block, drivers, fs: shrink bi_rw from long to int
[deliverable/linux.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
55e301fd 42#include <linux/btrfs.h>
53b381b3 43#include <linux/blkdev.h>
f23b5a59 44#include <linux/posix_acl_xattr.h>
e2e40f2c 45#include <linux/uio.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
f28a4928
FM
69struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
74};
75
6e1d5dcc
AD
76static const struct inode_operations btrfs_dir_inode_operations;
77static const struct inode_operations btrfs_symlink_inode_operations;
78static const struct inode_operations btrfs_dir_ro_inode_operations;
79static const struct inode_operations btrfs_special_inode_operations;
80static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
81static const struct address_space_operations btrfs_aops;
82static const struct address_space_operations btrfs_symlink_aops;
828c0950 83static const struct file_operations btrfs_dir_file_operations;
20e5506b 84static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
85
86static struct kmem_cache *btrfs_inode_cachep;
87struct kmem_cache *btrfs_trans_handle_cachep;
88struct kmem_cache *btrfs_transaction_cachep;
39279cc3 89struct kmem_cache *btrfs_path_cachep;
dc89e982 90struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
91
92#define S_SHIFT 12
4d4ab6d6 93static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101};
102
3972f260 103static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 104static int btrfs_truncate(struct inode *inode);
5fd02043 105static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
106static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
108 u64 start, u64 end, int *page_started,
109 unsigned long *nr_written, int unlock);
70c8a91c
JB
110static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
111 u64 len, u64 orig_start,
112 u64 block_start, u64 block_len,
cc95bef6
JB
113 u64 orig_block_len, u64 ram_bytes,
114 int type);
7b128766 115
48a3b636 116static int btrfs_dirty_inode(struct inode *inode);
7b128766 117
6a3891c5
JB
118#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
119void btrfs_test_inode_set_ops(struct inode *inode)
120{
121 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
122}
123#endif
124
f34f57a3 125static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
126 struct inode *inode, struct inode *dir,
127 const struct qstr *qstr)
0279b4cd
JO
128{
129 int err;
130
f34f57a3 131 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 132 if (!err)
2a7dba39 133 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
134 return err;
135}
136
c8b97818
CM
137/*
138 * this does all the hard work for inserting an inline extent into
139 * the btree. The caller should have done a btrfs_drop_extents so that
140 * no overlapping inline items exist in the btree
141 */
40f76580 142static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 143 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
144 struct btrfs_root *root, struct inode *inode,
145 u64 start, size_t size, size_t compressed_size,
fe3f566c 146 int compress_type,
c8b97818
CM
147 struct page **compressed_pages)
148{
c8b97818
CM
149 struct extent_buffer *leaf;
150 struct page *page = NULL;
151 char *kaddr;
152 unsigned long ptr;
153 struct btrfs_file_extent_item *ei;
154 int err = 0;
155 int ret;
156 size_t cur_size = size;
c8b97818 157 unsigned long offset;
c8b97818 158
fe3f566c 159 if (compressed_size && compressed_pages)
c8b97818 160 cur_size = compressed_size;
c8b97818 161
1acae57b 162 inode_add_bytes(inode, size);
c8b97818 163
1acae57b
FDBM
164 if (!extent_inserted) {
165 struct btrfs_key key;
166 size_t datasize;
c8b97818 167
1acae57b
FDBM
168 key.objectid = btrfs_ino(inode);
169 key.offset = start;
962a298f 170 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 171
1acae57b
FDBM
172 datasize = btrfs_file_extent_calc_inline_size(cur_size);
173 path->leave_spinning = 1;
174 ret = btrfs_insert_empty_item(trans, root, path, &key,
175 datasize);
176 if (ret) {
177 err = ret;
178 goto fail;
179 }
c8b97818
CM
180 }
181 leaf = path->nodes[0];
182 ei = btrfs_item_ptr(leaf, path->slots[0],
183 struct btrfs_file_extent_item);
184 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
185 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
186 btrfs_set_file_extent_encryption(leaf, ei, 0);
187 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
188 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
189 ptr = btrfs_file_extent_inline_start(ei);
190
261507a0 191 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
192 struct page *cpage;
193 int i = 0;
d397712b 194 while (compressed_size > 0) {
c8b97818 195 cpage = compressed_pages[i];
5b050f04 196 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 197 PAGE_SIZE);
c8b97818 198
7ac687d9 199 kaddr = kmap_atomic(cpage);
c8b97818 200 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 201 kunmap_atomic(kaddr);
c8b97818
CM
202
203 i++;
204 ptr += cur_size;
205 compressed_size -= cur_size;
206 }
207 btrfs_set_file_extent_compression(leaf, ei,
261507a0 208 compress_type);
c8b97818
CM
209 } else {
210 page = find_get_page(inode->i_mapping,
09cbfeaf 211 start >> PAGE_SHIFT);
c8b97818 212 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 213 kaddr = kmap_atomic(page);
09cbfeaf 214 offset = start & (PAGE_SIZE - 1);
c8b97818 215 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 216 kunmap_atomic(kaddr);
09cbfeaf 217 put_page(page);
c8b97818
CM
218 }
219 btrfs_mark_buffer_dirty(leaf);
1acae57b 220 btrfs_release_path(path);
c8b97818 221
c2167754
YZ
222 /*
223 * we're an inline extent, so nobody can
224 * extend the file past i_size without locking
225 * a page we already have locked.
226 *
227 * We must do any isize and inode updates
228 * before we unlock the pages. Otherwise we
229 * could end up racing with unlink.
230 */
c8b97818 231 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 232 ret = btrfs_update_inode(trans, root, inode);
c2167754 233
79787eaa 234 return ret;
c8b97818 235fail:
c8b97818
CM
236 return err;
237}
238
239
240/*
241 * conditionally insert an inline extent into the file. This
242 * does the checks required to make sure the data is small enough
243 * to fit as an inline extent.
244 */
00361589
JB
245static noinline int cow_file_range_inline(struct btrfs_root *root,
246 struct inode *inode, u64 start,
247 u64 end, size_t compressed_size,
248 int compress_type,
249 struct page **compressed_pages)
c8b97818 250{
00361589 251 struct btrfs_trans_handle *trans;
c8b97818
CM
252 u64 isize = i_size_read(inode);
253 u64 actual_end = min(end + 1, isize);
254 u64 inline_len = actual_end - start;
fda2832f 255 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
256 u64 data_len = inline_len;
257 int ret;
1acae57b
FDBM
258 struct btrfs_path *path;
259 int extent_inserted = 0;
260 u32 extent_item_size;
c8b97818
CM
261
262 if (compressed_size)
263 data_len = compressed_size;
264
265 if (start > 0 ||
0c29ba99 266 actual_end > root->sectorsize ||
354877be 267 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
268 (!compressed_size &&
269 (actual_end & (root->sectorsize - 1)) == 0) ||
270 end + 1 < isize ||
271 data_len > root->fs_info->max_inline) {
272 return 1;
273 }
274
1acae57b
FDBM
275 path = btrfs_alloc_path();
276 if (!path)
277 return -ENOMEM;
278
00361589 279 trans = btrfs_join_transaction(root);
1acae57b
FDBM
280 if (IS_ERR(trans)) {
281 btrfs_free_path(path);
00361589 282 return PTR_ERR(trans);
1acae57b 283 }
00361589
JB
284 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
285
1acae57b
FDBM
286 if (compressed_size && compressed_pages)
287 extent_item_size = btrfs_file_extent_calc_inline_size(
288 compressed_size);
289 else
290 extent_item_size = btrfs_file_extent_calc_inline_size(
291 inline_len);
292
293 ret = __btrfs_drop_extents(trans, root, inode, path,
294 start, aligned_end, NULL,
295 1, 1, extent_item_size, &extent_inserted);
00361589
JB
296 if (ret) {
297 btrfs_abort_transaction(trans, root, ret);
298 goto out;
299 }
c8b97818
CM
300
301 if (isize > actual_end)
302 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
303 ret = insert_inline_extent(trans, path, extent_inserted,
304 root, inode, start,
c8b97818 305 inline_len, compressed_size,
fe3f566c 306 compress_type, compressed_pages);
2adcac1a 307 if (ret && ret != -ENOSPC) {
79787eaa 308 btrfs_abort_transaction(trans, root, ret);
00361589 309 goto out;
2adcac1a 310 } else if (ret == -ENOSPC) {
00361589
JB
311 ret = 1;
312 goto out;
79787eaa 313 }
2adcac1a 314
bdc20e67 315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 316 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 317 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 318out:
94ed938a
QW
319 /*
320 * Don't forget to free the reserved space, as for inlined extent
321 * it won't count as data extent, free them directly here.
322 * And at reserve time, it's always aligned to page size, so
323 * just free one page here.
324 */
09cbfeaf 325 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
1acae57b 326 btrfs_free_path(path);
00361589
JB
327 btrfs_end_transaction(trans, root);
328 return ret;
c8b97818
CM
329}
330
771ed689
CM
331struct async_extent {
332 u64 start;
333 u64 ram_size;
334 u64 compressed_size;
335 struct page **pages;
336 unsigned long nr_pages;
261507a0 337 int compress_type;
771ed689
CM
338 struct list_head list;
339};
340
341struct async_cow {
342 struct inode *inode;
343 struct btrfs_root *root;
344 struct page *locked_page;
345 u64 start;
346 u64 end;
347 struct list_head extents;
348 struct btrfs_work work;
349};
350
351static noinline int add_async_extent(struct async_cow *cow,
352 u64 start, u64 ram_size,
353 u64 compressed_size,
354 struct page **pages,
261507a0
LZ
355 unsigned long nr_pages,
356 int compress_type)
771ed689
CM
357{
358 struct async_extent *async_extent;
359
360 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 361 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
362 async_extent->start = start;
363 async_extent->ram_size = ram_size;
364 async_extent->compressed_size = compressed_size;
365 async_extent->pages = pages;
366 async_extent->nr_pages = nr_pages;
261507a0 367 async_extent->compress_type = compress_type;
771ed689
CM
368 list_add_tail(&async_extent->list, &cow->extents);
369 return 0;
370}
371
f79707b0
WS
372static inline int inode_need_compress(struct inode *inode)
373{
374 struct btrfs_root *root = BTRFS_I(inode)->root;
375
376 /* force compress */
377 if (btrfs_test_opt(root, FORCE_COMPRESS))
378 return 1;
379 /* bad compression ratios */
380 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
381 return 0;
382 if (btrfs_test_opt(root, COMPRESS) ||
383 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
384 BTRFS_I(inode)->force_compress)
385 return 1;
386 return 0;
387}
388
d352ac68 389/*
771ed689
CM
390 * we create compressed extents in two phases. The first
391 * phase compresses a range of pages that have already been
392 * locked (both pages and state bits are locked).
c8b97818 393 *
771ed689
CM
394 * This is done inside an ordered work queue, and the compression
395 * is spread across many cpus. The actual IO submission is step
396 * two, and the ordered work queue takes care of making sure that
397 * happens in the same order things were put onto the queue by
398 * writepages and friends.
c8b97818 399 *
771ed689
CM
400 * If this code finds it can't get good compression, it puts an
401 * entry onto the work queue to write the uncompressed bytes. This
402 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
403 * are written in the same order that the flusher thread sent them
404 * down.
d352ac68 405 */
c44f649e 406static noinline void compress_file_range(struct inode *inode,
771ed689
CM
407 struct page *locked_page,
408 u64 start, u64 end,
409 struct async_cow *async_cow,
410 int *num_added)
b888db2b
CM
411{
412 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 413 u64 num_bytes;
db94535d 414 u64 blocksize = root->sectorsize;
c8b97818 415 u64 actual_end;
42dc7bab 416 u64 isize = i_size_read(inode);
e6dcd2dc 417 int ret = 0;
c8b97818
CM
418 struct page **pages = NULL;
419 unsigned long nr_pages;
420 unsigned long nr_pages_ret = 0;
421 unsigned long total_compressed = 0;
422 unsigned long total_in = 0;
ee22184b
BL
423 unsigned long max_compressed = SZ_128K;
424 unsigned long max_uncompressed = SZ_128K;
c8b97818
CM
425 int i;
426 int will_compress;
261507a0 427 int compress_type = root->fs_info->compress_type;
4adaa611 428 int redirty = 0;
b888db2b 429
4cb13e5d 430 /* if this is a small write inside eof, kick off a defrag */
ee22184b 431 if ((end - start + 1) < SZ_16K &&
4cb13e5d 432 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
433 btrfs_add_inode_defrag(NULL, inode);
434
42dc7bab 435 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
436again:
437 will_compress = 0;
09cbfeaf
KS
438 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
439 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
be20aa9d 440
f03d9301
CM
441 /*
442 * we don't want to send crud past the end of i_size through
443 * compression, that's just a waste of CPU time. So, if the
444 * end of the file is before the start of our current
445 * requested range of bytes, we bail out to the uncompressed
446 * cleanup code that can deal with all of this.
447 *
448 * It isn't really the fastest way to fix things, but this is a
449 * very uncommon corner.
450 */
451 if (actual_end <= start)
452 goto cleanup_and_bail_uncompressed;
453
c8b97818
CM
454 total_compressed = actual_end - start;
455
4bcbb332
SW
456 /*
457 * skip compression for a small file range(<=blocksize) that
01327610 458 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
459 */
460 if (total_compressed <= blocksize &&
461 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
462 goto cleanup_and_bail_uncompressed;
463
c8b97818
CM
464 /* we want to make sure that amount of ram required to uncompress
465 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
466 * of a compressed extent to 128k. This is a crucial number
467 * because it also controls how easily we can spread reads across
468 * cpus for decompression.
469 *
470 * We also want to make sure the amount of IO required to do
471 * a random read is reasonably small, so we limit the size of
472 * a compressed extent to 128k.
c8b97818
CM
473 */
474 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 475 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 476 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
477 total_in = 0;
478 ret = 0;
db94535d 479
771ed689
CM
480 /*
481 * we do compression for mount -o compress and when the
482 * inode has not been flagged as nocompress. This flag can
483 * change at any time if we discover bad compression ratios.
c8b97818 484 */
f79707b0 485 if (inode_need_compress(inode)) {
c8b97818 486 WARN_ON(pages);
31e818fe 487 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
488 if (!pages) {
489 /* just bail out to the uncompressed code */
490 goto cont;
491 }
c8b97818 492
261507a0
LZ
493 if (BTRFS_I(inode)->force_compress)
494 compress_type = BTRFS_I(inode)->force_compress;
495
4adaa611
CM
496 /*
497 * we need to call clear_page_dirty_for_io on each
498 * page in the range. Otherwise applications with the file
499 * mmap'd can wander in and change the page contents while
500 * we are compressing them.
501 *
502 * If the compression fails for any reason, we set the pages
503 * dirty again later on.
504 */
505 extent_range_clear_dirty_for_io(inode, start, end);
506 redirty = 1;
261507a0
LZ
507 ret = btrfs_compress_pages(compress_type,
508 inode->i_mapping, start,
509 total_compressed, pages,
510 nr_pages, &nr_pages_ret,
511 &total_in,
512 &total_compressed,
513 max_compressed);
c8b97818
CM
514
515 if (!ret) {
516 unsigned long offset = total_compressed &
09cbfeaf 517 (PAGE_SIZE - 1);
c8b97818
CM
518 struct page *page = pages[nr_pages_ret - 1];
519 char *kaddr;
520
521 /* zero the tail end of the last page, we might be
522 * sending it down to disk
523 */
524 if (offset) {
7ac687d9 525 kaddr = kmap_atomic(page);
c8b97818 526 memset(kaddr + offset, 0,
09cbfeaf 527 PAGE_SIZE - offset);
7ac687d9 528 kunmap_atomic(kaddr);
c8b97818
CM
529 }
530 will_compress = 1;
531 }
532 }
560f7d75 533cont:
c8b97818
CM
534 if (start == 0) {
535 /* lets try to make an inline extent */
771ed689 536 if (ret || total_in < (actual_end - start)) {
c8b97818 537 /* we didn't compress the entire range, try
771ed689 538 * to make an uncompressed inline extent.
c8b97818 539 */
00361589
JB
540 ret = cow_file_range_inline(root, inode, start, end,
541 0, 0, NULL);
c8b97818 542 } else {
771ed689 543 /* try making a compressed inline extent */
00361589 544 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
545 total_compressed,
546 compress_type, pages);
c8b97818 547 }
79787eaa 548 if (ret <= 0) {
151a41bc
JB
549 unsigned long clear_flags = EXTENT_DELALLOC |
550 EXTENT_DEFRAG;
e6eb4314
FM
551 unsigned long page_error_op;
552
151a41bc 553 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 554 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 555
771ed689 556 /*
79787eaa
JM
557 * inline extent creation worked or returned error,
558 * we don't need to create any more async work items.
559 * Unlock and free up our temp pages.
771ed689 560 */
c2790a2e 561 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 562 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
563 PAGE_CLEAR_DIRTY |
564 PAGE_SET_WRITEBACK |
e6eb4314 565 page_error_op |
c2790a2e 566 PAGE_END_WRITEBACK);
c8b97818
CM
567 goto free_pages_out;
568 }
569 }
570
571 if (will_compress) {
572 /*
573 * we aren't doing an inline extent round the compressed size
574 * up to a block size boundary so the allocator does sane
575 * things
576 */
fda2832f 577 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
578
579 /*
580 * one last check to make sure the compression is really a
581 * win, compare the page count read with the blocks on disk
582 */
09cbfeaf 583 total_in = ALIGN(total_in, PAGE_SIZE);
c8b97818
CM
584 if (total_compressed >= total_in) {
585 will_compress = 0;
586 } else {
c8b97818
CM
587 num_bytes = total_in;
588 }
589 }
590 if (!will_compress && pages) {
591 /*
592 * the compression code ran but failed to make things smaller,
593 * free any pages it allocated and our page pointer array
594 */
595 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 596 WARN_ON(pages[i]->mapping);
09cbfeaf 597 put_page(pages[i]);
c8b97818
CM
598 }
599 kfree(pages);
600 pages = NULL;
601 total_compressed = 0;
602 nr_pages_ret = 0;
603
604 /* flag the file so we don't compress in the future */
1e701a32
CM
605 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
606 !(BTRFS_I(inode)->force_compress)) {
a555f810 607 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 608 }
c8b97818 609 }
771ed689
CM
610 if (will_compress) {
611 *num_added += 1;
c8b97818 612
771ed689
CM
613 /* the async work queues will take care of doing actual
614 * allocation on disk for these compressed pages,
615 * and will submit them to the elevator.
616 */
617 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
618 total_compressed, pages, nr_pages_ret,
619 compress_type);
179e29e4 620
24ae6365 621 if (start + num_bytes < end) {
771ed689
CM
622 start += num_bytes;
623 pages = NULL;
624 cond_resched();
625 goto again;
626 }
627 } else {
f03d9301 628cleanup_and_bail_uncompressed:
771ed689
CM
629 /*
630 * No compression, but we still need to write the pages in
631 * the file we've been given so far. redirty the locked
632 * page if it corresponds to our extent and set things up
633 * for the async work queue to run cow_file_range to do
634 * the normal delalloc dance
635 */
636 if (page_offset(locked_page) >= start &&
637 page_offset(locked_page) <= end) {
638 __set_page_dirty_nobuffers(locked_page);
639 /* unlocked later on in the async handlers */
640 }
4adaa611
CM
641 if (redirty)
642 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
643 add_async_extent(async_cow, start, end - start + 1,
644 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
645 *num_added += 1;
646 }
3b951516 647
c44f649e 648 return;
771ed689
CM
649
650free_pages_out:
651 for (i = 0; i < nr_pages_ret; i++) {
652 WARN_ON(pages[i]->mapping);
09cbfeaf 653 put_page(pages[i]);
771ed689 654 }
d397712b 655 kfree(pages);
771ed689 656}
771ed689 657
40ae837b
FM
658static void free_async_extent_pages(struct async_extent *async_extent)
659{
660 int i;
661
662 if (!async_extent->pages)
663 return;
664
665 for (i = 0; i < async_extent->nr_pages; i++) {
666 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 667 put_page(async_extent->pages[i]);
40ae837b
FM
668 }
669 kfree(async_extent->pages);
670 async_extent->nr_pages = 0;
671 async_extent->pages = NULL;
771ed689
CM
672}
673
674/*
675 * phase two of compressed writeback. This is the ordered portion
676 * of the code, which only gets called in the order the work was
677 * queued. We walk all the async extents created by compress_file_range
678 * and send them down to the disk.
679 */
dec8f175 680static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
681 struct async_cow *async_cow)
682{
683 struct async_extent *async_extent;
684 u64 alloc_hint = 0;
771ed689
CM
685 struct btrfs_key ins;
686 struct extent_map *em;
687 struct btrfs_root *root = BTRFS_I(inode)->root;
688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689 struct extent_io_tree *io_tree;
f5a84ee3 690 int ret = 0;
771ed689 691
3e04e7f1 692again:
d397712b 693 while (!list_empty(&async_cow->extents)) {
771ed689
CM
694 async_extent = list_entry(async_cow->extents.next,
695 struct async_extent, list);
696 list_del(&async_extent->list);
c8b97818 697
771ed689
CM
698 io_tree = &BTRFS_I(inode)->io_tree;
699
f5a84ee3 700retry:
771ed689
CM
701 /* did the compression code fall back to uncompressed IO? */
702 if (!async_extent->pages) {
703 int page_started = 0;
704 unsigned long nr_written = 0;
705
706 lock_extent(io_tree, async_extent->start,
2ac55d41 707 async_extent->start +
d0082371 708 async_extent->ram_size - 1);
771ed689
CM
709
710 /* allocate blocks */
f5a84ee3
JB
711 ret = cow_file_range(inode, async_cow->locked_page,
712 async_extent->start,
713 async_extent->start +
714 async_extent->ram_size - 1,
715 &page_started, &nr_written, 0);
771ed689 716
79787eaa
JM
717 /* JDM XXX */
718
771ed689
CM
719 /*
720 * if page_started, cow_file_range inserted an
721 * inline extent and took care of all the unlocking
722 * and IO for us. Otherwise, we need to submit
723 * all those pages down to the drive.
724 */
f5a84ee3 725 if (!page_started && !ret)
771ed689
CM
726 extent_write_locked_range(io_tree,
727 inode, async_extent->start,
d397712b 728 async_extent->start +
771ed689
CM
729 async_extent->ram_size - 1,
730 btrfs_get_extent,
731 WB_SYNC_ALL);
3e04e7f1
JB
732 else if (ret)
733 unlock_page(async_cow->locked_page);
771ed689
CM
734 kfree(async_extent);
735 cond_resched();
736 continue;
737 }
738
739 lock_extent(io_tree, async_extent->start,
d0082371 740 async_extent->start + async_extent->ram_size - 1);
771ed689 741
00361589 742 ret = btrfs_reserve_extent(root,
771ed689
CM
743 async_extent->compressed_size,
744 async_extent->compressed_size,
e570fd27 745 0, alloc_hint, &ins, 1, 1);
f5a84ee3 746 if (ret) {
40ae837b 747 free_async_extent_pages(async_extent);
3e04e7f1 748
fdf8e2ea
JB
749 if (ret == -ENOSPC) {
750 unlock_extent(io_tree, async_extent->start,
751 async_extent->start +
752 async_extent->ram_size - 1);
ce62003f
LB
753
754 /*
755 * we need to redirty the pages if we decide to
756 * fallback to uncompressed IO, otherwise we
757 * will not submit these pages down to lower
758 * layers.
