Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[deliverable/linux.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
55e301fd 42#include <linux/btrfs.h>
53b381b3 43#include <linux/blkdev.h>
f23b5a59 44#include <linux/posix_acl_xattr.h>
e2e40f2c 45#include <linux/uio.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
f28a4928
FM
69struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
74};
75
6e1d5dcc
AD
76static const struct inode_operations btrfs_dir_inode_operations;
77static const struct inode_operations btrfs_symlink_inode_operations;
78static const struct inode_operations btrfs_dir_ro_inode_operations;
79static const struct inode_operations btrfs_special_inode_operations;
80static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
81static const struct address_space_operations btrfs_aops;
82static const struct address_space_operations btrfs_symlink_aops;
828c0950 83static const struct file_operations btrfs_dir_file_operations;
20e5506b 84static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
85
86static struct kmem_cache *btrfs_inode_cachep;
87struct kmem_cache *btrfs_trans_handle_cachep;
88struct kmem_cache *btrfs_transaction_cachep;
39279cc3 89struct kmem_cache *btrfs_path_cachep;
dc89e982 90struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
91
92#define S_SHIFT 12
4d4ab6d6 93static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101};
102
3972f260 103static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 104static int btrfs_truncate(struct inode *inode);
5fd02043 105static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
106static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
108 u64 start, u64 end, int *page_started,
109 unsigned long *nr_written, int unlock);
70c8a91c
JB
110static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
111 u64 len, u64 orig_start,
112 u64 block_start, u64 block_len,
cc95bef6
JB
113 u64 orig_block_len, u64 ram_bytes,
114 int type);
7b128766 115
48a3b636 116static int btrfs_dirty_inode(struct inode *inode);
7b128766 117
6a3891c5
JB
118#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
119void btrfs_test_inode_set_ops(struct inode *inode)
120{
121 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
122}
123#endif
124
f34f57a3 125static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
126 struct inode *inode, struct inode *dir,
127 const struct qstr *qstr)
0279b4cd
JO
128{
129 int err;
130
f34f57a3 131 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 132 if (!err)
2a7dba39 133 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
134 return err;
135}
136
c8b97818
CM
137/*
138 * this does all the hard work for inserting an inline extent into
139 * the btree. The caller should have done a btrfs_drop_extents so that
140 * no overlapping inline items exist in the btree
141 */
40f76580 142static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 143 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
144 struct btrfs_root *root, struct inode *inode,
145 u64 start, size_t size, size_t compressed_size,
fe3f566c 146 int compress_type,
c8b97818
CM
147 struct page **compressed_pages)
148{
c8b97818
CM
149 struct extent_buffer *leaf;
150 struct page *page = NULL;
151 char *kaddr;
152 unsigned long ptr;
153 struct btrfs_file_extent_item *ei;
154 int err = 0;
155 int ret;
156 size_t cur_size = size;
c8b97818 157 unsigned long offset;
c8b97818 158
fe3f566c 159 if (compressed_size && compressed_pages)
c8b97818 160 cur_size = compressed_size;
c8b97818 161
1acae57b 162 inode_add_bytes(inode, size);
c8b97818 163
1acae57b
FDBM
164 if (!extent_inserted) {
165 struct btrfs_key key;
166 size_t datasize;
c8b97818 167
1acae57b
FDBM
168 key.objectid = btrfs_ino(inode);
169 key.offset = start;
962a298f 170 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 171
1acae57b
FDBM
172 datasize = btrfs_file_extent_calc_inline_size(cur_size);
173 path->leave_spinning = 1;
174 ret = btrfs_insert_empty_item(trans, root, path, &key,
175 datasize);
176 if (ret) {
177 err = ret;
178 goto fail;
179 }
c8b97818
CM
180 }
181 leaf = path->nodes[0];
182 ei = btrfs_item_ptr(leaf, path->slots[0],
183 struct btrfs_file_extent_item);
184 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
185 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
186 btrfs_set_file_extent_encryption(leaf, ei, 0);
187 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
188 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
189 ptr = btrfs_file_extent_inline_start(ei);
190
261507a0 191 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
192 struct page *cpage;
193 int i = 0;
d397712b 194 while (compressed_size > 0) {
c8b97818 195 cpage = compressed_pages[i];
5b050f04 196 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 197 PAGE_SIZE);
c8b97818 198
7ac687d9 199 kaddr = kmap_atomic(cpage);
c8b97818 200 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 201 kunmap_atomic(kaddr);
c8b97818
CM
202
203 i++;
204 ptr += cur_size;
205 compressed_size -= cur_size;
206 }
207 btrfs_set_file_extent_compression(leaf, ei,
261507a0 208 compress_type);
c8b97818
CM
209 } else {
210 page = find_get_page(inode->i_mapping,
09cbfeaf 211 start >> PAGE_SHIFT);
c8b97818 212 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 213 kaddr = kmap_atomic(page);
09cbfeaf 214 offset = start & (PAGE_SIZE - 1);
c8b97818 215 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 216 kunmap_atomic(kaddr);
09cbfeaf 217 put_page(page);
c8b97818
CM
218 }
219 btrfs_mark_buffer_dirty(leaf);
1acae57b 220 btrfs_release_path(path);
c8b97818 221
c2167754
YZ
222 /*
223 * we're an inline extent, so nobody can
224 * extend the file past i_size without locking
225 * a page we already have locked.
226 *
227 * We must do any isize and inode updates
228 * before we unlock the pages. Otherwise we
229 * could end up racing with unlink.
230 */
c8b97818 231 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 232 ret = btrfs_update_inode(trans, root, inode);
c2167754 233
79787eaa 234 return ret;
c8b97818 235fail:
c8b97818
CM
236 return err;
237}
238
239
240/*
241 * conditionally insert an inline extent into the file. This
242 * does the checks required to make sure the data is small enough
243 * to fit as an inline extent.
244 */
00361589
JB
245static noinline int cow_file_range_inline(struct btrfs_root *root,
246 struct inode *inode, u64 start,
247 u64 end, size_t compressed_size,
248 int compress_type,
249 struct page **compressed_pages)
c8b97818 250{
00361589 251 struct btrfs_trans_handle *trans;
c8b97818
CM
252 u64 isize = i_size_read(inode);
253 u64 actual_end = min(end + 1, isize);
254 u64 inline_len = actual_end - start;
fda2832f 255 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
256 u64 data_len = inline_len;
257 int ret;
1acae57b
FDBM
258 struct btrfs_path *path;
259 int extent_inserted = 0;
260 u32 extent_item_size;
c8b97818
CM
261
262 if (compressed_size)
263 data_len = compressed_size;
264
265 if (start > 0 ||
0c29ba99 266 actual_end > root->sectorsize ||
354877be 267 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
268 (!compressed_size &&
269 (actual_end & (root->sectorsize - 1)) == 0) ||
270 end + 1 < isize ||
271 data_len > root->fs_info->max_inline) {
272 return 1;
273 }
274
1acae57b
FDBM
275 path = btrfs_alloc_path();
276 if (!path)
277 return -ENOMEM;
278
00361589 279 trans = btrfs_join_transaction(root);
1acae57b
FDBM
280 if (IS_ERR(trans)) {
281 btrfs_free_path(path);
00361589 282 return PTR_ERR(trans);
1acae57b 283 }
00361589
JB
284 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
285
1acae57b
FDBM
286 if (compressed_size && compressed_pages)
287 extent_item_size = btrfs_file_extent_calc_inline_size(
288 compressed_size);
289 else
290 extent_item_size = btrfs_file_extent_calc_inline_size(
291 inline_len);
292
293 ret = __btrfs_drop_extents(trans, root, inode, path,
294 start, aligned_end, NULL,
295 1, 1, extent_item_size, &extent_inserted);
00361589
JB
296 if (ret) {
297 btrfs_abort_transaction(trans, root, ret);
298 goto out;
299 }
c8b97818
CM
300
301 if (isize > actual_end)
302 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
303 ret = insert_inline_extent(trans, path, extent_inserted,
304 root, inode, start,
c8b97818 305 inline_len, compressed_size,
fe3f566c 306 compress_type, compressed_pages);
2adcac1a 307 if (ret && ret != -ENOSPC) {
79787eaa 308 btrfs_abort_transaction(trans, root, ret);
00361589 309 goto out;
2adcac1a 310 } else if (ret == -ENOSPC) {
00361589
JB
311 ret = 1;
312 goto out;
79787eaa 313 }
2adcac1a 314
bdc20e67 315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 316 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 317 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 318out:
94ed938a
QW
319 /*
320 * Don't forget to free the reserved space, as for inlined extent
321 * it won't count as data extent, free them directly here.
322 * And at reserve time, it's always aligned to page size, so
323 * just free one page here.
324 */
09cbfeaf 325 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
1acae57b 326 btrfs_free_path(path);
00361589
JB
327 btrfs_end_transaction(trans, root);
328 return ret;
c8b97818
CM
329}
330
771ed689
CM
331struct async_extent {
332 u64 start;
333 u64 ram_size;
334 u64 compressed_size;
335 struct page **pages;
336 unsigned long nr_pages;
261507a0 337 int compress_type;
771ed689
CM
338 struct list_head list;
339};
340
341struct async_cow {
342 struct inode *inode;
343 struct btrfs_root *root;
344 struct page *locked_page;
345 u64 start;
346 u64 end;
347 struct list_head extents;
348 struct btrfs_work work;
349};
350
351static noinline int add_async_extent(struct async_cow *cow,
352 u64 start, u64 ram_size,
353 u64 compressed_size,
354 struct page **pages,
261507a0
LZ
355 unsigned long nr_pages,
356 int compress_type)
771ed689
CM
357{
358 struct async_extent *async_extent;
359
360 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 361 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
362 async_extent->start = start;
363 async_extent->ram_size = ram_size;
364 async_extent->compressed_size = compressed_size;
365 async_extent->pages = pages;
366 async_extent->nr_pages = nr_pages;
261507a0 367 async_extent->compress_type = compress_type;
771ed689
CM
368 list_add_tail(&async_extent->list, &cow->extents);
369 return 0;
370}
371
f79707b0
WS
372static inline int inode_need_compress(struct inode *inode)
373{
374 struct btrfs_root *root = BTRFS_I(inode)->root;
375
376 /* force compress */
377 if (btrfs_test_opt(root, FORCE_COMPRESS))
378 return 1;
379 /* bad compression ratios */
380 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
381 return 0;
382 if (btrfs_test_opt(root, COMPRESS) ||
383 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
384 BTRFS_I(inode)->force_compress)
385 return 1;
386 return 0;
387}
388
d352ac68 389/*
771ed689
CM
390 * we create compressed extents in two phases. The first
391 * phase compresses a range of pages that have already been
392 * locked (both pages and state bits are locked).
c8b97818 393 *
771ed689
CM
394 * This is done inside an ordered work queue, and the compression
395 * is spread across many cpus. The actual IO submission is step
396 * two, and the ordered work queue takes care of making sure that
397 * happens in the same order things were put onto the queue by
398 * writepages and friends.
c8b97818 399 *
771ed689
CM
400 * If this code finds it can't get good compression, it puts an
401 * entry onto the work queue to write the uncompressed bytes. This
402 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
403 * are written in the same order that the flusher thread sent them
404 * down.
d352ac68 405 */
c44f649e 406static noinline void compress_file_range(struct inode *inode,
771ed689
CM
407 struct page *locked_page,
408 u64 start, u64 end,
409 struct async_cow *async_cow,
410 int *num_added)
b888db2b
CM
411{
412 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 413 u64 num_bytes;
db94535d 414 u64 blocksize = root->sectorsize;
c8b97818 415 u64 actual_end;
42dc7bab 416 u64 isize = i_size_read(inode);
e6dcd2dc 417 int ret = 0;
c8b97818
CM
418 struct page **pages = NULL;
419 unsigned long nr_pages;
420 unsigned long nr_pages_ret = 0;
421 unsigned long total_compressed = 0;
422 unsigned long total_in = 0;
ee22184b
BL
423 unsigned long max_compressed = SZ_128K;
424 unsigned long max_uncompressed = SZ_128K;
c8b97818
CM
425 int i;
426 int will_compress;
261507a0 427 int compress_type = root->fs_info->compress_type;
4adaa611 428 int redirty = 0;
b888db2b 429
4cb13e5d 430 /* if this is a small write inside eof, kick off a defrag */
ee22184b 431 if ((end - start + 1) < SZ_16K &&
4cb13e5d 432 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
433 btrfs_add_inode_defrag(NULL, inode);
434
42dc7bab 435 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
436again:
437 will_compress = 0;
09cbfeaf
KS
438 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
439 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
be20aa9d 440
f03d9301
CM
441 /*
442 * we don't want to send crud past the end of i_size through
443 * compression, that's just a waste of CPU time. So, if the
444 * end of the file is before the start of our current
445 * requested range of bytes, we bail out to the uncompressed
446 * cleanup code that can deal with all of this.
447 *
448 * It isn't really the fastest way to fix things, but this is a
449 * very uncommon corner.
450 */
451 if (actual_end <= start)
452 goto cleanup_and_bail_uncompressed;
453
c8b97818
CM
454 total_compressed = actual_end - start;
455
4bcbb332
SW
456 /*
457 * skip compression for a small file range(<=blocksize) that
01327610 458 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
459 */
460 if (total_compressed <= blocksize &&
461 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
462 goto cleanup_and_bail_uncompressed;
463
c8b97818
CM
464 /* we want to make sure that amount of ram required to uncompress
465 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
466 * of a compressed extent to 128k. This is a crucial number
467 * because it also controls how easily we can spread reads across
468 * cpus for decompression.
469 *
470 * We also want to make sure the amount of IO required to do
471 * a random read is reasonably small, so we limit the size of
472 * a compressed extent to 128k.
c8b97818
CM
473 */
474 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 475 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 476 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
477 total_in = 0;
478 ret = 0;
db94535d 479
771ed689
CM
480 /*
481 * we do compression for mount -o compress and when the
482 * inode has not been flagged as nocompress. This flag can
483 * change at any time if we discover bad compression ratios.
c8b97818 484 */
f79707b0 485 if (inode_need_compress(inode)) {
c8b97818 486 WARN_ON(pages);
31e818fe 487 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
488 if (!pages) {
489 /* just bail out to the uncompressed code */
490 goto cont;
491 }
c8b97818 492
261507a0
LZ
493 if (BTRFS_I(inode)->force_compress)
494 compress_type = BTRFS_I(inode)->force_compress;
495
4adaa611
CM
496 /*
497 * we need to call clear_page_dirty_for_io on each
498 * page in the range. Otherwise applications with the file
499 * mmap'd can wander in and change the page contents while
500 * we are compressing them.
501 *
502 * If the compression fails for any reason, we set the pages
503 * dirty again later on.
504 */
505 extent_range_clear_dirty_for_io(inode, start, end);
506 redirty = 1;
261507a0
LZ
507 ret = btrfs_compress_pages(compress_type,
508 inode->i_mapping, start,
509 total_compressed, pages,
510 nr_pages, &nr_pages_ret,
511 &total_in,
512 &total_compressed,
513 max_compressed);
c8b97818
CM
514
515 if (!ret) {
516 unsigned long offset = total_compressed &
09cbfeaf 517 (PAGE_SIZE - 1);
c8b97818
CM
518 struct page *page = pages[nr_pages_ret - 1];
519 char *kaddr;
520
521 /* zero the tail end of the last page, we might be
522 * sending it down to disk
523 */
524 if (offset) {
7ac687d9 525 kaddr = kmap_atomic(page);
c8b97818 526 memset(kaddr + offset, 0,
09cbfeaf 527 PAGE_SIZE - offset);
7ac687d9 528 kunmap_atomic(kaddr);
c8b97818
CM
529 }
530 will_compress = 1;
531 }
532 }
560f7d75 533cont:
c8b97818
CM
534 if (start == 0) {
535 /* lets try to make an inline extent */
771ed689 536 if (ret || total_in < (actual_end - start)) {
c8b97818 537 /* we didn't compress the entire range, try
771ed689 538 * to make an uncompressed inline extent.
c8b97818 539 */
00361589
JB
540 ret = cow_file_range_inline(root, inode, start, end,
541 0, 0, NULL);
c8b97818 542 } else {
771ed689 543 /* try making a compressed inline extent */
00361589 544 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
545 total_compressed,
546 compress_type, pages);
c8b97818 547 }
79787eaa 548 if (ret <= 0) {
151a41bc
JB
549 unsigned long clear_flags = EXTENT_DELALLOC |
550 EXTENT_DEFRAG;
e6eb4314
FM
551 unsigned long page_error_op;
552
151a41bc 553 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 554 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 555
771ed689 556 /*
79787eaa
JM
557 * inline extent creation worked or returned error,
558 * we don't need to create any more async work items.
559 * Unlock and free up our temp pages.
771ed689 560 */
c2790a2e 561 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 562 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
563 PAGE_CLEAR_DIRTY |
564 PAGE_SET_WRITEBACK |
e6eb4314 565 page_error_op |
c2790a2e 566 PAGE_END_WRITEBACK);
c8b97818
CM
567 goto free_pages_out;
568 }
569 }
570
571 if (will_compress) {
572 /*
573 * we aren't doing an inline extent round the compressed size
574 * up to a block size boundary so the allocator does sane
575 * things
576 */
fda2832f 577 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
578
579 /*
580 * one last check to make sure the compression is really a
581 * win, compare the page count read with the blocks on disk
582 */
09cbfeaf 583 total_in = ALIGN(total_in, PAGE_SIZE);
c8b97818
CM
584 if (total_compressed >= total_in) {
585 will_compress = 0;
586 } else {
c8b97818
CM
587 num_bytes = total_in;
588 }
589 }
590 if (!will_compress && pages) {
591 /*
592 * the compression code ran but failed to make things smaller,
593 * free any pages it allocated and our page pointer array
594 */
595 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 596 WARN_ON(pages[i]->mapping);
09cbfeaf 597 put_page(pages[i]);
c8b97818
CM
598 }
599 kfree(pages);
600 pages = NULL;
601 total_compressed = 0;
602 nr_pages_ret = 0;
603
604 /* flag the file so we don't compress in the future */
1e701a32
CM
605 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
606 !(BTRFS_I(inode)->force_compress)) {
a555f810 607 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 608 }
c8b97818 609 }
771ed689
CM
610 if (will_compress) {
611 *num_added += 1;
c8b97818 612
771ed689
CM
613 /* the async work queues will take care of doing actual
614 * allocation on disk for these compressed pages,
615 * and will submit them to the elevator.
616 */
617 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
618 total_compressed, pages, nr_pages_ret,
619 compress_type);
179e29e4 620
24ae6365 621 if (start + num_bytes < end) {
771ed689
CM
622 start += num_bytes;
623 pages = NULL;
624 cond_resched();
625 goto again;
626 }
627 } else {
f03d9301 628cleanup_and_bail_uncompressed:
771ed689
CM
629 /*
630 * No compression, but we still need to write the pages in
631 * the file we've been given so far. redirty the locked
632 * page if it corresponds to our extent and set things up
633 * for the async work queue to run cow_file_range to do
634 * the normal delalloc dance
635 */
636 if (page_offset(locked_page) >= start &&
637 page_offset(locked_page) <= end) {
638 __set_page_dirty_nobuffers(locked_page);
639 /* unlocked later on in the async handlers */
640 }
4adaa611
CM
641 if (redirty)
642 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
643 add_async_extent(async_cow, start, end - start + 1,
644 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
645 *num_added += 1;
646 }
3b951516 647
c44f649e 648 return;
771ed689
CM
649
650free_pages_out:
651 for (i = 0; i < nr_pages_ret; i++) {
652 WARN_ON(pages[i]->mapping);
09cbfeaf 653 put_page(pages[i]);
771ed689 654 }
d397712b 655 kfree(pages);
771ed689 656}
771ed689 657
40ae837b
FM
658static void free_async_extent_pages(struct async_extent *async_extent)
659{
660 int i;
661
662 if (!async_extent->pages)
663 return;
664
665 for (i = 0; i < async_extent->nr_pages; i++) {
666 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 667 put_page(async_extent->pages[i]);
40ae837b
FM
668 }
669 kfree(async_extent->pages);
670 async_extent->nr_pages = 0;
671 async_extent->pages = NULL;
771ed689
CM
672}
673
674/*
675 * phase two of compressed writeback. This is the ordered portion
676 * of the code, which only gets called in the order the work was
677 * queued. We walk all the async extents created by compress_file_range
678 * and send them down to the disk.
679 */
dec8f175 680static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
681 struct async_cow *async_cow)
682{
683 struct async_extent *async_extent;
684 u64 alloc_hint = 0;
771ed689
CM
685 struct btrfs_key ins;
686 struct extent_map *em;
687 struct btrfs_root *root = BTRFS_I(inode)->root;
688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689 struct extent_io_tree *io_tree;
f5a84ee3 690 int ret = 0;
771ed689 691
3e04e7f1 692again:
d397712b 693 while (!list_empty(&async_cow->extents)) {
771ed689
CM
694 async_extent = list_entry(async_cow->extents.next,
695 struct async_extent, list);
696 list_del(&async_extent->list);
c8b97818 697
771ed689
CM
698 io_tree = &BTRFS_I(inode)->io_tree;
699
f5a84ee3 700retry:
771ed689
CM
701 /* did the compression code fall back to uncompressed IO? */
702 if (!async_extent->pages) {
703 int page_started = 0;
704 unsigned long nr_written = 0;
705
706 lock_extent(io_tree, async_extent->start,
2ac55d41 707 async_extent->start +
d0082371 708 async_extent->ram_size - 1);
771ed689
CM
709
710 /* allocate blocks */
f5a84ee3
JB
711 ret = cow_file_range(inode, async_cow->locked_page,
712 async_extent->start,
713 async_extent->start +
714 async_extent->ram_size - 1,
715 &page_started, &nr_written, 0);
771ed689 716
79787eaa
JM
717 /* JDM XXX */
718
771ed689
CM
719 /*
720 * if page_started, cow_file_range inserted an
721 * inline extent and took care of all the unlocking
722 * and IO for us. Otherwise, we need to submit
723 * all those pages down to the drive.
724 */
f5a84ee3 725 if (!page_started && !ret)
771ed689
CM
726 extent_write_locked_range(io_tree,
727 inode, async_extent->start,
d397712b 728 async_extent->start +
771ed689
CM
729 async_extent->ram_size - 1,
730 btrfs_get_extent,
731 WB_SYNC_ALL);
3e04e7f1
JB
732 else if (ret)
733 unlock_page(async_cow->locked_page);
771ed689
CM
734 kfree(async_extent);
735 cond_resched();
736 continue;
737 }
738
739 lock_extent(io_tree, async_extent->start,
d0082371 740 async_extent->start + async_extent->ram_size - 1);
771ed689 741
00361589 742 ret = btrfs_reserve_extent(root,
771ed689
CM
743 async_extent->compressed_size,
744 async_extent->compressed_size,
e570fd27 745 0, alloc_hint, &ins, 1, 1);
f5a84ee3 746 if (ret) {
40ae837b 747 free_async_extent_pages(async_extent);
3e04e7f1 748
fdf8e2ea
JB
749 if (ret == -ENOSPC) {
750 unlock_extent(io_tree, async_extent->start,
751 async_extent->start +
752 async_extent->ram_size - 1);
ce62003f
LB
753
754 /*
755 * we need to redirty the pages if we decide to
756 * fallback to uncompressed IO, otherwise we
757 * will not submit these pages down to lower
758 * layers.
759 */
760 extent_range_redirty_for_io(inode,
761 async_extent->start,
762 async_extent->start +
763 async_extent->ram_size - 1);
764
79787eaa 765 goto retry;
fdf8e2ea 766 }
3e04e7f1 767 goto out_free;
f5a84ee3 768 }
c2167754
YZ
769 /*
770 * here we're doing allocation and writeback of the
771 * compressed pages
772 */
773 btrfs_drop_extent_cache(inode, async_extent->start,
774 async_extent->start +
775 async_extent->ram_size - 1, 0);
776
172ddd60 777 em = alloc_extent_map();
b9aa55be
LB
778 if (!em) {
779 ret = -ENOMEM;
3e04e7f1 780 goto out_free_reserve;
b9aa55be 781 }
771ed689
CM
782 em->start = async_extent->start;
783 em->len = async_extent->ram_size;
445a6944 784 em->orig_start = em->start;
2ab28f32
JB
785 em->mod_start = em->start;
786 em->mod_len = em->len;
c8b97818 787
771ed689
CM
788 em->block_start = ins.objectid;
789 em->block_len = ins.offset;
b4939680 790 em->orig_block_len = ins.offset;
cc95bef6 791 em->ram_bytes = async_extent->ram_size;
771ed689 792 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 793 em->compress_type = async_extent->compress_type;
771ed689
CM
794 set_bit(EXTENT_FLAG_PINNED, &em->flags);
795 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 796 em->generation = -1;
771ed689 797
d397712b 798 while (1) {
890871be 799 write_lock(&em_tree->lock);
09a2a8f9 800 ret = add_extent_mapping(em_tree, em, 1);
890871be 801 write_unlock(&em_tree->lock);
771ed689
CM
802 if (ret != -EEXIST) {
803 free_extent_map(em);
804 break;
805 }
806 btrfs_drop_extent_cache(inode, async_extent->start,
807 async_extent->start +
808 async_extent->ram_size - 1, 0);
809 }
810
3e04e7f1
JB
811 if (ret)
812 goto out_free_reserve;
813
261507a0
LZ
814 ret = btrfs_add_ordered_extent_compress(inode,
815 async_extent->start,
816 ins.objectid,
817 async_extent->ram_size,
818 ins.offset,
819 BTRFS_ORDERED_COMPRESSED,
820 async_extent->compress_type);
d9f85963
FM
821 if (ret) {
822 btrfs_drop_extent_cache(inode, async_extent->start,
823 async_extent->start +
824 async_extent->ram_size - 1, 0);
3e04e7f1 825 goto out_free_reserve;
d9f85963 826 }
9cfa3e34 827 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
771ed689 828
771ed689
CM
829 /*
830 * clear dirty, set writeback and unlock the pages.
831 */
c2790a2e 832 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
833 async_extent->start +
834 async_extent->ram_size - 1,
151a41bc
JB
835 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
836 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 837 PAGE_SET_WRITEBACK);
771ed689 838 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
839 async_extent->start,
840 async_extent->ram_size,
841 ins.objectid,
842 ins.offset, async_extent->pages,
843 async_extent->nr_pages);
fce2a4e6
FM
844 if (ret) {
845 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
846 struct page *p = async_extent->pages[0];
847 const u64 start = async_extent->start;
848 const u64 end = start + async_extent->ram_size - 1;
849
850 p->mapping = inode->i_mapping;
851 tree->ops->writepage_end_io_hook(p, start, end,
852 NULL, 0);
853 p->mapping = NULL;
854 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
855 PAGE_END_WRITEBACK |
856 PAGE_SET_ERROR);
40ae837b 857 free_async_extent_pages(async_extent);
fce2a4e6 858 }
771ed689
CM
859 alloc_hint = ins.objectid + ins.offset;
860 kfree(async_extent);
861 cond_resched();
862 }
dec8f175 863 return;
3e04e7f1 864out_free_reserve:
9cfa3e34 865 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
e570fd27 866 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 867out_free:
c2790a2e 868 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
869 async_extent->start +
870 async_extent->ram_size - 1,
c2790a2e 871 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
872 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
873 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
874 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
875 PAGE_SET_ERROR);
40ae837b 876 free_async_extent_pages(async_extent);
79787eaa 877 kfree(async_extent);
3e04e7f1 878 goto again;
771ed689
CM
879}
880
4b46fce2
JB
881static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
882 u64 num_bytes)
883{
884 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
885 struct extent_map *em;
886 u64 alloc_hint = 0;
887
888 read_lock(&em_tree->lock);
889 em = search_extent_mapping(em_tree, start, num_bytes);
890 if (em) {
891 /*
892 * if block start isn't an actual block number then find the
893 * first block in this inode and use that as a hint. If that
894 * block is also bogus then just don't worry about it.
895 */
896 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
897 free_extent_map(em);
898 em = search_extent_mapping(em_tree, 0, 0);
899 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
900 alloc_hint = em->block_start;
901 if (em)
902 free_extent_map(em);
903 } else {
904 alloc_hint = em->block_start;
905 free_extent_map(em);
906 }
907 }
908 read_unlock(&em_tree->lock);
909
910 return alloc_hint;
911}
912
771ed689
CM
913/*
914 * when extent_io.c finds a delayed allocation range in the file,
915 * the call backs end up in this code. The basic idea is to
916 * allocate extents on disk for the range, and create ordered data structs
917 * in ram to track those extents.
918 *
919 * locked_page is the page that writepage had locked already. We use
920 * it to make sure we don't do extra locks or unlocks.
921 *
922 * *page_started is set to one if we unlock locked_page and do everything
923 * required to start IO on it. It may be clean and already done with
924 * IO when we return.
925 */
00361589
JB
926static noinline int cow_file_range(struct inode *inode,
927 struct page *locked_page,
928 u64 start, u64 end, int *page_started,
929 unsigned long *nr_written,
930 int unlock)
771ed689 931{
00361589 932 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
933 u64 alloc_hint = 0;
934 u64 num_bytes;
935 unsigned long ram_size;
936 u64 disk_num_bytes;
937 u64 cur_alloc_size;
938 u64 blocksize = root->sectorsize;
771ed689
CM
939 struct btrfs_key ins;
940 struct extent_map *em;
941 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
942 int ret = 0;
943
02ecd2c2
JB
944 if (btrfs_is_free_space_inode(inode)) {
945 WARN_ON_ONCE(1);
29bce2f3
JB
946 ret = -EINVAL;
947 goto out_unlock;
02ecd2c2 948 }
771ed689 949
fda2832f 950 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
951 num_bytes = max(blocksize, num_bytes);
952 disk_num_bytes = num_bytes;
771ed689 953
4cb5300b 954 /* if this is a small write inside eof, kick off defrag */
ee22184b 955 if (num_bytes < SZ_64K &&
4cb13e5d 956 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 957 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 958
771ed689
CM
959 if (start == 0) {
960 /* lets try to make an inline extent */
00361589
JB
961 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
962 NULL);
771ed689 963 if (ret == 0) {
c2790a2e
JB
964 extent_clear_unlock_delalloc(inode, start, end, NULL,
965 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 966 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
967 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
968 PAGE_END_WRITEBACK);
c2167754 969
771ed689 970 *nr_written = *nr_written +
09cbfeaf 971 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 972 *page_started = 1;
771ed689 973 goto out;
79787eaa 974 } else if (ret < 0) {
79787eaa 975 goto out_unlock;
771ed689
CM
976 }
977 }
978
979 BUG_ON(disk_num_bytes >
6c41761f 980 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 981
4b46fce2 982 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
983 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
984
d397712b 985 while (disk_num_bytes > 0) {
a791e35e
CM
986 unsigned long op;
987
287a0ab9 988 cur_alloc_size = disk_num_bytes;
00361589 989 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 990 root->sectorsize, 0, alloc_hint,
e570fd27 991 &ins, 1, 1);
00361589 992 if (ret < 0)
79787eaa 993 goto out_unlock;
d397712b 994
172ddd60 995 em = alloc_extent_map();
b9aa55be
LB
996 if (!em) {
997 ret = -ENOMEM;
ace68bac 998 goto out_reserve;
b9aa55be 999 }
e6dcd2dc 1000 em->start = start;
445a6944 1001 em->orig_start = em->start;
771ed689
CM
1002 ram_size = ins.offset;
1003 em->len = ins.offset;
2ab28f32
JB
1004 em->mod_start = em->start;
1005 em->mod_len = em->len;
c8b97818 1006
e6dcd2dc 1007 em->block_start = ins.objectid;
c8b97818 1008 em->block_len = ins.offset;
b4939680 1009 em->orig_block_len = ins.offset;
cc95bef6 1010 em->ram_bytes = ram_size;
e6dcd2dc 1011 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 1012 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 1013 em->generation = -1;
c8b97818 1014
d397712b 1015 while (1) {
890871be 1016 write_lock(&em_tree->lock);
09a2a8f9 1017 ret = add_extent_mapping(em_tree, em, 1);
890871be 1018 write_unlock(&em_tree->lock);
e6dcd2dc
CM
1019 if (ret != -EEXIST) {
1020 free_extent_map(em);
1021 break;
1022 }
1023 btrfs_drop_extent_cache(inode, start,
c8b97818 1024 start + ram_size - 1, 0);
e6dcd2dc 1025 }
ace68bac
LB
1026 if (ret)
1027 goto out_reserve;
e6dcd2dc 1028
98d20f67 1029 cur_alloc_size = ins.offset;
e6dcd2dc 1030 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1031 ram_size, cur_alloc_size, 0);
ace68bac 1032 if (ret)
d9f85963 1033 goto out_drop_extent_cache;
c8b97818 1034
17d217fe
YZ
1035 if (root->root_key.objectid ==
1036 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1037 ret = btrfs_reloc_clone_csums(inode, start,
1038 cur_alloc_size);
00361589 1039 if (ret)
d9f85963 1040 goto out_drop_extent_cache;
17d217fe
YZ
1041 }
1042
9cfa3e34
FM
1043 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1044
d397712b 1045 if (disk_num_bytes < cur_alloc_size)
3b951516 1046 break;
d397712b 1047
c8b97818
CM
1048 /* we're not doing compressed IO, don't unlock the first
1049 * page (which the caller expects to stay locked), don't
1050 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1051 *
1052 * Do set the Private2 bit so we know this page was properly
1053 * setup for writepage
c8b97818 1054 */
c2790a2e
JB
1055 op = unlock ? PAGE_UNLOCK : 0;
1056 op |= PAGE_SET_PRIVATE2;
a791e35e 1057
c2790a2e
JB
1058 extent_clear_unlock_delalloc(inode, start,
1059 start + ram_size - 1, locked_page,
1060 EXTENT_LOCKED | EXTENT_DELALLOC,
1061 op);
c8b97818 1062 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1063 num_bytes -= cur_alloc_size;
1064 alloc_hint = ins.objectid + ins.offset;
1065 start += cur_alloc_size;
b888db2b 1066 }
79787eaa 1067out:
be20aa9d 1068 return ret;
b7d5b0a8 1069
d9f85963
FM
1070out_drop_extent_cache:
1071 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1072out_reserve:
9cfa3e34 1073 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
e570fd27 1074 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1075out_unlock:
c2790a2e 1076 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1077 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1078 EXTENT_DELALLOC | EXTENT_DEFRAG,
1079 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1080 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1081 goto out;
771ed689 1082}
c8b97818 1083
771ed689
CM
1084/*
1085 * work queue call back to started compression on a file and pages
1086 */
1087static noinline void async_cow_start(struct btrfs_work *work)
1088{
1089 struct async_cow *async_cow;
1090 int num_added = 0;
1091 async_cow = container_of(work, struct async_cow, work);
1092
1093 compress_file_range(async_cow->inode, async_cow->locked_page,
1094 async_cow->start, async_cow->end, async_cow,
1095 &num_added);
8180ef88 1096 if (num_added == 0) {
cb77fcd8 1097 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1098 async_cow->inode = NULL;
8180ef88 1099 }
771ed689
CM
1100}
1101
1102/*
1103 * work queue call back to submit previously compressed pages
1104 */
1105static noinline void async_cow_submit(struct btrfs_work *work)
1106{
1107 struct async_cow *async_cow;
1108 struct btrfs_root *root;
1109 unsigned long nr_pages;
1110
1111 async_cow = container_of(work, struct async_cow, work);
1112
1113 root = async_cow->root;
09cbfeaf
KS
1114 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1115 PAGE_SHIFT;
771ed689 1116
ee863954
DS
1117 /*
1118 * atomic_sub_return implies a barrier for waitqueue_active
1119 */
66657b31 1120 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
ee22184b 1121 5 * SZ_1M &&
771ed689
CM
1122 waitqueue_active(&root->fs_info->async_submit_wait))
1123 wake_up(&root->fs_info->async_submit_wait);
1124
d397712b 1125 if (async_cow->inode)
771ed689 1126 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1127}
c8b97818 1128
771ed689
CM
1129static noinline void async_cow_free(struct btrfs_work *work)
1130{
1131 struct async_cow *async_cow;
1132 async_cow = container_of(work, struct async_cow, work);
8180ef88 1133 if (async_cow->inode)
cb77fcd8 1134 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1135 kfree(async_cow);
1136}
1137
1138static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1139 u64 start, u64 end, int *page_started,
1140 unsigned long *nr_written)
1141{
1142 struct async_cow *async_cow;
1143 struct btrfs_root *root = BTRFS_I(inode)->root;
1144 unsigned long nr_pages;
1145 u64 cur_end;
ee22184b 1146 int limit = 10 * SZ_1M;
771ed689 1147
a3429ab7
CM
1148 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1149 1, 0, NULL, GFP_NOFS);
d397712b 1150 while (start < end) {
771ed689 1151 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1152 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1153 async_cow->inode = igrab(inode);
771ed689
CM
1154 async_cow->root = root;
1155 async_cow->locked_page = locked_page;
1156 async_cow->start = start;
1157
f79707b0
WS
1158 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1159 !btrfs_test_opt(root, FORCE_COMPRESS))
771ed689
CM
1160 cur_end = end;
1161 else
ee22184b 1162 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1163
1164 async_cow->end = cur_end;
1165 INIT_LIST_HEAD(&async_cow->extents);
1166
9e0af237
LB
1167 btrfs_init_work(&async_cow->work,
1168 btrfs_delalloc_helper,
1169 async_cow_start, async_cow_submit,
1170 async_cow_free);
771ed689 1171
09cbfeaf
KS
1172 nr_pages = (cur_end - start + PAGE_SIZE) >>
1173 PAGE_SHIFT;
771ed689
CM
1174 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1175
afe3d242
QW
1176 btrfs_queue_work(root->fs_info->delalloc_workers,
1177 &async_cow->work);
771ed689
CM
1178
1179 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1180 wait_event(root->fs_info->async_submit_wait,
1181 (atomic_read(&root->fs_info->async_delalloc_pages) <
1182 limit));
1183 }
1184
d397712b 1185 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1186 atomic_read(&root->fs_info->async_delalloc_pages)) {
1187 wait_event(root->fs_info->async_submit_wait,
1188 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1189 0));
1190 }
1191
1192 *nr_written += nr_pages;
1193 start = cur_end + 1;
1194 }
1195 *page_started = 1;
1196 return 0;
be20aa9d
CM
1197}
1198
d397712b 1199static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1200 u64 bytenr, u64 num_bytes)
1201{
1202 int ret;
1203 struct btrfs_ordered_sum *sums;
1204 LIST_HEAD(list);
1205
07d400a6 1206 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1207 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1208 if (ret == 0 && list_empty(&list))
1209 return 0;
1210
1211 while (!list_empty(&list)) {
1212 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1213 list_del(&sums->list);
1214 kfree(sums);
1215 }
1216 return 1;
1217}
1218
d352ac68
CM
1219/*
1220 * when nowcow writeback call back. This checks for snapshots or COW copies
1221 * of the extents that exist in the file, and COWs the file as required.
1222 *
1223 * If no cow copies or snapshots exist, we write directly to the existing
1224 * blocks on disk
1225 */
7f366cfe
CM
1226static noinline int run_delalloc_nocow(struct inode *inode,
1227 struct page *locked_page,
771ed689
CM
1228 u64 start, u64 end, int *page_started, int force,
1229 unsigned long *nr_written)
be20aa9d 1230{
be20aa9d 1231 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1232 struct btrfs_trans_handle *trans;
be20aa9d 1233 struct extent_buffer *leaf;
be20aa9d 1234 struct btrfs_path *path;
80ff3856 1235 struct btrfs_file_extent_item *fi;
be20aa9d 1236 struct btrfs_key found_key;
80ff3856
YZ
1237 u64 cow_start;
1238 u64 cur_offset;
1239 u64 extent_end;
5d4f98a2 1240 u64 extent_offset;
80ff3856
YZ
1241 u64 disk_bytenr;
1242 u64 num_bytes;
b4939680 1243 u64 disk_num_bytes;
cc95bef6 1244 u64 ram_bytes;
80ff3856 1245 int extent_type;
79787eaa 1246 int ret, err;
d899e052 1247 int type;
80ff3856
YZ
1248 int nocow;
1249 int check_prev = 1;
82d5902d 1250 bool nolock;
33345d01 1251 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1252
1253 path = btrfs_alloc_path();
17ca04af 1254 if (!path) {
c2790a2e
JB
1255 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1256 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1257 EXTENT_DO_ACCOUNTING |
1258 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1259 PAGE_CLEAR_DIRTY |
1260 PAGE_SET_WRITEBACK |
1261 PAGE_END_WRITEBACK);
d8926bb3 1262 return -ENOMEM;
17ca04af 1263 }
82d5902d 1264
83eea1f1 1265 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1266
1267 if (nolock)
7a7eaa40 1268 trans = btrfs_join_transaction_nolock(root);
82d5902d 1269 else
7a7eaa40 1270 trans = btrfs_join_transaction(root);
ff5714cc 1271
79787eaa 1272 if (IS_ERR(trans)) {
c2790a2e
JB
1273 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1274 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1275 EXTENT_DO_ACCOUNTING |
1276 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1277 PAGE_CLEAR_DIRTY |
1278 PAGE_SET_WRITEBACK |
1279 PAGE_END_WRITEBACK);
79787eaa
JM
1280 btrfs_free_path(path);
1281 return PTR_ERR(trans);
1282 }
1283
74b21075 1284 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1285
80ff3856
YZ
1286 cow_start = (u64)-1;
1287 cur_offset = start;
1288 while (1) {
33345d01 1289 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1290 cur_offset, 0);
d788a349 1291 if (ret < 0)
79787eaa 1292 goto error;
80ff3856
YZ
1293 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1294 leaf = path->nodes[0];
1295 btrfs_item_key_to_cpu(leaf, &found_key,
1296 path->slots[0] - 1);
33345d01 1297 if (found_key.objectid == ino &&
80ff3856
YZ
1298 found_key.type == BTRFS_EXTENT_DATA_KEY)
1299 path->slots[0]--;
1300 }
1301 check_prev = 0;
1302next_slot:
1303 leaf = path->nodes[0];
1304 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1305 ret = btrfs_next_leaf(root, path);
d788a349 1306 if (ret < 0)
79787eaa 1307 goto error;
80ff3856
YZ
1308 if (ret > 0)
1309 break;
1310 leaf = path->nodes[0];
1311 }
be20aa9d 1312
80ff3856
YZ
1313 nocow = 0;
1314 disk_bytenr = 0;
17d217fe 1315 num_bytes = 0;
80ff3856
YZ
1316 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1317
1d512cb7
FM
1318 if (found_key.objectid > ino)
1319 break;
1320 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1321 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1322 path->slots[0]++;
1323 goto next_slot;
1324 }
1325 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1326 found_key.offset > end)
1327 break;
1328
1329 if (found_key.offset > cur_offset) {
1330 extent_end = found_key.offset;
e9061e21 1331 extent_type = 0;
80ff3856
YZ
1332 goto out_check;
1333 }
1334
1335 fi = btrfs_item_ptr(leaf, path->slots[0],
1336 struct btrfs_file_extent_item);
1337 extent_type = btrfs_file_extent_type(leaf, fi);
1338
cc95bef6 1339 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1340 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1341 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1342 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1343 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1344 extent_end = found_key.offset +
1345 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1346 disk_num_bytes =
1347 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1348 if (extent_end <= start) {
1349 path->slots[0]++;
1350 goto next_slot;
1351 }
17d217fe
YZ
1352 if (disk_bytenr == 0)
1353 goto out_check;
80ff3856
YZ
1354 if (btrfs_file_extent_compression(leaf, fi) ||
1355 btrfs_file_extent_encryption(leaf, fi) ||
1356 btrfs_file_extent_other_encoding(leaf, fi))
1357 goto out_check;
d899e052
YZ
1358 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1359 goto out_check;
d2fb3437 1360 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1361 goto out_check;
33345d01 1362 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1363 found_key.offset -
1364 extent_offset, disk_bytenr))
17d217fe 1365 goto out_check;
5d4f98a2 1366 disk_bytenr += extent_offset;
17d217fe
YZ
1367 disk_bytenr += cur_offset - found_key.offset;
1368 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1369 /*
1370 * if there are pending snapshots for this root,
1371 * we fall into common COW way.
