't
4280 * intend to use this reservation at all.
4281 */
28f75a0e 4282 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
dc95f7bf 4283 bytes_deleted *= root->nodesize;
28f75a0e
CM
4284 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4285 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf
JB
4286 if (!ret) {
4287 trace_btrfs_space_reservation(root->fs_info, "transaction",
4288 trans->transid,
4289 bytes_deleted, 1);
28f75a0e 4290 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4291 }
28f75a0e
CM
4292 return ret;
4293
4294}
4295
0305cd5f
FM
4296static int truncate_inline_extent(struct inode *inode,
4297 struct btrfs_path *path,
4298 struct btrfs_key *found_key,
4299 const u64 item_end,
4300 const u64 new_size)
4301{
4302 struct extent_buffer *leaf = path->nodes[0];
4303 int slot = path->slots[0];
4304 struct btrfs_file_extent_item *fi;
4305 u32 size = (u32)(new_size - found_key->offset);
4306 struct btrfs_root *root = BTRFS_I(inode)->root;
4307
4308 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4309
4310 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4311 loff_t offset = new_size;
09cbfeaf 4312 loff_t page_end = ALIGN(offset, PAGE_SIZE);
0305cd5f
FM
4313
4314 /*
4315 * Zero out the remaining of the last page of our inline extent,
4316 * instead of directly truncating our inline extent here - that
4317 * would be much more complex (decompressing all the data, then
4318 * compressing the truncated data, which might be bigger than
4319 * the size of the inline extent, resize the extent, etc).
4320 * We release the path because to get the page we might need to
4321 * read the extent item from disk (data not in the page cache).
4322 */
4323 btrfs_release_path(path);
9703fefe
CR
4324 return btrfs_truncate_block(inode, offset, page_end - offset,
4325 0);
0305cd5f
FM
4326 }
4327
4328 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4329 size = btrfs_file_extent_calc_inline_size(size);
4330 btrfs_truncate_item(root, path, size, 1);
4331
4332 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4333 inode_sub_bytes(inode, item_end + 1 - new_size);
4334
4335 return 0;
4336}
4337
39279cc3
CM
4338/*
4339 * this can truncate away extent items, csum items and directory items.
4340 * It starts at a high offset and removes keys until it can't find
d352ac68 4341 * any higher than new_size
39279cc3
CM
4342 *
4343 * csum items that cross the new i_size are truncated to the new size
4344 * as well.
7b128766
JB
4345 *
4346 * min_type is the minimum key type to truncate down to. If set to 0, this
4347 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4348 */
8082510e
YZ
4349int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4350 struct btrfs_root *root,
4351 struct inode *inode,
4352 u64 new_size, u32 min_type)
39279cc3 4353{
39279cc3 4354 struct btrfs_path *path;
5f39d397 4355 struct extent_buffer *leaf;
39279cc3 4356 struct btrfs_file_extent_item *fi;
8082510e
YZ
4357 struct btrfs_key key;
4358 struct btrfs_key found_key;
39279cc3 4359 u64 extent_start = 0;
db94535d 4360 u64 extent_num_bytes = 0;
5d4f98a2 4361 u64 extent_offset = 0;
39279cc3 4362 u64 item_end = 0;
c1aa4575 4363 u64 last_size = new_size;
8082510e 4364 u32 found_type = (u8)-1;
39279cc3
CM
4365 int found_extent;
4366 int del_item;
85e21bac
CM
4367 int pending_del_nr = 0;
4368 int pending_del_slot = 0;
179e29e4 4369 int extent_type = -1;
8082510e
YZ
4370 int ret;
4371 int err = 0;
33345d01 4372 u64 ino = btrfs_ino(inode);
28ed1345 4373 u64 bytes_deleted = 0;
1262133b
JB
4374 bool be_nice = 0;
4375 bool should_throttle = 0;
28f75a0e 4376 bool should_end = 0;
8082510e
YZ
4377
4378 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4379
28ed1345
CM
4380 /*
4381 * for non-free space inodes and ref cows, we want to back off from
4382 * time to time
4383 */
4384 if (!btrfs_is_free_space_inode(inode) &&
4385 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4386 be_nice = 1;
4387
0eb0e19c
MF
4388 path = btrfs_alloc_path();
4389 if (!path)
4390 return -ENOMEM;
e4058b54 4391 path->reada = READA_BACK;
0eb0e19c 4392
5dc562c5
JB
4393 /*
4394 * We want to drop from the next block forward in case this new size is
4395 * not block aligned since we will be keeping the last block of the
4396 * extent just the way it is.
4397 */
27cdeb70
MX
4398 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4399 root == root->fs_info->tree_root)
fda2832f
QW
4400 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4401 root->sectorsize), (u64)-1, 0);
8082510e 4402
16cdcec7
MX
4403 /*
4404 * This function is also used to drop the items in the log tree before
4405 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4406 * it is used to drop the loged items. So we shouldn't kill the delayed
4407 * items.
4408 */
4409 if (min_type == 0 && root == BTRFS_I(inode)->root)
4410 btrfs_kill_delayed_inode_items(inode);
4411
33345d01 4412 key.objectid = ino;
39279cc3 4413 key.offset = (u64)-1;
5f39d397
CM
4414 key.type = (u8)-1;
4415
85e21bac 4416search_again:
28ed1345
CM
4417 /*
4418 * with a 16K leaf size and 128MB extents, you can actually queue
4419 * up a huge file in a single leaf. Most of the time that
4420 * bytes_deleted is > 0, it will be huge by the time we get here
4421 */
ee22184b 4422 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4423 if (btrfs_should_end_transaction(trans, root)) {
4424 err = -EAGAIN;
4425 goto error;
4426 }
4427 }
4428
4429
b9473439 4430 path->leave_spinning = 1;
85e21bac 4431 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4432 if (ret < 0) {
4433 err = ret;
4434 goto out;
4435 }
d397712b 4436
85e21bac 4437 if (ret > 0) {
e02119d5
CM
4438 /* there are no items in the tree for us to truncate, we're
4439 * done
4440 */
8082510e
YZ
4441 if (path->slots[0] == 0)
4442 goto out;
85e21bac
CM
4443 path->slots[0]--;
4444 }
4445
d397712b 4446 while (1) {
39279cc3 4447 fi = NULL;
5f39d397
CM
4448 leaf = path->nodes[0];
4449 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4450 found_type = found_key.type;
39279cc3 4451
33345d01 4452 if (found_key.objectid != ino)
39279cc3 4453 break;
5f39d397 4454
85e21bac 4455 if (found_type < min_type)
39279cc3
CM
4456 break;
4457
5f39d397 4458 item_end = found_key.offset;
39279cc3 4459 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4460 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4461 struct btrfs_file_extent_item);
179e29e4
CM
4462 extent_type = btrfs_file_extent_type(leaf, fi);
4463 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4464 item_end +=
db94535d 4465 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4466 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4467 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4468 path->slots[0], fi);
39279cc3 4469 }
008630c1 4470 item_end--;
39279cc3 4471 }
8082510e
YZ
4472 if (found_type > min_type) {
4473 del_item = 1;
4474 } else {
4475 if (item_end < new_size)
b888db2b 4476 break;
8082510e
YZ
4477 if (found_key.offset >= new_size)
4478 del_item = 1;
4479 else
4480 del_item = 0;
39279cc3 4481 }
39279cc3 4482 found_extent = 0;
39279cc3 4483 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4484 if (found_type != BTRFS_EXTENT_DATA_KEY)
4485 goto delete;
4486
7f4f6e0a
JB
4487 if (del_item)
4488 last_size = found_key.offset;
4489 else
4490 last_size = new_size;
4491
179e29e4 4492 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4493 u64 num_dec;
db94535d 4494 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4495 if (!del_item) {
db94535d
CM
4496 u64 orig_num_bytes =
4497 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4498 extent_num_bytes = ALIGN(new_size -
4499 found_key.offset,
4500 root->sectorsize);
db94535d
CM
4501 btrfs_set_file_extent_num_bytes(leaf, fi,
4502 extent_num_bytes);
4503 num_dec = (orig_num_bytes -
9069218d 4504 extent_num_bytes);
27cdeb70
MX
4505 if (test_bit(BTRFS_ROOT_REF_COWS,
4506 &root->state) &&
4507 extent_start != 0)
a76a3cd4 4508 inode_sub_bytes(inode, num_dec);
5f39d397 4509 btrfs_mark_buffer_dirty(leaf);
39279cc3 4510 } else {
db94535d
CM
4511 extent_num_bytes =
4512 btrfs_file_extent_disk_num_bytes(leaf,
4513 fi);
5d4f98a2
YZ
4514 extent_offset = found_key.offset -
4515 btrfs_file_extent_offset(leaf, fi);
4516
39279cc3 4517 /* FIXME blocksize != 4096 */
9069218d 4518 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4519 if (extent_start != 0) {
4520 found_extent = 1;
27cdeb70
MX
4521 if (test_bit(BTRFS_ROOT_REF_COWS,
4522 &root->state))
a76a3cd4 4523 inode_sub_bytes(inode, num_dec);
e02119d5 4524 }
39279cc3 4525 }
9069218d 4526 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4527 /*
4528 * we can't truncate inline items that have had
4529 * special encodings
4530 */
4531 if (!del_item &&
c8b97818
CM
4532 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4533 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4534
4535 /*
0305cd5f
FM
4536 * Need to release path in order to truncate a
4537 * compressed extent. So delete any accumulated
4538 * extent items so far.
514ac8ad 4539 */
0305cd5f
FM
4540 if (btrfs_file_extent_compression(leaf, fi) !=
4541 BTRFS_COMPRESS_NONE && pending_del_nr) {
4542 err = btrfs_del_items(trans, root, path,
4543 pending_del_slot,
4544 pending_del_nr);
4545 if (err) {
4546 btrfs_abort_transaction(trans,
0305cd5f
FM
4547 err);
4548 goto error;
4549 }
4550 pending_del_nr = 0;
4551 }
4552
4553 err = truncate_inline_extent(inode, path,
4554 &found_key,
4555 item_end,
4556 new_size);
4557 if (err) {
66642832 4558 btrfs_abort_transaction(trans, err);
0305cd5f
FM
4559 goto error;
4560 }
27cdeb70
MX
4561 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4562 &root->state)) {
0305cd5f 4563 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4564 }
39279cc3 4565 }
179e29e4 4566delete:
39279cc3 4567 if (del_item) {
85e21bac
CM
4568 if (!pending_del_nr) {
4569 /* no pending yet, add ourselves */
4570 pending_del_slot = path->slots[0];
4571 pending_del_nr = 1;
4572 } else if (pending_del_nr &&
4573 path->slots[0] + 1 == pending_del_slot) {
4574 /* hop on the pending chunk */
4575 pending_del_nr++;
4576 pending_del_slot = path->slots[0];
4577 } else {
d397712b 4578 BUG();
85e21bac 4579 }
39279cc3
CM
4580 } else {
4581 break;
4582 }
28f75a0e
CM
4583 should_throttle = 0;
4584
27cdeb70
MX
4585 if (found_extent &&
4586 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4587 root == root->fs_info->tree_root)) {
b9473439 4588 btrfs_set_path_blocking(path);
28ed1345 4589 bytes_deleted += extent_num_bytes;
39279cc3 4590 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4591 extent_num_bytes, 0,
4592 btrfs_header_owner(leaf),
b06c4bf5 4593 ino, extent_offset);
39279cc3 4594 BUG_ON(ret);
1262133b 4595 if (btrfs_should_throttle_delayed_refs(trans, root))
28ed1345 4596 btrfs_async_run_delayed_refs(root,
31b9655f 4597 trans->transid,
28ed1345 4598 trans->delayed_ref_updates * 2, 0);
28f75a0e
CM
4599 if (be_nice) {
4600 if (truncate_space_check(trans, root,
4601 extent_num_bytes)) {
4602 should_end = 1;
4603 }
4604 if (btrfs_should_throttle_delayed_refs(trans,
4605 root)) {
4606 should_throttle = 1;
4607 }
4608 }
39279cc3 4609 }
85e21bac 4610
8082510e
YZ
4611 if (found_type == BTRFS_INODE_ITEM_KEY)
4612 break;
4613
4614 if (path->slots[0] == 0 ||
1262133b 4615 path->slots[0] != pending_del_slot ||
28f75a0e 4616 should_throttle || should_end) {
8082510e
YZ
4617 if (pending_del_nr) {
4618 ret = btrfs_del_items(trans, root, path,
4619 pending_del_slot,
4620 pending_del_nr);
79787eaa 4621 if (ret) {
66642832 4622 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4623 goto error;
4624 }
8082510e
YZ
4625 pending_del_nr = 0;
4626 }
b3b4aa74 4627 btrfs_release_path(path);
28f75a0e 4628 if (should_throttle) {
1262133b
JB
4629 unsigned long updates = trans->delayed_ref_updates;
4630 if (updates) {
4631 trans->delayed_ref_updates = 0;
4632 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4633 if (ret && !err)
4634 err = ret;
4635 }
4636 }
28f75a0e
CM
4637 /*
4638 * if we failed to refill our space rsv, bail out
4639 * and let the transaction restart
4640 */
4641 if (should_end) {
4642 err = -EAGAIN;
4643 goto error;
4644 }
85e21bac 4645 goto search_again;
8082510e
YZ
4646 } else {
4647 path->slots[0]--;
85e21bac 4648 }
39279cc3 4649 }
8082510e 4650out:
85e21bac
CM
4651 if (pending_del_nr) {
4652 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4653 pending_del_nr);
79787eaa 4654 if (ret)
66642832 4655 btrfs_abort_transaction(trans, ret);
85e21bac 4656 }
79787eaa 4657error:
c1aa4575 4658 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4659 btrfs_ordered_update_i_size(inode, last_size, NULL);
28ed1345 4660
39279cc3 4661 btrfs_free_path(path);
28ed1345 4662
ee22184b 4663 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4664 unsigned long updates = trans->delayed_ref_updates;
4665 if (updates) {
4666 trans->delayed_ref_updates = 0;
4667 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4668 if (ret && !err)
4669 err = ret;
4670 }
4671 }
8082510e 4672 return err;
39279cc3
CM
4673}
4674
4675/*
9703fefe 4676 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4677 * @inode - inode that we're zeroing
4678 * @from - the offset to start zeroing
4679 * @len - the length to zero, 0 to zero the entire range respective to the
4680 * offset
4681 * @front - zero up to the offset instead of from the offset on
4682 *
9703fefe 4683 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4684 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4685 */
9703fefe 4686int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4687 int front)
39279cc3 4688{
2aaa6655 4689 struct address_space *mapping = inode->i_mapping;
db94535d 4690 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4691 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4692 struct btrfs_ordered_extent *ordered;
2ac55d41 4693 struct extent_state *cached_state = NULL;
e6dcd2dc 4694 char *kaddr;
db94535d 4695 u32 blocksize = root->sectorsize;
09cbfeaf 4696 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4697 unsigned offset = from & (blocksize - 1);
39279cc3 4698 struct page *page;
3b16a4e3 4699 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4700 int ret = 0;
9703fefe
CR
4701 u64 block_start;
4702 u64 block_end;
39279cc3 4703
2aaa6655
JB
4704 if ((offset & (blocksize - 1)) == 0 &&
4705 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4706 goto out;
9703fefe 4707
7cf5b976 4708 ret = btrfs_delalloc_reserve_space(inode,
9703fefe 4709 round_down(from, blocksize), blocksize);
5d5e103a
JB
4710 if (ret)
4711 goto out;
39279cc3 4712
211c17f5 4713again:
3b16a4e3 4714 page = find_or_create_page(mapping, index, mask);
5d5e103a 4715 if (!page) {
7cf5b976 4716 btrfs_delalloc_release_space(inode,
9703fefe
CR
4717 round_down(from, blocksize),
4718 blocksize);
ac6a2b36 4719 ret = -ENOMEM;
39279cc3 4720 goto out;
5d5e103a 4721 }
e6dcd2dc 4722
9703fefe
CR
4723 block_start = round_down(from, blocksize);
4724 block_end = block_start + blocksize - 1;
e6dcd2dc 4725
39279cc3 4726 if (!PageUptodate(page)) {
9ebefb18 4727 ret = btrfs_readpage(NULL, page);
39279cc3 4728 lock_page(page);
211c17f5
CM
4729 if (page->mapping != mapping) {
4730 unlock_page(page);
09cbfeaf 4731 put_page(page);
211c17f5
CM
4732 goto again;
4733 }
39279cc3
CM
4734 if (!PageUptodate(page)) {
4735 ret = -EIO;
89642229 4736 goto out_unlock;
39279cc3
CM
4737 }
4738 }
211c17f5 4739 wait_on_page_writeback(page);
e6dcd2dc 4740
9703fefe 4741 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4742 set_page_extent_mapped(page);
4743
9703fefe 4744 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4745 if (ordered) {
9703fefe 4746 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4747 &cached_state, GFP_NOFS);
e6dcd2dc 4748 unlock_page(page);
09cbfeaf 4749 put_page(page);
eb84ae03 4750 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4751 btrfs_put_ordered_extent(ordered);
4752 goto again;
4753 }
4754
9703fefe 4755 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4756 EXTENT_DIRTY | EXTENT_DELALLOC |
4757 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4758 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4759
9703fefe 4760 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
2ac55d41 4761 &cached_state);
9ed74f2d 4762 if (ret) {
9703fefe 4763 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4764 &cached_state, GFP_NOFS);
9ed74f2d
JB
4765 goto out_unlock;
4766 }
4767
9703fefe 4768 if (offset != blocksize) {
2aaa6655 4769 if (!len)
9703fefe 4770 len = blocksize - offset;
e6dcd2dc 4771 kaddr = kmap(page);
2aaa6655 4772 if (front)
9703fefe
CR
4773 memset(kaddr + (block_start - page_offset(page)),
4774 0, offset);
2aaa6655 4775 else
9703fefe
CR
4776 memset(kaddr + (block_start - page_offset(page)) + offset,
4777 0, len);
e6dcd2dc
CM
4778 flush_dcache_page(page);
4779 kunmap(page);
4780 }
247e743c 4781 ClearPageChecked(page);
e6dcd2dc 4782 set_page_dirty(page);
9703fefe 4783 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4784 GFP_NOFS);
39279cc3 4785
89642229 4786out_unlock:
5d5e103a 4787 if (ret)
9703fefe
CR
4788 btrfs_delalloc_release_space(inode, block_start,
4789 blocksize);
39279cc3 4790 unlock_page(page);
09cbfeaf 4791 put_page(page);
39279cc3
CM
4792out:
4793 return ret;
4794}
4795
16e7549f
JB
4796static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4797 u64 offset, u64 len)
4798{
4799 struct btrfs_trans_handle *trans;
4800 int ret;
4801
4802 /*
4803 * Still need to make sure the inode looks like it's been updated so
4804 * that any holes get logged if we fsync.
4805 */
4806 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4807 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4808 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4809 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4810 return 0;
4811 }
4812
4813 /*
4814 * 1 - for the one we're dropping
4815 * 1 - for the one we're adding
4816 * 1 - for updating the inode.
4817 */
4818 trans = btrfs_start_transaction(root, 3);
4819 if (IS_ERR(trans))
4820 return PTR_ERR(trans);
4821
4822 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4823 if (ret) {
66642832 4824 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4825 btrfs_end_transaction(trans, root);
4826 return ret;
4827 }
4828
4829 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4830 0, 0, len, 0, len, 0, 0, 0);
4831 if (ret)
66642832 4832 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4833 else
4834 btrfs_update_inode(trans, root, inode);
4835 btrfs_end_transaction(trans, root);
4836 return ret;
4837}
4838
695a0d0d
JB
4839/*
4840 * This function puts in dummy file extents for the area we're creating a hole
4841 * for. So if we are truncating this file to a larger size we need to insert
4842 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4843 * the range between oldsize and size
4844 */
a41ad394 4845int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4846{
9036c102
YZ
4847 struct btrfs_root *root = BTRFS_I(inode)->root;
4848 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4849 struct extent_map *em = NULL;
2ac55d41 4850 struct extent_state *cached_state = NULL;
5dc562c5 4851 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4852 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4853 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4854 u64 last_byte;
4855 u64 cur_offset;
4856 u64 hole_size;
9ed74f2d 4857 int err = 0;
39279cc3 4858
a71754fc 4859 /*
9703fefe
CR
4860 * If our size started in the middle of a block we need to zero out the
4861 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4862 * expose stale data.
4863 */
9703fefe 4864 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4865 if (err)
4866 return err;
4867
9036c102
YZ
4868 if (size <= hole_start)
4869 return 0;
4870
9036c102
YZ
4871 while (1) {
4872 struct btrfs_ordered_extent *ordered;
fa7c1494 4873
ff13db41 4874 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4875 &cached_state);
fa7c1494
MX
4876 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4877 block_end - hole_start);
9036c102
YZ
4878 if (!ordered)
4879 break;
2ac55d41
JB
4880 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4881 &cached_state, GFP_NOFS);
fa7c1494 4882 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4883 btrfs_put_ordered_extent(ordered);
4884 }
39279cc3 4885
9036c102
YZ
4886 cur_offset = hole_start;
4887 while (1) {
4888 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4889 block_end - cur_offset, 0);
79787eaa
JM
4890 if (IS_ERR(em)) {
4891 err = PTR_ERR(em);
f2767956 4892 em = NULL;
79787eaa
JM
4893 break;
4894 }
9036c102 4895 last_byte = min(extent_map_end(em), block_end);
fda2832f 4896 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4897 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4898 struct extent_map *hole_em;
9036c102 4899 hole_size = last_byte - cur_offset;
9ed74f2d 4900
16e7549f
JB
4901 err = maybe_insert_hole(root, inode, cur_offset,
4902 hole_size);
4903 if (err)
3893e33b 4904 break;
5dc562c5
JB
4905 btrfs_drop_extent_cache(inode, cur_offset,
4906 cur_offset + hole_size - 1, 0);
4907 hole_em = alloc_extent_map();
4908 if (!hole_em) {
4909 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4910 &BTRFS_I(inode)->runtime_flags);
4911 goto next;
4912 }
4913 hole_em->start = cur_offset;
4914 hole_em->len = hole_size;
4915 hole_em->orig_start = cur_offset;
8082510e 4916
5dc562c5
JB
4917 hole_em->block_start = EXTENT_MAP_HOLE;
4918 hole_em->block_len = 0;
b4939680 4919 hole_em->orig_block_len = 0;
cc95bef6 4920 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4921 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4922 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4923 hole_em->generation = root->fs_info->generation;
8082510e 4924
5dc562c5
JB
4925 while (1) {
4926 write_lock(&em_tree->lock);
09a2a8f9 4927 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4928 write_unlock(&em_tree->lock);
4929 if (err != -EEXIST)
4930 break;
4931 btrfs_drop_extent_cache(inode, cur_offset,
4932 cur_offset +
4933 hole_size - 1, 0);
4934 }
4935 free_extent_map(hole_em);
9036c102 4936 }
16e7549f 4937next:
9036c102 4938 free_extent_map(em);
a22285a6 4939 em = NULL;
9036c102 4940 cur_offset = last_byte;
8082510e 4941 if (cur_offset >= block_end)
9036c102
YZ
4942 break;
4943 }
a22285a6 4944 free_extent_map(em);
2ac55d41
JB
4945 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4946 GFP_NOFS);
9036c102
YZ
4947 return err;
4948}
39279cc3 4949
3972f260 4950static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4951{
f4a2f4c5
MX
4952 struct btrfs_root *root = BTRFS_I(inode)->root;
4953 struct btrfs_trans_handle *trans;
a41ad394 4954 loff_t oldsize = i_size_read(inode);
3972f260
ES
4955 loff_t newsize = attr->ia_size;
4956 int mask = attr->ia_valid;
8082510e
YZ
4957 int ret;
4958
3972f260
ES
4959 /*
4960 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4961 * special case where we need to update the times despite not having
4962 * these flags set. For all other operations the VFS set these flags
4963 * explicitly if it wants a timestamp update.
4964 */
dff6efc3
CH
4965 if (newsize != oldsize) {
4966 inode_inc_iversion(inode);
4967 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4968 inode->i_ctime = inode->i_mtime =
4969 current_fs_time(inode->i_sb);
4970 }
3972f260 4971
a41ad394 4972 if (newsize > oldsize) {
9ea24bbe
FM
4973 /*
4974 * Don't do an expanding truncate while snapshoting is ongoing.
4975 * This is to ensure the snapshot captures a fully consistent
4976 * state of this file - if the snapshot captures this expanding
4977 * truncation, it must capture all writes that happened before
4978 * this truncation.
4979 */
0bc19f90 4980 btrfs_wait_for_snapshot_creation(root);
a41ad394 4981 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4982 if (ret) {
4983 btrfs_end_write_no_snapshoting(root);
8082510e 4984 return ret;
9ea24bbe 4985 }
8082510e 4986
f4a2f4c5 4987 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4988 if (IS_ERR(trans)) {
4989 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 4990 return PTR_ERR(trans);
9ea24bbe 4991 }
f4a2f4c5
MX
4992
4993 i_size_write(inode, newsize);
4994 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 4995 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 4996 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 4997 btrfs_end_write_no_snapshoting(root);
7ad85bb7 4998 btrfs_end_transaction(trans, root);
a41ad394 4999 } else {
8082510e 5000
a41ad394
JB
5001 /*
5002 * We're truncating a file that used to have good data down to
5003 * zero. Make sure it gets into the ordered flush list so that
5004 * any new writes get down to disk quickly.
5005 */
5006 if (newsize == 0)
72ac3c0d
JB
5007 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5008 &BTRFS_I(inode)->runtime_flags);
8082510e 5009
f3fe820c
JB
5010 /*
5011 * 1 for the orphan item we're going to add
5012 * 1 for the orphan item deletion.
5013 */
5014 trans = btrfs_start_transaction(root, 2);
5015 if (IS_ERR(trans))
5016 return PTR_ERR(trans);
5017
5018 /*
5019 * We need to do this in case we fail at _any_ point during the
5020 * actual truncate. Once we do the truncate_setsize we could
5021 * invalidate pages which forces any outstanding ordered io to
5022 * be instantly completed which will give us extents that need
5023 * to be truncated. If we fail to get an orphan inode down we
5024 * could have left over extents that were never meant to live,
01327610 5025 * so we need to guarantee from this point on that everything
f3fe820c
JB
5026 * will be consistent.
5027 */
5028 ret = btrfs_orphan_add(trans, inode);
5029 btrfs_end_transaction(trans, root);
5030 if (ret)
5031 return ret;
5032
a41ad394
JB
5033 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5034 truncate_setsize(inode, newsize);
2e60a51e
MX
5035
5036 /* Disable nonlocked read DIO to avoid the end less truncate */
5037 btrfs_inode_block_unlocked_dio(inode);
5038 inode_dio_wait(inode);
5039 btrfs_inode_resume_unlocked_dio(inode);
5040
a41ad394 5041 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5042 if (ret && inode->i_nlink) {
5043 int err;
5044
5045 /*
5046 * failed to truncate, disk_i_size is only adjusted down
5047 * as we remove extents, so it should represent the true
5048 * size of the inode, so reset the in memory size and
5049 * delete our orphan entry.