759 */
760 extent_range_redirty_for_io(inode,
761 async_extent->start,
762 async_extent->start +
763 async_extent->ram_size - 1);
764
79787eaa 765 goto retry;
fdf8e2ea 766 }
3e04e7f1 767 goto out_free;
f5a84ee3 768 }
c2167754
YZ
769 /*
770 * here we're doing allocation and writeback of the
771 * compressed pages
772 */
773 btrfs_drop_extent_cache(inode, async_extent->start,
774 async_extent->start +
775 async_extent->ram_size - 1, 0);
776
172ddd60 777 em = alloc_extent_map();
b9aa55be
LB
778 if (!em) {
779 ret = -ENOMEM;
3e04e7f1 780 goto out_free_reserve;
b9aa55be 781 }
771ed689
CM
782 em->start = async_extent->start;
783 em->len = async_extent->ram_size;
445a6944 784 em->orig_start = em->start;
2ab28f32
JB
785 em->mod_start = em->start;
786 em->mod_len = em->len;
c8b97818 787
771ed689
CM
788 em->block_start = ins.objectid;
789 em->block_len = ins.offset;
b4939680 790 em->orig_block_len = ins.offset;
cc95bef6 791 em->ram_bytes = async_extent->ram_size;
771ed689 792 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 793 em->compress_type = async_extent->compress_type;
771ed689
CM
794 set_bit(EXTENT_FLAG_PINNED, &em->flags);
795 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 796 em->generation = -1;
771ed689 797
d397712b 798 while (1) {
890871be 799 write_lock(&em_tree->lock);
09a2a8f9 800 ret = add_extent_mapping(em_tree, em, 1);
890871be 801 write_unlock(&em_tree->lock);
771ed689
CM
802 if (ret != -EEXIST) {
803 free_extent_map(em);
804 break;
805 }
806 btrfs_drop_extent_cache(inode, async_extent->start,
807 async_extent->start +
808 async_extent->ram_size - 1, 0);
809 }
810
3e04e7f1
JB
811 if (ret)
812 goto out_free_reserve;
813
261507a0
LZ
814 ret = btrfs_add_ordered_extent_compress(inode,
815 async_extent->start,
816 ins.objectid,
817 async_extent->ram_size,
818 ins.offset,
819 BTRFS_ORDERED_COMPRESSED,
820 async_extent->compress_type);
d9f85963
FM
821 if (ret) {
822 btrfs_drop_extent_cache(inode, async_extent->start,
823 async_extent->start +
824 async_extent->ram_size - 1, 0);
3e04e7f1 825 goto out_free_reserve;
d9f85963 826 }
9cfa3e34 827 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
771ed689 828
771ed689
CM
829 /*
830 * clear dirty, set writeback and unlock the pages.
831 */
c2790a2e 832 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
833 async_extent->start +
834 async_extent->ram_size - 1,
151a41bc
JB
835 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
836 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 837 PAGE_SET_WRITEBACK);
771ed689 838 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
839 async_extent->start,
840 async_extent->ram_size,
841 ins.objectid,
842 ins.offset, async_extent->pages,
843 async_extent->nr_pages);
fce2a4e6
FM
844 if (ret) {
845 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
846 struct page *p = async_extent->pages[0];
847 const u64 start = async_extent->start;
848 const u64 end = start + async_extent->ram_size - 1;
849
850 p->mapping = inode->i_mapping;
851 tree->ops->writepage_end_io_hook(p, start, end,
852 NULL, 0);
853 p->mapping = NULL;
854 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
855 PAGE_END_WRITEBACK |
856 PAGE_SET_ERROR);
40ae837b 857 free_async_extent_pages(async_extent);
fce2a4e6 858 }
771ed689
CM
859 alloc_hint = ins.objectid + ins.offset;
860 kfree(async_extent);
861 cond_resched();
862 }
dec8f175 863 return;
3e04e7f1 864out_free_reserve:
9cfa3e34 865 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
e570fd27 866 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 867out_free:
c2790a2e 868 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
869 async_extent->start +
870 async_extent->ram_size - 1,
c2790a2e 871 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
872 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
873 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
874 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
875 PAGE_SET_ERROR);
40ae837b 876 free_async_extent_pages(async_extent);
79787eaa 877 kfree(async_extent);
3e04e7f1 878 goto again;
771ed689
CM
879}
880
4b46fce2
JB
881static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
882 u64 num_bytes)
883{
884 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
885 struct extent_map *em;
886 u64 alloc_hint = 0;
887
888 read_lock(&em_tree->lock);
889 em = search_extent_mapping(em_tree, start, num_bytes);
890 if (em) {
891 /*
892 * if block start isn't an actual block number then find the
893 * first block in this inode and use that as a hint. If that
894 * block is also bogus then just don't worry about it.
895 */
896 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
897 free_extent_map(em);
898 em = search_extent_mapping(em_tree, 0, 0);
899 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
900 alloc_hint = em->block_start;
901 if (em)
902 free_extent_map(em);
903 } else {
904 alloc_hint = em->block_start;
905 free_extent_map(em);
906 }
907 }
908 read_unlock(&em_tree->lock);
909
910 return alloc_hint;
911}
912
771ed689
CM
913/*
914 * when extent_io.c finds a delayed allocation range in the file,
915 * the call backs end up in this code. The basic idea is to
916 * allocate extents on disk for the range, and create ordered data structs
917 * in ram to track those extents.
918 *
919 * locked_page is the page that writepage had locked already. We use
920 * it to make sure we don't do extra locks or unlocks.
921 *
922 * *page_started is set to one if we unlock locked_page and do everything
923 * required to start IO on it. It may be clean and already done with
924 * IO when we return.
925 */
00361589
JB
926static noinline int cow_file_range(struct inode *inode,
927 struct page *locked_page,
928 u64 start, u64 end, int *page_started,
929 unsigned long *nr_written,
930 int unlock)
771ed689 931{
00361589 932 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
933 u64 alloc_hint = 0;
934 u64 num_bytes;
935 unsigned long ram_size;
936 u64 disk_num_bytes;
937 u64 cur_alloc_size;
938 u64 blocksize = root->sectorsize;
771ed689
CM
939 struct btrfs_key ins;
940 struct extent_map *em;
941 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
942 int ret = 0;
943
02ecd2c2
JB
944 if (btrfs_is_free_space_inode(inode)) {
945 WARN_ON_ONCE(1);
29bce2f3
JB
946 ret = -EINVAL;
947 goto out_unlock;
02ecd2c2 948 }
771ed689 949
fda2832f 950 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
951 num_bytes = max(blocksize, num_bytes);
952 disk_num_bytes = num_bytes;
771ed689 953
4cb5300b 954 /* if this is a small write inside eof, kick off defrag */
ee22184b 955 if (num_bytes < SZ_64K &&
4cb13e5d 956 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 957 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 958
771ed689
CM
959 if (start == 0) {
960 /* lets try to make an inline extent */
00361589
JB
961 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
962 NULL);
771ed689 963 if (ret == 0) {
c2790a2e
JB
964 extent_clear_unlock_delalloc(inode, start, end, NULL,
965 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 966 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
967 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
968 PAGE_END_WRITEBACK);
c2167754 969
771ed689 970 *nr_written = *nr_written +
09cbfeaf 971 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 972 *page_started = 1;
771ed689 973 goto out;
79787eaa 974 } else if (ret < 0) {
79787eaa 975 goto out_unlock;
771ed689
CM
976 }
977 }
978
979 BUG_ON(disk_num_bytes >
6c41761f 980 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 981
4b46fce2 982 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
983 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
984
d397712b 985 while (disk_num_bytes > 0) {
a791e35e
CM
986 unsigned long op;
987
287a0ab9 988 cur_alloc_size = disk_num_bytes;
00361589 989 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 990 root->sectorsize, 0, alloc_hint,
e570fd27 991 &ins, 1, 1);
00361589 992 if (ret < 0)
79787eaa 993 goto out_unlock;
d397712b 994
172ddd60 995 em = alloc_extent_map();
b9aa55be
LB
996 if (!em) {
997 ret = -ENOMEM;
ace68bac 998 goto out_reserve;
b9aa55be 999 }
e6dcd2dc 1000 em->start = start;
445a6944 1001 em->orig_start = em->start;
771ed689
CM
1002 ram_size = ins.offset;
1003 em->len = ins.offset;
2ab28f32
JB
1004 em->mod_start = em->start;
1005 em->mod_len = em->len;
c8b97818 1006
e6dcd2dc 1007 em->block_start = ins.objectid;
c8b97818 1008 em->block_len = ins.offset;
b4939680 1009 em->orig_block_len = ins.offset;
cc95bef6 1010 em->ram_bytes = ram_size;
e6dcd2dc 1011 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 1012 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 1013 em->generation = -1;
c8b97818 1014
d397712b 1015 while (1) {
890871be 1016 write_lock(&em_tree->lock);
09a2a8f9 1017 ret = add_extent_mapping(em_tree, em, 1);
890871be 1018 write_unlock(&em_tree->lock);
e6dcd2dc
CM
1019 if (ret != -EEXIST) {
1020 free_extent_map(em);
1021 break;
1022 }
1023 btrfs_drop_extent_cache(inode, start,
c8b97818 1024 start + ram_size - 1, 0);
e6dcd2dc 1025 }
ace68bac
LB
1026 if (ret)
1027 goto out_reserve;
e6dcd2dc 1028
98d20f67 1029 cur_alloc_size = ins.offset;
e6dcd2dc 1030 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1031 ram_size, cur_alloc_size, 0);
ace68bac 1032 if (ret)
d9f85963 1033 goto out_drop_extent_cache;
c8b97818 1034
17d217fe
YZ
1035 if (root->root_key.objectid ==
1036 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1037 ret = btrfs_reloc_clone_csums(inode, start,
1038 cur_alloc_size);
00361589 1039 if (ret)
d9f85963 1040 goto out_drop_extent_cache;
17d217fe
YZ
1041 }
1042
9cfa3e34
FM
1043 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1044
d397712b 1045 if (disk_num_bytes < cur_alloc_size)
3b951516 1046 break;
d397712b 1047
c8b97818
CM
1048 /* we're not doing compressed IO, don't unlock the first
1049 * page (which the caller expects to stay locked), don't
1050 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1051 *
1052 * Do set the Private2 bit so we know this page was properly
1053 * setup for writepage
c8b97818 1054 */
c2790a2e
JB
1055 op = unlock ? PAGE_UNLOCK : 0;
1056 op |= PAGE_SET_PRIVATE2;
a791e35e 1057
c2790a2e
JB
1058 extent_clear_unlock_delalloc(inode, start,
1059 start + ram_size - 1, locked_page,
1060 EXTENT_LOCKED | EXTENT_DELALLOC,
1061 op);
c8b97818 1062 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1063 num_bytes -= cur_alloc_size;
1064 alloc_hint = ins.objectid + ins.offset;
1065 start += cur_alloc_size;
b888db2b 1066 }
79787eaa 1067out:
be20aa9d 1068 return ret;
b7d5b0a8 1069
d9f85963
FM
1070out_drop_extent_cache:
1071 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1072out_reserve:
9cfa3e34 1073 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
e570fd27 1074 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1075out_unlock:
c2790a2e 1076 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1077 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1078 EXTENT_DELALLOC | EXTENT_DEFRAG,
1079 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1080 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1081 goto out;
771ed689 1082}
c8b97818 1083
771ed689
CM
1084/*
1085 * work queue call back to started compression on a file and pages
1086 */
1087static noinline void async_cow_start(struct btrfs_work *work)
1088{
1089 struct async_cow *async_cow;
1090 int num_added = 0;
1091 async_cow = container_of(work, struct async_cow, work);
1092
1093 compress_file_range(async_cow->inode, async_cow->locked_page,
1094 async_cow->start, async_cow->end, async_cow,
1095 &num_added);
8180ef88 1096 if (num_added == 0) {
cb77fcd8 1097 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1098 async_cow->inode = NULL;
8180ef88 1099 }
771ed689
CM
1100}
1101
1102/*
1103 * work queue call back to submit previously compressed pages
1104 */
1105static noinline void async_cow_submit(struct btrfs_work *work)
1106{
1107 struct async_cow *async_cow;
1108 struct btrfs_root *root;
1109 unsigned long nr_pages;
1110
1111 async_cow = container_of(work, struct async_cow, work);
1112
1113 root = async_cow->root;
09cbfeaf
KS
1114 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1115 PAGE_SHIFT;
771ed689 1116
ee863954
DS
1117 /*
1118 * atomic_sub_return implies a barrier for waitqueue_active
1119 */
66657b31 1120 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
ee22184b 1121 5 * SZ_1M &&
771ed689
CM
1122 waitqueue_active(&root->fs_info->async_submit_wait))
1123 wake_up(&root->fs_info->async_submit_wait);
1124
d397712b 1125 if (async_cow->inode)
771ed689 1126 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1127}
c8b97818 1128
771ed689
CM
1129static noinline void async_cow_free(struct btrfs_work *work)
1130{
1131 struct async_cow *async_cow;
1132 async_cow = container_of(work, struct async_cow, work);
8180ef88 1133 if (async_cow->inode)
cb77fcd8 1134 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1135 kfree(async_cow);
1136}
1137
1138static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1139 u64 start, u64 end, int *page_started,
1140 unsigned long *nr_written)
1141{
1142 struct async_cow *async_cow;
1143 struct btrfs_root *root = BTRFS_I(inode)->root;
1144 unsigned long nr_pages;
1145 u64 cur_end;
ee22184b 1146 int limit = 10 * SZ_1M;
771ed689 1147
a3429ab7
CM
1148 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1149 1, 0, NULL, GFP_NOFS);
d397712b 1150 while (start < end) {
771ed689 1151 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1152 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1153 async_cow->inode = igrab(inode);
771ed689
CM
1154 async_cow->root = root;
1155 async_cow->locked_page = locked_page;
1156 async_cow->start = start;
1157
f79707b0
WS
1158 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1159 !btrfs_test_opt(root, FORCE_COMPRESS))
771ed689
CM
1160 cur_end = end;
1161 else
ee22184b 1162 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1163
1164 async_cow->end = cur_end;
1165 INIT_LIST_HEAD(&async_cow->extents);
1166
9e0af237
LB
1167 btrfs_init_work(&async_cow->work,
1168 btrfs_delalloc_helper,
1169 async_cow_start, async_cow_submit,
1170 async_cow_free);
771ed689 1171
09cbfeaf
KS
1172 nr_pages = (cur_end - start + PAGE_SIZE) >>
1173 PAGE_SHIFT;
771ed689
CM
1174 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1175
afe3d242
QW
1176 btrfs_queue_work(root->fs_info->delalloc_workers,
1177 &async_cow->work);
771ed689
CM
1178
1179 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1180 wait_event(root->fs_info->async_submit_wait,
1181 (atomic_read(&root->fs_info->async_delalloc_pages) <
1182 limit));
1183 }
1184
d397712b 1185 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1186 atomic_read(&root->fs_info->async_delalloc_pages)) {
1187 wait_event(root->fs_info->async_submit_wait,
1188 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1189 0));
1190 }
1191
1192 *nr_written += nr_pages;
1193 start = cur_end + 1;
1194 }
1195 *page_started = 1;
1196 return 0;
be20aa9d
CM
1197}
1198
d397712b 1199static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1200 u64 bytenr, u64 num_bytes)
1201{
1202 int ret;
1203 struct btrfs_ordered_sum *sums;
1204 LIST_HEAD(list);
1205
07d400a6 1206 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1207 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1208 if (ret == 0 && list_empty(&list))
1209 return 0;
1210
1211 while (!list_empty(&list)) {
1212 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1213 list_del(&sums->list);
1214 kfree(sums);
1215 }
1216 return 1;
1217}
1218
d352ac68
CM
1219/*
1220 * when nowcow writeback call back. This checks for snapshots or COW copies
1221 * of the extents that exist in the file, and COWs the file as required.
1222 *
1223 * If no cow copies or snapshots exist, we write directly to the existing
1224 * blocks on disk
1225 */
7f366cfe
CM
1226static noinline int run_delalloc_nocow(struct inode *inode,
1227 struct page *locked_page,
771ed689
CM
1228 u64 start, u64 end, int *page_started, int force,
1229 unsigned long *nr_written)
be20aa9d 1230{
be20aa9d 1231 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1232 struct btrfs_trans_handle *trans;
be20aa9d 1233 struct extent_buffer *leaf;
be20aa9d 1234 struct btrfs_path *path;
80ff3856 1235 struct btrfs_file_extent_item *fi;
be20aa9d 1236 struct btrfs_key found_key;
80ff3856
YZ
1237 u64 cow_start;
1238 u64 cur_offset;
1239 u64 extent_end;
5d4f98a2 1240 u64 extent_offset;
80ff3856
YZ
1241 u64 disk_bytenr;
1242 u64 num_bytes;
b4939680 1243 u64 disk_num_bytes;
cc95bef6 1244 u64 ram_bytes;
80ff3856 1245 int extent_type;
79787eaa 1246 int ret, err;
d899e052 1247 int type;
80ff3856
YZ
1248 int nocow;
1249 int check_prev = 1;
82d5902d 1250 bool nolock;
33345d01 1251 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1252
1253 path = btrfs_alloc_path();
17ca04af 1254 if (!path) {
c2790a2e
JB
1255 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1256 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1257 EXTENT_DO_ACCOUNTING |
1258 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1259 PAGE_CLEAR_DIRTY |
1260 PAGE_SET_WRITEBACK |
1261 PAGE_END_WRITEBACK);
d8926bb3 1262 return -ENOMEM;
17ca04af 1263 }
82d5902d 1264
83eea1f1 1265 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1266
1267 if (nolock)
7a7eaa40 1268 trans = btrfs_join_transaction_nolock(root);
82d5902d 1269 else
7a7eaa40 1270 trans = btrfs_join_transaction(root);
ff5714cc 1271
79787eaa 1272 if (IS_ERR(trans)) {
c2790a2e
JB
1273 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1274 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1275 EXTENT_DO_ACCOUNTING |
1276 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1277 PAGE_CLEAR_DIRTY |
1278 PAGE_SET_WRITEBACK |
1279 PAGE_END_WRITEBACK);
79787eaa
JM
1280 btrfs_free_path(path);
1281 return PTR_ERR(trans);
1282 }
1283
74b21075 1284 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1285
80ff3856
YZ
1286 cow_start = (u64)-1;
1287 cur_offset = start;
1288 while (1) {
33345d01 1289 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1290 cur_offset, 0);
d788a349 1291 if (ret < 0)
79787eaa 1292 goto error;
80ff3856
YZ
1293 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1294 leaf = path->nodes[0];
1295 btrfs_item_key_to_cpu(leaf, &found_key,
1296 path->slots[0] - 1);
33345d01 1297 if (found_key.objectid == ino &&
80ff3856
YZ
1298 found_key.type == BTRFS_EXTENT_DATA_KEY)
1299 path->slots[0]--;
1300 }
1301 check_prev = 0;
1302next_slot:
1303 leaf = path->nodes[0];
1304 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1305 ret = btrfs_next_leaf(root, path);
d788a349 1306 if (ret < 0)
79787eaa 1307 goto error;
80ff3856
YZ
1308 if (ret > 0)
1309 break;
1310 leaf = path->nodes[0];
1311 }
be20aa9d 1312
80ff3856
YZ
1313 nocow = 0;
1314 disk_bytenr = 0;
17d217fe 1315 num_bytes = 0;
80ff3856
YZ
1316 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1317
1d512cb7
FM
1318 if (found_key.objectid > ino)
1319 break;
1320 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1321 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1322 path->slots[0]++;
1323 goto next_slot;
1324 }
1325 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1326 found_key.offset > end)
1327 break;
1328
1329 if (found_key.offset > cur_offset) {
1330 extent_end = found_key.offset;
e9061e21 1331 extent_type = 0;
80ff3856
YZ
1332 goto out_check;
1333 }
1334
1335 fi = btrfs_item_ptr(leaf, path->slots[0],
1336 struct btrfs_file_extent_item);
1337 extent_type = btrfs_file_extent_type(leaf, fi);
1338
cc95bef6 1339 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1340 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1341 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1342 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1343 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1344 extent_end = found_key.offset +
1345 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1346 disk_num_bytes =
1347 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1348 if (extent_end <= start) {
1349 path->slots[0]++;
1350 goto next_slot;
1351 }
17d217fe
YZ
1352 if (disk_bytenr == 0)
1353 goto out_check;
80ff3856
YZ
1354 if (btrfs_file_extent_compression(leaf, fi) ||
1355 btrfs_file_extent_encryption(leaf, fi) ||
1356 btrfs_file_extent_other_encoding(leaf, fi))
1357 goto out_check;
d899e052
YZ
1358 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1359 goto out_check;
d2fb3437 1360 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1361 goto out_check;
33345d01 1362 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1363 found_key.offset -
1364 extent_offset, disk_bytenr))
17d217fe 1365 goto out_check;
5d4f98a2 1366 disk_bytenr += extent_offset;
17d217fe
YZ
1367 disk_bytenr += cur_offset - found_key.offset;
1368 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1369 /*
1370 * if there are pending snapshots for this root,
1371 * we fall into common COW way.
1372 */
1373 if (!nolock) {
9ea24bbe 1374 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1375 if (!err)
1376 goto out_check;
1377 }
17d217fe
YZ
1378 /*
1379 * force cow if csum exists in the range.
1380 * this ensure that csum for a given extent are
1381 * either valid or do not exist.
1382 */
1383 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1384 goto out_check;
f78c436c
FM
1385 if (!btrfs_inc_nocow_writers(root->fs_info,
1386 disk_bytenr))
1387 goto out_check;
80ff3856
YZ
1388 nocow = 1;
1389 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1390 extent_end = found_key.offset +
514ac8ad
CM
1391 btrfs_file_extent_inline_len(leaf,
1392 path->slots[0], fi);
80ff3856
YZ
1393 extent_end = ALIGN(extent_end, root->sectorsize);
1394 } else {
1395 BUG_ON(1);
1396 }
1397out_check:
1398 if (extent_end <= start) {
1399 path->slots[0]++;
e9894fd3 1400 if (!nolock && nocow)
9ea24bbe 1401 btrfs_end_write_no_snapshoting(root);
f78c436c
FM
1402 if (nocow)
1403 btrfs_dec_nocow_writers(root->fs_info,
1404 disk_bytenr);
80ff3856
YZ
1405 goto next_slot;
1406 }
1407 if (!nocow) {
1408 if (cow_start == (u64)-1)
1409 cow_start = cur_offset;
1410 cur_offset = extent_end;
1411 if (cur_offset > end)
1412 break;
1413 path->slots[0]++;
1414 goto next_slot;
7ea394f1
YZ
1415 }
1416
b3b4aa74 1417 btrfs_release_path(path);
80ff3856 1418 if (cow_start != (u64)-1) {
00361589
JB
1419 ret = cow_file_range(inode, locked_page,
1420 cow_start, found_key.offset - 1,
1421 page_started, nr_written, 1);
e9894fd3
WS
1422 if (ret) {
1423 if (!nolock && nocow)
9ea24bbe 1424 btrfs_end_write_no_snapshoting(root);
f78c436c
FM
1425 if (nocow)
1426 btrfs_dec_nocow_writers(root->fs_info,
1427 disk_bytenr);
79787eaa 1428 goto error;
e9894fd3 1429 }
80ff3856 1430 cow_start = (u64)-1;
7ea394f1 1431 }
80ff3856 1432
d899e052
YZ
1433 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1434 struct extent_map *em;
1435 struct extent_map_tree *em_tree;
1436 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1437 em = alloc_extent_map();
79787eaa 1438 BUG_ON(!em); /* -ENOMEM */
d899e052 1439 em->start = cur_offset;
70c8a91c 1440 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1441 em->len = num_bytes;
1442 em->block_len = num_bytes;
1443 em->block_start = disk_bytenr;
b4939680 1444 em->orig_block_len = disk_num_bytes;
cc95bef6 1445 em->ram_bytes = ram_bytes;
d899e052 1446 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1447 em->mod_start = em->start;
1448 em->mod_len = em->len;
d899e052 1449 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1450 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1451 em->generation = -1;
d899e052 1452 while (1) {
890871be 1453 write_lock(&em_tree->lock);
09a2a8f9 1454 ret = add_extent_mapping(em_tree, em, 1);
890871be 1455 write_unlock(&em_tree->lock);
d899e052
YZ
1456 if (ret != -EEXIST) {
1457 free_extent_map(em);
1458 break;
1459 }
1460 btrfs_drop_extent_cache(inode, em->start,
1461 em->start + em->len - 1, 0);
1462 }
1463 type = BTRFS_ORDERED_PREALLOC;
1464 } else {
1465 type = BTRFS_ORDERED_NOCOW;
1466 }
80ff3856
YZ
1467
1468 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1469 num_bytes, num_bytes, type);
f78c436c
FM
1470 if (nocow)
1471 btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
79787eaa 1472 BUG_ON(ret); /* -ENOMEM */
771ed689 1473
efa56464
YZ
1474 if (root->root_key.objectid ==
1475 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1476 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1477 num_bytes);
e9894fd3
WS
1478 if (ret) {
1479 if (!nolock && nocow)
9ea24bbe 1480 btrfs_end_write_no_snapshoting(root);
79787eaa 1481 goto error;
e9894fd3 1482 }
efa56464
YZ
1483 }
1484
c2790a2e
JB
1485 extent_clear_unlock_delalloc(inode, cur_offset,
1486 cur_offset + num_bytes - 1,
1487 locked_page, EXTENT_LOCKED |
1488 EXTENT_DELALLOC, PAGE_UNLOCK |
1489 PAGE_SET_PRIVATE2);
e9894fd3 1490 if (!nolock && nocow)
9ea24bbe 1491 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1492 cur_offset = extent_end;
1493 if (cur_offset > end)
1494 break;
be20aa9d 1495 }
b3b4aa74 1496 btrfs_release_path(path);
80ff3856 1497
17ca04af 1498 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1499 cow_start = cur_offset;
17ca04af
JB
1500 cur_offset = end;
1501 }
1502
80ff3856 1503 if (cow_start != (u64)-1) {
00361589
JB
1504 ret = cow_file_range(inode, locked_page, cow_start, end,
1505 page_started, nr_written, 1);
d788a349 1506 if (ret)
79787eaa 1507 goto error;
80ff3856
YZ
1508 }
1509
79787eaa 1510error:
a698d075 1511 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1512 if (!ret)
1513 ret = err;
1514
17ca04af 1515 if (ret && cur_offset < end)
c2790a2e
JB
1516 extent_clear_unlock_delalloc(inode, cur_offset, end,
1517 locked_page, EXTENT_LOCKED |
151a41bc
JB
1518 EXTENT_DELALLOC | EXTENT_DEFRAG |
1519 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1520 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1521 PAGE_SET_WRITEBACK |
1522 PAGE_END_WRITEBACK);
7ea394f1 1523 btrfs_free_path(path);
79787eaa 1524 return ret;
be20aa9d
CM
1525}
1526
47059d93
WS
1527static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1528{
1529
1530 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1531 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1532 return 0;
1533
1534 /*
1535 * @defrag_bytes is a hint value, no spinlock held here,
1536 * if is not zero, it means the file is defragging.