1372 */
1373 if (!nolock) {
9ea24bbe 1374 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1375 if (!err)
1376 goto out_check;
1377 }
17d217fe
YZ
1378 /*
1379 * force cow if csum exists in the range.
1380 * this ensure that csum for a given extent are
1381 * either valid or do not exist.
1382 */
1383 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1384 goto out_check;
f78c436c
FM
1385 if (!btrfs_inc_nocow_writers(root->fs_info,
1386 disk_bytenr))
1387 goto out_check;
80ff3856
YZ
1388 nocow = 1;
1389 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1390 extent_end = found_key.offset +
514ac8ad
CM
1391 btrfs_file_extent_inline_len(leaf,
1392 path->slots[0], fi);
80ff3856
YZ
1393 extent_end = ALIGN(extent_end, root->sectorsize);
1394 } else {
1395 BUG_ON(1);
1396 }
1397out_check:
1398 if (extent_end <= start) {
1399 path->slots[0]++;
e9894fd3 1400 if (!nolock && nocow)
9ea24bbe 1401 btrfs_end_write_no_snapshoting(root);
f78c436c
FM
1402 if (nocow)
1403 btrfs_dec_nocow_writers(root->fs_info,
1404 disk_bytenr);
80ff3856
YZ
1405 goto next_slot;
1406 }
1407 if (!nocow) {
1408 if (cow_start == (u64)-1)
1409 cow_start = cur_offset;
1410 cur_offset = extent_end;
1411 if (cur_offset > end)
1412 break;
1413 path->slots[0]++;
1414 goto next_slot;
7ea394f1
YZ
1415 }
1416
b3b4aa74 1417 btrfs_release_path(path);
80ff3856 1418 if (cow_start != (u64)-1) {
00361589
JB
1419 ret = cow_file_range(inode, locked_page,
1420 cow_start, found_key.offset - 1,
1421 page_started, nr_written, 1);
e9894fd3
WS
1422 if (ret) {
1423 if (!nolock && nocow)
9ea24bbe 1424 btrfs_end_write_no_snapshoting(root);
f78c436c
FM
1425 if (nocow)
1426 btrfs_dec_nocow_writers(root->fs_info,
1427 disk_bytenr);
79787eaa 1428 goto error;
e9894fd3 1429 }
80ff3856 1430 cow_start = (u64)-1;
7ea394f1 1431 }
80ff3856 1432
d899e052
YZ
1433 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1434 struct extent_map *em;
1435 struct extent_map_tree *em_tree;
1436 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1437 em = alloc_extent_map();
79787eaa 1438 BUG_ON(!em); /* -ENOMEM */
d899e052 1439 em->start = cur_offset;
70c8a91c 1440 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1441 em->len = num_bytes;
1442 em->block_len = num_bytes;
1443 em->block_start = disk_bytenr;
b4939680 1444 em->orig_block_len = disk_num_bytes;
cc95bef6 1445 em->ram_bytes = ram_bytes;
d899e052 1446 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1447 em->mod_start = em->start;
1448 em->mod_len = em->len;
d899e052 1449 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1450 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1451 em->generation = -1;
d899e052 1452 while (1) {
890871be 1453 write_lock(&em_tree->lock);
09a2a8f9 1454 ret = add_extent_mapping(em_tree, em, 1);
890871be 1455 write_unlock(&em_tree->lock);
d899e052
YZ
1456 if (ret != -EEXIST) {
1457 free_extent_map(em);
1458 break;
1459 }
1460 btrfs_drop_extent_cache(inode, em->start,
1461 em->start + em->len - 1, 0);
1462 }
1463 type = BTRFS_ORDERED_PREALLOC;
1464 } else {
1465 type = BTRFS_ORDERED_NOCOW;
1466 }
80ff3856
YZ
1467
1468 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1469 num_bytes, num_bytes, type);
f78c436c
FM
1470 if (nocow)
1471 btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
79787eaa 1472 BUG_ON(ret); /* -ENOMEM */
771ed689 1473
efa56464
YZ
1474 if (root->root_key.objectid ==
1475 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1476 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1477 num_bytes);
e9894fd3
WS
1478 if (ret) {
1479 if (!nolock && nocow)
9ea24bbe 1480 btrfs_end_write_no_snapshoting(root);
79787eaa 1481 goto error;
e9894fd3 1482 }
efa56464
YZ
1483 }
1484
c2790a2e
JB
1485 extent_clear_unlock_delalloc(inode, cur_offset,
1486 cur_offset + num_bytes - 1,
1487 locked_page, EXTENT_LOCKED |
1488 EXTENT_DELALLOC, PAGE_UNLOCK |
1489 PAGE_SET_PRIVATE2);
e9894fd3 1490 if (!nolock && nocow)
9ea24bbe 1491 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1492 cur_offset = extent_end;
1493 if (cur_offset > end)
1494 break;
be20aa9d 1495 }
b3b4aa74 1496 btrfs_release_path(path);
80ff3856 1497
17ca04af 1498 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1499 cow_start = cur_offset;
17ca04af
JB
1500 cur_offset = end;
1501 }
1502
80ff3856 1503 if (cow_start != (u64)-1) {
00361589
JB
1504 ret = cow_file_range(inode, locked_page, cow_start, end,
1505 page_started, nr_written, 1);
d788a349 1506 if (ret)
79787eaa 1507 goto error;
80ff3856
YZ
1508 }
1509
79787eaa 1510error:
a698d075 1511 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1512 if (!ret)
1513 ret = err;
1514
17ca04af 1515 if (ret && cur_offset < end)
c2790a2e
JB
1516 extent_clear_unlock_delalloc(inode, cur_offset, end,
1517 locked_page, EXTENT_LOCKED |
151a41bc
JB
1518 EXTENT_DELALLOC | EXTENT_DEFRAG |
1519 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1520 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1521 PAGE_SET_WRITEBACK |
1522 PAGE_END_WRITEBACK);
7ea394f1 1523 btrfs_free_path(path);
79787eaa 1524 return ret;
be20aa9d
CM
1525}
1526
47059d93
WS
1527static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1528{
1529
1530 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1531 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1532 return 0;
1533
1534 /*
1535 * @defrag_bytes is a hint value, no spinlock held here,
1536 * if is not zero, it means the file is defragging.
1537 * Force cow if given extent needs to be defragged.
1538 */
1539 if (BTRFS_I(inode)->defrag_bytes &&
1540 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1541 EXTENT_DEFRAG, 0, NULL))
1542 return 1;
1543
1544 return 0;
1545}
1546
d352ac68
CM
1547/*
1548 * extent_io.c call back to do delayed allocation processing
1549 */
c8b97818 1550static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1551 u64 start, u64 end, int *page_started,
1552 unsigned long *nr_written)
be20aa9d 1553{
be20aa9d 1554 int ret;
47059d93 1555 int force_cow = need_force_cow(inode, start, end);
a2135011 1556
47059d93 1557 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1558 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1559 page_started, 1, nr_written);
47059d93 1560 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1561 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1562 page_started, 0, nr_written);
7816030e 1563 } else if (!inode_need_compress(inode)) {
7f366cfe
CM
1564 ret = cow_file_range(inode, locked_page, start, end,
1565 page_started, nr_written, 1);
7ddf5a42
JB
1566 } else {
1567 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1568 &BTRFS_I(inode)->runtime_flags);
771ed689 1569 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1570 page_started, nr_written);
7ddf5a42 1571 }
b888db2b
CM
1572 return ret;
1573}
1574
1bf85046
JM
1575static void btrfs_split_extent_hook(struct inode *inode,
1576 struct extent_state *orig, u64 split)
9ed74f2d 1577{
dcab6a3b
JB
1578 u64 size;
1579
0ca1f7ce 1580 /* not delalloc, ignore it */
9ed74f2d 1581 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1582 return;
9ed74f2d 1583
dcab6a3b
JB
1584 size = orig->end - orig->start + 1;
1585 if (size > BTRFS_MAX_EXTENT_SIZE) {
1586 u64 num_extents;
1587 u64 new_size;
1588
1589 /*
ba117213
JB
1590 * See the explanation in btrfs_merge_extent_hook, the same
1591 * applies here, just in reverse.
dcab6a3b
JB
1592 */
1593 new_size = orig->end - split + 1;
ba117213 1594 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
dcab6a3b 1595 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1596 new_size = split - orig->start;
1597 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1598 BTRFS_MAX_EXTENT_SIZE);
1599 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1600 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1601 return;
1602 }
1603
9e0baf60
JB
1604 spin_lock(&BTRFS_I(inode)->lock);
1605 BTRFS_I(inode)->outstanding_extents++;
1606 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1607}
1608
1609/*
1610 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1611 * extents so we can keep track of new extents that are just merged onto old
1612 * extents, such as when we are doing sequential writes, so we can properly
1613 * account for the metadata space we'll need.
1614 */
1bf85046
JM
1615static void btrfs_merge_extent_hook(struct inode *inode,
1616 struct extent_state *new,
1617 struct extent_state *other)
9ed74f2d 1618{
dcab6a3b
JB
1619 u64 new_size, old_size;
1620 u64 num_extents;
1621
9ed74f2d
JB
1622 /* not delalloc, ignore it */
1623 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1624 return;
9ed74f2d 1625
8461a3de
JB
1626 if (new->start > other->start)
1627 new_size = new->end - other->start + 1;
1628 else
1629 new_size = other->end - new->start + 1;
dcab6a3b
JB
1630
1631 /* we're not bigger than the max, unreserve the space and go */
1632 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1633 spin_lock(&BTRFS_I(inode)->lock);
1634 BTRFS_I(inode)->outstanding_extents--;
1635 spin_unlock(&BTRFS_I(inode)->lock);
1636 return;
1637 }
1638
1639 /*
ba117213
JB
1640 * We have to add up either side to figure out how many extents were
1641 * accounted for before we merged into one big extent. If the number of
1642 * extents we accounted for is <= the amount we need for the new range
1643 * then we can return, otherwise drop. Think of it like this
1644 *
1645 * [ 4k][MAX_SIZE]
1646 *
1647 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1648 * need 2 outstanding extents, on one side we have 1 and the other side
1649 * we have 1 so they are == and we can return. But in this case
1650 *
1651 * [MAX_SIZE+4k][MAX_SIZE+4k]
1652 *
1653 * Each range on their own accounts for 2 extents, but merged together
1654 * they are only 3 extents worth of accounting, so we need to drop in
1655 * this case.
dcab6a3b 1656 */
ba117213 1657 old_size = other->end - other->start + 1;
dcab6a3b
JB
1658 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1659 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1660 old_size = new->end - new->start + 1;
1661 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1662 BTRFS_MAX_EXTENT_SIZE);
1663
dcab6a3b 1664 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
ba117213 1665 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1666 return;
1667
9e0baf60
JB
1668 spin_lock(&BTRFS_I(inode)->lock);
1669 BTRFS_I(inode)->outstanding_extents--;
1670 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1671}
1672
eb73c1b7
MX
1673static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1674 struct inode *inode)
1675{
1676 spin_lock(&root->delalloc_lock);
1677 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1678 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1679 &root->delalloc_inodes);
1680 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1681 &BTRFS_I(inode)->runtime_flags);
1682 root->nr_delalloc_inodes++;
1683 if (root->nr_delalloc_inodes == 1) {
1684 spin_lock(&root->fs_info->delalloc_root_lock);
1685 BUG_ON(!list_empty(&root->delalloc_root));
1686 list_add_tail(&root->delalloc_root,
1687 &root->fs_info->delalloc_roots);
1688 spin_unlock(&root->fs_info->delalloc_root_lock);
1689 }
1690 }
1691 spin_unlock(&root->delalloc_lock);
1692}
1693
1694static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1695 struct inode *inode)
1696{
1697 spin_lock(&root->delalloc_lock);
1698 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1699 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1700 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1701 &BTRFS_I(inode)->runtime_flags);
1702 root->nr_delalloc_inodes--;
1703 if (!root->nr_delalloc_inodes) {
1704 spin_lock(&root->fs_info->delalloc_root_lock);
1705 BUG_ON(list_empty(&root->delalloc_root));
1706 list_del_init(&root->delalloc_root);
1707 spin_unlock(&root->fs_info->delalloc_root_lock);
1708 }
1709 }
1710 spin_unlock(&root->delalloc_lock);
1711}
1712
d352ac68
CM
1713/*
1714 * extent_io.c set_bit_hook, used to track delayed allocation
1715 * bytes in this file, and to maintain the list of inodes that
1716 * have pending delalloc work to be done.
1717 */
1bf85046 1718static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1719 struct extent_state *state, unsigned *bits)
291d673e 1720{
9ed74f2d 1721
47059d93
WS
1722 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1723 WARN_ON(1);
75eff68e
CM
1724 /*
1725 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1726 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1727 * bit, which is only set or cleared with irqs on
1728 */
0ca1f7ce 1729 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1730 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1731 u64 len = state->end + 1 - state->start;
83eea1f1 1732 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1733
9e0baf60 1734 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1735 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1736 } else {
1737 spin_lock(&BTRFS_I(inode)->lock);
1738 BTRFS_I(inode)->outstanding_extents++;
1739 spin_unlock(&BTRFS_I(inode)->lock);
1740 }
287a0ab9 1741
6a3891c5
JB
1742 /* For sanity tests */
1743 if (btrfs_test_is_dummy_root(root))
1744 return;
1745
963d678b
MX
1746 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1747 root->fs_info->delalloc_batch);
df0af1a5 1748 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1749 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1750 if (*bits & EXTENT_DEFRAG)
1751 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1752 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1753 &BTRFS_I(inode)->runtime_flags))
1754 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1755 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1756 }
291d673e
CM
1757}
1758
d352ac68
CM
1759/*
1760 * extent_io.c clear_bit_hook, see set_bit_hook for why
1761 */
1bf85046 1762static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1763 struct extent_state *state,
9ee49a04 1764 unsigned *bits)
291d673e 1765{
47059d93 1766 u64 len = state->end + 1 - state->start;
dcab6a3b
JB
1767 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1768 BTRFS_MAX_EXTENT_SIZE);
47059d93
WS
1769
1770 spin_lock(&BTRFS_I(inode)->lock);
1771 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1772 BTRFS_I(inode)->defrag_bytes -= len;
1773 spin_unlock(&BTRFS_I(inode)->lock);
1774
75eff68e
CM
1775 /*
1776 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1777 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1778 * bit, which is only set or cleared with irqs on
1779 */
0ca1f7ce 1780 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1781 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1782 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1783
9e0baf60 1784 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1785 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1786 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1787 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 1788 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60
JB
1789 spin_unlock(&BTRFS_I(inode)->lock);
1790 }
0ca1f7ce 1791
b6d08f06
JB
1792 /*
1793 * We don't reserve metadata space for space cache inodes so we
1794 * don't need to call dellalloc_release_metadata if there is an
1795 * error.
1796 */
1797 if (*bits & EXTENT_DO_ACCOUNTING &&
1798 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1799 btrfs_delalloc_release_metadata(inode, len);
1800
6a3891c5
JB
1801 /* For sanity tests. */
1802 if (btrfs_test_is_dummy_root(root))
1803 return;
1804
0cb59c99 1805 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1806 && do_list && !(state->state & EXTENT_NORESERVE))
51773bec
QW
1807 btrfs_free_reserved_data_space_noquota(inode,
1808 state->start, len);
9ed74f2d 1809
963d678b
MX
1810 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1811 root->fs_info->delalloc_batch);
df0af1a5 1812 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1813 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1814 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1815 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1816 &BTRFS_I(inode)->runtime_flags))
1817 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1818 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1819 }
291d673e
CM
1820}
1821
d352ac68
CM
1822/*
1823 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1824 * we don't create bios that span stripes or chunks
1825 */
81a75f67 1826int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1827 size_t size, struct bio *bio,
1828 unsigned long bio_flags)
239b14b3
CM
1829{
1830 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1831 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1832 u64 length = 0;
1833 u64 map_length;
239b14b3
CM
1834 int ret;
1835
771ed689
CM
1836 if (bio_flags & EXTENT_BIO_COMPRESSED)
1837 return 0;
1838
4f024f37 1839 length = bio->bi_iter.bi_size;
239b14b3 1840 map_length = length;
b3d3fa51 1841 ret = btrfs_map_block(root->fs_info, bio_op(bio), logical,
f188591e 1842 &map_length, NULL, 0);
3ec706c8 1843 /* Will always return 0 with map_multi == NULL */
3444a972 1844 BUG_ON(ret < 0);
d397712b 1845 if (map_length < length + size)
239b14b3 1846 return 1;
3444a972 1847 return 0;
239b14b3
CM
1848}
1849
d352ac68
CM
1850/*
1851 * in order to insert checksums into the metadata in large chunks,
1852 * we wait until bio submission time. All the pages in the bio are
1853 * checksummed and sums are attached onto the ordered extent record.
1854 *
1855 * At IO completion time the cums attached on the ordered extent record
1856 * are inserted into the btree
1857 */
81a75f67
MC
1858static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1859 int mirror_num, unsigned long bio_flags,
eaf25d93 1860 u64 bio_offset)
065631f6 1861{
065631f6 1862 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1863 int ret = 0;
e015640f 1864
d20f7043 1865 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1866 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1867 return 0;
1868}
e015640f 1869
4a69a410
CM
1870/*
1871 * in order to insert checksums into the metadata in large chunks,
1872 * we wait until bio submission time. All the pages in the bio are
1873 * checksummed and sums are attached onto the ordered extent record.
1874 *
1875 * At IO completion time the cums attached on the ordered extent record
1876 * are inserted into the btree
1877 */
81a75f67 1878static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio,
eaf25d93
CM
1879 int mirror_num, unsigned long bio_flags,
1880 u64 bio_offset)
4a69a410
CM
1881{
1882 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1883 int ret;
1884
81a75f67 1885 ret = btrfs_map_bio(root, bio, mirror_num, 1);
4246a0b6
CH
1886 if (ret) {
1887 bio->bi_error = ret;
1888 bio_endio(bio);
1889 }
61891923 1890 return ret;
44b8bd7e
CM
1891}
1892
d352ac68 1893/*
cad321ad
CM
1894 * extent_io.c submission hook. This does the right thing for csum calculation
1895 * on write, or reading the csums from the tree before a read
d352ac68 1896 */
81a75f67 1897static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
eaf25d93
CM
1898 int mirror_num, unsigned long bio_flags,
1899 u64 bio_offset)
44b8bd7e
CM
1900{
1901 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1902 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1903 int ret = 0;
19b9bdb0 1904 int skip_sum;
b812ce28 1905 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1906
6cbff00f 1907 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1908
83eea1f1 1909 if (btrfs_is_free_space_inode(inode))
0d51e28a 1910 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1911
37226b21 1912 if (bio_op(bio) != REQ_OP_WRITE) {
5fd02043
JB
1913 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1914 if (ret)
61891923 1915 goto out;
5fd02043 1916
d20f7043 1917 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1918 ret = btrfs_submit_compressed_read(inode, bio,
1919 mirror_num,
1920 bio_flags);
1921 goto out;
c2db1073
TI
1922 } else if (!skip_sum) {
1923 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1924 if (ret)
61891923 1925 goto out;
c2db1073 1926 }
4d1b5fb4 1927 goto mapit;
b812ce28 1928 } else if (async && !skip_sum) {
17d217fe
YZ
1929 /* csum items have already been cloned */
1930 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1931 goto mapit;
19b9bdb0 1932 /* we're doing a write, do the async checksumming */
61891923 1933 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
81a75f67 1934 inode, bio, mirror_num,
eaf25d93
CM
1935 bio_flags, bio_offset,
1936 __btrfs_submit_bio_start,
4a69a410 1937 __btrfs_submit_bio_done);
61891923 1938 goto out;
b812ce28
JB
1939 } else if (!skip_sum) {
1940 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1941 if (ret)
1942 goto out;
19b9bdb0
CM
1943 }
1944
0b86a832 1945mapit:
81a75f67 1946 ret = btrfs_map_bio(root, bio, mirror_num, 0);
61891923
SB
1947
1948out:
4246a0b6
CH
1949 if (ret < 0) {
1950 bio->bi_error = ret;
1951 bio_endio(bio);
1952 }
61891923 1953 return ret;
065631f6 1954}
6885f308 1955
d352ac68
CM
1956/*
1957 * given a list of ordered sums record them in the inode. This happens
1958 * at IO completion time based on sums calculated at bio submission time.
1959 */
ba1da2f4 1960static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1961 struct inode *inode, u64 file_offset,
1962 struct list_head *list)
1963{
e6dcd2dc
CM
1964 struct btrfs_ordered_sum *sum;
1965
c6e30871 1966 list_for_each_entry(sum, list, list) {
39847c4d 1967 trans->adding_csums = 1;
d20f7043
CM
1968 btrfs_csum_file_blocks(trans,
1969 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1970 trans->adding_csums = 0;
e6dcd2dc
CM
1971 }
1972 return 0;
1973}
1974
2ac55d41
JB
1975int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1976 struct extent_state **cached_state)
ea8c2819 1977{
09cbfeaf 1978 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 1979 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
7cd8c752 1980 cached_state);
ea8c2819
CM
1981}
1982
d352ac68 1983/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1984struct btrfs_writepage_fixup {
1985 struct page *page;
1986 struct btrfs_work work;
1987};
1988
b2950863 1989static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1990{
1991 struct btrfs_writepage_fixup *fixup;
1992 struct btrfs_ordered_extent *ordered;
2ac55d41 1993 struct extent_state *cached_state = NULL;
247e743c
CM
1994 struct page *page;
1995 struct inode *inode;
1996 u64 page_start;
1997 u64 page_end;
87826df0 1998 int ret;
247e743c
CM
1999
2000 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2001 page = fixup->page;
4a096752 2002again:
247e743c
CM
2003 lock_page(page);
2004 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2005 ClearPageChecked(page);
2006 goto out_page;
2007 }
2008
2009 inode = page->mapping->host;
2010 page_start = page_offset(page);
09cbfeaf 2011 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2012
ff13db41 2013 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2014 &cached_state);
4a096752
CM
2015
2016 /* already ordered? We're done */
8b62b72b 2017 if (PagePrivate2(page))
247e743c 2018 goto out;
4a096752 2019
dbfdb6d1 2020 ordered = btrfs_lookup_ordered_range(inode, page_start,
09cbfeaf 2021 PAGE_SIZE);
4a096752 2022 if (ordered) {
2ac55d41
JB
2023 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2024 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2025 unlock_page(page);
2026 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2027 btrfs_put_ordered_extent(ordered);
4a096752
CM
2028 goto again;
2029 }
247e743c 2030
7cf5b976 2031 ret = btrfs_delalloc_reserve_space(inode, page_start,
09cbfeaf 2032 PAGE_SIZE);
87826df0
JM
2033 if (ret) {
2034 mapping_set_error(page->mapping, ret);
2035 end_extent_writepage(page, ret, page_start, page_end);
2036 ClearPageChecked(page);
2037 goto out;
2038 }
2039
2ac55d41 2040 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 2041 ClearPageChecked(page);
87826df0 2042 set_page_dirty(page);
247e743c 2043out:
2ac55d41
JB
2044 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2045 &cached_state, GFP_NOFS);
247e743c
CM
2046out_page:
2047 unlock_page(page);
09cbfeaf 2048 put_page(page);
b897abec 2049 kfree(fixup);
247e743c
CM
2050}
2051
2052/*
2053 * There are a few paths in the higher layers of the kernel that directly
2054 * set the page dirty bit without asking the filesystem if it is a
2055 * good idea. This causes problems because we want to make sure COW
2056 * properly happens and the data=ordered rules are followed.
2057 *
c8b97818 2058 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2059 * hasn't been properly setup for IO. We kick off an async process
2060 * to fix it up. The async helper will wait for ordered extents, set
2061 * the delalloc bit and make it safe to write the page.
2062 */
b2950863 2063static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2064{
2065 struct inode *inode = page->mapping->host;
2066 struct btrfs_writepage_fixup *fixup;
2067 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 2068
8b62b72b
CM
2069 /* this page is properly in the ordered list */
2070 if (TestClearPagePrivate2(page))
247e743c
CM
2071 return 0;
2072
2073 if (PageChecked(page))
2074 return -EAGAIN;
2075
2076 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2077 if (!fixup)
2078 return -EAGAIN;
f421950f 2079
247e743c 2080 SetPageChecked(page);
09cbfeaf 2081 get_page(page);
9e0af237
LB
2082 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2083 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2084 fixup->page = page;
dc6e3209 2085 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 2086 return -EBUSY;
247e743c
CM
2087}
2088
d899e052
YZ
2089static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2090 struct inode *inode, u64 file_pos,
2091 u64 disk_bytenr, u64 disk_num_bytes,
2092 u64 num_bytes, u64 ram_bytes,
2093 u8 compression, u8 encryption,
2094 u16 other_encoding, int extent_type)
2095{
2096 struct btrfs_root *root = BTRFS_I(inode)->root;
2097 struct btrfs_file_extent_item *fi;
2098 struct btrfs_path *path;
2099 struct extent_buffer *leaf;
2100 struct btrfs_key ins;
1acae57b 2101 int extent_inserted = 0;
d899e052
YZ
2102 int ret;
2103
2104 path = btrfs_alloc_path();
d8926bb3
MF
2105 if (!path)
2106 return -ENOMEM;
d899e052 2107
a1ed835e
CM
2108 /*
2109 * we may be replacing one extent in the tree with another.
2110 * The new extent is pinned in the extent map, and we don't want
2111 * to drop it from the cache until it is completely in the btree.
2112 *
2113 * So, tell btrfs_drop_extents to leave this extent in the cache.
2114 * the caller is expected to unpin it and allow it to be merged
2115 * with the others.
2116 */
1acae57b
FDBM
2117 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2118 file_pos + num_bytes, NULL, 0,
2119 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2120 if (ret)
2121 goto out;
d899e052 2122
1acae57b
FDBM
2123 if (!extent_inserted) {
2124 ins.objectid = btrfs_ino(inode);
2125 ins.offset = file_pos;
2126 ins.type = BTRFS_EXTENT_DATA_KEY;
2127
2128 path->leave_spinning = 1;
2129 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2130 sizeof(*fi));
2131 if (ret)
2132 goto out;
2133 }
d899e052
YZ
2134 leaf = path->nodes[0];
2135 fi = btrfs_item_ptr(leaf, path->slots[0],
2136 struct btrfs_file_extent_item);
2137 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2138 btrfs_set_file_extent_type(leaf, fi, extent_type);
2139 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2140 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2141 btrfs_set_file_extent_offset(leaf, fi, 0);
2142 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2143 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2144 btrfs_set_file_extent_compression(leaf, fi, compression);
2145 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2146 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2147
d899e052 2148 btrfs_mark_buffer_dirty(leaf);
ce195332 2149 btrfs_release_path(path);
d899e052
YZ
2150
2151 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2152
2153 ins.objectid = disk_bytenr;
2154 ins.offset = disk_num_bytes;
2155 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2156 ret = btrfs_alloc_reserved_file_extent(trans, root,
2157 root->root_key.objectid,
5846a3c2
QW
2158 btrfs_ino(inode), file_pos,
2159 ram_bytes, &ins);
297d750b 2160 /*
5846a3c2
QW
2161 * Release the reserved range from inode dirty range map, as it is
2162 * already moved into delayed_ref_head
297d750b
QW
2163 */
2164 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
79787eaa 2165out:
d899e052 2166 btrfs_free_path(path);
b9473439 2167
79787eaa 2168 return ret;
d899e052
YZ
2169}
2170
38c227d8
LB
2171/* snapshot-aware defrag */
2172struct sa_defrag_extent_backref {
2173 struct rb_node node;
2174 struct old_sa_defrag_extent *old;
2175 u64 root_id;
2176 u64 inum;
2177 u64 file_pos;
2178 u64 extent_offset;
2179 u64 num_bytes;
2180 u64 generation;
2181};
2182
2183struct old_sa_defrag_extent {
2184 struct list_head list;
2185 struct new_sa_defrag_extent *new;
2186
2187 u64 extent_offset;
2188 u64 bytenr;
2189 u64 offset;
2190 u64 len;
2191 int count;
2192};
2193
2194struct new_sa_defrag_extent {
2195 struct rb_root root;
2196 struct list_head head;
2197 struct btrfs_path *path;
2198 struct inode *inode;
2199 u64 file_pos;
2200 u64 len;
2201 u64 bytenr;
2202 u64 disk_len;
2203 u8 compress_type;
2204};
2205
2206static int backref_comp(struct sa_defrag_extent_backref *b1,
2207 struct sa_defrag_extent_backref *b2)
2208{
2209 if (b1->root_id < b2->root_id)
2210 return -1;
2211 else if (b1->root_id > b2->root_id)
2212 return 1;
2213
2214 if (b1->inum < b2->inum)
2215 return -1;
2216 else if (b1->inum > b2->inum)
2217 return 1;
2218
2219 if (b1->file_pos < b2->file_pos)
2220 return -1;
2221 else if (b1->file_pos > b2->file_pos)
2222 return 1;
2223
2224 /*
2225 * [------------------------------] ===> (a range of space)
2226 * |<--->| |<---->| =============> (fs/file tree A)
2227 * |<---------------------------->| ===> (fs/file tree B)
2228 *
2229 * A range of space can refer to two file extents in one tree while
2230 * refer to only one file extent in another tree.
2231 *
2232 * So we may process a disk offset more than one time(two extents in A)
2233 * and locate at the same extent(one extent in B), then insert two same
2234 * backrefs(both refer to the extent in B).
2235 */
2236 return 0;
2237}
2238
2239static void backref_insert(struct rb_root *root,
2240 struct sa_defrag_extent_backref *backref)
2241{
2242 struct rb_node **p = &root->rb_node;
2243 struct rb_node *parent = NULL;
2244 struct sa_defrag_extent_backref *entry;
2245 int ret;
2246
2247 while (*p) {
2248 parent = *p;
2249 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2250
2251 ret = backref_comp(backref, entry);
2252 if (ret < 0)
2253 p = &(*p)->rb_left;
2254 else
2255 p = &(*p)->rb_right;
2256 }
2257
2258 rb_link_node(&backref->node, parent, p);
2259 rb_insert_color(&backref->node, root);
2260}
2261
2262/*
2263 * Note the backref might has changed, and in this case we just return 0.
2264 */
2265static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2266 void *ctx)
2267{
2268 struct btrfs_file_extent_item *extent;
2269 struct btrfs_fs_info *fs_info;
2270 struct old_sa_defrag_extent *old = ctx;
2271 struct new_sa_defrag_extent *new = old->new;
2272 struct btrfs_path *path = new->path;
2273 struct btrfs_key key;
2274 struct btrfs_root *root;
2275 struct sa_defrag_extent_backref *backref;
2276 struct extent_buffer *leaf;
2277 struct inode *inode = new->inode;
2278 int slot;
2279 int ret;
2280 u64 extent_offset;
2281 u64 num_bytes;
2282
2283 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2284 inum == btrfs_ino(inode))
2285 return 0;
2286
2287 key.objectid = root_id;
2288 key.type = BTRFS_ROOT_ITEM_KEY;
2289 key.offset = (u64)-1;
2290
2291 fs_info = BTRFS_I(inode)->root->fs_info;
2292 root = btrfs_read_fs_root_no_name(fs_info, &key);
2293 if (IS_ERR(root)) {
2294 if (PTR_ERR(root) == -ENOENT)
2295 return 0;
2296 WARN_ON(1);
2297 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2298 inum, offset, root_id);
2299 return PTR_ERR(root);
2300 }
2301
2302 key.objectid = inum;
2303 key.type = BTRFS_EXTENT_DATA_KEY;
2304 if (offset > (u64)-1 << 32)
2305 key.offset = 0;
2306 else
2307 key.offset = offset;
2308
2309 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2310 if (WARN_ON(ret < 0))
38c227d8 2311 return ret;
50f1319c 2312 ret = 0;
38c227d8
LB
2313
2314 while (1) {
2315 cond_resched();
2316
2317 leaf = path->nodes[0];
2318 slot = path->slots[0];
2319
2320 if (slot >= btrfs_header_nritems(leaf)) {
2321 ret = btrfs_next_leaf(root, path);
2322 if (ret < 0) {
2323 goto out;
2324 } else if (ret > 0) {
2325 ret = 0;
2326 goto out;
2327 }
2328 continue;
2329 }
2330
2331 path->slots[0]++;
2332
2333 btrfs_item_key_to_cpu(leaf, &key, slot);
2334
2335 if (key.objectid > inum)
2336 goto out;
2337
2338 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2339 continue;
2340
2341 extent = btrfs_item_ptr(leaf, slot,
2342 struct btrfs_file_extent_item);
2343
2344 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2345 continue;
2346
e68afa49
LB
2347 /*
2348 * 'offset' refers to the exact key.offset,
2349 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2350 * (key.offset - extent_offset).
2351 */
2352 if (key.offset != offset)
38c227d8
LB
2353 continue;
2354
e68afa49 2355 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2356 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2357
38c227d8
LB
2358 if (extent_offset >= old->extent_offset + old->offset +
2359 old->len || extent_offset + num_bytes <=
2360 old->extent_offset + old->offset)
2361 continue;
38c227d8
LB
2362 break;
2363 }
2364
2365 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2366 if (!backref) {
2367 ret = -ENOENT;
2368 goto out;
2369 }
2370
2371 backref->root_id = root_id;
2372 backref->inum = inum;
e68afa49 2373 backref->file_pos = offset;
38c227d8
LB
2374 backref->num_bytes = num_bytes;
2375 backref->extent_offset = extent_offset;
2376 backref->generation = btrfs_file_extent_generation(leaf, extent);
2377 backref->old = old;
2378 backref_insert(&new->root, backref);
2379 old->count++;
2380out:
2381 btrfs_release_path(path);
2382 WARN_ON(ret);
2383 return ret;
2384}
2385
2386static noinline bool record_extent_backrefs(struct btrfs_path *path,
2387 struct new_sa_defrag_extent *new)
2388{
2389 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2390 struct old_sa_defrag_extent *old, *tmp;
2391 int ret;
2392
2393 new->path = path;
2394
2395 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2396 ret = iterate_inodes_from_logical(old->bytenr +
2397 old->extent_offset, fs_info,
38c227d8
LB
2398 path, record_one_backref,
2399 old);
4724b106
JB
2400 if (ret < 0 && ret != -ENOENT)
2401 return false;
38c227d8
LB
2402
2403 /* no backref to be processed for this extent */
2404 if (!old->count) {
2405 list_del(&old->list);
2406 kfree(old);
2407 }
2408 }
2409
2410 if (list_empty(&new->head))
2411 return false;
2412
2413 return true;
2414}
2415
2416static int relink_is_mergable(struct extent_buffer *leaf,
2417 struct btrfs_file_extent_item *fi,
116e0024 2418 struct new_sa_defrag_extent *new)
38c227d8 2419{
116e0024 2420 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2421 return 0;
2422
2423 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2424 return 0;
2425
116e0024
LB
2426 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2427 return 0;
2428
2429 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2430 btrfs_file_extent_other_encoding(leaf, fi))
2431 return 0;
2432
2433 return 1;
2434}
2435
2436/*
2437 * Note the backref might has changed, and in this case we just return 0.
2438 */
2439static noinline int relink_extent_backref(struct btrfs_path *path,
2440 struct sa_defrag_extent_backref *prev,
2441 struct sa_defrag_extent_backref *backref)
2442{
2443 struct btrfs_file_extent_item *extent;
2444 struct btrfs_file_extent_item *item;
2445 struct btrfs_ordered_extent *ordered;
2446 struct btrfs_trans_handle *trans;
2447 struct btrfs_fs_info *fs_info;
2448 struct btrfs_root *root;
2449 struct btrfs_key key;
2450 struct extent_buffer *leaf;
2451 struct old_sa_defrag_extent *old = backref->old;
2452 struct new_sa_defrag_extent *new = old->new;
2453 struct inode *src_inode = new->inode;
2454 struct inode *inode;
2455 struct extent_state *cached = NULL;
2456 int ret = 0;
2457 u64 start;
2458 u64 len;
2459 u64 lock_start;
2460 u64 lock_end;
2461 bool merge = false;
2462 int index;
2463
2464 if (prev && prev->root_id == backref->root_id &&
2465 prev->inum == backref->inum &&
2466 prev->file_pos + prev->num_bytes == backref->file_pos)
2467 merge = true;
2468
2469 /* step 1: get root */
2470 key.objectid = backref->root_id;
2471 key.type = BTRFS_ROOT_ITEM_KEY;
2472 key.offset = (u64)-1;
2473
2474 fs_info = BTRFS_I(src_inode)->root->fs_info;
2475 index = srcu_read_lock(&fs_info->subvol_srcu);
2476
2477 root = btrfs_read_fs_root_no_name(fs_info, &key);
2478 if (IS_ERR(root)) {
2479 srcu_read_unlock(&fs_info->subvol_srcu, index);
2480 if (PTR_ERR(root) == -ENOENT)
2481 return 0;
2482 return PTR_ERR(root);
2483 }
38c227d8 2484
bcbba5e6
WS
2485 if (btrfs_root_readonly(root)) {
2486 srcu_read_unlock(&fs_info->subvol_srcu, index);
2487 return 0;
2488 }
2489
38c227d8
LB
2490 /* step 2: get inode */
2491 key.objectid = backref->inum;
2492 key.type = BTRFS_INODE_ITEM_KEY;
2493 key.offset = 0;
2494
2495 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2496 if (IS_ERR(inode)) {
2497 srcu_read_unlock(&fs_info->subvol_srcu, index);
2498 return 0;
2499 }
2500
2501 srcu_read_unlock(&fs_info->subvol_srcu, index);
2502
2503 /* step 3: relink backref */
2504 lock_start = backref->file_pos;
2505 lock_end = backref->file_pos + backref->num_bytes - 1;
2506 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2507 &cached);
38c227d8
LB
2508
2509 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2510 if (ordered) {
2511 btrfs_put_ordered_extent(ordered);
2512 goto out_unlock;
2513 }
2514
2515 trans = btrfs_join_transaction(root);
2516 if (IS_ERR(trans)) {
2517 ret = PTR_ERR(trans);
2518 goto out_unlock;
2519 }
2520
2521 key.objectid = backref->inum;
2522 key.type = BTRFS_EXTENT_DATA_KEY;
2523 key.offset = backref->file_pos;
2524
2525 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2526 if (ret < 0) {
2527 goto out_free_path;
2528 } else if (ret > 0) {
2529 ret = 0;
2530 goto out_free_path;
2531 }
2532
2533 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2534 struct btrfs_file_extent_item);
2535
2536 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2537 backref->generation)
2538 goto out_free_path;
2539
2540 btrfs_release_path(path);
2541
2542 start = backref->file_pos;
2543 if (backref->extent_offset < old->extent_offset + old->offset)
2544 start += old->extent_offset + old->offset -
2545 backref->extent_offset;
2546
2547 len = min(backref->extent_offset + backref->num_bytes,
2548 old->extent_offset + old->offset + old->len);
2549 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2550
2551 ret = btrfs_drop_extents(trans, root, inode, start,
2552 start + len, 1);
2553 if (ret)
2554 goto out_free_path;
2555again:
2556 key.objectid = btrfs_ino(inode);
2557 key.type = BTRFS_EXTENT_DATA_KEY;
2558 key.offset = start;
2559
a09a0a70 2560 path->leave_spinning = 1;
38c227d8
LB
2561 if (merge) {
2562 struct btrfs_file_extent_item *fi;
2563 u64 extent_len;
2564 struct btrfs_key found_key;
2565
3c9665df 2566 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2567 if (ret < 0)
2568 goto out_free_path;
2569
2570 path->slots[0]--;
2571 leaf = path->nodes[0];
2572 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2573
2574 fi = btrfs_item_ptr(leaf, path->slots[0],
2575 struct btrfs_file_extent_item);
2576 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2577
116e0024
LB
2578 if (extent_len + found_key.offset == start &&
2579 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2580 btrfs_set_file_extent_num_bytes(leaf, fi,
2581 extent_len + len);
2582 btrfs_mark_buffer_dirty(leaf);
2583 inode_add_bytes(inode, len);
2584
2585 ret = 1;
2586 goto out_free_path;
2587 } else {
2588 merge = false;
2589 btrfs_release_path(path);
2590 goto again;
2591 }
2592 }
2593
2594 ret = btrfs_insert_empty_item(trans, root, path, &key,
2595 sizeof(*extent));
2596 if (ret) {
2597 btrfs_abort_transaction(trans, root, ret);
2598 goto out_free_path;
2599 }
2600
2601 leaf = path->nodes[0];
2602 item = btrfs_item_ptr(leaf, path->slots[0],
2603 struct btrfs_file_extent_item);
2604 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2605 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2606 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2607 btrfs_set_file_extent_num_bytes(leaf, item, len);
2608 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2609 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2610 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2611 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2612 btrfs_set_file_extent_encryption(leaf, item, 0);
2613 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2614
2615 btrfs_mark_buffer_dirty(leaf);
2616 inode_add_bytes(inode, len);
a09a0a70 2617 btrfs_release_path(path);
38c227d8
LB
2618
2619 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2620 new->disk_len, 0,
2621 backref->root_id, backref->inum,
b06c4bf5 2622 new->file_pos); /* start - extent_offset */
38c227d8
LB
2623 if (ret) {
2624 btrfs_abort_transaction(trans, root, ret);
2625 goto out_free_path;
2626 }
2627
2628 ret = 1;
2629out_free_path:
2630 btrfs_release_path(path);
a09a0a70 2631 path->leave_spinning = 0;
38c227d8
LB
2632 btrfs_end_transaction(trans, root);
2633out_unlock:
2634 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2635 &cached, GFP_NOFS);
2636 iput(inode);
2637 return ret;
2638}
2639
6f519564
LB
2640static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2641{
2642 struct old_sa_defrag_extent *old, *tmp;
2643
2644 if (!new)
2645 return;
2646
2647 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2648 kfree(old);
2649 }
2650 kfree(new);
2651}
2652
38c227d8
LB
2653static void relink_file_extents(struct new_sa_defrag_extent *new)
2654{
2655 struct btrfs_path *path;
38c227d8
LB
2656 struct sa_defrag_extent_backref *backref;
2657 struct sa_defrag_extent_backref *prev = NULL;
2658 struct inode *inode;
2659 struct btrfs_root *root;
2660 struct rb_node *node;
2661 int ret;
2662
2663 inode = new->inode;
2664 root = BTRFS_I(inode)->root;
2665
2666 path = btrfs_alloc_path();
2667 if (!path)
2668 return;
2669
2670 if (!record_extent_backrefs(path, new)) {
2671 btrfs_free_path(path);
2672 goto out;
2673 }
2674 btrfs_release_path(path);
2675
2676 while (1) {
2677 node = rb_first(&new->root);
2678 if (!node)
2679 break;
2680 rb_erase(node, &new->root);
2681
2682 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2683
2684 ret = relink_extent_backref(path, prev, backref);
2685 WARN_ON(ret < 0);
2686
2687 kfree(prev);
2688
2689 if (ret == 1)
2690 prev = backref;
2691 else
2692 prev = NULL;
2693 cond_resched();
2694 }
2695 kfree(prev);
2696
2697 btrfs_free_path(path);
38c227d8 2698out:
6f519564
LB
2699 free_sa_defrag_extent(new);
2700
38c227d8
LB
2701 atomic_dec(&root->fs_info->defrag_running);
2702 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2703}
2704
2705static struct new_sa_defrag_extent *
2706record_old_file_extents(struct inode *inode,
2707 struct btrfs_ordered_extent *ordered)
2708{
2709 struct btrfs_root *root = BTRFS_I(inode)->root;
2710 struct btrfs_path *path;
2711 struct btrfs_key key;
6f519564 2712 struct old_sa_defrag_extent *old;
38c227d8
LB
2713 struct new_sa_defrag_extent *new;
2714 int ret;
2715
2716 new = kmalloc(sizeof(*new), GFP_NOFS);
2717 if (!new)
2718 return NULL;
2719
2720 new->inode = inode;
2721 new->file_pos = ordered->file_offset;
2722 new->len = ordered->len;
2723 new->bytenr = ordered->start;
2724 new->disk_len = ordered->disk_len;
2725 new->compress_type = ordered->compress_type;
2726 new->root = RB_ROOT;
2727 INIT_LIST_HEAD(&new->head);
2728
2729 path = btrfs_alloc_path();
2730 if (!path)
2731 goto out_kfree;
2732
2733 key.objectid = btrfs_ino(inode);
2734 key.type = BTRFS_EXTENT_DATA_KEY;
2735 key.offset = new->file_pos;
2736
2737 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2738 if (ret < 0)
2739 goto out_free_path;
2740 if (ret > 0 && path->slots[0] > 0)
2741 path->slots[0]--;
2742
2743 /* find out all the old extents for the file range */
2744 while (1) {
2745 struct btrfs_file_extent_item *extent;
2746 struct extent_buffer *l;
2747 int slot;
2748 u64 num_bytes;
2749 u64 offset;
2750 u64 end;
2751 u64 disk_bytenr;
2752 u64 extent_offset;
2753
2754 l = path->nodes[0];
2755 slot = path->slots[0];
2756
2757 if (slot >= btrfs_header_nritems(l)) {
2758 ret = btrfs_next_leaf(root, path);
2759 if (ret < 0)
6f519564 2760 goto out_free_path;
38c227d8
LB
2761 else if (ret > 0)
2762 break;
2763 continue;
2764 }
2765
2766 btrfs_item_key_to_cpu(l, &key, slot);
2767
2768 if (key.objectid != btrfs_ino(inode))
2769 break;
2770 if (key.type != BTRFS_EXTENT_DATA_KEY)
2771 break;
2772 if (key.offset >= new->file_pos + new->len)
2773 break;
2774
2775 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2776
2777 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2778 if (key.offset + num_bytes < new->file_pos)
2779 goto next;
2780
2781 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2782 if (!disk_bytenr)
2783 goto next;
2784
2785 extent_offset = btrfs_file_extent_offset(l, extent);
2786
2787 old = kmalloc(sizeof(*old), GFP_NOFS);
2788 if (!old)
6f519564 2789 goto out_free_path;
38c227d8
LB
2790
2791 offset = max(new->file_pos, key.offset);
2792 end = min(new->file_pos + new->len, key.offset + num_bytes);
2793
2794 old->bytenr = disk_bytenr;
2795 old->extent_offset = extent_offset;
2796 old->offset = offset - key.offset;
2797 old->len = end - offset;
2798 old->new = new;
2799 old->count = 0;
2800 list_add_tail(&old->list, &new->head);
2801next:
2802 path->slots[0]++;
2803 cond_resched();
2804 }
2805
2806 btrfs_free_path(path);
2807 atomic_inc(&root->fs_info->defrag_running);
2808
2809 return new;
2810
38c227d8
LB
2811out_free_path:
2812 btrfs_free_path(path);
2813out_kfree:
6f519564 2814 free_sa_defrag_extent(new);
38c227d8
LB
2815 return NULL;
2816}
2817
e570fd27
MX
2818static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2819 u64 start, u64 len)
2820{
2821 struct btrfs_block_group_cache *cache;
2822
2823 cache = btrfs_lookup_block_group(root->fs_info, start);
2824 ASSERT(cache);
2825
2826 spin_lock(&cache->lock);
2827 cache->delalloc_bytes -= len;
2828 spin_unlock(&cache->lock);
2829
2830 btrfs_put_block_group(cache);
2831}
2832
d352ac68
CM
2833/* as ordered data IO finishes, this gets called so we can finish
2834 * an ordered extent if the range of bytes in the file it covers are
2835 * fully written.