5050 */
5051 trans = btrfs_join_transaction(root);
5052 if (IS_ERR(trans)) {
5053 btrfs_orphan_del(NULL, inode);
5054 return ret;
5055 }
5056 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5057 err = btrfs_orphan_del(trans, inode);
5058 if (err)
66642832 5059 btrfs_abort_transaction(trans, err);
7f4f6e0a
JB
5060 btrfs_end_transaction(trans, root);
5061 }
8082510e
YZ
5062 }
5063
a41ad394 5064 return ret;
8082510e
YZ
5065}
5066
9036c102
YZ
5067static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5068{
2b0143b5 5069 struct inode *inode = d_inode(dentry);
b83cc969 5070 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5071 int err;
39279cc3 5072
b83cc969
LZ
5073 if (btrfs_root_readonly(root))
5074 return -EROFS;
5075
9036c102
YZ
5076 err = inode_change_ok(inode, attr);
5077 if (err)
5078 return err;
2bf5a725 5079
5a3f23d5 5080 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5081 err = btrfs_setsize(inode, attr);
8082510e
YZ
5082 if (err)
5083 return err;
39279cc3 5084 }
9036c102 5085
1025774c
CH
5086 if (attr->ia_valid) {
5087 setattr_copy(inode, attr);
0c4d2d95 5088 inode_inc_iversion(inode);
22c44fe6 5089 err = btrfs_dirty_inode(inode);
1025774c 5090
22c44fe6 5091 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5092 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5093 }
33268eaf 5094
39279cc3
CM
5095 return err;
5096}
61295eb8 5097
131e404a
FDBM
5098/*
5099 * While truncating the inode pages during eviction, we get the VFS calling
5100 * btrfs_invalidatepage() against each page of the inode. This is slow because
5101 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5102 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5103 * extent_state structures over and over, wasting lots of time.
5104 *
5105 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5106 * those expensive operations on a per page basis and do only the ordered io
5107 * finishing, while we release here the extent_map and extent_state structures,
5108 * without the excessive merging and splitting.
5109 */
5110static void evict_inode_truncate_pages(struct inode *inode)
5111{
5112 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5113 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5114 struct rb_node *node;
5115
5116 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5117 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5118
5119 write_lock(&map_tree->lock);
5120 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5121 struct extent_map *em;
5122
5123 node = rb_first(&map_tree->map);
5124 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5125 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5126 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5127 remove_extent_mapping(map_tree, em);
5128 free_extent_map(em);
7064dd5c
FM
5129 if (need_resched()) {
5130 write_unlock(&map_tree->lock);
5131 cond_resched();
5132 write_lock(&map_tree->lock);
5133 }
131e404a
FDBM
5134 }
5135 write_unlock(&map_tree->lock);
5136
6ca07097
FM
5137 /*
5138 * Keep looping until we have no more ranges in the io tree.
5139 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5140 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5141 * still in progress (unlocked the pages in the bio but did not yet
5142 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5143 * ranges can still be locked and eviction started because before
5144 * submitting those bios, which are executed by a separate task (work
5145 * queue kthread), inode references (inode->i_count) were not taken
5146 * (which would be dropped in the end io callback of each bio).
5147 * Therefore here we effectively end up waiting for those bios and
5148 * anyone else holding locked ranges without having bumped the inode's
5149 * reference count - if we don't do it, when they access the inode's
5150 * io_tree to unlock a range it may be too late, leading to an
5151 * use-after-free issue.
5152 */
131e404a
FDBM
5153 spin_lock(&io_tree->lock);
5154 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5155 struct extent_state *state;
5156 struct extent_state *cached_state = NULL;
6ca07097
FM
5157 u64 start;
5158 u64 end;
131e404a
FDBM
5159
5160 node = rb_first(&io_tree->state);
5161 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5162 start = state->start;
5163 end = state->end;
131e404a
FDBM
5164 spin_unlock(&io_tree->lock);
5165
ff13db41 5166 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5167
5168 /*
5169 * If still has DELALLOC flag, the extent didn't reach disk,
5170 * and its reserved space won't be freed by delayed_ref.
5171 * So we need to free its reserved space here.
5172 * (Refer to comment in btrfs_invalidatepage, case 2)
5173 *
5174 * Note, end is the bytenr of last byte, so we need + 1 here.
5175 */
5176 if (state->state & EXTENT_DELALLOC)
5177 btrfs_qgroup_free_data(inode, start, end - start + 1);
5178
6ca07097 5179 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5180 EXTENT_LOCKED | EXTENT_DIRTY |
5181 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5182 EXTENT_DEFRAG, 1, 1,
5183 &cached_state, GFP_NOFS);
131e404a 5184
7064dd5c 5185 cond_resched();
131e404a
FDBM
5186 spin_lock(&io_tree->lock);
5187 }
5188 spin_unlock(&io_tree->lock);
5189}
5190
bd555975 5191void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
5192{
5193 struct btrfs_trans_handle *trans;
5194 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5195 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5196 int steal_from_global = 0;
3d48d981 5197 u64 min_size;
39279cc3
CM
5198 int ret;
5199
1abe9b8a 5200 trace_btrfs_inode_evict(inode);
5201
3d48d981
NB
5202 if (!root) {
5203 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5204 return;
5205 }
5206
5207 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5208
131e404a
FDBM
5209 evict_inode_truncate_pages(inode);
5210
69e9c6c6
SB
5211 if (inode->i_nlink &&
5212 ((btrfs_root_refs(&root->root_item) != 0 &&
5213 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5214 btrfs_is_free_space_inode(inode)))
bd555975
AV
5215 goto no_delete;
5216
39279cc3 5217 if (is_bad_inode(inode)) {
7b128766 5218 btrfs_orphan_del(NULL, inode);
39279cc3
CM
5219 goto no_delete;
5220 }
bd555975 5221 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5222 if (!special_file(inode->i_mode))
5223 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5224
f612496b
MX
5225 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5226
c71bf099 5227 if (root->fs_info->log_root_recovering) {
6bf02314 5228 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5229 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5230 goto no_delete;
5231 }
5232
76dda93c 5233 if (inode->i_nlink > 0) {
69e9c6c6
SB
5234 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5235 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5236 goto no_delete;
5237 }
5238
0e8c36a9
MX
5239 ret = btrfs_commit_inode_delayed_inode(inode);
5240 if (ret) {
5241 btrfs_orphan_del(NULL, inode);
5242 goto no_delete;
5243 }
5244
66d8f3dd 5245 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
5246 if (!rsv) {
5247 btrfs_orphan_del(NULL, inode);
5248 goto no_delete;
5249 }
4a338542 5250 rsv->size = min_size;
ca7e70f5 5251 rsv->failfast = 1;
726c35fa 5252 global_rsv = &root->fs_info->global_block_rsv;
4289a667 5253
dbe674a9 5254 btrfs_i_size_write(inode, 0);
5f39d397 5255
4289a667 5256 /*
8407aa46
MX
5257 * This is a bit simpler than btrfs_truncate since we've already
5258 * reserved our space for our orphan item in the unlink, so we just
5259 * need to reserve some slack space in case we add bytes and update
5260 * inode item when doing the truncate.
4289a667 5261 */
8082510e 5262 while (1) {
08e007d2
MX
5263 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5264 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5265
5266 /*
5267 * Try and steal from the global reserve since we will
5268 * likely not use this space anyway, we want to try as
5269 * hard as possible to get this to work.
5270 */
5271 if (ret)
3bce876f
JB
5272 steal_from_global++;
5273 else
5274 steal_from_global = 0;
5275 ret = 0;
d68fc57b 5276
3bce876f
JB
5277 /*
5278 * steal_from_global == 0: we reserved stuff, hooray!
5279 * steal_from_global == 1: we didn't reserve stuff, boo!
5280 * steal_from_global == 2: we've committed, still not a lot of
5281 * room but maybe we'll have room in the global reserve this
5282 * time.
5283 * steal_from_global == 3: abandon all hope!
5284 */
5285 if (steal_from_global > 2) {
c2cf52eb
SK
5286 btrfs_warn(root->fs_info,
5287 "Could not get space for a delete, will truncate on mount %d",
5288 ret);
4289a667
JB
5289 btrfs_orphan_del(NULL, inode);
5290 btrfs_free_block_rsv(root, rsv);
5291 goto no_delete;
d68fc57b 5292 }
7b128766 5293
0e8c36a9 5294 trans = btrfs_join_transaction(root);
4289a667
JB
5295 if (IS_ERR(trans)) {
5296 btrfs_orphan_del(NULL, inode);
5297 btrfs_free_block_rsv(root, rsv);
5298 goto no_delete;
d68fc57b 5299 }
7b128766 5300
3bce876f 5301 /*
01327610 5302 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5303 * sure there is room to do it, if not we need to commit and try
5304 * again.
5305 */
5306 if (steal_from_global) {
5307 if (!btrfs_check_space_for_delayed_refs(trans, root))
5308 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5309 min_size, 0);
3bce876f
JB
5310 else
5311 ret = -ENOSPC;
5312 }
5313
5314 /*
5315 * Couldn't steal from the global reserve, we have too much
5316 * pending stuff built up, commit the transaction and try it
5317 * again.
5318 */
5319 if (ret) {
5320 ret = btrfs_commit_transaction(trans, root);
5321 if (ret) {
5322 btrfs_orphan_del(NULL, inode);
5323 btrfs_free_block_rsv(root, rsv);
5324 goto no_delete;
5325 }
5326 continue;
5327 } else {
5328 steal_from_global = 0;
5329 }
5330
4289a667
JB
5331 trans->block_rsv = rsv;
5332
d68fc57b 5333 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5334 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5335 break;
85e21bac 5336
8407aa46 5337 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
5338 btrfs_end_transaction(trans, root);
5339 trans = NULL;
b53d3f5d 5340 btrfs_btree_balance_dirty(root);
8082510e 5341 }
5f39d397 5342
4289a667
JB
5343 btrfs_free_block_rsv(root, rsv);
5344
4ef31a45
JB
5345 /*
5346 * Errors here aren't a big deal, it just means we leave orphan items
5347 * in the tree. They will be cleaned up on the next mount.
5348 */
8082510e 5349 if (ret == 0) {
4289a667 5350 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
5351 btrfs_orphan_del(trans, inode);
5352 } else {
5353 btrfs_orphan_del(NULL, inode);
8082510e 5354 }
54aa1f4d 5355
4289a667 5356 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
5357 if (!(root == root->fs_info->tree_root ||
5358 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 5359 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 5360
54aa1f4d 5361 btrfs_end_transaction(trans, root);
b53d3f5d 5362 btrfs_btree_balance_dirty(root);
39279cc3 5363no_delete:
89042e5a 5364 btrfs_remove_delayed_node(inode);
dbd5768f 5365 clear_inode(inode);
39279cc3
CM
5366}
5367
5368/*
5369 * this returns the key found in the dir entry in the location pointer.
5370 * If no dir entries were found, location->objectid is 0.
5371 */
5372static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5373 struct btrfs_key *location)
5374{
5375 const char *name = dentry->d_name.name;
5376 int namelen = dentry->d_name.len;
5377 struct btrfs_dir_item *di;
5378 struct btrfs_path *path;
5379 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5380 int ret = 0;
39279cc3
CM
5381
5382 path = btrfs_alloc_path();
d8926bb3
MF
5383 if (!path)
5384 return -ENOMEM;
3954401f 5385
33345d01 5386 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 5387 namelen, 0);
0d9f7f3e
Y
5388 if (IS_ERR(di))
5389 ret = PTR_ERR(di);
d397712b 5390
c704005d 5391 if (IS_ERR_OR_NULL(di))
3954401f 5392 goto out_err;
d397712b 5393
5f39d397 5394 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5395out:
39279cc3
CM
5396 btrfs_free_path(path);
5397 return ret;
3954401f
CM
5398out_err:
5399 location->objectid = 0;
5400 goto out;
39279cc3
CM
5401}
5402
5403/*
5404 * when we hit a tree root in a directory, the btrfs part of the inode
5405 * needs to be changed to reflect the root directory of the tree root. This
5406 * is kind of like crossing a mount point.
5407 */
5408static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
5409 struct inode *dir,
5410 struct dentry *dentry,
5411 struct btrfs_key *location,
5412 struct btrfs_root **sub_root)
39279cc3 5413{
4df27c4d
YZ
5414 struct btrfs_path *path;
5415 struct btrfs_root *new_root;
5416 struct btrfs_root_ref *ref;
5417 struct extent_buffer *leaf;
1d4c08e0 5418 struct btrfs_key key;
4df27c4d
YZ
5419 int ret;
5420 int err = 0;
39279cc3 5421
4df27c4d
YZ
5422 path = btrfs_alloc_path();
5423 if (!path) {
5424 err = -ENOMEM;
5425 goto out;
5426 }
39279cc3 5427
4df27c4d 5428 err = -ENOENT;
1d4c08e0
DS
5429 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5430 key.type = BTRFS_ROOT_REF_KEY;
5431 key.offset = location->objectid;
5432
5433 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5434 0, 0);
4df27c4d
YZ
5435 if (ret) {
5436 if (ret < 0)
5437 err = ret;
5438 goto out;
5439 }
39279cc3 5440
4df27c4d
YZ
5441 leaf = path->nodes[0];
5442 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5443 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5444 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5445 goto out;
39279cc3 5446
4df27c4d
YZ
5447 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5448 (unsigned long)(ref + 1),
5449 dentry->d_name.len);
5450 if (ret)
5451 goto out;
5452
b3b4aa74 5453 btrfs_release_path(path);
4df27c4d
YZ
5454
5455 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5456 if (IS_ERR(new_root)) {
5457 err = PTR_ERR(new_root);
5458 goto out;
5459 }
5460
4df27c4d
YZ
5461 *sub_root = new_root;
5462 location->objectid = btrfs_root_dirid(&new_root->root_item);
5463 location->type = BTRFS_INODE_ITEM_KEY;
5464 location->offset = 0;
5465 err = 0;
5466out:
5467 btrfs_free_path(path);
5468 return err;
39279cc3
CM
5469}
5470
5d4f98a2
YZ
5471static void inode_tree_add(struct inode *inode)
5472{
5473 struct btrfs_root *root = BTRFS_I(inode)->root;
5474 struct btrfs_inode *entry;
03e860bd
FNP
5475 struct rb_node **p;
5476 struct rb_node *parent;
cef21937 5477 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5478 u64 ino = btrfs_ino(inode);
5d4f98a2 5479
1d3382cb 5480 if (inode_unhashed(inode))
76dda93c 5481 return;
e1409cef 5482 parent = NULL;
5d4f98a2 5483 spin_lock(&root->inode_lock);
e1409cef 5484 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5485 while (*p) {
5486 parent = *p;
5487 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5488
33345d01 5489 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5490 p = &parent->rb_left;
33345d01 5491 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5492 p = &parent->rb_right;
5d4f98a2
YZ
5493 else {
5494 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5495 (I_WILL_FREE | I_FREEING)));
cef21937 5496 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5497 RB_CLEAR_NODE(parent);
5498 spin_unlock(&root->inode_lock);
cef21937 5499 return;
5d4f98a2
YZ
5500 }
5501 }
cef21937
FDBM
5502 rb_link_node(new, parent, p);
5503 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5504 spin_unlock(&root->inode_lock);
5505}
5506
5507static void inode_tree_del(struct inode *inode)
5508{
5509 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5510 int empty = 0;
5d4f98a2 5511
03e860bd 5512 spin_lock(&root->inode_lock);
5d4f98a2 5513 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5514 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5515 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5516 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5517 }
03e860bd 5518 spin_unlock(&root->inode_lock);
76dda93c 5519
69e9c6c6 5520 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5521 synchronize_srcu(&root->fs_info->subvol_srcu);
5522 spin_lock(&root->inode_lock);
5523 empty = RB_EMPTY_ROOT(&root->inode_tree);
5524 spin_unlock(&root->inode_lock);
5525 if (empty)
5526 btrfs_add_dead_root(root);
5527 }
5528}
5529
143bede5 5530void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5531{
5532 struct rb_node *node;
5533 struct rb_node *prev;
5534 struct btrfs_inode *entry;
5535 struct inode *inode;
5536 u64 objectid = 0;
5537
7813b3db
LB
5538 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5539 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5540
5541 spin_lock(&root->inode_lock);
5542again:
5543 node = root->inode_tree.rb_node;
5544 prev = NULL;
5545 while (node) {
5546 prev = node;
5547 entry = rb_entry(node, struct btrfs_inode, rb_node);
5548
33345d01 5549 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5550 node = node->rb_left;
33345d01 5551 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5552 node = node->rb_right;
5553 else
5554 break;
5555 }
5556 if (!node) {
5557 while (prev) {
5558 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5559 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5560 node = prev;
5561 break;
5562 }
5563 prev = rb_next(prev);
5564 }
5565 }
5566 while (node) {
5567 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5568 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5569 inode = igrab(&entry->vfs_inode);
5570 if (inode) {
5571 spin_unlock(&root->inode_lock);
5572 if (atomic_read(&inode->i_count) > 1)
5573 d_prune_aliases(inode);
5574 /*
45321ac5 5575 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5576 * the inode cache when its usage count
5577 * hits zero.
5578 */
5579 iput(inode);
5580 cond_resched();
5581 spin_lock(&root->inode_lock);
5582 goto again;
5583 }
5584
5585 if (cond_resched_lock(&root->inode_lock))
5586 goto again;
5587
5588 node = rb_next(node);
5589 }
5590 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5591}
5592
e02119d5
CM
5593static int btrfs_init_locked_inode(struct inode *inode, void *p)
5594{
5595 struct btrfs_iget_args *args = p;
90d3e592
CM
5596 inode->i_ino = args->location->objectid;
5597 memcpy(&BTRFS_I(inode)->location, args->location,
5598 sizeof(*args->location));
e02119d5 5599 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5600 return 0;
5601}
5602
5603static int btrfs_find_actor(struct inode *inode, void *opaque)
5604{
5605 struct btrfs_iget_args *args = opaque;
90d3e592 5606 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5607 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5608}
5609
5d4f98a2 5610static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5611 struct btrfs_key *location,
5d4f98a2 5612 struct btrfs_root *root)
39279cc3
CM
5613{
5614 struct inode *inode;
5615 struct btrfs_iget_args args;
90d3e592 5616 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5617
90d3e592 5618 args.location = location;
39279cc3
CM
5619 args.root = root;
5620
778ba82b 5621 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5622 btrfs_init_locked_inode,
5623 (void *)&args);
5624 return inode;
5625}
5626
1a54ef8c
BR
5627/* Get an inode object given its location and corresponding root.
5628 * Returns in *is_new if the inode was read from disk
5629 */
5630struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5631 struct btrfs_root *root, int *new)
1a54ef8c
BR
5632{
5633 struct inode *inode;
5634
90d3e592 5635 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5636 if (!inode)
5d4f98a2 5637 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5638
5639 if (inode->i_state & I_NEW) {
67710892
FM
5640 int ret;
5641
5642 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5643 if (!is_bad_inode(inode)) {
5644 inode_tree_add(inode);
5645 unlock_new_inode(inode);
5646 if (new)
5647 *new = 1;
5648 } else {
e0b6d65b
ST
5649 unlock_new_inode(inode);
5650 iput(inode);
67710892
FM
5651 ASSERT(ret < 0);
5652 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5653 }
5654 }
5655
1a54ef8c
BR
5656 return inode;
5657}
5658
4df27c4d
YZ
5659static struct inode *new_simple_dir(struct super_block *s,
5660 struct btrfs_key *key,
5661 struct btrfs_root *root)
5662{
5663 struct inode *inode = new_inode(s);
5664
5665 if (!inode)
5666 return ERR_PTR(-ENOMEM);
5667
4df27c4d
YZ
5668 BTRFS_I(inode)->root = root;
5669 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5670 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5671
5672 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5673 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5674 inode->i_fop = &simple_dir_operations;
5675 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
04b285f3 5676 inode->i_mtime = current_fs_time(inode->i_sb);
9cc97d64 5677 inode->i_atime = inode->i_mtime;
5678 inode->i_ctime = inode->i_mtime;
5679 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5680
5681 return inode;
5682}
5683
3de4586c 5684struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5685{
d397712b 5686 struct inode *inode;
4df27c4d 5687 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5688 struct btrfs_root *sub_root = root;
5689 struct btrfs_key location;
76dda93c 5690 int index;
b4aff1f8 5691 int ret = 0;
39279cc3
CM
5692
5693 if (dentry->d_name.len > BTRFS_NAME_LEN)
5694 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5695
39e3c955 5696 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5697 if (ret < 0)
5698 return ERR_PTR(ret);
5f39d397 5699
4df27c4d 5700 if (location.objectid == 0)
5662344b 5701 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5702
5703 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5704 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5705 return inode;
5706 }
5707
5708 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5709
76dda93c 5710 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5711 ret = fixup_tree_root_location(root, dir, dentry,
5712 &location, &sub_root);
5713 if (ret < 0) {
5714 if (ret != -ENOENT)
5715 inode = ERR_PTR(ret);
5716 else
5717 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5718 } else {
73f73415 5719 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5720 }
76dda93c
YZ
5721 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5722
34d19bad 5723 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5724 down_read(&root->fs_info->cleanup_work_sem);
5725 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5726 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5727 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5728 if (ret) {
5729 iput(inode);
66b4ffd1 5730 inode = ERR_PTR(ret);
01cd3367 5731 }
c71bf099
YZ
5732 }
5733
3de4586c
CM
5734 return inode;
5735}
5736
fe15ce44 5737static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5738{
5739 struct btrfs_root *root;
2b0143b5 5740 struct inode *inode = d_inode(dentry);
76dda93c 5741
848cce0d 5742 if (!inode && !IS_ROOT(dentry))
2b0143b5 5743 inode = d_inode(dentry->d_parent);
76dda93c 5744
848cce0d
LZ
5745 if (inode) {
5746 root = BTRFS_I(inode)->root;
efefb143
YZ
5747 if (btrfs_root_refs(&root->root_item) == 0)
5748 return 1;
848cce0d
LZ
5749
5750 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5751 return 1;
efefb143 5752 }
76dda93c
YZ
5753 return 0;
5754}
5755
b4aff1f8
JB
5756static void btrfs_dentry_release(struct dentry *dentry)
5757{
944a4515 5758 kfree(dentry->d_fsdata);
b4aff1f8
JB
5759}
5760
3de4586c 5761static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5762 unsigned int flags)
3de4586c 5763{
5662344b 5764 struct inode *inode;
a66e7cc6 5765
5662344b
TI
5766 inode = btrfs_lookup_dentry(dir, dentry);
5767 if (IS_ERR(inode)) {
5768 if (PTR_ERR(inode) == -ENOENT)
5769 inode = NULL;
5770 else
5771 return ERR_CAST(inode);
5772 }
5773
41d28bca 5774 return d_splice_alias(inode, dentry);
39279cc3
CM
5775}
5776
16cdcec7 5777unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5778 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5779};
5780
9cdda8d3 5781static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5782{
9cdda8d3 5783 struct inode *inode = file_inode(file);
39279cc3
CM
5784 struct btrfs_root *root = BTRFS_I(inode)->root;
5785 struct btrfs_item *item;
5786 struct btrfs_dir_item *di;
5787 struct btrfs_key key;
5f39d397 5788 struct btrfs_key found_key;
39279cc3 5789 struct btrfs_path *path;
16cdcec7
MX
5790 struct list_head ins_list;
5791 struct list_head del_list;
39279cc3 5792 int ret;
5f39d397 5793 struct extent_buffer *leaf;
39279cc3 5794 int slot;
39279cc3
CM
5795 unsigned char d_type;
5796 int over = 0;
5797 u32 di_cur;
5798 u32 di_total;
5799 u32 di_len;
5800 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5801 char tmp_name[32];
5802 char *name_ptr;
5803 int name_len;
9cdda8d3 5804 int is_curr = 0; /* ctx->pos points to the current index? */
bc4ef759 5805 bool emitted;
02dbfc99 5806 bool put = false;
39279cc3
CM
5807
5808 /* FIXME, use a real flag for deciding about the key type */
5809 if (root->fs_info->tree_root == root)
5810 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5811
9cdda8d3
AV
5812 if (!dir_emit_dots(file, ctx))
5813 return 0;
5814
49593bfa 5815 path = btrfs_alloc_path();
16cdcec7
MX
5816 if (!path)
5817 return -ENOMEM;
ff5714cc 5818
e4058b54 5819 path->reada = READA_FORWARD;
49593bfa 5820
16cdcec7
MX
5821 if (key_type == BTRFS_DIR_INDEX_KEY) {
5822 INIT_LIST_HEAD(&ins_list);
5823 INIT_LIST_HEAD(&del_list);
02dbfc99
OS
5824 put = btrfs_readdir_get_delayed_items(inode, &ins_list,
5825 &del_list);
16cdcec7
MX
5826 }
5827
962a298f 5828 key.type = key_type;
9cdda8d3 5829 key.offset = ctx->pos;
33345d01 5830 key.objectid = btrfs_ino(inode);
5f39d397 5831
39279cc3
CM
5832 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5833 if (ret < 0)
5834 goto err;
49593bfa 5835
bc4ef759 5836 emitted = false;
49593bfa 5837 while (1) {
5f39d397 5838 leaf = path->nodes[0];
39279cc3 5839 slot = path->slots[0];
b9e03af0
LZ
5840 if (slot >= btrfs_header_nritems(leaf)) {
5841 ret = btrfs_next_leaf(root, path);
5842 if (ret < 0)
5843 goto err;
5844 else if (ret > 0)
5845 break;
5846 continue;
39279cc3 5847 }
3de4586c 5848
dd3cc16b 5849 item = btrfs_item_nr(slot);
5f39d397
CM
5850 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5851
5852 if (found_key.objectid != key.objectid)
39279cc3 5853 break;
962a298f 5854 if (found_key.type != key_type)
39279cc3 5855 break;
9cdda8d3 5856 if (found_key.offset < ctx->pos)
b9e03af0 5857 goto next;
16cdcec7
MX
5858 if (key_type == BTRFS_DIR_INDEX_KEY &&
5859 btrfs_should_delete_dir_index(&del_list,
5860 found_key.offset))
5861 goto next;
5f39d397 5862
9cdda8d3 5863 ctx->pos = found_key.offset;
16cdcec7 5864 is_curr = 1;
49593bfa 5865
39279cc3
CM
5866 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5867 di_cur = 0;
5f39d397 5868 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5869
5870 while (di_cur < di_total) {
5f39d397
CM
5871 struct btrfs_key location;
5872
22a94d44
JB
5873 if (verify_dir_item(root, leaf, di))
5874 break;
5875
5f39d397 5876 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5877 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5878 name_ptr = tmp_name;
5879 } else {
49e350a4 5880 name_ptr = kmalloc(name_len, GFP_KERNEL);
49593bfa
DW
5881 if (!name_ptr) {
5882 ret = -ENOMEM;
5883 goto err;
5884 }
5f39d397
CM
5885 }
5886 read_extent_buffer(leaf, name_ptr,
5887 (unsigned long)(di + 1), name_len);
5888
5889 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5890 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5891
fede766f 5892
3de4586c 5893 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5894 * skip it.