1537 * Force cow if given extent needs to be defragged.
1538 */
1539 if (BTRFS_I(inode)->defrag_bytes &&
1540 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1541 EXTENT_DEFRAG, 0, NULL))
1542 return 1;
1543
1544 return 0;
1545}
1546
d352ac68
CM
1547/*
1548 * extent_io.c call back to do delayed allocation processing
1549 */
c8b97818 1550static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1551 u64 start, u64 end, int *page_started,
1552 unsigned long *nr_written)
be20aa9d 1553{
be20aa9d 1554 int ret;
47059d93 1555 int force_cow = need_force_cow(inode, start, end);
a2135011 1556
47059d93 1557 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1558 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1559 page_started, 1, nr_written);
47059d93 1560 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1561 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1562 page_started, 0, nr_written);
7816030e 1563 } else if (!inode_need_compress(inode)) {
7f366cfe
CM
1564 ret = cow_file_range(inode, locked_page, start, end,
1565 page_started, nr_written, 1);
7ddf5a42
JB
1566 } else {
1567 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1568 &BTRFS_I(inode)->runtime_flags);
771ed689 1569 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1570 page_started, nr_written);
7ddf5a42 1571 }
b888db2b
CM
1572 return ret;
1573}
1574
1bf85046
JM
1575static void btrfs_split_extent_hook(struct inode *inode,
1576 struct extent_state *orig, u64 split)
9ed74f2d 1577{
dcab6a3b
JB
1578 u64 size;
1579
0ca1f7ce 1580 /* not delalloc, ignore it */
9ed74f2d 1581 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1582 return;
9ed74f2d 1583
dcab6a3b
JB
1584 size = orig->end - orig->start + 1;
1585 if (size > BTRFS_MAX_EXTENT_SIZE) {
1586 u64 num_extents;
1587 u64 new_size;
1588
1589 /*
ba117213
JB
1590 * See the explanation in btrfs_merge_extent_hook, the same
1591 * applies here, just in reverse.
dcab6a3b
JB
1592 */
1593 new_size = orig->end - split + 1;
ba117213 1594 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
dcab6a3b 1595 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1596 new_size = split - orig->start;
1597 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1598 BTRFS_MAX_EXTENT_SIZE);
1599 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1600 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1601 return;
1602 }
1603
9e0baf60
JB
1604 spin_lock(&BTRFS_I(inode)->lock);
1605 BTRFS_I(inode)->outstanding_extents++;
1606 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1607}
1608
1609/*
1610 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1611 * extents so we can keep track of new extents that are just merged onto old
1612 * extents, such as when we are doing sequential writes, so we can properly
1613 * account for the metadata space we'll need.
1614 */
1bf85046
JM
1615static void btrfs_merge_extent_hook(struct inode *inode,
1616 struct extent_state *new,
1617 struct extent_state *other)
9ed74f2d 1618{
dcab6a3b
JB
1619 u64 new_size, old_size;
1620 u64 num_extents;
1621
9ed74f2d
JB
1622 /* not delalloc, ignore it */
1623 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1624 return;
9ed74f2d 1625
8461a3de
JB
1626 if (new->start > other->start)
1627 new_size = new->end - other->start + 1;
1628 else
1629 new_size = other->end - new->start + 1;
dcab6a3b
JB
1630
1631 /* we're not bigger than the max, unreserve the space and go */
1632 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1633 spin_lock(&BTRFS_I(inode)->lock);
1634 BTRFS_I(inode)->outstanding_extents--;
1635 spin_unlock(&BTRFS_I(inode)->lock);
1636 return;
1637 }
1638
1639 /*
ba117213
JB
1640 * We have to add up either side to figure out how many extents were
1641 * accounted for before we merged into one big extent. If the number of
1642 * extents we accounted for is <= the amount we need for the new range
1643 * then we can return, otherwise drop. Think of it like this
1644 *
1645 * [ 4k][MAX_SIZE]
1646 *
1647 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1648 * need 2 outstanding extents, on one side we have 1 and the other side
1649 * we have 1 so they are == and we can return. But in this case
1650 *
1651 * [MAX_SIZE+4k][MAX_SIZE+4k]
1652 *
1653 * Each range on their own accounts for 2 extents, but merged together
1654 * they are only 3 extents worth of accounting, so we need to drop in
1655 * this case.
dcab6a3b 1656 */
ba117213 1657 old_size = other->end - other->start + 1;
dcab6a3b
JB
1658 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1659 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1660 old_size = new->end - new->start + 1;
1661 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1662 BTRFS_MAX_EXTENT_SIZE);
1663
dcab6a3b 1664 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
ba117213 1665 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1666 return;
1667
9e0baf60
JB
1668 spin_lock(&BTRFS_I(inode)->lock);
1669 BTRFS_I(inode)->outstanding_extents--;
1670 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1671}
1672
eb73c1b7
MX
1673static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1674 struct inode *inode)
1675{
1676 spin_lock(&root->delalloc_lock);
1677 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1678 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1679 &root->delalloc_inodes);
1680 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1681 &BTRFS_I(inode)->runtime_flags);
1682 root->nr_delalloc_inodes++;
1683 if (root->nr_delalloc_inodes == 1) {
1684 spin_lock(&root->fs_info->delalloc_root_lock);
1685 BUG_ON(!list_empty(&root->delalloc_root));
1686 list_add_tail(&root->delalloc_root,
1687 &root->fs_info->delalloc_roots);
1688 spin_unlock(&root->fs_info->delalloc_root_lock);
1689 }
1690 }
1691 spin_unlock(&root->delalloc_lock);
1692}
1693
1694static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1695 struct inode *inode)
1696{
1697 spin_lock(&root->delalloc_lock);
1698 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1699 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1700 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1701 &BTRFS_I(inode)->runtime_flags);
1702 root->nr_delalloc_inodes--;
1703 if (!root->nr_delalloc_inodes) {
1704 spin_lock(&root->fs_info->delalloc_root_lock);
1705 BUG_ON(list_empty(&root->delalloc_root));
1706 list_del_init(&root->delalloc_root);
1707 spin_unlock(&root->fs_info->delalloc_root_lock);
1708 }
1709 }
1710 spin_unlock(&root->delalloc_lock);
1711}
1712
d352ac68
CM
1713/*
1714 * extent_io.c set_bit_hook, used to track delayed allocation
1715 * bytes in this file, and to maintain the list of inodes that
1716 * have pending delalloc work to be done.
1717 */
1bf85046 1718static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1719 struct extent_state *state, unsigned *bits)
291d673e 1720{
9ed74f2d 1721
47059d93
WS
1722 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1723 WARN_ON(1);
75eff68e
CM
1724 /*
1725 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1726 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1727 * bit, which is only set or cleared with irqs on
1728 */
0ca1f7ce 1729 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1730 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1731 u64 len = state->end + 1 - state->start;
83eea1f1 1732 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1733
9e0baf60 1734 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1735 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1736 } else {
1737 spin_lock(&BTRFS_I(inode)->lock);
1738 BTRFS_I(inode)->outstanding_extents++;
1739 spin_unlock(&BTRFS_I(inode)->lock);
1740 }
287a0ab9 1741
6a3891c5
JB
1742 /* For sanity tests */
1743 if (btrfs_test_is_dummy_root(root))
1744 return;
1745
963d678b
MX
1746 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1747 root->fs_info->delalloc_batch);
df0af1a5 1748 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1749 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1750 if (*bits & EXTENT_DEFRAG)
1751 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1752 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1753 &BTRFS_I(inode)->runtime_flags))
1754 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1755 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1756 }
291d673e
CM
1757}
1758
d352ac68
CM
1759/*
1760 * extent_io.c clear_bit_hook, see set_bit_hook for why
1761 */
1bf85046 1762static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1763 struct extent_state *state,
9ee49a04 1764 unsigned *bits)
291d673e 1765{
47059d93 1766 u64 len = state->end + 1 - state->start;
dcab6a3b
JB
1767 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1768 BTRFS_MAX_EXTENT_SIZE);
47059d93
WS
1769
1770 spin_lock(&BTRFS_I(inode)->lock);
1771 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1772 BTRFS_I(inode)->defrag_bytes -= len;
1773 spin_unlock(&BTRFS_I(inode)->lock);
1774
75eff68e
CM
1775 /*
1776 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1777 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1778 * bit, which is only set or cleared with irqs on
1779 */
0ca1f7ce 1780 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1781 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1782 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1783
9e0baf60 1784 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1785 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1786 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1787 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 1788 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60
JB
1789 spin_unlock(&BTRFS_I(inode)->lock);
1790 }
0ca1f7ce 1791
b6d08f06
JB
1792 /*
1793 * We don't reserve metadata space for space cache inodes so we
1794 * don't need to call dellalloc_release_metadata if there is an
1795 * error.
1796 */
1797 if (*bits & EXTENT_DO_ACCOUNTING &&
1798 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1799 btrfs_delalloc_release_metadata(inode, len);
1800
6a3891c5
JB
1801 /* For sanity tests. */
1802 if (btrfs_test_is_dummy_root(root))
1803 return;
1804
0cb59c99 1805 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1806 && do_list && !(state->state & EXTENT_NORESERVE))
51773bec
QW
1807 btrfs_free_reserved_data_space_noquota(inode,
1808 state->start, len);
9ed74f2d 1809
963d678b
MX
1810 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1811 root->fs_info->delalloc_batch);
df0af1a5 1812 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1813 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1814 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1815 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1816 &BTRFS_I(inode)->runtime_flags))
1817 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1818 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1819 }
291d673e
CM
1820}
1821
d352ac68
CM
1822/*
1823 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1824 * we don't create bios that span stripes or chunks
1825 */
81a75f67 1826int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1827 size_t size, struct bio *bio,
1828 unsigned long bio_flags)
239b14b3
CM
1829{
1830 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1831 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1832 u64 length = 0;
1833 u64 map_length;
239b14b3
CM
1834 int ret;
1835
771ed689
CM
1836 if (bio_flags & EXTENT_BIO_COMPRESSED)
1837 return 0;
1838
4f024f37 1839 length = bio->bi_iter.bi_size;
239b14b3 1840 map_length = length;
b3d3fa51 1841 ret = btrfs_map_block(root->fs_info, bio_op(bio), logical,
f188591e 1842 &map_length, NULL, 0);
3ec706c8 1843 /* Will always return 0 with map_multi == NULL */
3444a972 1844 BUG_ON(ret < 0);
d397712b 1845 if (map_length < length + size)
239b14b3 1846 return 1;
3444a972 1847 return 0;
239b14b3
CM
1848}
1849
d352ac68
CM
1850/*
1851 * in order to insert checksums into the metadata in large chunks,
1852 * we wait until bio submission time. All the pages in the bio are
1853 * checksummed and sums are attached onto the ordered extent record.
1854 *
1855 * At IO completion time the cums attached on the ordered extent record
1856 * are inserted into the btree
1857 */
81a75f67
MC
1858static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1859 int mirror_num, unsigned long bio_flags,
eaf25d93 1860 u64 bio_offset)
065631f6 1861{
065631f6 1862 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1863 int ret = 0;
e015640f 1864
d20f7043 1865 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1866 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1867 return 0;
1868}
e015640f 1869
4a69a410
CM
1870/*
1871 * in order to insert checksums into the metadata in large chunks,
1872 * we wait until bio submission time. All the pages in the bio are
1873 * checksummed and sums are attached onto the ordered extent record.
1874 *
1875 * At IO completion time the cums attached on the ordered extent record
1876 * are inserted into the btree
1877 */
81a75f67 1878static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio,
eaf25d93
CM
1879 int mirror_num, unsigned long bio_flags,
1880 u64 bio_offset)
4a69a410
CM
1881{
1882 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1883 int ret;
1884
81a75f67 1885 ret = btrfs_map_bio(root, bio, mirror_num, 1);
4246a0b6
CH
1886 if (ret) {
1887 bio->bi_error = ret;
1888 bio_endio(bio);
1889 }
61891923 1890 return ret;
44b8bd7e
CM
1891}
1892
d352ac68 1893/*
cad321ad
CM
1894 * extent_io.c submission hook. This does the right thing for csum calculation
1895 * on write, or reading the csums from the tree before a read
d352ac68 1896 */
81a75f67 1897static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
eaf25d93
CM
1898 int mirror_num, unsigned long bio_flags,
1899 u64 bio_offset)
44b8bd7e
CM
1900{
1901 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1902 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1903 int ret = 0;
19b9bdb0 1904 int skip_sum;
b812ce28 1905 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1906
6cbff00f 1907 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1908
83eea1f1 1909 if (btrfs_is_free_space_inode(inode))
0d51e28a 1910 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1911
37226b21 1912 if (bio_op(bio) != REQ_OP_WRITE) {
5fd02043
JB
1913 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1914 if (ret)
61891923 1915 goto out;
5fd02043 1916
d20f7043 1917 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1918 ret = btrfs_submit_compressed_read(inode, bio,
1919 mirror_num,
1920 bio_flags);
1921 goto out;
c2db1073
TI
1922 } else if (!skip_sum) {
1923 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1924 if (ret)
61891923 1925 goto out;
c2db1073 1926 }
4d1b5fb4 1927 goto mapit;
b812ce28 1928 } else if (async && !skip_sum) {
17d217fe
YZ
1929 /* csum items have already been cloned */
1930 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1931 goto mapit;
19b9bdb0 1932 /* we're doing a write, do the async checksumming */
61891923 1933 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
81a75f67 1934 inode, bio, mirror_num,
eaf25d93
CM
1935 bio_flags, bio_offset,
1936 __btrfs_submit_bio_start,
4a69a410 1937 __btrfs_submit_bio_done);
61891923 1938 goto out;
b812ce28
JB
1939 } else if (!skip_sum) {
1940 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1941 if (ret)
1942 goto out;
19b9bdb0
CM
1943 }
1944
0b86a832 1945mapit:
81a75f67 1946 ret = btrfs_map_bio(root, bio, mirror_num, 0);
61891923
SB
1947
1948out:
4246a0b6
CH
1949 if (ret < 0) {
1950 bio->bi_error = ret;
1951 bio_endio(bio);
1952 }
61891923 1953 return ret;
065631f6 1954}
6885f308 1955
d352ac68
CM
1956/*
1957 * given a list of ordered sums record them in the inode. This happens
1958 * at IO completion time based on sums calculated at bio submission time.
1959 */
ba1da2f4 1960static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1961 struct inode *inode, u64 file_offset,
1962 struct list_head *list)
1963{
e6dcd2dc
CM
1964 struct btrfs_ordered_sum *sum;
1965
c6e30871 1966 list_for_each_entry(sum, list, list) {
39847c4d 1967 trans->adding_csums = 1;
d20f7043
CM
1968 btrfs_csum_file_blocks(trans,
1969 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1970 trans->adding_csums = 0;
e6dcd2dc
CM
1971 }
1972 return 0;
1973}
1974
2ac55d41
JB
1975int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1976 struct extent_state **cached_state)
ea8c2819 1977{
09cbfeaf 1978 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 1979 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
7cd8c752 1980 cached_state);
ea8c2819
CM
1981}
1982
d352ac68 1983/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1984struct btrfs_writepage_fixup {
1985 struct page *page;
1986 struct btrfs_work work;
1987};
1988
b2950863 1989static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1990{
1991 struct btrfs_writepage_fixup *fixup;
1992 struct btrfs_ordered_extent *ordered;
2ac55d41 1993 struct extent_state *cached_state = NULL;
247e743c
CM
1994 struct page *page;
1995 struct inode *inode;
1996 u64 page_start;
1997 u64 page_end;
87826df0 1998 int ret;
247e743c
CM
1999
2000 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2001 page = fixup->page;
4a096752 2002again:
247e743c
CM
2003 lock_page(page);
2004 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2005 ClearPageChecked(page);
2006 goto out_page;
2007 }
2008
2009 inode = page->mapping->host;
2010 page_start = page_offset(page);
09cbfeaf 2011 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2012
ff13db41 2013 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2014 &cached_state);
4a096752
CM
2015
2016 /* already ordered? We're done */
8b62b72b 2017 if (PagePrivate2(page))
247e743c 2018 goto out;
4a096752 2019
dbfdb6d1 2020 ordered = btrfs_lookup_ordered_range(inode, page_start,
09cbfeaf 2021 PAGE_SIZE);
4a096752 2022 if (ordered) {
2ac55d41
JB
2023 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2024 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2025 unlock_page(page);
2026 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2027 btrfs_put_ordered_extent(ordered);
4a096752
CM
2028 goto again;
2029 }
247e743c 2030
7cf5b976 2031 ret = btrfs_delalloc_reserve_space(inode, page_start,
09cbfeaf 2032 PAGE_SIZE);
87826df0
JM
2033 if (ret) {
2034 mapping_set_error(page->mapping, ret);
2035 end_extent_writepage(page, ret, page_start, page_end);
2036 ClearPageChecked(page);
2037 goto out;
2038 }
2039
2ac55d41 2040 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 2041 ClearPageChecked(page);
87826df0 2042 set_page_dirty(page);
247e743c 2043out:
2ac55d41
JB
2044 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2045 &cached_state, GFP_NOFS);
247e743c
CM
2046out_page:
2047 unlock_page(page);
09cbfeaf 2048 put_page(page);
b897abec 2049 kfree(fixup);
247e743c
CM
2050}
2051
2052/*
2053 * There are a few paths in the higher layers of the kernel that directly
2054 * set the page dirty bit without asking the filesystem if it is a
2055 * good idea. This causes problems because we want to make sure COW
2056 * properly happens and the data=ordered rules are followed.
2057 *
c8b97818 2058 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2059 * hasn't been properly setup for IO. We kick off an async process
2060 * to fix it up. The async helper will wait for ordered extents, set
2061 * the delalloc bit and make it safe to write the page.
2062 */
b2950863 2063static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2064{
2065 struct inode *inode = page->mapping->host;
2066 struct btrfs_writepage_fixup *fixup;
2067 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 2068
8b62b72b
CM
2069 /* this page is properly in the ordered list */
2070 if (TestClearPagePrivate2(page))
247e743c
CM
2071 return 0;
2072
2073 if (PageChecked(page))
2074 return -EAGAIN;
2075
2076 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2077 if (!fixup)
2078 return -EAGAIN;
f421950f 2079
247e743c 2080 SetPageChecked(page);
09cbfeaf 2081 get_page(page);
9e0af237
LB
2082 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2083 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2084 fixup->page = page;
dc6e3209 2085 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 2086 return -EBUSY;
247e743c
CM
2087}
2088
d899e052
YZ
2089static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2090 struct inode *inode, u64 file_pos,
2091 u64 disk_bytenr, u64 disk_num_bytes,
2092 u64 num_bytes, u64 ram_bytes,
2093 u8 compression, u8 encryption,
2094 u16 other_encoding, int extent_type)
2095{
2096 struct btrfs_root *root = BTRFS_I(inode)->root;
2097 struct btrfs_file_extent_item *fi;
2098 struct btrfs_path *path;
2099 struct extent_buffer *leaf;
2100 struct btrfs_key ins;
1acae57b 2101 int extent_inserted = 0;
d899e052
YZ
2102 int ret;
2103
2104 path = btrfs_alloc_path();
d8926bb3
MF
2105 if (!path)
2106 return -ENOMEM;
d899e052 2107
a1ed835e
CM
2108 /*
2109 * we may be replacing one extent in the tree with another.
2110 * The new extent is pinned in the extent map, and we don't want
2111 * to drop it from the cache until it is completely in the btree.
2112 *
2113 * So, tell btrfs_drop_extents to leave this extent in the cache.
2114 * the caller is expected to unpin it and allow it to be merged
2115 * with the others.
2116 */
1acae57b
FDBM
2117 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2118 file_pos + num_bytes, NULL, 0,
2119 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2120 if (ret)
2121 goto out;
d899e052 2122
1acae57b
FDBM
2123 if (!extent_inserted) {
2124 ins.objectid = btrfs_ino(inode);
2125 ins.offset = file_pos;
2126 ins.type = BTRFS_EXTENT_DATA_KEY;
2127
2128 path->leave_spinning = 1;
2129 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2130 sizeof(*fi));
2131 if (ret)
2132 goto out;
2133 }
d899e052
YZ
2134 leaf = path->nodes[0];
2135 fi = btrfs_item_ptr(leaf, path->slots[0],
2136 struct btrfs_file_extent_item);
2137 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2138 btrfs_set_file_extent_type(leaf, fi, extent_type);
2139 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2140 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2141 btrfs_set_file_extent_offset(leaf, fi, 0);
2142 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2143 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2144 btrfs_set_file_extent_compression(leaf, fi, compression);
2145 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2146 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2147
d899e052 2148 btrfs_mark_buffer_dirty(leaf);
ce195332 2149 btrfs_release_path(path);
d899e052
YZ
2150
2151 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2152
2153 ins.objectid = disk_bytenr;
2154 ins.offset = disk_num_bytes;
2155 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2156 ret = btrfs_alloc_reserved_file_extent(trans, root,
2157 root->root_key.objectid,
5846a3c2
QW
2158 btrfs_ino(inode), file_pos,
2159 ram_bytes, &ins);
297d750b 2160 /*
5846a3c2
QW
2161 * Release the reserved range from inode dirty range map, as it is
2162 * already moved into delayed_ref_head
297d750b
QW
2163 */
2164 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
79787eaa 2165out:
d899e052 2166 btrfs_free_path(path);
b9473439 2167
79787eaa 2168 return ret;
d899e052
YZ
2169}
2170
38c227d8
LB
2171/* snapshot-aware defrag */
2172struct sa_defrag_extent_backref {
2173 struct rb_node node;
2174 struct old_sa_defrag_extent *old;
2175 u64 root_id;
2176 u64 inum;
2177 u64 file_pos;
2178 u64 extent_offset;
2179 u64 num_bytes;
2180 u64 generation;
2181};
2182
2183struct old_sa_defrag_extent {
2184 struct list_head list;
2185 struct new_sa_defrag_extent *new;
2186
2187 u64 extent_offset;
2188 u64 bytenr;
2189 u64 offset;
2190 u64 len;
2191 int count;
2192};
2193
2194struct new_sa_defrag_extent {
2195 struct rb_root root;
2196 struct list_head head;
2197 struct btrfs_path *path;
2198 struct inode *inode;
2199 u64 file_pos;
2200 u64 len;
2201 u64 bytenr;
2202 u64 disk_len;
2203 u8 compress_type;
2204};
2205
2206static int backref_comp(struct sa_defrag_extent_backref *b1,
2207 struct sa_defrag_extent_backref *b2)
2208{
2209 if (b1->root_id < b2->root_id)
2210 return -1;
2211 else if (b1->root_id > b2->root_id)
2212 return 1;
2213
2214 if (b1->inum < b2->inum)
2215 return -1;
2216 else if (b1->inum > b2->inum)
2217 return 1;
2218
2219 if (b1->file_pos < b2->file_pos)
2220 return -1;
2221 else if (b1->file_pos > b2->file_pos)
2222 return 1;
2223
2224 /*
2225 * [------------------------------] ===> (a range of space)
2226 * |<--->| |<---->| =============> (fs/file tree A)
2227 * |<---------------------------->| ===> (fs/file tree B)
2228 *
2229 * A range of space can refer to two file extents in one tree while
2230 * refer to only one file extent in another tree.
2231 *
2232 * So we may process a disk offset more than one time(two extents in A)
2233 * and locate at the same extent(one extent in B), then insert two same
2234 * backrefs(both refer to the extent in B).