2836 */
5fd02043 2837static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2838{
5fd02043 2839 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2840 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2841 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2842 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2843 struct extent_state *cached_state = NULL;
38c227d8 2844 struct new_sa_defrag_extent *new = NULL;
261507a0 2845 int compress_type = 0;
77cef2ec
JB
2846 int ret = 0;
2847 u64 logical_len = ordered_extent->len;
82d5902d 2848 bool nolock;
77cef2ec 2849 bool truncated = false;
e6dcd2dc 2850
83eea1f1 2851 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2852
5fd02043
JB
2853 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2854 ret = -EIO;
2855 goto out;
2856 }
2857
f612496b
MX
2858 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2859 ordered_extent->file_offset +
2860 ordered_extent->len - 1);
2861
77cef2ec
JB
2862 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2863 truncated = true;
2864 logical_len = ordered_extent->truncated_len;
2865 /* Truncated the entire extent, don't bother adding */
2866 if (!logical_len)
2867 goto out;
2868 }
2869
c2167754 2870 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2871 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2872
2873 /*
2874 * For mwrite(mmap + memset to write) case, we still reserve
2875 * space for NOCOW range.
2876 * As NOCOW won't cause a new delayed ref, just free the space
2877 */
2878 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2879 ordered_extent->len);
6c760c07
JB
2880 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2881 if (nolock)
2882 trans = btrfs_join_transaction_nolock(root);
2883 else
2884 trans = btrfs_join_transaction(root);
2885 if (IS_ERR(trans)) {
2886 ret = PTR_ERR(trans);
2887 trans = NULL;
2888 goto out;
c2167754 2889 }
6c760c07
JB
2890 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2891 ret = btrfs_update_inode_fallback(trans, root, inode);
2892 if (ret) /* -ENOMEM or corruption */
2893 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2894 goto out;
2895 }
e6dcd2dc 2896
2ac55d41
JB
2897 lock_extent_bits(io_tree, ordered_extent->file_offset,
2898 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2899 &cached_state);
e6dcd2dc 2900
38c227d8
LB
2901 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2902 ordered_extent->file_offset + ordered_extent->len - 1,
2903 EXTENT_DEFRAG, 1, cached_state);
2904 if (ret) {
2905 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2906 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2907 /* the inode is shared */
2908 new = record_old_file_extents(inode, ordered_extent);
2909
2910 clear_extent_bit(io_tree, ordered_extent->file_offset,
2911 ordered_extent->file_offset + ordered_extent->len - 1,
2912 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2913 }
2914
0cb59c99 2915 if (nolock)
7a7eaa40 2916 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2917 else
7a7eaa40 2918 trans = btrfs_join_transaction(root);
79787eaa
JM
2919 if (IS_ERR(trans)) {
2920 ret = PTR_ERR(trans);
2921 trans = NULL;
2922 goto out_unlock;
2923 }
a79b7d4b 2924
0ca1f7ce 2925 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2926
c8b97818 2927 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2928 compress_type = ordered_extent->compress_type;
d899e052 2929 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2930 BUG_ON(compress_type);
920bbbfb 2931 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2932 ordered_extent->file_offset,
2933 ordered_extent->file_offset +
77cef2ec 2934 logical_len);
d899e052 2935 } else {
0af3d00b 2936 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2937 ret = insert_reserved_file_extent(trans, inode,
2938 ordered_extent->file_offset,
2939 ordered_extent->start,
2940 ordered_extent->disk_len,
77cef2ec 2941 logical_len, logical_len,
261507a0 2942 compress_type, 0, 0,
d899e052 2943 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2944 if (!ret)
2945 btrfs_release_delalloc_bytes(root,
2946 ordered_extent->start,
2947 ordered_extent->disk_len);
d899e052 2948 }
5dc562c5
JB
2949 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2950 ordered_extent->file_offset, ordered_extent->len,
2951 trans->transid);
79787eaa
JM
2952 if (ret < 0) {
2953 btrfs_abort_transaction(trans, root, ret);
5fd02043 2954 goto out_unlock;
79787eaa 2955 }
2ac55d41 2956
e6dcd2dc
CM
2957 add_pending_csums(trans, inode, ordered_extent->file_offset,
2958 &ordered_extent->list);
2959
6c760c07
JB
2960 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2961 ret = btrfs_update_inode_fallback(trans, root, inode);
2962 if (ret) { /* -ENOMEM or corruption */
2963 btrfs_abort_transaction(trans, root, ret);
2964 goto out_unlock;
1ef30be1
JB
2965 }
2966 ret = 0;
5fd02043
JB
2967out_unlock:
2968 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2969 ordered_extent->file_offset +
2970 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2971out:
5b0e95bf 2972 if (root != root->fs_info->tree_root)
0cb59c99 2973 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2974 if (trans)
2975 btrfs_end_transaction(trans, root);
0cb59c99 2976
77cef2ec
JB
2977 if (ret || truncated) {
2978 u64 start, end;
2979
2980 if (truncated)
2981 start = ordered_extent->file_offset + logical_len;
2982 else
2983 start = ordered_extent->file_offset;
2984 end = ordered_extent->file_offset + ordered_extent->len - 1;
2985 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2986
2987 /* Drop the cache for the part of the extent we didn't write. */
2988 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2989
0bec9ef5
JB
2990 /*
2991 * If the ordered extent had an IOERR or something else went
2992 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2993 * back to the allocator. We only free the extent in the
2994 * truncated case if we didn't write out the extent at all.
0bec9ef5 2995 */
77cef2ec
JB
2996 if ((ret || !logical_len) &&
2997 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2998 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2999 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 3000 ordered_extent->disk_len, 1);
0bec9ef5
JB
3001 }
3002
3003
5fd02043 3004 /*
8bad3c02
LB
3005 * This needs to be done to make sure anybody waiting knows we are done
3006 * updating everything for this ordered extent.
5fd02043
JB
3007 */
3008 btrfs_remove_ordered_extent(inode, ordered_extent);
3009
38c227d8 3010 /* for snapshot-aware defrag */
6f519564
LB
3011 if (new) {
3012 if (ret) {
3013 free_sa_defrag_extent(new);
3014 atomic_dec(&root->fs_info->defrag_running);
3015 } else {
3016 relink_file_extents(new);
3017 }
3018 }
38c227d8 3019
e6dcd2dc
CM
3020 /* once for us */
3021 btrfs_put_ordered_extent(ordered_extent);
3022 /* once for the tree */
3023 btrfs_put_ordered_extent(ordered_extent);
3024
5fd02043
JB
3025 return ret;
3026}
3027
3028static void finish_ordered_fn(struct btrfs_work *work)
3029{
3030 struct btrfs_ordered_extent *ordered_extent;
3031 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3032 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3033}
3034
b2950863 3035static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3036 struct extent_state *state, int uptodate)
3037{
5fd02043
JB
3038 struct inode *inode = page->mapping->host;
3039 struct btrfs_root *root = BTRFS_I(inode)->root;
3040 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3041 struct btrfs_workqueue *wq;
3042 btrfs_work_func_t func;
5fd02043 3043
1abe9b8a 3044 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3045
8b62b72b 3046 ClearPagePrivate2(page);
5fd02043
JB
3047 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3048 end - start + 1, uptodate))
3049 return 0;
3050
9e0af237
LB
3051 if (btrfs_is_free_space_inode(inode)) {
3052 wq = root->fs_info->endio_freespace_worker;
3053 func = btrfs_freespace_write_helper;
3054 } else {
3055 wq = root->fs_info->endio_write_workers;
3056 func = btrfs_endio_write_helper;
3057 }
5fd02043 3058
9e0af237
LB
3059 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3060 NULL);
3061 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
3062
3063 return 0;
211f90e6
CM
3064}
3065
dc380aea
MX
3066static int __readpage_endio_check(struct inode *inode,
3067 struct btrfs_io_bio *io_bio,
3068 int icsum, struct page *page,
3069 int pgoff, u64 start, size_t len)
3070{
3071 char *kaddr;
3072 u32 csum_expected;
3073 u32 csum = ~(u32)0;
dc380aea
MX
3074
3075 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3076
3077 kaddr = kmap_atomic(page);
3078 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3079 btrfs_csum_final(csum, (char *)&csum);
3080 if (csum != csum_expected)
3081 goto zeroit;
3082
3083 kunmap_atomic(kaddr);
3084 return 0;
3085zeroit:
94647322
DS
3086 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3087 "csum failed ino %llu off %llu csum %u expected csum %u",
dc380aea
MX
3088 btrfs_ino(inode), start, csum, csum_expected);
3089 memset(kaddr + pgoff, 1, len);
3090 flush_dcache_page(page);
3091 kunmap_atomic(kaddr);
3092 if (csum_expected == 0)
3093 return 0;
3094 return -EIO;
3095}
3096
d352ac68
CM
3097/*
3098 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3099 * if there's a match, we allow the bio to finish. If not, the code in
3100 * extent_io.c will try to find good copies for us.
d352ac68 3101 */
facc8a22
MX
3102static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3103 u64 phy_offset, struct page *page,
3104 u64 start, u64 end, int mirror)
07157aac 3105{
4eee4fa4 3106 size_t offset = start - page_offset(page);
07157aac 3107 struct inode *inode = page->mapping->host;
d1310b2e 3108 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3109 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3110
d20f7043
CM
3111 if (PageChecked(page)) {
3112 ClearPageChecked(page);
dc380aea 3113 return 0;
d20f7043 3114 }
6cbff00f
CH
3115
3116 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3117 return 0;
17d217fe
YZ
3118
3119 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3120 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3121 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3122 return 0;
17d217fe 3123 }
d20f7043 3124
facc8a22 3125 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3126 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3127 start, (size_t)(end - start + 1));
07157aac 3128}
b888db2b 3129
24bbcf04
YZ
3130void btrfs_add_delayed_iput(struct inode *inode)
3131{
3132 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
8089fe62 3133 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3134
3135 if (atomic_add_unless(&inode->i_count, -1, 1))
3136 return;
3137
24bbcf04 3138 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3139 if (binode->delayed_iput_count == 0) {
3140 ASSERT(list_empty(&binode->delayed_iput));
3141 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3142 } else {
3143 binode->delayed_iput_count++;
3144 }
24bbcf04
YZ
3145 spin_unlock(&fs_info->delayed_iput_lock);
3146}
3147
3148void btrfs_run_delayed_iputs(struct btrfs_root *root)
3149{
24bbcf04 3150 struct btrfs_fs_info *fs_info = root->fs_info;
24bbcf04 3151
24bbcf04 3152 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3153 while (!list_empty(&fs_info->delayed_iputs)) {
3154 struct btrfs_inode *inode;
3155
3156 inode = list_first_entry(&fs_info->delayed_iputs,
3157 struct btrfs_inode, delayed_iput);
3158 if (inode->delayed_iput_count) {
3159 inode->delayed_iput_count--;
3160 list_move_tail(&inode->delayed_iput,
3161 &fs_info->delayed_iputs);
3162 } else {
3163 list_del_init(&inode->delayed_iput);
3164 }
3165 spin_unlock(&fs_info->delayed_iput_lock);
3166 iput(&inode->vfs_inode);
3167 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3168 }
8089fe62 3169 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3170}
3171
d68fc57b 3172/*
42b2aa86 3173 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3174 * files in the subvolume, it removes orphan item and frees block_rsv
3175 * structure.
3176 */
3177void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3178 struct btrfs_root *root)
3179{
90290e19 3180 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3181 int ret;
3182
8a35d95f 3183 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3184 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3185 return;
3186
90290e19 3187 spin_lock(&root->orphan_lock);
8a35d95f 3188 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3189 spin_unlock(&root->orphan_lock);
3190 return;
3191 }
3192
3193 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3194 spin_unlock(&root->orphan_lock);
3195 return;
3196 }
3197
3198 block_rsv = root->orphan_block_rsv;
3199 root->orphan_block_rsv = NULL;
3200 spin_unlock(&root->orphan_lock);
3201
27cdeb70 3202 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3203 btrfs_root_refs(&root->root_item) > 0) {
3204 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3205 root->root_key.objectid);
4ef31a45
JB
3206 if (ret)
3207 btrfs_abort_transaction(trans, root, ret);
3208 else
27cdeb70
MX
3209 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3210 &root->state);
d68fc57b
YZ
3211 }
3212
90290e19
JB
3213 if (block_rsv) {
3214 WARN_ON(block_rsv->size > 0);
3215 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3216 }
3217}
3218
7b128766
JB
3219/*
3220 * This creates an orphan entry for the given inode in case something goes
3221 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3222 *
3223 * NOTE: caller of this function should reserve 5 units of metadata for
3224 * this function.
7b128766
JB
3225 */
3226int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3227{
3228 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3229 struct btrfs_block_rsv *block_rsv = NULL;
3230 int reserve = 0;
3231 int insert = 0;
3232 int ret;
7b128766 3233
d68fc57b 3234 if (!root->orphan_block_rsv) {
66d8f3dd 3235 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3236 if (!block_rsv)
3237 return -ENOMEM;
d68fc57b 3238 }
7b128766 3239
d68fc57b
YZ
3240 spin_lock(&root->orphan_lock);
3241 if (!root->orphan_block_rsv) {
3242 root->orphan_block_rsv = block_rsv;
3243 } else if (block_rsv) {
3244 btrfs_free_block_rsv(root, block_rsv);
3245 block_rsv = NULL;
7b128766 3246 }
7b128766 3247
8a35d95f
JB
3248 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3249 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3250#if 0
3251 /*
3252 * For proper ENOSPC handling, we should do orphan
3253 * cleanup when mounting. But this introduces backward
3254 * compatibility issue.
3255 */
3256 if (!xchg(&root->orphan_item_inserted, 1))
3257 insert = 2;
3258 else
3259 insert = 1;
3260#endif
3261 insert = 1;
321f0e70 3262 atomic_inc(&root->orphan_inodes);
7b128766
JB
3263 }
3264
72ac3c0d
JB
3265 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3266 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3267 reserve = 1;
d68fc57b 3268 spin_unlock(&root->orphan_lock);
7b128766 3269
d68fc57b
YZ
3270 /* grab metadata reservation from transaction handle */
3271 if (reserve) {
3272 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3273 ASSERT(!ret);
3274 if (ret) {
3275 atomic_dec(&root->orphan_inodes);
3276 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3277 &BTRFS_I(inode)->runtime_flags);
3278 if (insert)
3279 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3280 &BTRFS_I(inode)->runtime_flags);
3281 return ret;
3282 }
d68fc57b 3283 }
7b128766 3284
d68fc57b
YZ
3285 /* insert an orphan item to track this unlinked/truncated file */
3286 if (insert >= 1) {
33345d01 3287 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3288 if (ret) {
703c88e0 3289 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3290 if (reserve) {
3291 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3292 &BTRFS_I(inode)->runtime_flags);
3293 btrfs_orphan_release_metadata(inode);
3294 }
3295 if (ret != -EEXIST) {
e8e7cff6
JB
3296 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3297 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3298 btrfs_abort_transaction(trans, root, ret);
3299 return ret;
3300 }
79787eaa
JM
3301 }
3302 ret = 0;
d68fc57b
YZ
3303 }
3304
3305 /* insert an orphan item to track subvolume contains orphan files */
3306 if (insert >= 2) {
3307 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3308 root->root_key.objectid);
79787eaa
JM
3309 if (ret && ret != -EEXIST) {
3310 btrfs_abort_transaction(trans, root, ret);
3311 return ret;
3312 }
d68fc57b
YZ
3313 }
3314 return 0;
7b128766
JB
3315}
3316
3317/*
3318 * We have done the truncate/delete so we can go ahead and remove the orphan
3319 * item for this particular inode.
3320 */
48a3b636
ES
3321static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3322 struct inode *inode)
7b128766
JB
3323{
3324 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3325 int delete_item = 0;
3326 int release_rsv = 0;
7b128766
JB
3327 int ret = 0;
3328
d68fc57b 3329 spin_lock(&root->orphan_lock);
8a35d95f
JB
3330 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3331 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3332 delete_item = 1;
7b128766 3333
72ac3c0d
JB
3334 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3335 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3336 release_rsv = 1;
d68fc57b 3337 spin_unlock(&root->orphan_lock);
7b128766 3338
703c88e0 3339 if (delete_item) {
8a35d95f 3340 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3341 if (trans)
3342 ret = btrfs_del_orphan_item(trans, root,
3343 btrfs_ino(inode));
8a35d95f 3344 }
7b128766 3345
703c88e0
FDBM
3346 if (release_rsv)
3347 btrfs_orphan_release_metadata(inode);
3348
4ef31a45 3349 return ret;
7b128766
JB
3350}
3351
3352/*
3353 * this cleans up any orphans that may be left on the list from the last use
3354 * of this root.
3355 */
66b4ffd1 3356int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3357{
3358 struct btrfs_path *path;
3359 struct extent_buffer *leaf;
7b128766
JB
3360 struct btrfs_key key, found_key;
3361 struct btrfs_trans_handle *trans;
3362 struct inode *inode;
8f6d7f4f 3363 u64 last_objectid = 0;
7b128766
JB
3364 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3365
d68fc57b 3366 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3367 return 0;
c71bf099
YZ
3368
3369 path = btrfs_alloc_path();
66b4ffd1
JB
3370 if (!path) {
3371 ret = -ENOMEM;
3372 goto out;
3373 }
e4058b54 3374 path->reada = READA_BACK;
7b128766
JB
3375
3376 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3377 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3378 key.offset = (u64)-1;
3379
7b128766
JB
3380 while (1) {
3381 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3382 if (ret < 0)
3383 goto out;
7b128766
JB
3384
3385 /*
3386 * if ret == 0 means we found what we were searching for, which
25985edc 3387 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3388 * find the key and see if we have stuff that matches
3389 */
3390 if (ret > 0) {
66b4ffd1 3391 ret = 0;
7b128766
JB
3392 if (path->slots[0] == 0)
3393 break;
3394 path->slots[0]--;
3395 }
3396
3397 /* pull out the item */
3398 leaf = path->nodes[0];
7b128766
JB
3399 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3400
3401 /* make sure the item matches what we want */
3402 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3403 break;
962a298f 3404 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3405 break;
3406
3407 /* release the path since we're done with it */
b3b4aa74 3408 btrfs_release_path(path);
7b128766
JB
3409
3410 /*
3411 * this is where we are basically btrfs_lookup, without the
3412 * crossing root thing. we store the inode number in the
3413 * offset of the orphan item.
3414 */
8f6d7f4f
JB
3415
3416 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3417 btrfs_err(root->fs_info,
3418 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3419 ret = -EINVAL;
3420 goto out;
3421 }
3422
3423 last_objectid = found_key.offset;
3424
5d4f98a2
YZ
3425 found_key.objectid = found_key.offset;
3426 found_key.type = BTRFS_INODE_ITEM_KEY;
3427 found_key.offset = 0;
73f73415 3428 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3429 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3430 if (ret && ret != -ESTALE)
66b4ffd1 3431 goto out;
7b128766 3432
f8e9e0b0
AJ
3433 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3434 struct btrfs_root *dead_root;
3435 struct btrfs_fs_info *fs_info = root->fs_info;
3436 int is_dead_root = 0;
3437
3438 /*
3439 * this is an orphan in the tree root. Currently these
3440 * could come from 2 sources:
3441 * a) a snapshot deletion in progress
3442 * b) a free space cache inode
3443 * We need to distinguish those two, as the snapshot
3444 * orphan must not get deleted.
3445 * find_dead_roots already ran before us, so if this
3446 * is a snapshot deletion, we should find the root
3447 * in the dead_roots list
3448 */
3449 spin_lock(&fs_info->trans_lock);
3450 list_for_each_entry(dead_root, &fs_info->dead_roots,
3451 root_list) {
3452 if (dead_root->root_key.objectid ==
3453 found_key.objectid) {
3454 is_dead_root = 1;
3455 break;
3456 }
3457 }
3458 spin_unlock(&fs_info->trans_lock);
3459 if (is_dead_root) {
3460 /* prevent this orphan from being found again */
3461 key.offset = found_key.objectid - 1;
3462 continue;
3463 }
3464 }
7b128766 3465 /*
a8c9e576
JB
3466 * Inode is already gone but the orphan item is still there,
3467 * kill the orphan item.
7b128766 3468 */
a8c9e576
JB
3469 if (ret == -ESTALE) {
3470 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3471 if (IS_ERR(trans)) {
3472 ret = PTR_ERR(trans);
3473 goto out;
3474 }
c2cf52eb
SK
3475 btrfs_debug(root->fs_info, "auto deleting %Lu",
3476 found_key.objectid);
a8c9e576
JB
3477 ret = btrfs_del_orphan_item(trans, root,
3478 found_key.objectid);
5b21f2ed 3479 btrfs_end_transaction(trans, root);
4ef31a45
JB
3480 if (ret)
3481 goto out;
7b128766
JB
3482 continue;
3483 }
3484
a8c9e576
JB
3485 /*
3486 * add this inode to the orphan list so btrfs_orphan_del does
3487 * the proper thing when we hit it
3488 */
8a35d95f
JB
3489 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3490 &BTRFS_I(inode)->runtime_flags);
925396ec 3491 atomic_inc(&root->orphan_inodes);
a8c9e576 3492
7b128766
JB
3493 /* if we have links, this was a truncate, lets do that */
3494 if (inode->i_nlink) {
fae7f21c 3495 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3496 iput(inode);
3497 continue;
3498 }
7b128766 3499 nr_truncate++;
f3fe820c
JB
3500
3501 /* 1 for the orphan item deletion. */
3502 trans = btrfs_start_transaction(root, 1);
3503 if (IS_ERR(trans)) {
c69b26b0 3504 iput(inode);
f3fe820c
JB
3505 ret = PTR_ERR(trans);
3506 goto out;
3507 }
3508 ret = btrfs_orphan_add(trans, inode);
3509 btrfs_end_transaction(trans, root);
c69b26b0
JB
3510 if (ret) {
3511 iput(inode);
f3fe820c 3512 goto out;
c69b26b0 3513 }
f3fe820c 3514
66b4ffd1 3515 ret = btrfs_truncate(inode);
4a7d0f68
JB
3516 if (ret)
3517 btrfs_orphan_del(NULL, inode);
7b128766
JB
3518 } else {
3519 nr_unlink++;
3520 }
3521
3522 /* this will do delete_inode and everything for us */
3523 iput(inode);
66b4ffd1
JB
3524 if (ret)
3525 goto out;
7b128766 3526 }
3254c876
MX
3527 /* release the path since we're done with it */
3528 btrfs_release_path(path);
3529
d68fc57b
YZ
3530 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3531
3532 if (root->orphan_block_rsv)
3533 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3534 (u64)-1);
3535
27cdeb70
MX
3536 if (root->orphan_block_rsv ||
3537 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3538 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3539 if (!IS_ERR(trans))
3540 btrfs_end_transaction(trans, root);
d68fc57b 3541 }
7b128766
JB
3542
3543 if (nr_unlink)
4884b476 3544 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3545 if (nr_truncate)
4884b476 3546 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3547
3548out:
3549 if (ret)
68b663d1 3550 btrfs_err(root->fs_info,
c2cf52eb 3551 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3552 btrfs_free_path(path);
3553 return ret;
7b128766
JB
3554}
3555
46a53cca
CM
3556/*
3557 * very simple check to peek ahead in the leaf looking for xattrs. If we
3558 * don't find any xattrs, we know there can't be any acls.
3559 *
3560 * slot is the slot the inode is in, objectid is the objectid of the inode
3561 */
3562static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3563 int slot, u64 objectid,
3564 int *first_xattr_slot)
46a53cca
CM
3565{
3566 u32 nritems = btrfs_header_nritems(leaf);
3567 struct btrfs_key found_key;
f23b5a59
JB
3568 static u64 xattr_access = 0;
3569 static u64 xattr_default = 0;
46a53cca
CM
3570 int scanned = 0;
3571
f23b5a59 3572 if (!xattr_access) {
97d79299
AG
3573 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3574 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3575 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3576 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3577 }
3578
46a53cca 3579 slot++;
63541927 3580 *first_xattr_slot = -1;
46a53cca
CM
3581 while (slot < nritems) {
3582 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3583
3584 /* we found a different objectid, there must not be acls */
3585 if (found_key.objectid != objectid)
3586 return 0;
3587
3588 /* we found an xattr, assume we've got an acl */
f23b5a59 3589 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3590 if (*first_xattr_slot == -1)
3591 *first_xattr_slot = slot;
f23b5a59
JB
3592 if (found_key.offset == xattr_access ||
3593 found_key.offset == xattr_default)
3594 return 1;
3595 }
46a53cca
CM
3596
3597 /*
3598 * we found a key greater than an xattr key, there can't
3599 * be any acls later on
3600 */
3601 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3602 return 0;
3603
3604 slot++;
3605 scanned++;
3606
3607 /*
3608 * it goes inode, inode backrefs, xattrs, extents,
3609 * so if there are a ton of hard links to an inode there can
3610 * be a lot of backrefs. Don't waste time searching too hard,
3611 * this is just an optimization
3612 */
3613 if (scanned >= 8)
3614 break;
3615 }
3616 /* we hit the end of the leaf before we found an xattr or
3617 * something larger than an xattr. We have to assume the inode
3618 * has acls
3619 */
63541927
FDBM
3620 if (*first_xattr_slot == -1)
3621 *first_xattr_slot = slot;
46a53cca
CM
3622 return 1;
3623}
3624
d352ac68
CM
3625/*
3626 * read an inode from the btree into the in-memory inode
3627 */
5d4f98a2 3628static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3629{
3630 struct btrfs_path *path;
5f39d397 3631 struct extent_buffer *leaf;
39279cc3
CM
3632 struct btrfs_inode_item *inode_item;
3633 struct btrfs_root *root = BTRFS_I(inode)->root;
3634 struct btrfs_key location;
67de1176 3635 unsigned long ptr;
46a53cca 3636 int maybe_acls;
618e21d5 3637 u32 rdev;
39279cc3 3638 int ret;
2f7e33d4 3639 bool filled = false;
63541927 3640 int first_xattr_slot;
2f7e33d4
MX
3641
3642 ret = btrfs_fill_inode(inode, &rdev);
3643 if (!ret)
3644 filled = true;
39279cc3
CM
3645
3646 path = btrfs_alloc_path();
1748f843
MF
3647 if (!path)
3648 goto make_bad;
3649
39279cc3 3650 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3651
39279cc3 3652 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3653 if (ret)
39279cc3 3654 goto make_bad;
39279cc3 3655
5f39d397 3656 leaf = path->nodes[0];
2f7e33d4
MX
3657
3658 if (filled)
67de1176 3659 goto cache_index;
2f7e33d4 3660
5f39d397
CM
3661 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3662 struct btrfs_inode_item);
5f39d397 3663 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3664 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3665 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3666 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3667 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397 3668
a937b979
DS
3669 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3670 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3671
a937b979
DS
3672 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3673 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3674
a937b979
DS
3675 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3676 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3677
9cc97d64 3678 BTRFS_I(inode)->i_otime.tv_sec =
3679 btrfs_timespec_sec(leaf, &inode_item->otime);
3680 BTRFS_I(inode)->i_otime.tv_nsec =
3681 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3682
a76a3cd4 3683 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3684 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3685 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3686
6e17d30b
YD
3687 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3688 inode->i_generation = BTRFS_I(inode)->generation;
3689 inode->i_rdev = 0;
3690 rdev = btrfs_inode_rdev(leaf, inode_item);
3691
3692 BTRFS_I(inode)->index_cnt = (u64)-1;
3693 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3694
3695cache_index:
5dc562c5
JB
3696 /*
3697 * If we were modified in the current generation and evicted from memory
3698 * and then re-read we need to do a full sync since we don't have any
3699 * idea about which extents were modified before we were evicted from
3700 * cache.
6e17d30b
YD
3701 *
3702 * This is required for both inode re-read from disk and delayed inode
3703 * in delayed_nodes_tree.
5dc562c5
JB
3704 */
3705 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3706 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3707 &BTRFS_I(inode)->runtime_flags);
3708
bde6c242
FM
3709 /*
3710 * We don't persist the id of the transaction where an unlink operation
3711 * against the inode was last made. So here we assume the inode might
3712 * have been evicted, and therefore the exact value of last_unlink_trans
3713 * lost, and set it to last_trans to avoid metadata inconsistencies
3714 * between the inode and its parent if the inode is fsync'ed and the log
3715 * replayed. For example, in the scenario:
3716 *
3717 * touch mydir/foo
3718 * ln mydir/foo mydir/bar
3719 * sync
3720 * unlink mydir/bar
3721 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3722 * xfs_io -c fsync mydir/foo
3723 * <power failure>
3724 * mount fs, triggers fsync log replay
3725 *
3726 * We must make sure that when we fsync our inode foo we also log its
3727 * parent inode, otherwise after log replay the parent still has the
3728 * dentry with the "bar" name but our inode foo has a link count of 1
3729 * and doesn't have an inode ref with the name "bar" anymore.
3730 *
3731 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3732 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3733 * transaction commits on fsync if our inode is a directory, or if our
3734 * inode is not a directory, logging its parent unnecessarily.
3735 */
3736 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3737
67de1176
MX
3738 path->slots[0]++;
3739 if (inode->i_nlink != 1 ||
3740 path->slots[0] >= btrfs_header_nritems(leaf))
3741 goto cache_acl;
3742
3743 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3744 if (location.objectid != btrfs_ino(inode))
3745 goto cache_acl;
3746
3747 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3748 if (location.type == BTRFS_INODE_REF_KEY) {
3749 struct btrfs_inode_ref *ref;
3750
3751 ref = (struct btrfs_inode_ref *)ptr;
3752 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3753 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3754 struct btrfs_inode_extref *extref;
3755
3756 extref = (struct btrfs_inode_extref *)ptr;
3757 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3758 extref);
3759 }
2f7e33d4 3760cache_acl:
46a53cca
CM
3761 /*
3762 * try to precache a NULL acl entry for files that don't have
3763 * any xattrs or acls
3764 */
33345d01 3765 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3766 btrfs_ino(inode), &first_xattr_slot);
3767 if (first_xattr_slot != -1) {
3768 path->slots[0] = first_xattr_slot;
3769 ret = btrfs_load_inode_props(inode, path);
3770 if (ret)
3771 btrfs_err(root->fs_info,
351fd353 3772 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3773 btrfs_ino(inode),
3774 root->root_key.objectid, ret);
3775 }
3776 btrfs_free_path(path);
3777
72c04902
AV
3778 if (!maybe_acls)
3779 cache_no_acl(inode);
46a53cca 3780
39279cc3 3781 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3782 case S_IFREG:
3783 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3784 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3785 inode->i_fop = &btrfs_file_operations;
3786 inode->i_op = &btrfs_file_inode_operations;
3787 break;
3788 case S_IFDIR:
3789 inode->i_fop = &btrfs_dir_file_operations;
3790 if (root == root->fs_info->tree_root)
3791 inode->i_op = &btrfs_dir_ro_inode_operations;
3792 else
3793 inode->i_op = &btrfs_dir_inode_operations;
3794 break;
3795 case S_IFLNK:
3796 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3797 inode_nohighmem(inode);
39279cc3
CM
3798 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3799 break;
618e21d5 3800 default:
0279b4cd 3801 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3802 init_special_inode(inode, inode->i_mode, rdev);
3803 break;
39279cc3 3804 }
6cbff00f
CH
3805
3806 btrfs_update_iflags(inode);
39279cc3
CM
3807 return;
3808
3809make_bad:
39279cc3 3810 btrfs_free_path(path);
39279cc3
CM
3811 make_bad_inode(inode);
3812}
3813
d352ac68
CM
3814/*
3815 * given a leaf and an inode, copy the inode fields into the leaf
3816 */
e02119d5
CM
3817static void fill_inode_item(struct btrfs_trans_handle *trans,
3818 struct extent_buffer *leaf,
5f39d397 3819 struct btrfs_inode_item *item,
39279cc3
CM
3820 struct inode *inode)
3821{
51fab693
LB
3822 struct btrfs_map_token token;
3823
3824 btrfs_init_map_token(&token);
5f39d397 3825
51fab693
LB
3826 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3827 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3828 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3829 &token);
3830 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3831 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3832
a937b979 3833 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3834 inode->i_atime.tv_sec, &token);
a937b979 3835 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3836 inode->i_atime.tv_nsec, &token);
5f39d397 3837
a937b979 3838 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3839 inode->i_mtime.tv_sec, &token);
a937b979 3840 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3841 inode->i_mtime.tv_nsec, &token);
5f39d397 3842
a937b979 3843 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3844 inode->i_ctime.tv_sec, &token);
a937b979 3845 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3846 inode->i_ctime.tv_nsec, &token);
5f39d397 3847
9cc97d64 3848 btrfs_set_token_timespec_sec(leaf, &item->otime,
3849 BTRFS_I(inode)->i_otime.tv_sec, &token);
3850 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3851 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3852
51fab693
LB
3853 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3854 &token);
3855 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3856 &token);
3857 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3858 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3859 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3860 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3861 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3862}
3863
d352ac68
CM
3864/*
3865 * copy everything in the in-memory inode into the btree.
3866 */
2115133f 3867static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3868 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3869{
3870 struct btrfs_inode_item *inode_item;
3871 struct btrfs_path *path;
5f39d397 3872 struct extent_buffer *leaf;
39279cc3
CM
3873 int ret;
3874
3875 path = btrfs_alloc_path();
16cdcec7
MX
3876 if (!path)
3877 return -ENOMEM;
3878
b9473439 3879 path->leave_spinning = 1;
16cdcec7
MX
3880 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3881 1);
39279cc3
CM
3882 if (ret) {
3883 if (ret > 0)
3884 ret = -ENOENT;
3885 goto failed;
3886 }
3887
5f39d397
CM
3888 leaf = path->nodes[0];
3889 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3890 struct btrfs_inode_item);
39279cc3 3891
e02119d5 3892 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3893 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3894 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3895 ret = 0;
3896failed:
39279cc3
CM
3897 btrfs_free_path(path);
3898 return ret;
3899}
3900
2115133f
CM
3901/*
3902 * copy everything in the in-memory inode into the btree.
3903 */
3904noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3905 struct btrfs_root *root, struct inode *inode)
3906{
3907 int ret;
3908
3909 /*
3910 * If the inode is a free space inode, we can deadlock during commit
3911 * if we put it into the delayed code.
3912 *
3913 * The data relocation inode should also be directly updated
3914 * without delay
3915 */
83eea1f1 3916 if (!btrfs_is_free_space_inode(inode)
1d52c78a
JB
3917 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3918 && !root->fs_info->log_root_recovering) {
8ea05e3a
AB
3919 btrfs_update_root_times(trans, root);
3920
2115133f
CM
3921 ret = btrfs_delayed_update_inode(trans, root, inode);
3922 if (!ret)
3923 btrfs_set_inode_last_trans(trans, inode);
3924 return ret;
3925 }
3926
3927 return btrfs_update_inode_item(trans, root, inode);
3928}
3929
be6aef60
JB
3930noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3931 struct btrfs_root *root,
3932 struct inode *inode)
2115133f
CM
3933{
3934 int ret;
3935
3936 ret = btrfs_update_inode(trans, root, inode);
3937 if (ret == -ENOSPC)
3938 return btrfs_update_inode_item(trans, root, inode);
3939 return ret;
3940}
3941
d352ac68
CM
3942/*
3943 * unlink helper that gets used here in inode.c and in the tree logging
3944 * recovery code. It remove a link in a directory with a given name, and
3945 * also drops the back refs in the inode to the directory
3946 */
92986796
AV
3947static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3948 struct btrfs_root *root,
3949 struct inode *dir, struct inode *inode,
3950 const char *name, int name_len)
39279cc3
CM
3951{
3952 struct btrfs_path *path;
39279cc3 3953 int ret = 0;
5f39d397 3954 struct extent_buffer *leaf;
39279cc3 3955 struct btrfs_dir_item *di;
5f39d397 3956 struct btrfs_key key;
aec7477b 3957 u64 index;
33345d01
LZ
3958 u64 ino = btrfs_ino(inode);
3959 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3960
3961 path = btrfs_alloc_path();
54aa1f4d
CM
3962 if (!path) {
3963 ret = -ENOMEM;
554233a6 3964 goto out;
54aa1f4d
CM
3965 }
3966
b9473439 3967 path->leave_spinning = 1;
33345d01 3968 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3969 name, name_len, -1);
3970 if (IS_ERR(di)) {
3971 ret = PTR_ERR(di);
3972 goto err;
3973 }
3974 if (!di) {
3975 ret = -ENOENT;
3976 goto err;
3977 }
5f39d397
CM
3978 leaf = path->nodes[0];
3979 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3980 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3981 if (ret)
3982 goto err;
b3b4aa74 3983 btrfs_release_path(path);
39279cc3 3984
67de1176
MX
3985 /*
3986 * If we don't have dir index, we have to get it by looking up
3987 * the inode ref, since we get the inode ref, remove it directly,
3988 * it is unnecessary to do delayed deletion.
3989 *
3990 * But if we have dir index, needn't search inode ref to get it.
3991 * Since the inode ref is close to the inode item, it is better
3992 * that we delay to delete it, and just do this deletion when
3993 * we update the inode item.
3994 */
3995 if (BTRFS_I(inode)->dir_index) {
3996 ret = btrfs_delayed_delete_inode_ref(inode);
3997 if (!ret) {
3998 index = BTRFS_I(inode)->dir_index;
3999 goto skip_backref;
4000 }
4001 }
4002
33345d01
LZ
4003 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4004 dir_ino, &index);
aec7477b 4005 if (ret) {
c2cf52eb
SK
4006 btrfs_info(root->fs_info,
4007 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4008 name_len, name, ino, dir_ino);
79787eaa 4009 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
4010 goto err;
4011 }
67de1176 4012skip_backref:
16cdcec7 4013 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4014 if (ret) {
4015 btrfs_abort_transaction(trans, root, ret);
39279cc3 4016 goto err;
79787eaa 4017 }
39279cc3 4018
e02119d5 4019 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 4020 inode, dir_ino);
79787eaa
JM
4021 if (ret != 0 && ret != -ENOENT) {
4022 btrfs_abort_transaction(trans, root, ret);
4023 goto err;
4024 }
e02119d5
CM
4025
4026 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4027 dir, index);
6418c961
CM
4028 if (ret == -ENOENT)
4029 ret = 0;
d4e3991b
ZB
4030 else if (ret)
4031 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
4032err:
4033 btrfs_free_path(path);
e02119d5
CM
4034 if (ret)
4035 goto out;
4036
4037 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
4038 inode_inc_iversion(inode);
4039 inode_inc_iversion(dir);
04b285f3
DD
4040 inode->i_ctime = dir->i_mtime =
4041 dir->i_ctime = current_fs_time(inode->i_sb);
b9959295 4042 ret = btrfs_update_inode(trans, root, dir);
e02119d5 4043out:
39279cc3
CM
4044 return ret;
4045}
4046
92986796
AV
4047int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4048 struct btrfs_root *root,
4049 struct inode *dir, struct inode *inode,
4050 const char *name, int name_len)
4051{
4052 int ret;
4053 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4054 if (!ret) {
8b558c5f 4055 drop_nlink(inode);
92986796
AV
4056 ret = btrfs_update_inode(trans, root, inode);
4057 }
4058 return ret;
4059}
39279cc3 4060
a22285a6
YZ
4061/*
4062 * helper to start transaction for unlink and rmdir.