5895 *
5896 * In contrast to old kernels, we insert the snapshot's
5897 * dir item and dir index after it has been created, so
5898 * we won't find a reference to our own snapshot. We
5899 * still keep the following code for backward
5900 * compatibility.
3de4586c
CM
5901 */
5902 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5903 location.objectid == root->root_key.objectid) {
5904 over = 0;
5905 goto skip;
5906 }
9cdda8d3
AV
5907 over = !dir_emit(ctx, name_ptr, name_len,
5908 location.objectid, d_type);
5f39d397 5909
3de4586c 5910skip:
5f39d397
CM
5911 if (name_ptr != tmp_name)
5912 kfree(name_ptr);
5913
39279cc3
CM
5914 if (over)
5915 goto nopos;
bc4ef759 5916 emitted = true;
5103e947 5917 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5918 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5919 di_cur += di_len;
5920 di = (struct btrfs_dir_item *)((char *)di + di_len);
5921 }
b9e03af0
LZ
5922next:
5923 path->slots[0]++;
39279cc3 5924 }
49593bfa 5925
16cdcec7
MX
5926 if (key_type == BTRFS_DIR_INDEX_KEY) {
5927 if (is_curr)
9cdda8d3 5928 ctx->pos++;
bc4ef759 5929 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
16cdcec7
MX
5930 if (ret)
5931 goto nopos;
5932 }
5933
bc4ef759
DS
5934 /*
5935 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5936 * it was was set to the termination value in previous call. We assume
5937 * that "." and ".." were emitted if we reach this point and set the
5938 * termination value as well for an empty directory.
5939 */
5940 if (ctx->pos > 2 && !emitted)
5941 goto nopos;
5942
49593bfa 5943 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5944 ctx->pos++;
5945
5946 /*
5947 * Stop new entries from being returned after we return the last
5948 * entry.
5949 *
5950 * New directory entries are assigned a strictly increasing
5951 * offset. This means that new entries created during readdir
5952 * are *guaranteed* to be seen in the future by that readdir.
5953 * This has broken buggy programs which operate on names as
5954 * they're returned by readdir. Until we re-use freed offsets
5955 * we have this hack to stop new entries from being returned
5956 * under the assumption that they'll never reach this huge
5957 * offset.
5958 *
5959 * This is being careful not to overflow 32bit loff_t unless the
5960 * last entry requires it because doing so has broken 32bit apps
5961 * in the past.
5962 */
5963 if (key_type == BTRFS_DIR_INDEX_KEY) {
5964 if (ctx->pos >= INT_MAX)
5965 ctx->pos = LLONG_MAX;
5966 else
5967 ctx->pos = INT_MAX;
5968 }
39279cc3
CM
5969nopos:
5970 ret = 0;
5971err:
02dbfc99
OS
5972 if (put)
5973 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5974 btrfs_free_path(path);
39279cc3
CM
5975 return ret;
5976}
5977
a9185b41 5978int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5979{
5980 struct btrfs_root *root = BTRFS_I(inode)->root;
5981 struct btrfs_trans_handle *trans;
5982 int ret = 0;
0af3d00b 5983 bool nolock = false;
39279cc3 5984
72ac3c0d 5985 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5986 return 0;
5987
83eea1f1 5988 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5989 nolock = true;
0af3d00b 5990
a9185b41 5991 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5992 if (nolock)
7a7eaa40 5993 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5994 else
7a7eaa40 5995 trans = btrfs_join_transaction(root);
3612b495
TI
5996 if (IS_ERR(trans))
5997 return PTR_ERR(trans);
a698d075 5998 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5999 }
6000 return ret;
6001}
6002
6003/*
54aa1f4d 6004 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6005 * inode changes. But, it is most likely to find the inode in cache.
6006 * FIXME, needs more benchmarking...there are no reasons other than performance
6007 * to keep or drop this code.
6008 */
48a3b636 6009static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
6010{
6011 struct btrfs_root *root = BTRFS_I(inode)->root;
6012 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6013 int ret;
6014
72ac3c0d 6015 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6016 return 0;
39279cc3 6017
7a7eaa40 6018 trans = btrfs_join_transaction(root);
22c44fe6
JB
6019 if (IS_ERR(trans))
6020 return PTR_ERR(trans);
8929ecfa
YZ
6021
6022 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6023 if (ret && ret == -ENOSPC) {
6024 /* whoops, lets try again with the full transaction */
6025 btrfs_end_transaction(trans, root);
6026 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6027 if (IS_ERR(trans))
6028 return PTR_ERR(trans);
8929ecfa 6029
94b60442 6030 ret = btrfs_update_inode(trans, root, inode);
94b60442 6031 }
39279cc3 6032 btrfs_end_transaction(trans, root);
16cdcec7
MX
6033 if (BTRFS_I(inode)->delayed_node)
6034 btrfs_balance_delayed_items(root);
22c44fe6
JB
6035
6036 return ret;
6037}
6038
6039/*
6040 * This is a copy of file_update_time. We need this so we can return error on
6041 * ENOSPC for updating the inode in the case of file write and mmap writes.
6042 */
e41f941a
JB
6043static int btrfs_update_time(struct inode *inode, struct timespec *now,
6044 int flags)
22c44fe6 6045{
2bc55652
AB
6046 struct btrfs_root *root = BTRFS_I(inode)->root;
6047
6048 if (btrfs_root_readonly(root))
6049 return -EROFS;
6050
e41f941a 6051 if (flags & S_VERSION)
22c44fe6 6052 inode_inc_iversion(inode);
e41f941a
JB
6053 if (flags & S_CTIME)
6054 inode->i_ctime = *now;
6055 if (flags & S_MTIME)
6056 inode->i_mtime = *now;
6057 if (flags & S_ATIME)
6058 inode->i_atime = *now;
6059 return btrfs_dirty_inode(inode);
39279cc3
CM
6060}
6061
d352ac68
CM
6062/*
6063 * find the highest existing sequence number in a directory
6064 * and then set the in-memory index_cnt variable to reflect
6065 * free sequence numbers
6066 */
aec7477b
JB
6067static int btrfs_set_inode_index_count(struct inode *inode)
6068{
6069 struct btrfs_root *root = BTRFS_I(inode)->root;
6070 struct btrfs_key key, found_key;
6071 struct btrfs_path *path;
6072 struct extent_buffer *leaf;
6073 int ret;
6074
33345d01 6075 key.objectid = btrfs_ino(inode);
962a298f 6076 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6077 key.offset = (u64)-1;
6078
6079 path = btrfs_alloc_path();
6080 if (!path)
6081 return -ENOMEM;
6082
6083 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6084 if (ret < 0)
6085 goto out;
6086 /* FIXME: we should be able to handle this */
6087 if (ret == 0)
6088 goto out;
6089 ret = 0;
6090
6091 /*
6092 * MAGIC NUMBER EXPLANATION:
6093 * since we search a directory based on f_pos we have to start at 2
6094 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6095 * else has to start at 2
6096 */
6097 if (path->slots[0] == 0) {
6098 BTRFS_I(inode)->index_cnt = 2;
6099 goto out;
6100 }
6101
6102 path->slots[0]--;
6103
6104 leaf = path->nodes[0];
6105 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6106
33345d01 6107 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6108 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
6109 BTRFS_I(inode)->index_cnt = 2;
6110 goto out;
6111 }
6112
6113 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6114out:
6115 btrfs_free_path(path);
6116 return ret;
6117}
6118
d352ac68
CM
6119/*
6120 * helper to find a free sequence number in a given directory. This current
6121 * code is very simple, later versions will do smarter things in the btree
6122 */
3de4586c 6123int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
6124{
6125 int ret = 0;
6126
6127 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
6128 ret = btrfs_inode_delayed_dir_index_count(dir);
6129 if (ret) {
6130 ret = btrfs_set_inode_index_count(dir);
6131 if (ret)
6132 return ret;
6133 }
aec7477b
JB
6134 }
6135
00e4e6b3 6136 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
6137 BTRFS_I(dir)->index_cnt++;
6138
6139 return ret;
6140}
6141
b0d5d10f
CM
6142static int btrfs_insert_inode_locked(struct inode *inode)
6143{
6144 struct btrfs_iget_args args;
6145 args.location = &BTRFS_I(inode)->location;
6146 args.root = BTRFS_I(inode)->root;
6147
6148 return insert_inode_locked4(inode,
6149 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6150 btrfs_find_actor, &args);
6151}
6152
39279cc3
CM
6153static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6154 struct btrfs_root *root,
aec7477b 6155 struct inode *dir,
9c58309d 6156 const char *name, int name_len,
175a4eb7
AV
6157 u64 ref_objectid, u64 objectid,
6158 umode_t mode, u64 *index)
39279cc3
CM
6159{
6160 struct inode *inode;
5f39d397 6161 struct btrfs_inode_item *inode_item;
39279cc3 6162 struct btrfs_key *location;
5f39d397 6163 struct btrfs_path *path;
9c58309d
CM
6164 struct btrfs_inode_ref *ref;
6165 struct btrfs_key key[2];
6166 u32 sizes[2];
ef3b9af5 6167 int nitems = name ? 2 : 1;
9c58309d 6168 unsigned long ptr;
39279cc3 6169 int ret;
39279cc3 6170
5f39d397 6171 path = btrfs_alloc_path();
d8926bb3
MF
6172 if (!path)
6173 return ERR_PTR(-ENOMEM);
5f39d397 6174
39279cc3 6175 inode = new_inode(root->fs_info->sb);
8fb27640
YS
6176 if (!inode) {
6177 btrfs_free_path(path);
39279cc3 6178 return ERR_PTR(-ENOMEM);
8fb27640 6179 }
39279cc3 6180
5762b5c9
FM
6181 /*
6182 * O_TMPFILE, set link count to 0, so that after this point,
6183 * we fill in an inode item with the correct link count.
6184 */
6185 if (!name)
6186 set_nlink(inode, 0);
6187
581bb050
LZ
6188 /*
6189 * we have to initialize this early, so we can reclaim the inode
6190 * number if we fail afterwards in this function.
6191 */
6192 inode->i_ino = objectid;
6193
ef3b9af5 6194 if (dir && name) {
1abe9b8a 6195 trace_btrfs_inode_request(dir);
6196
3de4586c 6197 ret = btrfs_set_inode_index(dir, index);
09771430 6198 if (ret) {
8fb27640 6199 btrfs_free_path(path);
09771430 6200 iput(inode);
aec7477b 6201 return ERR_PTR(ret);
09771430 6202 }
ef3b9af5
FM
6203 } else if (dir) {
6204 *index = 0;
aec7477b
JB
6205 }
6206 /*
6207 * index_cnt is ignored for everything but a dir,
6208 * btrfs_get_inode_index_count has an explanation for the magic
6209 * number
6210 */
6211 BTRFS_I(inode)->index_cnt = 2;
67de1176 6212 BTRFS_I(inode)->dir_index = *index;
39279cc3 6213 BTRFS_I(inode)->root = root;
e02119d5 6214 BTRFS_I(inode)->generation = trans->transid;
76195853 6215 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6216
5dc562c5
JB
6217 /*
6218 * We could have gotten an inode number from somebody who was fsynced
6219 * and then removed in this same transaction, so let's just set full
6220 * sync since it will be a full sync anyway and this will blow away the
6221 * old info in the log.
6222 */
6223 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6224
9c58309d 6225 key[0].objectid = objectid;
962a298f 6226 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6227 key[0].offset = 0;
6228
9c58309d 6229 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6230
6231 if (name) {
6232 /*
6233 * Start new inodes with an inode_ref. This is slightly more
6234 * efficient for small numbers of hard links since they will
6235 * be packed into one item. Extended refs will kick in if we
6236 * add more hard links than can fit in the ref item.
6237 */
6238 key[1].objectid = objectid;
962a298f 6239 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6240 key[1].offset = ref_objectid;
6241
6242 sizes[1] = name_len + sizeof(*ref);
6243 }
9c58309d 6244
b0d5d10f
CM
6245 location = &BTRFS_I(inode)->location;
6246 location->objectid = objectid;
6247 location->offset = 0;
962a298f 6248 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6249
6250 ret = btrfs_insert_inode_locked(inode);
6251 if (ret < 0)
6252 goto fail;
6253
b9473439 6254 path->leave_spinning = 1;
ef3b9af5 6255 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6256 if (ret != 0)
b0d5d10f 6257 goto fail_unlock;
5f39d397 6258
ecc11fab 6259 inode_init_owner(inode, dir, mode);
a76a3cd4 6260 inode_set_bytes(inode, 0);
9cc97d64 6261
04b285f3 6262 inode->i_mtime = current_fs_time(inode->i_sb);
9cc97d64 6263 inode->i_atime = inode->i_mtime;
6264 inode->i_ctime = inode->i_mtime;
6265 BTRFS_I(inode)->i_otime = inode->i_mtime;
6266
5f39d397
CM
6267 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6268 struct btrfs_inode_item);
293f7e07
LZ
6269 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6270 sizeof(*inode_item));
e02119d5 6271 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6272
ef3b9af5
FM
6273 if (name) {
6274 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6275 struct btrfs_inode_ref);
6276 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6277 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6278 ptr = (unsigned long)(ref + 1);
6279 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6280 }
9c58309d 6281
5f39d397
CM
6282 btrfs_mark_buffer_dirty(path->nodes[0]);
6283 btrfs_free_path(path);
6284
6cbff00f
CH
6285 btrfs_inherit_iflags(inode, dir);
6286
569254b0 6287 if (S_ISREG(mode)) {
3cdde224 6288 if (btrfs_test_opt(root->fs_info, NODATASUM))
94272164 6289 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
3cdde224 6290 if (btrfs_test_opt(root->fs_info, NODATACOW))
f2bdf9a8
JB
6291 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6292 BTRFS_INODE_NODATASUM;
94272164
CM
6293 }
6294
5d4f98a2 6295 inode_tree_add(inode);
1abe9b8a 6296
6297 trace_btrfs_inode_new(inode);
1973f0fa 6298 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6299
8ea05e3a
AB
6300 btrfs_update_root_times(trans, root);
6301
63541927
FDBM
6302 ret = btrfs_inode_inherit_props(trans, inode, dir);
6303 if (ret)
6304 btrfs_err(root->fs_info,
6305 "error inheriting props for ino %llu (root %llu): %d",
6306 btrfs_ino(inode), root->root_key.objectid, ret);
6307
39279cc3 6308 return inode;
b0d5d10f
CM
6309
6310fail_unlock:
6311 unlock_new_inode(inode);
5f39d397 6312fail:
ef3b9af5 6313 if (dir && name)
aec7477b 6314 BTRFS_I(dir)->index_cnt--;
5f39d397 6315 btrfs_free_path(path);
09771430 6316 iput(inode);
5f39d397 6317 return ERR_PTR(ret);
39279cc3
CM
6318}
6319
6320static inline u8 btrfs_inode_type(struct inode *inode)
6321{
6322 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6323}
6324
d352ac68
CM
6325/*
6326 * utility function to add 'inode' into 'parent_inode' with
6327 * a give name and a given sequence number.
6328 * if 'add_backref' is true, also insert a backref from the
6329 * inode to the parent directory.
6330 */
e02119d5
CM
6331int btrfs_add_link(struct btrfs_trans_handle *trans,
6332 struct inode *parent_inode, struct inode *inode,
6333 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6334{
4df27c4d 6335 int ret = 0;
39279cc3 6336 struct btrfs_key key;
e02119d5 6337 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
6338 u64 ino = btrfs_ino(inode);
6339 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6340
33345d01 6341 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6342 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6343 } else {
33345d01 6344 key.objectid = ino;
962a298f 6345 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6346 key.offset = 0;
6347 }
6348
33345d01 6349 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6350 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6351 key.objectid, root->root_key.objectid,
33345d01 6352 parent_ino, index, name, name_len);
4df27c4d 6353 } else if (add_backref) {
33345d01
LZ
6354 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6355 parent_ino, index);
4df27c4d 6356 }
39279cc3 6357
79787eaa
JM
6358 /* Nothing to clean up yet */
6359 if (ret)
6360 return ret;
4df27c4d 6361
79787eaa
JM
6362 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6363 parent_inode, &key,
6364 btrfs_inode_type(inode), index);
9c52057c 6365 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6366 goto fail_dir_item;
6367 else if (ret) {
66642832 6368 btrfs_abort_transaction(trans, ret);
79787eaa 6369 return ret;
39279cc3 6370 }
79787eaa
JM
6371
6372 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6373 name_len * 2);
0c4d2d95 6374 inode_inc_iversion(parent_inode);
04b285f3
DD
6375 parent_inode->i_mtime = parent_inode->i_ctime =
6376 current_fs_time(parent_inode->i_sb);
79787eaa
JM
6377 ret = btrfs_update_inode(trans, root, parent_inode);
6378 if (ret)
66642832 6379 btrfs_abort_transaction(trans, ret);
39279cc3 6380 return ret;
fe66a05a
CM
6381
6382fail_dir_item:
6383 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6384 u64 local_index;
6385 int err;
6386 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6387 key.objectid, root->root_key.objectid,
6388 parent_ino, &local_index, name, name_len);
6389
6390 } else if (add_backref) {
6391 u64 local_index;
6392 int err;
6393
6394 err = btrfs_del_inode_ref(trans, root, name, name_len,
6395 ino, parent_ino, &local_index);
6396 }
6397 return ret;
39279cc3
CM
6398}
6399
6400static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
6401 struct inode *dir, struct dentry *dentry,
6402 struct inode *inode, int backref, u64 index)
39279cc3 6403{
a1b075d2
JB
6404 int err = btrfs_add_link(trans, dir, inode,
6405 dentry->d_name.name, dentry->d_name.len,
6406 backref, index);
39279cc3
CM
6407 if (err > 0)
6408 err = -EEXIST;
6409 return err;
6410}
6411
618e21d5 6412static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6413 umode_t mode, dev_t rdev)
618e21d5
JB
6414{
6415 struct btrfs_trans_handle *trans;
6416 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6417 struct inode *inode = NULL;
618e21d5
JB
6418 int err;
6419 int drop_inode = 0;
6420 u64 objectid;
00e4e6b3 6421 u64 index = 0;
618e21d5 6422
9ed74f2d
JB
6423 /*
6424 * 2 for inode item and ref
6425 * 2 for dir items
6426 * 1 for xattr if selinux is on
6427 */
a22285a6
YZ
6428 trans = btrfs_start_transaction(root, 5);
6429 if (IS_ERR(trans))
6430 return PTR_ERR(trans);
1832a6d5 6431
581bb050
LZ
6432 err = btrfs_find_free_ino(root, &objectid);
6433 if (err)
6434 goto out_unlock;
6435
aec7477b 6436 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6437 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6438 mode, &index);
7cf96da3
TI
6439 if (IS_ERR(inode)) {
6440 err = PTR_ERR(inode);
618e21d5 6441 goto out_unlock;
7cf96da3 6442 }
618e21d5 6443
ad19db71
CS
6444 /*
6445 * If the active LSM wants to access the inode during
6446 * d_instantiate it needs these. Smack checks to see
6447 * if the filesystem supports xattrs by looking at the
6448 * ops vector.
6449 */
ad19db71 6450 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6451 init_special_inode(inode, inode->i_mode, rdev);
6452
6453 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6454 if (err)
b0d5d10f
CM
6455 goto out_unlock_inode;
6456
6457 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6458 if (err) {
6459 goto out_unlock_inode;
6460 } else {
1b4ab1bb 6461 btrfs_update_inode(trans, root, inode);
b0d5d10f 6462 unlock_new_inode(inode);
08c422c2 6463 d_instantiate(dentry, inode);
618e21d5 6464 }
b0d5d10f 6465
618e21d5 6466out_unlock:
7ad85bb7 6467 btrfs_end_transaction(trans, root);
c581afc8 6468 btrfs_balance_delayed_items(root);
b53d3f5d 6469 btrfs_btree_balance_dirty(root);
618e21d5
JB
6470 if (drop_inode) {
6471 inode_dec_link_count(inode);
6472 iput(inode);
6473 }
618e21d5 6474 return err;
b0d5d10f
CM
6475
6476out_unlock_inode:
6477 drop_inode = 1;
6478 unlock_new_inode(inode);
6479 goto out_unlock;
6480
618e21d5
JB
6481}
6482
39279cc3 6483static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6484 umode_t mode, bool excl)
39279cc3
CM
6485{
6486 struct btrfs_trans_handle *trans;
6487 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6488 struct inode *inode = NULL;
43baa579 6489 int drop_inode_on_err = 0;
a22285a6 6490 int err;
39279cc3 6491 u64 objectid;
00e4e6b3 6492 u64 index = 0;
39279cc3 6493
9ed74f2d
JB
6494 /*
6495 * 2 for inode item and ref
6496 * 2 for dir items
6497 * 1 for xattr if selinux is on
6498 */
a22285a6
YZ
6499 trans = btrfs_start_transaction(root, 5);
6500 if (IS_ERR(trans))
6501 return PTR_ERR(trans);
9ed74f2d 6502
581bb050
LZ
6503 err = btrfs_find_free_ino(root, &objectid);
6504 if (err)
6505 goto out_unlock;
6506
aec7477b 6507 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6508 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6509 mode, &index);
7cf96da3
TI
6510 if (IS_ERR(inode)) {
6511 err = PTR_ERR(inode);
39279cc3 6512 goto out_unlock;
7cf96da3 6513 }
43baa579 6514 drop_inode_on_err = 1;
ad19db71
CS
6515 /*
6516 * If the active LSM wants to access the inode during
6517 * d_instantiate it needs these. Smack checks to see
6518 * if the filesystem supports xattrs by looking at the
6519 * ops vector.
6520 */
6521 inode->i_fop = &btrfs_file_operations;
6522 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6523 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6524
6525 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6526 if (err)
6527 goto out_unlock_inode;
6528
6529 err = btrfs_update_inode(trans, root, inode);
6530 if (err)
6531 goto out_unlock_inode;
ad19db71 6532
a1b075d2 6533 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6534 if (err)
b0d5d10f 6535 goto out_unlock_inode;
43baa579 6536
43baa579 6537 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6538 unlock_new_inode(inode);
43baa579
FB
6539 d_instantiate(dentry, inode);
6540
39279cc3 6541out_unlock:
7ad85bb7 6542 btrfs_end_transaction(trans, root);
43baa579 6543 if (err && drop_inode_on_err) {
39279cc3
CM
6544 inode_dec_link_count(inode);
6545 iput(inode);
6546 }
c581afc8 6547 btrfs_balance_delayed_items(root);
b53d3f5d 6548 btrfs_btree_balance_dirty(root);
39279cc3 6549 return err;
b0d5d10f
CM
6550
6551out_unlock_inode:
6552 unlock_new_inode(inode);
6553 goto out_unlock;
6554
39279cc3
CM
6555}
6556
6557static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6558 struct dentry *dentry)
6559{
271dba45 6560 struct btrfs_trans_handle *trans = NULL;
39279cc3 6561 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6562 struct inode *inode = d_inode(old_dentry);
00e4e6b3 6563 u64 index;
39279cc3
CM
6564 int err;
6565 int drop_inode = 0;
6566
4a8be425
TH
6567 /* do not allow sys_link's with other subvols of the same device */
6568 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6569 return -EXDEV;
4a8be425 6570
f186373f 6571 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6572 return -EMLINK;
4a8be425 6573
3de4586c 6574 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6575 if (err)
6576 goto fail;
6577
a22285a6 6578 /*
7e6b6465 6579 * 2 items for inode and inode ref
a22285a6 6580 * 2 items for dir items
7e6b6465 6581 * 1 item for parent inode
a22285a6 6582 */
7e6b6465 6583 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6584 if (IS_ERR(trans)) {
6585 err = PTR_ERR(trans);
271dba45 6586 trans = NULL;
a22285a6
YZ
6587 goto fail;
6588 }
5f39d397 6589
67de1176
MX
6590 /* There are several dir indexes for this inode, clear the cache. */
6591 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6592 inc_nlink(inode);
0c4d2d95 6593 inode_inc_iversion(inode);
04b285f3 6594 inode->i_ctime = current_fs_time(inode->i_sb);
7de9c6ee 6595 ihold(inode);
e9976151 6596 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6597
a1b075d2 6598 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6599
a5719521 6600 if (err) {
54aa1f4d 6601 drop_inode = 1;
a5719521 6602 } else {
10d9f309 6603 struct dentry *parent = dentry->d_parent;
a5719521 6604 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6605 if (err)
6606 goto fail;
ef3b9af5
FM
6607 if (inode->i_nlink == 1) {
6608 /*
6609 * If new hard link count is 1, it's a file created
6610 * with open(2) O_TMPFILE flag.
6611 */
6612 err = btrfs_orphan_del(trans, inode);
6613 if (err)
6614 goto fail;
6615 }
08c422c2 6616 d_instantiate(dentry, inode);
6a912213 6617 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6618 }
39279cc3 6619
c581afc8 6620 btrfs_balance_delayed_items(root);
1832a6d5 6621fail:
271dba45
FM
6622 if (trans)
6623 btrfs_end_transaction(trans, root);
39279cc3
CM
6624 if (drop_inode) {
6625 inode_dec_link_count(inode);
6626 iput(inode);
6627 }
b53d3f5d 6628 btrfs_btree_balance_dirty(root);
39279cc3
CM
6629 return err;
6630}
6631
18bb1db3 6632static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6633{
b9d86667 6634 struct inode *inode = NULL;
39279cc3
CM
6635 struct btrfs_trans_handle *trans;
6636 struct btrfs_root *root = BTRFS_I(dir)->root;
6637 int err = 0;
6638 int drop_on_err = 0;
b9d86667 6639 u64 objectid = 0;
00e4e6b3 6640 u64 index = 0;
39279cc3 6641
9ed74f2d
JB
6642 /*
6643 * 2 items for inode and ref
6644 * 2 items for dir items
6645 * 1 for xattr if selinux is on
6646 */
a22285a6
YZ
6647 trans = btrfs_start_transaction(root, 5);
6648 if (IS_ERR(trans))
6649 return PTR_ERR(trans);
39279cc3 6650
581bb050
LZ
6651 err = btrfs_find_free_ino(root, &objectid);
6652 if (err)
6653 goto out_fail;
6654
aec7477b 6655 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6656 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6657 S_IFDIR | mode, &index);
39279cc3
CM
6658 if (IS_ERR(inode)) {
6659 err = PTR_ERR(inode);
6660 goto out_fail;
6661 }
5f39d397 6662
39279cc3 6663 drop_on_err = 1;
b0d5d10f
CM
6664 /* these must be set before we unlock the inode */
6665 inode->i_op = &btrfs_dir_inode_operations;
6666 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6667
2a7dba39 6668 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6669 if (err)
b0d5d10f 6670 goto out_fail_inode;
39279cc3 6671
dbe674a9 6672 btrfs_i_size_write(inode, 0);
39279cc3
CM
6673 err = btrfs_update_inode(trans, root, inode);
6674 if (err)
b0d5d10f 6675 goto out_fail_inode;
5f39d397 6676
a1b075d2
JB
6677 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6678 dentry->d_name.len, 0, index);
39279cc3 6679 if (err)
b0d5d10f 6680 goto out_fail_inode;
5f39d397 6681
39279cc3 6682 d_instantiate(dentry, inode);
b0d5d10f
CM
6683 /*
6684 * mkdir is special. We're unlocking after we call d_instantiate
6685 * to avoid a race with nfsd calling d_instantiate.