2235 */
2236 return 0;
2237}
2238
2239static void backref_insert(struct rb_root *root,
2240 struct sa_defrag_extent_backref *backref)
2241{
2242 struct rb_node **p = &root->rb_node;
2243 struct rb_node *parent = NULL;
2244 struct sa_defrag_extent_backref *entry;
2245 int ret;
2246
2247 while (*p) {
2248 parent = *p;
2249 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2250
2251 ret = backref_comp(backref, entry);
2252 if (ret < 0)
2253 p = &(*p)->rb_left;
2254 else
2255 p = &(*p)->rb_right;
2256 }
2257
2258 rb_link_node(&backref->node, parent, p);
2259 rb_insert_color(&backref->node, root);
2260}
2261
2262/*
2263 * Note the backref might has changed, and in this case we just return 0.
2264 */
2265static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2266 void *ctx)
2267{
2268 struct btrfs_file_extent_item *extent;
2269 struct btrfs_fs_info *fs_info;
2270 struct old_sa_defrag_extent *old = ctx;
2271 struct new_sa_defrag_extent *new = old->new;
2272 struct btrfs_path *path = new->path;
2273 struct btrfs_key key;
2274 struct btrfs_root *root;
2275 struct sa_defrag_extent_backref *backref;
2276 struct extent_buffer *leaf;
2277 struct inode *inode = new->inode;
2278 int slot;
2279 int ret;
2280 u64 extent_offset;
2281 u64 num_bytes;
2282
2283 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2284 inum == btrfs_ino(inode))
2285 return 0;
2286
2287 key.objectid = root_id;
2288 key.type = BTRFS_ROOT_ITEM_KEY;
2289 key.offset = (u64)-1;
2290
2291 fs_info = BTRFS_I(inode)->root->fs_info;
2292 root = btrfs_read_fs_root_no_name(fs_info, &key);
2293 if (IS_ERR(root)) {
2294 if (PTR_ERR(root) == -ENOENT)
2295 return 0;
2296 WARN_ON(1);
2297 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2298 inum, offset, root_id);
2299 return PTR_ERR(root);
2300 }
2301
2302 key.objectid = inum;
2303 key.type = BTRFS_EXTENT_DATA_KEY;
2304 if (offset > (u64)-1 << 32)
2305 key.offset = 0;
2306 else
2307 key.offset = offset;
2308
2309 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2310 if (WARN_ON(ret < 0))
38c227d8 2311 return ret;
50f1319c 2312 ret = 0;
38c227d8
LB
2313
2314 while (1) {
2315 cond_resched();
2316
2317 leaf = path->nodes[0];
2318 slot = path->slots[0];
2319
2320 if (slot >= btrfs_header_nritems(leaf)) {
2321 ret = btrfs_next_leaf(root, path);
2322 if (ret < 0) {
2323 goto out;
2324 } else if (ret > 0) {
2325 ret = 0;
2326 goto out;
2327 }
2328 continue;
2329 }
2330
2331 path->slots[0]++;
2332
2333 btrfs_item_key_to_cpu(leaf, &key, slot);
2334
2335 if (key.objectid > inum)
2336 goto out;
2337
2338 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2339 continue;
2340
2341 extent = btrfs_item_ptr(leaf, slot,
2342 struct btrfs_file_extent_item);
2343
2344 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2345 continue;
2346
e68afa49
LB
2347 /*
2348 * 'offset' refers to the exact key.offset,
2349 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2350 * (key.offset - extent_offset).
2351 */
2352 if (key.offset != offset)
38c227d8
LB
2353 continue;
2354
e68afa49 2355 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2356 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2357
38c227d8
LB
2358 if (extent_offset >= old->extent_offset + old->offset +
2359 old->len || extent_offset + num_bytes <=
2360 old->extent_offset + old->offset)
2361 continue;
38c227d8
LB
2362 break;
2363 }
2364
2365 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2366 if (!backref) {
2367 ret = -ENOENT;
2368 goto out;
2369 }
2370
2371 backref->root_id = root_id;
2372 backref->inum = inum;
e68afa49 2373 backref->file_pos = offset;
38c227d8
LB
2374 backref->num_bytes = num_bytes;
2375 backref->extent_offset = extent_offset;
2376 backref->generation = btrfs_file_extent_generation(leaf, extent);
2377 backref->old = old;
2378 backref_insert(&new->root, backref);
2379 old->count++;
2380out:
2381 btrfs_release_path(path);
2382 WARN_ON(ret);
2383 return ret;
2384}
2385
2386static noinline bool record_extent_backrefs(struct btrfs_path *path,
2387 struct new_sa_defrag_extent *new)
2388{
2389 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2390 struct old_sa_defrag_extent *old, *tmp;
2391 int ret;
2392
2393 new->path = path;
2394
2395 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2396 ret = iterate_inodes_from_logical(old->bytenr +
2397 old->extent_offset, fs_info,
38c227d8
LB
2398 path, record_one_backref,
2399 old);
4724b106
JB
2400 if (ret < 0 && ret != -ENOENT)
2401 return false;
38c227d8
LB
2402
2403 /* no backref to be processed for this extent */
2404 if (!old->count) {
2405 list_del(&old->list);
2406 kfree(old);
2407 }
2408 }
2409
2410 if (list_empty(&new->head))
2411 return false;
2412
2413 return true;
2414}
2415
2416static int relink_is_mergable(struct extent_buffer *leaf,
2417 struct btrfs_file_extent_item *fi,
116e0024 2418 struct new_sa_defrag_extent *new)
38c227d8 2419{
116e0024 2420 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2421 return 0;
2422
2423 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2424 return 0;
2425
116e0024
LB
2426 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2427 return 0;
2428
2429 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2430 btrfs_file_extent_other_encoding(leaf, fi))
2431 return 0;
2432
2433 return 1;
2434}
2435
2436/*
2437 * Note the backref might has changed, and in this case we just return 0.
2438 */
2439static noinline int relink_extent_backref(struct btrfs_path *path,
2440 struct sa_defrag_extent_backref *prev,
2441 struct sa_defrag_extent_backref *backref)
2442{
2443 struct btrfs_file_extent_item *extent;
2444 struct btrfs_file_extent_item *item;
2445 struct btrfs_ordered_extent *ordered;
2446 struct btrfs_trans_handle *trans;
2447 struct btrfs_fs_info *fs_info;
2448 struct btrfs_root *root;
2449 struct btrfs_key key;
2450 struct extent_buffer *leaf;
2451 struct old_sa_defrag_extent *old = backref->old;
2452 struct new_sa_defrag_extent *new = old->new;
2453 struct inode *src_inode = new->inode;
2454 struct inode *inode;
2455 struct extent_state *cached = NULL;
2456 int ret = 0;
2457 u64 start;
2458 u64 len;
2459 u64 lock_start;
2460 u64 lock_end;
2461 bool merge = false;
2462 int index;
2463
2464 if (prev && prev->root_id == backref->root_id &&
2465 prev->inum == backref->inum &&
2466 prev->file_pos + prev->num_bytes == backref->file_pos)
2467 merge = true;
2468
2469 /* step 1: get root */
2470 key.objectid = backref->root_id;
2471 key.type = BTRFS_ROOT_ITEM_KEY;
2472 key.offset = (u64)-1;
2473
2474 fs_info = BTRFS_I(src_inode)->root->fs_info;
2475 index = srcu_read_lock(&fs_info->subvol_srcu);
2476
2477 root = btrfs_read_fs_root_no_name(fs_info, &key);
2478 if (IS_ERR(root)) {
2479 srcu_read_unlock(&fs_info->subvol_srcu, index);
2480 if (PTR_ERR(root) == -ENOENT)
2481 return 0;
2482 return PTR_ERR(root);
2483 }
38c227d8 2484
bcbba5e6
WS
2485 if (btrfs_root_readonly(root)) {
2486 srcu_read_unlock(&fs_info->subvol_srcu, index);
2487 return 0;
2488 }
2489
38c227d8
LB
2490 /* step 2: get inode */
2491 key.objectid = backref->inum;
2492 key.type = BTRFS_INODE_ITEM_KEY;
2493 key.offset = 0;
2494
2495 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2496 if (IS_ERR(inode)) {
2497 srcu_read_unlock(&fs_info->subvol_srcu, index);
2498 return 0;
2499 }
2500
2501 srcu_read_unlock(&fs_info->subvol_srcu, index);
2502
2503 /* step 3: relink backref */
2504 lock_start = backref->file_pos;
2505 lock_end = backref->file_pos + backref->num_bytes - 1;
2506 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2507 &cached);
38c227d8
LB
2508
2509 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2510 if (ordered) {
2511 btrfs_put_ordered_extent(ordered);
2512 goto out_unlock;
2513 }
2514
2515 trans = btrfs_join_transaction(root);
2516 if (IS_ERR(trans)) {
2517 ret = PTR_ERR(trans);
2518 goto out_unlock;
2519 }
2520
2521 key.objectid = backref->inum;
2522 key.type = BTRFS_EXTENT_DATA_KEY;
2523 key.offset = backref->file_pos;
2524
2525 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2526 if (ret < 0) {
2527 goto out_free_path;
2528 } else if (ret > 0) {
2529 ret = 0;
2530 goto out_free_path;
2531 }
2532
2533 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2534 struct btrfs_file_extent_item);
2535
2536 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2537 backref->generation)
2538 goto out_free_path;
2539
2540 btrfs_release_path(path);
2541
2542 start = backref->file_pos;
2543 if (backref->extent_offset < old->extent_offset + old->offset)
2544 start += old->extent_offset + old->offset -
2545 backref->extent_offset;
2546
2547 len = min(backref->extent_offset + backref->num_bytes,
2548 old->extent_offset + old->offset + old->len);
2549 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2550
2551 ret = btrfs_drop_extents(trans, root, inode, start,
2552 start + len, 1);
2553 if (ret)
2554 goto out_free_path;
2555again:
2556 key.objectid = btrfs_ino(inode);
2557 key.type = BTRFS_EXTENT_DATA_KEY;
2558 key.offset = start;
2559
a09a0a70 2560 path->leave_spinning = 1;
38c227d8
LB
2561 if (merge) {
2562 struct btrfs_file_extent_item *fi;
2563 u64 extent_len;
2564 struct btrfs_key found_key;
2565
3c9665df 2566 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2567 if (ret < 0)
2568 goto out_free_path;
2569
2570 path->slots[0]--;
2571 leaf = path->nodes[0];
2572 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2573
2574 fi = btrfs_item_ptr(leaf, path->slots[0],
2575 struct btrfs_file_extent_item);
2576 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2577
116e0024
LB
2578 if (extent_len + found_key.offset == start &&
2579 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2580 btrfs_set_file_extent_num_bytes(leaf, fi,
2581 extent_len + len);
2582 btrfs_mark_buffer_dirty(leaf);
2583 inode_add_bytes(inode, len);
2584
2585 ret = 1;
2586 goto out_free_path;
2587 } else {
2588 merge = false;
2589 btrfs_release_path(path);
2590 goto again;
2591 }
2592 }
2593
2594 ret = btrfs_insert_empty_item(trans, root, path, &key,
2595 sizeof(*extent));
2596 if (ret) {
2597 btrfs_abort_transaction(trans, root, ret);
2598 goto out_free_path;
2599 }
2600
2601 leaf = path->nodes[0];
2602 item = btrfs_item_ptr(leaf, path->slots[0],
2603 struct btrfs_file_extent_item);
2604 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2605 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2606 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2607 btrfs_set_file_extent_num_bytes(leaf, item, len);
2608 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2609 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2610 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2611 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2612 btrfs_set_file_extent_encryption(leaf, item, 0);
2613 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2614
2615 btrfs_mark_buffer_dirty(leaf);
2616 inode_add_bytes(inode, len);
a09a0a70 2617 btrfs_release_path(path);
38c227d8
LB
2618
2619 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2620 new->disk_len, 0,
2621 backref->root_id, backref->inum,
b06c4bf5 2622 new->file_pos); /* start - extent_offset */
38c227d8
LB
2623 if (ret) {
2624 btrfs_abort_transaction(trans, root, ret);
2625 goto out_free_path;
2626 }
2627
2628 ret = 1;
2629out_free_path:
2630 btrfs_release_path(path);
a09a0a70 2631 path->leave_spinning = 0;
38c227d8
LB
2632 btrfs_end_transaction(trans, root);
2633out_unlock:
2634 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2635 &cached, GFP_NOFS);
2636 iput(inode);
2637 return ret;
2638}
2639
6f519564
LB
2640static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2641{
2642 struct old_sa_defrag_extent *old, *tmp;
2643
2644 if (!new)
2645 return;
2646
2647 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2648 kfree(old);
2649 }
2650 kfree(new);
2651}
2652
38c227d8
LB
2653static void relink_file_extents(struct new_sa_defrag_extent *new)
2654{
2655 struct btrfs_path *path;
38c227d8
LB
2656 struct sa_defrag_extent_backref *backref;
2657 struct sa_defrag_extent_backref *prev = NULL;
2658 struct inode *inode;
2659 struct btrfs_root *root;
2660 struct rb_node *node;
2661 int ret;
2662
2663 inode = new->inode;
2664 root = BTRFS_I(inode)->root;
2665
2666 path = btrfs_alloc_path();
2667 if (!path)
2668 return;
2669
2670 if (!record_extent_backrefs(path, new)) {
2671 btrfs_free_path(path);
2672 goto out;
2673 }
2674 btrfs_release_path(path);
2675
2676 while (1) {
2677 node = rb_first(&new->root);
2678 if (!node)
2679 break;
2680 rb_erase(node, &new->root);
2681
2682 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2683
2684 ret = relink_extent_backref(path, prev, backref);
2685 WARN_ON(ret < 0);
2686
2687 kfree(prev);
2688
2689 if (ret == 1)
2690 prev = backref;
2691 else
2692 prev = NULL;
2693 cond_resched();
2694 }
2695 kfree(prev);
2696
2697 btrfs_free_path(path);
38c227d8 2698out:
6f519564
LB
2699 free_sa_defrag_extent(new);
2700
38c227d8
LB
2701 atomic_dec(&root->fs_info->defrag_running);
2702 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2703}
2704
2705static struct new_sa_defrag_extent *
2706record_old_file_extents(struct inode *inode,
2707 struct btrfs_ordered_extent *ordered)
2708{
2709 struct btrfs_root *root = BTRFS_I(inode)->root;
2710 struct btrfs_path *path;
2711 struct btrfs_key key;
6f519564 2712 struct old_sa_defrag_extent *old;
38c227d8
LB
2713 struct new_sa_defrag_extent *new;
2714 int ret;
2715
2716 new = kmalloc(sizeof(*new), GFP_NOFS);
2717 if (!new)
2718 return NULL;
2719
2720 new->inode = inode;
2721 new->file_pos = ordered->file_offset;
2722 new->len = ordered->len;
2723 new->bytenr = ordered->start;
2724 new->disk_len = ordered->disk_len;
2725 new->compress_type = ordered->compress_type;
2726 new->root = RB_ROOT;
2727 INIT_LIST_HEAD(&new->head);
2728
2729 path = btrfs_alloc_path();
2730 if (!path)
2731 goto out_kfree;
2732
2733 key.objectid = btrfs_ino(inode);
2734 key.type = BTRFS_EXTENT_DATA_KEY;
2735 key.offset = new->file_pos;
2736
2737 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2738 if (ret < 0)
2739 goto out_free_path;
2740 if (ret > 0 && path->slots[0] > 0)
2741 path->slots[0]--;
2742
2743 /* find out all the old extents for the file range */
2744 while (1) {
2745 struct btrfs_file_extent_item *extent;
2746 struct extent_buffer *l;
2747 int slot;
2748 u64 num_bytes;
2749 u64 offset;
2750 u64 end;
2751 u64 disk_bytenr;
2752 u64 extent_offset;
2753
2754 l = path->nodes[0];
2755 slot = path->slots[0];
2756
2757 if (slot >= btrfs_header_nritems(l)) {
2758 ret = btrfs_next_leaf(root, path);
2759 if (ret < 0)
6f519564 2760 goto out_free_path;
38c227d8
LB
2761 else if (ret > 0)
2762 break;
2763 continue;
2764 }
2765
2766 btrfs_item_key_to_cpu(l, &key, slot);
2767
2768 if (key.objectid != btrfs_ino(inode))
2769 break;
2770 if (key.type != BTRFS_EXTENT_DATA_KEY)
2771 break;
2772 if (key.offset >= new->file_pos + new->len)
2773 break;
2774
2775 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2776
2777 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2778 if (key.offset + num_bytes < new->file_pos)
2779 goto next;
2780
2781 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2782 if (!disk_bytenr)
2783 goto next;
2784
2785 extent_offset = btrfs_file_extent_offset(l, extent);
2786
2787 old = kmalloc(sizeof(*old), GFP_NOFS);
2788 if (!old)
6f519564 2789 goto out_free_path;
38c227d8
LB
2790
2791 offset = max(new->file_pos, key.offset);
2792 end = min(new->file_pos + new->len, key.offset + num_bytes);
2793
2794 old->bytenr = disk_bytenr;
2795 old->extent_offset = extent_offset;
2796 old->offset = offset - key.offset;
2797 old->len = end - offset;
2798 old->new = new;
2799 old->count = 0;
2800 list_add_tail(&old->list, &new->head);
2801next:
2802 path->slots[0]++;
2803 cond_resched();
2804 }
2805
2806 btrfs_free_path(path);
2807 atomic_inc(&root->fs_info->defrag_running);
2808
2809 return new;
2810
38c227d8
LB
2811out_free_path:
2812 btrfs_free_path(path);
2813out_kfree:
6f519564 2814 free_sa_defrag_extent(new);
38c227d8
LB
2815 return NULL;
2816}
2817
e570fd27
MX
2818static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2819 u64 start, u64 len)
2820{
2821 struct btrfs_block_group_cache *cache;
2822
2823 cache = btrfs_lookup_block_group(root->fs_info, start);
2824 ASSERT(cache);
2825
2826 spin_lock(&cache->lock);
2827 cache->delalloc_bytes -= len;
2828 spin_unlock(&cache->lock);
2829
2830 btrfs_put_block_group(cache);
2831}
2832
d352ac68
CM
2833/* as ordered data IO finishes, this gets called so we can finish
2834 * an ordered extent if the range of bytes in the file it covers are
2835 * fully written.
2836 */
5fd02043 2837static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2838{
5fd02043 2839 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2840 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2841 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2842 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2843 struct extent_state *cached_state = NULL;
38c227d8 2844 struct new_sa_defrag_extent *new = NULL;
261507a0 2845 int compress_type = 0;
77cef2ec
JB
2846 int ret = 0;
2847 u64 logical_len = ordered_extent->len;
82d5902d 2848 bool nolock;
77cef2ec 2849 bool truncated = false;
e6dcd2dc 2850
83eea1f1 2851 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2852
5fd02043
JB
2853 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2854 ret = -EIO;
2855 goto out;
2856 }
2857
f612496b
MX
2858 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2859 ordered_extent->file_offset +
2860 ordered_extent->len - 1);
2861
77cef2ec
JB
2862 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2863 truncated = true;
2864 logical_len = ordered_extent->truncated_len;
2865 /* Truncated the entire extent, don't bother adding */
2866 if (!logical_len)
2867 goto out;
2868 }
2869
c2167754 2870 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2871 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2872
2873 /*
2874 * For mwrite(mmap + memset to write) case, we still reserve
2875 * space for NOCOW range.
2876 * As NOCOW won't cause a new delayed ref, just free the space
2877 */
2878 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2879 ordered_extent->len);
6c760c07
JB
2880 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2881 if (nolock)
2882 trans = btrfs_join_transaction_nolock(root);
2883 else
2884 trans = btrfs_join_transaction(root);
2885 if (IS_ERR(trans)) {
2886 ret = PTR_ERR(trans);
2887 trans = NULL;
2888 goto out;
c2167754 2889 }
6c760c07
JB
2890 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2891 ret = btrfs_update_inode_fallback(trans, root, inode);
2892 if (ret) /* -ENOMEM or corruption */
2893 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2894 goto out;
2895 }
e6dcd2dc 2896
2ac55d41
JB
2897 lock_extent_bits(io_tree, ordered_extent->file_offset,
2898 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2899 &cached_state);
e6dcd2dc 2900
38c227d8
LB
2901 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2902 ordered_extent->file_offset + ordered_extent->len - 1,
2903 EXTENT_DEFRAG, 1, cached_state);
2904 if (ret) {
2905 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2906 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2907 /* the inode is shared */
2908 new = record_old_file_extents(inode, ordered_extent);
2909
2910 clear_extent_bit(io_tree, ordered_extent->file_offset,
2911 ordered_extent->file_offset + ordered_extent->len - 1,
2912 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2913 }
2914
0cb59c99 2915 if (nolock)
7a7eaa40 2916 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2917 else
7a7eaa40 2918 trans = btrfs_join_transaction(root);
79787eaa
JM
2919 if (IS_ERR(trans)) {
2920 ret = PTR_ERR(trans);
2921 trans = NULL;
2922 goto out_unlock;
2923 }
a79b7d4b 2924
0ca1f7ce 2925 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2926
c8b97818 2927 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2928 compress_type = ordered_extent->compress_type;
d899e052 2929 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2930 BUG_ON(compress_type);
920bbbfb 2931 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2932 ordered_extent->file_offset,
2933 ordered_extent->file_offset +
77cef2ec 2934 logical_len);
d899e052 2935 } else {
0af3d00b 2936 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2937 ret = insert_reserved_file_extent(trans, inode,
2938 ordered_extent->file_offset,
2939 ordered_extent->start,
2940 ordered_extent->disk_len,
77cef2ec 2941 logical_len, logical_len,
261507a0 2942 compress_type, 0, 0,
d899e052 2943 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2944 if (!ret)
2945 btrfs_release_delalloc_bytes(root,
2946 ordered_extent->start,
2947 ordered_extent->disk_len);
d899e052 2948 }
5dc562c5
JB
2949 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2950 ordered_extent->file_offset, ordered_extent->len,
2951 trans->transid);
79787eaa
JM
2952 if (ret < 0) {
2953 btrfs_abort_transaction(trans, root, ret);
5fd02043 2954 goto out_unlock;
79787eaa 2955 }
2ac55d41 2956
e6dcd2dc
CM
2957 add_pending_csums(trans, inode, ordered_extent->file_offset,
2958 &ordered_extent->list);
2959
6c760c07
JB
2960 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2961 ret = btrfs_update_inode_fallback(trans, root, inode);
2962 if (ret) { /* -ENOMEM or corruption */
2963 btrfs_abort_transaction(trans, root, ret);
2964 goto out_unlock;
1ef30be1
JB
2965 }
2966 ret = 0;
5fd02043
JB
2967out_unlock:
2968 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2969 ordered_extent->file_offset +
2970 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2971out:
5b0e95bf 2972 if (root != root->fs_info->tree_root)
0cb59c99 2973 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2974 if (trans)
2975 btrfs_end_transaction(trans, root);
0cb59c99 2976
77cef2ec
JB
2977 if (ret || truncated) {
2978 u64 start, end;
2979
2980 if (truncated)
2981 start = ordered_extent->file_offset + logical_len;
2982 else
2983 start = ordered_extent->file_offset;
2984 end = ordered_extent->file_offset + ordered_extent->len - 1;
2985 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2986
2987 /* Drop the cache for the part of the extent we didn't write. */
2988 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2989
0bec9ef5
JB
2990 /*
2991 * If the ordered extent had an IOERR or something else went
2992 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2993 * back to the allocator. We only free the extent in the
2994 * truncated case if we didn't write out the extent at all.
0bec9ef5 2995 */
77cef2ec
JB
2996 if ((ret || !logical_len) &&
2997 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2998 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2999 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 3000 ordered_extent->disk_len, 1);
0bec9ef5
JB
3001 }
3002
3003
5fd02043 3004 /*
8bad3c02
LB
3005 * This needs to be done to make sure anybody waiting knows we are done
3006 * updating everything for this ordered extent.