4063 *
d52be818
JB
4064 * unlink and rmdir are special in btrfs, they do not always free space, so
4065 * if we cannot make our reservations the normal way try and see if there is
4066 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4067 * allow the unlink to occur.
a22285a6 4068 */
d52be818 4069static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4070{
a22285a6 4071 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4072
e70bea5f
JB
4073 /*
4074 * 1 for the possible orphan item
4075 * 1 for the dir item
4076 * 1 for the dir index
4077 * 1 for the inode ref
e70bea5f
JB
4078 * 1 for the inode
4079 */
8eab77ff 4080 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4081}
4082
4083static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4084{
4085 struct btrfs_root *root = BTRFS_I(dir)->root;
4086 struct btrfs_trans_handle *trans;
2b0143b5 4087 struct inode *inode = d_inode(dentry);
a22285a6 4088 int ret;
a22285a6 4089
d52be818 4090 trans = __unlink_start_trans(dir);
a22285a6
YZ
4091 if (IS_ERR(trans))
4092 return PTR_ERR(trans);
5f39d397 4093
2b0143b5 4094 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
12fcfd22 4095
2b0143b5 4096 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4097 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
4098 if (ret)
4099 goto out;
7b128766 4100
a22285a6 4101 if (inode->i_nlink == 0) {
7b128766 4102 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
4103 if (ret)
4104 goto out;
a22285a6 4105 }
7b128766 4106
b532402e 4107out:
d52be818 4108 btrfs_end_transaction(trans, root);
b53d3f5d 4109 btrfs_btree_balance_dirty(root);
39279cc3
CM
4110 return ret;
4111}
4112
4df27c4d
YZ
4113int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4114 struct btrfs_root *root,
4115 struct inode *dir, u64 objectid,
4116 const char *name, int name_len)
4117{
4118 struct btrfs_path *path;
4119 struct extent_buffer *leaf;
4120 struct btrfs_dir_item *di;
4121 struct btrfs_key key;
4122 u64 index;
4123 int ret;
33345d01 4124 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
4125
4126 path = btrfs_alloc_path();
4127 if (!path)
4128 return -ENOMEM;
4129
33345d01 4130 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4131 name, name_len, -1);
79787eaa
JM
4132 if (IS_ERR_OR_NULL(di)) {
4133 if (!di)
4134 ret = -ENOENT;
4135 else
4136 ret = PTR_ERR(di);
4137 goto out;
4138 }
4df27c4d
YZ
4139
4140 leaf = path->nodes[0];
4141 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4142 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4143 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
4144 if (ret) {
4145 btrfs_abort_transaction(trans, root, ret);
4146 goto out;
4147 }
b3b4aa74 4148 btrfs_release_path(path);
4df27c4d
YZ
4149
4150 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4151 objectid, root->root_key.objectid,
33345d01 4152 dir_ino, &index, name, name_len);
4df27c4d 4153 if (ret < 0) {
79787eaa
JM
4154 if (ret != -ENOENT) {
4155 btrfs_abort_transaction(trans, root, ret);
4156 goto out;
4157 }
33345d01 4158 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4159 name, name_len);
79787eaa
JM
4160 if (IS_ERR_OR_NULL(di)) {
4161 if (!di)
4162 ret = -ENOENT;
4163 else
4164 ret = PTR_ERR(di);
4165 btrfs_abort_transaction(trans, root, ret);
4166 goto out;
4167 }
4df27c4d
YZ
4168
4169 leaf = path->nodes[0];
4170 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4171 btrfs_release_path(path);
4df27c4d
YZ
4172 index = key.offset;
4173 }
945d8962 4174 btrfs_release_path(path);
4df27c4d 4175
16cdcec7 4176 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4177 if (ret) {
4178 btrfs_abort_transaction(trans, root, ret);
4179 goto out;
4180 }
4df27c4d
YZ
4181
4182 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4183 inode_inc_iversion(dir);
04b285f3 4184 dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb);
5a24e84c 4185 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
4186 if (ret)
4187 btrfs_abort_transaction(trans, root, ret);
4188out:
71d7aed0 4189 btrfs_free_path(path);
79787eaa 4190 return ret;
4df27c4d
YZ
4191}
4192
39279cc3
CM
4193static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4194{
2b0143b5 4195 struct inode *inode = d_inode(dentry);
1832a6d5 4196 int err = 0;
39279cc3 4197 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4198 struct btrfs_trans_handle *trans;
39279cc3 4199
b3ae244e 4200 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4201 return -ENOTEMPTY;
b3ae244e
DS
4202 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4203 return -EPERM;
134d4512 4204
d52be818 4205 trans = __unlink_start_trans(dir);
a22285a6 4206 if (IS_ERR(trans))
5df6a9f6 4207 return PTR_ERR(trans);
5df6a9f6 4208
33345d01 4209 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4210 err = btrfs_unlink_subvol(trans, root, dir,
4211 BTRFS_I(inode)->location.objectid,
4212 dentry->d_name.name,
4213 dentry->d_name.len);
4214 goto out;
4215 }
4216
7b128766
JB
4217 err = btrfs_orphan_add(trans, inode);
4218 if (err)
4df27c4d 4219 goto out;
7b128766 4220
39279cc3 4221 /* now the directory is empty */
2b0143b5 4222 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4223 dentry->d_name.name, dentry->d_name.len);
d397712b 4224 if (!err)
dbe674a9 4225 btrfs_i_size_write(inode, 0);
4df27c4d 4226out:
d52be818 4227 btrfs_end_transaction(trans, root);
b53d3f5d 4228 btrfs_btree_balance_dirty(root);
3954401f 4229
39279cc3
CM
4230 return err;
4231}
4232
28f75a0e
CM
4233static int truncate_space_check(struct btrfs_trans_handle *trans,
4234 struct btrfs_root *root,
4235 u64 bytes_deleted)
4236{
4237 int ret;
4238
dc95f7bf
JB
4239 /*
4240 * This is only used to apply pressure to the enospc system, we don't
4241 * intend to use this reservation at all.
4242 */
28f75a0e 4243 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
dc95f7bf 4244 bytes_deleted *= root->nodesize;
28f75a0e
CM
4245 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4246 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf
JB
4247 if (!ret) {
4248 trace_btrfs_space_reservation(root->fs_info, "transaction",
4249 trans->transid,
4250 bytes_deleted, 1);
28f75a0e 4251 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4252 }
28f75a0e
CM
4253 return ret;
4254
4255}
4256
0305cd5f
FM
4257static int truncate_inline_extent(struct inode *inode,
4258 struct btrfs_path *path,
4259 struct btrfs_key *found_key,
4260 const u64 item_end,
4261 const u64 new_size)
4262{
4263 struct extent_buffer *leaf = path->nodes[0];
4264 int slot = path->slots[0];
4265 struct btrfs_file_extent_item *fi;
4266 u32 size = (u32)(new_size - found_key->offset);
4267 struct btrfs_root *root = BTRFS_I(inode)->root;
4268
4269 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4270
4271 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4272 loff_t offset = new_size;
09cbfeaf 4273 loff_t page_end = ALIGN(offset, PAGE_SIZE);
0305cd5f
FM
4274
4275 /*
4276 * Zero out the remaining of the last page of our inline extent,
4277 * instead of directly truncating our inline extent here - that
4278 * would be much more complex (decompressing all the data, then
4279 * compressing the truncated data, which might be bigger than
4280 * the size of the inline extent, resize the extent, etc).
4281 * We release the path because to get the page we might need to
4282 * read the extent item from disk (data not in the page cache).
4283 */
4284 btrfs_release_path(path);
9703fefe
CR
4285 return btrfs_truncate_block(inode, offset, page_end - offset,
4286 0);
0305cd5f
FM
4287 }
4288
4289 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4290 size = btrfs_file_extent_calc_inline_size(size);
4291 btrfs_truncate_item(root, path, size, 1);
4292
4293 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4294 inode_sub_bytes(inode, item_end + 1 - new_size);
4295
4296 return 0;
4297}
4298
39279cc3
CM
4299/*
4300 * this can truncate away extent items, csum items and directory items.
4301 * It starts at a high offset and removes keys until it can't find
d352ac68 4302 * any higher than new_size
39279cc3
CM
4303 *
4304 * csum items that cross the new i_size are truncated to the new size
4305 * as well.
7b128766
JB
4306 *
4307 * min_type is the minimum key type to truncate down to. If set to 0, this
4308 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4309 */
8082510e
YZ
4310int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4311 struct btrfs_root *root,
4312 struct inode *inode,
4313 u64 new_size, u32 min_type)
39279cc3 4314{
39279cc3 4315 struct btrfs_path *path;
5f39d397 4316 struct extent_buffer *leaf;
39279cc3 4317 struct btrfs_file_extent_item *fi;
8082510e
YZ
4318 struct btrfs_key key;
4319 struct btrfs_key found_key;
39279cc3 4320 u64 extent_start = 0;
db94535d 4321 u64 extent_num_bytes = 0;
5d4f98a2 4322 u64 extent_offset = 0;
39279cc3 4323 u64 item_end = 0;
c1aa4575 4324 u64 last_size = new_size;
8082510e 4325 u32 found_type = (u8)-1;
39279cc3
CM
4326 int found_extent;
4327 int del_item;
85e21bac
CM
4328 int pending_del_nr = 0;
4329 int pending_del_slot = 0;
179e29e4 4330 int extent_type = -1;
8082510e
YZ
4331 int ret;
4332 int err = 0;
33345d01 4333 u64 ino = btrfs_ino(inode);
28ed1345 4334 u64 bytes_deleted = 0;
1262133b
JB
4335 bool be_nice = 0;
4336 bool should_throttle = 0;
28f75a0e 4337 bool should_end = 0;
8082510e
YZ
4338
4339 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4340
28ed1345
CM
4341 /*
4342 * for non-free space inodes and ref cows, we want to back off from
4343 * time to time
4344 */
4345 if (!btrfs_is_free_space_inode(inode) &&
4346 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4347 be_nice = 1;
4348
0eb0e19c
MF
4349 path = btrfs_alloc_path();
4350 if (!path)
4351 return -ENOMEM;
e4058b54 4352 path->reada = READA_BACK;
0eb0e19c 4353
5dc562c5
JB
4354 /*
4355 * We want to drop from the next block forward in case this new size is
4356 * not block aligned since we will be keeping the last block of the
4357 * extent just the way it is.
4358 */
27cdeb70
MX
4359 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4360 root == root->fs_info->tree_root)
fda2832f
QW
4361 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4362 root->sectorsize), (u64)-1, 0);
8082510e 4363
16cdcec7
MX
4364 /*
4365 * This function is also used to drop the items in the log tree before
4366 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4367 * it is used to drop the loged items. So we shouldn't kill the delayed
4368 * items.
4369 */
4370 if (min_type == 0 && root == BTRFS_I(inode)->root)
4371 btrfs_kill_delayed_inode_items(inode);
4372
33345d01 4373 key.objectid = ino;
39279cc3 4374 key.offset = (u64)-1;
5f39d397
CM
4375 key.type = (u8)-1;
4376
85e21bac 4377search_again:
28ed1345
CM
4378 /*
4379 * with a 16K leaf size and 128MB extents, you can actually queue
4380 * up a huge file in a single leaf. Most of the time that
4381 * bytes_deleted is > 0, it will be huge by the time we get here
4382 */
ee22184b 4383 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4384 if (btrfs_should_end_transaction(trans, root)) {
4385 err = -EAGAIN;
4386 goto error;
4387 }
4388 }
4389
4390
b9473439 4391 path->leave_spinning = 1;
85e21bac 4392 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4393 if (ret < 0) {
4394 err = ret;
4395 goto out;
4396 }
d397712b 4397
85e21bac 4398 if (ret > 0) {
e02119d5
CM
4399 /* there are no items in the tree for us to truncate, we're
4400 * done
4401 */
8082510e
YZ
4402 if (path->slots[0] == 0)
4403 goto out;
85e21bac
CM
4404 path->slots[0]--;
4405 }
4406
d397712b 4407 while (1) {
39279cc3 4408 fi = NULL;
5f39d397
CM
4409 leaf = path->nodes[0];
4410 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4411 found_type = found_key.type;
39279cc3 4412
33345d01 4413 if (found_key.objectid != ino)
39279cc3 4414 break;
5f39d397 4415
85e21bac 4416 if (found_type < min_type)
39279cc3
CM
4417 break;
4418
5f39d397 4419 item_end = found_key.offset;
39279cc3 4420 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4421 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4422 struct btrfs_file_extent_item);
179e29e4
CM
4423 extent_type = btrfs_file_extent_type(leaf, fi);
4424 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4425 item_end +=
db94535d 4426 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4427 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4428 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4429 path->slots[0], fi);
39279cc3 4430 }
008630c1 4431 item_end--;
39279cc3 4432 }
8082510e
YZ
4433 if (found_type > min_type) {
4434 del_item = 1;
4435 } else {
4436 if (item_end < new_size)
b888db2b 4437 break;
8082510e
YZ
4438 if (found_key.offset >= new_size)
4439 del_item = 1;
4440 else
4441 del_item = 0;
39279cc3 4442 }
39279cc3 4443 found_extent = 0;
39279cc3 4444 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4445 if (found_type != BTRFS_EXTENT_DATA_KEY)
4446 goto delete;
4447
7f4f6e0a
JB
4448 if (del_item)
4449 last_size = found_key.offset;
4450 else
4451 last_size = new_size;
4452
179e29e4 4453 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4454 u64 num_dec;
db94535d 4455 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4456 if (!del_item) {
db94535d
CM
4457 u64 orig_num_bytes =
4458 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4459 extent_num_bytes = ALIGN(new_size -
4460 found_key.offset,
4461 root->sectorsize);
db94535d
CM
4462 btrfs_set_file_extent_num_bytes(leaf, fi,
4463 extent_num_bytes);
4464 num_dec = (orig_num_bytes -
9069218d 4465 extent_num_bytes);
27cdeb70
MX
4466 if (test_bit(BTRFS_ROOT_REF_COWS,
4467 &root->state) &&
4468 extent_start != 0)
a76a3cd4 4469 inode_sub_bytes(inode, num_dec);
5f39d397 4470 btrfs_mark_buffer_dirty(leaf);
39279cc3 4471 } else {
db94535d
CM
4472 extent_num_bytes =
4473 btrfs_file_extent_disk_num_bytes(leaf,
4474 fi);
5d4f98a2
YZ
4475 extent_offset = found_key.offset -
4476 btrfs_file_extent_offset(leaf, fi);
4477
39279cc3 4478 /* FIXME blocksize != 4096 */
9069218d 4479 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4480 if (extent_start != 0) {
4481 found_extent = 1;
27cdeb70
MX
4482 if (test_bit(BTRFS_ROOT_REF_COWS,
4483 &root->state))
a76a3cd4 4484 inode_sub_bytes(inode, num_dec);
e02119d5 4485 }
39279cc3 4486 }
9069218d 4487 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4488 /*
4489 * we can't truncate inline items that have had
4490 * special encodings
4491 */
4492 if (!del_item &&
c8b97818
CM
4493 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4494 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4495
4496 /*
0305cd5f
FM
4497 * Need to release path in order to truncate a
4498 * compressed extent. So delete any accumulated
4499 * extent items so far.
514ac8ad 4500 */
0305cd5f
FM
4501 if (btrfs_file_extent_compression(leaf, fi) !=
4502 BTRFS_COMPRESS_NONE && pending_del_nr) {
4503 err = btrfs_del_items(trans, root, path,
4504 pending_del_slot,
4505 pending_del_nr);
4506 if (err) {
4507 btrfs_abort_transaction(trans,
4508 root,
4509 err);
4510 goto error;
4511 }
4512 pending_del_nr = 0;
4513 }
4514
4515 err = truncate_inline_extent(inode, path,
4516 &found_key,
4517 item_end,
4518 new_size);
4519 if (err) {
4520 btrfs_abort_transaction(trans,
4521 root, err);
4522 goto error;
4523 }
27cdeb70
MX
4524 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4525 &root->state)) {
0305cd5f 4526 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4527 }
39279cc3 4528 }
179e29e4 4529delete:
39279cc3 4530 if (del_item) {
85e21bac
CM
4531 if (!pending_del_nr) {
4532 /* no pending yet, add ourselves */
4533 pending_del_slot = path->slots[0];
4534 pending_del_nr = 1;
4535 } else if (pending_del_nr &&
4536 path->slots[0] + 1 == pending_del_slot) {
4537 /* hop on the pending chunk */
4538 pending_del_nr++;
4539 pending_del_slot = path->slots[0];
4540 } else {
d397712b 4541 BUG();
85e21bac 4542 }
39279cc3
CM
4543 } else {
4544 break;
4545 }
28f75a0e
CM
4546 should_throttle = 0;
4547
27cdeb70
MX
4548 if (found_extent &&
4549 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4550 root == root->fs_info->tree_root)) {
b9473439 4551 btrfs_set_path_blocking(path);
28ed1345 4552 bytes_deleted += extent_num_bytes;
39279cc3 4553 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4554 extent_num_bytes, 0,
4555 btrfs_header_owner(leaf),
b06c4bf5 4556 ino, extent_offset);
39279cc3 4557 BUG_ON(ret);
1262133b 4558 if (btrfs_should_throttle_delayed_refs(trans, root))
28ed1345 4559 btrfs_async_run_delayed_refs(root,
31b9655f 4560 trans->transid,
28ed1345 4561 trans->delayed_ref_updates * 2, 0);
28f75a0e
CM
4562 if (be_nice) {
4563 if (truncate_space_check(trans, root,
4564 extent_num_bytes)) {
4565 should_end = 1;
4566 }
4567 if (btrfs_should_throttle_delayed_refs(trans,
4568 root)) {
4569 should_throttle = 1;
4570 }
4571 }
39279cc3 4572 }
85e21bac 4573
8082510e
YZ
4574 if (found_type == BTRFS_INODE_ITEM_KEY)
4575 break;
4576
4577 if (path->slots[0] == 0 ||
1262133b 4578 path->slots[0] != pending_del_slot ||
28f75a0e 4579 should_throttle || should_end) {
8082510e
YZ
4580 if (pending_del_nr) {
4581 ret = btrfs_del_items(trans, root, path,
4582 pending_del_slot,
4583 pending_del_nr);
79787eaa
JM
4584 if (ret) {
4585 btrfs_abort_transaction(trans,
4586 root, ret);
4587 goto error;
4588 }
8082510e
YZ
4589 pending_del_nr = 0;
4590 }
b3b4aa74 4591 btrfs_release_path(path);
28f75a0e 4592 if (should_throttle) {
1262133b
JB
4593 unsigned long updates = trans->delayed_ref_updates;
4594 if (updates) {
4595 trans->delayed_ref_updates = 0;
4596 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4597 if (ret && !err)
4598 err = ret;
4599 }
4600 }
28f75a0e
CM
4601 /*
4602 * if we failed to refill our space rsv, bail out
4603 * and let the transaction restart
4604 */
4605 if (should_end) {
4606 err = -EAGAIN;
4607 goto error;
4608 }
85e21bac 4609 goto search_again;
8082510e
YZ
4610 } else {
4611 path->slots[0]--;
85e21bac 4612 }
39279cc3 4613 }
8082510e 4614out:
85e21bac
CM
4615 if (pending_del_nr) {
4616 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4617 pending_del_nr);
79787eaa
JM
4618 if (ret)
4619 btrfs_abort_transaction(trans, root, ret);
85e21bac 4620 }
79787eaa 4621error:
c1aa4575 4622 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4623 btrfs_ordered_update_i_size(inode, last_size, NULL);
28ed1345 4624
39279cc3 4625 btrfs_free_path(path);
28ed1345 4626
ee22184b 4627 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4628 unsigned long updates = trans->delayed_ref_updates;
4629 if (updates) {
4630 trans->delayed_ref_updates = 0;
4631 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4632 if (ret && !err)
4633 err = ret;
4634 }
4635 }
8082510e 4636 return err;
39279cc3
CM
4637}
4638
4639/*
9703fefe 4640 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4641 * @inode - inode that we're zeroing
4642 * @from - the offset to start zeroing
4643 * @len - the length to zero, 0 to zero the entire range respective to the
4644 * offset
4645 * @front - zero up to the offset instead of from the offset on
4646 *
9703fefe 4647 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4648 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4649 */
9703fefe 4650int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4651 int front)
39279cc3 4652{
2aaa6655 4653 struct address_space *mapping = inode->i_mapping;
db94535d 4654 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4655 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4656 struct btrfs_ordered_extent *ordered;
2ac55d41 4657 struct extent_state *cached_state = NULL;
e6dcd2dc 4658 char *kaddr;
db94535d 4659 u32 blocksize = root->sectorsize;
09cbfeaf 4660 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4661 unsigned offset = from & (blocksize - 1);
39279cc3 4662 struct page *page;
3b16a4e3 4663 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4664 int ret = 0;
9703fefe
CR
4665 u64 block_start;
4666 u64 block_end;
39279cc3 4667
2aaa6655
JB
4668 if ((offset & (blocksize - 1)) == 0 &&
4669 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4670 goto out;
9703fefe 4671
7cf5b976 4672 ret = btrfs_delalloc_reserve_space(inode,
9703fefe 4673 round_down(from, blocksize), blocksize);
5d5e103a
JB
4674 if (ret)
4675 goto out;
39279cc3 4676
211c17f5 4677again:
3b16a4e3 4678 page = find_or_create_page(mapping, index, mask);
5d5e103a 4679 if (!page) {
7cf5b976 4680 btrfs_delalloc_release_space(inode,
9703fefe
CR
4681 round_down(from, blocksize),
4682 blocksize);
ac6a2b36 4683 ret = -ENOMEM;
39279cc3 4684 goto out;
5d5e103a 4685 }
e6dcd2dc 4686
9703fefe
CR
4687 block_start = round_down(from, blocksize);
4688 block_end = block_start + blocksize - 1;
e6dcd2dc 4689
39279cc3 4690 if (!PageUptodate(page)) {
9ebefb18 4691 ret = btrfs_readpage(NULL, page);
39279cc3 4692 lock_page(page);
211c17f5
CM
4693 if (page->mapping != mapping) {
4694 unlock_page(page);
09cbfeaf 4695 put_page(page);
211c17f5
CM
4696 goto again;
4697 }
39279cc3
CM
4698 if (!PageUptodate(page)) {
4699 ret = -EIO;
89642229 4700 goto out_unlock;
39279cc3
CM
4701 }
4702 }
211c17f5 4703 wait_on_page_writeback(page);
e6dcd2dc 4704
9703fefe 4705 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4706 set_page_extent_mapped(page);
4707
9703fefe 4708 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4709 if (ordered) {
9703fefe 4710 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4711 &cached_state, GFP_NOFS);
e6dcd2dc 4712 unlock_page(page);
09cbfeaf 4713 put_page(page);
eb84ae03 4714 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4715 btrfs_put_ordered_extent(ordered);
4716 goto again;
4717 }
4718
9703fefe 4719 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4720 EXTENT_DIRTY | EXTENT_DELALLOC |
4721 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4722 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4723
9703fefe 4724 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
2ac55d41 4725 &cached_state);
9ed74f2d 4726 if (ret) {
9703fefe 4727 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4728 &cached_state, GFP_NOFS);
9ed74f2d
JB
4729 goto out_unlock;
4730 }
4731
9703fefe 4732 if (offset != blocksize) {
2aaa6655 4733 if (!len)
9703fefe 4734 len = blocksize - offset;
e6dcd2dc 4735 kaddr = kmap(page);
2aaa6655 4736 if (front)
9703fefe
CR
4737 memset(kaddr + (block_start - page_offset(page)),
4738 0, offset);
2aaa6655 4739 else
9703fefe
CR
4740 memset(kaddr + (block_start - page_offset(page)) + offset,
4741 0, len);
e6dcd2dc
CM
4742 flush_dcache_page(page);
4743 kunmap(page);
4744 }
247e743c 4745 ClearPageChecked(page);
e6dcd2dc 4746 set_page_dirty(page);
9703fefe 4747 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4748 GFP_NOFS);
39279cc3 4749
89642229 4750out_unlock:
5d5e103a 4751 if (ret)
9703fefe
CR
4752 btrfs_delalloc_release_space(inode, block_start,
4753 blocksize);
39279cc3 4754 unlock_page(page);
09cbfeaf 4755 put_page(page);
39279cc3
CM
4756out:
4757 return ret;
4758}
4759
16e7549f
JB
4760static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4761 u64 offset, u64 len)
4762{
4763 struct btrfs_trans_handle *trans;
4764 int ret;
4765
4766 /*
4767 * Still need to make sure the inode looks like it's been updated so
4768 * that any holes get logged if we fsync.
4769 */
4770 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4771 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4772 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4773 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4774 return 0;
4775 }
4776
4777 /*
4778 * 1 - for the one we're dropping
4779 * 1 - for the one we're adding
4780 * 1 - for updating the inode.
4781 */
4782 trans = btrfs_start_transaction(root, 3);
4783 if (IS_ERR(trans))
4784 return PTR_ERR(trans);
4785
4786 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4787 if (ret) {
4788 btrfs_abort_transaction(trans, root, ret);
4789 btrfs_end_transaction(trans, root);
4790 return ret;
4791 }
4792
4793 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4794 0, 0, len, 0, len, 0, 0, 0);
4795 if (ret)
4796 btrfs_abort_transaction(trans, root, ret);
4797 else
4798 btrfs_update_inode(trans, root, inode);
4799 btrfs_end_transaction(trans, root);
4800 return ret;
4801}
4802
695a0d0d
JB
4803/*
4804 * This function puts in dummy file extents for the area we're creating a hole
4805 * for. So if we are truncating this file to a larger size we need to insert
4806 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4807 * the range between oldsize and size
4808 */
a41ad394 4809int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4810{
9036c102
YZ
4811 struct btrfs_root *root = BTRFS_I(inode)->root;
4812 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4813 struct extent_map *em = NULL;
2ac55d41 4814 struct extent_state *cached_state = NULL;
5dc562c5 4815 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4816 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4817 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4818 u64 last_byte;
4819 u64 cur_offset;
4820 u64 hole_size;
9ed74f2d 4821 int err = 0;
39279cc3 4822
a71754fc 4823 /*
9703fefe
CR
4824 * If our size started in the middle of a block we need to zero out the
4825 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4826 * expose stale data.
4827 */
9703fefe 4828 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4829 if (err)
4830 return err;
4831
9036c102
YZ
4832 if (size <= hole_start)
4833 return 0;
4834
9036c102
YZ
4835 while (1) {
4836 struct btrfs_ordered_extent *ordered;
fa7c1494 4837
ff13db41 4838 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4839 &cached_state);
fa7c1494
MX
4840 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4841 block_end - hole_start);
9036c102
YZ
4842 if (!ordered)
4843 break;
2ac55d41
JB
4844 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4845 &cached_state, GFP_NOFS);
fa7c1494 4846 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4847 btrfs_put_ordered_extent(ordered);
4848 }
39279cc3 4849
9036c102
YZ
4850 cur_offset = hole_start;
4851 while (1) {
4852 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4853 block_end - cur_offset, 0);
79787eaa
JM
4854 if (IS_ERR(em)) {
4855 err = PTR_ERR(em);
f2767956 4856 em = NULL;
79787eaa
JM
4857 break;
4858 }
9036c102 4859 last_byte = min(extent_map_end(em), block_end);
fda2832f 4860 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4861 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4862 struct extent_map *hole_em;
9036c102 4863 hole_size = last_byte - cur_offset;
9ed74f2d 4864
16e7549f
JB
4865 err = maybe_insert_hole(root, inode, cur_offset,
4866 hole_size);
4867 if (err)
3893e33b 4868 break;
5dc562c5
JB
4869 btrfs_drop_extent_cache(inode, cur_offset,
4870 cur_offset + hole_size - 1, 0);
4871 hole_em = alloc_extent_map();
4872 if (!hole_em) {
4873 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4874 &BTRFS_I(inode)->runtime_flags);
4875 goto next;
4876 }
4877 hole_em->start = cur_offset;
4878 hole_em->len = hole_size;
4879 hole_em->orig_start = cur_offset;
8082510e 4880
5dc562c5
JB
4881 hole_em->block_start = EXTENT_MAP_HOLE;
4882 hole_em->block_len = 0;
b4939680 4883 hole_em->orig_block_len = 0;
cc95bef6 4884 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4885 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4886 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4887 hole_em->generation = root->fs_info->generation;
8082510e 4888
5dc562c5
JB
4889 while (1) {
4890 write_lock(&em_tree->lock);
09a2a8f9 4891 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4892 write_unlock(&em_tree->lock);
4893 if (err != -EEXIST)
4894 break;
4895 btrfs_drop_extent_cache(inode, cur_offset,
4896 cur_offset +
4897 hole_size - 1, 0);
4898 }
4899 free_extent_map(hole_em);
9036c102 4900 }
16e7549f 4901next:
9036c102 4902 free_extent_map(em);
a22285a6 4903 em = NULL;
9036c102 4904 cur_offset = last_byte;
8082510e 4905 if (cur_offset >= block_end)
9036c102
YZ
4906 break;
4907 }
a22285a6 4908 free_extent_map(em);
2ac55d41
JB
4909 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4910 GFP_NOFS);
9036c102
YZ
4911 return err;
4912}
39279cc3 4913
3972f260 4914static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4915{
f4a2f4c5
MX
4916 struct btrfs_root *root = BTRFS_I(inode)->root;
4917 struct btrfs_trans_handle *trans;
a41ad394 4918 loff_t oldsize = i_size_read(inode);
3972f260
ES
4919 loff_t newsize = attr->ia_size;
4920 int mask = attr->ia_valid;
8082510e
YZ
4921 int ret;
4922
3972f260
ES
4923 /*
4924 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4925 * special case where we need to update the times despite not having
4926 * these flags set. For all other operations the VFS set these flags
4927 * explicitly if it wants a timestamp update.
4928 */
dff6efc3
CH
4929 if (newsize != oldsize) {
4930 inode_inc_iversion(inode);
4931 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4932 inode->i_ctime = inode->i_mtime =
4933 current_fs_time(inode->i_sb);
4934 }
3972f260 4935
a41ad394 4936 if (newsize > oldsize) {
9ea24bbe
FM
4937 /*
4938 * Don't do an expanding truncate while snapshoting is ongoing.
4939 * This is to ensure the snapshot captures a fully consistent
4940 * state of this file - if the snapshot captures this expanding
4941 * truncation, it must capture all writes that happened before
4942 * this truncation.
4943 */
0bc19f90 4944 btrfs_wait_for_snapshot_creation(root);
a41ad394 4945 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4946 if (ret) {
4947 btrfs_end_write_no_snapshoting(root);
8082510e 4948 return ret;
9ea24bbe 4949 }
8082510e 4950
f4a2f4c5 4951 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4952 if (IS_ERR(trans)) {
4953 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 4954 return PTR_ERR(trans);
9ea24bbe 4955 }
f4a2f4c5
MX
4956
4957 i_size_write(inode, newsize);
4958 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 4959 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 4960 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 4961 btrfs_end_write_no_snapshoting(root);
7ad85bb7 4962 btrfs_end_transaction(trans, root);
a41ad394 4963 } else {
8082510e 4964
a41ad394
JB
4965 /*
4966 * We're truncating a file that used to have good data down to
4967 * zero. Make sure it gets into the ordered flush list so that
4968 * any new writes get down to disk quickly.
4969 */
4970 if (newsize == 0)
72ac3c0d
JB
4971 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4972 &BTRFS_I(inode)->runtime_flags);
8082510e 4973
f3fe820c
JB
4974 /*
4975 * 1 for the orphan item we're going to add
4976 * 1 for the orphan item deletion.
4977 */
4978 trans = btrfs_start_transaction(root, 2);
4979 if (IS_ERR(trans))
4980 return PTR_ERR(trans);
4981
4982 /*
4983 * We need to do this in case we fail at _any_ point during the
4984 * actual truncate. Once we do the truncate_setsize we could
4985 * invalidate pages which forces any outstanding ordered io to
4986 * be instantly completed which will give us extents that need
4987 * to be truncated. If we fail to get an orphan inode down we
4988 * could have left over extents that were never meant to live,
01327610 4989 * so we need to guarantee from this point on that everything
f3fe820c
JB
4990 * will be consistent.
4991 */
4992 ret = btrfs_orphan_add(trans, inode);
4993 btrfs_end_transaction(trans, root);
4994 if (ret)
4995 return ret;
4996
a41ad394
JB
4997 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4998 truncate_setsize(inode, newsize);
2e60a51e
MX
4999
5000 /* Disable nonlocked read DIO to avoid the end less truncate */
5001 btrfs_inode_block_unlocked_dio(inode);
5002 inode_dio_wait(inode);
5003 btrfs_inode_resume_unlocked_dio(inode);
5004
a41ad394 5005 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5006 if (ret && inode->i_nlink) {
5007 int err;
5008
5009 /*
5010 * failed to truncate, disk_i_size is only adjusted down
5011 * as we remove extents, so it should represent the true
5012 * size of the inode, so reset the in memory size and
5013 * delete our orphan entry.
5014 */
5015 trans = btrfs_join_transaction(root);
5016 if (IS_ERR(trans)) {
5017 btrfs_orphan_del(NULL, inode);
5018 return ret;
5019 }
5020 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5021 err = btrfs_orphan_del(trans, inode);
5022 if (err)
5023 btrfs_abort_transaction(trans, root, err);
5024 btrfs_end_transaction(trans, root);
5025 }
8082510e
YZ
5026 }
5027
a41ad394 5028 return ret;
8082510e
YZ
5029}
5030
9036c102
YZ
5031static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5032{
2b0143b5 5033 struct inode *inode = d_inode(dentry);
b83cc969 5034 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5035 int err;
39279cc3 5036
b83cc969
LZ
5037 if (btrfs_root_readonly(root))
5038 return -EROFS;
5039
9036c102
YZ
5040 err = inode_change_ok(inode, attr);
5041 if (err)
5042 return err;
2bf5a725 5043
5a3f23d5 5044 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5045 err = btrfs_setsize(inode, attr);
8082510e
YZ
5046 if (err)
5047 return err;
39279cc3 5048 }
9036c102 5049
1025774c
CH
5050 if (attr->ia_valid) {
5051 setattr_copy(inode, attr);
0c4d2d95 5052 inode_inc_iversion(inode);
22c44fe6 5053 err = btrfs_dirty_inode(inode);
1025774c 5054
22c44fe6 5055 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5056 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5057 }
33268eaf 5058
39279cc3
CM
5059 return err;
5060}
61295eb8 5061
131e404a
FDBM
5062/*
5063 * While truncating the inode pages during eviction, we get the VFS calling
5064 * btrfs_invalidatepage() against each page of the inode. This is slow because
5065 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5066 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5067 * extent_state structures over and over, wasting lots of time.
5068 *
5069 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5070 * those expensive operations on a per page basis and do only the ordered io
5071 * finishing, while we release here the extent_map and extent_state structures,
5072 * without the excessive merging and splitting.
5073 */
5074static void evict_inode_truncate_pages(struct inode *inode)
5075{
5076 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5077 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5078 struct rb_node *node;
5079
5080 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5081 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5082
5083 write_lock(&map_tree->lock);
5084 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5085 struct extent_map *em;
5086
5087 node = rb_first(&map_tree->map);
5088 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5089 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5090 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5091 remove_extent_mapping(map_tree, em);
5092 free_extent_map(em);
7064dd5c
FM
5093 if (need_resched()) {
5094 write_unlock(&map_tree->lock);
5095 cond_resched();
5096 write_lock(&map_tree->lock);
5097 }
131e404a
FDBM
5098 }
5099 write_unlock(&map_tree->lock);
5100
6ca07097
FM
5101 /*
5102 * Keep looping until we have no more ranges in the io tree.
5103 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5104 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5105 * still in progress (unlocked the pages in the bio but did not yet
5106 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5107 * ranges can still be locked and eviction started because before
5108 * submitting those bios, which are executed by a separate task (work
5109 * queue kthread), inode references (inode->i_count) were not taken
5110 * (which would be dropped in the end io callback of each bio).
5111 * Therefore here we effectively end up waiting for those bios and
5112 * anyone else holding locked ranges without having bumped the inode's
5113 * reference count - if we don't do it, when they access the inode's
5114 * io_tree to unlock a range it may be too late, leading to an
5115 * use-after-free issue.
5116 */
131e404a
FDBM
5117 spin_lock(&io_tree->lock);
5118 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5119 struct extent_state *state;
5120 struct extent_state *cached_state = NULL;
6ca07097
FM
5121 u64 start;
5122 u64 end;
131e404a
FDBM
5123
5124 node = rb_first(&io_tree->state);
5125 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5126 start = state->start;
5127 end = state->end;
131e404a
FDBM
5128 spin_unlock(&io_tree->lock);
5129
ff13db41 5130 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5131
5132 /*
5133 * If still has DELALLOC flag, the extent didn't reach disk,
5134 * and its reserved space won't be freed by delayed_ref.
5135 * So we need to free its reserved space here.
5136 * (Refer to comment in btrfs_invalidatepage, case 2)
5137 *
5138 * Note, end is the bytenr of last byte, so we need + 1 here.
5139 */
5140 if (state->state & EXTENT_DELALLOC)
5141 btrfs_qgroup_free_data(inode, start, end - start + 1);
5142
6ca07097 5143 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5144 EXTENT_LOCKED | EXTENT_DIRTY |
5145 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5146 EXTENT_DEFRAG, 1, 1,
5147 &cached_state, GFP_NOFS);
131e404a 5148
7064dd5c 5149 cond_resched();
131e404a
FDBM
5150 spin_lock(&io_tree->lock);
5151 }
5152 spin_unlock(&io_tree->lock);
5153}
5154
bd555975 5155void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
5156{
5157 struct btrfs_trans_handle *trans;
5158 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5159 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5160 int steal_from_global = 0;
07127184 5161 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
5162 int ret;
5163
1abe9b8a 5164 trace_btrfs_inode_evict(inode);
5165
131e404a
FDBM
5166 evict_inode_truncate_pages(inode);
5167
69e9c6c6
SB
5168 if (inode->i_nlink &&
5169 ((btrfs_root_refs(&root->root_item) != 0 &&
5170 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5171 btrfs_is_free_space_inode(inode)))
bd555975
AV
5172 goto no_delete;
5173
39279cc3 5174 if (is_bad_inode(inode)) {
7b128766 5175 btrfs_orphan_del(NULL, inode);
39279cc3
CM
5176 goto no_delete;
5177 }
bd555975 5178 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5179 if (!special_file(inode->i_mode))
5180 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5181
f612496b
MX
5182 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5183
c71bf099 5184 if (root->fs_info->log_root_recovering) {
6bf02314 5185 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5186 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5187 goto no_delete;
5188 }
5189
76dda93c 5190 if (inode->i_nlink > 0) {
69e9c6c6
SB
5191 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5192 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5193 goto no_delete;
5194 }
5195
0e8c36a9
MX
5196 ret = btrfs_commit_inode_delayed_inode(inode);
5197 if (ret) {
5198 btrfs_orphan_del(NULL, inode);
5199 goto no_delete;
5200 }
5201
66d8f3dd 5202 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
5203 if (!rsv) {
5204 btrfs_orphan_del(NULL, inode);
5205 goto no_delete;
5206 }
4a338542 5207 rsv->size = min_size;
ca7e70f5 5208 rsv->failfast = 1;
726c35fa 5209 global_rsv = &root->fs_info->global_block_rsv;
4289a667 5210
dbe674a9 5211 btrfs_i_size_write(inode, 0);
5f39d397 5212
4289a667 5213 /*
8407aa46
MX
5214 * This is a bit simpler than btrfs_truncate since we've already
5215 * reserved our space for our orphan item in the unlink, so we just
5216 * need to reserve some slack space in case we add bytes and update
5217 * inode item when doing the truncate.
4289a667 5218 */
8082510e 5219 while (1) {
08e007d2
MX
5220 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5221 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5222
5223 /*
5224 * Try and steal from the global reserve since we will
5225 * likely not use this space anyway, we want to try as
5226 * hard as possible to get this to work.
5227 */
5228 if (ret)
3bce876f
JB
5229 steal_from_global++;
5230 else
5231 steal_from_global = 0;
5232 ret = 0;
d68fc57b 5233
3bce876f
JB
5234 /*
5235 * steal_from_global == 0: we reserved stuff, hooray!
5236 * steal_from_global == 1: we didn't reserve stuff, boo!
5237 * steal_from_global == 2: we've committed, still not a lot of
5238 * room but maybe we'll have room in the global reserve this
5239 * time.
5240 * steal_from_global == 3: abandon all hope!
5241 */
5242 if (steal_from_global > 2) {
c2cf52eb
SK
5243 btrfs_warn(root->fs_info,
5244 "Could not get space for a delete, will truncate on mount %d",
5245 ret);
4289a667
JB
5246 btrfs_orphan_del(NULL, inode);
5247 btrfs_free_block_rsv(root, rsv);
5248 goto no_delete;
d68fc57b 5249 }
7b128766 5250
0e8c36a9 5251 trans = btrfs_join_transaction(root);
4289a667
JB
5252 if (IS_ERR(trans)) {
5253 btrfs_orphan_del(NULL, inode);
5254 btrfs_free_block_rsv(root, rsv);
5255 goto no_delete;
d68fc57b 5256 }
7b128766 5257
3bce876f 5258 /*
01327610 5259 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5260 * sure there is room to do it, if not we need to commit and try
5261 * again.
5262 */
5263 if (steal_from_global) {
5264 if (!btrfs_check_space_for_delayed_refs(trans, root))
5265 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5266 min_size);
5267 else
5268 ret = -ENOSPC;
5269 }
5270
5271 /*
5272 * Couldn't steal from the global reserve, we have too much
5273 * pending stuff built up, commit the transaction and try it
5274 * again.
5275 */
5276 if (ret) {
5277 ret = btrfs_commit_transaction(trans, root);
5278 if (ret) {
5279 btrfs_orphan_del(NULL, inode);
5280 btrfs_free_block_rsv(root, rsv);
5281 goto no_delete;
5282 }
5283 continue;
5284 } else {
5285 steal_from_global = 0;
5286 }
5287
4289a667
JB
5288 trans->block_rsv = rsv;
5289
d68fc57b 5290 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5291 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5292 break;
85e21bac 5293
8407aa46 5294 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
5295 btrfs_end_transaction(trans, root);
5296 trans = NULL;
b53d3f5d 5297 btrfs_btree_balance_dirty(root);
8082510e 5298 }
5f39d397 5299
4289a667
JB
5300 btrfs_free_block_rsv(root, rsv);
5301
4ef31a45
JB
5302 /*
5303 * Errors here aren't a big deal, it just means we leave orphan items
5304 * in the tree. They will be cleaned up on the next mount.
5305 */
8082510e 5306 if (ret == 0) {
4289a667 5307 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
5308 btrfs_orphan_del(trans, inode);
5309 } else {
5310 btrfs_orphan_del(NULL, inode);
8082510e 5311 }
54aa1f4d 5312
4289a667 5313 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
5314 if (!(root == root->fs_info->tree_root ||
5315 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 5316 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 5317
54aa1f4d 5318 btrfs_end_transaction(trans, root);
b53d3f5d 5319 btrfs_btree_balance_dirty(root);
39279cc3 5320no_delete:
89042e5a 5321 btrfs_remove_delayed_node(inode);
dbd5768f 5322 clear_inode(inode);
39279cc3
CM
5323}
5324
5325/*
5326 * this returns the key found in the dir entry in the location pointer.
5327 * If no dir entries were found, location->objectid is 0.
5328 */
5329static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5330 struct btrfs_key *location)
5331{
5332 const char *name = dentry->d_name.name;
5333 int namelen = dentry->d_name.len;
5334 struct btrfs_dir_item *di;
5335 struct btrfs_path *path;
5336 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5337 int ret = 0;
39279cc3
CM
5338
5339 path = btrfs_alloc_path();
d8926bb3
MF
5340 if (!path)
5341 return -ENOMEM;
3954401f 5342
33345d01 5343 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 5344 namelen, 0);
0d9f7f3e
Y
5345 if (IS_ERR(di))
5346 ret = PTR_ERR(di);
d397712b 5347
c704005d 5348 if (IS_ERR_OR_NULL(di))
3954401f 5349 goto out_err;
d397712b 5350
5f39d397 5351 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5352out:
39279cc3
CM
5353 btrfs_free_path(path);
5354 return ret;
3954401f
CM
5355out_err:
5356 location->objectid = 0;
5357 goto out;
39279cc3
CM
5358}
5359
5360/*
5361 * when we hit a tree root in a directory, the btrfs part of the inode
5362 * needs to be changed to reflect the root directory of the tree root. This
5363 * is kind of like crossing a mount point.