6686 */
6687 unlock_new_inode(inode);
39279cc3 6688 drop_on_err = 0;
39279cc3
CM
6689
6690out_fail:
7ad85bb7 6691 btrfs_end_transaction(trans, root);
c7cfb8a5
WS
6692 if (drop_on_err) {
6693 inode_dec_link_count(inode);
39279cc3 6694 iput(inode);
c7cfb8a5 6695 }
c581afc8 6696 btrfs_balance_delayed_items(root);
b53d3f5d 6697 btrfs_btree_balance_dirty(root);
39279cc3 6698 return err;
b0d5d10f
CM
6699
6700out_fail_inode:
6701 unlock_new_inode(inode);
6702 goto out_fail;
39279cc3
CM
6703}
6704
e6c4efd8
QW
6705/* Find next extent map of a given extent map, caller needs to ensure locks */
6706static struct extent_map *next_extent_map(struct extent_map *em)
6707{
6708 struct rb_node *next;
6709
6710 next = rb_next(&em->rb_node);
6711 if (!next)
6712 return NULL;
6713 return container_of(next, struct extent_map, rb_node);
6714}
6715
6716static struct extent_map *prev_extent_map(struct extent_map *em)
6717{
6718 struct rb_node *prev;
6719
6720 prev = rb_prev(&em->rb_node);
6721 if (!prev)
6722 return NULL;
6723 return container_of(prev, struct extent_map, rb_node);
6724}
6725
d352ac68 6726/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6727 * the existing extent is the nearest extent to map_start,
d352ac68 6728 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6729 * the best fitted new extent into the tree.
d352ac68 6730 */
3b951516
CM
6731static int merge_extent_mapping(struct extent_map_tree *em_tree,
6732 struct extent_map *existing,
e6dcd2dc 6733 struct extent_map *em,
51f395ad 6734 u64 map_start)
3b951516 6735{
e6c4efd8
QW
6736 struct extent_map *prev;
6737 struct extent_map *next;
6738 u64 start;
6739 u64 end;
3b951516 6740 u64 start_diff;
3b951516 6741
e6dcd2dc 6742 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6743
6744 if (existing->start > map_start) {
6745 next = existing;
6746 prev = prev_extent_map(next);
6747 } else {
6748 prev = existing;
6749 next = next_extent_map(prev);
6750 }
6751
6752 start = prev ? extent_map_end(prev) : em->start;
6753 start = max_t(u64, start, em->start);
6754 end = next ? next->start : extent_map_end(em);
6755 end = min_t(u64, end, extent_map_end(em));
6756 start_diff = start - em->start;
6757 em->start = start;
6758 em->len = end - start;
c8b97818
CM
6759 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6760 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6761 em->block_start += start_diff;
c8b97818
CM
6762 em->block_len -= start_diff;
6763 }
09a2a8f9 6764 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6765}
6766
c8b97818 6767static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6768 struct page *page,
c8b97818
CM
6769 size_t pg_offset, u64 extent_offset,
6770 struct btrfs_file_extent_item *item)
6771{
6772 int ret;
6773 struct extent_buffer *leaf = path->nodes[0];
6774 char *tmp;
6775 size_t max_size;
6776 unsigned long inline_size;
6777 unsigned long ptr;
261507a0 6778 int compress_type;
c8b97818
CM
6779
6780 WARN_ON(pg_offset != 0);
261507a0 6781 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6782 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6783 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6784 btrfs_item_nr(path->slots[0]));
c8b97818 6785 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6786 if (!tmp)
6787 return -ENOMEM;
c8b97818
CM
6788 ptr = btrfs_file_extent_inline_start(item);
6789
6790 read_extent_buffer(leaf, tmp, ptr, inline_size);
6791
09cbfeaf 6792 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6793 ret = btrfs_decompress(compress_type, tmp, page,
6794 extent_offset, inline_size, max_size);
c8b97818 6795 kfree(tmp);
166ae5a4 6796 return ret;
c8b97818
CM
6797}
6798
d352ac68
CM
6799/*
6800 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6801 * the ugly parts come from merging extents from the disk with the in-ram
6802 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6803 * where the in-ram extents might be locked pending data=ordered completion.
6804 *
6805 * This also copies inline extents directly into the page.
6806 */
d397712b 6807
a52d9a80 6808struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6809 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6810 int create)
6811{
6812 int ret;
6813 int err = 0;
a52d9a80
CM
6814 u64 extent_start = 0;
6815 u64 extent_end = 0;
33345d01 6816 u64 objectid = btrfs_ino(inode);
a52d9a80 6817 u32 found_type;
f421950f 6818 struct btrfs_path *path = NULL;
a52d9a80
CM
6819 struct btrfs_root *root = BTRFS_I(inode)->root;
6820 struct btrfs_file_extent_item *item;
5f39d397
CM
6821 struct extent_buffer *leaf;
6822 struct btrfs_key found_key;
a52d9a80
CM
6823 struct extent_map *em = NULL;
6824 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6825 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6826 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6827 const bool new_inline = !page || create;
a52d9a80 6828
a52d9a80 6829again:
890871be 6830 read_lock(&em_tree->lock);
d1310b2e 6831 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6832 if (em)
6833 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6834 read_unlock(&em_tree->lock);
d1310b2e 6835
a52d9a80 6836 if (em) {
e1c4b745
CM
6837 if (em->start > start || em->start + em->len <= start)
6838 free_extent_map(em);
6839 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6840 free_extent_map(em);
6841 else
6842 goto out;
a52d9a80 6843 }
172ddd60 6844 em = alloc_extent_map();
a52d9a80 6845 if (!em) {
d1310b2e
CM
6846 err = -ENOMEM;
6847 goto out;
a52d9a80 6848 }
e6dcd2dc 6849 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6850 em->start = EXTENT_MAP_HOLE;
445a6944 6851 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6852 em->len = (u64)-1;
c8b97818 6853 em->block_len = (u64)-1;
f421950f
CM
6854
6855 if (!path) {
6856 path = btrfs_alloc_path();
026fd317
JB
6857 if (!path) {
6858 err = -ENOMEM;
6859 goto out;
6860 }
6861 /*
6862 * Chances are we'll be called again, so go ahead and do
6863 * readahead
6864 */
e4058b54 6865 path->reada = READA_FORWARD;
f421950f
CM
6866 }
6867
179e29e4
CM
6868 ret = btrfs_lookup_file_extent(trans, root, path,
6869 objectid, start, trans != NULL);
a52d9a80
CM
6870 if (ret < 0) {
6871 err = ret;
6872 goto out;
6873 }
6874
6875 if (ret != 0) {
6876 if (path->slots[0] == 0)
6877 goto not_found;
6878 path->slots[0]--;
6879 }
6880
5f39d397
CM
6881 leaf = path->nodes[0];
6882 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6883 struct btrfs_file_extent_item);
a52d9a80 6884 /* are we inside the extent that was found? */
5f39d397 6885 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6886 found_type = found_key.type;
5f39d397 6887 if (found_key.objectid != objectid ||
a52d9a80 6888 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6889 /*
6890 * If we backup past the first extent we want to move forward
6891 * and see if there is an extent in front of us, otherwise we'll
6892 * say there is a hole for our whole search range which can
6893 * cause problems.
6894 */
6895 extent_end = start;
6896 goto next;
a52d9a80
CM
6897 }
6898
5f39d397
CM
6899 found_type = btrfs_file_extent_type(leaf, item);
6900 extent_start = found_key.offset;
d899e052
YZ
6901 if (found_type == BTRFS_FILE_EXTENT_REG ||
6902 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6903 extent_end = extent_start +
db94535d 6904 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6905 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6906 size_t size;
514ac8ad 6907 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6908 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6909 }
25a50341 6910next:
9036c102
YZ
6911 if (start >= extent_end) {
6912 path->slots[0]++;
6913 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6914 ret = btrfs_next_leaf(root, path);
6915 if (ret < 0) {
6916 err = ret;
6917 goto out;
a52d9a80 6918 }
9036c102
YZ
6919 if (ret > 0)
6920 goto not_found;
6921 leaf = path->nodes[0];
a52d9a80 6922 }
9036c102
YZ
6923 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6924 if (found_key.objectid != objectid ||
6925 found_key.type != BTRFS_EXTENT_DATA_KEY)
6926 goto not_found;
6927 if (start + len <= found_key.offset)
6928 goto not_found;
e2eca69d
WS
6929 if (start > found_key.offset)
6930 goto next;
9036c102 6931 em->start = start;
70c8a91c 6932 em->orig_start = start;
9036c102
YZ
6933 em->len = found_key.offset - start;
6934 goto not_found_em;
6935 }
6936
7ffbb598
FM
6937 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6938
d899e052
YZ
6939 if (found_type == BTRFS_FILE_EXTENT_REG ||
6940 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6941 goto insert;
6942 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6943 unsigned long ptr;
a52d9a80 6944 char *map;
3326d1b0
CM
6945 size_t size;
6946 size_t extent_offset;
6947 size_t copy_size;
a52d9a80 6948
7ffbb598 6949 if (new_inline)
689f9346 6950 goto out;
5f39d397 6951
514ac8ad 6952 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6953 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6954 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6955 size - extent_offset);
3326d1b0 6956 em->start = extent_start + extent_offset;
fda2832f 6957 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6958 em->orig_block_len = em->len;
70c8a91c 6959 em->orig_start = em->start;
689f9346 6960 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6961 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6962 if (btrfs_file_extent_compression(leaf, item) !=
6963 BTRFS_COMPRESS_NONE) {
e40da0e5 6964 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6965 extent_offset, item);
166ae5a4
ZB
6966 if (ret) {
6967 err = ret;
6968 goto out;
6969 }
c8b97818
CM
6970 } else {
6971 map = kmap(page);
6972 read_extent_buffer(leaf, map + pg_offset, ptr,
6973 copy_size);
09cbfeaf 6974 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6975 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6976 PAGE_SIZE - pg_offset -
93c82d57
CM
6977 copy_size);
6978 }
c8b97818
CM
6979 kunmap(page);
6980 }
179e29e4
CM
6981 flush_dcache_page(page);
6982 } else if (create && PageUptodate(page)) {
6bf7e080 6983 BUG();
179e29e4
CM
6984 if (!trans) {
6985 kunmap(page);
6986 free_extent_map(em);
6987 em = NULL;
ff5714cc 6988
b3b4aa74 6989 btrfs_release_path(path);
7a7eaa40 6990 trans = btrfs_join_transaction(root);
ff5714cc 6991
3612b495
TI
6992 if (IS_ERR(trans))
6993 return ERR_CAST(trans);
179e29e4
CM
6994 goto again;
6995 }
c8b97818 6996 map = kmap(page);
70dec807 6997 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6998 copy_size);
c8b97818 6999 kunmap(page);
179e29e4 7000 btrfs_mark_buffer_dirty(leaf);
a52d9a80 7001 }
d1310b2e 7002 set_extent_uptodate(io_tree, em->start,
507903b8 7003 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7004 goto insert;
a52d9a80
CM
7005 }
7006not_found:
7007 em->start = start;
70c8a91c 7008 em->orig_start = start;
d1310b2e 7009 em->len = len;
a52d9a80 7010not_found_em:
5f39d397 7011 em->block_start = EXTENT_MAP_HOLE;
9036c102 7012 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 7013insert:
b3b4aa74 7014 btrfs_release_path(path);
d1310b2e 7015 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 7016 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 7017 em->start, em->len, start, len);
a52d9a80
CM
7018 err = -EIO;
7019 goto out;
7020 }
d1310b2e
CM
7021
7022 err = 0;
890871be 7023 write_lock(&em_tree->lock);
09a2a8f9 7024 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
7025 /* it is possible that someone inserted the extent into the tree
7026 * while we had the lock dropped. It is also possible that
7027 * an overlapping map exists in the tree
7028 */
a52d9a80 7029 if (ret == -EEXIST) {
3b951516 7030 struct extent_map *existing;
e6dcd2dc
CM
7031
7032 ret = 0;
7033
e6c4efd8
QW
7034 existing = search_extent_mapping(em_tree, start, len);
7035 /*
7036 * existing will always be non-NULL, since there must be
7037 * extent causing the -EEXIST.
7038 */
8dff9c85
CM
7039 if (existing->start == em->start &&
7040 extent_map_end(existing) == extent_map_end(em) &&
7041 em->block_start == existing->block_start) {
7042 /*
7043 * these two extents are the same, it happens
7044 * with inlines especially
7045 */
7046 free_extent_map(em);
7047 em = existing;
7048 err = 0;
7049
7050 } else if (start >= extent_map_end(existing) ||
32be3a1a 7051 start <= existing->start) {
e6c4efd8
QW
7052 /*
7053 * The existing extent map is the one nearest to
7054 * the [start, start + len) range which overlaps
7055 */
7056 err = merge_extent_mapping(em_tree, existing,
7057 em, start);
e1c4b745 7058 free_extent_map(existing);
e6c4efd8 7059 if (err) {
3b951516
CM
7060 free_extent_map(em);
7061 em = NULL;
7062 }
7063 } else {
7064 free_extent_map(em);
7065 em = existing;
e6dcd2dc 7066 err = 0;
a52d9a80 7067 }
a52d9a80 7068 }
890871be 7069 write_unlock(&em_tree->lock);
a52d9a80 7070out:
1abe9b8a 7071
4cd8587c 7072 trace_btrfs_get_extent(root, em);
1abe9b8a 7073
527afb44 7074 btrfs_free_path(path);
a52d9a80
CM
7075 if (trans) {
7076 ret = btrfs_end_transaction(trans, root);
d397712b 7077 if (!err)
a52d9a80
CM
7078 err = ret;
7079 }
a52d9a80
CM
7080 if (err) {
7081 free_extent_map(em);
a52d9a80
CM
7082 return ERR_PTR(err);
7083 }
79787eaa 7084 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7085 return em;
7086}
7087
ec29ed5b
CM
7088struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7089 size_t pg_offset, u64 start, u64 len,
7090 int create)
7091{
7092 struct extent_map *em;
7093 struct extent_map *hole_em = NULL;
7094 u64 range_start = start;
7095 u64 end;
7096 u64 found;
7097 u64 found_end;
7098 int err = 0;
7099
7100 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7101 if (IS_ERR(em))
7102 return em;
7103 if (em) {
7104 /*
f9e4fb53
LB
7105 * if our em maps to
7106 * - a hole or
7107 * - a pre-alloc extent,
7108 * there might actually be delalloc bytes behind it.
ec29ed5b 7109 */
f9e4fb53
LB
7110 if (em->block_start != EXTENT_MAP_HOLE &&
7111 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
7112 return em;
7113 else
7114 hole_em = em;
7115 }
7116
7117 /* check to see if we've wrapped (len == -1 or similar) */
7118 end = start + len;
7119 if (end < start)
7120 end = (u64)-1;
7121 else
7122 end -= 1;
7123
7124 em = NULL;
7125
7126 /* ok, we didn't find anything, lets look for delalloc */
7127 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7128 end, len, EXTENT_DELALLOC, 1);
7129 found_end = range_start + found;
7130 if (found_end < range_start)
7131 found_end = (u64)-1;
7132
7133 /*
7134 * we didn't find anything useful, return
7135 * the original results from get_extent()
7136 */
7137 if (range_start > end || found_end <= start) {
7138 em = hole_em;
7139 hole_em = NULL;
7140 goto out;
7141 }
7142
7143 /* adjust the range_start to make sure it doesn't
7144 * go backwards from the start they passed in
7145 */
67871254 7146 range_start = max(start, range_start);
ec29ed5b
CM
7147 found = found_end - range_start;
7148
7149 if (found > 0) {
7150 u64 hole_start = start;
7151 u64 hole_len = len;
7152
172ddd60 7153 em = alloc_extent_map();
ec29ed5b
CM
7154 if (!em) {
7155 err = -ENOMEM;
7156 goto out;
7157 }
7158 /*
7159 * when btrfs_get_extent can't find anything it
7160 * returns one huge hole
7161 *
7162 * make sure what it found really fits our range, and
7163 * adjust to make sure it is based on the start from
7164 * the caller
7165 */
7166 if (hole_em) {
7167 u64 calc_end = extent_map_end(hole_em);
7168
7169 if (calc_end <= start || (hole_em->start > end)) {
7170 free_extent_map(hole_em);
7171 hole_em = NULL;
7172 } else {
7173 hole_start = max(hole_em->start, start);
7174 hole_len = calc_end - hole_start;
7175 }
7176 }
7177 em->bdev = NULL;
7178 if (hole_em && range_start > hole_start) {
7179 /* our hole starts before our delalloc, so we
7180 * have to return just the parts of the hole
7181 * that go until the delalloc starts
7182 */
7183 em->len = min(hole_len,
7184 range_start - hole_start);
7185 em->start = hole_start;
7186 em->orig_start = hole_start;
7187 /*
7188 * don't adjust block start at all,
7189 * it is fixed at EXTENT_MAP_HOLE
7190 */
7191 em->block_start = hole_em->block_start;
7192 em->block_len = hole_len;
f9e4fb53
LB
7193 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7194 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7195 } else {
7196 em->start = range_start;
7197 em->len = found;
7198 em->orig_start = range_start;
7199 em->block_start = EXTENT_MAP_DELALLOC;
7200 em->block_len = found;
7201 }
7202 } else if (hole_em) {
7203 return hole_em;
7204 }
7205out:
7206
7207 free_extent_map(hole_em);
7208 if (err) {
7209 free_extent_map(em);
7210 return ERR_PTR(err);
7211 }
7212 return em;
7213}
7214
5f9a8a51
FM
7215static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7216 const u64 start,
7217 const u64 len,
7218 const u64 orig_start,
7219 const u64 block_start,
7220 const u64 block_len,
7221 const u64 orig_block_len,
7222 const u64 ram_bytes,
7223 const int type)
7224{
7225 struct extent_map *em = NULL;
7226 int ret;
7227
7228 down_read(&BTRFS_I(inode)->dio_sem);
7229 if (type != BTRFS_ORDERED_NOCOW) {
7230 em = create_pinned_em(inode, start, len, orig_start,
7231 block_start, block_len, orig_block_len,
7232 ram_bytes, type);
7233 if (IS_ERR(em))
7234 goto out;
7235 }
7236 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7237 len, block_len, type);
7238 if (ret) {
7239 if (em) {
7240 free_extent_map(em);
7241 btrfs_drop_extent_cache(inode, start,
7242 start + len - 1, 0);
7243 }
7244 em = ERR_PTR(ret);
7245 }
7246 out:
7247 up_read(&BTRFS_I(inode)->dio_sem);
7248
7249 return em;
7250}
7251
4b46fce2
JB
7252static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7253 u64 start, u64 len)
7254{
7255 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7256 struct extent_map *em;
4b46fce2
JB
7257 struct btrfs_key ins;
7258 u64 alloc_hint;
7259 int ret;
4b46fce2 7260
4b46fce2 7261 alloc_hint = get_extent_allocation_hint(inode, start, len);
18513091 7262 ret = btrfs_reserve_extent(root, len, len, root->sectorsize, 0,
e570fd27 7263 alloc_hint, &ins, 1, 1);
00361589
JB
7264 if (ret)
7265 return ERR_PTR(ret);
4b46fce2 7266
5f9a8a51
FM
7267 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7268 ins.objectid, ins.offset, ins.offset,
7269 ins.offset, 0);
9cfa3e34 7270 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
5f9a8a51 7271 if (IS_ERR(em))
e570fd27 7272 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
de0ee0ed 7273
4b46fce2
JB
7274 return em;
7275}
7276
46bfbb5c
CM
7277/*
7278 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7279 * block must be cow'd
7280 */
00361589 7281noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7282 u64 *orig_start, u64 *orig_block_len,
7283 u64 *ram_bytes)
46bfbb5c 7284{
00361589 7285 struct btrfs_trans_handle *trans;
46bfbb5c
CM
7286 struct btrfs_path *path;
7287 int ret;
7288 struct extent_buffer *leaf;
7289 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7290 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7291 struct btrfs_file_extent_item *fi;
7292 struct btrfs_key key;
7293 u64 disk_bytenr;
7294 u64 backref_offset;
7295 u64 extent_end;
7296 u64 num_bytes;
7297 int slot;
7298 int found_type;
7ee9e440 7299 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7300
46bfbb5c
CM
7301 path = btrfs_alloc_path();
7302 if (!path)
7303 return -ENOMEM;
7304
00361589 7305 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
7306 offset, 0);
7307 if (ret < 0)
7308 goto out;
7309
7310 slot = path->slots[0];
7311 if (ret == 1) {
7312 if (slot == 0) {
7313 /* can't find the item, must cow */
7314 ret = 0;
7315 goto out;
7316 }
7317 slot--;
7318 }
7319 ret = 0;
7320 leaf = path->nodes[0];
7321 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 7322 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
7323 key.type != BTRFS_EXTENT_DATA_KEY) {
7324 /* not our file or wrong item type, must cow */
7325 goto out;
7326 }
7327
7328 if (key.offset > offset) {
7329 /* Wrong offset, must cow */
7330 goto out;
7331 }
7332
7333 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7334 found_type = btrfs_file_extent_type(leaf, fi);
7335 if (found_type != BTRFS_FILE_EXTENT_REG &&
7336 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7337 /* not a regular extent, must cow */
7338 goto out;
7339 }
7ee9e440
JB
7340
7341 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7342 goto out;
7343
e77751aa
MX
7344 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7345 if (extent_end <= offset)
7346 goto out;
7347
46bfbb5c 7348 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7349 if (disk_bytenr == 0)
7350 goto out;
7351
7352 if (btrfs_file_extent_compression(leaf, fi) ||
7353 btrfs_file_extent_encryption(leaf, fi) ||
7354 btrfs_file_extent_other_encoding(leaf, fi))
7355 goto out;
7356
46bfbb5c
CM
7357 backref_offset = btrfs_file_extent_offset(leaf, fi);
7358
7ee9e440
JB
7359 if (orig_start) {
7360 *orig_start = key.offset - backref_offset;
7361 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7362 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7363 }
eb384b55 7364
46bfbb5c
CM
7365 if (btrfs_extent_readonly(root, disk_bytenr))
7366 goto out;
7b2b7085
MX
7367
7368 num_bytes = min(offset + *len, extent_end) - offset;
7369 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7370 u64 range_end;
7371
7372 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7373 ret = test_range_bit(io_tree, offset, range_end,
7374 EXTENT_DELALLOC, 0, NULL);
7375 if (ret) {
7376 ret = -EAGAIN;
7377 goto out;
7378 }
7379 }
7380
1bda19eb 7381 btrfs_release_path(path);
46bfbb5c
CM
7382
7383 /*
7384 * look for other files referencing this extent, if we
7385 * find any we must cow
7386 */
00361589
JB
7387 trans = btrfs_join_transaction(root);
7388 if (IS_ERR(trans)) {
7389 ret = 0;
46bfbb5c 7390 goto out;
00361589
JB
7391 }
7392
7393 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7394 key.offset - backref_offset, disk_bytenr);
7395 btrfs_end_transaction(trans, root);
7396 if (ret) {
7397 ret = 0;
7398 goto out;
7399 }
46bfbb5c
CM
7400
7401 /*
7402 * adjust disk_bytenr and num_bytes to cover just the bytes
7403 * in this extent we are about to write. If there
7404 * are any csums in that range we have to cow in order
7405 * to keep the csums correct
7406 */
7407 disk_bytenr += backref_offset;
7408 disk_bytenr += offset - key.offset;
46bfbb5c
CM
7409 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7410 goto out;
7411 /*
7412 * all of the above have passed, it is safe to overwrite this extent
7413 * without cow
7414 */
eb384b55 7415 *len = num_bytes;
46bfbb5c
CM
7416 ret = 1;
7417out:
7418 btrfs_free_path(path);
7419 return ret;
7420}
7421
fc4adbff
AG
7422bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7423{
7424 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7425 int found = false;
7426 void **pagep = NULL;
7427 struct page *page = NULL;
7428 int start_idx;
7429 int end_idx;
7430
09cbfeaf 7431 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7432
7433 /*
7434 * end is the last byte in the last page. end == start is legal
7435 */
09cbfeaf 7436 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7437
7438 rcu_read_lock();
7439
7440 /* Most of the code in this while loop is lifted from
7441 * find_get_page. It's been modified to begin searching from a
7442 * page and return just the first page found in that range. If the
7443 * found idx is less than or equal to the end idx then we know that
7444 * a page exists. If no pages are found or if those pages are
7445 * outside of the range then we're fine (yay!) */
7446 while (page == NULL &&
7447 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7448 page = radix_tree_deref_slot(pagep);
7449 if (unlikely(!page))
7450 break;
7451
7452 if (radix_tree_exception(page)) {
809f9016
FM
7453 if (radix_tree_deref_retry(page)) {
7454 page = NULL;
fc4adbff 7455 continue;
809f9016 7456 }
fc4adbff
AG
7457 /*
7458 * Otherwise, shmem/tmpfs must be storing a swap entry
7459 * here as an exceptional entry: so return it without
7460 * attempting to raise page count.
7461 */
6fdef6d4 7462 page = NULL;
fc4adbff
AG
7463 break; /* TODO: Is this relevant for this use case? */
7464 }
7465
91405151
FM
7466 if (!page_cache_get_speculative(page)) {
7467 page = NULL;
fc4adbff 7468 continue;
91405151 7469 }
fc4adbff
AG
7470
7471 /*
7472 * Has the page moved?
7473 * This is part of the lockless pagecache protocol. See
7474 * include/linux/pagemap.h for details.
7475 */
7476 if (unlikely(page != *pagep)) {
09cbfeaf 7477 put_page(page);
fc4adbff
AG
7478 page = NULL;
7479 }
7480 }
7481
7482 if (page) {
7483 if (page->index <= end_idx)
7484 found = true;
09cbfeaf 7485 put_page(page);
fc4adbff
AG
7486 }
7487
7488 rcu_read_unlock();
7489 return found;
7490}
7491
eb838e73
JB
7492static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7493 struct extent_state **cached_state, int writing)
7494{
7495 struct btrfs_ordered_extent *ordered;
7496 int ret = 0;
7497
7498 while (1) {
7499 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7500 cached_state);
eb838e73
JB
7501 /*
7502 * We're concerned with the entire range that we're going to be
01327610 7503 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7504 * extents in this range.
7505 */
7506 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7507 lockend - lockstart + 1);
7508
7509 /*
7510 * We need to make sure there are no buffered pages in this
7511 * range either, we could have raced between the invalidate in
7512 * generic_file_direct_write and locking the extent. The
7513 * invalidate needs to happen so that reads after a write do not
7514 * get stale data.
7515 */
fc4adbff
AG
7516 if (!ordered &&
7517 (!writing ||
7518 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7519 break;
7520
7521 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7522 cached_state, GFP_NOFS);
7523
7524 if (ordered) {
ade77029
FM
7525 /*
7526 * If we are doing a DIO read and the ordered extent we
7527 * found is for a buffered write, we can not wait for it
7528 * to complete and retry, because if we do so we can
7529 * deadlock with concurrent buffered writes on page
7530 * locks. This happens only if our DIO read covers more
7531 * than one extent map, if at this point has already
7532 * created an ordered extent for a previous extent map
7533 * and locked its range in the inode's io tree, and a
7534 * concurrent write against that previous extent map's
7535 * range and this range started (we unlock the ranges
7536 * in the io tree only when the bios complete and
7537 * buffered writes always lock pages before attempting
7538 * to lock range in the io tree).