5fd02043
JB
3007 */
3008 btrfs_remove_ordered_extent(inode, ordered_extent);
3009
38c227d8 3010 /* for snapshot-aware defrag */
6f519564
LB
3011 if (new) {
3012 if (ret) {
3013 free_sa_defrag_extent(new);
3014 atomic_dec(&root->fs_info->defrag_running);
3015 } else {
3016 relink_file_extents(new);
3017 }
3018 }
38c227d8 3019
e6dcd2dc
CM
3020 /* once for us */
3021 btrfs_put_ordered_extent(ordered_extent);
3022 /* once for the tree */
3023 btrfs_put_ordered_extent(ordered_extent);
3024
5fd02043
JB
3025 return ret;
3026}
3027
3028static void finish_ordered_fn(struct btrfs_work *work)
3029{
3030 struct btrfs_ordered_extent *ordered_extent;
3031 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3032 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3033}
3034
b2950863 3035static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3036 struct extent_state *state, int uptodate)
3037{
5fd02043
JB
3038 struct inode *inode = page->mapping->host;
3039 struct btrfs_root *root = BTRFS_I(inode)->root;
3040 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3041 struct btrfs_workqueue *wq;
3042 btrfs_work_func_t func;
5fd02043 3043
1abe9b8a 3044 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3045
8b62b72b 3046 ClearPagePrivate2(page);
5fd02043
JB
3047 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3048 end - start + 1, uptodate))
3049 return 0;
3050
9e0af237
LB
3051 if (btrfs_is_free_space_inode(inode)) {
3052 wq = root->fs_info->endio_freespace_worker;
3053 func = btrfs_freespace_write_helper;
3054 } else {
3055 wq = root->fs_info->endio_write_workers;
3056 func = btrfs_endio_write_helper;
3057 }
5fd02043 3058
9e0af237
LB
3059 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3060 NULL);
3061 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
3062
3063 return 0;
211f90e6
CM
3064}
3065
dc380aea
MX
3066static int __readpage_endio_check(struct inode *inode,
3067 struct btrfs_io_bio *io_bio,
3068 int icsum, struct page *page,
3069 int pgoff, u64 start, size_t len)
3070{
3071 char *kaddr;
3072 u32 csum_expected;
3073 u32 csum = ~(u32)0;
dc380aea
MX
3074
3075 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3076
3077 kaddr = kmap_atomic(page);
3078 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3079 btrfs_csum_final(csum, (char *)&csum);
3080 if (csum != csum_expected)
3081 goto zeroit;
3082
3083 kunmap_atomic(kaddr);
3084 return 0;
3085zeroit:
94647322
DS
3086 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3087 "csum failed ino %llu off %llu csum %u expected csum %u",
dc380aea
MX
3088 btrfs_ino(inode), start, csum, csum_expected);
3089 memset(kaddr + pgoff, 1, len);
3090 flush_dcache_page(page);
3091 kunmap_atomic(kaddr);
3092 if (csum_expected == 0)
3093 return 0;
3094 return -EIO;
3095}
3096
d352ac68
CM
3097/*
3098 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3099 * if there's a match, we allow the bio to finish. If not, the code in
3100 * extent_io.c will try to find good copies for us.
d352ac68 3101 */
facc8a22
MX
3102static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3103 u64 phy_offset, struct page *page,
3104 u64 start, u64 end, int mirror)
07157aac 3105{
4eee4fa4 3106 size_t offset = start - page_offset(page);
07157aac 3107 struct inode *inode = page->mapping->host;
d1310b2e 3108 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3109 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3110
d20f7043
CM
3111 if (PageChecked(page)) {
3112 ClearPageChecked(page);
dc380aea 3113 return 0;
d20f7043 3114 }
6cbff00f
CH
3115
3116 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3117 return 0;
17d217fe
YZ
3118
3119 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3120 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3121 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3122 return 0;
17d217fe 3123 }
d20f7043 3124
facc8a22 3125 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3126 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3127 start, (size_t)(end - start + 1));
07157aac 3128}
b888db2b 3129
24bbcf04
YZ
3130void btrfs_add_delayed_iput(struct inode *inode)
3131{
3132 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
8089fe62 3133 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3134
3135 if (atomic_add_unless(&inode->i_count, -1, 1))
3136 return;
3137
24bbcf04 3138 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3139 if (binode->delayed_iput_count == 0) {
3140 ASSERT(list_empty(&binode->delayed_iput));
3141 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3142 } else {
3143 binode->delayed_iput_count++;
3144 }
24bbcf04
YZ
3145 spin_unlock(&fs_info->delayed_iput_lock);
3146}
3147
3148void btrfs_run_delayed_iputs(struct btrfs_root *root)
3149{
24bbcf04 3150 struct btrfs_fs_info *fs_info = root->fs_info;
24bbcf04 3151
24bbcf04 3152 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3153 while (!list_empty(&fs_info->delayed_iputs)) {
3154 struct btrfs_inode *inode;
3155
3156 inode = list_first_entry(&fs_info->delayed_iputs,
3157 struct btrfs_inode, delayed_iput);
3158 if (inode->delayed_iput_count) {
3159 inode->delayed_iput_count--;
3160 list_move_tail(&inode->delayed_iput,
3161 &fs_info->delayed_iputs);
3162 } else {
3163 list_del_init(&inode->delayed_iput);
3164 }
3165 spin_unlock(&fs_info->delayed_iput_lock);
3166 iput(&inode->vfs_inode);
3167 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3168 }
8089fe62 3169 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3170}
3171
d68fc57b 3172/*
42b2aa86 3173 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3174 * files in the subvolume, it removes orphan item and frees block_rsv
3175 * structure.
3176 */
3177void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3178 struct btrfs_root *root)
3179{
90290e19 3180 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3181 int ret;
3182
8a35d95f 3183 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3184 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3185 return;
3186
90290e19 3187 spin_lock(&root->orphan_lock);
8a35d95f 3188 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3189 spin_unlock(&root->orphan_lock);
3190 return;
3191 }
3192
3193 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3194 spin_unlock(&root->orphan_lock);
3195 return;
3196 }
3197
3198 block_rsv = root->orphan_block_rsv;
3199 root->orphan_block_rsv = NULL;
3200 spin_unlock(&root->orphan_lock);
3201
27cdeb70 3202 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3203 btrfs_root_refs(&root->root_item) > 0) {
3204 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3205 root->root_key.objectid);
4ef31a45
JB
3206 if (ret)
3207 btrfs_abort_transaction(trans, root, ret);
3208 else
27cdeb70
MX
3209 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3210 &root->state);
d68fc57b
YZ
3211 }
3212
90290e19
JB
3213 if (block_rsv) {
3214 WARN_ON(block_rsv->size > 0);
3215 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3216 }
3217}
3218
7b128766
JB
3219/*
3220 * This creates an orphan entry for the given inode in case something goes
3221 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3222 *
3223 * NOTE: caller of this function should reserve 5 units of metadata for
3224 * this function.
7b128766
JB
3225 */
3226int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3227{
3228 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3229 struct btrfs_block_rsv *block_rsv = NULL;
3230 int reserve = 0;
3231 int insert = 0;
3232 int ret;
7b128766 3233
d68fc57b 3234 if (!root->orphan_block_rsv) {
66d8f3dd 3235 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3236 if (!block_rsv)
3237 return -ENOMEM;
d68fc57b 3238 }
7b128766 3239
d68fc57b
YZ
3240 spin_lock(&root->orphan_lock);
3241 if (!root->orphan_block_rsv) {
3242 root->orphan_block_rsv = block_rsv;
3243 } else if (block_rsv) {
3244 btrfs_free_block_rsv(root, block_rsv);
3245 block_rsv = NULL;
7b128766 3246 }
7b128766 3247
8a35d95f
JB
3248 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3249 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3250#if 0
3251 /*
3252 * For proper ENOSPC handling, we should do orphan
3253 * cleanup when mounting. But this introduces backward
3254 * compatibility issue.
3255 */
3256 if (!xchg(&root->orphan_item_inserted, 1))
3257 insert = 2;
3258 else
3259 insert = 1;
3260#endif
3261 insert = 1;
321f0e70 3262 atomic_inc(&root->orphan_inodes);
7b128766
JB
3263 }
3264
72ac3c0d
JB
3265 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3266 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3267 reserve = 1;
d68fc57b 3268 spin_unlock(&root->orphan_lock);
7b128766 3269
d68fc57b
YZ
3270 /* grab metadata reservation from transaction handle */
3271 if (reserve) {
3272 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3273 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3274 }
7b128766 3275
d68fc57b
YZ
3276 /* insert an orphan item to track this unlinked/truncated file */
3277 if (insert >= 1) {
33345d01 3278 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3279 if (ret) {
703c88e0 3280 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3281 if (reserve) {
3282 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3283 &BTRFS_I(inode)->runtime_flags);
3284 btrfs_orphan_release_metadata(inode);
3285 }
3286 if (ret != -EEXIST) {
e8e7cff6
JB
3287 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3288 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3289 btrfs_abort_transaction(trans, root, ret);
3290 return ret;
3291 }
79787eaa
JM
3292 }
3293 ret = 0;
d68fc57b
YZ
3294 }
3295
3296 /* insert an orphan item to track subvolume contains orphan files */
3297 if (insert >= 2) {
3298 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3299 root->root_key.objectid);
79787eaa
JM
3300 if (ret && ret != -EEXIST) {
3301 btrfs_abort_transaction(trans, root, ret);
3302 return ret;
3303 }
d68fc57b
YZ
3304 }
3305 return 0;
7b128766
JB
3306}
3307
3308/*
3309 * We have done the truncate/delete so we can go ahead and remove the orphan
3310 * item for this particular inode.
3311 */
48a3b636
ES
3312static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3313 struct inode *inode)
7b128766
JB
3314{
3315 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3316 int delete_item = 0;
3317 int release_rsv = 0;
7b128766
JB
3318 int ret = 0;
3319
d68fc57b 3320 spin_lock(&root->orphan_lock);
8a35d95f
JB
3321 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3322 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3323 delete_item = 1;
7b128766 3324
72ac3c0d
JB
3325 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3326 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3327 release_rsv = 1;
d68fc57b 3328 spin_unlock(&root->orphan_lock);
7b128766 3329
703c88e0 3330 if (delete_item) {
8a35d95f 3331 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3332 if (trans)
3333 ret = btrfs_del_orphan_item(trans, root,
3334 btrfs_ino(inode));
8a35d95f 3335 }
7b128766 3336
703c88e0
FDBM
3337 if (release_rsv)
3338 btrfs_orphan_release_metadata(inode);
3339
4ef31a45 3340 return ret;
7b128766
JB
3341}
3342
3343/*
3344 * this cleans up any orphans that may be left on the list from the last use
3345 * of this root.
3346 */
66b4ffd1 3347int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3348{
3349 struct btrfs_path *path;
3350 struct extent_buffer *leaf;
7b128766
JB
3351 struct btrfs_key key, found_key;
3352 struct btrfs_trans_handle *trans;
3353 struct inode *inode;
8f6d7f4f 3354 u64 last_objectid = 0;
7b128766
JB
3355 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3356
d68fc57b 3357 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3358 return 0;
c71bf099
YZ
3359
3360 path = btrfs_alloc_path();
66b4ffd1
JB
3361 if (!path) {
3362 ret = -ENOMEM;
3363 goto out;
3364 }
e4058b54 3365 path->reada = READA_BACK;
7b128766
JB
3366
3367 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3368 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3369 key.offset = (u64)-1;
3370
7b128766
JB
3371 while (1) {
3372 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3373 if (ret < 0)
3374 goto out;
7b128766
JB
3375
3376 /*
3377 * if ret == 0 means we found what we were searching for, which
25985edc 3378 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3379 * find the key and see if we have stuff that matches
3380 */
3381 if (ret > 0) {
66b4ffd1 3382 ret = 0;
7b128766
JB
3383 if (path->slots[0] == 0)
3384 break;
3385 path->slots[0]--;
3386 }
3387
3388 /* pull out the item */
3389 leaf = path->nodes[0];
7b128766
JB
3390 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3391
3392 /* make sure the item matches what we want */
3393 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3394 break;
962a298f 3395 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3396 break;
3397
3398 /* release the path since we're done with it */
b3b4aa74 3399 btrfs_release_path(path);
7b128766
JB
3400
3401 /*
3402 * this is where we are basically btrfs_lookup, without the
3403 * crossing root thing. we store the inode number in the
3404 * offset of the orphan item.
3405 */
8f6d7f4f
JB
3406
3407 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3408 btrfs_err(root->fs_info,
3409 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3410 ret = -EINVAL;
3411 goto out;
3412 }
3413
3414 last_objectid = found_key.offset;
3415
5d4f98a2
YZ
3416 found_key.objectid = found_key.offset;
3417 found_key.type = BTRFS_INODE_ITEM_KEY;
3418 found_key.offset = 0;
73f73415 3419 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3420 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3421 if (ret && ret != -ESTALE)
66b4ffd1 3422 goto out;
7b128766 3423
f8e9e0b0
AJ
3424 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3425 struct btrfs_root *dead_root;
3426 struct btrfs_fs_info *fs_info = root->fs_info;
3427 int is_dead_root = 0;
3428
3429 /*
3430 * this is an orphan in the tree root. Currently these
3431 * could come from 2 sources:
3432 * a) a snapshot deletion in progress
3433 * b) a free space cache inode
3434 * We need to distinguish those two, as the snapshot
3435 * orphan must not get deleted.
3436 * find_dead_roots already ran before us, so if this
3437 * is a snapshot deletion, we should find the root
3438 * in the dead_roots list
3439 */
3440 spin_lock(&fs_info->trans_lock);
3441 list_for_each_entry(dead_root, &fs_info->dead_roots,
3442 root_list) {
3443 if (dead_root->root_key.objectid ==
3444 found_key.objectid) {
3445 is_dead_root = 1;
3446 break;
3447 }
3448 }
3449 spin_unlock(&fs_info->trans_lock);
3450 if (is_dead_root) {
3451 /* prevent this orphan from being found again */
3452 key.offset = found_key.objectid - 1;
3453 continue;
3454 }
3455 }
7b128766 3456 /*
a8c9e576
JB
3457 * Inode is already gone but the orphan item is still there,
3458 * kill the orphan item.
7b128766 3459 */
a8c9e576
JB
3460 if (ret == -ESTALE) {
3461 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3462 if (IS_ERR(trans)) {
3463 ret = PTR_ERR(trans);
3464 goto out;
3465 }
c2cf52eb
SK
3466 btrfs_debug(root->fs_info, "auto deleting %Lu",
3467 found_key.objectid);
a8c9e576
JB
3468 ret = btrfs_del_orphan_item(trans, root,
3469 found_key.objectid);
5b21f2ed 3470 btrfs_end_transaction(trans, root);
4ef31a45
JB
3471 if (ret)
3472 goto out;
7b128766
JB
3473 continue;
3474 }
3475
a8c9e576
JB
3476 /*
3477 * add this inode to the orphan list so btrfs_orphan_del does
3478 * the proper thing when we hit it
3479 */
8a35d95f
JB
3480 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3481 &BTRFS_I(inode)->runtime_flags);
925396ec 3482 atomic_inc(&root->orphan_inodes);
a8c9e576 3483
7b128766
JB
3484 /* if we have links, this was a truncate, lets do that */
3485 if (inode->i_nlink) {
fae7f21c 3486 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3487 iput(inode);
3488 continue;
3489 }
7b128766 3490 nr_truncate++;
f3fe820c
JB
3491
3492 /* 1 for the orphan item deletion. */
3493 trans = btrfs_start_transaction(root, 1);
3494 if (IS_ERR(trans)) {
c69b26b0 3495 iput(inode);
f3fe820c
JB
3496 ret = PTR_ERR(trans);
3497 goto out;
3498 }
3499 ret = btrfs_orphan_add(trans, inode);
3500 btrfs_end_transaction(trans, root);
c69b26b0
JB
3501 if (ret) {
3502 iput(inode);
f3fe820c 3503 goto out;
c69b26b0 3504 }
f3fe820c 3505
66b4ffd1 3506 ret = btrfs_truncate(inode);
4a7d0f68
JB
3507 if (ret)
3508 btrfs_orphan_del(NULL, inode);
7b128766
JB
3509 } else {
3510 nr_unlink++;
3511 }
3512
3513 /* this will do delete_inode and everything for us */
3514 iput(inode);
66b4ffd1
JB
3515 if (ret)
3516 goto out;
7b128766 3517 }
3254c876
MX
3518 /* release the path since we're done with it */
3519 btrfs_release_path(path);
3520
d68fc57b
YZ
3521 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3522
3523 if (root->orphan_block_rsv)
3524 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3525 (u64)-1);
3526
27cdeb70
MX
3527 if (root->orphan_block_rsv ||
3528 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3529 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3530 if (!IS_ERR(trans))
3531 btrfs_end_transaction(trans, root);
d68fc57b 3532 }
7b128766
JB
3533
3534 if (nr_unlink)
4884b476 3535 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3536 if (nr_truncate)
4884b476 3537 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3538
3539out:
3540 if (ret)
68b663d1 3541 btrfs_err(root->fs_info,
c2cf52eb 3542 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3543 btrfs_free_path(path);
3544 return ret;
7b128766
JB
3545}
3546
46a53cca
CM
3547/*
3548 * very simple check to peek ahead in the leaf looking for xattrs. If we
3549 * don't find any xattrs, we know there can't be any acls.
3550 *
3551 * slot is the slot the inode is in, objectid is the objectid of the inode
3552 */
3553static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3554 int slot, u64 objectid,
3555 int *first_xattr_slot)
46a53cca
CM
3556{
3557 u32 nritems = btrfs_header_nritems(leaf);
3558 struct btrfs_key found_key;
f23b5a59
JB
3559 static u64 xattr_access = 0;
3560 static u64 xattr_default = 0;
46a53cca
CM
3561 int scanned = 0;
3562
f23b5a59 3563 if (!xattr_access) {
97d79299
AG
3564 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3565 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3566 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3567 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3568 }
3569
46a53cca 3570 slot++;
63541927 3571 *first_xattr_slot = -1;
46a53cca
CM
3572 while (slot < nritems) {
3573 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3574
3575 /* we found a different objectid, there must not be acls */
3576 if (found_key.objectid != objectid)
3577 return 0;
3578
3579 /* we found an xattr, assume we've got an acl */
f23b5a59 3580 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3581 if (*first_xattr_slot == -1)
3582 *first_xattr_slot = slot;
f23b5a59
JB
3583 if (found_key.offset == xattr_access ||
3584 found_key.offset == xattr_default)
3585 return 1;
3586 }
46a53cca
CM
3587
3588 /*
3589 * we found a key greater than an xattr key, there can't
3590 * be any acls later on
3591 */
3592 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3593 return 0;
3594
3595 slot++;
3596 scanned++;
3597
3598 /*
3599 * it goes inode, inode backrefs, xattrs, extents,
3600 * so if there are a ton of hard links to an inode there can
3601 * be a lot of backrefs. Don't waste time searching too hard,
3602 * this is just an optimization
3603 */
3604 if (scanned >= 8)
3605 break;
3606 }
3607 /* we hit the end of the leaf before we found an xattr or
3608 * something larger than an xattr. We have to assume the inode
3609 * has acls
3610 */
63541927
FDBM
3611 if (*first_xattr_slot == -1)
3612 *first_xattr_slot = slot;
46a53cca
CM
3613 return 1;
3614}
3615
d352ac68
CM
3616/*
3617 * read an inode from the btree into the in-memory inode
3618 */
5d4f98a2 3619static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3620{
3621 struct btrfs_path *path;
5f39d397 3622 struct extent_buffer *leaf;
39279cc3
CM
3623 struct btrfs_inode_item *inode_item;
3624 struct btrfs_root *root = BTRFS_I(inode)->root;
3625 struct btrfs_key location;
67de1176 3626 unsigned long ptr;
46a53cca 3627 int maybe_acls;
618e21d5 3628 u32 rdev;
39279cc3 3629 int ret;
2f7e33d4 3630 bool filled = false;
63541927 3631 int first_xattr_slot;
2f7e33d4
MX
3632
3633 ret = btrfs_fill_inode(inode, &rdev);
3634 if (!ret)
3635 filled = true;
39279cc3
CM
3636
3637 path = btrfs_alloc_path();
1748f843
MF
3638 if (!path)
3639 goto make_bad;
3640
39279cc3 3641 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3642
39279cc3 3643 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3644 if (ret)
39279cc3 3645 goto make_bad;
39279cc3 3646
5f39d397 3647 leaf = path->nodes[0];
2f7e33d4
MX
3648
3649 if (filled)
67de1176 3650 goto cache_index;
2f7e33d4 3651
5f39d397
CM
3652 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3653 struct btrfs_inode_item);
5f39d397 3654 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3655 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3656 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3657 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3658 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397 3659
a937b979
DS
3660 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3661 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3662
a937b979
DS
3663 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3664 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3665
a937b979
DS
3666 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3667 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3668
9cc97d64 3669 BTRFS_I(inode)->i_otime.tv_sec =
3670 btrfs_timespec_sec(leaf, &inode_item->otime);
3671 BTRFS_I(inode)->i_otime.tv_nsec =
3672 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3673
a76a3cd4 3674 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3675 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3676 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3677
6e17d30b
YD
3678 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3679 inode->i_generation = BTRFS_I(inode)->generation;
3680 inode->i_rdev = 0;
3681 rdev = btrfs_inode_rdev(leaf, inode_item);
3682
3683 BTRFS_I(inode)->index_cnt = (u64)-1;
3684 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3685
3686cache_index:
5dc562c5
JB
3687 /*
3688 * If we were modified in the current generation and evicted from memory
3689 * and then re-read we need to do a full sync since we don't have any
3690 * idea about which extents were modified before we were evicted from
3691 * cache.
6e17d30b
YD
3692 *
3693 * This is required for both inode re-read from disk and delayed inode
3694 * in delayed_nodes_tree.
5dc562c5
JB
3695 */
3696 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3697 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3698 &BTRFS_I(inode)->runtime_flags);
3699
bde6c242
FM
3700 /*
3701 * We don't persist the id of the transaction where an unlink operation
3702 * against the inode was last made. So here we assume the inode might
3703 * have been evicted, and therefore the exact value of last_unlink_trans
3704 * lost, and set it to last_trans to avoid metadata inconsistencies
3705 * between the inode and its parent if the inode is fsync'ed and the log
3706 * replayed. For example, in the scenario:
3707 *
3708 * touch mydir/foo
3709 * ln mydir/foo mydir/bar
3710 * sync
3711 * unlink mydir/bar
3712 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3713 * xfs_io -c fsync mydir/foo
3714 * <power failure>
3715 * mount fs, triggers fsync log replay
3716 *
3717 * We must make sure that when we fsync our inode foo we also log its
3718 * parent inode, otherwise after log replay the parent still has the
3719 * dentry with the "bar" name but our inode foo has a link count of 1
3720 * and doesn't have an inode ref with the name "bar" anymore.
3721 *
3722 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3723 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3724 * transaction commits on fsync if our inode is a directory, or if our
3725 * inode is not a directory, logging its parent unnecessarily.
3726 */
3727 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3728
67de1176
MX
3729 path->slots[0]++;
3730 if (inode->i_nlink != 1 ||
3731 path->slots[0] >= btrfs_header_nritems(leaf))
3732 goto cache_acl;
3733
3734 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3735 if (location.objectid != btrfs_ino(inode))
3736 goto cache_acl;
3737
3738 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3739 if (location.type == BTRFS_INODE_REF_KEY) {
3740 struct btrfs_inode_ref *ref;
3741
3742 ref = (struct btrfs_inode_ref *)ptr;
3743 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3744 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3745 struct btrfs_inode_extref *extref;
3746
3747 extref = (struct btrfs_inode_extref *)ptr;
3748 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3749 extref);
3750 }
2f7e33d4 3751cache_acl:
46a53cca
CM
3752 /*
3753 * try to precache a NULL acl entry for files that don't have
3754 * any xattrs or acls
3755 */
33345d01 3756 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3757 btrfs_ino(inode), &first_xattr_slot);
3758 if (first_xattr_slot != -1) {
3759 path->slots[0] = first_xattr_slot;
3760 ret = btrfs_load_inode_props(inode, path);
3761 if (ret)
3762 btrfs_err(root->fs_info,
351fd353 3763 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3764 btrfs_ino(inode),
3765 root->root_key.objectid, ret);
3766 }
3767 btrfs_free_path(path);
3768
72c04902
AV
3769 if (!maybe_acls)
3770 cache_no_acl(inode);
46a53cca 3771
39279cc3 3772 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3773 case S_IFREG:
3774 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3775 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3776 inode->i_fop = &btrfs_file_operations;
3777 inode->i_op = &btrfs_file_inode_operations;
3778 break;
3779 case S_IFDIR:
3780 inode->i_fop = &btrfs_dir_file_operations;
3781 if (root == root->fs_info->tree_root)
3782 inode->i_op = &btrfs_dir_ro_inode_operations;
3783 else
3784 inode->i_op = &btrfs_dir_inode_operations;
3785 break;
3786 case S_IFLNK:
3787 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3788 inode_nohighmem(inode);
39279cc3
CM
3789 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3790 break;
618e21d5 3791 default:
0279b4cd 3792 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3793 init_special_inode(inode, inode->i_mode, rdev);
3794 break;
39279cc3 3795 }
6cbff00f
CH
3796
3797 btrfs_update_iflags(inode);
39279cc3
CM
3798 return;
3799
3800make_bad:
39279cc3 3801 btrfs_free_path(path);
39279cc3
CM
3802 make_bad_inode(inode);
3803}
3804
d352ac68
CM
3805/*
3806 * given a leaf and an inode, copy the inode fields into the leaf
3807 */
e02119d5
CM
3808static void fill_inode_item(struct btrfs_trans_handle *trans,
3809 struct extent_buffer *leaf,
5f39d397 3810 struct btrfs_inode_item *item,
39279cc3
CM
3811 struct inode *inode)
3812{
51fab693
LB
3813 struct btrfs_map_token token;
3814
3815 btrfs_init_map_token(&token);
5f39d397 3816
51fab693
LB
3817 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3818 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3819 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3820 &token);
3821 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3822 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3823
a937b979 3824 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3825 inode->i_atime.tv_sec, &token);
a937b979 3826 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3827 inode->i_atime.tv_nsec, &token);
5f39d397 3828
a937b979 3829 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3830 inode->i_mtime.tv_sec, &token);
a937b979 3831 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3832 inode->i_mtime.tv_nsec, &token);
5f39d397 3833
a937b979 3834 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3835 inode->i_ctime.tv_sec, &token);
a937b979 3836 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3837 inode->i_ctime.tv_nsec, &token);
5f39d397 3838
9cc97d64 3839 btrfs_set_token_timespec_sec(leaf, &item->otime,
3840 BTRFS_I(inode)->i_otime.tv_sec, &token);
3841 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3842 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3843
51fab693
LB
3844 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3845 &token);
3846 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3847 &token);
3848 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3849 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3850 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3851 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3852 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3853}
3854
d352ac68
CM
3855/*
3856 * copy everything in the in-memory inode into the btree.