5364 */
5365static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
5366 struct inode *dir,
5367 struct dentry *dentry,
5368 struct btrfs_key *location,
5369 struct btrfs_root **sub_root)
39279cc3 5370{
4df27c4d
YZ
5371 struct btrfs_path *path;
5372 struct btrfs_root *new_root;
5373 struct btrfs_root_ref *ref;
5374 struct extent_buffer *leaf;
1d4c08e0 5375 struct btrfs_key key;
4df27c4d
YZ
5376 int ret;
5377 int err = 0;
39279cc3 5378
4df27c4d
YZ
5379 path = btrfs_alloc_path();
5380 if (!path) {
5381 err = -ENOMEM;
5382 goto out;
5383 }
39279cc3 5384
4df27c4d 5385 err = -ENOENT;
1d4c08e0
DS
5386 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5387 key.type = BTRFS_ROOT_REF_KEY;
5388 key.offset = location->objectid;
5389
5390 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5391 0, 0);
4df27c4d
YZ
5392 if (ret) {
5393 if (ret < 0)
5394 err = ret;
5395 goto out;
5396 }
39279cc3 5397
4df27c4d
YZ
5398 leaf = path->nodes[0];
5399 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5400 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5401 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5402 goto out;
39279cc3 5403
4df27c4d
YZ
5404 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5405 (unsigned long)(ref + 1),
5406 dentry->d_name.len);
5407 if (ret)
5408 goto out;
5409
b3b4aa74 5410 btrfs_release_path(path);
4df27c4d
YZ
5411
5412 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5413 if (IS_ERR(new_root)) {
5414 err = PTR_ERR(new_root);
5415 goto out;
5416 }
5417
4df27c4d
YZ
5418 *sub_root = new_root;
5419 location->objectid = btrfs_root_dirid(&new_root->root_item);
5420 location->type = BTRFS_INODE_ITEM_KEY;
5421 location->offset = 0;
5422 err = 0;
5423out:
5424 btrfs_free_path(path);
5425 return err;
39279cc3
CM
5426}
5427
5d4f98a2
YZ
5428static void inode_tree_add(struct inode *inode)
5429{
5430 struct btrfs_root *root = BTRFS_I(inode)->root;
5431 struct btrfs_inode *entry;
03e860bd
FNP
5432 struct rb_node **p;
5433 struct rb_node *parent;
cef21937 5434 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5435 u64 ino = btrfs_ino(inode);
5d4f98a2 5436
1d3382cb 5437 if (inode_unhashed(inode))
76dda93c 5438 return;
e1409cef 5439 parent = NULL;
5d4f98a2 5440 spin_lock(&root->inode_lock);
e1409cef 5441 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5442 while (*p) {
5443 parent = *p;
5444 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5445
33345d01 5446 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5447 p = &parent->rb_left;
33345d01 5448 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5449 p = &parent->rb_right;
5d4f98a2
YZ
5450 else {
5451 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5452 (I_WILL_FREE | I_FREEING)));
cef21937 5453 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5454 RB_CLEAR_NODE(parent);
5455 spin_unlock(&root->inode_lock);
cef21937 5456 return;
5d4f98a2
YZ
5457 }
5458 }
cef21937
FDBM
5459 rb_link_node(new, parent, p);
5460 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5461 spin_unlock(&root->inode_lock);
5462}
5463
5464static void inode_tree_del(struct inode *inode)
5465{
5466 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5467 int empty = 0;
5d4f98a2 5468
03e860bd 5469 spin_lock(&root->inode_lock);
5d4f98a2 5470 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5471 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5472 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5473 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5474 }
03e860bd 5475 spin_unlock(&root->inode_lock);
76dda93c 5476
69e9c6c6 5477 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5478 synchronize_srcu(&root->fs_info->subvol_srcu);
5479 spin_lock(&root->inode_lock);
5480 empty = RB_EMPTY_ROOT(&root->inode_tree);
5481 spin_unlock(&root->inode_lock);
5482 if (empty)
5483 btrfs_add_dead_root(root);
5484 }
5485}
5486
143bede5 5487void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5488{
5489 struct rb_node *node;
5490 struct rb_node *prev;
5491 struct btrfs_inode *entry;
5492 struct inode *inode;
5493 u64 objectid = 0;
5494
7813b3db
LB
5495 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5496 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5497
5498 spin_lock(&root->inode_lock);
5499again:
5500 node = root->inode_tree.rb_node;
5501 prev = NULL;
5502 while (node) {
5503 prev = node;
5504 entry = rb_entry(node, struct btrfs_inode, rb_node);
5505
33345d01 5506 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5507 node = node->rb_left;
33345d01 5508 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5509 node = node->rb_right;
5510 else
5511 break;
5512 }
5513 if (!node) {
5514 while (prev) {
5515 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5516 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5517 node = prev;
5518 break;
5519 }
5520 prev = rb_next(prev);
5521 }
5522 }
5523 while (node) {
5524 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5525 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5526 inode = igrab(&entry->vfs_inode);
5527 if (inode) {
5528 spin_unlock(&root->inode_lock);
5529 if (atomic_read(&inode->i_count) > 1)
5530 d_prune_aliases(inode);
5531 /*
45321ac5 5532 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5533 * the inode cache when its usage count
5534 * hits zero.
5535 */
5536 iput(inode);
5537 cond_resched();
5538 spin_lock(&root->inode_lock);
5539 goto again;
5540 }
5541
5542 if (cond_resched_lock(&root->inode_lock))
5543 goto again;
5544
5545 node = rb_next(node);
5546 }
5547 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5548}
5549
e02119d5
CM
5550static int btrfs_init_locked_inode(struct inode *inode, void *p)
5551{
5552 struct btrfs_iget_args *args = p;
90d3e592
CM
5553 inode->i_ino = args->location->objectid;
5554 memcpy(&BTRFS_I(inode)->location, args->location,
5555 sizeof(*args->location));
e02119d5 5556 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5557 return 0;
5558}
5559
5560static int btrfs_find_actor(struct inode *inode, void *opaque)
5561{
5562 struct btrfs_iget_args *args = opaque;
90d3e592 5563 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5564 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5565}
5566
5d4f98a2 5567static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5568 struct btrfs_key *location,
5d4f98a2 5569 struct btrfs_root *root)
39279cc3
CM
5570{
5571 struct inode *inode;
5572 struct btrfs_iget_args args;
90d3e592 5573 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5574
90d3e592 5575 args.location = location;
39279cc3
CM
5576 args.root = root;
5577
778ba82b 5578 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5579 btrfs_init_locked_inode,
5580 (void *)&args);
5581 return inode;
5582}
5583
1a54ef8c
BR
5584/* Get an inode object given its location and corresponding root.
5585 * Returns in *is_new if the inode was read from disk
5586 */
5587struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5588 struct btrfs_root *root, int *new)
1a54ef8c
BR
5589{
5590 struct inode *inode;
5591
90d3e592 5592 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5593 if (!inode)
5d4f98a2 5594 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5595
5596 if (inode->i_state & I_NEW) {
1a54ef8c 5597 btrfs_read_locked_inode(inode);
1748f843
MF
5598 if (!is_bad_inode(inode)) {
5599 inode_tree_add(inode);
5600 unlock_new_inode(inode);
5601 if (new)
5602 *new = 1;
5603 } else {
e0b6d65b
ST
5604 unlock_new_inode(inode);
5605 iput(inode);
5606 inode = ERR_PTR(-ESTALE);
1748f843
MF
5607 }
5608 }
5609
1a54ef8c
BR
5610 return inode;
5611}
5612
4df27c4d
YZ
5613static struct inode *new_simple_dir(struct super_block *s,
5614 struct btrfs_key *key,
5615 struct btrfs_root *root)
5616{
5617 struct inode *inode = new_inode(s);
5618
5619 if (!inode)
5620 return ERR_PTR(-ENOMEM);
5621
4df27c4d
YZ
5622 BTRFS_I(inode)->root = root;
5623 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5624 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5625
5626 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5627 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5628 inode->i_fop = &simple_dir_operations;
5629 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
04b285f3 5630 inode->i_mtime = current_fs_time(inode->i_sb);
9cc97d64 5631 inode->i_atime = inode->i_mtime;
5632 inode->i_ctime = inode->i_mtime;
5633 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5634
5635 return inode;
5636}
5637
3de4586c 5638struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5639{
d397712b 5640 struct inode *inode;
4df27c4d 5641 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5642 struct btrfs_root *sub_root = root;
5643 struct btrfs_key location;
76dda93c 5644 int index;
b4aff1f8 5645 int ret = 0;
39279cc3
CM
5646
5647 if (dentry->d_name.len > BTRFS_NAME_LEN)
5648 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5649
39e3c955 5650 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5651 if (ret < 0)
5652 return ERR_PTR(ret);
5f39d397 5653
4df27c4d 5654 if (location.objectid == 0)
5662344b 5655 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5656
5657 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5658 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5659 return inode;
5660 }
5661
5662 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5663
76dda93c 5664 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5665 ret = fixup_tree_root_location(root, dir, dentry,
5666 &location, &sub_root);
5667 if (ret < 0) {
5668 if (ret != -ENOENT)
5669 inode = ERR_PTR(ret);
5670 else
5671 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5672 } else {
73f73415 5673 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5674 }
76dda93c
YZ
5675 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5676
34d19bad 5677 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5678 down_read(&root->fs_info->cleanup_work_sem);
5679 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5680 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5681 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5682 if (ret) {
5683 iput(inode);
66b4ffd1 5684 inode = ERR_PTR(ret);
01cd3367 5685 }
c71bf099
YZ
5686 }
5687
3de4586c
CM
5688 return inode;
5689}
5690
fe15ce44 5691static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5692{
5693 struct btrfs_root *root;
2b0143b5 5694 struct inode *inode = d_inode(dentry);
76dda93c 5695
848cce0d 5696 if (!inode && !IS_ROOT(dentry))
2b0143b5 5697 inode = d_inode(dentry->d_parent);
76dda93c 5698
848cce0d
LZ
5699 if (inode) {
5700 root = BTRFS_I(inode)->root;
efefb143
YZ
5701 if (btrfs_root_refs(&root->root_item) == 0)
5702 return 1;
848cce0d
LZ
5703
5704 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5705 return 1;
efefb143 5706 }
76dda93c
YZ
5707 return 0;
5708}
5709
b4aff1f8
JB
5710static void btrfs_dentry_release(struct dentry *dentry)
5711{
944a4515 5712 kfree(dentry->d_fsdata);
b4aff1f8
JB
5713}
5714
3de4586c 5715static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5716 unsigned int flags)
3de4586c 5717{
5662344b 5718 struct inode *inode;
a66e7cc6 5719
5662344b
TI
5720 inode = btrfs_lookup_dentry(dir, dentry);
5721 if (IS_ERR(inode)) {
5722 if (PTR_ERR(inode) == -ENOENT)
5723 inode = NULL;
5724 else
5725 return ERR_CAST(inode);
5726 }
5727
41d28bca 5728 return d_splice_alias(inode, dentry);
39279cc3
CM
5729}
5730
16cdcec7 5731unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5732 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5733};
5734
9cdda8d3 5735static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5736{
9cdda8d3 5737 struct inode *inode = file_inode(file);
39279cc3
CM
5738 struct btrfs_root *root = BTRFS_I(inode)->root;
5739 struct btrfs_item *item;
5740 struct btrfs_dir_item *di;
5741 struct btrfs_key key;
5f39d397 5742 struct btrfs_key found_key;
39279cc3 5743 struct btrfs_path *path;
16cdcec7
MX
5744 struct list_head ins_list;
5745 struct list_head del_list;
39279cc3 5746 int ret;
5f39d397 5747 struct extent_buffer *leaf;
39279cc3 5748 int slot;
39279cc3
CM
5749 unsigned char d_type;
5750 int over = 0;
5751 u32 di_cur;
5752 u32 di_total;
5753 u32 di_len;
5754 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5755 char tmp_name[32];
5756 char *name_ptr;
5757 int name_len;
9cdda8d3 5758 int is_curr = 0; /* ctx->pos points to the current index? */
bc4ef759 5759 bool emitted;
02dbfc99 5760 bool put = false;
39279cc3
CM
5761
5762 /* FIXME, use a real flag for deciding about the key type */
5763 if (root->fs_info->tree_root == root)
5764 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5765
9cdda8d3
AV
5766 if (!dir_emit_dots(file, ctx))
5767 return 0;
5768
49593bfa 5769 path = btrfs_alloc_path();
16cdcec7
MX
5770 if (!path)
5771 return -ENOMEM;
ff5714cc 5772
e4058b54 5773 path->reada = READA_FORWARD;
49593bfa 5774
16cdcec7
MX
5775 if (key_type == BTRFS_DIR_INDEX_KEY) {
5776 INIT_LIST_HEAD(&ins_list);
5777 INIT_LIST_HEAD(&del_list);
02dbfc99
OS
5778 put = btrfs_readdir_get_delayed_items(inode, &ins_list,
5779 &del_list);
16cdcec7
MX
5780 }
5781
962a298f 5782 key.type = key_type;
9cdda8d3 5783 key.offset = ctx->pos;
33345d01 5784 key.objectid = btrfs_ino(inode);
5f39d397 5785
39279cc3
CM
5786 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5787 if (ret < 0)
5788 goto err;
49593bfa 5789
bc4ef759 5790 emitted = false;
49593bfa 5791 while (1) {
5f39d397 5792 leaf = path->nodes[0];
39279cc3 5793 slot = path->slots[0];
b9e03af0
LZ
5794 if (slot >= btrfs_header_nritems(leaf)) {
5795 ret = btrfs_next_leaf(root, path);
5796 if (ret < 0)
5797 goto err;
5798 else if (ret > 0)
5799 break;
5800 continue;
39279cc3 5801 }
3de4586c 5802
dd3cc16b 5803 item = btrfs_item_nr(slot);
5f39d397
CM
5804 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5805
5806 if (found_key.objectid != key.objectid)
39279cc3 5807 break;
962a298f 5808 if (found_key.type != key_type)
39279cc3 5809 break;
9cdda8d3 5810 if (found_key.offset < ctx->pos)
b9e03af0 5811 goto next;
16cdcec7
MX
5812 if (key_type == BTRFS_DIR_INDEX_KEY &&
5813 btrfs_should_delete_dir_index(&del_list,
5814 found_key.offset))
5815 goto next;
5f39d397 5816
9cdda8d3 5817 ctx->pos = found_key.offset;
16cdcec7 5818 is_curr = 1;
49593bfa 5819
39279cc3
CM
5820 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5821 di_cur = 0;
5f39d397 5822 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5823
5824 while (di_cur < di_total) {
5f39d397
CM
5825 struct btrfs_key location;
5826
22a94d44
JB
5827 if (verify_dir_item(root, leaf, di))
5828 break;
5829
5f39d397 5830 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5831 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5832 name_ptr = tmp_name;
5833 } else {
49e350a4 5834 name_ptr = kmalloc(name_len, GFP_KERNEL);
49593bfa
DW
5835 if (!name_ptr) {
5836 ret = -ENOMEM;
5837 goto err;
5838 }
5f39d397
CM
5839 }
5840 read_extent_buffer(leaf, name_ptr,
5841 (unsigned long)(di + 1), name_len);
5842
5843 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5844 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5845
fede766f 5846
3de4586c 5847 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5848 * skip it.
5849 *
5850 * In contrast to old kernels, we insert the snapshot's
5851 * dir item and dir index after it has been created, so
5852 * we won't find a reference to our own snapshot. We
5853 * still keep the following code for backward
5854 * compatibility.
3de4586c
CM
5855 */
5856 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5857 location.objectid == root->root_key.objectid) {
5858 over = 0;
5859 goto skip;
5860 }
9cdda8d3
AV
5861 over = !dir_emit(ctx, name_ptr, name_len,
5862 location.objectid, d_type);
5f39d397 5863
3de4586c 5864skip:
5f39d397
CM
5865 if (name_ptr != tmp_name)
5866 kfree(name_ptr);
5867
39279cc3
CM
5868 if (over)
5869 goto nopos;
bc4ef759 5870 emitted = true;
5103e947 5871 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5872 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5873 di_cur += di_len;
5874 di = (struct btrfs_dir_item *)((char *)di + di_len);
5875 }
b9e03af0
LZ
5876next:
5877 path->slots[0]++;
39279cc3 5878 }
49593bfa 5879
16cdcec7
MX
5880 if (key_type == BTRFS_DIR_INDEX_KEY) {
5881 if (is_curr)
9cdda8d3 5882 ctx->pos++;
bc4ef759 5883 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
16cdcec7
MX
5884 if (ret)
5885 goto nopos;
5886 }
5887
bc4ef759
DS
5888 /*
5889 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5890 * it was was set to the termination value in previous call. We assume
5891 * that "." and ".." were emitted if we reach this point and set the
5892 * termination value as well for an empty directory.
5893 */
5894 if (ctx->pos > 2 && !emitted)
5895 goto nopos;
5896
49593bfa 5897 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5898 ctx->pos++;
5899
5900 /*
5901 * Stop new entries from being returned after we return the last
5902 * entry.
5903 *
5904 * New directory entries are assigned a strictly increasing
5905 * offset. This means that new entries created during readdir
5906 * are *guaranteed* to be seen in the future by that readdir.
5907 * This has broken buggy programs which operate on names as
5908 * they're returned by readdir. Until we re-use freed offsets
5909 * we have this hack to stop new entries from being returned
5910 * under the assumption that they'll never reach this huge
5911 * offset.
5912 *
5913 * This is being careful not to overflow 32bit loff_t unless the
5914 * last entry requires it because doing so has broken 32bit apps
5915 * in the past.
5916 */
5917 if (key_type == BTRFS_DIR_INDEX_KEY) {
5918 if (ctx->pos >= INT_MAX)
5919 ctx->pos = LLONG_MAX;
5920 else
5921 ctx->pos = INT_MAX;
5922 }
39279cc3
CM
5923nopos:
5924 ret = 0;
5925err:
02dbfc99
OS
5926 if (put)
5927 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5928 btrfs_free_path(path);
39279cc3
CM
5929 return ret;
5930}
5931
a9185b41 5932int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5933{
5934 struct btrfs_root *root = BTRFS_I(inode)->root;
5935 struct btrfs_trans_handle *trans;
5936 int ret = 0;
0af3d00b 5937 bool nolock = false;
39279cc3 5938
72ac3c0d 5939 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5940 return 0;
5941
83eea1f1 5942 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5943 nolock = true;
0af3d00b 5944
a9185b41 5945 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5946 if (nolock)
7a7eaa40 5947 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5948 else
7a7eaa40 5949 trans = btrfs_join_transaction(root);
3612b495
TI
5950 if (IS_ERR(trans))
5951 return PTR_ERR(trans);
a698d075 5952 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5953 }
5954 return ret;
5955}
5956
5957/*
54aa1f4d 5958 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5959 * inode changes. But, it is most likely to find the inode in cache.
5960 * FIXME, needs more benchmarking...there are no reasons other than performance
5961 * to keep or drop this code.
5962 */
48a3b636 5963static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5964{
5965 struct btrfs_root *root = BTRFS_I(inode)->root;
5966 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5967 int ret;
5968
72ac3c0d 5969 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5970 return 0;
39279cc3 5971
7a7eaa40 5972 trans = btrfs_join_transaction(root);
22c44fe6
JB
5973 if (IS_ERR(trans))
5974 return PTR_ERR(trans);
8929ecfa
YZ
5975
5976 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5977 if (ret && ret == -ENOSPC) {
5978 /* whoops, lets try again with the full transaction */
5979 btrfs_end_transaction(trans, root);
5980 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5981 if (IS_ERR(trans))
5982 return PTR_ERR(trans);
8929ecfa 5983
94b60442 5984 ret = btrfs_update_inode(trans, root, inode);
94b60442 5985 }
39279cc3 5986 btrfs_end_transaction(trans, root);
16cdcec7
MX
5987 if (BTRFS_I(inode)->delayed_node)
5988 btrfs_balance_delayed_items(root);
22c44fe6
JB
5989
5990 return ret;
5991}
5992
5993/*
5994 * This is a copy of file_update_time. We need this so we can return error on
5995 * ENOSPC for updating the inode in the case of file write and mmap writes.
5996 */
e41f941a
JB
5997static int btrfs_update_time(struct inode *inode, struct timespec *now,
5998 int flags)
22c44fe6 5999{
2bc55652
AB
6000 struct btrfs_root *root = BTRFS_I(inode)->root;
6001
6002 if (btrfs_root_readonly(root))
6003 return -EROFS;
6004
e41f941a 6005 if (flags & S_VERSION)
22c44fe6 6006 inode_inc_iversion(inode);
e41f941a
JB
6007 if (flags & S_CTIME)
6008 inode->i_ctime = *now;
6009 if (flags & S_MTIME)
6010 inode->i_mtime = *now;
6011 if (flags & S_ATIME)
6012 inode->i_atime = *now;
6013 return btrfs_dirty_inode(inode);
39279cc3
CM
6014}
6015
d352ac68
CM
6016/*
6017 * find the highest existing sequence number in a directory
6018 * and then set the in-memory index_cnt variable to reflect
6019 * free sequence numbers
6020 */
aec7477b
JB
6021static int btrfs_set_inode_index_count(struct inode *inode)
6022{
6023 struct btrfs_root *root = BTRFS_I(inode)->root;
6024 struct btrfs_key key, found_key;
6025 struct btrfs_path *path;
6026 struct extent_buffer *leaf;
6027 int ret;
6028
33345d01 6029 key.objectid = btrfs_ino(inode);
962a298f 6030 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6031 key.offset = (u64)-1;
6032
6033 path = btrfs_alloc_path();
6034 if (!path)
6035 return -ENOMEM;
6036
6037 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6038 if (ret < 0)
6039 goto out;
6040 /* FIXME: we should be able to handle this */
6041 if (ret == 0)
6042 goto out;
6043 ret = 0;
6044
6045 /*
6046 * MAGIC NUMBER EXPLANATION:
6047 * since we search a directory based on f_pos we have to start at 2
6048 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6049 * else has to start at 2
6050 */
6051 if (path->slots[0] == 0) {
6052 BTRFS_I(inode)->index_cnt = 2;
6053 goto out;
6054 }
6055
6056 path->slots[0]--;
6057
6058 leaf = path->nodes[0];
6059 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6060
33345d01 6061 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6062 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
6063 BTRFS_I(inode)->index_cnt = 2;
6064 goto out;
6065 }
6066
6067 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6068out:
6069 btrfs_free_path(path);
6070 return ret;
6071}
6072
d352ac68
CM
6073/*
6074 * helper to find a free sequence number in a given directory. This current
6075 * code is very simple, later versions will do smarter things in the btree
6076 */
3de4586c 6077int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
6078{
6079 int ret = 0;
6080
6081 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
6082 ret = btrfs_inode_delayed_dir_index_count(dir);
6083 if (ret) {
6084 ret = btrfs_set_inode_index_count(dir);
6085 if (ret)
6086 return ret;
6087 }
aec7477b
JB
6088 }
6089
00e4e6b3 6090 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
6091 BTRFS_I(dir)->index_cnt++;
6092
6093 return ret;
6094}
6095
b0d5d10f
CM
6096static int btrfs_insert_inode_locked(struct inode *inode)
6097{
6098 struct btrfs_iget_args args;
6099 args.location = &BTRFS_I(inode)->location;
6100 args.root = BTRFS_I(inode)->root;
6101
6102 return insert_inode_locked4(inode,
6103 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6104 btrfs_find_actor, &args);
6105}
6106
39279cc3
CM
6107static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6108 struct btrfs_root *root,
aec7477b 6109 struct inode *dir,
9c58309d 6110 const char *name, int name_len,
175a4eb7
AV
6111 u64 ref_objectid, u64 objectid,
6112 umode_t mode, u64 *index)
39279cc3
CM
6113{
6114 struct inode *inode;
5f39d397 6115 struct btrfs_inode_item *inode_item;
39279cc3 6116 struct btrfs_key *location;
5f39d397 6117 struct btrfs_path *path;
9c58309d
CM
6118 struct btrfs_inode_ref *ref;
6119 struct btrfs_key key[2];
6120 u32 sizes[2];
ef3b9af5 6121 int nitems = name ? 2 : 1;
9c58309d 6122 unsigned long ptr;
39279cc3 6123 int ret;
39279cc3 6124
5f39d397 6125 path = btrfs_alloc_path();
d8926bb3
MF
6126 if (!path)
6127 return ERR_PTR(-ENOMEM);
5f39d397 6128
39279cc3 6129 inode = new_inode(root->fs_info->sb);
8fb27640
YS
6130 if (!inode) {
6131 btrfs_free_path(path);
39279cc3 6132 return ERR_PTR(-ENOMEM);
8fb27640 6133 }
39279cc3 6134
5762b5c9
FM
6135 /*
6136 * O_TMPFILE, set link count to 0, so that after this point,
6137 * we fill in an inode item with the correct link count.
6138 */
6139 if (!name)
6140 set_nlink(inode, 0);
6141
581bb050
LZ
6142 /*
6143 * we have to initialize this early, so we can reclaim the inode
6144 * number if we fail afterwards in this function.
6145 */
6146 inode->i_ino = objectid;
6147
ef3b9af5 6148 if (dir && name) {
1abe9b8a 6149 trace_btrfs_inode_request(dir);
6150
3de4586c 6151 ret = btrfs_set_inode_index(dir, index);
09771430 6152 if (ret) {
8fb27640 6153 btrfs_free_path(path);
09771430 6154 iput(inode);
aec7477b 6155 return ERR_PTR(ret);
09771430 6156 }
ef3b9af5
FM
6157 } else if (dir) {
6158 *index = 0;
aec7477b
JB
6159 }
6160 /*
6161 * index_cnt is ignored for everything but a dir,
6162 * btrfs_get_inode_index_count has an explanation for the magic
6163 * number
6164 */
6165 BTRFS_I(inode)->index_cnt = 2;
67de1176 6166 BTRFS_I(inode)->dir_index = *index;
39279cc3 6167 BTRFS_I(inode)->root = root;
e02119d5 6168 BTRFS_I(inode)->generation = trans->transid;
76195853 6169 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6170
5dc562c5
JB
6171 /*
6172 * We could have gotten an inode number from somebody who was fsynced
6173 * and then removed in this same transaction, so let's just set full
6174 * sync since it will be a full sync anyway and this will blow away the
6175 * old info in the log.
6176 */
6177 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6178
9c58309d 6179 key[0].objectid = objectid;
962a298f 6180 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6181 key[0].offset = 0;
6182
9c58309d 6183 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6184
6185 if (name) {
6186 /*
6187 * Start new inodes with an inode_ref. This is slightly more
6188 * efficient for small numbers of hard links since they will
6189 * be packed into one item. Extended refs will kick in if we
6190 * add more hard links than can fit in the ref item.
6191 */
6192 key[1].objectid = objectid;
962a298f 6193 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6194 key[1].offset = ref_objectid;
6195
6196 sizes[1] = name_len + sizeof(*ref);
6197 }
9c58309d 6198
b0d5d10f
CM
6199 location = &BTRFS_I(inode)->location;
6200 location->objectid = objectid;
6201 location->offset = 0;
962a298f 6202 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6203
6204 ret = btrfs_insert_inode_locked(inode);
6205 if (ret < 0)
6206 goto fail;
6207
b9473439 6208 path->leave_spinning = 1;
ef3b9af5 6209 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6210 if (ret != 0)
b0d5d10f 6211 goto fail_unlock;
5f39d397 6212
ecc11fab 6213 inode_init_owner(inode, dir, mode);
a76a3cd4 6214 inode_set_bytes(inode, 0);
9cc97d64 6215
04b285f3 6216 inode->i_mtime = current_fs_time(inode->i_sb);
9cc97d64 6217 inode->i_atime = inode->i_mtime;
6218 inode->i_ctime = inode->i_mtime;
6219 BTRFS_I(inode)->i_otime = inode->i_mtime;
6220
5f39d397
CM
6221 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6222 struct btrfs_inode_item);
293f7e07
LZ
6223 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6224 sizeof(*inode_item));
e02119d5 6225 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6226
ef3b9af5
FM
6227 if (name) {
6228 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6229 struct btrfs_inode_ref);
6230 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6231 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6232 ptr = (unsigned long)(ref + 1);
6233 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6234 }
9c58309d 6235
5f39d397
CM
6236 btrfs_mark_buffer_dirty(path->nodes[0]);
6237 btrfs_free_path(path);
6238
6cbff00f
CH
6239 btrfs_inherit_iflags(inode, dir);
6240
569254b0 6241 if (S_ISREG(mode)) {
94272164
CM
6242 if (btrfs_test_opt(root, NODATASUM))
6243 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 6244 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
6245 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6246 BTRFS_INODE_NODATASUM;
94272164
CM
6247 }
6248
5d4f98a2 6249 inode_tree_add(inode);
1abe9b8a 6250
6251 trace_btrfs_inode_new(inode);
1973f0fa 6252 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6253
8ea05e3a
AB
6254 btrfs_update_root_times(trans, root);
6255
63541927
FDBM
6256 ret = btrfs_inode_inherit_props(trans, inode, dir);
6257 if (ret)
6258 btrfs_err(root->fs_info,
6259 "error inheriting props for ino %llu (root %llu): %d",
6260 btrfs_ino(inode), root->root_key.objectid, ret);
6261
39279cc3 6262 return inode;
b0d5d10f
CM
6263
6264fail_unlock:
6265 unlock_new_inode(inode);
5f39d397 6266fail:
ef3b9af5 6267 if (dir && name)
aec7477b 6268 BTRFS_I(dir)->index_cnt--;
5f39d397 6269 btrfs_free_path(path);
09771430 6270 iput(inode);
5f39d397 6271 return ERR_PTR(ret);
39279cc3
CM
6272}
6273
6274static inline u8 btrfs_inode_type(struct inode *inode)
6275{
6276 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6277}
6278
d352ac68
CM
6279/*
6280 * utility function to add 'inode' into 'parent_inode' with
6281 * a give name and a given sequence number.
6282 * if 'add_backref' is true, also insert a backref from the
6283 * inode to the parent directory.
6284 */
e02119d5
CM
6285int btrfs_add_link(struct btrfs_trans_handle *trans,
6286 struct inode *parent_inode, struct inode *inode,
6287 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6288{
4df27c4d 6289 int ret = 0;
39279cc3 6290 struct btrfs_key key;
e02119d5 6291 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
6292 u64 ino = btrfs_ino(inode);
6293 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6294
33345d01 6295 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6296 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6297 } else {
33345d01 6298 key.objectid = ino;
962a298f 6299 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6300 key.offset = 0;
6301 }
6302
33345d01 6303 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6304 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6305 key.objectid, root->root_key.objectid,
33345d01 6306 parent_ino, index, name, name_len);
4df27c4d 6307 } else if (add_backref) {
33345d01
LZ
6308 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6309 parent_ino, index);
4df27c4d 6310 }
39279cc3 6311
79787eaa
JM
6312 /* Nothing to clean up yet */
6313 if (ret)
6314 return ret;
4df27c4d 6315
79787eaa
JM
6316 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6317 parent_inode, &key,
6318 btrfs_inode_type(inode), index);
9c52057c 6319 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6320 goto fail_dir_item;
6321 else if (ret) {
6322 btrfs_abort_transaction(trans, root, ret);
6323 return ret;
39279cc3 6324 }
79787eaa
JM
6325
6326 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6327 name_len * 2);
0c4d2d95 6328 inode_inc_iversion(parent_inode);
04b285f3
DD
6329 parent_inode->i_mtime = parent_inode->i_ctime =
6330 current_fs_time(parent_inode->i_sb);
79787eaa
JM
6331 ret = btrfs_update_inode(trans, root, parent_inode);
6332 if (ret)
6333 btrfs_abort_transaction(trans, root, ret);
39279cc3 6334 return ret;
fe66a05a
CM
6335
6336fail_dir_item:
6337 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6338 u64 local_index;
6339 int err;
6340 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6341 key.objectid, root->root_key.objectid,
6342 parent_ino, &local_index, name, name_len);
6343
6344 } else if (add_backref) {
6345 u64 local_index;
6346 int err;
6347
6348 err = btrfs_del_inode_ref(trans, root, name, name_len,
6349 ino, parent_ino, &local_index);
6350 }
6351 return ret;
39279cc3
CM
6352}
6353
6354static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
6355 struct inode *dir, struct dentry *dentry,
6356 struct inode *inode, int backref, u64 index)
39279cc3 6357{
a1b075d2
JB
6358 int err = btrfs_add_link(trans, dir, inode,
6359 dentry->d_name.name, dentry->d_name.len,
6360 backref, index);
39279cc3
CM
6361 if (err > 0)
6362 err = -EEXIST;
6363 return err;
6364}
6365
618e21d5 6366static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6367 umode_t mode, dev_t rdev)
618e21d5
JB
6368{
6369 struct btrfs_trans_handle *trans;
6370 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6371 struct inode *inode = NULL;
618e21d5
JB
6372 int err;
6373 int drop_inode = 0;
6374 u64 objectid;
00e4e6b3 6375 u64 index = 0;
618e21d5 6376
9ed74f2d
JB
6377 /*
6378 * 2 for inode item and ref
6379 * 2 for dir items
6380 * 1 for xattr if selinux is on
6381 */
a22285a6
YZ
6382 trans = btrfs_start_transaction(root, 5);
6383 if (IS_ERR(trans))
6384 return PTR_ERR(trans);
1832a6d5 6385
581bb050
LZ
6386 err = btrfs_find_free_ino(root, &objectid);
6387 if (err)
6388 goto out_unlock;
6389
aec7477b 6390 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6391 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6392 mode, &index);
7cf96da3
TI
6393 if (IS_ERR(inode)) {
6394 err = PTR_ERR(inode);
618e21d5 6395 goto out_unlock;
7cf96da3 6396 }
618e21d5 6397
ad19db71
CS
6398 /*
6399 * If the active LSM wants to access the inode during
6400 * d_instantiate it needs these. Smack checks to see
6401 * if the filesystem supports xattrs by looking at the
6402 * ops vector.
6403 */
ad19db71 6404 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6405 init_special_inode(inode, inode->i_mode, rdev);
6406
6407 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6408 if (err)
b0d5d10f
CM
6409 goto out_unlock_inode;
6410
6411 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6412 if (err) {
6413 goto out_unlock_inode;
6414 } else {
1b4ab1bb 6415 btrfs_update_inode(trans, root, inode);
b0d5d10f 6416 unlock_new_inode(inode);
08c422c2 6417 d_instantiate(dentry, inode);
618e21d5 6418 }
b0d5d10f 6419
618e21d5 6420out_unlock:
7ad85bb7 6421 btrfs_end_transaction(trans, root);
c581afc8 6422 btrfs_balance_delayed_items(root);
b53d3f5d 6423 btrfs_btree_balance_dirty(root);
618e21d5
JB
6424 if (drop_inode) {
6425 inode_dec_link_count(inode);
6426 iput(inode);
6427 }
618e21d5 6428 return err;
b0d5d10f
CM
6429
6430out_unlock_inode:
6431 drop_inode = 1;
6432 unlock_new_inode(inode);
6433 goto out_unlock;
6434
618e21d5
JB
6435}
6436
39279cc3 6437static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6438 umode_t mode, bool excl)
39279cc3
CM
6439{
6440 struct btrfs_trans_handle *trans;
6441 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6442 struct inode *inode = NULL;
43baa579 6443 int drop_inode_on_err = 0;
a22285a6 6444 int err;
39279cc3 6445 u64 objectid;
00e4e6b3 6446 u64 index = 0;
39279cc3 6447
9ed74f2d
JB
6448 /*
6449 * 2 for inode item and ref
6450 * 2 for dir items
6451 * 1 for xattr if selinux is on
6452 */
a22285a6
YZ
6453 trans = btrfs_start_transaction(root, 5);
6454 if (IS_ERR(trans))
6455 return PTR_ERR(trans);
9ed74f2d 6456
581bb050
LZ
6457 err = btrfs_find_free_ino(root, &objectid);
6458 if (err)
6459 goto out_unlock;
6460
aec7477b 6461 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6462 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6463 mode, &index);
7cf96da3
TI
6464 if (IS_ERR(inode)) {
6465 err = PTR_ERR(inode);
39279cc3 6466 goto out_unlock;
7cf96da3 6467 }
43baa579 6468 drop_inode_on_err = 1;
ad19db71
CS
6469 /*
6470 * If the active LSM wants to access the inode during
6471 * d_instantiate it needs these. Smack checks to see
6472 * if the filesystem supports xattrs by looking at the
6473 * ops vector.
6474 */
6475 inode->i_fop = &btrfs_file_operations;
6476 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6477 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6478
6479 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6480 if (err)
6481 goto out_unlock_inode;
6482
6483 err = btrfs_update_inode(trans, root, inode);
6484 if (err)
6485 goto out_unlock_inode;
ad19db71 6486
a1b075d2 6487 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6488 if (err)
b0d5d10f 6489 goto out_unlock_inode;
43baa579 6490
43baa579 6491 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6492 unlock_new_inode(inode);
43baa579
FB
6493 d_instantiate(dentry, inode);
6494
39279cc3 6495out_unlock:
7ad85bb7 6496 btrfs_end_transaction(trans, root);
43baa579 6497 if (err && drop_inode_on_err) {
39279cc3
CM
6498 inode_dec_link_count(inode);
6499 iput(inode);
6500 }
c581afc8 6501 btrfs_balance_delayed_items(root);
b53d3f5d 6502 btrfs_btree_balance_dirty(root);
39279cc3 6503 return err;
b0d5d10f
CM
6504
6505out_unlock_inode:
6506 unlock_new_inode(inode);
6507 goto out_unlock;
6508
39279cc3
CM
6509}
6510
6511static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6512 struct dentry *dentry)
6513{
271dba45 6514 struct btrfs_trans_handle *trans = NULL;
39279cc3 6515 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6516 struct inode *inode = d_inode(old_dentry);
00e4e6b3 6517 u64 index;
39279cc3
CM
6518 int err;
6519 int drop_inode = 0;
6520
4a8be425
TH
6521 /* do not allow sys_link's with other subvols of the same device */
6522 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6523 return -EXDEV;
4a8be425 6524
f186373f 6525 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6526 return -EMLINK;
4a8be425 6527
3de4586c 6528 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6529 if (err)
6530 goto fail;
6531
a22285a6 6532 /*
7e6b6465 6533 * 2 items for inode and inode ref
a22285a6 6534 * 2 items for dir items
7e6b6465 6535 * 1 item for parent inode
a22285a6 6536 */
7e6b6465 6537 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6538 if (IS_ERR(trans)) {
6539 err = PTR_ERR(trans);
271dba45 6540 trans = NULL;
a22285a6
YZ
6541 goto fail;
6542 }
5f39d397 6543
67de1176
MX
6544 /* There are several dir indexes for this inode, clear the cache. */
6545 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6546 inc_nlink(inode);
0c4d2d95 6547 inode_inc_iversion(inode);
04b285f3 6548 inode->i_ctime = current_fs_time(inode->i_sb);
7de9c6ee 6549 ihold(inode);
e9976151 6550 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6551
a1b075d2 6552 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6553
a5719521 6554 if (err) {
54aa1f4d 6555 drop_inode = 1;
a5719521 6556 } else {
10d9f309 6557 struct dentry *parent = dentry->d_parent;
a5719521 6558 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6559 if (err)
6560 goto fail;
ef3b9af5
FM
6561 if (inode->i_nlink == 1) {
6562 /*
6563 * If new hard link count is 1, it's a file created
6564 * with open(2) O_TMPFILE flag.
6565 */
6566 err = btrfs_orphan_del(trans, inode);
6567 if (err)
6568 goto fail;
6569 }
08c422c2 6570 d_instantiate(dentry, inode);
6a912213 6571 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6572 }
39279cc3 6573
c581afc8 6574 btrfs_balance_delayed_items(root);
1832a6d5 6575fail:
271dba45
FM
6576 if (trans)
6577 btrfs_end_transaction(trans, root);
39279cc3
CM
6578 if (drop_inode) {
6579 inode_dec_link_count(inode);
6580 iput(inode);
6581 }
b53d3f5d 6582 btrfs_btree_balance_dirty(root);
39279cc3
CM
6583 return err;
6584}
6585
18bb1db3 6586static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6587{
b9d86667 6588 struct inode *inode = NULL;
39279cc3
CM
6589 struct btrfs_trans_handle *trans;
6590 struct btrfs_root *root = BTRFS_I(dir)->root;
6591 int err = 0;
6592 int drop_on_err = 0;
b9d86667 6593 u64 objectid = 0;
00e4e6b3 6594 u64 index = 0;
39279cc3 6595
9ed74f2d
JB
6596 /*
6597 * 2 items for inode and ref
6598 * 2 items for dir items
6599 * 1 for xattr if selinux is on
6600 */
a22285a6
YZ
6601 trans = btrfs_start_transaction(root, 5);
6602 if (IS_ERR(trans))
6603 return PTR_ERR(trans);
39279cc3 6604
581bb050
LZ
6605 err = btrfs_find_free_ino(root, &objectid);
6606 if (err)
6607 goto out_fail;
6608
aec7477b 6609 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6610 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6611 S_IFDIR | mode, &index);
39279cc3
CM
6612 if (IS_ERR(inode)) {
6613 err = PTR_ERR(inode);
6614 goto out_fail;
6615 }
5f39d397 6616
39279cc3 6617 drop_on_err = 1;
b0d5d10f
CM
6618 /* these must be set before we unlock the inode */
6619 inode->i_op = &btrfs_dir_inode_operations;
6620 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6621
2a7dba39 6622 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6623 if (err)
b0d5d10f 6624 goto out_fail_inode;
39279cc3 6625
dbe674a9 6626 btrfs_i_size_write(inode, 0);
39279cc3
CM
6627 err = btrfs_update_inode(trans, root, inode);
6628 if (err)
b0d5d10f 6629 goto out_fail_inode;
5f39d397 6630
a1b075d2
JB
6631 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6632 dentry->d_name.len, 0, index);
39279cc3 6633 if (err)
b0d5d10f 6634 goto out_fail_inode;
5f39d397 6635
39279cc3 6636 d_instantiate(dentry, inode);
b0d5d10f
CM
6637 /*
6638 * mkdir is special. We're unlocking after we call d_instantiate
6639 * to avoid a race with nfsd calling d_instantiate.
6640 */
6641 unlock_new_inode(inode);
39279cc3 6642 drop_on_err = 0;
39279cc3
CM
6643
6644out_fail:
7ad85bb7 6645 btrfs_end_transaction(trans, root);
c7cfb8a5
WS
6646 if (drop_on_err) {
6647 inode_dec_link_count(inode);
39279cc3 6648 iput(inode);
c7cfb8a5 6649 }
c581afc8 6650 btrfs_balance_delayed_items(root);
b53d3f5d 6651 btrfs_btree_balance_dirty(root);
39279cc3 6652 return err;
b0d5d10f
CM
6653
6654out_fail_inode:
6655 unlock_new_inode(inode);
6656 goto out_fail;
39279cc3
CM
6657}
6658
e6c4efd8
QW
6659/* Find next extent map of a given extent map, caller needs to ensure locks */
6660static struct extent_map *next_extent_map(struct extent_map *em)
6661{
6662 struct rb_node *next;
6663
6664 next = rb_next(&em->rb_node);
6665 if (!next)
6666 return NULL;
6667 return container_of(next, struct extent_map, rb_node);
6668}
6669
6670static struct extent_map *prev_extent_map(struct extent_map *em)
6671{
6672 struct rb_node *prev;
6673
6674 prev = rb_prev(&em->rb_node);
6675 if (!prev)
6676 return NULL;
6677 return container_of(prev, struct extent_map, rb_node);
6678}
6679
d352ac68 6680/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6681 * the existing extent is the nearest extent to map_start,
d352ac68 6682 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6683 * the best fitted new extent into the tree.
d352ac68 6684 */
3b951516
CM
6685static int merge_extent_mapping(struct extent_map_tree *em_tree,
6686 struct extent_map *existing,
e6dcd2dc 6687 struct extent_map *em,
51f395ad 6688 u64 map_start)
3b951516 6689{
e6c4efd8
QW
6690 struct extent_map *prev;
6691 struct extent_map *next;
6692 u64 start;
6693 u64 end;
3b951516 6694 u64 start_diff;
3b951516 6695
e6dcd2dc 6696 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6697
6698 if (existing->start > map_start) {
6699 next = existing;
6700 prev = prev_extent_map(next);
6701 } else {
6702 prev = existing;
6703 next = next_extent_map(prev);
6704 }
6705
6706 start = prev ? extent_map_end(prev) : em->start;
6707 start = max_t(u64, start, em->start);
6708 end = next ? next->start : extent_map_end(em);
6709 end = min_t(u64, end, extent_map_end(em));
6710 start_diff = start - em->start;
6711 em->start = start;
6712 em->len = end - start;
c8b97818
CM
6713 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6714 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6715 em->block_start += start_diff;
c8b97818
CM
6716 em->block_len -= start_diff;
6717 }
09a2a8f9 6718 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6719}
6720
c8b97818 6721static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6722 struct page *page,
c8b97818
CM
6723 size_t pg_offset, u64 extent_offset,
6724 struct btrfs_file_extent_item *item)
6725{
6726 int ret;
6727 struct extent_buffer *leaf = path->nodes[0];
6728 char *tmp;
6729 size_t max_size;
6730 unsigned long inline_size;
6731 unsigned long ptr;
261507a0 6732 int compress_type;
c8b97818
CM
6733
6734 WARN_ON(pg_offset != 0);
261507a0 6735 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6736 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6737 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6738 btrfs_item_nr(path->slots[0]));
c8b97818 6739 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6740 if (!tmp)
6741 return -ENOMEM;
c8b97818
CM
6742 ptr = btrfs_file_extent_inline_start(item);
6743
6744 read_extent_buffer(leaf, tmp, ptr, inline_size);
6745
09cbfeaf 6746 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6747 ret = btrfs_decompress(compress_type, tmp, page,
6748 extent_offset, inline_size, max_size);
c8b97818 6749 kfree(tmp);
166ae5a4 6750 return ret;
c8b97818
CM
6751}
6752
d352ac68
CM
6753/*
6754 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6755 * the ugly parts come from merging extents from the disk with the in-ram
6756 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6757 * where the in-ram extents might be locked pending data=ordered completion.