7539 */
7540 if (writing ||
7541 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7542 btrfs_start_ordered_extent(inode, ordered, 1);
7543 else
7544 ret = -ENOTBLK;
eb838e73
JB
7545 btrfs_put_ordered_extent(ordered);
7546 } else {
eb838e73 7547 /*
b850ae14
FM
7548 * We could trigger writeback for this range (and wait
7549 * for it to complete) and then invalidate the pages for
7550 * this range (through invalidate_inode_pages2_range()),
7551 * but that can lead us to a deadlock with a concurrent
7552 * call to readpages() (a buffered read or a defrag call
7553 * triggered a readahead) on a page lock due to an
7554 * ordered dio extent we created before but did not have
7555 * yet a corresponding bio submitted (whence it can not
7556 * complete), which makes readpages() wait for that
7557 * ordered extent to complete while holding a lock on
7558 * that page.
eb838e73 7559 */
b850ae14 7560 ret = -ENOTBLK;
eb838e73
JB
7561 }
7562
ade77029
FM
7563 if (ret)
7564 break;
7565
eb838e73
JB
7566 cond_resched();
7567 }
7568
7569 return ret;
7570}
7571
69ffb543
JB
7572static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7573 u64 len, u64 orig_start,
7574 u64 block_start, u64 block_len,
cc95bef6
JB
7575 u64 orig_block_len, u64 ram_bytes,
7576 int type)
69ffb543
JB
7577{
7578 struct extent_map_tree *em_tree;
7579 struct extent_map *em;
7580 struct btrfs_root *root = BTRFS_I(inode)->root;
7581 int ret;
7582
7583 em_tree = &BTRFS_I(inode)->extent_tree;
7584 em = alloc_extent_map();
7585 if (!em)
7586 return ERR_PTR(-ENOMEM);
7587
7588 em->start = start;
7589 em->orig_start = orig_start;
2ab28f32
JB
7590 em->mod_start = start;
7591 em->mod_len = len;
69ffb543
JB
7592 em->len = len;
7593 em->block_len = block_len;
7594 em->block_start = block_start;
7595 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7596 em->orig_block_len = orig_block_len;
cc95bef6 7597 em->ram_bytes = ram_bytes;
70c8a91c 7598 em->generation = -1;
69ffb543
JB
7599 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7600 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7601 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7602
7603 do {
7604 btrfs_drop_extent_cache(inode, em->start,
7605 em->start + em->len - 1, 0);
7606 write_lock(&em_tree->lock);
09a2a8f9 7607 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7608 write_unlock(&em_tree->lock);
7609 } while (ret == -EEXIST);
7610
7611 if (ret) {
7612 free_extent_map(em);
7613 return ERR_PTR(ret);
7614 }
7615
7616 return em;
7617}
7618
9c9464cc
FM
7619static void adjust_dio_outstanding_extents(struct inode *inode,
7620 struct btrfs_dio_data *dio_data,
7621 const u64 len)
7622{
7623 unsigned num_extents;
7624
7625 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7626 BTRFS_MAX_EXTENT_SIZE);
7627 /*
7628 * If we have an outstanding_extents count still set then we're
7629 * within our reservation, otherwise we need to adjust our inode
7630 * counter appropriately.
7631 */
7632 if (dio_data->outstanding_extents) {
7633 dio_data->outstanding_extents -= num_extents;
7634 } else {
7635 spin_lock(&BTRFS_I(inode)->lock);
7636 BTRFS_I(inode)->outstanding_extents += num_extents;
7637 spin_unlock(&BTRFS_I(inode)->lock);
7638 }
7639}
7640
4b46fce2
JB
7641static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7642 struct buffer_head *bh_result, int create)
7643{
7644 struct extent_map *em;
7645 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7646 struct extent_state *cached_state = NULL;
50745b0a 7647 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7648 u64 start = iblock << inode->i_blkbits;
eb838e73 7649 u64 lockstart, lockend;
4b46fce2 7650 u64 len = bh_result->b_size;
eb838e73 7651 int unlock_bits = EXTENT_LOCKED;
0934856d 7652 int ret = 0;
eb838e73 7653
172a5049 7654 if (create)
3266789f 7655 unlock_bits |= EXTENT_DIRTY;
172a5049 7656 else
c329861d 7657 len = min_t(u64, len, root->sectorsize);
eb838e73 7658
c329861d
JB
7659 lockstart = start;
7660 lockend = start + len - 1;
7661
e1cbbfa5
JB
7662 if (current->journal_info) {
7663 /*
7664 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7665 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7666 * confused.
7667 */
50745b0a 7668 dio_data = current->journal_info;
e1cbbfa5
JB
7669 current->journal_info = NULL;
7670 }
7671
eb838e73
JB
7672 /*
7673 * If this errors out it's because we couldn't invalidate pagecache for
7674 * this range and we need to fallback to buffered.
7675 */
9c9464cc
FM
7676 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7677 create)) {
7678 ret = -ENOTBLK;
7679 goto err;
7680 }
eb838e73 7681
4b46fce2 7682 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7683 if (IS_ERR(em)) {
7684 ret = PTR_ERR(em);
7685 goto unlock_err;
7686 }
4b46fce2
JB
7687
7688 /*
7689 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7690 * io. INLINE is special, and we could probably kludge it in here, but
7691 * it's still buffered so for safety lets just fall back to the generic
7692 * buffered path.
7693 *
7694 * For COMPRESSED we _have_ to read the entire extent in so we can
7695 * decompress it, so there will be buffering required no matter what we
7696 * do, so go ahead and fallback to buffered.
7697 *
01327610 7698 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7699 * to buffered IO. Don't blame me, this is the price we pay for using
7700 * the generic code.
7701 */
7702 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7703 em->block_start == EXTENT_MAP_INLINE) {
7704 free_extent_map(em);
eb838e73
JB
7705 ret = -ENOTBLK;
7706 goto unlock_err;
4b46fce2
JB
7707 }
7708
7709 /* Just a good old fashioned hole, return */
7710 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7711 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7712 free_extent_map(em);
eb838e73 7713 goto unlock_err;
4b46fce2
JB
7714 }
7715
7716 /*
7717 * We don't allocate a new extent in the following cases
7718 *
7719 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7720 * existing extent.
7721 * 2) The extent is marked as PREALLOC. We're good to go here and can
7722 * just use the extent.
7723 *
7724 */
46bfbb5c 7725 if (!create) {
eb838e73
JB
7726 len = min(len, em->len - (start - em->start));
7727 lockstart = start + len;
7728 goto unlock;
46bfbb5c 7729 }
4b46fce2
JB
7730
7731 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7732 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7733 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7734 int type;
eb384b55 7735 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7736
7737 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7738 type = BTRFS_ORDERED_PREALLOC;
7739 else
7740 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7741 len = min(len, em->len - (start - em->start));
4b46fce2 7742 block_start = em->block_start + (start - em->start);
46bfbb5c 7743
00361589 7744 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c
FM
7745 &orig_block_len, &ram_bytes) == 1 &&
7746 btrfs_inc_nocow_writers(root->fs_info, block_start)) {
5f9a8a51 7747 struct extent_map *em2;
0b901916 7748
5f9a8a51
FM
7749 em2 = btrfs_create_dio_extent(inode, start, len,
7750 orig_start, block_start,
7751 len, orig_block_len,
7752 ram_bytes, type);
f78c436c 7753 btrfs_dec_nocow_writers(root->fs_info, block_start);
69ffb543
JB
7754 if (type == BTRFS_ORDERED_PREALLOC) {
7755 free_extent_map(em);
5f9a8a51 7756 em = em2;
69ffb543 7757 }
5f9a8a51
FM
7758 if (em2 && IS_ERR(em2)) {
7759 ret = PTR_ERR(em2);
eb838e73 7760 goto unlock_err;
46bfbb5c 7761 }
18513091
WX
7762 /*
7763 * For inode marked NODATACOW or extent marked PREALLOC,
7764 * use the existing or preallocated extent, so does not
7765 * need to adjust btrfs_space_info's bytes_may_use.
7766 */
7767 btrfs_free_reserved_data_space_noquota(inode,
7768 start, len);
46bfbb5c 7769 goto unlock;
4b46fce2 7770 }
4b46fce2 7771 }
00361589 7772
46bfbb5c
CM
7773 /*
7774 * this will cow the extent, reset the len in case we changed
7775 * it above
7776 */
7777 len = bh_result->b_size;
70c8a91c
JB
7778 free_extent_map(em);
7779 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7780 if (IS_ERR(em)) {
7781 ret = PTR_ERR(em);
7782 goto unlock_err;
7783 }
46bfbb5c
CM
7784 len = min(len, em->len - (start - em->start));
7785unlock:
4b46fce2
JB
7786 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7787 inode->i_blkbits;
46bfbb5c 7788 bh_result->b_size = len;
4b46fce2
JB
7789 bh_result->b_bdev = em->bdev;
7790 set_buffer_mapped(bh_result);
c3473e83
JB
7791 if (create) {
7792 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7793 set_buffer_new(bh_result);
7794
7795 /*
7796 * Need to update the i_size under the extent lock so buffered
7797 * readers will get the updated i_size when we unlock.
7798 */
7799 if (start + len > i_size_read(inode))
7800 i_size_write(inode, start + len);
0934856d 7801
9c9464cc 7802 adjust_dio_outstanding_extents(inode, dio_data, len);
50745b0a 7803 WARN_ON(dio_data->reserve < len);
7804 dio_data->reserve -= len;
f28a4928 7805 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7806 current->journal_info = dio_data;
c3473e83 7807 }
4b46fce2 7808
eb838e73
JB
7809 /*
7810 * In the case of write we need to clear and unlock the entire range,
7811 * in the case of read we need to unlock only the end area that we
7812 * aren't using if there is any left over space.
7813 */
24c03fa5 7814 if (lockstart < lockend) {
0934856d
MX
7815 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7816 lockend, unlock_bits, 1, 0,
7817 &cached_state, GFP_NOFS);
24c03fa5 7818 } else {
eb838e73 7819 free_extent_state(cached_state);
24c03fa5 7820 }
eb838e73 7821
4b46fce2
JB
7822 free_extent_map(em);
7823
7824 return 0;
eb838e73
JB
7825
7826unlock_err:
eb838e73
JB
7827 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7828 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7829err:
50745b0a 7830 if (dio_data)
7831 current->journal_info = dio_data;
9c9464cc
FM
7832 /*
7833 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7834 * write less data then expected, so that we don't underflow our inode's
7835 * outstanding extents counter.
7836 */
7837 if (create && dio_data)
7838 adjust_dio_outstanding_extents(inode, dio_data, len);
7839
eb838e73 7840 return ret;
4b46fce2
JB
7841}
7842
8b110e39
MX
7843static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7844 int rw, int mirror_num)
7845{
7846 struct btrfs_root *root = BTRFS_I(inode)->root;
7847 int ret;
7848
7849 BUG_ON(rw & REQ_WRITE);
7850
7851 bio_get(bio);
7852
7853 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7854 BTRFS_WQ_ENDIO_DIO_REPAIR);
7855 if (ret)
7856 goto err;
7857
7858 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7859err:
7860 bio_put(bio);
7861 return ret;
7862}
7863
7864static int btrfs_check_dio_repairable(struct inode *inode,
7865 struct bio *failed_bio,
7866 struct io_failure_record *failrec,
7867 int failed_mirror)
7868{
7869 int num_copies;
7870
7871 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7872 failrec->logical, failrec->len);
7873 if (num_copies == 1) {
7874 /*
7875 * we only have a single copy of the data, so don't bother with
7876 * all the retry and error correction code that follows. no
7877 * matter what the error is, it is very likely to persist.
7878 */
7879 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7880 num_copies, failrec->this_mirror, failed_mirror);
7881 return 0;
7882 }
7883
7884 failrec->failed_mirror = failed_mirror;
7885 failrec->this_mirror++;
7886 if (failrec->this_mirror == failed_mirror)
7887 failrec->this_mirror++;
7888
7889 if (failrec->this_mirror > num_copies) {
7890 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7891 num_copies, failrec->this_mirror, failed_mirror);
7892 return 0;
7893 }
7894
7895 return 1;
7896}
7897
7898static int dio_read_error(struct inode *inode, struct bio *failed_bio,
2dabb324
CR
7899 struct page *page, unsigned int pgoff,
7900 u64 start, u64 end, int failed_mirror,
7901 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7902{
7903 struct io_failure_record *failrec;
7904 struct bio *bio;
7905 int isector;
7906 int read_mode;
7907 int ret;
7908
7909 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7910
7911 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7912 if (ret)
7913 return ret;
7914
7915 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7916 failed_mirror);
7917 if (!ret) {
7918 free_io_failure(inode, failrec);
7919 return -EIO;
7920 }
7921
2dabb324
CR
7922 if ((failed_bio->bi_vcnt > 1)
7923 || (failed_bio->bi_io_vec->bv_len
7924 > BTRFS_I(inode)->root->sectorsize))
8b110e39
MX
7925 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7926 else
7927 read_mode = READ_SYNC;
7928
7929 isector = start - btrfs_io_bio(failed_bio)->logical;
7930 isector >>= inode->i_sb->s_blocksize_bits;
7931 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7932 pgoff, isector, repair_endio, repair_arg);
8b110e39
MX
7933 if (!bio) {
7934 free_io_failure(inode, failrec);
7935 return -EIO;
7936 }
7937
7938 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7939 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7940 read_mode, failrec->this_mirror, failrec->in_validation);
7941
7942 ret = submit_dio_repair_bio(inode, bio, read_mode,
7943 failrec->this_mirror);
7944 if (ret) {
7945 free_io_failure(inode, failrec);
7946 bio_put(bio);
7947 }
7948
7949 return ret;
7950}
7951
7952struct btrfs_retry_complete {
7953 struct completion done;
7954 struct inode *inode;
7955 u64 start;
7956 int uptodate;
7957};
7958
4246a0b6 7959static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7960{
7961 struct btrfs_retry_complete *done = bio->bi_private;
2dabb324 7962 struct inode *inode;
8b110e39
MX
7963 struct bio_vec *bvec;
7964 int i;
7965
4246a0b6 7966 if (bio->bi_error)
8b110e39
MX
7967 goto end;
7968
2dabb324
CR
7969 ASSERT(bio->bi_vcnt == 1);
7970 inode = bio->bi_io_vec->bv_page->mapping->host;
7971 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7972
8b110e39
MX
7973 done->uptodate = 1;
7974 bio_for_each_segment_all(bvec, bio, i)
7975 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7976end:
7977 complete(&done->done);
7978 bio_put(bio);
7979}
7980
7981static int __btrfs_correct_data_nocsum(struct inode *inode,
7982 struct btrfs_io_bio *io_bio)
4b46fce2 7983{
2dabb324 7984 struct btrfs_fs_info *fs_info;
2c30c71b 7985 struct bio_vec *bvec;
8b110e39 7986 struct btrfs_retry_complete done;
4b46fce2 7987 u64 start;
2dabb324
CR
7988 unsigned int pgoff;
7989 u32 sectorsize;
7990 int nr_sectors;
2c30c71b 7991 int i;
c1dc0896 7992 int ret;
4b46fce2 7993
2dabb324
CR
7994 fs_info = BTRFS_I(inode)->root->fs_info;
7995 sectorsize = BTRFS_I(inode)->root->sectorsize;
7996
8b110e39
MX
7997 start = io_bio->logical;
7998 done.inode = inode;
7999
8000 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
8001 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8002 pgoff = bvec->bv_offset;
8003
8004next_block_or_try_again:
8b110e39
MX
8005 done.uptodate = 0;
8006 done.start = start;
8007 init_completion(&done.done);
8008
2dabb324
CR
8009 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8010 pgoff, start, start + sectorsize - 1,
8011 io_bio->mirror_num,
8012 btrfs_retry_endio_nocsum, &done);
8b110e39
MX
8013 if (ret)
8014 return ret;
8015
8016 wait_for_completion(&done.done);
8017
8018 if (!done.uptodate) {
8019 /* We might have another mirror, so try again */
2dabb324 8020 goto next_block_or_try_again;
8b110e39
MX
8021 }
8022
2dabb324
CR
8023 start += sectorsize;
8024
8025 if (nr_sectors--) {
8026 pgoff += sectorsize;
8027 goto next_block_or_try_again;
8028 }
8b110e39
MX
8029 }
8030
8031 return 0;
8032}
8033
4246a0b6 8034static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
8035{
8036 struct btrfs_retry_complete *done = bio->bi_private;
8037 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2dabb324 8038 struct inode *inode;
8b110e39 8039 struct bio_vec *bvec;
2dabb324 8040 u64 start;
8b110e39
MX
8041 int uptodate;
8042 int ret;
8043 int i;
8044
4246a0b6 8045 if (bio->bi_error)
8b110e39
MX
8046 goto end;
8047
8048 uptodate = 1;
2dabb324
CR
8049
8050 start = done->start;
8051
8052 ASSERT(bio->bi_vcnt == 1);
8053 inode = bio->bi_io_vec->bv_page->mapping->host;
8054 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
8055
8b110e39
MX
8056 bio_for_each_segment_all(bvec, bio, i) {
8057 ret = __readpage_endio_check(done->inode, io_bio, i,
2dabb324
CR
8058 bvec->bv_page, bvec->bv_offset,
8059 done->start, bvec->bv_len);
8b110e39
MX
8060 if (!ret)
8061 clean_io_failure(done->inode, done->start,
2dabb324 8062 bvec->bv_page, bvec->bv_offset);
8b110e39
MX
8063 else
8064 uptodate = 0;
8065 }
8066
8067 done->uptodate = uptodate;
8068end:
8069 complete(&done->done);
8070 bio_put(bio);
8071}
8072
8073static int __btrfs_subio_endio_read(struct inode *inode,
8074 struct btrfs_io_bio *io_bio, int err)
8075{
2dabb324 8076 struct btrfs_fs_info *fs_info;
8b110e39
MX
8077 struct bio_vec *bvec;
8078 struct btrfs_retry_complete done;
8079 u64 start;
8080 u64 offset = 0;
2dabb324
CR
8081 u32 sectorsize;
8082 int nr_sectors;
8083 unsigned int pgoff;
8084 int csum_pos;
8b110e39
MX
8085 int i;
8086 int ret;
dc380aea 8087
2dabb324
CR
8088 fs_info = BTRFS_I(inode)->root->fs_info;
8089 sectorsize = BTRFS_I(inode)->root->sectorsize;
8090
8b110e39 8091 err = 0;
c1dc0896 8092 start = io_bio->logical;
8b110e39
MX
8093 done.inode = inode;
8094
c1dc0896 8095 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
8096 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8097
8098 pgoff = bvec->bv_offset;
8099next_block:
8100 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8101 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8102 bvec->bv_page, pgoff, start,
8103 sectorsize);
8b110e39
MX
8104 if (likely(!ret))
8105 goto next;
8106try_again:
8107 done.uptodate = 0;
8108 done.start = start;
8109 init_completion(&done.done);
8110
2dabb324
CR
8111 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8112 pgoff, start, start + sectorsize - 1,
8113 io_bio->mirror_num,
8114 btrfs_retry_endio, &done);
8b110e39
MX
8115 if (ret) {
8116 err = ret;
8117 goto next;
8118 }
8119
8120 wait_for_completion(&done.done);
8121
8122 if (!done.uptodate) {
8123 /* We might have another mirror, so try again */
8124 goto try_again;
8125 }
8126next:
2dabb324
CR
8127 offset += sectorsize;
8128 start += sectorsize;
8129
8130 ASSERT(nr_sectors);
8131
8132 if (--nr_sectors) {
8133 pgoff += sectorsize;
8134 goto next_block;
8135 }
2c30c71b 8136 }
c1dc0896
MX
8137
8138 return err;
8139}
8140
8b110e39
MX
8141static int btrfs_subio_endio_read(struct inode *inode,
8142 struct btrfs_io_bio *io_bio, int err)
8143{
8144 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8145
8146 if (skip_csum) {
8147 if (unlikely(err))
8148 return __btrfs_correct_data_nocsum(inode, io_bio);
8149 else
8150 return 0;
8151 } else {
8152 return __btrfs_subio_endio_read(inode, io_bio, err);
8153 }
8154}
8155
4246a0b6 8156static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8157{
8158 struct btrfs_dio_private *dip = bio->bi_private;
8159 struct inode *inode = dip->inode;
8160 struct bio *dio_bio;
8161 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 8162 int err = bio->bi_error;
c1dc0896 8163
8b110e39
MX
8164 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8165 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8166
4b46fce2 8167 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8168 dip->logical_offset + dip->bytes - 1);
9be3395b 8169 dio_bio = dip->dio_bio;
4b46fce2 8170
4b46fce2 8171 kfree(dip);
c0da7aa1 8172
1636d1d7 8173 dio_bio->bi_error = bio->bi_error;
4246a0b6 8174 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
8175
8176 if (io_bio->end_io)
8177 io_bio->end_io(io_bio, err);
9be3395b 8178 bio_put(bio);
4b46fce2
JB
8179}
8180
14543774
FM
8181static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8182 const u64 offset,
8183 const u64 bytes,
8184 const int uptodate)
4b46fce2 8185{
4b46fce2 8186 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 8187 struct btrfs_ordered_extent *ordered = NULL;
14543774
FM
8188 u64 ordered_offset = offset;
8189 u64 ordered_bytes = bytes;
4b46fce2
JB
8190 int ret;
8191
163cf09c
CM
8192again:
8193 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8194 &ordered_offset,
4246a0b6 8195 ordered_bytes,
14543774 8196 uptodate);
4b46fce2 8197 if (!ret)
163cf09c 8198 goto out_test;
4b46fce2 8199
9e0af237
LB
8200 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8201 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
8202 btrfs_queue_work(root->fs_info->endio_write_workers,
8203 &ordered->work);
163cf09c
CM
8204out_test:
8205 /*
8206 * our bio might span multiple ordered extents. If we haven't
8207 * completed the accounting for the whole dio, go back and try again
8208 */
14543774
FM
8209 if (ordered_offset < offset + bytes) {
8210 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8211 ordered = NULL;
163cf09c
CM
8212 goto again;
8213 }
14543774
FM
8214}
8215
8216static void btrfs_endio_direct_write(struct bio *bio)
8217{
8218 struct btrfs_dio_private *dip = bio->bi_private;
8219 struct bio *dio_bio = dip->dio_bio;
8220
8221 btrfs_endio_direct_write_update_ordered(dip->inode,
8222 dip->logical_offset,
8223 dip->bytes,
8224 !bio->bi_error);
4b46fce2 8225
4b46fce2 8226 kfree(dip);
c0da7aa1 8227
1636d1d7 8228 dio_bio->bi_error = bio->bi_error;
4246a0b6 8229 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8230 bio_put(bio);
4b46fce2
JB
8231}
8232
eaf25d93
CM
8233static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8234 struct bio *bio, int mirror_num,
8235 unsigned long bio_flags, u64 offset)
8236{
8237 int ret;
8238 struct btrfs_root *root = BTRFS_I(inode)->root;
8239 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 8240 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8241 return 0;
8242}
8243
4246a0b6 8244static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8245{
8246 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8247 int err = bio->bi_error;
e65e1535 8248
8b110e39
MX
8249 if (err)
8250 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8251 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8252 btrfs_ino(dip->inode), bio->bi_rw,
8253 (unsigned long long)bio->bi_iter.bi_sector,
8254 bio->bi_iter.bi_size, err);
8255
8256 if (dip->subio_endio)
8257 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8258
8259 if (err) {
e65e1535
MX
8260 dip->errors = 1;
8261
8262 /*
8263 * before atomic variable goto zero, we must make sure
8264 * dip->errors is perceived to be set.
8265 */
4e857c58 8266 smp_mb__before_atomic();
e65e1535
MX
8267 }
8268
8269 /* if there are more bios still pending for this dio, just exit */
8270 if (!atomic_dec_and_test(&dip->pending_bios))
8271 goto out;
8272
9be3395b 8273 if (dip->errors) {
e65e1535 8274 bio_io_error(dip->orig_bio);
9be3395b 8275 } else {
4246a0b6
CH
8276 dip->dio_bio->bi_error = 0;
8277 bio_endio(dip->orig_bio);
e65e1535
MX
8278 }
8279out:
8280 bio_put(bio);
8281}
8282
8283static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8284 u64 first_sector, gfp_t gfp_flags)
8285{
da2f0f74 8286 struct bio *bio;
22365979 8287 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
da2f0f74
CM
8288 if (bio)
8289 bio_associate_current(bio);
8290 return bio;
e65e1535
MX
8291}
8292
c1dc0896
MX
8293static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8294 struct inode *inode,
8295 struct btrfs_dio_private *dip,
8296 struct bio *bio,
8297 u64 file_offset)
8298{
8299 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8300 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8301 int ret;
8302
8303 /*
8304 * We load all the csum data we need when we submit
8305 * the first bio to reduce the csum tree search and
8306 * contention.
8307 */
8308 if (dip->logical_offset == file_offset) {
8309 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8310 file_offset);
8311 if (ret)
8312 return ret;
8313 }
8314
8315 if (bio == dip->orig_bio)
8316 return 0;
8317
8318 file_offset -= dip->logical_offset;
8319 file_offset >>= inode->i_sb->s_blocksize_bits;
8320 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8321
8322 return 0;
8323}
8324
e65e1535
MX
8325static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8326 int rw, u64 file_offset, int skip_sum,
c329861d 8327 int async_submit)
e65e1535 8328{
facc8a22 8329 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
8330 int write = rw & REQ_WRITE;
8331 struct btrfs_root *root = BTRFS_I(inode)->root;
8332 int ret;
8333
b812ce28
JB
8334 if (async_submit)
8335 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8336
e65e1535 8337 bio_get(bio);
5fd02043
JB
8338
8339 if (!write) {
bfebd8b5
DS
8340 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8341 BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8342 if (ret)
8343 goto err;
8344 }
e65e1535 8345
1ae39938
JB
8346 if (skip_sum)
8347 goto map;
8348
8349 if (write && async_submit) {
e65e1535
MX
8350 ret = btrfs_wq_submit_bio(root->fs_info,
8351 inode, rw, bio, 0, 0,
8352 file_offset,
8353 __btrfs_submit_bio_start_direct_io,
8354 __btrfs_submit_bio_done);
8355 goto err;
1ae39938
JB
8356 } else if (write) {
8357 /*
8358 * If we aren't doing async submit, calculate the csum of the
8359 * bio now.