3857 */
2115133f 3858static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3859 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3860{
3861 struct btrfs_inode_item *inode_item;
3862 struct btrfs_path *path;
5f39d397 3863 struct extent_buffer *leaf;
39279cc3
CM
3864 int ret;
3865
3866 path = btrfs_alloc_path();
16cdcec7
MX
3867 if (!path)
3868 return -ENOMEM;
3869
b9473439 3870 path->leave_spinning = 1;
16cdcec7
MX
3871 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3872 1);
39279cc3
CM
3873 if (ret) {
3874 if (ret > 0)
3875 ret = -ENOENT;
3876 goto failed;
3877 }
3878
5f39d397
CM
3879 leaf = path->nodes[0];
3880 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3881 struct btrfs_inode_item);
39279cc3 3882
e02119d5 3883 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3884 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3885 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3886 ret = 0;
3887failed:
39279cc3
CM
3888 btrfs_free_path(path);
3889 return ret;
3890}
3891
2115133f
CM
3892/*
3893 * copy everything in the in-memory inode into the btree.
3894 */
3895noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3896 struct btrfs_root *root, struct inode *inode)
3897{
3898 int ret;
3899
3900 /*
3901 * If the inode is a free space inode, we can deadlock during commit
3902 * if we put it into the delayed code.
3903 *
3904 * The data relocation inode should also be directly updated
3905 * without delay
3906 */
83eea1f1 3907 if (!btrfs_is_free_space_inode(inode)
1d52c78a
JB
3908 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3909 && !root->fs_info->log_root_recovering) {
8ea05e3a
AB
3910 btrfs_update_root_times(trans, root);
3911
2115133f
CM
3912 ret = btrfs_delayed_update_inode(trans, root, inode);
3913 if (!ret)
3914 btrfs_set_inode_last_trans(trans, inode);
3915 return ret;
3916 }
3917
3918 return btrfs_update_inode_item(trans, root, inode);
3919}
3920
be6aef60
JB
3921noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3922 struct btrfs_root *root,
3923 struct inode *inode)
2115133f
CM
3924{
3925 int ret;
3926
3927 ret = btrfs_update_inode(trans, root, inode);
3928 if (ret == -ENOSPC)
3929 return btrfs_update_inode_item(trans, root, inode);
3930 return ret;
3931}
3932
d352ac68
CM
3933/*
3934 * unlink helper that gets used here in inode.c and in the tree logging
3935 * recovery code. It remove a link in a directory with a given name, and
3936 * also drops the back refs in the inode to the directory
3937 */
92986796
AV
3938static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3939 struct btrfs_root *root,
3940 struct inode *dir, struct inode *inode,
3941 const char *name, int name_len)
39279cc3
CM
3942{
3943 struct btrfs_path *path;
39279cc3 3944 int ret = 0;
5f39d397 3945 struct extent_buffer *leaf;
39279cc3 3946 struct btrfs_dir_item *di;
5f39d397 3947 struct btrfs_key key;
aec7477b 3948 u64 index;
33345d01
LZ
3949 u64 ino = btrfs_ino(inode);
3950 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3951
3952 path = btrfs_alloc_path();
54aa1f4d
CM
3953 if (!path) {
3954 ret = -ENOMEM;
554233a6 3955 goto out;
54aa1f4d
CM
3956 }
3957
b9473439 3958 path->leave_spinning = 1;
33345d01 3959 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3960 name, name_len, -1);
3961 if (IS_ERR(di)) {
3962 ret = PTR_ERR(di);
3963 goto err;
3964 }
3965 if (!di) {
3966 ret = -ENOENT;
3967 goto err;
3968 }
5f39d397
CM
3969 leaf = path->nodes[0];
3970 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3971 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3972 if (ret)
3973 goto err;
b3b4aa74 3974 btrfs_release_path(path);
39279cc3 3975
67de1176
MX
3976 /*
3977 * If we don't have dir index, we have to get it by looking up
3978 * the inode ref, since we get the inode ref, remove it directly,
3979 * it is unnecessary to do delayed deletion.
3980 *
3981 * But if we have dir index, needn't search inode ref to get it.
3982 * Since the inode ref is close to the inode item, it is better
3983 * that we delay to delete it, and just do this deletion when
3984 * we update the inode item.
3985 */
3986 if (BTRFS_I(inode)->dir_index) {
3987 ret = btrfs_delayed_delete_inode_ref(inode);
3988 if (!ret) {
3989 index = BTRFS_I(inode)->dir_index;
3990 goto skip_backref;
3991 }
3992 }
3993
33345d01
LZ
3994 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3995 dir_ino, &index);
aec7477b 3996 if (ret) {
c2cf52eb
SK
3997 btrfs_info(root->fs_info,
3998 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3999 name_len, name, ino, dir_ino);
79787eaa 4000 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
4001 goto err;
4002 }
67de1176 4003skip_backref:
16cdcec7 4004 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4005 if (ret) {
4006 btrfs_abort_transaction(trans, root, ret);
39279cc3 4007 goto err;
79787eaa 4008 }
39279cc3 4009
e02119d5 4010 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 4011 inode, dir_ino);
79787eaa
JM
4012 if (ret != 0 && ret != -ENOENT) {
4013 btrfs_abort_transaction(trans, root, ret);
4014 goto err;
4015 }
e02119d5
CM
4016
4017 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4018 dir, index);
6418c961
CM
4019 if (ret == -ENOENT)
4020 ret = 0;
d4e3991b
ZB
4021 else if (ret)
4022 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
4023err:
4024 btrfs_free_path(path);
e02119d5
CM
4025 if (ret)
4026 goto out;
4027
4028 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
4029 inode_inc_iversion(inode);
4030 inode_inc_iversion(dir);
04b285f3
DD
4031 inode->i_ctime = dir->i_mtime =
4032 dir->i_ctime = current_fs_time(inode->i_sb);
b9959295 4033 ret = btrfs_update_inode(trans, root, dir);
e02119d5 4034out:
39279cc3
CM
4035 return ret;
4036}
4037
92986796
AV
4038int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4039 struct btrfs_root *root,
4040 struct inode *dir, struct inode *inode,
4041 const char *name, int name_len)
4042{
4043 int ret;
4044 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4045 if (!ret) {
8b558c5f 4046 drop_nlink(inode);
92986796
AV
4047 ret = btrfs_update_inode(trans, root, inode);
4048 }
4049 return ret;
4050}
39279cc3 4051
a22285a6
YZ
4052/*
4053 * helper to start transaction for unlink and rmdir.
4054 *
d52be818
JB
4055 * unlink and rmdir are special in btrfs, they do not always free space, so
4056 * if we cannot make our reservations the normal way try and see if there is
4057 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4058 * allow the unlink to occur.
a22285a6 4059 */
d52be818 4060static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4061{
a22285a6 4062 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4063
e70bea5f
JB
4064 /*
4065 * 1 for the possible orphan item
4066 * 1 for the dir item
4067 * 1 for the dir index
4068 * 1 for the inode ref
e70bea5f
JB
4069 * 1 for the inode
4070 */
8eab77ff 4071 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4072}
4073
4074static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4075{
4076 struct btrfs_root *root = BTRFS_I(dir)->root;
4077 struct btrfs_trans_handle *trans;
2b0143b5 4078 struct inode *inode = d_inode(dentry);
a22285a6 4079 int ret;
a22285a6 4080
d52be818 4081 trans = __unlink_start_trans(dir);
a22285a6
YZ
4082 if (IS_ERR(trans))
4083 return PTR_ERR(trans);
5f39d397 4084
2b0143b5 4085 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
12fcfd22 4086
2b0143b5 4087 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4088 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
4089 if (ret)
4090 goto out;
7b128766 4091
a22285a6 4092 if (inode->i_nlink == 0) {
7b128766 4093 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
4094 if (ret)
4095 goto out;
a22285a6 4096 }
7b128766 4097
b532402e 4098out:
d52be818 4099 btrfs_end_transaction(trans, root);
b53d3f5d 4100 btrfs_btree_balance_dirty(root);
39279cc3
CM
4101 return ret;
4102}
4103
4df27c4d
YZ
4104int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4105 struct btrfs_root *root,
4106 struct inode *dir, u64 objectid,
4107 const char *name, int name_len)
4108{
4109 struct btrfs_path *path;
4110 struct extent_buffer *leaf;
4111 struct btrfs_dir_item *di;
4112 struct btrfs_key key;
4113 u64 index;
4114 int ret;
33345d01 4115 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
4116
4117 path = btrfs_alloc_path();
4118 if (!path)
4119 return -ENOMEM;
4120
33345d01 4121 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4122 name, name_len, -1);
79787eaa
JM
4123 if (IS_ERR_OR_NULL(di)) {
4124 if (!di)
4125 ret = -ENOENT;
4126 else
4127 ret = PTR_ERR(di);
4128 goto out;
4129 }
4df27c4d
YZ
4130
4131 leaf = path->nodes[0];
4132 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4133 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4134 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
4135 if (ret) {
4136 btrfs_abort_transaction(trans, root, ret);
4137 goto out;
4138 }
b3b4aa74 4139 btrfs_release_path(path);
4df27c4d
YZ
4140
4141 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4142 objectid, root->root_key.objectid,
33345d01 4143 dir_ino, &index, name, name_len);
4df27c4d 4144 if (ret < 0) {
79787eaa
JM
4145 if (ret != -ENOENT) {
4146 btrfs_abort_transaction(trans, root, ret);
4147 goto out;
4148 }
33345d01 4149 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4150 name, name_len);
79787eaa
JM
4151 if (IS_ERR_OR_NULL(di)) {
4152 if (!di)
4153 ret = -ENOENT;
4154 else
4155 ret = PTR_ERR(di);
4156 btrfs_abort_transaction(trans, root, ret);
4157 goto out;
4158 }
4df27c4d
YZ
4159
4160 leaf = path->nodes[0];
4161 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4162 btrfs_release_path(path);
4df27c4d
YZ
4163 index = key.offset;
4164 }
945d8962 4165 btrfs_release_path(path);
4df27c4d 4166
16cdcec7 4167 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4168 if (ret) {
4169 btrfs_abort_transaction(trans, root, ret);
4170 goto out;
4171 }
4df27c4d
YZ
4172
4173 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4174 inode_inc_iversion(dir);
04b285f3 4175 dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb);
5a24e84c 4176 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
4177 if (ret)
4178 btrfs_abort_transaction(trans, root, ret);
4179out:
71d7aed0 4180 btrfs_free_path(path);
79787eaa 4181 return ret;
4df27c4d
YZ
4182}
4183
39279cc3
CM
4184static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4185{
2b0143b5 4186 struct inode *inode = d_inode(dentry);
1832a6d5 4187 int err = 0;
39279cc3 4188 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4189 struct btrfs_trans_handle *trans;
39279cc3 4190
b3ae244e 4191 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4192 return -ENOTEMPTY;
b3ae244e
DS
4193 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4194 return -EPERM;
134d4512 4195
d52be818 4196 trans = __unlink_start_trans(dir);
a22285a6 4197 if (IS_ERR(trans))
5df6a9f6 4198 return PTR_ERR(trans);
5df6a9f6 4199
33345d01 4200 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4201 err = btrfs_unlink_subvol(trans, root, dir,
4202 BTRFS_I(inode)->location.objectid,
4203 dentry->d_name.name,
4204 dentry->d_name.len);
4205 goto out;
4206 }
4207
7b128766
JB
4208 err = btrfs_orphan_add(trans, inode);
4209 if (err)
4df27c4d 4210 goto out;
7b128766 4211
39279cc3 4212 /* now the directory is empty */
2b0143b5 4213 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4214 dentry->d_name.name, dentry->d_name.len);
d397712b 4215 if (!err)
dbe674a9 4216 btrfs_i_size_write(inode, 0);
4df27c4d 4217out:
d52be818 4218 btrfs_end_transaction(trans, root);
b53d3f5d 4219 btrfs_btree_balance_dirty(root);
3954401f 4220
39279cc3
CM
4221 return err;
4222}
4223
28f75a0e
CM
4224static int truncate_space_check(struct btrfs_trans_handle *trans,
4225 struct btrfs_root *root,
4226 u64 bytes_deleted)
4227{
4228 int ret;
4229
dc95f7bf
JB
4230 /*
4231 * This is only used to apply pressure to the enospc system, we don't
4232 * intend to use this reservation at all.
4233 */
28f75a0e 4234 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
dc95f7bf 4235 bytes_deleted *= root->nodesize;
28f75a0e
CM
4236 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4237 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf
JB
4238 if (!ret) {
4239 trace_btrfs_space_reservation(root->fs_info, "transaction",
4240 trans->transid,
4241 bytes_deleted, 1);
28f75a0e 4242 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4243 }
28f75a0e
CM
4244 return ret;
4245
4246}
4247
0305cd5f
FM
4248static int truncate_inline_extent(struct inode *inode,
4249 struct btrfs_path *path,
4250 struct btrfs_key *found_key,
4251 const u64 item_end,
4252 const u64 new_size)
4253{
4254 struct extent_buffer *leaf = path->nodes[0];
4255 int slot = path->slots[0];
4256 struct btrfs_file_extent_item *fi;
4257 u32 size = (u32)(new_size - found_key->offset);
4258 struct btrfs_root *root = BTRFS_I(inode)->root;
4259
4260 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4261
4262 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4263 loff_t offset = new_size;
09cbfeaf 4264 loff_t page_end = ALIGN(offset, PAGE_SIZE);
0305cd5f
FM
4265
4266 /*
4267 * Zero out the remaining of the last page of our inline extent,
4268 * instead of directly truncating our inline extent here - that
4269 * would be much more complex (decompressing all the data, then
4270 * compressing the truncated data, which might be bigger than
4271 * the size of the inline extent, resize the extent, etc).
4272 * We release the path because to get the page we might need to
4273 * read the extent item from disk (data not in the page cache).
4274 */
4275 btrfs_release_path(path);
9703fefe
CR
4276 return btrfs_truncate_block(inode, offset, page_end - offset,
4277 0);
0305cd5f
FM
4278 }
4279
4280 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4281 size = btrfs_file_extent_calc_inline_size(size);
4282 btrfs_truncate_item(root, path, size, 1);
4283
4284 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4285 inode_sub_bytes(inode, item_end + 1 - new_size);
4286
4287 return 0;
4288}
4289
39279cc3
CM
4290/*
4291 * this can truncate away extent items, csum items and directory items.
4292 * It starts at a high offset and removes keys until it can't find
d352ac68 4293 * any higher than new_size
39279cc3
CM
4294 *
4295 * csum items that cross the new i_size are truncated to the new size
4296 * as well.
7b128766
JB
4297 *
4298 * min_type is the minimum key type to truncate down to. If set to 0, this
4299 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4300 */
8082510e
YZ
4301int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4302 struct btrfs_root *root,
4303 struct inode *inode,
4304 u64 new_size, u32 min_type)
39279cc3 4305{
39279cc3 4306 struct btrfs_path *path;
5f39d397 4307 struct extent_buffer *leaf;
39279cc3 4308 struct btrfs_file_extent_item *fi;
8082510e
YZ
4309 struct btrfs_key key;
4310 struct btrfs_key found_key;
39279cc3 4311 u64 extent_start = 0;
db94535d 4312 u64 extent_num_bytes = 0;
5d4f98a2 4313 u64 extent_offset = 0;
39279cc3 4314 u64 item_end = 0;
c1aa4575 4315 u64 last_size = new_size;
8082510e 4316 u32 found_type = (u8)-1;
39279cc3
CM
4317 int found_extent;
4318 int del_item;
85e21bac
CM
4319 int pending_del_nr = 0;
4320 int pending_del_slot = 0;
179e29e4 4321 int extent_type = -1;
8082510e
YZ
4322 int ret;
4323 int err = 0;
33345d01 4324 u64 ino = btrfs_ino(inode);
28ed1345 4325 u64 bytes_deleted = 0;
1262133b
JB
4326 bool be_nice = 0;
4327 bool should_throttle = 0;
28f75a0e 4328 bool should_end = 0;
8082510e
YZ
4329
4330 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4331
28ed1345
CM
4332 /*
4333 * for non-free space inodes and ref cows, we want to back off from
4334 * time to time
4335 */
4336 if (!btrfs_is_free_space_inode(inode) &&
4337 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4338 be_nice = 1;
4339
0eb0e19c
MF
4340 path = btrfs_alloc_path();
4341 if (!path)
4342 return -ENOMEM;
e4058b54 4343 path->reada = READA_BACK;
0eb0e19c 4344
5dc562c5
JB
4345 /*
4346 * We want to drop from the next block forward in case this new size is
4347 * not block aligned since we will be keeping the last block of the
4348 * extent just the way it is.
4349 */
27cdeb70
MX
4350 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4351 root == root->fs_info->tree_root)
fda2832f
QW
4352 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4353 root->sectorsize), (u64)-1, 0);
8082510e 4354
16cdcec7
MX
4355 /*
4356 * This function is also used to drop the items in the log tree before
4357 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4358 * it is used to drop the loged items. So we shouldn't kill the delayed
4359 * items.
4360 */
4361 if (min_type == 0 && root == BTRFS_I(inode)->root)
4362 btrfs_kill_delayed_inode_items(inode);
4363
33345d01 4364 key.objectid = ino;
39279cc3 4365 key.offset = (u64)-1;
5f39d397
CM
4366 key.type = (u8)-1;
4367
85e21bac 4368search_again:
28ed1345
CM
4369 /*
4370 * with a 16K leaf size and 128MB extents, you can actually queue
4371 * up a huge file in a single leaf. Most of the time that
4372 * bytes_deleted is > 0, it will be huge by the time we get here
4373 */
ee22184b 4374 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4375 if (btrfs_should_end_transaction(trans, root)) {
4376 err = -EAGAIN;
4377 goto error;
4378 }
4379 }
4380
4381
b9473439 4382 path->leave_spinning = 1;
85e21bac 4383 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4384 if (ret < 0) {
4385 err = ret;
4386 goto out;
4387 }
d397712b 4388
85e21bac 4389 if (ret > 0) {
e02119d5
CM
4390 /* there are no items in the tree for us to truncate, we're
4391 * done
4392 */
8082510e
YZ
4393 if (path->slots[0] == 0)
4394 goto out;
85e21bac
CM
4395 path->slots[0]--;
4396 }
4397
d397712b 4398 while (1) {
39279cc3 4399 fi = NULL;
5f39d397
CM
4400 leaf = path->nodes[0];
4401 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4402 found_type = found_key.type;
39279cc3 4403
33345d01 4404 if (found_key.objectid != ino)
39279cc3 4405 break;
5f39d397 4406
85e21bac 4407 if (found_type < min_type)
39279cc3
CM
4408 break;
4409
5f39d397 4410 item_end = found_key.offset;
39279cc3 4411 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4412 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4413 struct btrfs_file_extent_item);
179e29e4
CM
4414 extent_type = btrfs_file_extent_type(leaf, fi);
4415 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4416 item_end +=
db94535d 4417 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4418 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4419 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4420 path->slots[0], fi);
39279cc3 4421 }
008630c1 4422 item_end--;
39279cc3 4423 }
8082510e
YZ
4424 if (found_type > min_type) {
4425 del_item = 1;
4426 } else {
4427 if (item_end < new_size)
b888db2b 4428 break;
8082510e
YZ
4429 if (found_key.offset >= new_size)
4430 del_item = 1;
4431 else
4432 del_item = 0;
39279cc3 4433 }
39279cc3 4434 found_extent = 0;
39279cc3 4435 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4436 if (found_type != BTRFS_EXTENT_DATA_KEY)
4437 goto delete;
4438
7f4f6e0a
JB
4439 if (del_item)
4440 last_size = found_key.offset;
4441 else
4442 last_size = new_size;
4443
179e29e4 4444 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4445 u64 num_dec;
db94535d 4446 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4447 if (!del_item) {
db94535d
CM
4448 u64 orig_num_bytes =
4449 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4450 extent_num_bytes = ALIGN(new_size -
4451 found_key.offset,
4452 root->sectorsize);
db94535d
CM
4453 btrfs_set_file_extent_num_bytes(leaf, fi,
4454 extent_num_bytes);
4455 num_dec = (orig_num_bytes -
9069218d 4456 extent_num_bytes);
27cdeb70
MX
4457 if (test_bit(BTRFS_ROOT_REF_COWS,
4458 &root->state) &&
4459 extent_start != 0)
a76a3cd4 4460 inode_sub_bytes(inode, num_dec);
5f39d397 4461 btrfs_mark_buffer_dirty(leaf);
39279cc3 4462 } else {
db94535d
CM
4463 extent_num_bytes =
4464 btrfs_file_extent_disk_num_bytes(leaf,
4465 fi);
5d4f98a2
YZ
4466 extent_offset = found_key.offset -
4467 btrfs_file_extent_offset(leaf, fi);
4468
39279cc3 4469 /* FIXME blocksize != 4096 */
9069218d 4470 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4471 if (extent_start != 0) {
4472 found_extent = 1;
27cdeb70
MX
4473 if (test_bit(BTRFS_ROOT_REF_COWS,
4474 &root->state))
a76a3cd4 4475 inode_sub_bytes(inode, num_dec);
e02119d5 4476 }
39279cc3 4477 }
9069218d 4478 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4479 /*
4480 * we can't truncate inline items that have had
4481 * special encodings
4482 */
4483 if (!del_item &&
c8b97818
CM
4484 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4485 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4486
4487 /*
0305cd5f
FM
4488 * Need to release path in order to truncate a
4489 * compressed extent. So delete any accumulated
4490 * extent items so far.