6758 *
6759 * This also copies inline extents directly into the page.
6760 */
d397712b 6761
a52d9a80 6762struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6763 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6764 int create)
6765{
6766 int ret;
6767 int err = 0;
a52d9a80
CM
6768 u64 extent_start = 0;
6769 u64 extent_end = 0;
33345d01 6770 u64 objectid = btrfs_ino(inode);
a52d9a80 6771 u32 found_type;
f421950f 6772 struct btrfs_path *path = NULL;
a52d9a80
CM
6773 struct btrfs_root *root = BTRFS_I(inode)->root;
6774 struct btrfs_file_extent_item *item;
5f39d397
CM
6775 struct extent_buffer *leaf;
6776 struct btrfs_key found_key;
a52d9a80
CM
6777 struct extent_map *em = NULL;
6778 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6779 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6780 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6781 const bool new_inline = !page || create;
a52d9a80 6782
a52d9a80 6783again:
890871be 6784 read_lock(&em_tree->lock);
d1310b2e 6785 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6786 if (em)
6787 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6788 read_unlock(&em_tree->lock);
d1310b2e 6789
a52d9a80 6790 if (em) {
e1c4b745
CM
6791 if (em->start > start || em->start + em->len <= start)
6792 free_extent_map(em);
6793 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6794 free_extent_map(em);
6795 else
6796 goto out;
a52d9a80 6797 }
172ddd60 6798 em = alloc_extent_map();
a52d9a80 6799 if (!em) {
d1310b2e
CM
6800 err = -ENOMEM;
6801 goto out;
a52d9a80 6802 }
e6dcd2dc 6803 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6804 em->start = EXTENT_MAP_HOLE;
445a6944 6805 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6806 em->len = (u64)-1;
c8b97818 6807 em->block_len = (u64)-1;
f421950f
CM
6808
6809 if (!path) {
6810 path = btrfs_alloc_path();
026fd317
JB
6811 if (!path) {
6812 err = -ENOMEM;
6813 goto out;
6814 }
6815 /*
6816 * Chances are we'll be called again, so go ahead and do
6817 * readahead
6818 */
e4058b54 6819 path->reada = READA_FORWARD;
f421950f
CM
6820 }
6821
179e29e4
CM
6822 ret = btrfs_lookup_file_extent(trans, root, path,
6823 objectid, start, trans != NULL);
a52d9a80
CM
6824 if (ret < 0) {
6825 err = ret;
6826 goto out;
6827 }
6828
6829 if (ret != 0) {
6830 if (path->slots[0] == 0)
6831 goto not_found;
6832 path->slots[0]--;
6833 }
6834
5f39d397
CM
6835 leaf = path->nodes[0];
6836 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6837 struct btrfs_file_extent_item);
a52d9a80 6838 /* are we inside the extent that was found? */
5f39d397 6839 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6840 found_type = found_key.type;
5f39d397 6841 if (found_key.objectid != objectid ||
a52d9a80 6842 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6843 /*
6844 * If we backup past the first extent we want to move forward
6845 * and see if there is an extent in front of us, otherwise we'll
6846 * say there is a hole for our whole search range which can
6847 * cause problems.
6848 */
6849 extent_end = start;
6850 goto next;
a52d9a80
CM
6851 }
6852
5f39d397
CM
6853 found_type = btrfs_file_extent_type(leaf, item);
6854 extent_start = found_key.offset;
d899e052
YZ
6855 if (found_type == BTRFS_FILE_EXTENT_REG ||
6856 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6857 extent_end = extent_start +
db94535d 6858 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6859 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6860 size_t size;
514ac8ad 6861 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6862 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6863 }
25a50341 6864next:
9036c102
YZ
6865 if (start >= extent_end) {
6866 path->slots[0]++;
6867 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6868 ret = btrfs_next_leaf(root, path);
6869 if (ret < 0) {
6870 err = ret;
6871 goto out;
a52d9a80 6872 }
9036c102
YZ
6873 if (ret > 0)
6874 goto not_found;
6875 leaf = path->nodes[0];
a52d9a80 6876 }
9036c102
YZ
6877 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6878 if (found_key.objectid != objectid ||
6879 found_key.type != BTRFS_EXTENT_DATA_KEY)
6880 goto not_found;
6881 if (start + len <= found_key.offset)
6882 goto not_found;
e2eca69d
WS
6883 if (start > found_key.offset)
6884 goto next;
9036c102 6885 em->start = start;
70c8a91c 6886 em->orig_start = start;
9036c102
YZ
6887 em->len = found_key.offset - start;
6888 goto not_found_em;
6889 }
6890
7ffbb598
FM
6891 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6892
d899e052
YZ
6893 if (found_type == BTRFS_FILE_EXTENT_REG ||
6894 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6895 goto insert;
6896 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6897 unsigned long ptr;
a52d9a80 6898 char *map;
3326d1b0
CM
6899 size_t size;
6900 size_t extent_offset;
6901 size_t copy_size;
a52d9a80 6902
7ffbb598 6903 if (new_inline)
689f9346 6904 goto out;
5f39d397 6905
514ac8ad 6906 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6907 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6908 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6909 size - extent_offset);
3326d1b0 6910 em->start = extent_start + extent_offset;
fda2832f 6911 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6912 em->orig_block_len = em->len;
70c8a91c 6913 em->orig_start = em->start;
689f9346 6914 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6915 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6916 if (btrfs_file_extent_compression(leaf, item) !=
6917 BTRFS_COMPRESS_NONE) {
e40da0e5 6918 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6919 extent_offset, item);
166ae5a4
ZB
6920 if (ret) {
6921 err = ret;
6922 goto out;
6923 }
c8b97818
CM
6924 } else {
6925 map = kmap(page);
6926 read_extent_buffer(leaf, map + pg_offset, ptr,
6927 copy_size);
09cbfeaf 6928 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6929 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6930 PAGE_SIZE - pg_offset -
93c82d57
CM
6931 copy_size);
6932 }
c8b97818
CM
6933 kunmap(page);
6934 }
179e29e4
CM
6935 flush_dcache_page(page);
6936 } else if (create && PageUptodate(page)) {
6bf7e080 6937 BUG();
179e29e4
CM
6938 if (!trans) {
6939 kunmap(page);
6940 free_extent_map(em);
6941 em = NULL;
ff5714cc 6942
b3b4aa74 6943 btrfs_release_path(path);
7a7eaa40 6944 trans = btrfs_join_transaction(root);
ff5714cc 6945
3612b495
TI
6946 if (IS_ERR(trans))
6947 return ERR_CAST(trans);
179e29e4
CM
6948 goto again;
6949 }
c8b97818 6950 map = kmap(page);
70dec807 6951 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6952 copy_size);
c8b97818 6953 kunmap(page);
179e29e4 6954 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6955 }
d1310b2e 6956 set_extent_uptodate(io_tree, em->start,
507903b8 6957 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6958 goto insert;
a52d9a80
CM
6959 }
6960not_found:
6961 em->start = start;
70c8a91c 6962 em->orig_start = start;
d1310b2e 6963 em->len = len;
a52d9a80 6964not_found_em:
5f39d397 6965 em->block_start = EXTENT_MAP_HOLE;
9036c102 6966 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6967insert:
b3b4aa74 6968 btrfs_release_path(path);
d1310b2e 6969 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6970 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6971 em->start, em->len, start, len);
a52d9a80
CM
6972 err = -EIO;
6973 goto out;
6974 }
d1310b2e
CM
6975
6976 err = 0;
890871be 6977 write_lock(&em_tree->lock);
09a2a8f9 6978 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6979 /* it is possible that someone inserted the extent into the tree
6980 * while we had the lock dropped. It is also possible that
6981 * an overlapping map exists in the tree
6982 */
a52d9a80 6983 if (ret == -EEXIST) {
3b951516 6984 struct extent_map *existing;
e6dcd2dc
CM
6985
6986 ret = 0;
6987
e6c4efd8
QW
6988 existing = search_extent_mapping(em_tree, start, len);
6989 /*
6990 * existing will always be non-NULL, since there must be
6991 * extent causing the -EEXIST.
6992 */
8dff9c85
CM
6993 if (existing->start == em->start &&
6994 extent_map_end(existing) == extent_map_end(em) &&
6995 em->block_start == existing->block_start) {
6996 /*
6997 * these two extents are the same, it happens
6998 * with inlines especially
6999 */
7000 free_extent_map(em);
7001 em = existing;
7002 err = 0;
7003
7004 } else if (start >= extent_map_end(existing) ||
32be3a1a 7005 start <= existing->start) {
e6c4efd8
QW
7006 /*
7007 * The existing extent map is the one nearest to
7008 * the [start, start + len) range which overlaps
7009 */
7010 err = merge_extent_mapping(em_tree, existing,
7011 em, start);
e1c4b745 7012 free_extent_map(existing);
e6c4efd8 7013 if (err) {
3b951516
CM
7014 free_extent_map(em);
7015 em = NULL;
7016 }
7017 } else {
7018 free_extent_map(em);
7019 em = existing;
e6dcd2dc 7020 err = 0;
a52d9a80 7021 }
a52d9a80 7022 }
890871be 7023 write_unlock(&em_tree->lock);
a52d9a80 7024out:
1abe9b8a 7025
4cd8587c 7026 trace_btrfs_get_extent(root, em);
1abe9b8a 7027
527afb44 7028 btrfs_free_path(path);
a52d9a80
CM
7029 if (trans) {
7030 ret = btrfs_end_transaction(trans, root);
d397712b 7031 if (!err)
a52d9a80
CM
7032 err = ret;
7033 }
a52d9a80
CM
7034 if (err) {
7035 free_extent_map(em);
a52d9a80
CM
7036 return ERR_PTR(err);
7037 }
79787eaa 7038 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7039 return em;
7040}
7041
ec29ed5b
CM
7042struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7043 size_t pg_offset, u64 start, u64 len,
7044 int create)
7045{
7046 struct extent_map *em;
7047 struct extent_map *hole_em = NULL;
7048 u64 range_start = start;
7049 u64 end;
7050 u64 found;
7051 u64 found_end;
7052 int err = 0;
7053
7054 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7055 if (IS_ERR(em))
7056 return em;
7057 if (em) {
7058 /*
f9e4fb53
LB
7059 * if our em maps to
7060 * - a hole or
7061 * - a pre-alloc extent,
7062 * there might actually be delalloc bytes behind it.
ec29ed5b 7063 */
f9e4fb53
LB
7064 if (em->block_start != EXTENT_MAP_HOLE &&
7065 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
7066 return em;
7067 else
7068 hole_em = em;
7069 }
7070
7071 /* check to see if we've wrapped (len == -1 or similar) */
7072 end = start + len;
7073 if (end < start)
7074 end = (u64)-1;
7075 else
7076 end -= 1;
7077
7078 em = NULL;
7079
7080 /* ok, we didn't find anything, lets look for delalloc */
7081 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7082 end, len, EXTENT_DELALLOC, 1);
7083 found_end = range_start + found;
7084 if (found_end < range_start)
7085 found_end = (u64)-1;
7086
7087 /*
7088 * we didn't find anything useful, return
7089 * the original results from get_extent()
7090 */
7091 if (range_start > end || found_end <= start) {
7092 em = hole_em;
7093 hole_em = NULL;
7094 goto out;
7095 }
7096
7097 /* adjust the range_start to make sure it doesn't
7098 * go backwards from the start they passed in
7099 */
67871254 7100 range_start = max(start, range_start);
ec29ed5b
CM
7101 found = found_end - range_start;
7102
7103 if (found > 0) {
7104 u64 hole_start = start;
7105 u64 hole_len = len;
7106
172ddd60 7107 em = alloc_extent_map();
ec29ed5b
CM
7108 if (!em) {
7109 err = -ENOMEM;
7110 goto out;
7111 }
7112 /*
7113 * when btrfs_get_extent can't find anything it
7114 * returns one huge hole
7115 *
7116 * make sure what it found really fits our range, and
7117 * adjust to make sure it is based on the start from
7118 * the caller
7119 */
7120 if (hole_em) {
7121 u64 calc_end = extent_map_end(hole_em);
7122
7123 if (calc_end <= start || (hole_em->start > end)) {
7124 free_extent_map(hole_em);
7125 hole_em = NULL;
7126 } else {
7127 hole_start = max(hole_em->start, start);
7128 hole_len = calc_end - hole_start;
7129 }
7130 }
7131 em->bdev = NULL;
7132 if (hole_em && range_start > hole_start) {
7133 /* our hole starts before our delalloc, so we
7134 * have to return just the parts of the hole
7135 * that go until the delalloc starts
7136 */
7137 em->len = min(hole_len,
7138 range_start - hole_start);
7139 em->start = hole_start;
7140 em->orig_start = hole_start;
7141 /*
7142 * don't adjust block start at all,
7143 * it is fixed at EXTENT_MAP_HOLE
7144 */
7145 em->block_start = hole_em->block_start;
7146 em->block_len = hole_len;
f9e4fb53
LB
7147 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7148 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7149 } else {
7150 em->start = range_start;
7151 em->len = found;
7152 em->orig_start = range_start;
7153 em->block_start = EXTENT_MAP_DELALLOC;
7154 em->block_len = found;
7155 }
7156 } else if (hole_em) {
7157 return hole_em;
7158 }
7159out:
7160
7161 free_extent_map(hole_em);
7162 if (err) {
7163 free_extent_map(em);
7164 return ERR_PTR(err);
7165 }
7166 return em;
7167}
7168
5f9a8a51
FM
7169static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7170 const u64 start,
7171 const u64 len,
7172 const u64 orig_start,
7173 const u64 block_start,
7174 const u64 block_len,
7175 const u64 orig_block_len,
7176 const u64 ram_bytes,
7177 const int type)
7178{
7179 struct extent_map *em = NULL;
7180 int ret;
7181
7182 down_read(&BTRFS_I(inode)->dio_sem);
7183 if (type != BTRFS_ORDERED_NOCOW) {
7184 em = create_pinned_em(inode, start, len, orig_start,
7185 block_start, block_len, orig_block_len,
7186 ram_bytes, type);
7187 if (IS_ERR(em))
7188 goto out;
7189 }
7190 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7191 len, block_len, type);
7192 if (ret) {
7193 if (em) {
7194 free_extent_map(em);
7195 btrfs_drop_extent_cache(inode, start,
7196 start + len - 1, 0);
7197 }
7198 em = ERR_PTR(ret);
7199 }
7200 out:
7201 up_read(&BTRFS_I(inode)->dio_sem);
7202
7203 return em;
7204}
7205
4b46fce2
JB
7206static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7207 u64 start, u64 len)
7208{
7209 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7210 struct extent_map *em;
4b46fce2
JB
7211 struct btrfs_key ins;
7212 u64 alloc_hint;
7213 int ret;
4b46fce2 7214
4b46fce2 7215 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 7216 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
e570fd27 7217 alloc_hint, &ins, 1, 1);
00361589
JB
7218 if (ret)
7219 return ERR_PTR(ret);
4b46fce2 7220
5f9a8a51
FM
7221 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7222 ins.objectid, ins.offset, ins.offset,
7223 ins.offset, 0);
9cfa3e34 7224 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
5f9a8a51 7225 if (IS_ERR(em))
e570fd27 7226 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
de0ee0ed 7227
4b46fce2
JB
7228 return em;
7229}
7230
46bfbb5c
CM
7231/*
7232 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7233 * block must be cow'd
7234 */
00361589 7235noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7236 u64 *orig_start, u64 *orig_block_len,
7237 u64 *ram_bytes)
46bfbb5c 7238{
00361589 7239 struct btrfs_trans_handle *trans;
46bfbb5c
CM
7240 struct btrfs_path *path;
7241 int ret;
7242 struct extent_buffer *leaf;
7243 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7244 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7245 struct btrfs_file_extent_item *fi;
7246 struct btrfs_key key;
7247 u64 disk_bytenr;
7248 u64 backref_offset;
7249 u64 extent_end;
7250 u64 num_bytes;
7251 int slot;
7252 int found_type;
7ee9e440 7253 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7254
46bfbb5c
CM
7255 path = btrfs_alloc_path();
7256 if (!path)
7257 return -ENOMEM;
7258
00361589 7259 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
7260 offset, 0);
7261 if (ret < 0)
7262 goto out;
7263
7264 slot = path->slots[0];
7265 if (ret == 1) {
7266 if (slot == 0) {
7267 /* can't find the item, must cow */
7268 ret = 0;
7269 goto out;
7270 }
7271 slot--;
7272 }
7273 ret = 0;
7274 leaf = path->nodes[0];
7275 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 7276 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
7277 key.type != BTRFS_EXTENT_DATA_KEY) {
7278 /* not our file or wrong item type, must cow */
7279 goto out;
7280 }
7281
7282 if (key.offset > offset) {
7283 /* Wrong offset, must cow */
7284 goto out;
7285 }
7286
7287 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7288 found_type = btrfs_file_extent_type(leaf, fi);
7289 if (found_type != BTRFS_FILE_EXTENT_REG &&
7290 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7291 /* not a regular extent, must cow */
7292 goto out;
7293 }
7ee9e440
JB
7294
7295 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7296 goto out;
7297
e77751aa
MX
7298 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7299 if (extent_end <= offset)
7300 goto out;
7301
46bfbb5c 7302 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7303 if (disk_bytenr == 0)
7304 goto out;
7305
7306 if (btrfs_file_extent_compression(leaf, fi) ||
7307 btrfs_file_extent_encryption(leaf, fi) ||
7308 btrfs_file_extent_other_encoding(leaf, fi))
7309 goto out;
7310
46bfbb5c
CM
7311 backref_offset = btrfs_file_extent_offset(leaf, fi);
7312
7ee9e440
JB
7313 if (orig_start) {
7314 *orig_start = key.offset - backref_offset;
7315 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7316 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7317 }
eb384b55 7318
46bfbb5c
CM
7319 if (btrfs_extent_readonly(root, disk_bytenr))
7320 goto out;
7b2b7085
MX
7321
7322 num_bytes = min(offset + *len, extent_end) - offset;
7323 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7324 u64 range_end;
7325
7326 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7327 ret = test_range_bit(io_tree, offset, range_end,
7328 EXTENT_DELALLOC, 0, NULL);
7329 if (ret) {
7330 ret = -EAGAIN;
7331 goto out;
7332 }
7333 }
7334
1bda19eb 7335 btrfs_release_path(path);
46bfbb5c
CM
7336
7337 /*
7338 * look for other files referencing this extent, if we
7339 * find any we must cow
7340 */
00361589
JB
7341 trans = btrfs_join_transaction(root);
7342 if (IS_ERR(trans)) {
7343 ret = 0;
46bfbb5c 7344 goto out;
00361589
JB
7345 }
7346
7347 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7348 key.offset - backref_offset, disk_bytenr);
7349 btrfs_end_transaction(trans, root);
7350 if (ret) {
7351 ret = 0;
7352 goto out;
7353 }
46bfbb5c
CM
7354
7355 /*
7356 * adjust disk_bytenr and num_bytes to cover just the bytes
7357 * in this extent we are about to write. If there
7358 * are any csums in that range we have to cow in order
7359 * to keep the csums correct
7360 */
7361 disk_bytenr += backref_offset;
7362 disk_bytenr += offset - key.offset;
46bfbb5c
CM
7363 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7364 goto out;
7365 /*
7366 * all of the above have passed, it is safe to overwrite this extent
7367 * without cow
7368 */
eb384b55 7369 *len = num_bytes;
46bfbb5c
CM
7370 ret = 1;
7371out:
7372 btrfs_free_path(path);
7373 return ret;
7374}
7375
fc4adbff
AG
7376bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7377{
7378 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7379 int found = false;
7380 void **pagep = NULL;
7381 struct page *page = NULL;
7382 int start_idx;
7383 int end_idx;
7384
09cbfeaf 7385 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7386
7387 /*
7388 * end is the last byte in the last page. end == start is legal
7389 */
09cbfeaf 7390 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7391
7392 rcu_read_lock();
7393
7394 /* Most of the code in this while loop is lifted from
7395 * find_get_page. It's been modified to begin searching from a
7396 * page and return just the first page found in that range. If the
7397 * found idx is less than or equal to the end idx then we know that
7398 * a page exists. If no pages are found or if those pages are
7399 * outside of the range then we're fine (yay!) */
7400 while (page == NULL &&
7401 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7402 page = radix_tree_deref_slot(pagep);
7403 if (unlikely(!page))
7404 break;
7405
7406 if (radix_tree_exception(page)) {
809f9016
FM
7407 if (radix_tree_deref_retry(page)) {
7408 page = NULL;
fc4adbff 7409 continue;
809f9016 7410 }
fc4adbff
AG
7411 /*
7412 * Otherwise, shmem/tmpfs must be storing a swap entry
7413 * here as an exceptional entry: so return it without
7414 * attempting to raise page count.
7415 */
6fdef6d4 7416 page = NULL;
fc4adbff
AG
7417 break; /* TODO: Is this relevant for this use case? */
7418 }
7419
91405151
FM
7420 if (!page_cache_get_speculative(page)) {
7421 page = NULL;
fc4adbff 7422 continue;
91405151 7423 }
fc4adbff
AG
7424
7425 /*
7426 * Has the page moved?
7427 * This is part of the lockless pagecache protocol. See
7428 * include/linux/pagemap.h for details.
7429 */
7430 if (unlikely(page != *pagep)) {
09cbfeaf 7431 put_page(page);
fc4adbff
AG
7432 page = NULL;
7433 }
7434 }
7435
7436 if (page) {
7437 if (page->index <= end_idx)
7438 found = true;
09cbfeaf 7439 put_page(page);
fc4adbff
AG
7440 }
7441
7442 rcu_read_unlock();
7443 return found;
7444}
7445
eb838e73
JB
7446static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7447 struct extent_state **cached_state, int writing)
7448{
7449 struct btrfs_ordered_extent *ordered;
7450 int ret = 0;
7451
7452 while (1) {
7453 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7454 cached_state);
eb838e73
JB
7455 /*
7456 * We're concerned with the entire range that we're going to be
01327610 7457 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7458 * extents in this range.
7459 */
7460 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7461 lockend - lockstart + 1);
7462
7463 /*
7464 * We need to make sure there are no buffered pages in this
7465 * range either, we could have raced between the invalidate in
7466 * generic_file_direct_write and locking the extent. The
7467 * invalidate needs to happen so that reads after a write do not
7468 * get stale data.
7469 */
fc4adbff
AG
7470 if (!ordered &&
7471 (!writing ||
7472 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7473 break;
7474
7475 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7476 cached_state, GFP_NOFS);
7477
7478 if (ordered) {
ade77029
FM
7479 /*
7480 * If we are doing a DIO read and the ordered extent we
7481 * found is for a buffered write, we can not wait for it
7482 * to complete and retry, because if we do so we can
7483 * deadlock with concurrent buffered writes on page
7484 * locks. This happens only if our DIO read covers more
7485 * than one extent map, if at this point has already
7486 * created an ordered extent for a previous extent map
7487 * and locked its range in the inode's io tree, and a
7488 * concurrent write against that previous extent map's
7489 * range and this range started (we unlock the ranges
7490 * in the io tree only when the bios complete and
7491 * buffered writes always lock pages before attempting
7492 * to lock range in the io tree).
7493 */
7494 if (writing ||
7495 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7496 btrfs_start_ordered_extent(inode, ordered, 1);
7497 else
7498 ret = -ENOTBLK;
eb838e73
JB
7499 btrfs_put_ordered_extent(ordered);
7500 } else {
eb838e73 7501 /*
b850ae14
FM
7502 * We could trigger writeback for this range (and wait
7503 * for it to complete) and then invalidate the pages for
7504 * this range (through invalidate_inode_pages2_range()),
7505 * but that can lead us to a deadlock with a concurrent
7506 * call to readpages() (a buffered read or a defrag call
7507 * triggered a readahead) on a page lock due to an
7508 * ordered dio extent we created before but did not have
7509 * yet a corresponding bio submitted (whence it can not
7510 * complete), which makes readpages() wait for that
7511 * ordered extent to complete while holding a lock on
7512 * that page.
eb838e73 7513 */
b850ae14 7514 ret = -ENOTBLK;
eb838e73
JB
7515 }
7516
ade77029
FM
7517 if (ret)
7518 break;
7519
eb838e73
JB
7520 cond_resched();
7521 }
7522
7523 return ret;
7524}
7525
69ffb543
JB
7526static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7527 u64 len, u64 orig_start,
7528 u64 block_start, u64 block_len,
cc95bef6
JB
7529 u64 orig_block_len, u64 ram_bytes,
7530 int type)
69ffb543
JB
7531{
7532 struct extent_map_tree *em_tree;
7533 struct extent_map *em;
7534 struct btrfs_root *root = BTRFS_I(inode)->root;
7535 int ret;
7536
7537 em_tree = &BTRFS_I(inode)->extent_tree;
7538 em = alloc_extent_map();
7539 if (!em)
7540 return ERR_PTR(-ENOMEM);
7541
7542 em->start = start;
7543 em->orig_start = orig_start;
2ab28f32
JB
7544 em->mod_start = start;
7545 em->mod_len = len;
69ffb543
JB
7546 em->len = len;
7547 em->block_len = block_len;
7548 em->block_start = block_start;
7549 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7550 em->orig_block_len = orig_block_len;
cc95bef6 7551 em->ram_bytes = ram_bytes;
70c8a91c 7552 em->generation = -1;
69ffb543
JB
7553 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7554 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7555 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7556
7557 do {
7558 btrfs_drop_extent_cache(inode, em->start,
7559 em->start + em->len - 1, 0);
7560 write_lock(&em_tree->lock);
09a2a8f9 7561 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7562 write_unlock(&em_tree->lock);
7563 } while (ret == -EEXIST);
7564
7565 if (ret) {
7566 free_extent_map(em);
7567 return ERR_PTR(ret);
7568 }
7569
7570 return em;
7571}
7572
9c9464cc
FM
7573static void adjust_dio_outstanding_extents(struct inode *inode,
7574 struct btrfs_dio_data *dio_data,
7575 const u64 len)
7576{
7577 unsigned num_extents;
7578
7579 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7580 BTRFS_MAX_EXTENT_SIZE);
7581 /*
7582 * If we have an outstanding_extents count still set then we're
7583 * within our reservation, otherwise we need to adjust our inode
7584 * counter appropriately.
7585 */
7586 if (dio_data->outstanding_extents) {
7587 dio_data->outstanding_extents -= num_extents;
7588 } else {
7589 spin_lock(&BTRFS_I(inode)->lock);
7590 BTRFS_I(inode)->outstanding_extents += num_extents;
7591 spin_unlock(&BTRFS_I(inode)->lock);
7592 }
7593}
7594
4b46fce2
JB
7595static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7596 struct buffer_head *bh_result, int create)
7597{
7598 struct extent_map *em;
7599 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7600 struct extent_state *cached_state = NULL;
50745b0a 7601 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7602 u64 start = iblock << inode->i_blkbits;
eb838e73 7603 u64 lockstart, lockend;
4b46fce2 7604 u64 len = bh_result->b_size;
eb838e73 7605 int unlock_bits = EXTENT_LOCKED;
0934856d 7606 int ret = 0;
eb838e73 7607
172a5049 7608 if (create)
3266789f 7609 unlock_bits |= EXTENT_DIRTY;
172a5049 7610 else
c329861d 7611 len = min_t(u64, len, root->sectorsize);
eb838e73 7612
c329861d
JB
7613 lockstart = start;
7614 lockend = start + len - 1;
7615
e1cbbfa5
JB
7616 if (current->journal_info) {
7617 /*
7618 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7619 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7620 * confused.
7621 */
50745b0a 7622 dio_data = current->journal_info;
e1cbbfa5
JB
7623 current->journal_info = NULL;
7624 }
7625
eb838e73
JB
7626 /*
7627 * If this errors out it's because we couldn't invalidate pagecache for
7628 * this range and we need to fallback to buffered.
7629 */
9c9464cc
FM
7630 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7631 create)) {
7632 ret = -ENOTBLK;
7633 goto err;
7634 }
eb838e73 7635
4b46fce2 7636 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7637 if (IS_ERR(em)) {
7638 ret = PTR_ERR(em);
7639 goto unlock_err;
7640 }
4b46fce2
JB
7641
7642 /*
7643 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7644 * io. INLINE is special, and we could probably kludge it in here, but
7645 * it's still buffered so for safety lets just fall back to the generic
7646 * buffered path.
7647 *
7648 * For COMPRESSED we _have_ to read the entire extent in so we can
7649 * decompress it, so there will be buffering required no matter what we
7650 * do, so go ahead and fallback to buffered.
7651 *
01327610 7652 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7653 * to buffered IO. Don't blame me, this is the price we pay for using
7654 * the generic code.
7655 */
7656 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7657 em->block_start == EXTENT_MAP_INLINE) {
7658 free_extent_map(em);
eb838e73
JB
7659 ret = -ENOTBLK;
7660 goto unlock_err;
4b46fce2
JB
7661 }
7662
7663 /* Just a good old fashioned hole, return */
7664 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7665 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7666 free_extent_map(em);
eb838e73 7667 goto unlock_err;
4b46fce2
JB
7668 }
7669
7670 /*
7671 * We don't allocate a new extent in the following cases
7672 *
7673 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7674 * existing extent.
7675 * 2) The extent is marked as PREALLOC. We're good to go here and can
7676 * just use the extent.
7677 *
7678 */
46bfbb5c 7679 if (!create) {
eb838e73
JB
7680 len = min(len, em->len - (start - em->start));
7681 lockstart = start + len;
7682 goto unlock;
46bfbb5c 7683 }
4b46fce2
JB
7684
7685 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7686 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7687 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7688 int type;
eb384b55 7689 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7690
7691 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7692 type = BTRFS_ORDERED_PREALLOC;
7693 else
7694 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7695 len = min(len, em->len - (start - em->start));
4b46fce2 7696 block_start = em->block_start + (start - em->start);
46bfbb5c 7697
00361589 7698 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c
FM
7699 &orig_block_len, &ram_bytes) == 1 &&
7700 btrfs_inc_nocow_writers(root->fs_info, block_start)) {
5f9a8a51 7701 struct extent_map *em2;
0b901916 7702
5f9a8a51
FM
7703 em2 = btrfs_create_dio_extent(inode, start, len,
7704 orig_start, block_start,
7705 len, orig_block_len,
7706 ram_bytes, type);
f78c436c 7707 btrfs_dec_nocow_writers(root->fs_info, block_start);
69ffb543
JB
7708 if (type == BTRFS_ORDERED_PREALLOC) {
7709 free_extent_map(em);
5f9a8a51 7710 em = em2;
69ffb543 7711 }
5f9a8a51
FM
7712 if (em2 && IS_ERR(em2)) {
7713 ret = PTR_ERR(em2);
eb838e73 7714 goto unlock_err;
46bfbb5c
CM
7715 }
7716 goto unlock;
4b46fce2 7717 }
4b46fce2 7718 }
00361589 7719
46bfbb5c
CM
7720 /*
7721 * this will cow the extent, reset the len in case we changed
7722 * it above
7723 */
7724 len = bh_result->b_size;
70c8a91c
JB
7725 free_extent_map(em);
7726 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7727 if (IS_ERR(em)) {
7728 ret = PTR_ERR(em);
7729 goto unlock_err;
7730 }
46bfbb5c
CM
7731 len = min(len, em->len - (start - em->start));
7732unlock:
4b46fce2
JB
7733 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7734 inode->i_blkbits;
46bfbb5c 7735 bh_result->b_size = len;
4b46fce2
JB
7736 bh_result->b_bdev = em->bdev;
7737 set_buffer_mapped(bh_result);
c3473e83
JB
7738 if (create) {
7739 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7740 set_buffer_new(bh_result);
7741
7742 /*
7743 * Need to update the i_size under the extent lock so buffered
7744 * readers will get the updated i_size when we unlock.
7745 */
7746 if (start + len > i_size_read(inode))
7747 i_size_write(inode, start + len);
0934856d 7748
9c9464cc 7749 adjust_dio_outstanding_extents(inode, dio_data, len);
7cf5b976 7750 btrfs_free_reserved_data_space(inode, start, len);
50745b0a 7751 WARN_ON(dio_data->reserve < len);
7752 dio_data->reserve -= len;
f28a4928 7753 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7754 current->journal_info = dio_data;
c3473e83 7755 }
4b46fce2 7756
eb838e73
JB
7757 /*
7758 * In the case of write we need to clear and unlock the entire range,
7759 * in the case of read we need to unlock only the end area that we
7760 * aren't using if there is any left over space.
7761 */
24c03fa5 7762 if (lockstart < lockend) {
0934856d
MX
7763 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7764 lockend, unlock_bits, 1, 0,
7765 &cached_state, GFP_NOFS);
24c03fa5 7766 } else {
eb838e73 7767 free_extent_state(cached_state);
24c03fa5 7768 }
eb838e73 7769
4b46fce2
JB
7770 free_extent_map(em);
7771
7772 return 0;
eb838e73
JB
7773
7774unlock_err:
eb838e73
JB
7775 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7776 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7777err:
50745b0a 7778 if (dio_data)
7779 current->journal_info = dio_data;
9c9464cc
FM
7780 /*
7781 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7782 * write less data then expected, so that we don't underflow our inode's
7783 * outstanding extents counter.
7784 */
7785 if (create && dio_data)
7786 adjust_dio_outstanding_extents(inode, dio_data, len);
7787
eb838e73 7788 return ret;
4b46fce2
JB
7789}
7790
8b110e39 7791static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
81a75f67 7792 int mirror_num)
8b110e39
MX
7793{
7794 struct btrfs_root *root = BTRFS_I(inode)->root;
7795 int ret;
7796
37226b21 7797 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39
MX
7798
7799 bio_get(bio);
7800
7801 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7802 BTRFS_WQ_ENDIO_DIO_REPAIR);
7803 if (ret)
7804 goto err;
7805
81a75f67 7806 ret = btrfs_map_bio(root, bio, mirror_num, 0);
8b110e39
MX
7807err:
7808 bio_put(bio);
7809 return ret;
7810}
7811
7812static int btrfs_check_dio_repairable(struct inode *inode,
7813 struct bio *failed_bio,
7814 struct io_failure_record *failrec,
7815 int failed_mirror)
7816{
7817 int num_copies;
7818
7819 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7820 failrec->logical, failrec->len);
7821 if (num_copies == 1) {
7822 /*
7823 * we only have a single copy of the data, so don't bother with
7824 * all the retry and error correction code that follows. no
7825 * matter what the error is, it is very likely to persist.
7826 */
7827 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7828 num_copies, failrec->this_mirror, failed_mirror);
7829 return 0;
7830 }
7831
7832 failrec->failed_mirror = failed_mirror;
7833 failrec->this_mirror++;
7834 if (failrec->this_mirror == failed_mirror)
7835 failrec->this_mirror++;
7836
7837 if (failrec->this_mirror > num_copies) {
7838 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7839 num_copies, failrec->this_mirror, failed_mirror);
7840 return 0;
7841 }
7842
7843 return 1;
7844}
7845
7846static int dio_read_error(struct inode *inode, struct bio *failed_bio,
2dabb324
CR
7847 struct page *page, unsigned int pgoff,
7848 u64 start, u64 end, int failed_mirror,
7849 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7850{
7851 struct io_failure_record *failrec;
7852 struct bio *bio;
7853 int isector;
7854 int read_mode;
7855 int ret;
7856
37226b21 7857 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7858
7859 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7860 if (ret)
7861 return ret;
7862
7863 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7864 failed_mirror);
7865 if (!ret) {
7866 free_io_failure(inode, failrec);
7867 return -EIO;
7868 }
7869
2dabb324
CR
7870 if ((failed_bio->bi_vcnt > 1)
7871 || (failed_bio->bi_io_vec->bv_len
7872 > BTRFS_I(inode)->root->sectorsize))
8b110e39
MX
7873 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7874 else
7875 read_mode = READ_SYNC;
7876
7877 isector = start - btrfs_io_bio(failed_bio)->logical;
7878 isector >>= inode->i_sb->s_blocksize_bits;
7879 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7880 pgoff, isector, repair_endio, repair_arg);
8b110e39
MX
7881 if (!bio) {
7882 free_io_failure(inode, failrec);
7883 return -EIO;
7884 }
37226b21 7885 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
7886
7887 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7888 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7889 read_mode, failrec->this_mirror, failrec->in_validation);
7890
81a75f67 7891 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8b110e39
MX
7892 if (ret) {
7893 free_io_failure(inode, failrec);
7894 bio_put(bio);
7895 }
7896
7897 return ret;
7898}
7899
7900struct btrfs_retry_complete {
7901 struct completion done;
7902 struct inode *inode;
7903 u64 start;
7904 int uptodate;
7905};
7906
4246a0b6 7907static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7908{
7909 struct btrfs_retry_complete *done = bio->bi_private;
2dabb324 7910 struct inode *inode;
8b110e39
MX
7911 struct bio_vec *bvec;
7912 int i;
7913
4246a0b6 7914 if (bio->bi_error)
8b110e39
MX
7915 goto end;
7916
2dabb324
CR
7917 ASSERT(bio->bi_vcnt == 1);
7918 inode = bio->bi_io_vec->bv_page->mapping->host;
7919 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7920
8b110e39
MX
7921 done->uptodate = 1;
7922 bio_for_each_segment_all(bvec, bio, i)
7923 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7924end:
7925 complete(&done->done);
7926 bio_put(bio);
7927}
7928
7929static int __btrfs_correct_data_nocsum(struct inode *inode,
7930 struct btrfs_io_bio *io_bio)
4b46fce2 7931{
2dabb324 7932 struct btrfs_fs_info *fs_info;
2c30c71b 7933 struct bio_vec *bvec;
8b110e39 7934 struct btrfs_retry_complete done;
4b46fce2 7935 u64 start;
2dabb324
CR
7936 unsigned int pgoff;
7937 u32 sectorsize;
7938 int nr_sectors;
2c30c71b 7939 int i;
c1dc0896 7940 int ret;
4b46fce2 7941
2dabb324
CR
7942 fs_info = BTRFS_I(inode)->root->fs_info;
7943 sectorsize = BTRFS_I(inode)->root->sectorsize;
7944
8b110e39
MX
7945 start = io_bio->logical;
7946 done.inode = inode;
7947
7948 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
7949 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7950 pgoff = bvec->bv_offset;
7951
7952next_block_or_try_again:
8b110e39
MX
7953 done.uptodate = 0;
7954 done.start = start;
7955 init_completion(&done.done);
7956
2dabb324
CR
7957 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7958 pgoff, start, start + sectorsize - 1,
7959 io_bio->mirror_num,
7960 btrfs_retry_endio_nocsum, &done);
8b110e39
MX
7961 if (ret)
7962 return ret;
7963
7964 wait_for_completion(&done.done);
7965
7966 if (!done.uptodate) {
7967 /* We might have another mirror, so try again */
2dabb324 7968 goto next_block_or_try_again;
8b110e39
MX
7969 }
7970
2dabb324
CR
7971 start += sectorsize;
7972
7973 if (nr_sectors--) {
7974 pgoff += sectorsize;
7975 goto next_block_or_try_again;
7976 }
8b110e39
MX
7977 }
7978
7979 return 0;
7980}
7981
4246a0b6 7982static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7983{
7984 struct btrfs_retry_complete *done = bio->bi_private;
7985 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2dabb324 7986 struct inode *inode;
8b110e39 7987 struct bio_vec *bvec;
2dabb324 7988 u64 start;
8b110e39
MX
7989 int uptodate;
7990 int ret;
7991 int i;
7992
4246a0b6 7993 if (bio->bi_error)
8b110e39
MX
7994 goto end;
7995
7996 uptodate = 1;
2dabb324
CR
7997
7998 start = done->start;
7999
8000 ASSERT(bio->bi_vcnt == 1);
8001 inode = bio->bi_io_vec->bv_page->mapping->host;
8002 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
8003
8b110e39
MX
8004 bio_for_each_segment_all(bvec, bio, i) {
8005 ret = __readpage_endio_check(done->inode, io_bio, i,
2dabb324
CR
8006 bvec->bv_page, bvec->bv_offset,
8007 done->start, bvec->bv_len);
8b110e39
MX
8008 if (!ret)
8009 clean_io_failure(done->inode, done->start,
2dabb324 8010 bvec->bv_page, bvec->bv_offset);
8b110e39
MX
8011 else
8012 uptodate = 0;
8013 }
8014
8015 done->uptodate = uptodate;
8016end:
8017 complete(&done->done);
8018 bio_put(bio);
8019}
8020
8021static int __btrfs_subio_endio_read(struct inode *inode,
8022 struct btrfs_io_bio *io_bio, int err)
8023{
2dabb324 8024 struct btrfs_fs_info *fs_info;
8b110e39
MX
8025 struct bio_vec *bvec;
8026 struct btrfs_retry_complete done;
8027 u64 start;
8028 u64 offset = 0;
2dabb324
CR
8029 u32 sectorsize;
8030 int nr_sectors;
8031 unsigned int pgoff;
8032 int csum_pos;
8b110e39
MX
8033 int i;
8034 int ret;
dc380aea 8035
2dabb324
CR
8036 fs_info = BTRFS_I(inode)->root->fs_info;
8037 sectorsize = BTRFS_I(inode)->root->sectorsize;
8038
8b110e39 8039 err = 0;
c1dc0896 8040 start = io_bio->logical;
8b110e39
MX
8041 done.inode = inode;
8042
c1dc0896 8043 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
8044 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8045
8046 pgoff = bvec->bv_offset;
8047next_block:
8048 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8049 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8050 bvec->bv_page, pgoff, start,
8051 sectorsize);
8b110e39
MX
8052 if (likely(!ret))
8053 goto next;
8054try_again:
8055 done.uptodate = 0;
8056 done.start = start;
8057 init_completion(&done.done);
8058
2dabb324
CR
8059 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8060 pgoff, start, start + sectorsize - 1,
8061 io_bio->mirror_num,
8062 btrfs_retry_endio, &done);
8b110e39
MX
8063 if (ret) {
8064 err = ret;
8065 goto next;
8066 }
8067
8068 wait_for_completion(&done.done);
8069
8070 if (!done.uptodate) {
8071 /* We might have another mirror, so try again */
8072 goto try_again;
8073 }
8074next:
2dabb324
CR
8075 offset += sectorsize;
8076 start += sectorsize;
8077
8078 ASSERT(nr_sectors);
8079
8080 if (--nr_sectors) {
8081 pgoff += sectorsize;
8082 goto next_block;
8083 }
2c30c71b 8084 }
c1dc0896
MX
8085
8086 return err;
8087}
8088
8b110e39
MX
8089static int btrfs_subio_endio_read(struct inode *inode,
8090 struct btrfs_io_bio *io_bio, int err)
8091{
8092 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8093
8094 if (skip_csum) {
8095 if (unlikely(err))
8096 return __btrfs_correct_data_nocsum(inode, io_bio);
8097 else
8098 return 0;
8099 } else {
8100 return __btrfs_subio_endio_read(inode, io_bio, err);
8101 }
8102}
8103
4246a0b6 8104static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8105{
8106 struct btrfs_dio_private *dip = bio->bi_private;
8107 struct inode *inode = dip->inode;
8108 struct bio *dio_bio;
8109 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 8110 int err = bio->bi_error;
c1dc0896 8111
8b110e39
MX
8112 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8113 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8114
4b46fce2 8115 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8116 dip->logical_offset + dip->bytes - 1);
9be3395b 8117 dio_bio = dip->dio_bio;
4b46fce2 8118
4b46fce2 8119 kfree(dip);
c0da7aa1 8120
1636d1d7 8121 dio_bio->bi_error = bio->bi_error;
4246a0b6 8122 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
8123
8124 if (io_bio->end_io)
8125 io_bio->end_io(io_bio, err);
9be3395b 8126 bio_put(bio);
4b46fce2
JB
8127}
8128
14543774
FM
8129static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8130 const u64 offset,
8131 const u64 bytes,
8132 const int uptodate)
4b46fce2 8133{
4b46fce2 8134 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 8135 struct btrfs_ordered_extent *ordered = NULL;
14543774
FM
8136 u64 ordered_offset = offset;
8137 u64 ordered_bytes = bytes;
4b46fce2
JB
8138 int ret;
8139
163cf09c
CM
8140again:
8141 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8142 &ordered_offset,
4246a0b6 8143 ordered_bytes,
14543774 8144 uptodate);
4b46fce2 8145 if (!ret)
163cf09c 8146 goto out_test;
4b46fce2 8147
9e0af237
LB
8148 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8149 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
8150 btrfs_queue_work(root->fs_info->endio_write_workers,
8151 &ordered->work);
163cf09c
CM
8152out_test:
8153 /*
8154 * our bio might span multiple ordered extents. If we haven't
8155 * completed the accounting for the whole dio, go back and try again
8156 */
14543774
FM
8157 if (ordered_offset < offset + bytes) {
8158 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8159 ordered = NULL;
163cf09c
CM
8160 goto again;
8161 }
14543774
FM
8162}
8163
8164static void btrfs_endio_direct_write(struct bio *bio)
8165{
8166 struct btrfs_dio_private *dip = bio->bi_private;
8167 struct bio *dio_bio = dip->dio_bio;
8168
8169 btrfs_endio_direct_write_update_ordered(dip->inode,
8170 dip->logical_offset,
8171 dip->bytes,
8172 !bio->bi_error);
4b46fce2 8173
4b46fce2 8174 kfree(dip);
c0da7aa1 8175
1636d1d7 8176 dio_bio->bi_error = bio->bi_error;
4246a0b6 8177 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8178 bio_put(bio);
4b46fce2
JB
8179}
8180
81a75f67 8181static int __btrfs_submit_bio_start_direct_io(struct inode *inode,
eaf25d93
CM
8182 struct bio *bio, int mirror_num,
8183 unsigned long bio_flags, u64 offset)
8184{
8185 int ret;
8186 struct btrfs_root *root = BTRFS_I(inode)->root;
8187 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 8188 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8189 return 0;
8190}
8191
4246a0b6 8192static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8193{
8194 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8195 int err = bio->bi_error;
e65e1535 8196
8b110e39
MX
8197 if (err)
8198 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8199 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
37226b21 8200 btrfs_ino(dip->inode), bio_op(bio), bio->bi_rw,
8b110e39
MX
8201 (unsigned long long)bio->bi_iter.bi_sector,
8202 bio->bi_iter.bi_size, err);
8203
8204 if (dip->subio_endio)
8205 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8206
8207 if (err) {
e65e1535
MX
8208 dip->errors = 1;
8209
8210 /*
8211 * before atomic variable goto zero, we must make sure
8212 * dip->errors is perceived to be set.