8360 */
8361 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8362 if (ret)
8363 goto err;
23ea8e5a 8364 } else {
c1dc0896
MX
8365 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8366 file_offset);
c2db1073
TI
8367 if (ret)
8368 goto err;
8369 }
1ae39938
JB
8370map:
8371 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
8372err:
8373 bio_put(bio);
8374 return ret;
8375}
8376
8377static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8378 int skip_sum)
8379{
8380 struct inode *inode = dip->inode;
8381 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8382 struct bio *bio;
8383 struct bio *orig_bio = dip->orig_bio;
8384 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 8385 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8386 u64 file_offset = dip->logical_offset;
8387 u64 submit_len = 0;
8388 u64 map_length;
5f4dc8fc 8389 u32 blocksize = root->sectorsize;
1ae39938 8390 int async_submit = 0;
5f4dc8fc
CR
8391 int nr_sectors;
8392 int ret;
8393 int i;
e65e1535 8394
4f024f37 8395 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8396 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535 8397 &map_length, NULL, 0);
7a5c3c9b 8398 if (ret)
e65e1535 8399 return -EIO;
facc8a22 8400
4f024f37 8401 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8402 bio = orig_bio;
c1dc0896 8403 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8404 goto submit;
8405 }
8406
53b381b3 8407 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8408 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8409 async_submit = 0;
8410 else
8411 async_submit = 1;
8412
02f57c7a
JB
8413 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8414 if (!bio)
8415 return -ENOMEM;
7a5c3c9b 8416
02f57c7a
JB
8417 bio->bi_private = dip;
8418 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8419 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8420 atomic_inc(&dip->pending_bios);
8421
e65e1535 8422 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5f4dc8fc
CR
8423 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8424 i = 0;
8425next_block:
8426 if (unlikely(map_length < submit_len + blocksize ||
8427 bio_add_page(bio, bvec->bv_page, blocksize,
8428 bvec->bv_offset + (i * blocksize)) < blocksize)) {
e65e1535
MX
8429 /*
8430 * inc the count before we submit the bio so
8431 * we know the end IO handler won't happen before
8432 * we inc the count. Otherwise, the dip might get freed
8433 * before we're done setting it up
8434 */
8435 atomic_inc(&dip->pending_bios);
8436 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8437 file_offset, skip_sum,
c329861d 8438 async_submit);
e65e1535
MX
8439 if (ret) {
8440 bio_put(bio);
8441 atomic_dec(&dip->pending_bios);
8442 goto out_err;
8443 }
8444
e65e1535
MX
8445 start_sector += submit_len >> 9;
8446 file_offset += submit_len;
8447
8448 submit_len = 0;
e65e1535
MX
8449
8450 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8451 start_sector, GFP_NOFS);
8452 if (!bio)
8453 goto out_err;
8454 bio->bi_private = dip;
8455 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8456 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8457
4f024f37 8458 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8459 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 8460 start_sector << 9,
e65e1535
MX
8461 &map_length, NULL, 0);
8462 if (ret) {
8463 bio_put(bio);
8464 goto out_err;
8465 }
5f4dc8fc
CR
8466
8467 goto next_block;
e65e1535 8468 } else {
5f4dc8fc
CR
8469 submit_len += blocksize;
8470 if (--nr_sectors) {
8471 i++;
8472 goto next_block;
8473 }
e65e1535
MX
8474 bvec++;
8475 }
8476 }
8477
02f57c7a 8478submit:
e65e1535 8479 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 8480 async_submit);
e65e1535
MX
8481 if (!ret)
8482 return 0;
8483
8484 bio_put(bio);
8485out_err:
8486 dip->errors = 1;
8487 /*
8488 * before atomic variable goto zero, we must
8489 * make sure dip->errors is perceived to be set.
8490 */
4e857c58 8491 smp_mb__before_atomic();
e65e1535
MX
8492 if (atomic_dec_and_test(&dip->pending_bios))
8493 bio_io_error(dip->orig_bio);
8494
8495 /* bio_end_io() will handle error, so we needn't return it */
8496 return 0;
8497}
8498
9be3395b
CM
8499static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8500 struct inode *inode, loff_t file_offset)
4b46fce2 8501{
61de718f
FM
8502 struct btrfs_dio_private *dip = NULL;
8503 struct bio *io_bio = NULL;
23ea8e5a 8504 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8505 int skip_sum;
7b6d91da 8506 int write = rw & REQ_WRITE;
4b46fce2
JB
8507 int ret = 0;
8508
8509 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8510
9be3395b 8511 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8512 if (!io_bio) {
8513 ret = -ENOMEM;
8514 goto free_ordered;
8515 }
8516
c1dc0896 8517 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8518 if (!dip) {
8519 ret = -ENOMEM;
61de718f 8520 goto free_ordered;
4b46fce2 8521 }
4b46fce2 8522
9be3395b 8523 dip->private = dio_bio->bi_private;
4b46fce2
JB
8524 dip->inode = inode;
8525 dip->logical_offset = file_offset;
4f024f37
KO
8526 dip->bytes = dio_bio->bi_iter.bi_size;
8527 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8528 io_bio->bi_private = dip;
9be3395b
CM
8529 dip->orig_bio = io_bio;
8530 dip->dio_bio = dio_bio;
e65e1535 8531 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8532 btrfs_bio = btrfs_io_bio(io_bio);
8533 btrfs_bio->logical = file_offset;
4b46fce2 8534
c1dc0896 8535 if (write) {
9be3395b 8536 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8537 } else {
9be3395b 8538 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8539 dip->subio_endio = btrfs_subio_endio_read;
8540 }
4b46fce2 8541
f28a4928
FM
8542 /*
8543 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8544 * even if we fail to submit a bio, because in such case we do the
8545 * corresponding error handling below and it must not be done a second
8546 * time by btrfs_direct_IO().
8547 */
8548 if (write) {
8549 struct btrfs_dio_data *dio_data = current->journal_info;
8550
8551 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8552 dip->bytes;
8553 dio_data->unsubmitted_oe_range_start =
8554 dio_data->unsubmitted_oe_range_end;
8555 }
8556
e65e1535
MX
8557 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8558 if (!ret)
eaf25d93 8559 return;
9be3395b 8560
23ea8e5a
MX
8561 if (btrfs_bio->end_io)
8562 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8563
4b46fce2
JB
8564free_ordered:
8565 /*
61de718f
FM
8566 * If we arrived here it means either we failed to submit the dip
8567 * or we either failed to clone the dio_bio or failed to allocate the
8568 * dip. If we cloned the dio_bio and allocated the dip, we can just
8569 * call bio_endio against our io_bio so that we get proper resource
8570 * cleanup if we fail to submit the dip, otherwise, we must do the
8571 * same as btrfs_endio_direct_[write|read] because we can't call these
8572 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8573 */
61de718f 8574 if (io_bio && dip) {
4246a0b6
CH
8575 io_bio->bi_error = -EIO;
8576 bio_endio(io_bio);
61de718f
FM
8577 /*
8578 * The end io callbacks free our dip, do the final put on io_bio
8579 * and all the cleanup and final put for dio_bio (through
8580 * dio_end_io()).
8581 */
8582 dip = NULL;
8583 io_bio = NULL;
8584 } else {
14543774
FM
8585 if (write)
8586 btrfs_endio_direct_write_update_ordered(inode,
8587 file_offset,
8588 dio_bio->bi_iter.bi_size,
8589 0);
8590 else
61de718f
FM
8591 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8592 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8593
4246a0b6 8594 dio_bio->bi_error = -EIO;
61de718f
FM
8595 /*
8596 * Releases and cleans up our dio_bio, no need to bio_put()
8597 * nor bio_endio()/bio_io_error() against dio_bio.
8598 */
8599 dio_end_io(dio_bio, ret);
4b46fce2 8600 }
61de718f
FM
8601 if (io_bio)
8602 bio_put(io_bio);
8603 kfree(dip);
4b46fce2
JB
8604}
8605
6f673763 8606static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
28060d5d 8607 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8608{
8609 int seg;
a1b75f7d 8610 int i;
5a5f79b5
CM
8611 unsigned blocksize_mask = root->sectorsize - 1;
8612 ssize_t retval = -EINVAL;
5a5f79b5
CM
8613
8614 if (offset & blocksize_mask)
8615 goto out;
8616
28060d5d
AV
8617 if (iov_iter_alignment(iter) & blocksize_mask)
8618 goto out;
a1b75f7d 8619
28060d5d 8620 /* If this is a write we don't need to check anymore */
6f673763 8621 if (iov_iter_rw(iter) == WRITE)
28060d5d
AV
8622 return 0;
8623 /*
8624 * Check to make sure we don't have duplicate iov_base's in this
8625 * iovec, if so return EINVAL, otherwise we'll get csum errors
8626 * when reading back.
8627 */
8628 for (seg = 0; seg < iter->nr_segs; seg++) {
8629 for (i = seg + 1; i < iter->nr_segs; i++) {
8630 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8631 goto out;
8632 }
5a5f79b5
CM
8633 }
8634 retval = 0;
8635out:
8636 return retval;
8637}
eb838e73 8638
c8b8e32d 8639static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8640{
4b46fce2
JB
8641 struct file *file = iocb->ki_filp;
8642 struct inode *inode = file->f_mapping->host;
50745b0a 8643 struct btrfs_root *root = BTRFS_I(inode)->root;
8644 struct btrfs_dio_data dio_data = { 0 };
c8b8e32d 8645 loff_t offset = iocb->ki_pos;
0934856d 8646 size_t count = 0;
2e60a51e 8647 int flags = 0;
38851cc1
MX
8648 bool wakeup = true;
8649 bool relock = false;
0934856d 8650 ssize_t ret;
4b46fce2 8651
6f673763 8652 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
5a5f79b5 8653 return 0;
3f7c579c 8654
fe0f07d0 8655 inode_dio_begin(inode);
4e857c58 8656 smp_mb__after_atomic();
38851cc1 8657
0e267c44 8658 /*
41bd9ca4
MX
8659 * The generic stuff only does filemap_write_and_wait_range, which
8660 * isn't enough if we've written compressed pages to this area, so
8661 * we need to flush the dirty pages again to make absolutely sure
8662 * that any outstanding dirty pages are on disk.
0e267c44 8663 */
a6cbcd4a 8664 count = iov_iter_count(iter);
41bd9ca4
MX
8665 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8666 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8667 filemap_fdatawrite_range(inode->i_mapping, offset,
8668 offset + count - 1);
0e267c44 8669
6f673763 8670 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8671 /*
8672 * If the write DIO is beyond the EOF, we need update
8673 * the isize, but it is protected by i_mutex. So we can
8674 * not unlock the i_mutex at this case.
8675 */
8676 if (offset + count <= inode->i_size) {
5955102c 8677 inode_unlock(inode);
38851cc1
MX
8678 relock = true;
8679 }
7cf5b976 8680 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8681 if (ret)
38851cc1 8682 goto out;
50745b0a 8683 dio_data.outstanding_extents = div64_u64(count +
e1cbbfa5
JB
8684 BTRFS_MAX_EXTENT_SIZE - 1,
8685 BTRFS_MAX_EXTENT_SIZE);
8686
8687 /*
8688 * We need to know how many extents we reserved so that we can
8689 * do the accounting properly if we go over the number we
8690 * originally calculated. Abuse current->journal_info for this.
8691 */
50745b0a 8692 dio_data.reserve = round_up(count, root->sectorsize);
f28a4928
FM
8693 dio_data.unsubmitted_oe_range_start = (u64)offset;
8694 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8695 current->journal_info = &dio_data;
ee39b432
DS
8696 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8697 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8698 inode_dio_end(inode);
38851cc1
MX
8699 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8700 wakeup = false;
0934856d
MX
8701 }
8702
17f8c842
OS
8703 ret = __blockdev_direct_IO(iocb, inode,
8704 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
c8b8e32d 8705 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8706 btrfs_submit_direct, flags);
6f673763 8707 if (iov_iter_rw(iter) == WRITE) {
e1cbbfa5 8708 current->journal_info = NULL;
ddba1bfc 8709 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8710 if (dio_data.reserve)
7cf5b976
QW
8711 btrfs_delalloc_release_space(inode, offset,
8712 dio_data.reserve);
f28a4928
FM
8713 /*
8714 * On error we might have left some ordered extents
8715 * without submitting corresponding bios for them, so
8716 * cleanup them up to avoid other tasks getting them
8717 * and waiting for them to complete forever.
8718 */
8719 if (dio_data.unsubmitted_oe_range_start <
8720 dio_data.unsubmitted_oe_range_end)
8721 btrfs_endio_direct_write_update_ordered(inode,
8722 dio_data.unsubmitted_oe_range_start,
8723 dio_data.unsubmitted_oe_range_end -
8724 dio_data.unsubmitted_oe_range_start,
8725 0);
ddba1bfc 8726 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8727 btrfs_delalloc_release_space(inode, offset,
8728 count - (size_t)ret);
0934856d 8729 }
38851cc1 8730out:
2e60a51e 8731 if (wakeup)
fe0f07d0 8732 inode_dio_end(inode);
38851cc1 8733 if (relock)
5955102c 8734 inode_lock(inode);
0934856d
MX
8735
8736 return ret;
16432985
CM
8737}
8738
05dadc09
TI
8739#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8740
1506fcc8
YS
8741static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8742 __u64 start, __u64 len)
8743{
05dadc09
TI
8744 int ret;
8745
8746 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8747 if (ret)
8748 return ret;
8749
ec29ed5b 8750 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8751}
8752
a52d9a80 8753int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8754{
d1310b2e
CM
8755 struct extent_io_tree *tree;
8756 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8757 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8758}
1832a6d5 8759
a52d9a80 8760static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8761{
d1310b2e 8762 struct extent_io_tree *tree;
be7bd730
JB
8763 struct inode *inode = page->mapping->host;
8764 int ret;
b888db2b
CM
8765
8766 if (current->flags & PF_MEMALLOC) {
8767 redirty_page_for_writepage(wbc, page);
8768 unlock_page(page);
8769 return 0;
8770 }
be7bd730
JB
8771
8772 /*
8773 * If we are under memory pressure we will call this directly from the
8774 * VM, we need to make sure we have the inode referenced for the ordered
8775 * extent. If not just return like we didn't do anything.
8776 */
8777 if (!igrab(inode)) {
8778 redirty_page_for_writepage(wbc, page);
8779 return AOP_WRITEPAGE_ACTIVATE;
8780 }
d1310b2e 8781 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8782 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8783 btrfs_add_delayed_iput(inode);
8784 return ret;
9ebefb18
CM
8785}
8786
48a3b636
ES
8787static int btrfs_writepages(struct address_space *mapping,
8788 struct writeback_control *wbc)
b293f02e 8789{
d1310b2e 8790 struct extent_io_tree *tree;
771ed689 8791
d1310b2e 8792 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8793 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8794}
8795
3ab2fb5a
CM
8796static int
8797btrfs_readpages(struct file *file, struct address_space *mapping,
8798 struct list_head *pages, unsigned nr_pages)
8799{
d1310b2e
CM
8800 struct extent_io_tree *tree;
8801 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8802 return extent_readpages(tree, mapping, pages, nr_pages,
8803 btrfs_get_extent);
8804}
e6dcd2dc 8805static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8806{
d1310b2e
CM
8807 struct extent_io_tree *tree;
8808 struct extent_map_tree *map;
a52d9a80 8809 int ret;
8c2383c3 8810
d1310b2e
CM
8811 tree = &BTRFS_I(page->mapping->host)->io_tree;
8812 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8813 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8814 if (ret == 1) {
8815 ClearPagePrivate(page);
8816 set_page_private(page, 0);
09cbfeaf 8817 put_page(page);
39279cc3 8818 }
a52d9a80 8819 return ret;
39279cc3
CM
8820}
8821
e6dcd2dc
CM
8822static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8823{
98509cfc
CM
8824 if (PageWriteback(page) || PageDirty(page))
8825 return 0;
b335b003 8826 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8827}
8828
d47992f8
LC
8829static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8830 unsigned int length)
39279cc3 8831{
5fd02043 8832 struct inode *inode = page->mapping->host;
d1310b2e 8833 struct extent_io_tree *tree;
e6dcd2dc 8834 struct btrfs_ordered_extent *ordered;
2ac55d41 8835 struct extent_state *cached_state = NULL;
e6dcd2dc 8836 u64 page_start = page_offset(page);
09cbfeaf 8837 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8838 u64 start;
8839 u64 end;
131e404a 8840 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8841
8b62b72b
CM
8842 /*
8843 * we have the page locked, so new writeback can't start,
8844 * and the dirty bit won't be cleared while we are here.
8845 *
8846 * Wait for IO on this page so that we can safely clear
8847 * the PagePrivate2 bit and do ordered accounting
8848 */
e6dcd2dc 8849 wait_on_page_writeback(page);
8b62b72b 8850
5fd02043 8851 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8852 if (offset) {
8853 btrfs_releasepage(page, GFP_NOFS);
8854 return;
8855 }
131e404a
FDBM
8856
8857 if (!inode_evicting)
ff13db41 8858 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8859again:
8860 start = page_start;
8861 ordered = btrfs_lookup_ordered_range(inode, start,
8862 page_end - start + 1);
e6dcd2dc 8863 if (ordered) {
dbfdb6d1 8864 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8865 /*
8866 * IO on this page will never be started, so we need
8867 * to account for any ordered extents now
8868 */
131e404a 8869 if (!inode_evicting)
dbfdb6d1 8870 clear_extent_bit(tree, start, end,
131e404a
FDBM
8871 EXTENT_DIRTY | EXTENT_DELALLOC |
8872 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8873 EXTENT_DEFRAG, 1, 0, &cached_state,
8874 GFP_NOFS);
8b62b72b
CM
8875 /*
8876 * whoever cleared the private bit is responsible
8877 * for the finish_ordered_io
8878 */
77cef2ec
JB
8879 if (TestClearPagePrivate2(page)) {
8880 struct btrfs_ordered_inode_tree *tree;
8881 u64 new_len;
8882
8883 tree = &BTRFS_I(inode)->ordered_tree;
8884
8885 spin_lock_irq(&tree->lock);
8886 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8887 new_len = start - ordered->file_offset;
77cef2ec
JB
8888 if (new_len < ordered->truncated_len)
8889 ordered->truncated_len = new_len;
8890 spin_unlock_irq(&tree->lock);
8891
8892 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8893 start,
8894 end - start + 1, 1))
77cef2ec 8895 btrfs_finish_ordered_io(ordered);
8b62b72b 8896 }
e6dcd2dc 8897 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8898 if (!inode_evicting) {
8899 cached_state = NULL;
dbfdb6d1 8900 lock_extent_bits(tree, start, end,
131e404a
FDBM
8901 &cached_state);
8902 }
dbfdb6d1
CR
8903
8904 start = end + 1;
8905 if (start < page_end)
8906 goto again;
131e404a
FDBM
8907 }
8908
b9d0b389
QW
8909 /*
8910 * Qgroup reserved space handler
8911 * Page here will be either
8912 * 1) Already written to disk
8913 * In this case, its reserved space is released from data rsv map
8914 * and will be freed by delayed_ref handler finally.
8915 * So even we call qgroup_free_data(), it won't decrease reserved
8916 * space.
8917 * 2) Not written to disk
8918 * This means the reserved space should be freed here.
8919 */
09cbfeaf 8920 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
131e404a
FDBM
8921 if (!inode_evicting) {
8922 clear_extent_bit(tree, page_start, page_end,
8923 EXTENT_LOCKED | EXTENT_DIRTY |
8924 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8925 EXTENT_DEFRAG, 1, 1,
8926 &cached_state, GFP_NOFS);
8927
8928 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8929 }
e6dcd2dc 8930
4a096752 8931 ClearPageChecked(page);
9ad6b7bc 8932 if (PagePrivate(page)) {
9ad6b7bc
CM
8933 ClearPagePrivate(page);
8934 set_page_private(page, 0);
09cbfeaf 8935 put_page(page);
9ad6b7bc 8936 }
39279cc3
CM
8937}
8938
9ebefb18
CM
8939/*
8940 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8941 * called from a page fault handler when a page is first dirtied. Hence we must
8942 * be careful to check for EOF conditions here. We set the page up correctly
8943 * for a written page which means we get ENOSPC checking when writing into
8944 * holes and correct delalloc and unwritten extent mapping on filesystems that
8945 * support these features.
8946 *
8947 * We are not allowed to take the i_mutex here so we have to play games to
8948 * protect against truncate races as the page could now be beyond EOF. Because
8949 * vmtruncate() writes the inode size before removing pages, once we have the
8950 * page lock we can determine safely if the page is beyond EOF. If it is not
8951 * beyond EOF, then the page is guaranteed safe against truncation until we
8952 * unlock the page.
8953 */
c2ec175c 8954int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8955{
c2ec175c 8956 struct page *page = vmf->page;
496ad9aa 8957 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8958 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8959 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8960 struct btrfs_ordered_extent *ordered;
2ac55d41 8961 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8962 char *kaddr;
8963 unsigned long zero_start;
9ebefb18 8964 loff_t size;
1832a6d5 8965 int ret;
9998eb70 8966 int reserved = 0;
d0b7da88 8967 u64 reserved_space;
a52d9a80 8968 u64 page_start;
e6dcd2dc 8969 u64 page_end;
d0b7da88
CR
8970 u64 end;
8971
09cbfeaf 8972 reserved_space = PAGE_SIZE;
9ebefb18 8973
b2b5ef5c 8974 sb_start_pagefault(inode->i_sb);
df480633 8975 page_start = page_offset(page);
09cbfeaf 8976 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8977 end = page_end;
df480633 8978
d0b7da88
CR
8979 /*
8980 * Reserving delalloc space after obtaining the page lock can lead to
8981 * deadlock. For example, if a dirty page is locked by this function
8982 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8983 * dirty page write out, then the btrfs_writepage() function could
8984 * end up waiting indefinitely to get a lock on the page currently
8985 * being processed by btrfs_page_mkwrite() function.
8986 */
7cf5b976 8987 ret = btrfs_delalloc_reserve_space(inode, page_start,
d0b7da88 8988 reserved_space);
9998eb70 8989 if (!ret) {
e41f941a 8990 ret = file_update_time(vma->vm_file);
9998eb70
CM
8991 reserved = 1;
8992 }
56a76f82
NP
8993 if (ret) {
8994 if (ret == -ENOMEM)
8995 ret = VM_FAULT_OOM;
8996 else /* -ENOSPC, -EIO, etc */
8997 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8998 if (reserved)
8999 goto out;
9000 goto out_noreserve;
56a76f82 9001 }
1832a6d5 9002
56a76f82 9003 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 9004again:
9ebefb18 9005 lock_page(page);
9ebefb18 9006 size = i_size_read(inode);
a52d9a80 9007
9ebefb18 9008 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 9009 (page_start >= size)) {
9ebefb18
CM
9010 /* page got truncated out from underneath us */
9011 goto out_unlock;
9012 }
e6dcd2dc
CM
9013 wait_on_page_writeback(page);
9014
ff13db41 9015 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
9016 set_page_extent_mapped(page);
9017
eb84ae03
CM
9018 /*
9019 * we can't set the delalloc bits if there are pending ordered
9020 * extents. Drop our locks and wait for them to finish
9021 */
d0b7da88 9022 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
e6dcd2dc 9023 if (ordered) {
2ac55d41
JB
9024 unlock_extent_cached(io_tree, page_start, page_end,
9025 &cached_state, GFP_NOFS);
e6dcd2dc 9026 unlock_page(page);
eb84ae03 9027 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
9028 btrfs_put_ordered_extent(ordered);
9029 goto again;
9030 }
9031
09cbfeaf 9032 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
d0b7da88 9033 reserved_space = round_up(size - page_start, root->sectorsize);
09cbfeaf 9034 if (reserved_space < PAGE_SIZE) {
d0b7da88
CR
9035 end = page_start + reserved_space - 1;
9036 spin_lock(&BTRFS_I(inode)->lock);
9037 BTRFS_I(inode)->outstanding_extents++;
9038 spin_unlock(&BTRFS_I(inode)->lock);
9039 btrfs_delalloc_release_space(inode, page_start,
09cbfeaf 9040 PAGE_SIZE - reserved_space);
d0b7da88
CR
9041 }
9042 }
9043
fbf19087
JB
9044 /*
9045 * XXX - page_mkwrite gets called every time the page is dirtied, even
9046 * if it was already dirty, so for space accounting reasons we need to
9047 * clear any delalloc bits for the range we are fixing to save. There
9048 * is probably a better way to do this, but for now keep consistent with
9049 * prepare_pages in the normal write path.
9050 */
d0b7da88 9051 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9052 EXTENT_DIRTY | EXTENT_DELALLOC |
9053 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 9054 0, 0, &cached_state, GFP_NOFS);
fbf19087 9055
d0b7da88 9056 ret = btrfs_set_extent_delalloc(inode, page_start, end,
2ac55d41 9057 &cached_state);
9ed74f2d 9058 if (ret) {
2ac55d41
JB
9059 unlock_extent_cached(io_tree, page_start, page_end,
9060 &cached_state, GFP_NOFS);
9ed74f2d
JB
9061 ret = VM_FAULT_SIGBUS;
9062 goto out_unlock;
9063 }
e6dcd2dc 9064 ret = 0;
9ebefb18
CM
9065
9066 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9067 if (page_start + PAGE_SIZE > size)
9068 zero_start = size & ~PAGE_MASK;
9ebefb18 9069 else
09cbfeaf 9070 zero_start = PAGE_SIZE;
9ebefb18 9071
09cbfeaf 9072 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9073 kaddr = kmap(page);
09cbfeaf 9074 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9075 flush_dcache_page(page);
9076 kunmap(page);
9077 }
247e743c 9078 ClearPageChecked(page);
e6dcd2dc 9079 set_page_dirty(page);
50a9b214 9080 SetPageUptodate(page);
5a3f23d5 9081
257c62e1
CM
9082 BTRFS_I(inode)->last_trans = root->fs_info->generation;
9083 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9084 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9085
2ac55d41 9086 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9087
9088out_unlock:
b2b5ef5c
JK
9089 if (!ret) {
9090 sb_end_pagefault(inode->i_sb);
50a9b214 9091 return VM_FAULT_LOCKED;
b2b5ef5c 9092 }
9ebefb18 9093 unlock_page(page);
1832a6d5 9094out:
d0b7da88 9095 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9998eb70 9096out_noreserve:
b2b5ef5c 9097 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
9098 return ret;
9099}
9100
a41ad394 9101static int btrfs_truncate(struct inode *inode)
39279cc3
CM
9102{
9103 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9104 struct btrfs_block_rsv *rsv;
a71754fc 9105 int ret = 0;
3893e33b 9106 int err = 0;
39279cc3 9107 struct btrfs_trans_handle *trans;
dbe674a9 9108 u64 mask = root->sectorsize - 1;
07127184 9109 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 9110
0ef8b726
JB
9111 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9112 (u64)-1);
9113 if (ret)
9114 return ret;
39279cc3 9115
fcb80c2a 9116 /*
01327610 9117 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9118 * 3 things going on here
9119 *
9120 * 1) We need to reserve space for our orphan item and the space to
9121 * delete our orphan item. Lord knows we don't want to have a dangling
9122 * orphan item because we didn't reserve space to remove it.
9123 *
9124 * 2) We need to reserve space to update our inode.
9125 *
9126 * 3) We need to have something to cache all the space that is going to
9127 * be free'd up by the truncate operation, but also have some slack
9128 * space reserved in case it uses space during the truncate (thank you
9129 * very much snapshotting).