514ac8ad 4491 */
0305cd5f
FM
4492 if (btrfs_file_extent_compression(leaf, fi) !=
4493 BTRFS_COMPRESS_NONE && pending_del_nr) {
4494 err = btrfs_del_items(trans, root, path,
4495 pending_del_slot,
4496 pending_del_nr);
4497 if (err) {
4498 btrfs_abort_transaction(trans,
4499 root,
4500 err);
4501 goto error;
4502 }
4503 pending_del_nr = 0;
4504 }
4505
4506 err = truncate_inline_extent(inode, path,
4507 &found_key,
4508 item_end,
4509 new_size);
4510 if (err) {
4511 btrfs_abort_transaction(trans,
4512 root, err);
4513 goto error;
4514 }
27cdeb70
MX
4515 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4516 &root->state)) {
0305cd5f 4517 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4518 }
39279cc3 4519 }
179e29e4 4520delete:
39279cc3 4521 if (del_item) {
85e21bac
CM
4522 if (!pending_del_nr) {
4523 /* no pending yet, add ourselves */
4524 pending_del_slot = path->slots[0];
4525 pending_del_nr = 1;
4526 } else if (pending_del_nr &&
4527 path->slots[0] + 1 == pending_del_slot) {
4528 /* hop on the pending chunk */
4529 pending_del_nr++;
4530 pending_del_slot = path->slots[0];
4531 } else {
d397712b 4532 BUG();
85e21bac 4533 }
39279cc3
CM
4534 } else {
4535 break;
4536 }
28f75a0e
CM
4537 should_throttle = 0;
4538
27cdeb70
MX
4539 if (found_extent &&
4540 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4541 root == root->fs_info->tree_root)) {
b9473439 4542 btrfs_set_path_blocking(path);
28ed1345 4543 bytes_deleted += extent_num_bytes;
39279cc3 4544 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4545 extent_num_bytes, 0,
4546 btrfs_header_owner(leaf),
b06c4bf5 4547 ino, extent_offset);
39279cc3 4548 BUG_ON(ret);
1262133b 4549 if (btrfs_should_throttle_delayed_refs(trans, root))
28ed1345
CM
4550 btrfs_async_run_delayed_refs(root,
4551 trans->delayed_ref_updates * 2, 0);
28f75a0e
CM
4552 if (be_nice) {
4553 if (truncate_space_check(trans, root,
4554 extent_num_bytes)) {
4555 should_end = 1;
4556 }
4557 if (btrfs_should_throttle_delayed_refs(trans,
4558 root)) {
4559 should_throttle = 1;
4560 }
4561 }
39279cc3 4562 }
85e21bac 4563
8082510e
YZ
4564 if (found_type == BTRFS_INODE_ITEM_KEY)
4565 break;
4566
4567 if (path->slots[0] == 0 ||
1262133b 4568 path->slots[0] != pending_del_slot ||
28f75a0e 4569 should_throttle || should_end) {
8082510e
YZ
4570 if (pending_del_nr) {
4571 ret = btrfs_del_items(trans, root, path,
4572 pending_del_slot,
4573 pending_del_nr);
79787eaa
JM
4574 if (ret) {
4575 btrfs_abort_transaction(trans,
4576 root, ret);
4577 goto error;
4578 }
8082510e
YZ
4579 pending_del_nr = 0;
4580 }
b3b4aa74 4581 btrfs_release_path(path);
28f75a0e 4582 if (should_throttle) {
1262133b
JB
4583 unsigned long updates = trans->delayed_ref_updates;
4584 if (updates) {
4585 trans->delayed_ref_updates = 0;
4586 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4587 if (ret && !err)
4588 err = ret;
4589 }
4590 }
28f75a0e
CM
4591 /*
4592 * if we failed to refill our space rsv, bail out
4593 * and let the transaction restart
4594 */
4595 if (should_end) {
4596 err = -EAGAIN;
4597 goto error;
4598 }
85e21bac 4599 goto search_again;
8082510e
YZ
4600 } else {
4601 path->slots[0]--;
85e21bac 4602 }
39279cc3 4603 }
8082510e 4604out:
85e21bac
CM
4605 if (pending_del_nr) {
4606 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4607 pending_del_nr);
79787eaa
JM
4608 if (ret)
4609 btrfs_abort_transaction(trans, root, ret);
85e21bac 4610 }
79787eaa 4611error:
c1aa4575 4612 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4613 btrfs_ordered_update_i_size(inode, last_size, NULL);
28ed1345 4614
39279cc3 4615 btrfs_free_path(path);
28ed1345 4616
ee22184b 4617 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4618 unsigned long updates = trans->delayed_ref_updates;
4619 if (updates) {
4620 trans->delayed_ref_updates = 0;
4621 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4622 if (ret && !err)
4623 err = ret;
4624 }
4625 }
8082510e 4626 return err;
39279cc3
CM
4627}
4628
4629/*
9703fefe 4630 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4631 * @inode - inode that we're zeroing
4632 * @from - the offset to start zeroing
4633 * @len - the length to zero, 0 to zero the entire range respective to the
4634 * offset
4635 * @front - zero up to the offset instead of from the offset on
4636 *
9703fefe 4637 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4638 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4639 */
9703fefe 4640int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4641 int front)
39279cc3 4642{
2aaa6655 4643 struct address_space *mapping = inode->i_mapping;
db94535d 4644 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4645 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4646 struct btrfs_ordered_extent *ordered;
2ac55d41 4647 struct extent_state *cached_state = NULL;
e6dcd2dc 4648 char *kaddr;
db94535d 4649 u32 blocksize = root->sectorsize;
09cbfeaf 4650 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4651 unsigned offset = from & (blocksize - 1);
39279cc3 4652 struct page *page;
3b16a4e3 4653 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4654 int ret = 0;
9703fefe
CR
4655 u64 block_start;
4656 u64 block_end;
39279cc3 4657
2aaa6655
JB
4658 if ((offset & (blocksize - 1)) == 0 &&
4659 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4660 goto out;
9703fefe 4661
7cf5b976 4662 ret = btrfs_delalloc_reserve_space(inode,
9703fefe 4663 round_down(from, blocksize), blocksize);
5d5e103a
JB
4664 if (ret)
4665 goto out;
39279cc3 4666
211c17f5 4667again:
3b16a4e3 4668 page = find_or_create_page(mapping, index, mask);
5d5e103a 4669 if (!page) {
7cf5b976 4670 btrfs_delalloc_release_space(inode,
9703fefe
CR
4671 round_down(from, blocksize),
4672 blocksize);
ac6a2b36 4673 ret = -ENOMEM;
39279cc3 4674 goto out;
5d5e103a 4675 }
e6dcd2dc 4676
9703fefe
CR
4677 block_start = round_down(from, blocksize);
4678 block_end = block_start + blocksize - 1;
e6dcd2dc 4679
39279cc3 4680 if (!PageUptodate(page)) {
9ebefb18 4681 ret = btrfs_readpage(NULL, page);
39279cc3 4682 lock_page(page);
211c17f5
CM
4683 if (page->mapping != mapping) {
4684 unlock_page(page);
09cbfeaf 4685 put_page(page);
211c17f5
CM
4686 goto again;
4687 }
39279cc3
CM
4688 if (!PageUptodate(page)) {
4689 ret = -EIO;
89642229 4690 goto out_unlock;
39279cc3
CM
4691 }
4692 }
211c17f5 4693 wait_on_page_writeback(page);
e6dcd2dc 4694
9703fefe 4695 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4696 set_page_extent_mapped(page);
4697
9703fefe 4698 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4699 if (ordered) {
9703fefe 4700 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4701 &cached_state, GFP_NOFS);
e6dcd2dc 4702 unlock_page(page);
09cbfeaf 4703 put_page(page);
eb84ae03 4704 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4705 btrfs_put_ordered_extent(ordered);
4706 goto again;
4707 }
4708
9703fefe 4709 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4710 EXTENT_DIRTY | EXTENT_DELALLOC |
4711 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4712 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4713
9703fefe 4714 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
2ac55d41 4715 &cached_state);
9ed74f2d 4716 if (ret) {
9703fefe 4717 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4718 &cached_state, GFP_NOFS);
9ed74f2d
JB
4719 goto out_unlock;
4720 }
4721
9703fefe 4722 if (offset != blocksize) {
2aaa6655 4723 if (!len)
9703fefe 4724 len = blocksize - offset;
e6dcd2dc 4725 kaddr = kmap(page);
2aaa6655 4726 if (front)
9703fefe
CR
4727 memset(kaddr + (block_start - page_offset(page)),
4728 0, offset);
2aaa6655 4729 else
9703fefe
CR
4730 memset(kaddr + (block_start - page_offset(page)) + offset,
4731 0, len);
e6dcd2dc
CM
4732 flush_dcache_page(page);
4733 kunmap(page);
4734 }
247e743c 4735 ClearPageChecked(page);
e6dcd2dc 4736 set_page_dirty(page);
9703fefe 4737 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4738 GFP_NOFS);
39279cc3 4739
89642229 4740out_unlock:
5d5e103a 4741 if (ret)
9703fefe
CR
4742 btrfs_delalloc_release_space(inode, block_start,
4743 blocksize);
39279cc3 4744 unlock_page(page);
09cbfeaf 4745 put_page(page);
39279cc3
CM
4746out:
4747 return ret;
4748}
4749
16e7549f
JB
4750static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4751 u64 offset, u64 len)
4752{
4753 struct btrfs_trans_handle *trans;
4754 int ret;
4755
4756 /*
4757 * Still need to make sure the inode looks like it's been updated so
4758 * that any holes get logged if we fsync.
4759 */
4760 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4761 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4762 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4763 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4764 return 0;
4765 }
4766
4767 /*
4768 * 1 - for the one we're dropping
4769 * 1 - for the one we're adding
4770 * 1 - for updating the inode.
4771 */
4772 trans = btrfs_start_transaction(root, 3);
4773 if (IS_ERR(trans))
4774 return PTR_ERR(trans);
4775
4776 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4777 if (ret) {
4778 btrfs_abort_transaction(trans, root, ret);
4779 btrfs_end_transaction(trans, root);
4780 return ret;
4781 }
4782
4783 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4784 0, 0, len, 0, len, 0, 0, 0);
4785 if (ret)
4786 btrfs_abort_transaction(trans, root, ret);
4787 else
4788 btrfs_update_inode(trans, root, inode);
4789 btrfs_end_transaction(trans, root);
4790 return ret;
4791}
4792
695a0d0d
JB
4793/*
4794 * This function puts in dummy file extents for the area we're creating a hole
4795 * for. So if we are truncating this file to a larger size we need to insert
4796 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4797 * the range between oldsize and size
4798 */
a41ad394 4799int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4800{
9036c102
YZ
4801 struct btrfs_root *root = BTRFS_I(inode)->root;
4802 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4803 struct extent_map *em = NULL;
2ac55d41 4804 struct extent_state *cached_state = NULL;
5dc562c5 4805 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4806 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4807 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4808 u64 last_byte;
4809 u64 cur_offset;
4810 u64 hole_size;
9ed74f2d 4811 int err = 0;
39279cc3 4812
a71754fc 4813 /*
9703fefe
CR
4814 * If our size started in the middle of a block we need to zero out the
4815 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4816 * expose stale data.
4817 */
9703fefe 4818 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4819 if (err)
4820 return err;
4821
9036c102
YZ
4822 if (size <= hole_start)
4823 return 0;
4824
9036c102
YZ
4825 while (1) {
4826 struct btrfs_ordered_extent *ordered;
fa7c1494 4827
ff13db41 4828 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4829 &cached_state);
fa7c1494
MX
4830 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4831 block_end - hole_start);
9036c102
YZ
4832 if (!ordered)
4833 break;
2ac55d41
JB
4834 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4835 &cached_state, GFP_NOFS);
fa7c1494 4836 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4837 btrfs_put_ordered_extent(ordered);
4838 }
39279cc3 4839
9036c102
YZ
4840 cur_offset = hole_start;
4841 while (1) {
4842 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4843 block_end - cur_offset, 0);
79787eaa
JM
4844 if (IS_ERR(em)) {
4845 err = PTR_ERR(em);
f2767956 4846 em = NULL;
79787eaa
JM
4847 break;
4848 }
9036c102 4849 last_byte = min(extent_map_end(em), block_end);
fda2832f 4850 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4851 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4852 struct extent_map *hole_em;
9036c102 4853 hole_size = last_byte - cur_offset;
9ed74f2d 4854
16e7549f
JB
4855 err = maybe_insert_hole(root, inode, cur_offset,
4856 hole_size);
4857 if (err)
3893e33b 4858 break;
5dc562c5
JB
4859 btrfs_drop_extent_cache(inode, cur_offset,
4860 cur_offset + hole_size - 1, 0);
4861 hole_em = alloc_extent_map();
4862 if (!hole_em) {
4863 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4864 &BTRFS_I(inode)->runtime_flags);
4865 goto next;
4866 }
4867 hole_em->start = cur_offset;
4868 hole_em->len = hole_size;
4869 hole_em->orig_start = cur_offset;
8082510e 4870
5dc562c5
JB
4871 hole_em->block_start = EXTENT_MAP_HOLE;
4872 hole_em->block_len = 0;
b4939680 4873 hole_em->orig_block_len = 0;
cc95bef6 4874 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4875 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4876 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4877 hole_em->generation = root->fs_info->generation;
8082510e 4878
5dc562c5
JB
4879 while (1) {
4880 write_lock(&em_tree->lock);
09a2a8f9 4881 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4882 write_unlock(&em_tree->lock);
4883 if (err != -EEXIST)
4884 break;
4885 btrfs_drop_extent_cache(inode, cur_offset,
4886 cur_offset +
4887 hole_size - 1, 0);
4888 }
4889 free_extent_map(hole_em);
9036c102 4890 }
16e7549f 4891next:
9036c102 4892 free_extent_map(em);
a22285a6 4893 em = NULL;
9036c102 4894 cur_offset = last_byte;
8082510e 4895 if (cur_offset >= block_end)
9036c102
YZ
4896 break;
4897 }
a22285a6 4898 free_extent_map(em);
2ac55d41
JB
4899 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4900 GFP_NOFS);
9036c102
YZ
4901 return err;
4902}
39279cc3 4903
3972f260 4904static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4905{
f4a2f4c5
MX
4906 struct btrfs_root *root = BTRFS_I(inode)->root;
4907 struct btrfs_trans_handle *trans;
a41ad394 4908 loff_t oldsize = i_size_read(inode);
3972f260
ES
4909 loff_t newsize = attr->ia_size;
4910 int mask = attr->ia_valid;
8082510e
YZ
4911 int ret;
4912
3972f260
ES
4913 /*
4914 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4915 * special case where we need to update the times despite not having
4916 * these flags set. For all other operations the VFS set these flags
4917 * explicitly if it wants a timestamp update.
4918 */
dff6efc3
CH
4919 if (newsize != oldsize) {
4920 inode_inc_iversion(inode);
4921 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4922 inode->i_ctime = inode->i_mtime =
4923 current_fs_time(inode->i_sb);
4924 }
3972f260 4925
a41ad394 4926 if (newsize > oldsize) {
9ea24bbe
FM
4927 /*
4928 * Don't do an expanding truncate while snapshoting is ongoing.
4929 * This is to ensure the snapshot captures a fully consistent
4930 * state of this file - if the snapshot captures this expanding
4931 * truncation, it must capture all writes that happened before
4932 * this truncation.
4933 */
0bc19f90 4934 btrfs_wait_for_snapshot_creation(root);
a41ad394 4935 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4936 if (ret) {
4937 btrfs_end_write_no_snapshoting(root);
8082510e 4938 return ret;
9ea24bbe 4939 }
8082510e 4940
f4a2f4c5 4941 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4942 if (IS_ERR(trans)) {
4943 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 4944 return PTR_ERR(trans);
9ea24bbe 4945 }
f4a2f4c5
MX
4946
4947 i_size_write(inode, newsize);
4948 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 4949 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 4950 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 4951 btrfs_end_write_no_snapshoting(root);
7ad85bb7 4952 btrfs_end_transaction(trans, root);
a41ad394 4953 } else {
8082510e 4954
a41ad394
JB
4955 /*
4956 * We're truncating a file that used to have good data down to
4957 * zero. Make sure it gets into the ordered flush list so that
4958 * any new writes get down to disk quickly.
4959 */
4960 if (newsize == 0)
72ac3c0d
JB
4961 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4962 &BTRFS_I(inode)->runtime_flags);
8082510e 4963
f3fe820c
JB
4964 /*
4965 * 1 for the orphan item we're going to add
4966 * 1 for the orphan item deletion.
4967 */
4968 trans = btrfs_start_transaction(root, 2);
4969 if (IS_ERR(trans))
4970 return PTR_ERR(trans);
4971
4972 /*
4973 * We need to do this in case we fail at _any_ point during the
4974 * actual truncate. Once we do the truncate_setsize we could
4975 * invalidate pages which forces any outstanding ordered io to
4976 * be instantly completed which will give us extents that need
4977 * to be truncated. If we fail to get an orphan inode down we
4978 * could have left over extents that were never meant to live,
01327610 4979 * so we need to guarantee from this point on that everything
f3fe820c
JB
4980 * will be consistent.
4981 */
4982 ret = btrfs_orphan_add(trans, inode);
4983 btrfs_end_transaction(trans, root);
4984 if (ret)
4985 return ret;
4986
a41ad394
JB
4987 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4988 truncate_setsize(inode, newsize);
2e60a51e
MX
4989
4990 /* Disable nonlocked read DIO to avoid the end less truncate */
4991 btrfs_inode_block_unlocked_dio(inode);
4992 inode_dio_wait(inode);
4993 btrfs_inode_resume_unlocked_dio(inode);
4994
a41ad394 4995 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4996 if (ret && inode->i_nlink) {
4997 int err;
4998
4999 /*
5000 * failed to truncate, disk_i_size is only adjusted down
5001 * as we remove extents, so it should represent the true
5002 * size of the inode, so reset the in memory size and
5003 * delete our orphan entry.
5004 */
5005 trans = btrfs_join_transaction(root);
5006 if (IS_ERR(trans)) {
5007 btrfs_orphan_del(NULL, inode);
5008 return ret;
5009 }
5010 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5011 err = btrfs_orphan_del(trans, inode);
5012 if (err)
5013 btrfs_abort_transaction(trans, root, err);
5014 btrfs_end_transaction(trans, root);
5015 }
8082510e
YZ
5016 }
5017
a41ad394 5018 return ret;
8082510e
YZ
5019}
5020
9036c102
YZ
5021static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5022{
2b0143b5 5023 struct inode *inode = d_inode(dentry);
b83cc969 5024 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5025 int err;
39279cc3 5026
b83cc969
LZ
5027 if (btrfs_root_readonly(root))
5028 return -EROFS;
5029
9036c102
YZ
5030 err = inode_change_ok(inode, attr);
5031 if (err)
5032 return err;
2bf5a725 5033
5a3f23d5 5034 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5035 err = btrfs_setsize(inode, attr);
8082510e
YZ
5036 if (err)
5037 return err;
39279cc3 5038 }
9036c102 5039
1025774c
CH
5040 if (attr->ia_valid) {
5041 setattr_copy(inode, attr);
0c4d2d95 5042 inode_inc_iversion(inode);
22c44fe6 5043 err = btrfs_dirty_inode(inode);
1025774c 5044
22c44fe6 5045 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5046 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5047 }
33268eaf 5048
39279cc3
CM
5049 return err;
5050}
61295eb8 5051
131e404a
FDBM
5052/*
5053 * While truncating the inode pages during eviction, we get the VFS calling
5054 * btrfs_invalidatepage() against each page of the inode. This is slow because
5055 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5056 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5057 * extent_state structures over and over, wasting lots of time.
5058 *
5059 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5060 * those expensive operations on a per page basis and do only the ordered io
5061 * finishing, while we release here the extent_map and extent_state structures,
5062 * without the excessive merging and splitting.
5063 */
5064static void evict_inode_truncate_pages(struct inode *inode)
5065{
5066 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5067 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5068 struct rb_node *node;
5069
5070 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5071 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5072
5073 write_lock(&map_tree->lock);
5074 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5075 struct extent_map *em;
5076
5077 node = rb_first(&map_tree->map);
5078 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5079 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5080 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5081 remove_extent_mapping(map_tree, em);
5082 free_extent_map(em);
7064dd5c
FM
5083 if (need_resched()) {
5084 write_unlock(&map_tree->lock);
5085 cond_resched();
5086 write_lock(&map_tree->lock);
5087 }
131e404a
FDBM
5088 }
5089 write_unlock(&map_tree->lock);
5090
6ca07097
FM
5091 /*
5092 * Keep looping until we have no more ranges in the io tree.
5093 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5094 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5095 * still in progress (unlocked the pages in the bio but did not yet
5096 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5097 * ranges can still be locked and eviction started because before
5098 * submitting those bios, which are executed by a separate task (work
5099 * queue kthread), inode references (inode->i_count) were not taken
5100 * (which would be dropped in the end io callback of each bio).
5101 * Therefore here we effectively end up waiting for those bios and
5102 * anyone else holding locked ranges without having bumped the inode's
5103 * reference count - if we don't do it, when they access the inode's
5104 * io_tree to unlock a range it may be too late, leading to an
5105 * use-after-free issue.
5106 */
131e404a
FDBM
5107 spin_lock(&io_tree->lock);
5108 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5109 struct extent_state *state;
5110 struct extent_state *cached_state = NULL;
6ca07097
FM
5111 u64 start;
5112 u64 end;
131e404a
FDBM
5113
5114 node = rb_first(&io_tree->state);
5115 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5116 start = state->start;
5117 end = state->end;
131e404a
FDBM
5118 spin_unlock(&io_tree->lock);
5119
ff13db41 5120 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5121
5122 /*
5123 * If still has DELALLOC flag, the extent didn't reach disk,
5124 * and its reserved space won't be freed by delayed_ref.
5125 * So we need to free its reserved space here.
5126 * (Refer to comment in btrfs_invalidatepage, case 2)
5127 *
5128 * Note, end is the bytenr of last byte, so we need + 1 here.
5129 */
5130 if (state->state & EXTENT_DELALLOC)
5131 btrfs_qgroup_free_data(inode, start, end - start + 1);
5132
6ca07097 5133 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5134 EXTENT_LOCKED | EXTENT_DIRTY |
5135 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5136 EXTENT_DEFRAG, 1, 1,
5137 &cached_state, GFP_NOFS);
131e404a 5138
7064dd5c 5139 cond_resched();
131e404a
FDBM
5140 spin_lock(&io_tree->lock);
5141 }
5142 spin_unlock(&io_tree->lock);
5143}
5144
bd555975 5145void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
5146{
5147 struct btrfs_trans_handle *trans;
5148 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5149 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5150 int steal_from_global = 0;
07127184 5151 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
5152 int ret;
5153
1abe9b8a 5154 trace_btrfs_inode_evict(inode);
5155
131e404a
FDBM
5156 evict_inode_truncate_pages(inode);
5157
69e9c6c6
SB
5158 if (inode->i_nlink &&
5159 ((btrfs_root_refs(&root->root_item) != 0 &&
5160 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5161 btrfs_is_free_space_inode(inode)))
bd555975
AV
5162 goto no_delete;
5163
39279cc3 5164 if (is_bad_inode(inode)) {
7b128766 5165 btrfs_orphan_del(NULL, inode);
39279cc3
CM
5166 goto no_delete;
5167 }
bd555975 5168 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5169 if (!special_file(inode->i_mode))
5170 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5171
f612496b
MX
5172 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5173
c71bf099 5174 if (root->fs_info->log_root_recovering) {
6bf02314 5175 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5176 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5177 goto no_delete;
5178 }
5179
76dda93c 5180 if (inode->i_nlink > 0) {
69e9c6c6
SB
5181 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5182 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5183 goto no_delete;
5184 }
5185
0e8c36a9
MX
5186 ret = btrfs_commit_inode_delayed_inode(inode);
5187 if (ret) {
5188 btrfs_orphan_del(NULL, inode);
5189 goto no_delete;
5190 }
5191
66d8f3dd 5192 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
5193 if (!rsv) {
5194 btrfs_orphan_del(NULL, inode);
5195 goto no_delete;
5196 }
4a338542 5197 rsv->size = min_size;
ca7e70f5 5198 rsv->failfast = 1;
726c35fa 5199 global_rsv = &root->fs_info->global_block_rsv;
4289a667 5200
dbe674a9 5201 btrfs_i_size_write(inode, 0);
5f39d397 5202
4289a667 5203 /*
8407aa46
MX
5204 * This is a bit simpler than btrfs_truncate since we've already
5205 * reserved our space for our orphan item in the unlink, so we just
5206 * need to reserve some slack space in case we add bytes and update
5207 * inode item when doing the truncate.
4289a667 5208 */
8082510e 5209 while (1) {
08e007d2
MX
5210 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5211 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5212
5213 /*
5214 * Try and steal from the global reserve since we will
5215 * likely not use this space anyway, we want to try as
5216 * hard as possible to get this to work.
5217 */
5218 if (ret)
3bce876f
JB
5219 steal_from_global++;
5220 else
5221 steal_from_global = 0;
5222 ret = 0;
d68fc57b 5223
3bce876f
JB
5224 /*
5225 * steal_from_global == 0: we reserved stuff, hooray!
5226 * steal_from_global == 1: we didn't reserve stuff, boo!
5227 * steal_from_global == 2: we've committed, still not a lot of
5228 * room but maybe we'll have room in the global reserve this
5229 * time.
5230 * steal_from_global == 3: abandon all hope!
5231 */
5232 if (steal_from_global > 2) {
c2cf52eb
SK
5233 btrfs_warn(root->fs_info,
5234 "Could not get space for a delete, will truncate on mount %d",
5235 ret);
4289a667
JB
5236 btrfs_orphan_del(NULL, inode);
5237 btrfs_free_block_rsv(root, rsv);
5238 goto no_delete;
d68fc57b 5239 }
7b128766 5240
0e8c36a9 5241 trans = btrfs_join_transaction(root);
4289a667
JB
5242 if (IS_ERR(trans)) {
5243 btrfs_orphan_del(NULL, inode);
5244 btrfs_free_block_rsv(root, rsv);
5245 goto no_delete;
d68fc57b 5246 }
7b128766 5247
3bce876f 5248 /*
01327610 5249 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5250 * sure there is room to do it, if not we need to commit and try
5251 * again.