8213 */
4e857c58 8214 smp_mb__before_atomic();
e65e1535
MX
8215 }
8216
8217 /* if there are more bios still pending for this dio, just exit */
8218 if (!atomic_dec_and_test(&dip->pending_bios))
8219 goto out;
8220
9be3395b 8221 if (dip->errors) {
e65e1535 8222 bio_io_error(dip->orig_bio);
9be3395b 8223 } else {
4246a0b6
CH
8224 dip->dio_bio->bi_error = 0;
8225 bio_endio(dip->orig_bio);
e65e1535
MX
8226 }
8227out:
8228 bio_put(bio);
8229}
8230
8231static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8232 u64 first_sector, gfp_t gfp_flags)
8233{
da2f0f74 8234 struct bio *bio;
22365979 8235 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
da2f0f74
CM
8236 if (bio)
8237 bio_associate_current(bio);
8238 return bio;
e65e1535
MX
8239}
8240
c1dc0896
MX
8241static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8242 struct inode *inode,
8243 struct btrfs_dio_private *dip,
8244 struct bio *bio,
8245 u64 file_offset)
8246{
8247 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8248 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8249 int ret;
8250
8251 /*
8252 * We load all the csum data we need when we submit
8253 * the first bio to reduce the csum tree search and
8254 * contention.
8255 */
8256 if (dip->logical_offset == file_offset) {
8257 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8258 file_offset);
8259 if (ret)
8260 return ret;
8261 }
8262
8263 if (bio == dip->orig_bio)
8264 return 0;
8265
8266 file_offset -= dip->logical_offset;
8267 file_offset >>= inode->i_sb->s_blocksize_bits;
8268 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8269
8270 return 0;
8271}
8272
e65e1535 8273static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
81a75f67 8274 u64 file_offset, int skip_sum,
c329861d 8275 int async_submit)
e65e1535 8276{
facc8a22 8277 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8278 bool write = bio_op(bio) == REQ_OP_WRITE;
e65e1535
MX
8279 struct btrfs_root *root = BTRFS_I(inode)->root;
8280 int ret;
8281
b812ce28
JB
8282 if (async_submit)
8283 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8284
e65e1535 8285 bio_get(bio);
5fd02043
JB
8286
8287 if (!write) {
bfebd8b5
DS
8288 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8289 BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8290 if (ret)
8291 goto err;
8292 }
e65e1535 8293
1ae39938
JB
8294 if (skip_sum)
8295 goto map;
8296
8297 if (write && async_submit) {
e65e1535 8298 ret = btrfs_wq_submit_bio(root->fs_info,
81a75f67 8299 inode, bio, 0, 0, file_offset,
e65e1535
MX
8300 __btrfs_submit_bio_start_direct_io,
8301 __btrfs_submit_bio_done);
8302 goto err;
1ae39938
JB
8303 } else if (write) {
8304 /*
8305 * If we aren't doing async submit, calculate the csum of the
8306 * bio now.
8307 */
8308 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8309 if (ret)
8310 goto err;
23ea8e5a 8311 } else {
c1dc0896
MX
8312 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8313 file_offset);
c2db1073
TI
8314 if (ret)
8315 goto err;
8316 }
1ae39938 8317map:
81a75f67 8318 ret = btrfs_map_bio(root, bio, 0, async_submit);
e65e1535
MX
8319err:
8320 bio_put(bio);
8321 return ret;
8322}
8323
81a75f67 8324static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
e65e1535
MX
8325 int skip_sum)
8326{
8327 struct inode *inode = dip->inode;
8328 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8329 struct bio *bio;
8330 struct bio *orig_bio = dip->orig_bio;
8331 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 8332 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8333 u64 file_offset = dip->logical_offset;
8334 u64 submit_len = 0;
8335 u64 map_length;
5f4dc8fc 8336 u32 blocksize = root->sectorsize;
1ae39938 8337 int async_submit = 0;
5f4dc8fc
CR
8338 int nr_sectors;
8339 int ret;
8340 int i;
e65e1535 8341
4f024f37 8342 map_length = orig_bio->bi_iter.bi_size;
37226b21
MC
8343 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
8344 start_sector << 9, &map_length, NULL, 0);
7a5c3c9b 8345 if (ret)
e65e1535 8346 return -EIO;
facc8a22 8347
4f024f37 8348 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8349 bio = orig_bio;
c1dc0896 8350 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8351 goto submit;
8352 }
8353
53b381b3 8354 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8355 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8356 async_submit = 0;
8357 else
8358 async_submit = 1;
8359
02f57c7a
JB
8360 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8361 if (!bio)
8362 return -ENOMEM;
7a5c3c9b 8363
37226b21 8364 bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_rw);
02f57c7a
JB
8365 bio->bi_private = dip;
8366 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8367 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8368 atomic_inc(&dip->pending_bios);
8369
e65e1535 8370 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5f4dc8fc
CR
8371 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8372 i = 0;
8373next_block:
8374 if (unlikely(map_length < submit_len + blocksize ||
8375 bio_add_page(bio, bvec->bv_page, blocksize,
8376 bvec->bv_offset + (i * blocksize)) < blocksize)) {
e65e1535
MX
8377 /*
8378 * inc the count before we submit the bio so
8379 * we know the end IO handler won't happen before
8380 * we inc the count. Otherwise, the dip might get freed
8381 * before we're done setting it up
8382 */
8383 atomic_inc(&dip->pending_bios);
81a75f67 8384 ret = __btrfs_submit_dio_bio(bio, inode,
e65e1535 8385 file_offset, skip_sum,
c329861d 8386 async_submit);
e65e1535
MX
8387 if (ret) {
8388 bio_put(bio);
8389 atomic_dec(&dip->pending_bios);
8390 goto out_err;
8391 }
8392
e65e1535
MX
8393 start_sector += submit_len >> 9;
8394 file_offset += submit_len;
8395
8396 submit_len = 0;
e65e1535
MX
8397
8398 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8399 start_sector, GFP_NOFS);
8400 if (!bio)
8401 goto out_err;
37226b21 8402 bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_rw);
e65e1535
MX
8403 bio->bi_private = dip;
8404 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8405 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8406
4f024f37 8407 map_length = orig_bio->bi_iter.bi_size;
37226b21 8408 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
3ec706c8 8409 start_sector << 9,
e65e1535
MX
8410 &map_length, NULL, 0);
8411 if (ret) {
8412 bio_put(bio);
8413 goto out_err;
8414 }
5f4dc8fc
CR
8415
8416 goto next_block;
e65e1535 8417 } else {
5f4dc8fc
CR
8418 submit_len += blocksize;
8419 if (--nr_sectors) {
8420 i++;
8421 goto next_block;
8422 }
e65e1535
MX
8423 bvec++;
8424 }
8425 }
8426
02f57c7a 8427submit:
81a75f67 8428 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
c329861d 8429 async_submit);
e65e1535
MX
8430 if (!ret)
8431 return 0;
8432
8433 bio_put(bio);
8434out_err:
8435 dip->errors = 1;
8436 /*
8437 * before atomic variable goto zero, we must
8438 * make sure dip->errors is perceived to be set.
8439 */
4e857c58 8440 smp_mb__before_atomic();
e65e1535
MX
8441 if (atomic_dec_and_test(&dip->pending_bios))
8442 bio_io_error(dip->orig_bio);
8443
8444 /* bio_end_io() will handle error, so we needn't return it */
8445 return 0;
8446}
8447
8a4c1e42
MC
8448static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8449 loff_t file_offset)
4b46fce2 8450{
61de718f
FM
8451 struct btrfs_dio_private *dip = NULL;
8452 struct bio *io_bio = NULL;
23ea8e5a 8453 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8454 int skip_sum;
8a4c1e42 8455 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8456 int ret = 0;
8457
8458 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8459
9be3395b 8460 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8461 if (!io_bio) {
8462 ret = -ENOMEM;
8463 goto free_ordered;
8464 }
8465
c1dc0896 8466 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8467 if (!dip) {
8468 ret = -ENOMEM;
61de718f 8469 goto free_ordered;
4b46fce2 8470 }
4b46fce2 8471
9be3395b 8472 dip->private = dio_bio->bi_private;
4b46fce2
JB
8473 dip->inode = inode;
8474 dip->logical_offset = file_offset;
4f024f37
KO
8475 dip->bytes = dio_bio->bi_iter.bi_size;
8476 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8477 io_bio->bi_private = dip;
9be3395b
CM
8478 dip->orig_bio = io_bio;
8479 dip->dio_bio = dio_bio;
e65e1535 8480 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8481 btrfs_bio = btrfs_io_bio(io_bio);
8482 btrfs_bio->logical = file_offset;
4b46fce2 8483
c1dc0896 8484 if (write) {
9be3395b 8485 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8486 } else {
9be3395b 8487 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8488 dip->subio_endio = btrfs_subio_endio_read;
8489 }
4b46fce2 8490
f28a4928
FM
8491 /*
8492 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8493 * even if we fail to submit a bio, because in such case we do the
8494 * corresponding error handling below and it must not be done a second
8495 * time by btrfs_direct_IO().
8496 */
8497 if (write) {
8498 struct btrfs_dio_data *dio_data = current->journal_info;
8499
8500 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8501 dip->bytes;
8502 dio_data->unsubmitted_oe_range_start =
8503 dio_data->unsubmitted_oe_range_end;
8504 }
8505
81a75f67 8506 ret = btrfs_submit_direct_hook(dip, skip_sum);
e65e1535 8507 if (!ret)
eaf25d93 8508 return;
9be3395b 8509
23ea8e5a
MX
8510 if (btrfs_bio->end_io)
8511 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8512
4b46fce2
JB
8513free_ordered:
8514 /*
61de718f
FM
8515 * If we arrived here it means either we failed to submit the dip
8516 * or we either failed to clone the dio_bio or failed to allocate the
8517 * dip. If we cloned the dio_bio and allocated the dip, we can just
8518 * call bio_endio against our io_bio so that we get proper resource
8519 * cleanup if we fail to submit the dip, otherwise, we must do the
8520 * same as btrfs_endio_direct_[write|read] because we can't call these
8521 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8522 */
61de718f 8523 if (io_bio && dip) {
4246a0b6
CH
8524 io_bio->bi_error = -EIO;
8525 bio_endio(io_bio);
61de718f
FM
8526 /*
8527 * The end io callbacks free our dip, do the final put on io_bio
8528 * and all the cleanup and final put for dio_bio (through
8529 * dio_end_io()).
8530 */
8531 dip = NULL;
8532 io_bio = NULL;
8533 } else {
14543774
FM
8534 if (write)
8535 btrfs_endio_direct_write_update_ordered(inode,
8536 file_offset,
8537 dio_bio->bi_iter.bi_size,
8538 0);
8539 else
61de718f
FM
8540 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8541 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8542
4246a0b6 8543 dio_bio->bi_error = -EIO;
61de718f
FM
8544 /*
8545 * Releases and cleans up our dio_bio, no need to bio_put()
8546 * nor bio_endio()/bio_io_error() against dio_bio.
8547 */
8548 dio_end_io(dio_bio, ret);
4b46fce2 8549 }
61de718f
FM
8550 if (io_bio)
8551 bio_put(io_bio);
8552 kfree(dip);
4b46fce2
JB
8553}
8554
6f673763 8555static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
28060d5d 8556 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8557{
8558 int seg;
a1b75f7d 8559 int i;
5a5f79b5
CM
8560 unsigned blocksize_mask = root->sectorsize - 1;
8561 ssize_t retval = -EINVAL;
5a5f79b5
CM
8562
8563 if (offset & blocksize_mask)
8564 goto out;
8565
28060d5d
AV
8566 if (iov_iter_alignment(iter) & blocksize_mask)
8567 goto out;
a1b75f7d 8568
28060d5d 8569 /* If this is a write we don't need to check anymore */
6f673763 8570 if (iov_iter_rw(iter) == WRITE)
28060d5d
AV
8571 return 0;
8572 /*
8573 * Check to make sure we don't have duplicate iov_base's in this
8574 * iovec, if so return EINVAL, otherwise we'll get csum errors
8575 * when reading back.
8576 */
8577 for (seg = 0; seg < iter->nr_segs; seg++) {
8578 for (i = seg + 1; i < iter->nr_segs; i++) {
8579 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8580 goto out;
8581 }
5a5f79b5
CM
8582 }
8583 retval = 0;
8584out:
8585 return retval;
8586}
eb838e73 8587
c8b8e32d 8588static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8589{
4b46fce2
JB
8590 struct file *file = iocb->ki_filp;
8591 struct inode *inode = file->f_mapping->host;
50745b0a 8592 struct btrfs_root *root = BTRFS_I(inode)->root;
8593 struct btrfs_dio_data dio_data = { 0 };
c8b8e32d 8594 loff_t offset = iocb->ki_pos;
0934856d 8595 size_t count = 0;
2e60a51e 8596 int flags = 0;
38851cc1
MX
8597 bool wakeup = true;
8598 bool relock = false;
0934856d 8599 ssize_t ret;
4b46fce2 8600
6f673763 8601 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
5a5f79b5 8602 return 0;
3f7c579c 8603
fe0f07d0 8604 inode_dio_begin(inode);
4e857c58 8605 smp_mb__after_atomic();
38851cc1 8606
0e267c44 8607 /*
41bd9ca4
MX
8608 * The generic stuff only does filemap_write_and_wait_range, which
8609 * isn't enough if we've written compressed pages to this area, so
8610 * we need to flush the dirty pages again to make absolutely sure
8611 * that any outstanding dirty pages are on disk.
0e267c44 8612 */
a6cbcd4a 8613 count = iov_iter_count(iter);
41bd9ca4
MX
8614 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8615 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8616 filemap_fdatawrite_range(inode->i_mapping, offset,
8617 offset + count - 1);
0e267c44 8618
6f673763 8619 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8620 /*
8621 * If the write DIO is beyond the EOF, we need update
8622 * the isize, but it is protected by i_mutex. So we can
8623 * not unlock the i_mutex at this case.
8624 */
8625 if (offset + count <= inode->i_size) {
5955102c 8626 inode_unlock(inode);
38851cc1
MX
8627 relock = true;
8628 }
7cf5b976 8629 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8630 if (ret)
38851cc1 8631 goto out;
50745b0a 8632 dio_data.outstanding_extents = div64_u64(count +
e1cbbfa5
JB
8633 BTRFS_MAX_EXTENT_SIZE - 1,
8634 BTRFS_MAX_EXTENT_SIZE);
8635
8636 /*
8637 * We need to know how many extents we reserved so that we can
8638 * do the accounting properly if we go over the number we
8639 * originally calculated. Abuse current->journal_info for this.
8640 */
50745b0a 8641 dio_data.reserve = round_up(count, root->sectorsize);
f28a4928
FM
8642 dio_data.unsubmitted_oe_range_start = (u64)offset;
8643 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8644 current->journal_info = &dio_data;
ee39b432
DS
8645 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8646 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8647 inode_dio_end(inode);
38851cc1
MX
8648 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8649 wakeup = false;
0934856d
MX
8650 }
8651
17f8c842
OS
8652 ret = __blockdev_direct_IO(iocb, inode,
8653 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
c8b8e32d 8654 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8655 btrfs_submit_direct, flags);
6f673763 8656 if (iov_iter_rw(iter) == WRITE) {
e1cbbfa5 8657 current->journal_info = NULL;
ddba1bfc 8658 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8659 if (dio_data.reserve)
7cf5b976
QW
8660 btrfs_delalloc_release_space(inode, offset,
8661 dio_data.reserve);
f28a4928
FM
8662 /*
8663 * On error we might have left some ordered extents
8664 * without submitting corresponding bios for them, so
8665 * cleanup them up to avoid other tasks getting them
8666 * and waiting for them to complete forever.
8667 */
8668 if (dio_data.unsubmitted_oe_range_start <
8669 dio_data.unsubmitted_oe_range_end)
8670 btrfs_endio_direct_write_update_ordered(inode,
8671 dio_data.unsubmitted_oe_range_start,
8672 dio_data.unsubmitted_oe_range_end -
8673 dio_data.unsubmitted_oe_range_start,
8674 0);
ddba1bfc 8675 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8676 btrfs_delalloc_release_space(inode, offset,
8677 count - (size_t)ret);
0934856d 8678 }
38851cc1 8679out:
2e60a51e 8680 if (wakeup)
fe0f07d0 8681 inode_dio_end(inode);
38851cc1 8682 if (relock)
5955102c 8683 inode_lock(inode);
0934856d
MX
8684
8685 return ret;
16432985
CM
8686}
8687
05dadc09
TI
8688#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8689
1506fcc8
YS
8690static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8691 __u64 start, __u64 len)
8692{
05dadc09
TI
8693 int ret;
8694
8695 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8696 if (ret)
8697 return ret;
8698
ec29ed5b 8699 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8700}
8701
a52d9a80 8702int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8703{
d1310b2e
CM
8704 struct extent_io_tree *tree;
8705 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8706 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8707}
1832a6d5 8708
a52d9a80 8709static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8710{
d1310b2e 8711 struct extent_io_tree *tree;
be7bd730
JB
8712 struct inode *inode = page->mapping->host;
8713 int ret;
b888db2b
CM
8714
8715 if (current->flags & PF_MEMALLOC) {
8716 redirty_page_for_writepage(wbc, page);
8717 unlock_page(page);
8718 return 0;
8719 }
be7bd730
JB
8720
8721 /*
8722 * If we are under memory pressure we will call this directly from the
8723 * VM, we need to make sure we have the inode referenced for the ordered
8724 * extent. If not just return like we didn't do anything.
8725 */
8726 if (!igrab(inode)) {
8727 redirty_page_for_writepage(wbc, page);
8728 return AOP_WRITEPAGE_ACTIVATE;
8729 }
d1310b2e 8730 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8731 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8732 btrfs_add_delayed_iput(inode);
8733 return ret;
9ebefb18
CM
8734}
8735
48a3b636
ES
8736static int btrfs_writepages(struct address_space *mapping,
8737 struct writeback_control *wbc)
b293f02e 8738{
d1310b2e 8739 struct extent_io_tree *tree;
771ed689 8740
d1310b2e 8741 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8742 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8743}
8744
3ab2fb5a
CM
8745static int
8746btrfs_readpages(struct file *file, struct address_space *mapping,
8747 struct list_head *pages, unsigned nr_pages)
8748{
d1310b2e
CM
8749 struct extent_io_tree *tree;
8750 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8751 return extent_readpages(tree, mapping, pages, nr_pages,
8752 btrfs_get_extent);
8753}
e6dcd2dc 8754static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8755{
d1310b2e
CM
8756 struct extent_io_tree *tree;
8757 struct extent_map_tree *map;
a52d9a80 8758 int ret;
8c2383c3 8759
d1310b2e
CM
8760 tree = &BTRFS_I(page->mapping->host)->io_tree;
8761 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8762 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8763 if (ret == 1) {
8764 ClearPagePrivate(page);
8765 set_page_private(page, 0);
09cbfeaf 8766 put_page(page);
39279cc3 8767 }
a52d9a80 8768 return ret;
39279cc3
CM
8769}
8770
e6dcd2dc
CM
8771static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8772{
98509cfc
CM
8773 if (PageWriteback(page) || PageDirty(page))
8774 return 0;
b335b003 8775 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8776}
8777
d47992f8
LC
8778static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8779 unsigned int length)
39279cc3 8780{
5fd02043 8781 struct inode *inode = page->mapping->host;
d1310b2e 8782 struct extent_io_tree *tree;
e6dcd2dc 8783 struct btrfs_ordered_extent *ordered;
2ac55d41 8784 struct extent_state *cached_state = NULL;
e6dcd2dc 8785 u64 page_start = page_offset(page);
09cbfeaf 8786 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8787 u64 start;
8788 u64 end;
131e404a 8789 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8790
8b62b72b
CM
8791 /*
8792 * we have the page locked, so new writeback can't start,
8793 * and the dirty bit won't be cleared while we are here.
8794 *
8795 * Wait for IO on this page so that we can safely clear
8796 * the PagePrivate2 bit and do ordered accounting
8797 */
e6dcd2dc 8798 wait_on_page_writeback(page);
8b62b72b 8799
5fd02043 8800 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8801 if (offset) {
8802 btrfs_releasepage(page, GFP_NOFS);
8803 return;
8804 }
131e404a
FDBM
8805
8806 if (!inode_evicting)
ff13db41 8807 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8808again:
8809 start = page_start;
8810 ordered = btrfs_lookup_ordered_range(inode, start,
8811 page_end - start + 1);
e6dcd2dc 8812 if (ordered) {
dbfdb6d1 8813 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8814 /*
8815 * IO on this page will never be started, so we need
8816 * to account for any ordered extents now
8817 */
131e404a 8818 if (!inode_evicting)
dbfdb6d1 8819 clear_extent_bit(tree, start, end,
131e404a
FDBM
8820 EXTENT_DIRTY | EXTENT_DELALLOC |
8821 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8822 EXTENT_DEFRAG, 1, 0, &cached_state,
8823 GFP_NOFS);
8b62b72b
CM
8824 /*
8825 * whoever cleared the private bit is responsible
8826 * for the finish_ordered_io
8827 */
77cef2ec
JB
8828 if (TestClearPagePrivate2(page)) {
8829 struct btrfs_ordered_inode_tree *tree;
8830 u64 new_len;
8831
8832 tree = &BTRFS_I(inode)->ordered_tree;
8833
8834 spin_lock_irq(&tree->lock);
8835 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8836 new_len = start - ordered->file_offset;
77cef2ec
JB
8837 if (new_len < ordered->truncated_len)
8838 ordered->truncated_len = new_len;
8839 spin_unlock_irq(&tree->lock);
8840
8841 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8842 start,
8843 end - start + 1, 1))
77cef2ec 8844 btrfs_finish_ordered_io(ordered);
8b62b72b 8845 }
e6dcd2dc 8846 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8847 if (!inode_evicting) {
8848 cached_state = NULL;
dbfdb6d1 8849 lock_extent_bits(tree, start, end,
131e404a
FDBM
8850 &cached_state);
8851 }
dbfdb6d1
CR
8852
8853 start = end + 1;
8854 if (start < page_end)
8855 goto again;
131e404a
FDBM
8856 }
8857
b9d0b389
QW
8858 /*
8859 * Qgroup reserved space handler
8860 * Page here will be either
8861 * 1) Already written to disk
8862 * In this case, its reserved space is released from data rsv map
8863 * and will be freed by delayed_ref handler finally.
8864 * So even we call qgroup_free_data(), it won't decrease reserved
8865 * space.
8866 * 2) Not written to disk
8867 * This means the reserved space should be freed here.
8868 */
09cbfeaf 8869 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
131e404a
FDBM
8870 if (!inode_evicting) {
8871 clear_extent_bit(tree, page_start, page_end,
8872 EXTENT_LOCKED | EXTENT_DIRTY |
8873 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8874 EXTENT_DEFRAG, 1, 1,
8875 &cached_state, GFP_NOFS);
8876
8877 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8878 }
e6dcd2dc 8879
4a096752 8880 ClearPageChecked(page);
9ad6b7bc 8881 if (PagePrivate(page)) {
9ad6b7bc
CM
8882 ClearPagePrivate(page);
8883 set_page_private(page, 0);
09cbfeaf 8884 put_page(page);
9ad6b7bc 8885 }
39279cc3
CM
8886}
8887
9ebefb18
CM
8888/*
8889 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8890 * called from a page fault handler when a page is first dirtied. Hence we must
8891 * be careful to check for EOF conditions here. We set the page up correctly
8892 * for a written page which means we get ENOSPC checking when writing into
8893 * holes and correct delalloc and unwritten extent mapping on filesystems that
8894 * support these features.
8895 *
8896 * We are not allowed to take the i_mutex here so we have to play games to
8897 * protect against truncate races as the page could now be beyond EOF. Because
8898 * vmtruncate() writes the inode size before removing pages, once we have the
8899 * page lock we can determine safely if the page is beyond EOF. If it is not
8900 * beyond EOF, then the page is guaranteed safe against truncation until we
8901 * unlock the page.
8902 */
c2ec175c 8903int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8904{
c2ec175c 8905 struct page *page = vmf->page;
496ad9aa 8906 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8907 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8908 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8909 struct btrfs_ordered_extent *ordered;
2ac55d41 8910 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8911 char *kaddr;
8912 unsigned long zero_start;
9ebefb18 8913 loff_t size;
1832a6d5 8914 int ret;
9998eb70 8915 int reserved = 0;
d0b7da88 8916 u64 reserved_space;
a52d9a80 8917 u64 page_start;
e6dcd2dc 8918 u64 page_end;
d0b7da88
CR
8919 u64 end;
8920
09cbfeaf 8921 reserved_space = PAGE_SIZE;
9ebefb18 8922
b2b5ef5c 8923 sb_start_pagefault(inode->i_sb);
df480633 8924 page_start = page_offset(page);
09cbfeaf 8925 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8926 end = page_end;
df480633 8927
d0b7da88
CR
8928 /*
8929 * Reserving delalloc space after obtaining the page lock can lead to
8930 * deadlock. For example, if a dirty page is locked by this function
8931 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8932 * dirty page write out, then the btrfs_writepage() function could
8933 * end up waiting indefinitely to get a lock on the page currently
8934 * being processed by btrfs_page_mkwrite() function.
8935 */
7cf5b976 8936 ret = btrfs_delalloc_reserve_space(inode, page_start,
d0b7da88 8937 reserved_space);
9998eb70 8938 if (!ret) {
e41f941a 8939 ret = file_update_time(vma->vm_file);
9998eb70
CM
8940 reserved = 1;
8941 }
56a76f82
NP
8942 if (ret) {
8943 if (ret == -ENOMEM)
8944 ret = VM_FAULT_OOM;
8945 else /* -ENOSPC, -EIO, etc */
8946 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8947 if (reserved)
8948 goto out;
8949 goto out_noreserve;
56a76f82 8950 }
1832a6d5 8951
56a76f82 8952 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8953again:
9ebefb18 8954 lock_page(page);
9ebefb18 8955 size = i_size_read(inode);
a52d9a80 8956
9ebefb18 8957 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8958 (page_start >= size)) {
9ebefb18
CM
8959 /* page got truncated out from underneath us */
8960 goto out_unlock;
8961 }
e6dcd2dc
CM
8962 wait_on_page_writeback(page);
8963
ff13db41 8964 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8965 set_page_extent_mapped(page);
8966
eb84ae03
CM
8967 /*
8968 * we can't set the delalloc bits if there are pending ordered
8969 * extents. Drop our locks and wait for them to finish
8970 */
d0b7da88 8971 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
e6dcd2dc 8972 if (ordered) {
2ac55d41
JB
8973 unlock_extent_cached(io_tree, page_start, page_end,
8974 &cached_state, GFP_NOFS);
e6dcd2dc 8975 unlock_page(page);
eb84ae03 8976 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8977 btrfs_put_ordered_extent(ordered);
8978 goto again;
8979 }
8980
09cbfeaf 8981 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
d0b7da88 8982 reserved_space = round_up(size - page_start, root->sectorsize);
09cbfeaf 8983 if (reserved_space < PAGE_SIZE) {
d0b7da88
CR
8984 end = page_start + reserved_space - 1;
8985 spin_lock(&BTRFS_I(inode)->lock);
8986 BTRFS_I(inode)->outstanding_extents++;
8987 spin_unlock(&BTRFS_I(inode)->lock);
8988 btrfs_delalloc_release_space(inode, page_start,
09cbfeaf 8989 PAGE_SIZE - reserved_space);
d0b7da88
CR
8990 }
8991 }
8992
fbf19087
JB
8993 /*
8994 * XXX - page_mkwrite gets called every time the page is dirtied, even
8995 * if it was already dirty, so for space accounting reasons we need to
8996 * clear any delalloc bits for the range we are fixing to save. There
8997 * is probably a better way to do this, but for now keep consistent with
8998 * prepare_pages in the normal write path.
8999 */
d0b7da88 9000 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9001 EXTENT_DIRTY | EXTENT_DELALLOC |
9002 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 9003 0, 0, &cached_state, GFP_NOFS);
fbf19087 9004
d0b7da88 9005 ret = btrfs_set_extent_delalloc(inode, page_start, end,
2ac55d41 9006 &cached_state);
9ed74f2d 9007 if (ret) {
2ac55d41
JB
9008 unlock_extent_cached(io_tree, page_start, page_end,
9009 &cached_state, GFP_NOFS);
9ed74f2d
JB
9010 ret = VM_FAULT_SIGBUS;
9011 goto out_unlock;
9012 }
e6dcd2dc 9013 ret = 0;
9ebefb18
CM
9014
9015 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9016 if (page_start + PAGE_SIZE > size)
9017 zero_start = size & ~PAGE_MASK;
9ebefb18 9018 else
09cbfeaf 9019 zero_start = PAGE_SIZE;
9ebefb18 9020
09cbfeaf 9021 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9022 kaddr = kmap(page);
09cbfeaf 9023 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9024 flush_dcache_page(page);
9025 kunmap(page);
9026 }
247e743c 9027 ClearPageChecked(page);
e6dcd2dc 9028 set_page_dirty(page);
50a9b214 9029 SetPageUptodate(page);
5a3f23d5 9030
257c62e1
CM
9031 BTRFS_I(inode)->last_trans = root->fs_info->generation;
9032 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9033 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9034
2ac55d41 9035 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9036
9037out_unlock:
b2b5ef5c
JK
9038 if (!ret) {
9039 sb_end_pagefault(inode->i_sb);
50a9b214 9040 return VM_FAULT_LOCKED;
b2b5ef5c 9041 }
9ebefb18 9042 unlock_page(page);
1832a6d5 9043out:
d0b7da88 9044 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9998eb70 9045out_noreserve:
b2b5ef5c 9046 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
9047 return ret;
9048}
9049
a41ad394 9050static int btrfs_truncate(struct inode *inode)
39279cc3
CM
9051{
9052 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9053 struct btrfs_block_rsv *rsv;
a71754fc 9054 int ret = 0;
3893e33b 9055 int err = 0;
39279cc3 9056 struct btrfs_trans_handle *trans;
dbe674a9 9057 u64 mask = root->sectorsize - 1;
07127184 9058 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 9059
0ef8b726
JB
9060 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9061 (u64)-1);
9062 if (ret)
9063 return ret;
39279cc3 9064
fcb80c2a 9065 /*
01327610 9066 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9067 * 3 things going on here
9068 *
9069 * 1) We need to reserve space for our orphan item and the space to
9070 * delete our orphan item. Lord knows we don't want to have a dangling
9071 * orphan item because we didn't reserve space to remove it.
9072 *
9073 * 2) We need to reserve space to update our inode.
9074 *
9075 * 3) We need to have something to cache all the space that is going to
9076 * be free'd up by the truncate operation, but also have some slack
9077 * space reserved in case it uses space during the truncate (thank you
9078 * very much snapshotting).
9079 *
01327610 9080 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9081 * space doing the truncate, and we have no earthly idea how much space
01327610 9082 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9083 * doesn't end up using space reserved for updating the inode or
9084 * removing the orphan item. We also need to be able to stop the
9085 * transaction and start a new one, which means we need to be able to
9086 * update the inode several times, and we have no idea of knowing how
9087 * many times that will be, so we can't just reserve 1 item for the
01327610 9088 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9089 * Then there is the orphan item, which does indeed need to be held on
9090 * to for the whole operation, and we need nobody to touch this reserved
9091 * space except the orphan code.
9092 *
9093 * So that leaves us with
9094 *
9095 * 1) root->orphan_block_rsv - for the orphan deletion.
9096 * 2) rsv - for the truncate reservation, which we will steal from the
9097 * transaction reservation.
9098 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9099 * updating the inode.
9100 */
66d8f3dd 9101 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9102 if (!rsv)
9103 return -ENOMEM;
4a338542 9104 rsv->size = min_size;
ca7e70f5 9105 rsv->failfast = 1;
f0cd846e 9106
907cbceb 9107 /*
07127184 9108 * 1 for the truncate slack space
907cbceb
JB
9109 * 1 for updating the inode.
9110 */
f3fe820c 9111 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9112 if (IS_ERR(trans)) {
9113 err = PTR_ERR(trans);
9114 goto out;
9115 }
f0cd846e 9116
907cbceb
JB
9117 /* Migrate the slack space for the truncate to our reserve */
9118 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
9119 min_size);
fcb80c2a 9120 BUG_ON(ret);
f0cd846e 9121
5dc562c5
JB
9122 /*
9123 * So if we truncate and then write and fsync we normally would just
9124 * write the extents that changed, which is a problem if we need to
9125 * first truncate that entire inode. So set this flag so we write out
9126 * all of the extents in the inode to the sync log so we're completely
9127 * safe.
9128 */
9129 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9130 trans->block_rsv = rsv;
907cbceb 9131
8082510e
YZ
9132 while (1) {
9133 ret = btrfs_truncate_inode_items(trans, root, inode,
9134 inode->i_size,
9135 BTRFS_EXTENT_DATA_KEY);
28ed1345 9136 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9137 err = ret;
8082510e 9138 break;
3893e33b 9139 }
39279cc3 9140
fcb80c2a 9141 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 9142 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9143 if (ret) {
9144 err = ret;
9145 break;
9146 }
ca7e70f5 9147
8082510e 9148 btrfs_end_transaction(trans, root);
b53d3f5d 9149 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
9150
9151 trans = btrfs_start_transaction(root, 2);
9152 if (IS_ERR(trans)) {
9153 ret = err = PTR_ERR(trans);
9154 trans = NULL;
9155 break;
9156 }
9157
9158 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
9159 rsv, min_size);
9160 BUG_ON(ret); /* shouldn't happen */
9161 trans->block_rsv = rsv;
8082510e
YZ
9162 }
9163
9164 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9165 trans->block_rsv = root->orphan_block_rsv;
8082510e 9166 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
9167 if (ret)
9168 err = ret;
8082510e
YZ
9169 }
9170
917c16b2
CM
9171 if (trans) {
9172 trans->block_rsv = &root->fs_info->trans_block_rsv;
9173 ret = btrfs_update_inode(trans, root, inode);
9174 if (ret && !err)
9175 err = ret;
7b128766 9176
7ad85bb7 9177 ret = btrfs_end_transaction(trans, root);
b53d3f5d 9178 btrfs_btree_balance_dirty(root);
917c16b2 9179 }
fcb80c2a
JB
9180
9181out:
9182 btrfs_free_block_rsv(root, rsv);
9183
3893e33b
JB
9184 if (ret && !err)
9185 err = ret;
a41ad394 9186
3893e33b 9187 return err;
39279cc3
CM
9188}
9189
d352ac68
CM
9190/*
9191 * create a new subvolume directory/inode (helper for the ioctl).
9192 */
d2fb3437 9193int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9194 struct btrfs_root *new_root,
9195 struct btrfs_root *parent_root,
9196 u64 new_dirid)
39279cc3 9197{
39279cc3 9198 struct inode *inode;
76dda93c 9199 int err;
00e4e6b3 9200 u64 index = 0;
39279cc3 9201
12fc9d09
FA
9202 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9203 new_dirid, new_dirid,
9204 S_IFDIR | (~current_umask() & S_IRWXUGO),
9205 &index);
54aa1f4d 9206 if (IS_ERR(inode))
f46b5a66 9207 return PTR_ERR(inode);
39279cc3
CM
9208 inode->i_op = &btrfs_dir_inode_operations;
9209 inode->i_fop = &btrfs_dir_file_operations;
9210
bfe86848 9211 set_nlink(inode, 1);
dbe674a9 9212 btrfs_i_size_write(inode, 0);
b0d5d10f 9213 unlock_new_inode(inode);
3b96362c 9214
63541927
FDBM
9215 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9216 if (err)
9217 btrfs_err(new_root->fs_info,
351fd353 9218 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9219 new_root->root_key.objectid, err);
9220
76dda93c 9221 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9222
76dda93c 9223 iput(inode);
ce598979 9224 return err;
39279cc3
CM
9225}
9226
39279cc3
CM
9227struct inode *btrfs_alloc_inode(struct super_block *sb)
9228{
9229 struct btrfs_inode *ei;
2ead6ae7 9230 struct inode *inode;
39279cc3
CM
9231
9232 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9233 if (!ei)
9234 return NULL;
2ead6ae7
YZ
9235
9236 ei->root = NULL;
2ead6ae7 9237 ei->generation = 0;
15ee9bc7 9238 ei->last_trans = 0;
257c62e1 9239 ei->last_sub_trans = 0;
e02119d5 9240 ei->logged_trans = 0;
2ead6ae7 9241 ei->delalloc_bytes = 0;
47059d93 9242 ei->defrag_bytes = 0;
2ead6ae7
YZ
9243 ei->disk_i_size = 0;
9244 ei->flags = 0;
7709cde3 9245 ei->csum_bytes = 0;
2ead6ae7 9246 ei->index_cnt = (u64)-1;
67de1176 9247 ei->dir_index = 0;
2ead6ae7 9248 ei->last_unlink_trans = 0;
46d8bc34 9249 ei->last_log_commit = 0;
8089fe62 9250 ei->delayed_iput_count = 0;
2ead6ae7 9251
9e0baf60
JB
9252 spin_lock_init(&ei->lock);
9253 ei->outstanding_extents = 0;
9254 ei->reserved_extents = 0;
2ead6ae7 9255
72ac3c0d 9256 ei->runtime_flags = 0;
261507a0 9257 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9258
16cdcec7
MX
9259 ei->delayed_node = NULL;
9260
9cc97d64 9261 ei->i_otime.tv_sec = 0;
9262 ei->i_otime.tv_nsec = 0;
9263
2ead6ae7 9264 inode = &ei->vfs_inode;
a8067e02 9265 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
9266 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9267 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
9268 ei->io_tree.track_uptodate = 1;
9269 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9270 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9271 mutex_init(&ei->log_mutex);
f248679e 9272 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9273 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9274 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9275 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9276 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9277 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9278
9279 return inode;
39279cc3
CM
9280}
9281
aaedb55b
JB
9282#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9283void btrfs_test_destroy_inode(struct inode *inode)
9284{
9285 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9286 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9287}
9288#endif
9289
fa0d7e3d
NP
9290static void btrfs_i_callback(struct rcu_head *head)
9291{
9292 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9293 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9294}
9295
39279cc3
CM
9296void btrfs_destroy_inode(struct inode *inode)
9297{
e6dcd2dc 9298 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9299 struct btrfs_root *root = BTRFS_I(inode)->root;
9300
b3d9b7a3 9301 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9302 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9303 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9304 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
9305 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9306 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9307 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9308
a6dbd429
JB
9309 /*
9310 * This can happen where we create an inode, but somebody else also
9311 * created the same inode and we need to destroy the one we already
9312 * created.
9313 */
9314 if (!root)
9315 goto free;
9316
8a35d95f
JB
9317 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9318 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 9319 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 9320 btrfs_ino(inode));
8a35d95f 9321 atomic_dec(&root->orphan_inodes);
7b128766 9322 }
7b128766 9323
d397712b 9324 while (1) {
e6dcd2dc
CM
9325 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9326 if (!ordered)
9327 break;
9328 else {
c2cf52eb 9329 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 9330 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9331 btrfs_remove_ordered_extent(inode, ordered);
9332 btrfs_put_ordered_extent(ordered);
9333 btrfs_put_ordered_extent(ordered);
9334 }
9335 }
56fa9d07 9336 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9337 inode_tree_del(inode);
5b21f2ed 9338 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 9339free:
fa0d7e3d 9340 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9341}
9342
45321ac5 9343int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9344{
9345 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9346
6379ef9f
NA
9347 if (root == NULL)
9348 return 1;
9349
fa6ac876 9350 /* the snap/subvol tree is on deleting */
69e9c6c6 9351 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9352 return 1;
76dda93c 9353 else
45321ac5 9354 return generic_drop_inode(inode);
76dda93c
YZ
9355}
9356
0ee0fda0 9357static void init_once(void *foo)
39279cc3
CM
9358{
9359 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9360
9361 inode_init_once(&ei->vfs_inode);
9362}
9363
9364void btrfs_destroy_cachep(void)
9365{
8c0a8537
KS
9366 /*
9367 * Make sure all delayed rcu free inodes are flushed before we
9368 * destroy cache.