9130 *
01327610 9131 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9132 * space doing the truncate, and we have no earthly idea how much space
01327610 9133 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9134 * doesn't end up using space reserved for updating the inode or
9135 * removing the orphan item. We also need to be able to stop the
9136 * transaction and start a new one, which means we need to be able to
9137 * update the inode several times, and we have no idea of knowing how
9138 * many times that will be, so we can't just reserve 1 item for the
01327610 9139 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9140 * Then there is the orphan item, which does indeed need to be held on
9141 * to for the whole operation, and we need nobody to touch this reserved
9142 * space except the orphan code.
9143 *
9144 * So that leaves us with
9145 *
9146 * 1) root->orphan_block_rsv - for the orphan deletion.
9147 * 2) rsv - for the truncate reservation, which we will steal from the
9148 * transaction reservation.
9149 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9150 * updating the inode.
9151 */
66d8f3dd 9152 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9153 if (!rsv)
9154 return -ENOMEM;
4a338542 9155 rsv->size = min_size;
ca7e70f5 9156 rsv->failfast = 1;
f0cd846e 9157
907cbceb 9158 /*
07127184 9159 * 1 for the truncate slack space
907cbceb
JB
9160 * 1 for updating the inode.
9161 */
f3fe820c 9162 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9163 if (IS_ERR(trans)) {
9164 err = PTR_ERR(trans);
9165 goto out;
9166 }
f0cd846e 9167
907cbceb
JB
9168 /* Migrate the slack space for the truncate to our reserve */
9169 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
25d609f8 9170 min_size, 0);
fcb80c2a 9171 BUG_ON(ret);
f0cd846e 9172
5dc562c5
JB
9173 /*
9174 * So if we truncate and then write and fsync we normally would just
9175 * write the extents that changed, which is a problem if we need to
9176 * first truncate that entire inode. So set this flag so we write out
9177 * all of the extents in the inode to the sync log so we're completely
9178 * safe.
9179 */
9180 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9181 trans->block_rsv = rsv;
907cbceb 9182
8082510e
YZ
9183 while (1) {
9184 ret = btrfs_truncate_inode_items(trans, root, inode,
9185 inode->i_size,
9186 BTRFS_EXTENT_DATA_KEY);
28ed1345 9187 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9188 err = ret;
8082510e 9189 break;
3893e33b 9190 }
39279cc3 9191
fcb80c2a 9192 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 9193 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9194 if (ret) {
9195 err = ret;
9196 break;
9197 }
ca7e70f5 9198
8082510e 9199 btrfs_end_transaction(trans, root);
b53d3f5d 9200 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
9201
9202 trans = btrfs_start_transaction(root, 2);
9203 if (IS_ERR(trans)) {
9204 ret = err = PTR_ERR(trans);
9205 trans = NULL;
9206 break;
9207 }
9208
9209 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
25d609f8 9210 rsv, min_size, 0);
ca7e70f5
JB
9211 BUG_ON(ret); /* shouldn't happen */
9212 trans->block_rsv = rsv;
8082510e
YZ
9213 }
9214
9215 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9216 trans->block_rsv = root->orphan_block_rsv;
8082510e 9217 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
9218 if (ret)
9219 err = ret;
8082510e
YZ
9220 }
9221
917c16b2
CM
9222 if (trans) {
9223 trans->block_rsv = &root->fs_info->trans_block_rsv;
9224 ret = btrfs_update_inode(trans, root, inode);
9225 if (ret && !err)
9226 err = ret;
7b128766 9227
7ad85bb7 9228 ret = btrfs_end_transaction(trans, root);
b53d3f5d 9229 btrfs_btree_balance_dirty(root);
917c16b2 9230 }
fcb80c2a
JB
9231out:
9232 btrfs_free_block_rsv(root, rsv);
9233
3893e33b
JB
9234 if (ret && !err)
9235 err = ret;
a41ad394 9236
3893e33b 9237 return err;
39279cc3
CM
9238}
9239
d352ac68
CM
9240/*
9241 * create a new subvolume directory/inode (helper for the ioctl).
9242 */
d2fb3437 9243int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9244 struct btrfs_root *new_root,
9245 struct btrfs_root *parent_root,
9246 u64 new_dirid)
39279cc3 9247{
39279cc3 9248 struct inode *inode;
76dda93c 9249 int err;
00e4e6b3 9250 u64 index = 0;
39279cc3 9251
12fc9d09
FA
9252 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9253 new_dirid, new_dirid,
9254 S_IFDIR | (~current_umask() & S_IRWXUGO),
9255 &index);
54aa1f4d 9256 if (IS_ERR(inode))
f46b5a66 9257 return PTR_ERR(inode);
39279cc3
CM
9258 inode->i_op = &btrfs_dir_inode_operations;
9259 inode->i_fop = &btrfs_dir_file_operations;
9260
bfe86848 9261 set_nlink(inode, 1);
dbe674a9 9262 btrfs_i_size_write(inode, 0);
b0d5d10f 9263 unlock_new_inode(inode);
3b96362c 9264
63541927
FDBM
9265 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9266 if (err)
9267 btrfs_err(new_root->fs_info,
351fd353 9268 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9269 new_root->root_key.objectid, err);
9270
76dda93c 9271 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9272
76dda93c 9273 iput(inode);
ce598979 9274 return err;
39279cc3
CM
9275}
9276
39279cc3
CM
9277struct inode *btrfs_alloc_inode(struct super_block *sb)
9278{
9279 struct btrfs_inode *ei;
2ead6ae7 9280 struct inode *inode;
39279cc3
CM
9281
9282 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9283 if (!ei)
9284 return NULL;
2ead6ae7
YZ
9285
9286 ei->root = NULL;
2ead6ae7 9287 ei->generation = 0;
15ee9bc7 9288 ei->last_trans = 0;
257c62e1 9289 ei->last_sub_trans = 0;
e02119d5 9290 ei->logged_trans = 0;
2ead6ae7 9291 ei->delalloc_bytes = 0;
47059d93 9292 ei->defrag_bytes = 0;
2ead6ae7
YZ
9293 ei->disk_i_size = 0;
9294 ei->flags = 0;
7709cde3 9295 ei->csum_bytes = 0;
2ead6ae7 9296 ei->index_cnt = (u64)-1;
67de1176 9297 ei->dir_index = 0;
2ead6ae7 9298 ei->last_unlink_trans = 0;
46d8bc34 9299 ei->last_log_commit = 0;
8089fe62 9300 ei->delayed_iput_count = 0;
2ead6ae7 9301
9e0baf60
JB
9302 spin_lock_init(&ei->lock);
9303 ei->outstanding_extents = 0;
9304 ei->reserved_extents = 0;
2ead6ae7 9305
72ac3c0d 9306 ei->runtime_flags = 0;
261507a0 9307 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9308
16cdcec7
MX
9309 ei->delayed_node = NULL;
9310
9cc97d64 9311 ei->i_otime.tv_sec = 0;
9312 ei->i_otime.tv_nsec = 0;
9313
2ead6ae7 9314 inode = &ei->vfs_inode;
a8067e02 9315 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
9316 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9317 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
9318 ei->io_tree.track_uptodate = 1;
9319 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9320 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9321 mutex_init(&ei->log_mutex);
f248679e 9322 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9323 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9324 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9325 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9326 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9327 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9328
9329 return inode;
39279cc3
CM
9330}
9331
aaedb55b
JB
9332#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9333void btrfs_test_destroy_inode(struct inode *inode)
9334{
9335 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9336 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9337}
9338#endif
9339
fa0d7e3d
NP
9340static void btrfs_i_callback(struct rcu_head *head)
9341{
9342 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9343 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9344}
9345
39279cc3
CM
9346void btrfs_destroy_inode(struct inode *inode)
9347{
e6dcd2dc 9348 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9349 struct btrfs_root *root = BTRFS_I(inode)->root;
9350
b3d9b7a3 9351 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9352 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9353 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9354 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
9355 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9356 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9357 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9358
a6dbd429
JB
9359 /*
9360 * This can happen where we create an inode, but somebody else also
9361 * created the same inode and we need to destroy the one we already
9362 * created.
9363 */
9364 if (!root)
9365 goto free;
9366
8a35d95f
JB
9367 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9368 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 9369 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 9370 btrfs_ino(inode));
8a35d95f 9371 atomic_dec(&root->orphan_inodes);
7b128766 9372 }
7b128766 9373
d397712b 9374 while (1) {
e6dcd2dc
CM
9375 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9376 if (!ordered)
9377 break;
9378 else {
c2cf52eb 9379 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 9380 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9381 btrfs_remove_ordered_extent(inode, ordered);
9382 btrfs_put_ordered_extent(ordered);
9383 btrfs_put_ordered_extent(ordered);
9384 }
9385 }
56fa9d07 9386 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9387 inode_tree_del(inode);
5b21f2ed 9388 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 9389free:
fa0d7e3d 9390 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9391}
9392
45321ac5 9393int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9394{
9395 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9396
6379ef9f
NA
9397 if (root == NULL)
9398 return 1;
9399
fa6ac876 9400 /* the snap/subvol tree is on deleting */
69e9c6c6 9401 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9402 return 1;
76dda93c 9403 else
45321ac5 9404 return generic_drop_inode(inode);
76dda93c
YZ
9405}
9406
0ee0fda0 9407static void init_once(void *foo)
39279cc3
CM
9408{
9409 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9410
9411 inode_init_once(&ei->vfs_inode);
9412}
9413
9414void btrfs_destroy_cachep(void)
9415{
8c0a8537
KS
9416 /*
9417 * Make sure all delayed rcu free inodes are flushed before we
9418 * destroy cache.
9419 */
9420 rcu_barrier();
5598e900
KM
9421 kmem_cache_destroy(btrfs_inode_cachep);
9422 kmem_cache_destroy(btrfs_trans_handle_cachep);
9423 kmem_cache_destroy(btrfs_transaction_cachep);
9424 kmem_cache_destroy(btrfs_path_cachep);
9425 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9426}
9427
9428int btrfs_init_cachep(void)
9429{
837e1972 9430 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9431 sizeof(struct btrfs_inode), 0,
5d097056
VD
9432 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9433 init_once);
39279cc3
CM
9434 if (!btrfs_inode_cachep)
9435 goto fail;
9601e3f6 9436
837e1972 9437 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9438 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9439 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9440 if (!btrfs_trans_handle_cachep)
9441 goto fail;
9601e3f6 9442
837e1972 9443 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6 9444 sizeof(struct btrfs_transaction), 0,
fba4b697 9445 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9446 if (!btrfs_transaction_cachep)
9447 goto fail;
9601e3f6 9448
837e1972 9449 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9450 sizeof(struct btrfs_path), 0,
fba4b697 9451 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9452 if (!btrfs_path_cachep)
9453 goto fail;
9601e3f6 9454
837e1972 9455 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9456 sizeof(struct btrfs_free_space), 0,
fba4b697 9457 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9458 if (!btrfs_free_space_cachep)
9459 goto fail;
9460
39279cc3
CM
9461 return 0;
9462fail:
9463 btrfs_destroy_cachep();
9464 return -ENOMEM;
9465}
9466
9467static int btrfs_getattr(struct vfsmount *mnt,
9468 struct dentry *dentry, struct kstat *stat)
9469{
df0af1a5 9470 u64 delalloc_bytes;
2b0143b5 9471 struct inode *inode = d_inode(dentry);
fadc0d8b
DS
9472 u32 blocksize = inode->i_sb->s_blocksize;
9473
39279cc3 9474 generic_fillattr(inode, stat);
0ee5dc67 9475 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9476
9477 spin_lock(&BTRFS_I(inode)->lock);
9478 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9479 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9480 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9481 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9482 return 0;
9483}
9484
cdd1fedf
DF
9485static int btrfs_rename_exchange(struct inode *old_dir,
9486 struct dentry *old_dentry,
9487 struct inode *new_dir,
9488 struct dentry *new_dentry)
9489{
9490 struct btrfs_trans_handle *trans;
9491 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9492 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9493 struct inode *new_inode = new_dentry->d_inode;
9494 struct inode *old_inode = old_dentry->d_inode;
9495 struct timespec ctime = CURRENT_TIME;
9496 struct dentry *parent;
9497 u64 old_ino = btrfs_ino(old_inode);
9498 u64 new_ino = btrfs_ino(new_inode);
9499 u64 old_idx = 0;
9500 u64 new_idx = 0;
9501 u64 root_objectid;
9502 int ret;
86e8aa0e
FM
9503 bool root_log_pinned = false;
9504 bool dest_log_pinned = false;
cdd1fedf
DF
9505
9506 /* we only allow rename subvolume link between subvolumes */
9507 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9508 return -EXDEV;
9509
9510 /* close the race window with snapshot create/destroy ioctl */
9511 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9512 down_read(&root->fs_info->subvol_sem);
9513 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9514 down_read(&dest->fs_info->subvol_sem);
9515
9516 /*
9517 * We want to reserve the absolute worst case amount of items. So if
9518 * both inodes are subvols and we need to unlink them then that would
9519 * require 4 item modifications, but if they are both normal inodes it
9520 * would require 5 item modifications, so we'll assume their normal
9521 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9522 * should cover the worst case number of items we'll modify.
9523 */
9524 trans = btrfs_start_transaction(root, 12);
9525 if (IS_ERR(trans)) {
9526 ret = PTR_ERR(trans);
9527 goto out_notrans;
9528 }
9529
9530 /*
9531 * We need to find a free sequence number both in the source and
9532 * in the destination directory for the exchange.
9533 */
9534 ret = btrfs_set_inode_index(new_dir, &old_idx);
9535 if (ret)
9536 goto out_fail;
9537 ret = btrfs_set_inode_index(old_dir, &new_idx);
9538 if (ret)
9539 goto out_fail;
9540
9541 BTRFS_I(old_inode)->dir_index = 0ULL;
9542 BTRFS_I(new_inode)->dir_index = 0ULL;
9543
9544 /* Reference for the source. */
9545 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9546 /* force full log commit if subvolume involved. */
9547 btrfs_set_log_full_commit(root->fs_info, trans);
9548 } else {
376e5a57
FM
9549 btrfs_pin_log_trans(root);
9550 root_log_pinned = true;
cdd1fedf
DF
9551 ret = btrfs_insert_inode_ref(trans, dest,
9552 new_dentry->d_name.name,
9553 new_dentry->d_name.len,
9554 old_ino,
9555 btrfs_ino(new_dir), old_idx);
9556 if (ret)
9557 goto out_fail;
cdd1fedf
DF
9558 }
9559
9560 /* And now for the dest. */
9561 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9562 /* force full log commit if subvolume involved. */
9563 btrfs_set_log_full_commit(dest->fs_info, trans);
9564 } else {
376e5a57
FM
9565 btrfs_pin_log_trans(dest);
9566 dest_log_pinned = true;
cdd1fedf
DF
9567 ret = btrfs_insert_inode_ref(trans, root,
9568 old_dentry->d_name.name,
9569 old_dentry->d_name.len,
9570 new_ino,
9571 btrfs_ino(old_dir), new_idx);
9572 if (ret)
9573 goto out_fail;
cdd1fedf
DF
9574 }
9575
9576 /* Update inode version and ctime/mtime. */
9577 inode_inc_iversion(old_dir);
9578 inode_inc_iversion(new_dir);
9579 inode_inc_iversion(old_inode);
9580 inode_inc_iversion(new_inode);
9581 old_dir->i_ctime = old_dir->i_mtime = ctime;
9582 new_dir->i_ctime = new_dir->i_mtime = ctime;
9583 old_inode->i_ctime = ctime;
9584 new_inode->i_ctime = ctime;
9585
9586 if (old_dentry->d_parent != new_dentry->d_parent) {
9587 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9588 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9589 }
9590
9591 /* src is a subvolume */
9592 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9593 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9594 ret = btrfs_unlink_subvol(trans, root, old_dir,
9595 root_objectid,
9596 old_dentry->d_name.name,
9597 old_dentry->d_name.len);
9598 } else { /* src is an inode */
9599 ret = __btrfs_unlink_inode(trans, root, old_dir,
9600 old_dentry->d_inode,
9601 old_dentry->d_name.name,
9602 old_dentry->d_name.len);
9603 if (!ret)
9604 ret = btrfs_update_inode(trans, root, old_inode);
9605 }
9606 if (ret) {
66642832 9607 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9608 goto out_fail;
9609 }
9610
9611 /* dest is a subvolume */
9612 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9613 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9614 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9615 root_objectid,
9616 new_dentry->d_name.name,
9617 new_dentry->d_name.len);
9618 } else { /* dest is an inode */
9619 ret = __btrfs_unlink_inode(trans, dest, new_dir,
9620 new_dentry->d_inode,
9621 new_dentry->d_name.name,
9622 new_dentry->d_name.len);
9623 if (!ret)
9624 ret = btrfs_update_inode(trans, dest, new_inode);
9625 }
9626 if (ret) {
66642832 9627 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9628 goto out_fail;
9629 }
9630
9631 ret = btrfs_add_link(trans, new_dir, old_inode,
9632 new_dentry->d_name.name,
9633 new_dentry->d_name.len, 0, old_idx);
9634 if (ret) {
66642832 9635 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9636 goto out_fail;
9637 }
9638
9639 ret = btrfs_add_link(trans, old_dir, new_inode,
9640 old_dentry->d_name.name,
9641 old_dentry->d_name.len, 0, new_idx);
9642 if (ret) {
66642832 9643 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9644 goto out_fail;
9645 }
9646
9647 if (old_inode->i_nlink == 1)
9648 BTRFS_I(old_inode)->dir_index = old_idx;
9649 if (new_inode->i_nlink == 1)
9650 BTRFS_I(new_inode)->dir_index = new_idx;
9651
86e8aa0e 9652 if (root_log_pinned) {
cdd1fedf
DF
9653 parent = new_dentry->d_parent;
9654 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9655 btrfs_end_log_trans(root);
86e8aa0e 9656 root_log_pinned = false;
cdd1fedf 9657 }
86e8aa0e 9658 if (dest_log_pinned) {
cdd1fedf
DF
9659 parent = old_dentry->d_parent;
9660 btrfs_log_new_name(trans, new_inode, new_dir, parent);
9661 btrfs_end_log_trans(dest);
86e8aa0e 9662 dest_log_pinned = false;
cdd1fedf
DF
9663 }
9664out_fail:
86e8aa0e
FM
9665 /*
9666 * If we have pinned a log and an error happened, we unpin tasks
9667 * trying to sync the log and force them to fallback to a transaction
9668 * commit if the log currently contains any of the inodes involved in
9669 * this rename operation (to ensure we do not persist a log with an
9670 * inconsistent state for any of these inodes or leading to any
9671 * inconsistencies when replayed). If the transaction was aborted, the
9672 * abortion reason is propagated to userspace when attempting to commit
9673 * the transaction. If the log does not contain any of these inodes, we
9674 * allow the tasks to sync it.
9675 */
9676 if (ret && (root_log_pinned || dest_log_pinned)) {
9677 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9678 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9679 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9680 (new_inode &&
9681 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9682 btrfs_set_log_full_commit(root->fs_info, trans);
9683
9684 if (root_log_pinned) {
9685 btrfs_end_log_trans(root);
9686 root_log_pinned = false;
9687 }
9688 if (dest_log_pinned) {
9689 btrfs_end_log_trans(dest);
9690 dest_log_pinned = false;
9691 }
9692 }
cdd1fedf
DF
9693 ret = btrfs_end_transaction(trans, root);
9694out_notrans:
9695 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9696 up_read(&dest->fs_info->subvol_sem);
9697 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9698 up_read(&root->fs_info->subvol_sem);
9699
9700 return ret;
9701}
9702
9703static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9704 struct btrfs_root *root,
9705 struct inode *dir,
9706 struct dentry *dentry)
9707{
9708 int ret;
9709 struct inode *inode;
9710 u64 objectid;
9711 u64 index;
9712
9713 ret = btrfs_find_free_ino(root, &objectid);
9714 if (ret)
9715 return ret;
9716
9717 inode = btrfs_new_inode(trans, root, dir,
9718 dentry->d_name.name,
9719 dentry->d_name.len,
9720 btrfs_ino(dir),
9721 objectid,
9722 S_IFCHR | WHITEOUT_MODE,
9723 &index);
9724
9725 if (IS_ERR(inode)) {
9726 ret = PTR_ERR(inode);
9727 return ret;
9728 }
9729
9730 inode->i_op = &btrfs_special_inode_operations;
9731 init_special_inode(inode, inode->i_mode,
9732 WHITEOUT_DEV);
9733
9734 ret = btrfs_init_inode_security(trans, inode, dir,
9735 &dentry->d_name);
9736 if (ret)
c9901618 9737 goto out;
cdd1fedf
DF
9738
9739 ret = btrfs_add_nondir(trans, dir, dentry,
9740 inode, 0, index);
9741 if (ret)
c9901618 9742 goto out;
cdd1fedf
DF
9743
9744 ret = btrfs_update_inode(trans, root, inode);
c9901618 9745out:
cdd1fedf 9746 unlock_new_inode(inode);
c9901618
FM
9747 if (ret)
9748 inode_dec_link_count(inode);
cdd1fedf
DF
9749 iput(inode);
9750
c9901618 9751 return ret;
cdd1fedf
DF
9752}
9753
d397712b 9754static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9755 struct inode *new_dir, struct dentry *new_dentry,
9756 unsigned int flags)
39279cc3
CM
9757{
9758 struct btrfs_trans_handle *trans;
5062af35 9759 unsigned int trans_num_items;
39279cc3 9760 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9761 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9762 struct inode *new_inode = d_inode(new_dentry);
9763 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9764 u64 index = 0;
4df27c4d 9765 u64 root_objectid;
39279cc3 9766 int ret;
33345d01 9767 u64 old_ino = btrfs_ino(old_inode);
3dc9e8f7 9768 bool log_pinned = false;
39279cc3 9769
33345d01 9770 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9771 return -EPERM;
9772
4df27c4d 9773 /* we only allow rename subvolume link between subvolumes */
33345d01 9774 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9775 return -EXDEV;
9776
33345d01
LZ
9777 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9778 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9779 return -ENOTEMPTY;
5f39d397 9780
4df27c4d
YZ
9781 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9782 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9783 return -ENOTEMPTY;
9c52057c
CM
9784
9785
9786 /* check for collisions, even if the name isn't there */
4871c158 9787 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9788 new_dentry->d_name.name,
9789 new_dentry->d_name.len);
9790
9791 if (ret) {
9792 if (ret == -EEXIST) {
9793 /* we shouldn't get
9794 * eexist without a new_inode */
fae7f21c 9795 if (WARN_ON(!new_inode)) {
9c52057c
CM
9796 return ret;
9797 }
9798 } else {
9799 /* maybe -EOVERFLOW */
9800 return ret;
9801 }
9802 }
9803 ret = 0;
9804
5a3f23d5 9805 /*
8d875f95
CM
9806 * we're using rename to replace one file with another. Start IO on it
9807 * now so we don't add too much work to the end of the transaction
5a3f23d5 9808 */
8d875f95 9809 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9810 filemap_flush(old_inode->i_mapping);
9811
76dda93c 9812 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9813 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9814 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
9815 /*
9816 * We want to reserve the absolute worst case amount of items. So if
9817 * both inodes are subvols and we need to unlink them then that would
9818 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9819 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9820 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9821 * should cover the worst case number of items we'll modify.
5062af35
FM
9822 * If our rename has the whiteout flag, we need more 5 units for the
9823 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9824 * when selinux is enabled).
a22285a6 9825 */
5062af35
FM
9826 trans_num_items = 11;
9827 if (flags & RENAME_WHITEOUT)
9828 trans_num_items += 5;
9829 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9830 if (IS_ERR(trans)) {
cdd1fedf
DF
9831 ret = PTR_ERR(trans);
9832 goto out_notrans;
9833 }
76dda93c 9834
4df27c4d
YZ
9835 if (dest != root)
9836 btrfs_record_root_in_trans(trans, dest);
5f39d397 9837
a5719521
YZ
9838 ret = btrfs_set_inode_index(new_dir, &index);
9839 if (ret)
9840 goto out_fail;
5a3f23d5 9841
67de1176 9842 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9843 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9844 /* force full log commit if subvolume involved. */
995946dd 9845 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 9846 } else {
c4aba954
FM
9847 btrfs_pin_log_trans(root);
9848 log_pinned = true;
a5719521
YZ
9849 ret = btrfs_insert_inode_ref(trans, dest,
9850 new_dentry->d_name.name,
9851 new_dentry->d_name.len,
33345d01
LZ
9852 old_ino,
9853 btrfs_ino(new_dir), index);
a5719521
YZ
9854 if (ret)
9855 goto out_fail;
4df27c4d 9856 }
5a3f23d5 9857
0c4d2d95
JB
9858 inode_inc_iversion(old_dir);
9859 inode_inc_iversion(new_dir);
9860 inode_inc_iversion(old_inode);
04b285f3
DD
9861 old_dir->i_ctime = old_dir->i_mtime =
9862 new_dir->i_ctime = new_dir->i_mtime =
9863 old_inode->i_ctime = current_fs_time(old_dir->i_sb);
5f39d397 9864
12fcfd22
CM
9865 if (old_dentry->d_parent != new_dentry->d_parent)
9866 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9867
33345d01 9868 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9869 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9870 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9871 old_dentry->d_name.name,
9872 old_dentry->d_name.len);
9873 } else {
92986796 9874 ret = __btrfs_unlink_inode(trans, root, old_dir,
2b0143b5 9875 d_inode(old_dentry),
92986796
AV
9876 old_dentry->d_name.name,
9877 old_dentry->d_name.len);
9878 if (!ret)
9879 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9880 }
79787eaa 9881 if (ret) {
66642832 9882 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9883 goto out_fail;
9884 }
39279cc3
CM
9885
9886 if (new_inode) {
0c4d2d95 9887 inode_inc_iversion(new_inode);
04b285f3 9888 new_inode->i_ctime = current_fs_time(new_inode->i_sb);
33345d01 9889 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
9890 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9891 root_objectid = BTRFS_I(new_inode)->location.objectid;
9892 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9893 root_objectid,
9894 new_dentry->d_name.name,
9895 new_dentry->d_name.len);
9896 BUG_ON(new_inode->i_nlink == 0);
9897 } else {
9898 ret = btrfs_unlink_inode(trans, dest, new_dir,
2b0143b5 9899 d_inode(new_dentry),
4df27c4d
YZ
9900 new_dentry->d_name.name,
9901 new_dentry->d_name.len);
9902 }
4ef31a45 9903 if (!ret && new_inode->i_nlink == 0)
2b0143b5 9904 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
79787eaa 9905 if (ret) {
66642832 9906 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9907 goto out_fail;
9908 }
39279cc3 9909 }
aec7477b 9910
4df27c4d
YZ
9911 ret = btrfs_add_link(trans, new_dir, old_inode,
9912 new_dentry->d_name.name,
a5719521 9913 new_dentry->d_name.len, 0, index);
79787eaa 9914 if (ret) {
66642832 9915 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9916 goto out_fail;
9917 }
39279cc3 9918
67de1176
MX
9919 if (old_inode->i_nlink == 1)
9920 BTRFS_I(old_inode)->dir_index = index;
9921
3dc9e8f7 9922 if (log_pinned) {
10d9f309 9923 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9924
6a912213 9925 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d 9926 btrfs_end_log_trans(root);
3dc9e8f7 9927 log_pinned = false;
4df27c4d 9928 }
cdd1fedf
DF
9929
9930 if (flags & RENAME_WHITEOUT) {
9931 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9932 old_dentry);
9933
9934 if (ret) {
66642832 9935 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9936 goto out_fail;
9937 }
4df27c4d 9938 }
39279cc3 9939out_fail:
3dc9e8f7
FM
9940 /*
9941 * If we have pinned the log and an error happened, we unpin tasks
9942 * trying to sync the log and force them to fallback to a transaction
9943 * commit if the log currently contains any of the inodes involved in
9944 * this rename operation (to ensure we do not persist a log with an
9945 * inconsistent state for any of these inodes or leading to any
9946 * inconsistencies when replayed). If the transaction was aborted, the
9947 * abortion reason is propagated to userspace when attempting to commit
9948 * the transaction. If the log does not contain any of these inodes, we
9949 * allow the tasks to sync it.
9950 */
9951 if (ret && log_pinned) {
9952 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9953 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9954 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9955 (new_inode &&
9956 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9957 btrfs_set_log_full_commit(root->fs_info, trans);
9958
9959 btrfs_end_log_trans(root);
9960 log_pinned = false;
9961 }
7ad85bb7 9962 btrfs_end_transaction(trans, root);
b44c59a8 9963out_notrans:
33345d01 9964 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9965 up_read(&root->fs_info->subvol_sem);
9ed74f2d 9966
39279cc3
CM
9967 return ret;
9968}
9969
80ace85c
MS
9970static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9971 struct inode *new_dir, struct dentry *new_dentry,
9972 unsigned int flags)
9973{
cdd1fedf 9974 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9975 return -EINVAL;
9976
cdd1fedf
DF
9977 if (flags & RENAME_EXCHANGE)
9978 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9979 new_dentry);
9980
9981 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9982}
9983
8ccf6f19
MX
9984static void btrfs_run_delalloc_work(struct btrfs_work *work)
9985{
9986 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9987 struct inode *inode;
8ccf6f19
MX
9988
9989 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9990 work);
9f23e289 9991 inode = delalloc_work->inode;
30424601
DS
9992 filemap_flush(inode->i_mapping);
9993 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9994 &BTRFS_I(inode)->runtime_flags))
9f23e289 9995 filemap_flush(inode->i_mapping);
8ccf6f19
MX
9996
9997 if (delalloc_work->delay_iput)
9f23e289 9998 btrfs_add_delayed_iput(inode);
8ccf6f19 9999 else
9f23e289 10000 iput(inode);
8ccf6f19
MX
10001 complete(&delalloc_work->completion);
10002}
10003
10004struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 10005 int delay_iput)
8ccf6f19
MX
10006{
10007 struct btrfs_delalloc_work *work;
10008
100d5702 10009 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
10010 if (!work)
10011 return NULL;
10012
10013 init_completion(&work->completion);
10014 INIT_LIST_HEAD(&work->list);
10015 work->inode = inode;
8ccf6f19 10016 work->delay_iput = delay_iput;
9e0af237
LB
10017 WARN_ON_ONCE(!inode);
10018 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10019 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
10020
10021 return work;
10022}
10023
10024void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10025{
10026 wait_for_completion(&work->completion);
100d5702 10027 kfree(work);
8ccf6f19
MX
10028}
10029
d352ac68
CM
10030/*
10031 * some fairly slow code that needs optimization. This walks the list
10032 * of all the inodes with pending delalloc and forces them to disk.
10033 */
6c255e67
MX
10034static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10035 int nr)
ea8c2819 10036{
ea8c2819 10037 struct btrfs_inode *binode;
5b21f2ed 10038 struct inode *inode;
8ccf6f19
MX
10039 struct btrfs_delalloc_work *work, *next;
10040 struct list_head works;
1eafa6c7 10041 struct list_head splice;
8ccf6f19 10042 int ret = 0;
ea8c2819 10043
8ccf6f19 10044 INIT_LIST_HEAD(&works);
1eafa6c7 10045 INIT_LIST_HEAD(&splice);
63607cc8 10046
573bfb72 10047 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10048 spin_lock(&root->delalloc_lock);
10049 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10050 while (!list_empty(&splice)) {
10051 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10052 delalloc_inodes);
1eafa6c7 10053
eb73c1b7
MX
10054 list_move_tail(&binode->delalloc_inodes,
10055 &root->delalloc_inodes);
5b21f2ed 10056 inode = igrab(&binode->vfs_inode);
df0af1a5 10057 if (!inode) {
eb73c1b7 10058 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10059 continue;
df0af1a5 10060 }
eb73c1b7 10061 spin_unlock(&root->delalloc_lock);
1eafa6c7 10062
651d494a 10063 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10064 if (!work) {
f4ab9ea7
JB
10065 if (delay_iput)
10066 btrfs_add_delayed_iput(inode);
10067 else
10068 iput(inode);
1eafa6c7 10069 ret = -ENOMEM;
a1ecaabb 10070 goto out;
5b21f2ed 10071 }
1eafa6c7 10072 list_add_tail(&work->list, &works);
a44903ab
QW
10073 btrfs_queue_work(root->fs_info->flush_workers,
10074 &work->work);
6c255e67
MX
10075 ret++;
10076 if (nr != -1 && ret >= nr)
a1ecaabb 10077 goto out;
5b21f2ed 10078 cond_resched();
eb73c1b7 10079 spin_lock(&root->delalloc_lock);
ea8c2819 10080 }
eb73c1b7 10081 spin_unlock(&root->delalloc_lock);
8c8bee1d 10082
a1ecaabb 10083out:
eb73c1b7
MX
10084 list_for_each_entry_safe(work, next, &works, list) {
10085 list_del_init(&work->list);
10086 btrfs_wait_and_free_delalloc_work(work);
10087 }
10088
10089 if (!list_empty_careful(&splice)) {
10090 spin_lock(&root->delalloc_lock);
10091 list_splice_tail(&splice, &root->delalloc_inodes);
10092 spin_unlock(&root->delalloc_lock);
10093 }
573bfb72 10094 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10095 return ret;
10096}
1eafa6c7 10097
eb73c1b7
MX
10098int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10099{
10100 int ret;
1eafa6c7 10101
2c21b4d7 10102 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
10103 return -EROFS;
10104
6c255e67
MX
10105 ret = __start_delalloc_inodes(root, delay_iput, -1);
10106 if (ret > 0)
10107 ret = 0;
eb73c1b7
MX
10108 /*
10109 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
10110 * we have to make sure the IO is actually started and that
10111 * ordered extents get created before we return
10112 */
10113 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 10114 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 10115 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 10116 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
10117 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10118 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
10119 }
10120 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
10121 return ret;
10122}
10123
6c255e67
MX
10124int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10125 int nr)
eb73c1b7
MX
10126{
10127 struct btrfs_root *root;
10128 struct list_head splice;
10129 int ret;
10130
2c21b4d7 10131 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10132 return -EROFS;
10133
10134 INIT_LIST_HEAD(&splice);
10135
573bfb72 10136 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10137 spin_lock(&fs_info->delalloc_root_lock);
10138 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10139 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10140 root = list_first_entry(&splice, struct btrfs_root,
10141 delalloc_root);
10142 root = btrfs_grab_fs_root(root);
10143 BUG_ON(!root);
10144 list_move_tail(&root->delalloc_root,
10145 &fs_info->delalloc_roots);
10146 spin_unlock(&fs_info->delalloc_root_lock);
10147
6c255e67 10148 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10149 btrfs_put_fs_root(root);
6c255e67 10150 if (ret < 0)
eb73c1b7
MX
10151 goto out;
10152
6c255e67
MX
10153 if (nr != -1) {
10154 nr -= ret;
10155 WARN_ON(nr < 0);
10156 }
eb73c1b7 10157 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10158 }
eb73c1b7 10159 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10160
6c255e67 10161 ret = 0;
eb73c1b7
MX
10162 atomic_inc(&fs_info->async_submit_draining);
10163 while (atomic_read(&fs_info->nr_async_submits) ||
10164 atomic_read(&fs_info->async_delalloc_pages)) {
10165 wait_event(fs_info->async_submit_wait,
10166 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10167 atomic_read(&fs_info->async_delalloc_pages) == 0));
10168 }
10169 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 10170out:
1eafa6c7 10171 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10172 spin_lock(&fs_info->delalloc_root_lock);
10173 list_splice_tail(&splice, &fs_info->delalloc_roots);
10174 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10175 }
573bfb72 10176 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10177 return ret;
ea8c2819
CM
10178}
10179
39279cc3
CM
10180static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10181 const char *symname)
10182{
10183 struct btrfs_trans_handle *trans;
10184 struct btrfs_root *root = BTRFS_I(dir)->root;
10185 struct btrfs_path *path;
10186 struct btrfs_key key;
1832a6d5 10187 struct inode *inode = NULL;
39279cc3
CM
10188 int err;
10189 int drop_inode = 0;
10190 u64 objectid;
67871254 10191 u64 index = 0;
39279cc3
CM
10192 int name_len;
10193 int datasize;
5f39d397 10194 unsigned long ptr;
39279cc3 10195 struct btrfs_file_extent_item *ei;
5f39d397 10196 struct extent_buffer *leaf;
39279cc3 10197
f06becc4 10198 name_len = strlen(symname);
39279cc3
CM
10199 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10200 return -ENAMETOOLONG;
1832a6d5 10201
9ed74f2d
JB
10202 /*
10203 * 2 items for inode item and ref
10204 * 2 items for dir items
9269d12b
FM
10205 * 1 item for updating parent inode item
10206 * 1 item for the inline extent item
9ed74f2d
JB
10207 * 1 item for xattr if selinux is on
10208 */
9269d12b 10209 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10210 if (IS_ERR(trans))
10211 return PTR_ERR(trans);
1832a6d5 10212
581bb050
LZ
10213 err = btrfs_find_free_ino(root, &objectid);
10214 if (err)
10215 goto out_unlock;
10216
aec7477b 10217 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 10218 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 10219 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10220 if (IS_ERR(inode)) {
10221 err = PTR_ERR(inode);
39279cc3 10222 goto out_unlock;
7cf96da3 10223 }
39279cc3 10224
ad19db71
CS
10225 /*
10226 * If the active LSM wants to access the inode during
10227 * d_instantiate it needs these. Smack checks to see
10228 * if the filesystem supports xattrs by looking at the
10229 * ops vector.
10230 */
10231 inode->i_fop = &btrfs_file_operations;
10232 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10233 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10234 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10235
10236 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10237 if (err)
10238 goto out_unlock_inode;
ad19db71 10239
39279cc3 10240 path = btrfs_alloc_path();
d8926bb3
MF
10241 if (!path) {
10242 err = -ENOMEM;
b0d5d10f 10243 goto out_unlock_inode;
d8926bb3 10244 }
33345d01 10245 key.objectid = btrfs_ino(inode);
39279cc3 10246 key.offset = 0;
962a298f 10247 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10248 datasize = btrfs_file_extent_calc_inline_size(name_len);
10249 err = btrfs_insert_empty_item(trans, root, path, &key,
10250 datasize);
54aa1f4d 10251 if (err) {
b0839166 10252 btrfs_free_path(path);
b0d5d10f 10253 goto out_unlock_inode;
54aa1f4d 10254 }
5f39d397
CM
10255 leaf = path->nodes[0];
10256 ei = btrfs_item_ptr(leaf, path->slots[0],
10257 struct btrfs_file_extent_item);
10258 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10259 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10260 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10261 btrfs_set_file_extent_encryption(leaf, ei, 0);
10262 btrfs_set_file_extent_compression(leaf, ei, 0);
10263 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10264 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10265
39279cc3 10266 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10267 write_extent_buffer(leaf, symname, ptr, name_len);
10268 btrfs_mark_buffer_dirty(leaf);
39279cc3 10269 btrfs_free_path(path);
5f39d397 10270
39279cc3 10271 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10272 inode_nohighmem(inode);
39279cc3 10273 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10274 inode_set_bytes(inode, name_len);
f06becc4 10275 btrfs_i_size_write(inode, name_len);
54aa1f4d 10276 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10277 /*
10278 * Last step, add directory indexes for our symlink inode. This is the
10279 * last step to avoid extra cleanup of these indexes if an error happens
10280 * elsewhere above.
10281 */
10282 if (!err)
10283 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
b0d5d10f 10284 if (err) {
54aa1f4d 10285 drop_inode = 1;
b0d5d10f
CM
10286 goto out_unlock_inode;
10287 }
10288
10289 unlock_new_inode(inode);
10290 d_instantiate(dentry, inode);
39279cc3
CM
10291
10292out_unlock:
7ad85bb7 10293 btrfs_end_transaction(trans, root);
39279cc3
CM
10294 if (drop_inode) {
10295 inode_dec_link_count(inode);
10296 iput(inode);
10297 }
b53d3f5d 10298 btrfs_btree_balance_dirty(root);
39279cc3 10299 return err;
b0d5d10f
CM
10300
10301out_unlock_inode:
10302 drop_inode = 1;
10303 unlock_new_inode(inode);
10304 goto out_unlock;
39279cc3 10305}
16432985 10306
0af3d00b
JB
10307static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10308 u64 start, u64 num_bytes, u64 min_size,
10309 loff_t actual_len, u64 *alloc_hint,
10310 struct btrfs_trans_handle *trans)
d899e052 10311{
5dc562c5
JB
10312 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10313 struct extent_map *em;
d899e052
YZ
10314 struct btrfs_root *root = BTRFS_I(inode)->root;
10315 struct btrfs_key ins;
d899e052 10316 u64 cur_offset = start;
55a61d1d 10317 u64 i_size;
154ea289 10318 u64 cur_bytes;
0b670dc4 10319 u64 last_alloc = (u64)-1;
d899e052 10320 int ret = 0;
0af3d00b 10321 bool own_trans = true;
18513091 10322 u64 end = start + num_bytes - 1;
d899e052 10323
0af3d00b
JB
10324 if (trans)
10325 own_trans = false;
d899e052 10326 while (num_bytes > 0) {
0af3d00b
JB
10327 if (own_trans) {
10328 trans = btrfs_start_transaction(root, 3);
10329 if (IS_ERR(trans)) {
10330 ret = PTR_ERR(trans);
10331 break;
10332 }
5a303d5d
YZ
10333 }
10334
ee22184b 10335 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10336 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10337 /*
10338 * If we are severely fragmented we could end up with really
10339 * small allocations, so if the allocator is returning small
10340 * chunks lets make its job easier by only searching for those
10341 * sized chunks.
10342 */
10343 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10344 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10345 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10346 if (ret) {
0af3d00b
JB
10347 if (own_trans)
10348 btrfs_end_transaction(trans, root);
a22285a6 10349 break;
d899e052 10350 }
9cfa3e34 10351 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
5a303d5d 10352
0b670dc4 10353 last_alloc = ins.offset;
d899e052
YZ
10354 ret = insert_reserved_file_extent(trans, inode,
10355 cur_offset, ins.objectid,
10356 ins.offset, ins.offset,
920bbbfb 10357 ins.offset, 0, 0, 0,
d899e052 10358 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10359 if (ret) {
857cc2fc 10360 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 10361 ins.offset, 0);
66642832 10362 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10363 if (own_trans)
10364 btrfs_end_transaction(trans, root);
10365 break;
10366 }
31193213 10367
a1ed835e
CM
10368 btrfs_drop_extent_cache(inode, cur_offset,
10369 cur_offset + ins.offset -1, 0);
5a303d5d 10370
5dc562c5
JB
10371 em = alloc_extent_map();
10372 if (!em) {
10373 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10374 &BTRFS_I(inode)->runtime_flags);
10375 goto next;
10376 }
10377
10378 em->start = cur_offset;
10379 em->orig_start = cur_offset;
10380 em->len = ins.offset;
10381 em->block_start = ins.objectid;
10382 em->block_len = ins.offset;
b4939680 10383 em->orig_block_len = ins.offset;
cc95bef6 10384 em->ram_bytes = ins.offset;
5dc562c5
JB
10385 em->bdev = root->fs_info->fs_devices->latest_bdev;
10386 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10387 em->generation = trans->transid;
10388
10389 while (1) {
10390 write_lock(&em_tree->lock);
09a2a8f9 10391 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10392 write_unlock(&em_tree->lock);
10393 if (ret != -EEXIST)
10394 break;
10395 btrfs_drop_extent_cache(inode, cur_offset,
10396 cur_offset + ins.offset - 1,
10397 0);
10398 }
10399 free_extent_map(em);
10400next:
d899e052
YZ
10401 num_bytes -= ins.offset;
10402 cur_offset += ins.offset;
efa56464 10403 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10404
0c4d2d95 10405 inode_inc_iversion(inode);
04b285f3 10406 inode->i_ctime = current_fs_time(inode->i_sb);
6cbff00f 10407 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10408 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10409 (actual_len > inode->i_size) &&
10410 (cur_offset > inode->i_size)) {
d1ea6a61 10411 if (cur_offset > actual_len)
55a61d1d 10412 i_size = actual_len;
d1ea6a61 10413 else
55a61d1d
JB
10414 i_size = cur_offset;
10415 i_size_write(inode, i_size);
10416 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10417 }
10418
d899e052 10419 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10420
10421 if (ret) {
66642832 10422 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10423 if (own_trans)
10424 btrfs_end_transaction(trans, root);
10425 break;
10426 }
d899e052 10427
0af3d00b
JB
10428 if (own_trans)
10429 btrfs_end_transaction(trans, root);
5a303d5d 10430 }
18513091
WX
10431 if (cur_offset < end)
10432 btrfs_free_reserved_data_space(inode, cur_offset,
10433 end - cur_offset + 1);
d899e052
YZ
10434 return ret;
10435}
10436
0af3d00b
JB
10437int btrfs_prealloc_file_range(struct inode *inode, int mode,
10438 u64 start, u64 num_bytes, u64 min_size,
10439 loff_t actual_len, u64 *alloc_hint)
10440{
10441 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10442 min_size, actual_len, alloc_hint,
10443 NULL);
10444}
10445
10446int btrfs_prealloc_file_range_trans(struct inode *inode,
10447 struct btrfs_trans_handle *trans, int mode,
10448 u64 start, u64 num_bytes, u64 min_size,
10449 loff_t actual_len, u64 *alloc_hint)
10450{
10451 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10452 min_size, actual_len, alloc_hint, trans);
10453}
10454
e6dcd2dc
CM
10455static int btrfs_set_page_dirty(struct page *page)
10456{
e6dcd2dc
CM
10457 return __set_page_dirty_nobuffers(page);
10458}
10459
10556cb2 10460static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10461{
b83cc969 10462 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10463 umode_t mode = inode->i_mode;
b83cc969 10464
cb6db4e5
JM
10465 if (mask & MAY_WRITE &&
10466 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10467 if (btrfs_root_readonly(root))
10468 return -EROFS;
10469 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10470 return -EACCES;
10471 }
2830ba7f 10472 return generic_permission(inode, mask);
fdebe2bd 10473}
39279cc3 10474
ef3b9af5
FM
10475static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10476{
10477 struct btrfs_trans_handle *trans;
10478 struct btrfs_root *root = BTRFS_I(dir)->root;
10479 struct inode *inode = NULL;
10480 u64 objectid;
10481 u64 index;
10482 int ret = 0;
10483
10484 /*
10485 * 5 units required for adding orphan entry
10486 */
10487 trans = btrfs_start_transaction(root, 5);
10488 if (IS_ERR(trans))
10489 return PTR_ERR(trans);
10490
10491 ret = btrfs_find_free_ino(root, &objectid);
10492 if (ret)
10493 goto out;
10494
10495 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10496 btrfs_ino(dir), objectid, mode, &index);
10497 if (IS_ERR(inode)) {
10498 ret = PTR_ERR(inode);
10499 inode = NULL;
10500 goto out;
10501 }
10502
ef3b9af5
FM
10503 inode->i_fop = &btrfs_file_operations;
10504 inode->i_op = &btrfs_file_inode_operations;
10505
10506 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10507 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10508
b0d5d10f
CM
10509 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10510 if (ret)
10511 goto out_inode;
10512
10513 ret = btrfs_update_inode(trans, root, inode);
10514 if (ret)
10515 goto out_inode;
ef3b9af5
FM
10516 ret = btrfs_orphan_add(trans, inode);
10517 if (ret)
b0d5d10f 10518 goto out_inode;
ef3b9af5 10519
5762b5c9
FM
10520 /*
10521 * We set number of links to 0 in btrfs_new_inode(), and here we set
10522 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10523 * through:
10524 *
10525 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10526 */
10527 set_nlink(inode, 1);
b0d5d10f 10528 unlock_new_inode(inode);
ef3b9af5
FM
10529 d_tmpfile(dentry, inode);
10530 mark_inode_dirty(inode);
10531
10532out:
10533 btrfs_end_transaction(trans, root);
10534 if (ret)
10535 iput(inode);
10536 btrfs_balance_delayed_items(root);
10537 btrfs_btree_balance_dirty(root);
ef3b9af5 10538 return ret;
b0d5d10f
CM
10539
10540out_inode:
10541 unlock_new_inode(inode);
10542 goto out;
10543
ef3b9af5
FM
10544}
10545
b38ef71c
FM
10546/* Inspired by filemap_check_errors() */
10547int btrfs_inode_check_errors(struct inode *inode)
10548{
10549 int ret = 0;
10550
10551 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10552 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10553 ret = -ENOSPC;
10554 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10555 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10556 ret = -EIO;
10557
10558 return ret;
10559}
10560
6e1d5dcc 10561static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10562 .getattr = btrfs_getattr,
39279cc3
CM
10563 .lookup = btrfs_lookup,
10564 .create = btrfs_create,
10565 .unlink = btrfs_unlink,
10566 .link = btrfs_link,
10567 .mkdir = btrfs_mkdir,
10568 .rmdir = btrfs_rmdir,
80ace85c 10569 .rename2 = btrfs_rename2,
39279cc3
CM
10570 .symlink = btrfs_symlink,
10571 .setattr = btrfs_setattr,
618e21d5 10572 .mknod = btrfs_mknod,
e0d46f5c 10573 .setxattr = generic_setxattr,
9172abbc 10574 .getxattr = generic_getxattr,
5103e947 10575 .listxattr = btrfs_listxattr,
e0d46f5c 10576 .removexattr = generic_removexattr,
fdebe2bd 10577 .permission = btrfs_permission,
4e34e719 10578 .get_acl = btrfs_get_acl,
996a710d 10579 .set_acl = btrfs_set_acl,
93fd63c2 10580 .update_time = btrfs_update_time,
ef3b9af5 10581 .tmpfile = btrfs_tmpfile,
39279cc3 10582};
6e1d5dcc 10583static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10584 .lookup = btrfs_lookup,
fdebe2bd 10585 .permission = btrfs_permission,
4e34e719 10586 .get_acl = btrfs_get_acl,
996a710d 10587 .set_acl = btrfs_set_acl,
93fd63c2 10588 .update_time = btrfs_update_time,
39279cc3 10589};
76dda93c 10590
828c0950 10591static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10592 .llseek = generic_file_llseek,
10593 .read = generic_read_dir,
02dbfc99 10594 .iterate_shared = btrfs_real_readdir,
34287aa3 10595 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10596#ifdef CONFIG_COMPAT
4c63c245 10597 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10598#endif
6bf13c0c 10599 .release = btrfs_release_file,
e02119d5 10600 .fsync = btrfs_sync_file,
39279cc3
CM
10601};
10602
20e5506b 10603static const struct extent_io_ops btrfs_extent_io_ops = {
07157aac 10604 .fill_delalloc = run_delalloc_range,
065631f6 10605 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 10606 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 10607 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 10608 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10609 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10610 .set_bit_hook = btrfs_set_bit_hook,
10611 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10612 .merge_extent_hook = btrfs_merge_extent_hook,
10613 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
10614};
10615
35054394
CM
10616/*
10617 * btrfs doesn't support the bmap operation because swapfiles
10618 * use bmap to make a mapping of extents in the file. They assume
10619 * these extents won't change over the life of the file and they
10620 * use the bmap result to do IO directly to the drive.
10621 *
10622 * the btrfs bmap call would return logical addresses that aren't
10623 * suitable for IO and they also will change frequently as COW
10624 * operations happen. So, swapfile + btrfs == corruption.
10625 *
10626 * For now we're avoiding this by dropping bmap.
10627 */
7f09410b 10628static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10629 .readpage = btrfs_readpage,
10630 .writepage = btrfs_writepage,
b293f02e 10631 .writepages = btrfs_writepages,
3ab2fb5a 10632 .readpages = btrfs_readpages,
16432985 10633 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10634 .invalidatepage = btrfs_invalidatepage,
10635 .releasepage = btrfs_releasepage,
e6dcd2dc 10636 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10637 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10638};
10639
7f09410b 10640static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10641 .readpage = btrfs_readpage,
10642 .writepage = btrfs_writepage,
2bf5a725
CM
10643 .invalidatepage = btrfs_invalidatepage,
10644 .releasepage = btrfs_releasepage,
39279cc3
CM
10645};
10646
6e1d5dcc 10647static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10648 .getattr = btrfs_getattr,
10649 .setattr = btrfs_setattr,
e0d46f5c 10650 .setxattr = generic_setxattr,
9172abbc 10651 .getxattr = generic_getxattr,
5103e947 10652 .listxattr = btrfs_listxattr,
e0d46f5c 10653 .removexattr = generic_removexattr,
fdebe2bd 10654 .permission = btrfs_permission,
1506fcc8 10655 .fiemap = btrfs_fiemap,
4e34e719 10656 .get_acl = btrfs_get_acl,
996a710d 10657 .set_acl = btrfs_set_acl,
e41f941a 10658 .update_time = btrfs_update_time,
39279cc3 10659};
6e1d5dcc 10660static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10661 .getattr = btrfs_getattr,
10662 .setattr = btrfs_setattr,
fdebe2bd 10663 .permission = btrfs_permission,
e0d46f5c 10664 .setxattr = generic_setxattr,
9172abbc 10665 .getxattr = generic_getxattr,
33268eaf 10666 .listxattr = btrfs_listxattr,
e0d46f5c 10667 .removexattr = generic_removexattr,
4e34e719 10668 .get_acl = btrfs_get_acl,
996a710d 10669 .set_acl = btrfs_set_acl,
e41f941a 10670 .update_time = btrfs_update_time,
618e21d5 10671};
6e1d5dcc 10672static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3 10673 .readlink = generic_readlink,
6b255391 10674 .get_link = page_get_link,
f209561a 10675 .getattr = btrfs_getattr,
22c44fe6 10676 .setattr = btrfs_setattr,
fdebe2bd 10677 .permission = btrfs_permission,
e0d46f5c 10678 .setxattr = generic_setxattr,
9172abbc 10679 .getxattr = generic_getxattr,
0279b4cd 10680 .listxattr = btrfs_listxattr,
e0d46f5c 10681 .removexattr = generic_removexattr,
e41f941a 10682 .update_time = btrfs_update_time,
39279cc3 10683};
76dda93c 10684
82d339d9 10685const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10686 .d_delete = btrfs_dentry_delete,
b4aff1f8 10687 .d_release = btrfs_dentry_release,
76dda93c 10688};
This page took 1.872358 seconds and 5 git commands to generate.