9369 */
9370 rcu_barrier();
5598e900
KM
9371 kmem_cache_destroy(btrfs_inode_cachep);
9372 kmem_cache_destroy(btrfs_trans_handle_cachep);
9373 kmem_cache_destroy(btrfs_transaction_cachep);
9374 kmem_cache_destroy(btrfs_path_cachep);
9375 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9376}
9377
9378int btrfs_init_cachep(void)
9379{
837e1972 9380 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9381 sizeof(struct btrfs_inode), 0,
5d097056
VD
9382 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9383 init_once);
39279cc3
CM
9384 if (!btrfs_inode_cachep)
9385 goto fail;
9601e3f6 9386
837e1972 9387 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
9388 sizeof(struct btrfs_trans_handle), 0,
9389 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9390 if (!btrfs_trans_handle_cachep)
9391 goto fail;
9601e3f6 9392
837e1972 9393 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
9394 sizeof(struct btrfs_transaction), 0,
9395 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9396 if (!btrfs_transaction_cachep)
9397 goto fail;
9601e3f6 9398
837e1972 9399 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
9400 sizeof(struct btrfs_path), 0,
9401 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9402 if (!btrfs_path_cachep)
9403 goto fail;
9601e3f6 9404
837e1972 9405 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
9406 sizeof(struct btrfs_free_space), 0,
9407 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9408 if (!btrfs_free_space_cachep)
9409 goto fail;
9410
39279cc3
CM
9411 return 0;
9412fail:
9413 btrfs_destroy_cachep();
9414 return -ENOMEM;
9415}
9416
9417static int btrfs_getattr(struct vfsmount *mnt,
9418 struct dentry *dentry, struct kstat *stat)
9419{
df0af1a5 9420 u64 delalloc_bytes;
2b0143b5 9421 struct inode *inode = d_inode(dentry);
fadc0d8b
DS
9422 u32 blocksize = inode->i_sb->s_blocksize;
9423
39279cc3 9424 generic_fillattr(inode, stat);
0ee5dc67 9425 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9426
9427 spin_lock(&BTRFS_I(inode)->lock);
9428 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9429 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9430 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9431 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9432 return 0;
9433}
9434
cdd1fedf
DF
9435static int btrfs_rename_exchange(struct inode *old_dir,
9436 struct dentry *old_dentry,
9437 struct inode *new_dir,
9438 struct dentry *new_dentry)
9439{
9440 struct btrfs_trans_handle *trans;
9441 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9442 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9443 struct inode *new_inode = new_dentry->d_inode;
9444 struct inode *old_inode = old_dentry->d_inode;
9445 struct timespec ctime = CURRENT_TIME;
9446 struct dentry *parent;
9447 u64 old_ino = btrfs_ino(old_inode);
9448 u64 new_ino = btrfs_ino(new_inode);
9449 u64 old_idx = 0;
9450 u64 new_idx = 0;
9451 u64 root_objectid;
9452 int ret;
86e8aa0e
FM
9453 bool root_log_pinned = false;
9454 bool dest_log_pinned = false;
cdd1fedf
DF
9455
9456 /* we only allow rename subvolume link between subvolumes */
9457 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9458 return -EXDEV;
9459
9460 /* close the race window with snapshot create/destroy ioctl */
9461 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9462 down_read(&root->fs_info->subvol_sem);
9463 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9464 down_read(&dest->fs_info->subvol_sem);
9465
9466 /*
9467 * We want to reserve the absolute worst case amount of items. So if
9468 * both inodes are subvols and we need to unlink them then that would
9469 * require 4 item modifications, but if they are both normal inodes it
9470 * would require 5 item modifications, so we'll assume their normal
9471 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9472 * should cover the worst case number of items we'll modify.
9473 */
9474 trans = btrfs_start_transaction(root, 12);
9475 if (IS_ERR(trans)) {
9476 ret = PTR_ERR(trans);
9477 goto out_notrans;
9478 }
9479
9480 /*
9481 * We need to find a free sequence number both in the source and
9482 * in the destination directory for the exchange.
9483 */
9484 ret = btrfs_set_inode_index(new_dir, &old_idx);
9485 if (ret)
9486 goto out_fail;
9487 ret = btrfs_set_inode_index(old_dir, &new_idx);
9488 if (ret)
9489 goto out_fail;
9490
9491 BTRFS_I(old_inode)->dir_index = 0ULL;
9492 BTRFS_I(new_inode)->dir_index = 0ULL;
9493
9494 /* Reference for the source. */
9495 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9496 /* force full log commit if subvolume involved. */
9497 btrfs_set_log_full_commit(root->fs_info, trans);
9498 } else {
376e5a57
FM
9499 btrfs_pin_log_trans(root);
9500 root_log_pinned = true;
cdd1fedf
DF
9501 ret = btrfs_insert_inode_ref(trans, dest,
9502 new_dentry->d_name.name,
9503 new_dentry->d_name.len,
9504 old_ino,
9505 btrfs_ino(new_dir), old_idx);
9506 if (ret)
9507 goto out_fail;
cdd1fedf
DF
9508 }
9509
9510 /* And now for the dest. */
9511 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9512 /* force full log commit if subvolume involved. */
9513 btrfs_set_log_full_commit(dest->fs_info, trans);
9514 } else {
376e5a57
FM
9515 btrfs_pin_log_trans(dest);
9516 dest_log_pinned = true;
cdd1fedf
DF
9517 ret = btrfs_insert_inode_ref(trans, root,
9518 old_dentry->d_name.name,
9519 old_dentry->d_name.len,
9520 new_ino,
9521 btrfs_ino(old_dir), new_idx);
9522 if (ret)
9523 goto out_fail;
cdd1fedf
DF
9524 }
9525
9526 /* Update inode version and ctime/mtime. */
9527 inode_inc_iversion(old_dir);
9528 inode_inc_iversion(new_dir);
9529 inode_inc_iversion(old_inode);
9530 inode_inc_iversion(new_inode);
9531 old_dir->i_ctime = old_dir->i_mtime = ctime;
9532 new_dir->i_ctime = new_dir->i_mtime = ctime;
9533 old_inode->i_ctime = ctime;
9534 new_inode->i_ctime = ctime;
9535
9536 if (old_dentry->d_parent != new_dentry->d_parent) {
9537 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9538 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9539 }
9540
9541 /* src is a subvolume */
9542 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9543 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9544 ret = btrfs_unlink_subvol(trans, root, old_dir,
9545 root_objectid,
9546 old_dentry->d_name.name,
9547 old_dentry->d_name.len);
9548 } else { /* src is an inode */
9549 ret = __btrfs_unlink_inode(trans, root, old_dir,
9550 old_dentry->d_inode,
9551 old_dentry->d_name.name,
9552 old_dentry->d_name.len);
9553 if (!ret)
9554 ret = btrfs_update_inode(trans, root, old_inode);
9555 }
9556 if (ret) {
9557 btrfs_abort_transaction(trans, root, ret);
9558 goto out_fail;
9559 }
9560
9561 /* dest is a subvolume */
9562 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9563 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9564 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9565 root_objectid,
9566 new_dentry->d_name.name,
9567 new_dentry->d_name.len);
9568 } else { /* dest is an inode */
9569 ret = __btrfs_unlink_inode(trans, dest, new_dir,
9570 new_dentry->d_inode,
9571 new_dentry->d_name.name,
9572 new_dentry->d_name.len);
9573 if (!ret)
9574 ret = btrfs_update_inode(trans, dest, new_inode);
9575 }
9576 if (ret) {
9577 btrfs_abort_transaction(trans, root, ret);
9578 goto out_fail;
9579 }
9580
9581 ret = btrfs_add_link(trans, new_dir, old_inode,
9582 new_dentry->d_name.name,
9583 new_dentry->d_name.len, 0, old_idx);
9584 if (ret) {
9585 btrfs_abort_transaction(trans, root, ret);
9586 goto out_fail;
9587 }
9588
9589 ret = btrfs_add_link(trans, old_dir, new_inode,
9590 old_dentry->d_name.name,
9591 old_dentry->d_name.len, 0, new_idx);
9592 if (ret) {
9593 btrfs_abort_transaction(trans, root, ret);
9594 goto out_fail;
9595 }
9596
9597 if (old_inode->i_nlink == 1)
9598 BTRFS_I(old_inode)->dir_index = old_idx;
9599 if (new_inode->i_nlink == 1)
9600 BTRFS_I(new_inode)->dir_index = new_idx;
9601
86e8aa0e 9602 if (root_log_pinned) {
cdd1fedf
DF
9603 parent = new_dentry->d_parent;
9604 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9605 btrfs_end_log_trans(root);
86e8aa0e 9606 root_log_pinned = false;
cdd1fedf 9607 }
86e8aa0e 9608 if (dest_log_pinned) {
cdd1fedf
DF
9609 parent = old_dentry->d_parent;
9610 btrfs_log_new_name(trans, new_inode, new_dir, parent);
9611 btrfs_end_log_trans(dest);
86e8aa0e 9612 dest_log_pinned = false;
cdd1fedf
DF
9613 }
9614out_fail:
86e8aa0e
FM
9615 /*
9616 * If we have pinned a log and an error happened, we unpin tasks
9617 * trying to sync the log and force them to fallback to a transaction
9618 * commit if the log currently contains any of the inodes involved in
9619 * this rename operation (to ensure we do not persist a log with an
9620 * inconsistent state for any of these inodes or leading to any
9621 * inconsistencies when replayed). If the transaction was aborted, the
9622 * abortion reason is propagated to userspace when attempting to commit
9623 * the transaction. If the log does not contain any of these inodes, we
9624 * allow the tasks to sync it.
9625 */
9626 if (ret && (root_log_pinned || dest_log_pinned)) {
9627 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9628 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9629 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9630 (new_inode &&
9631 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9632 btrfs_set_log_full_commit(root->fs_info, trans);
9633
9634 if (root_log_pinned) {
9635 btrfs_end_log_trans(root);
9636 root_log_pinned = false;
9637 }
9638 if (dest_log_pinned) {
9639 btrfs_end_log_trans(dest);
9640 dest_log_pinned = false;
9641 }
9642 }
cdd1fedf
DF
9643 ret = btrfs_end_transaction(trans, root);
9644out_notrans:
9645 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9646 up_read(&dest->fs_info->subvol_sem);
9647 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9648 up_read(&root->fs_info->subvol_sem);
9649
9650 return ret;
9651}
9652
9653static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9654 struct btrfs_root *root,
9655 struct inode *dir,
9656 struct dentry *dentry)
9657{
9658 int ret;
9659 struct inode *inode;
9660 u64 objectid;
9661 u64 index;
9662
9663 ret = btrfs_find_free_ino(root, &objectid);
9664 if (ret)
9665 return ret;
9666
9667 inode = btrfs_new_inode(trans, root, dir,
9668 dentry->d_name.name,
9669 dentry->d_name.len,
9670 btrfs_ino(dir),
9671 objectid,
9672 S_IFCHR | WHITEOUT_MODE,
9673 &index);
9674
9675 if (IS_ERR(inode)) {
9676 ret = PTR_ERR(inode);
9677 return ret;
9678 }
9679
9680 inode->i_op = &btrfs_special_inode_operations;
9681 init_special_inode(inode, inode->i_mode,
9682 WHITEOUT_DEV);
9683
9684 ret = btrfs_init_inode_security(trans, inode, dir,
9685 &dentry->d_name);
9686 if (ret)
c9901618 9687 goto out;
cdd1fedf
DF
9688
9689 ret = btrfs_add_nondir(trans, dir, dentry,
9690 inode, 0, index);
9691 if (ret)
c9901618 9692 goto out;
cdd1fedf
DF
9693
9694 ret = btrfs_update_inode(trans, root, inode);
c9901618 9695out:
cdd1fedf 9696 unlock_new_inode(inode);
c9901618
FM
9697 if (ret)
9698 inode_dec_link_count(inode);
cdd1fedf
DF
9699 iput(inode);
9700
c9901618 9701 return ret;
cdd1fedf
DF
9702}
9703
d397712b 9704static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9705 struct inode *new_dir, struct dentry *new_dentry,
9706 unsigned int flags)
39279cc3
CM
9707{
9708 struct btrfs_trans_handle *trans;
5062af35 9709 unsigned int trans_num_items;
39279cc3 9710 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9711 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9712 struct inode *new_inode = d_inode(new_dentry);
9713 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9714 u64 index = 0;
4df27c4d 9715 u64 root_objectid;
39279cc3 9716 int ret;
33345d01 9717 u64 old_ino = btrfs_ino(old_inode);
3dc9e8f7 9718 bool log_pinned = false;
39279cc3 9719
33345d01 9720 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9721 return -EPERM;
9722
4df27c4d 9723 /* we only allow rename subvolume link between subvolumes */
33345d01 9724 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9725 return -EXDEV;
9726
33345d01
LZ
9727 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9728 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9729 return -ENOTEMPTY;
5f39d397 9730
4df27c4d
YZ
9731 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9732 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9733 return -ENOTEMPTY;
9c52057c
CM
9734
9735
9736 /* check for collisions, even if the name isn't there */
4871c158 9737 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9738 new_dentry->d_name.name,
9739 new_dentry->d_name.len);
9740
9741 if (ret) {
9742 if (ret == -EEXIST) {
9743 /* we shouldn't get
9744 * eexist without a new_inode */
fae7f21c 9745 if (WARN_ON(!new_inode)) {
9c52057c
CM
9746 return ret;
9747 }
9748 } else {
9749 /* maybe -EOVERFLOW */
9750 return ret;
9751 }
9752 }
9753 ret = 0;
9754
5a3f23d5 9755 /*
8d875f95
CM
9756 * we're using rename to replace one file with another. Start IO on it
9757 * now so we don't add too much work to the end of the transaction
5a3f23d5 9758 */
8d875f95 9759 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9760 filemap_flush(old_inode->i_mapping);
9761
76dda93c 9762 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9763 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9764 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
9765 /*
9766 * We want to reserve the absolute worst case amount of items. So if
9767 * both inodes are subvols and we need to unlink them then that would
9768 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9769 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9770 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9771 * should cover the worst case number of items we'll modify.
5062af35
FM
9772 * If our rename has the whiteout flag, we need more 5 units for the
9773 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9774 * when selinux is enabled).
a22285a6 9775 */
5062af35
FM
9776 trans_num_items = 11;
9777 if (flags & RENAME_WHITEOUT)
9778 trans_num_items += 5;
9779 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9780 if (IS_ERR(trans)) {
cdd1fedf
DF
9781 ret = PTR_ERR(trans);
9782 goto out_notrans;
9783 }
76dda93c 9784
4df27c4d
YZ
9785 if (dest != root)
9786 btrfs_record_root_in_trans(trans, dest);
5f39d397 9787
a5719521
YZ
9788 ret = btrfs_set_inode_index(new_dir, &index);
9789 if (ret)
9790 goto out_fail;
5a3f23d5 9791
67de1176 9792 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9793 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9794 /* force full log commit if subvolume involved. */
995946dd 9795 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 9796 } else {
c4aba954
FM
9797 btrfs_pin_log_trans(root);
9798 log_pinned = true;
a5719521
YZ
9799 ret = btrfs_insert_inode_ref(trans, dest,
9800 new_dentry->d_name.name,
9801 new_dentry->d_name.len,
33345d01
LZ
9802 old_ino,
9803 btrfs_ino(new_dir), index);
a5719521
YZ
9804 if (ret)
9805 goto out_fail;
4df27c4d 9806 }
5a3f23d5 9807
0c4d2d95
JB
9808 inode_inc_iversion(old_dir);
9809 inode_inc_iversion(new_dir);
9810 inode_inc_iversion(old_inode);
04b285f3
DD
9811 old_dir->i_ctime = old_dir->i_mtime =
9812 new_dir->i_ctime = new_dir->i_mtime =
9813 old_inode->i_ctime = current_fs_time(old_dir->i_sb);
5f39d397 9814
12fcfd22
CM
9815 if (old_dentry->d_parent != new_dentry->d_parent)
9816 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9817
33345d01 9818 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9819 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9820 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9821 old_dentry->d_name.name,
9822 old_dentry->d_name.len);
9823 } else {
92986796 9824 ret = __btrfs_unlink_inode(trans, root, old_dir,
2b0143b5 9825 d_inode(old_dentry),
92986796
AV
9826 old_dentry->d_name.name,
9827 old_dentry->d_name.len);
9828 if (!ret)
9829 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9830 }
79787eaa
JM
9831 if (ret) {
9832 btrfs_abort_transaction(trans, root, ret);
9833 goto out_fail;
9834 }
39279cc3
CM
9835
9836 if (new_inode) {
0c4d2d95 9837 inode_inc_iversion(new_inode);
04b285f3 9838 new_inode->i_ctime = current_fs_time(new_inode->i_sb);
33345d01 9839 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
9840 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9841 root_objectid = BTRFS_I(new_inode)->location.objectid;
9842 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9843 root_objectid,
9844 new_dentry->d_name.name,
9845 new_dentry->d_name.len);
9846 BUG_ON(new_inode->i_nlink == 0);
9847 } else {
9848 ret = btrfs_unlink_inode(trans, dest, new_dir,
2b0143b5 9849 d_inode(new_dentry),
4df27c4d
YZ
9850 new_dentry->d_name.name,
9851 new_dentry->d_name.len);
9852 }
4ef31a45 9853 if (!ret && new_inode->i_nlink == 0)
2b0143b5 9854 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
79787eaa
JM
9855 if (ret) {
9856 btrfs_abort_transaction(trans, root, ret);
9857 goto out_fail;
9858 }
39279cc3 9859 }
aec7477b 9860
4df27c4d
YZ
9861 ret = btrfs_add_link(trans, new_dir, old_inode,
9862 new_dentry->d_name.name,
a5719521 9863 new_dentry->d_name.len, 0, index);
79787eaa
JM
9864 if (ret) {
9865 btrfs_abort_transaction(trans, root, ret);
9866 goto out_fail;
9867 }
39279cc3 9868
67de1176
MX
9869 if (old_inode->i_nlink == 1)
9870 BTRFS_I(old_inode)->dir_index = index;
9871
3dc9e8f7 9872 if (log_pinned) {
10d9f309 9873 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9874
6a912213 9875 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d 9876 btrfs_end_log_trans(root);
3dc9e8f7 9877 log_pinned = false;
4df27c4d 9878 }
cdd1fedf
DF
9879
9880 if (flags & RENAME_WHITEOUT) {
9881 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9882 old_dentry);
9883
9884 if (ret) {
9885 btrfs_abort_transaction(trans, root, ret);
9886 goto out_fail;
9887 }
4df27c4d 9888 }
39279cc3 9889out_fail:
3dc9e8f7
FM
9890 /*
9891 * If we have pinned the log and an error happened, we unpin tasks
9892 * trying to sync the log and force them to fallback to a transaction
9893 * commit if the log currently contains any of the inodes involved in
9894 * this rename operation (to ensure we do not persist a log with an
9895 * inconsistent state for any of these inodes or leading to any
9896 * inconsistencies when replayed). If the transaction was aborted, the
9897 * abortion reason is propagated to userspace when attempting to commit
9898 * the transaction. If the log does not contain any of these inodes, we
9899 * allow the tasks to sync it.
9900 */
9901 if (ret && log_pinned) {
9902 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9903 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9904 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9905 (new_inode &&
9906 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9907 btrfs_set_log_full_commit(root->fs_info, trans);
9908
9909 btrfs_end_log_trans(root);
9910 log_pinned = false;
9911 }
7ad85bb7 9912 btrfs_end_transaction(trans, root);
b44c59a8 9913out_notrans:
33345d01 9914 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9915 up_read(&root->fs_info->subvol_sem);
9ed74f2d 9916
39279cc3
CM
9917 return ret;
9918}
9919
80ace85c
MS
9920static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9921 struct inode *new_dir, struct dentry *new_dentry,
9922 unsigned int flags)
9923{
cdd1fedf 9924 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9925 return -EINVAL;
9926
cdd1fedf
DF
9927 if (flags & RENAME_EXCHANGE)
9928 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9929 new_dentry);
9930
9931 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9932}
9933
8ccf6f19
MX
9934static void btrfs_run_delalloc_work(struct btrfs_work *work)
9935{
9936 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9937 struct inode *inode;
8ccf6f19
MX
9938
9939 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9940 work);
9f23e289 9941 inode = delalloc_work->inode;
30424601
DS
9942 filemap_flush(inode->i_mapping);
9943 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9944 &BTRFS_I(inode)->runtime_flags))
9f23e289 9945 filemap_flush(inode->i_mapping);
8ccf6f19
MX
9946
9947 if (delalloc_work->delay_iput)
9f23e289 9948 btrfs_add_delayed_iput(inode);
8ccf6f19 9949 else
9f23e289 9950 iput(inode);
8ccf6f19
MX
9951 complete(&delalloc_work->completion);
9952}
9953
9954struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 9955 int delay_iput)
8ccf6f19
MX
9956{
9957 struct btrfs_delalloc_work *work;
9958
100d5702 9959 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9960 if (!work)
9961 return NULL;
9962
9963 init_completion(&work->completion);
9964 INIT_LIST_HEAD(&work->list);
9965 work->inode = inode;
8ccf6f19 9966 work->delay_iput = delay_iput;
9e0af237
LB
9967 WARN_ON_ONCE(!inode);
9968 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9969 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9970
9971 return work;
9972}
9973
9974void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9975{
9976 wait_for_completion(&work->completion);
100d5702 9977 kfree(work);
8ccf6f19
MX
9978}
9979
d352ac68
CM
9980/*
9981 * some fairly slow code that needs optimization. This walks the list
9982 * of all the inodes with pending delalloc and forces them to disk.
9983 */
6c255e67
MX
9984static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9985 int nr)
ea8c2819 9986{
ea8c2819 9987 struct btrfs_inode *binode;
5b21f2ed 9988 struct inode *inode;
8ccf6f19
MX
9989 struct btrfs_delalloc_work *work, *next;
9990 struct list_head works;
1eafa6c7 9991 struct list_head splice;
8ccf6f19 9992 int ret = 0;
ea8c2819 9993
8ccf6f19 9994 INIT_LIST_HEAD(&works);
1eafa6c7 9995 INIT_LIST_HEAD(&splice);
63607cc8 9996
573bfb72 9997 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9998 spin_lock(&root->delalloc_lock);
9999 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10000 while (!list_empty(&splice)) {
10001 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10002 delalloc_inodes);
1eafa6c7 10003
eb73c1b7
MX
10004 list_move_tail(&binode->delalloc_inodes,
10005 &root->delalloc_inodes);
5b21f2ed 10006 inode = igrab(&binode->vfs_inode);
df0af1a5 10007 if (!inode) {
eb73c1b7 10008 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10009 continue;
df0af1a5 10010 }
eb73c1b7 10011 spin_unlock(&root->delalloc_lock);
1eafa6c7 10012
651d494a 10013 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10014 if (!work) {
f4ab9ea7
JB
10015 if (delay_iput)
10016 btrfs_add_delayed_iput(inode);
10017 else
10018 iput(inode);
1eafa6c7 10019 ret = -ENOMEM;
a1ecaabb 10020 goto out;
5b21f2ed 10021 }
1eafa6c7 10022 list_add_tail(&work->list, &works);
a44903ab
QW
10023 btrfs_queue_work(root->fs_info->flush_workers,
10024 &work->work);
6c255e67
MX
10025 ret++;
10026 if (nr != -1 && ret >= nr)
a1ecaabb 10027 goto out;
5b21f2ed 10028 cond_resched();
eb73c1b7 10029 spin_lock(&root->delalloc_lock);
ea8c2819 10030 }
eb73c1b7 10031 spin_unlock(&root->delalloc_lock);
8c8bee1d 10032
a1ecaabb 10033out:
eb73c1b7
MX
10034 list_for_each_entry_safe(work, next, &works, list) {
10035 list_del_init(&work->list);
10036 btrfs_wait_and_free_delalloc_work(work);
10037 }
10038
10039 if (!list_empty_careful(&splice)) {
10040 spin_lock(&root->delalloc_lock);
10041 list_splice_tail(&splice, &root->delalloc_inodes);
10042 spin_unlock(&root->delalloc_lock);
10043 }
573bfb72 10044 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10045 return ret;
10046}
1eafa6c7 10047
eb73c1b7
MX
10048int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10049{
10050 int ret;
1eafa6c7 10051
2c21b4d7 10052 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
10053 return -EROFS;
10054
6c255e67
MX
10055 ret = __start_delalloc_inodes(root, delay_iput, -1);
10056 if (ret > 0)
10057 ret = 0;
eb73c1b7
MX
10058 /*
10059 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
10060 * we have to make sure the IO is actually started and that
10061 * ordered extents get created before we return
10062 */
10063 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 10064 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 10065 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 10066 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
10067 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10068 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
10069 }
10070 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
10071 return ret;
10072}
10073
6c255e67
MX
10074int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10075 int nr)
eb73c1b7
MX
10076{
10077 struct btrfs_root *root;
10078 struct list_head splice;
10079 int ret;
10080
2c21b4d7 10081 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10082 return -EROFS;
10083
10084 INIT_LIST_HEAD(&splice);
10085
573bfb72 10086 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10087 spin_lock(&fs_info->delalloc_root_lock);
10088 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10089 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10090 root = list_first_entry(&splice, struct btrfs_root,
10091 delalloc_root);
10092 root = btrfs_grab_fs_root(root);
10093 BUG_ON(!root);
10094 list_move_tail(&root->delalloc_root,
10095 &fs_info->delalloc_roots);
10096 spin_unlock(&fs_info->delalloc_root_lock);
10097
6c255e67 10098 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10099 btrfs_put_fs_root(root);
6c255e67 10100 if (ret < 0)
eb73c1b7
MX
10101 goto out;
10102
6c255e67
MX
10103 if (nr != -1) {
10104 nr -= ret;
10105 WARN_ON(nr < 0);
10106 }
eb73c1b7 10107 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10108 }
eb73c1b7 10109 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10110
6c255e67 10111 ret = 0;
eb73c1b7
MX
10112 atomic_inc(&fs_info->async_submit_draining);
10113 while (atomic_read(&fs_info->nr_async_submits) ||
10114 atomic_read(&fs_info->async_delalloc_pages)) {
10115 wait_event(fs_info->async_submit_wait,
10116 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10117 atomic_read(&fs_info->async_delalloc_pages) == 0));
10118 }
10119 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 10120out:
1eafa6c7 10121 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10122 spin_lock(&fs_info->delalloc_root_lock);
10123 list_splice_tail(&splice, &fs_info->delalloc_roots);
10124 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10125 }
573bfb72 10126 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10127 return ret;
ea8c2819
CM
10128}
10129
39279cc3
CM
10130static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10131 const char *symname)
10132{
10133 struct btrfs_trans_handle *trans;
10134 struct btrfs_root *root = BTRFS_I(dir)->root;
10135 struct btrfs_path *path;
10136 struct btrfs_key key;
1832a6d5 10137 struct inode *inode = NULL;
39279cc3
CM
10138 int err;
10139 int drop_inode = 0;
10140 u64 objectid;
67871254 10141 u64 index = 0;
39279cc3
CM
10142 int name_len;
10143 int datasize;
5f39d397 10144 unsigned long ptr;
39279cc3 10145 struct btrfs_file_extent_item *ei;
5f39d397 10146 struct extent_buffer *leaf;
39279cc3 10147
f06becc4 10148 name_len = strlen(symname);
39279cc3
CM
10149 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10150 return -ENAMETOOLONG;
1832a6d5 10151
9ed74f2d
JB
10152 /*
10153 * 2 items for inode item and ref
10154 * 2 items for dir items
9269d12b
FM
10155 * 1 item for updating parent inode item
10156 * 1 item for the inline extent item
9ed74f2d
JB
10157 * 1 item for xattr if selinux is on
10158 */
9269d12b 10159 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10160 if (IS_ERR(trans))
10161 return PTR_ERR(trans);
1832a6d5 10162
581bb050
LZ
10163 err = btrfs_find_free_ino(root, &objectid);
10164 if (err)
10165 goto out_unlock;
10166
aec7477b 10167 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 10168 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 10169 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10170 if (IS_ERR(inode)) {
10171 err = PTR_ERR(inode);
39279cc3 10172 goto out_unlock;
7cf96da3 10173 }
39279cc3 10174
ad19db71
CS
10175 /*
10176 * If the active LSM wants to access the inode during
10177 * d_instantiate it needs these. Smack checks to see
10178 * if the filesystem supports xattrs by looking at the
10179 * ops vector.
10180 */
10181 inode->i_fop = &btrfs_file_operations;
10182 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10183 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10184 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10185
10186 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10187 if (err)
10188 goto out_unlock_inode;
ad19db71 10189
39279cc3 10190 path = btrfs_alloc_path();
d8926bb3
MF
10191 if (!path) {
10192 err = -ENOMEM;
b0d5d10f 10193 goto out_unlock_inode;
d8926bb3 10194 }
33345d01 10195 key.objectid = btrfs_ino(inode);
39279cc3 10196 key.offset = 0;
962a298f 10197 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10198 datasize = btrfs_file_extent_calc_inline_size(name_len);
10199 err = btrfs_insert_empty_item(trans, root, path, &key,
10200 datasize);
54aa1f4d 10201 if (err) {
b0839166 10202 btrfs_free_path(path);
b0d5d10f 10203 goto out_unlock_inode;
54aa1f4d 10204 }
5f39d397
CM
10205 leaf = path->nodes[0];
10206 ei = btrfs_item_ptr(leaf, path->slots[0],
10207 struct btrfs_file_extent_item);
10208 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10209 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10210 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10211 btrfs_set_file_extent_encryption(leaf, ei, 0);
10212 btrfs_set_file_extent_compression(leaf, ei, 0);
10213 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10214 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10215
39279cc3 10216 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10217 write_extent_buffer(leaf, symname, ptr, name_len);
10218 btrfs_mark_buffer_dirty(leaf);
39279cc3 10219 btrfs_free_path(path);
5f39d397 10220
39279cc3 10221 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10222 inode_nohighmem(inode);
39279cc3 10223 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10224 inode_set_bytes(inode, name_len);
f06becc4 10225 btrfs_i_size_write(inode, name_len);
54aa1f4d 10226 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10227 /*
10228 * Last step, add directory indexes for our symlink inode. This is the
10229 * last step to avoid extra cleanup of these indexes if an error happens
10230 * elsewhere above.
10231 */
10232 if (!err)
10233 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
b0d5d10f 10234 if (err) {
54aa1f4d 10235 drop_inode = 1;
b0d5d10f
CM
10236 goto out_unlock_inode;
10237 }
10238
10239 unlock_new_inode(inode);
10240 d_instantiate(dentry, inode);
39279cc3
CM
10241
10242out_unlock:
7ad85bb7 10243 btrfs_end_transaction(trans, root);
39279cc3
CM
10244 if (drop_inode) {
10245 inode_dec_link_count(inode);
10246 iput(inode);
10247 }
b53d3f5d 10248 btrfs_btree_balance_dirty(root);
39279cc3 10249 return err;
b0d5d10f
CM
10250
10251out_unlock_inode:
10252 drop_inode = 1;
10253 unlock_new_inode(inode);
10254 goto out_unlock;
39279cc3 10255}
16432985 10256
0af3d00b
JB
10257static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10258 u64 start, u64 num_bytes, u64 min_size,
10259 loff_t actual_len, u64 *alloc_hint,
10260 struct btrfs_trans_handle *trans)
d899e052 10261{
5dc562c5
JB
10262 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10263 struct extent_map *em;
d899e052
YZ
10264 struct btrfs_root *root = BTRFS_I(inode)->root;
10265 struct btrfs_key ins;
d899e052 10266 u64 cur_offset = start;
55a61d1d 10267 u64 i_size;
154ea289 10268 u64 cur_bytes;
0b670dc4 10269 u64 last_alloc = (u64)-1;
d899e052 10270 int ret = 0;
0af3d00b 10271 bool own_trans = true;
d899e052 10272
0af3d00b
JB
10273 if (trans)
10274 own_trans = false;
d899e052 10275 while (num_bytes > 0) {
0af3d00b
JB
10276 if (own_trans) {
10277 trans = btrfs_start_transaction(root, 3);
10278 if (IS_ERR(trans)) {
10279 ret = PTR_ERR(trans);
10280 break;
10281 }
5a303d5d
YZ
10282 }
10283
ee22184b 10284 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10285 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10286 /*
10287 * If we are severely fragmented we could end up with really
10288 * small allocations, so if the allocator is returning small
10289 * chunks lets make its job easier by only searching for those
10290 * sized chunks.
10291 */
10292 cur_bytes = min(cur_bytes, last_alloc);
00361589 10293 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
e570fd27 10294 *alloc_hint, &ins, 1, 0);
5a303d5d 10295 if (ret) {
0af3d00b
JB
10296 if (own_trans)
10297 btrfs_end_transaction(trans, root);
a22285a6 10298 break;
d899e052 10299 }
9cfa3e34 10300 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
5a303d5d 10301
0b670dc4 10302 last_alloc = ins.offset;
d899e052
YZ
10303 ret = insert_reserved_file_extent(trans, inode,
10304 cur_offset, ins.objectid,
10305 ins.offset, ins.offset,
920bbbfb 10306 ins.offset, 0, 0, 0,
d899e052 10307 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10308 if (ret) {
857cc2fc 10309 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 10310 ins.offset, 0);
79787eaa
JM
10311 btrfs_abort_transaction(trans, root, ret);
10312 if (own_trans)
10313 btrfs_end_transaction(trans, root);
10314 break;
10315 }
31193213 10316
a1ed835e
CM
10317 btrfs_drop_extent_cache(inode, cur_offset,
10318 cur_offset + ins.offset -1, 0);
5a303d5d 10319
5dc562c5
JB
10320 em = alloc_extent_map();
10321 if (!em) {
10322 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10323 &BTRFS_I(inode)->runtime_flags);
10324 goto next;
10325 }
10326
10327 em->start = cur_offset;
10328 em->orig_start = cur_offset;
10329 em->len = ins.offset;
10330 em->block_start = ins.objectid;
10331 em->block_len = ins.offset;
b4939680 10332 em->orig_block_len = ins.offset;
cc95bef6 10333 em->ram_bytes = ins.offset;
5dc562c5
JB
10334 em->bdev = root->fs_info->fs_devices->latest_bdev;
10335 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10336 em->generation = trans->transid;
10337
10338 while (1) {
10339 write_lock(&em_tree->lock);
09a2a8f9 10340 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10341 write_unlock(&em_tree->lock);
10342 if (ret != -EEXIST)
10343 break;
10344 btrfs_drop_extent_cache(inode, cur_offset,
10345 cur_offset + ins.offset - 1,
10346 0);
10347 }
10348 free_extent_map(em);
10349next:
d899e052
YZ
10350 num_bytes -= ins.offset;
10351 cur_offset += ins.offset;
efa56464 10352 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10353
0c4d2d95 10354 inode_inc_iversion(inode);
04b285f3 10355 inode->i_ctime = current_fs_time(inode->i_sb);
6cbff00f 10356 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10357 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10358 (actual_len > inode->i_size) &&
10359 (cur_offset > inode->i_size)) {
d1ea6a61 10360 if (cur_offset > actual_len)
55a61d1d 10361 i_size = actual_len;
d1ea6a61 10362 else
55a61d1d
JB
10363 i_size = cur_offset;
10364 i_size_write(inode, i_size);
10365 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10366 }
10367
d899e052 10368 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10369
10370 if (ret) {
10371 btrfs_abort_transaction(trans, root, ret);
10372 if (own_trans)
10373 btrfs_end_transaction(trans, root);
10374 break;
10375 }
d899e052 10376
0af3d00b
JB
10377 if (own_trans)
10378 btrfs_end_transaction(trans, root);
5a303d5d 10379 }
d899e052
YZ
10380 return ret;
10381}
10382
0af3d00b
JB
10383int btrfs_prealloc_file_range(struct inode *inode, int mode,
10384 u64 start, u64 num_bytes, u64 min_size,
10385 loff_t actual_len, u64 *alloc_hint)
10386{
10387 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10388 min_size, actual_len, alloc_hint,
10389 NULL);
10390}
10391
10392int btrfs_prealloc_file_range_trans(struct inode *inode,
10393 struct btrfs_trans_handle *trans, int mode,
10394 u64 start, u64 num_bytes, u64 min_size,
10395 loff_t actual_len, u64 *alloc_hint)
10396{
10397 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10398 min_size, actual_len, alloc_hint, trans);
10399}
10400
e6dcd2dc
CM
10401static int btrfs_set_page_dirty(struct page *page)
10402{
e6dcd2dc
CM
10403 return __set_page_dirty_nobuffers(page);
10404}
10405
10556cb2 10406static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10407{
b83cc969 10408 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10409 umode_t mode = inode->i_mode;
b83cc969 10410
cb6db4e5
JM
10411 if (mask & MAY_WRITE &&
10412 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10413 if (btrfs_root_readonly(root))
10414 return -EROFS;
10415 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10416 return -EACCES;
10417 }
2830ba7f 10418 return generic_permission(inode, mask);
fdebe2bd 10419}
39279cc3 10420
ef3b9af5
FM
10421static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10422{
10423 struct btrfs_trans_handle *trans;
10424 struct btrfs_root *root = BTRFS_I(dir)->root;
10425 struct inode *inode = NULL;
10426 u64 objectid;
10427 u64 index;
10428 int ret = 0;
10429
10430 /*
10431 * 5 units required for adding orphan entry
10432 */
10433 trans = btrfs_start_transaction(root, 5);
10434 if (IS_ERR(trans))
10435 return PTR_ERR(trans);
10436
10437 ret = btrfs_find_free_ino(root, &objectid);
10438 if (ret)
10439 goto out;
10440
10441 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10442 btrfs_ino(dir), objectid, mode, &index);
10443 if (IS_ERR(inode)) {
10444 ret = PTR_ERR(inode);
10445 inode = NULL;
10446 goto out;
10447 }
10448
ef3b9af5
FM
10449 inode->i_fop = &btrfs_file_operations;
10450 inode->i_op = &btrfs_file_inode_operations;
10451
10452 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10453 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10454
b0d5d10f
CM
10455 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10456 if (ret)
10457 goto out_inode;
10458
10459 ret = btrfs_update_inode(trans, root, inode);
10460 if (ret)
10461 goto out_inode;
ef3b9af5
FM
10462 ret = btrfs_orphan_add(trans, inode);
10463 if (ret)
b0d5d10f 10464 goto out_inode;
ef3b9af5 10465
5762b5c9
FM
10466 /*
10467 * We set number of links to 0 in btrfs_new_inode(), and here we set
10468 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10469 * through:
10470 *
10471 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10472 */
10473 set_nlink(inode, 1);
b0d5d10f 10474 unlock_new_inode(inode);
ef3b9af5
FM
10475 d_tmpfile(dentry, inode);
10476 mark_inode_dirty(inode);
10477
10478out:
10479 btrfs_end_transaction(trans, root);
10480 if (ret)
10481 iput(inode);
10482 btrfs_balance_delayed_items(root);
10483 btrfs_btree_balance_dirty(root);
ef3b9af5 10484 return ret;
b0d5d10f
CM
10485
10486out_inode:
10487 unlock_new_inode(inode);
10488 goto out;
10489
ef3b9af5
FM
10490}
10491
b38ef71c
FM
10492/* Inspired by filemap_check_errors() */
10493int btrfs_inode_check_errors(struct inode *inode)
10494{
10495 int ret = 0;
10496
10497 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10498 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10499 ret = -ENOSPC;
10500 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10501 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10502 ret = -EIO;
10503
10504 return ret;
10505}
10506
6e1d5dcc 10507static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10508 .getattr = btrfs_getattr,
39279cc3
CM
10509 .lookup = btrfs_lookup,
10510 .create = btrfs_create,
10511 .unlink = btrfs_unlink,
10512 .link = btrfs_link,
10513 .mkdir = btrfs_mkdir,
10514 .rmdir = btrfs_rmdir,
80ace85c 10515 .rename2 = btrfs_rename2,
39279cc3
CM
10516 .symlink = btrfs_symlink,
10517 .setattr = btrfs_setattr,
618e21d5 10518 .mknod = btrfs_mknod,
e0d46f5c 10519 .setxattr = generic_setxattr,
9172abbc 10520 .getxattr = generic_getxattr,
5103e947 10521 .listxattr = btrfs_listxattr,
e0d46f5c 10522 .removexattr = generic_removexattr,
fdebe2bd 10523 .permission = btrfs_permission,
4e34e719 10524 .get_acl = btrfs_get_acl,
996a710d 10525 .set_acl = btrfs_set_acl,
93fd63c2 10526 .update_time = btrfs_update_time,
ef3b9af5 10527 .tmpfile = btrfs_tmpfile,
39279cc3 10528};
6e1d5dcc 10529static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10530 .lookup = btrfs_lookup,
fdebe2bd 10531 .permission = btrfs_permission,
4e34e719 10532 .get_acl = btrfs_get_acl,
996a710d 10533 .set_acl = btrfs_set_acl,
93fd63c2 10534 .update_time = btrfs_update_time,
39279cc3 10535};
76dda93c 10536
828c0950 10537static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10538 .llseek = generic_file_llseek,
10539 .read = generic_read_dir,
02dbfc99 10540 .iterate_shared = btrfs_real_readdir,
34287aa3 10541 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10542#ifdef CONFIG_COMPAT
4c63c245 10543 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10544#endif
6bf13c0c 10545 .release = btrfs_release_file,
e02119d5 10546 .fsync = btrfs_sync_file,
39279cc3
CM
10547};
10548
20e5506b 10549static const struct extent_io_ops btrfs_extent_io_ops = {
07157aac 10550 .fill_delalloc = run_delalloc_range,
065631f6 10551 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 10552 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 10553 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 10554 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10555 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10556 .set_bit_hook = btrfs_set_bit_hook,
10557 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10558 .merge_extent_hook = btrfs_merge_extent_hook,
10559 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
10560};
10561
35054394
CM
10562/*
10563 * btrfs doesn't support the bmap operation because swapfiles
10564 * use bmap to make a mapping of extents in the file. They assume
10565 * these extents won't change over the life of the file and they
10566 * use the bmap result to do IO directly to the drive.
10567 *
10568 * the btrfs bmap call would return logical addresses that aren't
10569 * suitable for IO and they also will change frequently as COW
10570 * operations happen. So, swapfile + btrfs == corruption.
10571 *
10572 * For now we're avoiding this by dropping bmap.
10573 */
7f09410b 10574static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10575 .readpage = btrfs_readpage,
10576 .writepage = btrfs_writepage,
b293f02e 10577 .writepages = btrfs_writepages,
3ab2fb5a 10578 .readpages = btrfs_readpages,
16432985 10579 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10580 .invalidatepage = btrfs_invalidatepage,
10581 .releasepage = btrfs_releasepage,
e6dcd2dc 10582 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10583 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10584};
10585
7f09410b 10586static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10587 .readpage = btrfs_readpage,
10588 .writepage = btrfs_writepage,
2bf5a725
CM
10589 .invalidatepage = btrfs_invalidatepage,
10590 .releasepage = btrfs_releasepage,
39279cc3
CM
10591};
10592
6e1d5dcc 10593static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10594 .getattr = btrfs_getattr,
10595 .setattr = btrfs_setattr,
e0d46f5c 10596 .setxattr = generic_setxattr,
9172abbc 10597 .getxattr = generic_getxattr,
5103e947 10598 .listxattr = btrfs_listxattr,
e0d46f5c 10599 .removexattr = generic_removexattr,
fdebe2bd 10600 .permission = btrfs_permission,
1506fcc8 10601 .fiemap = btrfs_fiemap,
4e34e719 10602 .get_acl = btrfs_get_acl,
996a710d 10603 .set_acl = btrfs_set_acl,
e41f941a 10604 .update_time = btrfs_update_time,
39279cc3 10605};
6e1d5dcc 10606static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10607 .getattr = btrfs_getattr,
10608 .setattr = btrfs_setattr,
fdebe2bd 10609 .permission = btrfs_permission,
e0d46f5c 10610 .setxattr = generic_setxattr,
9172abbc 10611 .getxattr = generic_getxattr,
33268eaf 10612 .listxattr = btrfs_listxattr,
e0d46f5c 10613 .removexattr = generic_removexattr,
4e34e719 10614 .get_acl = btrfs_get_acl,
996a710d 10615 .set_acl = btrfs_set_acl,
e41f941a 10616 .update_time = btrfs_update_time,
618e21d5 10617};
6e1d5dcc 10618static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3 10619 .readlink = generic_readlink,
6b255391 10620 .get_link = page_get_link,
f209561a 10621 .getattr = btrfs_getattr,
22c44fe6 10622 .setattr = btrfs_setattr,
fdebe2bd 10623 .permission = btrfs_permission,
e0d46f5c 10624 .setxattr = generic_setxattr,
9172abbc 10625 .getxattr = generic_getxattr,
0279b4cd 10626 .listxattr = btrfs_listxattr,
e0d46f5c 10627 .removexattr = generic_removexattr,
e41f941a 10628 .update_time = btrfs_update_time,
39279cc3 10629};
76dda93c 10630
82d339d9 10631const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10632 .d_delete = btrfs_dentry_delete,
b4aff1f8 10633 .d_release = btrfs_dentry_release,
76dda93c 10634};
This page took 1.800285 seconds and 5 git commands to generate.