5252 */
5253 if (steal_from_global) {
5254 if (!btrfs_check_space_for_delayed_refs(trans, root))
5255 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5256 min_size);
5257 else
5258 ret = -ENOSPC;
5259 }
5260
5261 /*
5262 * Couldn't steal from the global reserve, we have too much
5263 * pending stuff built up, commit the transaction and try it
5264 * again.
5265 */
5266 if (ret) {
5267 ret = btrfs_commit_transaction(trans, root);
5268 if (ret) {
5269 btrfs_orphan_del(NULL, inode);
5270 btrfs_free_block_rsv(root, rsv);
5271 goto no_delete;
5272 }
5273 continue;
5274 } else {
5275 steal_from_global = 0;
5276 }
5277
4289a667
JB
5278 trans->block_rsv = rsv;
5279
d68fc57b 5280 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5281 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5282 break;
85e21bac 5283
8407aa46 5284 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
5285 btrfs_end_transaction(trans, root);
5286 trans = NULL;
b53d3f5d 5287 btrfs_btree_balance_dirty(root);
8082510e 5288 }
5f39d397 5289
4289a667
JB
5290 btrfs_free_block_rsv(root, rsv);
5291
4ef31a45
JB
5292 /*
5293 * Errors here aren't a big deal, it just means we leave orphan items
5294 * in the tree. They will be cleaned up on the next mount.
5295 */
8082510e 5296 if (ret == 0) {
4289a667 5297 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
5298 btrfs_orphan_del(trans, inode);
5299 } else {
5300 btrfs_orphan_del(NULL, inode);
8082510e 5301 }
54aa1f4d 5302
4289a667 5303 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
5304 if (!(root == root->fs_info->tree_root ||
5305 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 5306 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 5307
54aa1f4d 5308 btrfs_end_transaction(trans, root);
b53d3f5d 5309 btrfs_btree_balance_dirty(root);
39279cc3 5310no_delete:
89042e5a 5311 btrfs_remove_delayed_node(inode);
dbd5768f 5312 clear_inode(inode);
39279cc3
CM
5313}
5314
5315/*
5316 * this returns the key found in the dir entry in the location pointer.
5317 * If no dir entries were found, location->objectid is 0.
5318 */
5319static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5320 struct btrfs_key *location)
5321{
5322 const char *name = dentry->d_name.name;
5323 int namelen = dentry->d_name.len;
5324 struct btrfs_dir_item *di;
5325 struct btrfs_path *path;
5326 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5327 int ret = 0;
39279cc3
CM
5328
5329 path = btrfs_alloc_path();
d8926bb3
MF
5330 if (!path)
5331 return -ENOMEM;
3954401f 5332
33345d01 5333 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 5334 namelen, 0);
0d9f7f3e
Y
5335 if (IS_ERR(di))
5336 ret = PTR_ERR(di);
d397712b 5337
c704005d 5338 if (IS_ERR_OR_NULL(di))
3954401f 5339 goto out_err;
d397712b 5340
5f39d397 5341 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5342out:
39279cc3
CM
5343 btrfs_free_path(path);
5344 return ret;
3954401f
CM
5345out_err:
5346 location->objectid = 0;
5347 goto out;
39279cc3
CM
5348}
5349
5350/*
5351 * when we hit a tree root in a directory, the btrfs part of the inode
5352 * needs to be changed to reflect the root directory of the tree root. This
5353 * is kind of like crossing a mount point.
5354 */
5355static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
5356 struct inode *dir,
5357 struct dentry *dentry,
5358 struct btrfs_key *location,
5359 struct btrfs_root **sub_root)
39279cc3 5360{
4df27c4d
YZ
5361 struct btrfs_path *path;
5362 struct btrfs_root *new_root;
5363 struct btrfs_root_ref *ref;
5364 struct extent_buffer *leaf;
1d4c08e0 5365 struct btrfs_key key;
4df27c4d
YZ
5366 int ret;
5367 int err = 0;
39279cc3 5368
4df27c4d
YZ
5369 path = btrfs_alloc_path();
5370 if (!path) {
5371 err = -ENOMEM;
5372 goto out;
5373 }
39279cc3 5374
4df27c4d 5375 err = -ENOENT;
1d4c08e0
DS
5376 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5377 key.type = BTRFS_ROOT_REF_KEY;
5378 key.offset = location->objectid;
5379
5380 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5381 0, 0);
4df27c4d
YZ
5382 if (ret) {
5383 if (ret < 0)
5384 err = ret;
5385 goto out;
5386 }
39279cc3 5387
4df27c4d
YZ
5388 leaf = path->nodes[0];
5389 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5390 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5391 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5392 goto out;
39279cc3 5393
4df27c4d
YZ
5394 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5395 (unsigned long)(ref + 1),
5396 dentry->d_name.len);
5397 if (ret)
5398 goto out;
5399
b3b4aa74 5400 btrfs_release_path(path);
4df27c4d
YZ
5401
5402 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5403 if (IS_ERR(new_root)) {
5404 err = PTR_ERR(new_root);
5405 goto out;
5406 }
5407
4df27c4d
YZ
5408 *sub_root = new_root;
5409 location->objectid = btrfs_root_dirid(&new_root->root_item);
5410 location->type = BTRFS_INODE_ITEM_KEY;
5411 location->offset = 0;
5412 err = 0;
5413out:
5414 btrfs_free_path(path);
5415 return err;
39279cc3
CM
5416}
5417
5d4f98a2
YZ
5418static void inode_tree_add(struct inode *inode)
5419{
5420 struct btrfs_root *root = BTRFS_I(inode)->root;
5421 struct btrfs_inode *entry;
03e860bd
FNP
5422 struct rb_node **p;
5423 struct rb_node *parent;
cef21937 5424 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5425 u64 ino = btrfs_ino(inode);
5d4f98a2 5426
1d3382cb 5427 if (inode_unhashed(inode))
76dda93c 5428 return;
e1409cef 5429 parent = NULL;
5d4f98a2 5430 spin_lock(&root->inode_lock);
e1409cef 5431 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5432 while (*p) {
5433 parent = *p;
5434 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5435
33345d01 5436 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5437 p = &parent->rb_left;
33345d01 5438 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5439 p = &parent->rb_right;
5d4f98a2
YZ
5440 else {
5441 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5442 (I_WILL_FREE | I_FREEING)));
cef21937 5443 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5444 RB_CLEAR_NODE(parent);
5445 spin_unlock(&root->inode_lock);
cef21937 5446 return;
5d4f98a2
YZ
5447 }
5448 }
cef21937
FDBM
5449 rb_link_node(new, parent, p);
5450 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5451 spin_unlock(&root->inode_lock);
5452}
5453
5454static void inode_tree_del(struct inode *inode)
5455{
5456 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5457 int empty = 0;
5d4f98a2 5458
03e860bd 5459 spin_lock(&root->inode_lock);
5d4f98a2 5460 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5461 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5462 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5463 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5464 }
03e860bd 5465 spin_unlock(&root->inode_lock);
76dda93c 5466
69e9c6c6 5467 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5468 synchronize_srcu(&root->fs_info->subvol_srcu);
5469 spin_lock(&root->inode_lock);
5470 empty = RB_EMPTY_ROOT(&root->inode_tree);
5471 spin_unlock(&root->inode_lock);
5472 if (empty)
5473 btrfs_add_dead_root(root);
5474 }
5475}
5476
143bede5 5477void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5478{
5479 struct rb_node *node;
5480 struct rb_node *prev;
5481 struct btrfs_inode *entry;
5482 struct inode *inode;
5483 u64 objectid = 0;
5484
7813b3db
LB
5485 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5486 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5487
5488 spin_lock(&root->inode_lock);
5489again:
5490 node = root->inode_tree.rb_node;
5491 prev = NULL;
5492 while (node) {
5493 prev = node;
5494 entry = rb_entry(node, struct btrfs_inode, rb_node);
5495
33345d01 5496 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5497 node = node->rb_left;
33345d01 5498 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5499 node = node->rb_right;
5500 else
5501 break;
5502 }
5503 if (!node) {
5504 while (prev) {
5505 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5506 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5507 node = prev;
5508 break;
5509 }
5510 prev = rb_next(prev);
5511 }
5512 }
5513 while (node) {
5514 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5515 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5516 inode = igrab(&entry->vfs_inode);
5517 if (inode) {
5518 spin_unlock(&root->inode_lock);
5519 if (atomic_read(&inode->i_count) > 1)
5520 d_prune_aliases(inode);
5521 /*
45321ac5 5522 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5523 * the inode cache when its usage count
5524 * hits zero.
5525 */
5526 iput(inode);
5527 cond_resched();
5528 spin_lock(&root->inode_lock);
5529 goto again;
5530 }
5531
5532 if (cond_resched_lock(&root->inode_lock))
5533 goto again;
5534
5535 node = rb_next(node);
5536 }
5537 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5538}
5539
e02119d5
CM
5540static int btrfs_init_locked_inode(struct inode *inode, void *p)
5541{
5542 struct btrfs_iget_args *args = p;
90d3e592
CM
5543 inode->i_ino = args->location->objectid;
5544 memcpy(&BTRFS_I(inode)->location, args->location,
5545 sizeof(*args->location));
e02119d5 5546 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5547 return 0;
5548}
5549
5550static int btrfs_find_actor(struct inode *inode, void *opaque)
5551{
5552 struct btrfs_iget_args *args = opaque;
90d3e592 5553 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5554 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5555}
5556
5d4f98a2 5557static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5558 struct btrfs_key *location,
5d4f98a2 5559 struct btrfs_root *root)
39279cc3
CM
5560{
5561 struct inode *inode;
5562 struct btrfs_iget_args args;
90d3e592 5563 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5564
90d3e592 5565 args.location = location;
39279cc3
CM
5566 args.root = root;
5567
778ba82b 5568 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5569 btrfs_init_locked_inode,
5570 (void *)&args);
5571 return inode;
5572}
5573
1a54ef8c
BR
5574/* Get an inode object given its location and corresponding root.
5575 * Returns in *is_new if the inode was read from disk
5576 */
5577struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5578 struct btrfs_root *root, int *new)
1a54ef8c
BR
5579{
5580 struct inode *inode;
5581
90d3e592 5582 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5583 if (!inode)
5d4f98a2 5584 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5585
5586 if (inode->i_state & I_NEW) {
1a54ef8c 5587 btrfs_read_locked_inode(inode);
1748f843
MF
5588 if (!is_bad_inode(inode)) {
5589 inode_tree_add(inode);
5590 unlock_new_inode(inode);
5591 if (new)
5592 *new = 1;
5593 } else {
e0b6d65b
ST
5594 unlock_new_inode(inode);
5595 iput(inode);
5596 inode = ERR_PTR(-ESTALE);
1748f843
MF
5597 }
5598 }
5599
1a54ef8c
BR
5600 return inode;
5601}
5602
4df27c4d
YZ
5603static struct inode *new_simple_dir(struct super_block *s,
5604 struct btrfs_key *key,
5605 struct btrfs_root *root)
5606{
5607 struct inode *inode = new_inode(s);
5608
5609 if (!inode)
5610 return ERR_PTR(-ENOMEM);
5611
4df27c4d
YZ
5612 BTRFS_I(inode)->root = root;
5613 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5614 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5615
5616 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5617 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5618 inode->i_fop = &simple_dir_operations;
5619 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
04b285f3 5620 inode->i_mtime = current_fs_time(inode->i_sb);
9cc97d64 5621 inode->i_atime = inode->i_mtime;
5622 inode->i_ctime = inode->i_mtime;
5623 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5624
5625 return inode;
5626}
5627
3de4586c 5628struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5629{
d397712b 5630 struct inode *inode;
4df27c4d 5631 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5632 struct btrfs_root *sub_root = root;
5633 struct btrfs_key location;
76dda93c 5634 int index;
b4aff1f8 5635 int ret = 0;
39279cc3
CM
5636
5637 if (dentry->d_name.len > BTRFS_NAME_LEN)
5638 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5639
39e3c955 5640 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5641 if (ret < 0)
5642 return ERR_PTR(ret);
5f39d397 5643
4df27c4d 5644 if (location.objectid == 0)
5662344b 5645 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5646
5647 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5648 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5649 return inode;
5650 }
5651
5652 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5653
76dda93c 5654 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5655 ret = fixup_tree_root_location(root, dir, dentry,
5656 &location, &sub_root);
5657 if (ret < 0) {
5658 if (ret != -ENOENT)
5659 inode = ERR_PTR(ret);
5660 else
5661 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5662 } else {
73f73415 5663 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5664 }
76dda93c
YZ
5665 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5666
34d19bad 5667 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5668 down_read(&root->fs_info->cleanup_work_sem);
5669 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5670 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5671 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5672 if (ret) {
5673 iput(inode);
66b4ffd1 5674 inode = ERR_PTR(ret);
01cd3367 5675 }
c71bf099
YZ
5676 }
5677
3de4586c
CM
5678 return inode;
5679}
5680
fe15ce44 5681static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5682{
5683 struct btrfs_root *root;
2b0143b5 5684 struct inode *inode = d_inode(dentry);
76dda93c 5685
848cce0d 5686 if (!inode && !IS_ROOT(dentry))
2b0143b5 5687 inode = d_inode(dentry->d_parent);
76dda93c 5688
848cce0d
LZ
5689 if (inode) {
5690 root = BTRFS_I(inode)->root;
efefb143
YZ
5691 if (btrfs_root_refs(&root->root_item) == 0)
5692 return 1;
848cce0d
LZ
5693
5694 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5695 return 1;
efefb143 5696 }
76dda93c
YZ
5697 return 0;
5698}
5699
b4aff1f8
JB
5700static void btrfs_dentry_release(struct dentry *dentry)
5701{
944a4515 5702 kfree(dentry->d_fsdata);
b4aff1f8
JB
5703}
5704
3de4586c 5705static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5706 unsigned int flags)
3de4586c 5707{
5662344b 5708 struct inode *inode;
a66e7cc6 5709
5662344b
TI
5710 inode = btrfs_lookup_dentry(dir, dentry);
5711 if (IS_ERR(inode)) {
5712 if (PTR_ERR(inode) == -ENOENT)
5713 inode = NULL;
5714 else
5715 return ERR_CAST(inode);
5716 }
5717
41d28bca 5718 return d_splice_alias(inode, dentry);
39279cc3
CM
5719}
5720
16cdcec7 5721unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5722 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5723};
5724
9cdda8d3 5725static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5726{
9cdda8d3 5727 struct inode *inode = file_inode(file);
39279cc3
CM
5728 struct btrfs_root *root = BTRFS_I(inode)->root;
5729 struct btrfs_item *item;
5730 struct btrfs_dir_item *di;
5731 struct btrfs_key key;
5f39d397 5732 struct btrfs_key found_key;
39279cc3 5733 struct btrfs_path *path;
16cdcec7
MX
5734 struct list_head ins_list;
5735 struct list_head del_list;
39279cc3 5736 int ret;
5f39d397 5737 struct extent_buffer *leaf;
39279cc3 5738 int slot;
39279cc3
CM
5739 unsigned char d_type;
5740 int over = 0;
5741 u32 di_cur;
5742 u32 di_total;
5743 u32 di_len;
5744 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5745 char tmp_name[32];
5746 char *name_ptr;
5747 int name_len;
9cdda8d3 5748 int is_curr = 0; /* ctx->pos points to the current index? */
bc4ef759 5749 bool emitted;
39279cc3
CM
5750
5751 /* FIXME, use a real flag for deciding about the key type */
5752 if (root->fs_info->tree_root == root)
5753 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5754
9cdda8d3
AV
5755 if (!dir_emit_dots(file, ctx))
5756 return 0;
5757
49593bfa 5758 path = btrfs_alloc_path();
16cdcec7
MX
5759 if (!path)
5760 return -ENOMEM;
ff5714cc 5761
e4058b54 5762 path->reada = READA_FORWARD;
49593bfa 5763
16cdcec7
MX
5764 if (key_type == BTRFS_DIR_INDEX_KEY) {
5765 INIT_LIST_HEAD(&ins_list);
5766 INIT_LIST_HEAD(&del_list);
5767 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5768 }
5769
962a298f 5770 key.type = key_type;
9cdda8d3 5771 key.offset = ctx->pos;
33345d01 5772 key.objectid = btrfs_ino(inode);
5f39d397 5773
39279cc3
CM
5774 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5775 if (ret < 0)
5776 goto err;
49593bfa 5777
bc4ef759 5778 emitted = false;
49593bfa 5779 while (1) {
5f39d397 5780 leaf = path->nodes[0];
39279cc3 5781 slot = path->slots[0];
b9e03af0
LZ
5782 if (slot >= btrfs_header_nritems(leaf)) {
5783 ret = btrfs_next_leaf(root, path);
5784 if (ret < 0)
5785 goto err;
5786 else if (ret > 0)
5787 break;
5788 continue;
39279cc3 5789 }
3de4586c 5790
dd3cc16b 5791 item = btrfs_item_nr(slot);
5f39d397
CM
5792 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5793
5794 if (found_key.objectid != key.objectid)
39279cc3 5795 break;
962a298f 5796 if (found_key.type != key_type)
39279cc3 5797 break;
9cdda8d3 5798 if (found_key.offset < ctx->pos)
b9e03af0 5799 goto next;
16cdcec7
MX
5800 if (key_type == BTRFS_DIR_INDEX_KEY &&
5801 btrfs_should_delete_dir_index(&del_list,
5802 found_key.offset))
5803 goto next;
5f39d397 5804
9cdda8d3 5805 ctx->pos = found_key.offset;
16cdcec7 5806 is_curr = 1;
49593bfa 5807
39279cc3
CM
5808 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5809 di_cur = 0;
5f39d397 5810 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5811
5812 while (di_cur < di_total) {
5f39d397
CM
5813 struct btrfs_key location;
5814
22a94d44
JB
5815 if (verify_dir_item(root, leaf, di))
5816 break;
5817
5f39d397 5818 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5819 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5820 name_ptr = tmp_name;
5821 } else {
49e350a4 5822 name_ptr = kmalloc(name_len, GFP_KERNEL);
49593bfa
DW
5823 if (!name_ptr) {
5824 ret = -ENOMEM;
5825 goto err;
5826 }
5f39d397
CM
5827 }
5828 read_extent_buffer(leaf, name_ptr,
5829 (unsigned long)(di + 1), name_len);
5830
5831 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5832 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5833
fede766f 5834
3de4586c 5835 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5836 * skip it.
5837 *
5838 * In contrast to old kernels, we insert the snapshot's
5839 * dir item and dir index after it has been created, so
5840 * we won't find a reference to our own snapshot. We
5841 * still keep the following code for backward
5842 * compatibility.
3de4586c
CM
5843 */
5844 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5845 location.objectid == root->root_key.objectid) {
5846 over = 0;
5847 goto skip;
5848 }
9cdda8d3
AV
5849 over = !dir_emit(ctx, name_ptr, name_len,
5850 location.objectid, d_type);
5f39d397 5851
3de4586c 5852skip:
5f39d397
CM
5853 if (name_ptr != tmp_name)
5854 kfree(name_ptr);
5855
39279cc3
CM
5856 if (over)
5857 goto nopos;
bc4ef759 5858 emitted = true;
5103e947 5859 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5860 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5861 di_cur += di_len;
5862 di = (struct btrfs_dir_item *)((char *)di + di_len);
5863 }
b9e03af0
LZ
5864next:
5865 path->slots[0]++;
39279cc3 5866 }
49593bfa 5867
16cdcec7
MX
5868 if (key_type == BTRFS_DIR_INDEX_KEY) {
5869 if (is_curr)
9cdda8d3 5870 ctx->pos++;
bc4ef759 5871 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
16cdcec7
MX
5872 if (ret)
5873 goto nopos;
5874 }
5875
bc4ef759
DS
5876 /*
5877 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5878 * it was was set to the termination value in previous call. We assume
5879 * that "." and ".." were emitted if we reach this point and set the
5880 * termination value as well for an empty directory.
5881 */
5882 if (ctx->pos > 2 && !emitted)
5883 goto nopos;
5884
49593bfa 5885 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5886 ctx->pos++;
5887
5888 /*
5889 * Stop new entries from being returned after we return the last
5890 * entry.
5891 *
5892 * New directory entries are assigned a strictly increasing
5893 * offset. This means that new entries created during readdir
5894 * are *guaranteed* to be seen in the future by that readdir.
5895 * This has broken buggy programs which operate on names as
5896 * they're returned by readdir. Until we re-use freed offsets
5897 * we have this hack to stop new entries from being returned
5898 * under the assumption that they'll never reach this huge
5899 * offset.
5900 *
5901 * This is being careful not to overflow 32bit loff_t unless the
5902 * last entry requires it because doing so has broken 32bit apps
5903 * in the past.
5904 */
5905 if (key_type == BTRFS_DIR_INDEX_KEY) {
5906 if (ctx->pos >= INT_MAX)
5907 ctx->pos = LLONG_MAX;
5908 else
5909 ctx->pos = INT_MAX;
5910 }
39279cc3
CM
5911nopos:
5912 ret = 0;
5913err:
16cdcec7
MX
5914 if (key_type == BTRFS_DIR_INDEX_KEY)
5915 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5916 btrfs_free_path(path);
39279cc3
CM
5917 return ret;
5918}
5919
a9185b41 5920int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5921{
5922 struct btrfs_root *root = BTRFS_I(inode)->root;
5923 struct btrfs_trans_handle *trans;
5924 int ret = 0;
0af3d00b 5925 bool nolock = false;
39279cc3 5926
72ac3c0d 5927 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5928 return 0;
5929
83eea1f1 5930 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5931 nolock = true;
0af3d00b 5932
a9185b41 5933 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5934 if (nolock)
7a7eaa40 5935 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5936 else
7a7eaa40 5937 trans = btrfs_join_transaction(root);
3612b495
TI
5938 if (IS_ERR(trans))
5939 return PTR_ERR(trans);
a698d075 5940 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5941 }
5942 return ret;
5943}
5944
5945/*
54aa1f4d 5946 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5947 * inode changes. But, it is most likely to find the inode in cache.
5948 * FIXME, needs more benchmarking...there are no reasons other than performance
5949 * to keep or drop this code.
5950 */
48a3b636 5951static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5952{
5953 struct btrfs_root *root = BTRFS_I(inode)->root;
5954 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5955 int ret;
5956
72ac3c0d 5957 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5958 return 0;
39279cc3 5959
7a7eaa40 5960 trans = btrfs_join_transaction(root);
22c44fe6
JB
5961 if (IS_ERR(trans))
5962 return PTR_ERR(trans);
8929ecfa
YZ
5963
5964 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5965 if (ret && ret == -ENOSPC) {
5966 /* whoops, lets try again with the full transaction */
5967 btrfs_end_transaction(trans, root);
5968 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5969 if (IS_ERR(trans))
5970 return PTR_ERR(trans);
8929ecfa 5971
94b60442 5972 ret = btrfs_update_inode(trans, root, inode);
94b60442 5973 }
39279cc3 5974 btrfs_end_transaction(trans, root);
16cdcec7
MX
5975 if (BTRFS_I(inode)->delayed_node)
5976 btrfs_balance_delayed_items(root);
22c44fe6
JB
5977
5978 return ret;
5979}
5980
5981/*
5982 * This is a copy of file_update_time. We need this so we can return error on
5983 * ENOSPC for updating the inode in the case of file write and mmap writes.
5984 */
e41f941a
JB
5985static int btrfs_update_time(struct inode *inode, struct timespec *now,
5986 int flags)
22c44fe6 5987{
2bc55652
AB
5988 struct btrfs_root *root = BTRFS_I(inode)->root;
5989
5990 if (btrfs_root_readonly(root))
5991 return -EROFS;
5992
e41f941a 5993 if (flags & S_VERSION)
22c44fe6 5994 inode_inc_iversion(inode);
e41f941a
JB
5995 if (flags & S_CTIME)
5996 inode->i_ctime = *now;
5997 if (flags & S_MTIME)
5998 inode->i_mtime = *now;
5999 if (flags & S_ATIME)
6000 inode->i_atime = *now;
6001 return btrfs_dirty_inode(inode);
39279cc3
CM
6002}
6003
d352ac68
CM
6004/*
6005 * find the highest existing sequence number in a directory
6006 * and then set the in-memory index_cnt variable to reflect
6007 * free sequence numbers
6008 */
aec7477b
JB
6009static int btrfs_set_inode_index_count(struct inode *inode)
6010{
6011 struct btrfs_root *root = BTRFS_I(inode)->root;
6012 struct btrfs_key key, found_key;
6013 struct btrfs_path *path;
6014 struct extent_buffer *leaf;
6015 int ret;
6016
33345d01 6017 key.objectid = btrfs_ino(inode);
962a298f 6018 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6019 key.offset = (u64)-1;
6020
6021 path = btrfs_alloc_path();
6022 if (!path)
6023 return -ENOMEM;
6024
6025 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6026 if (ret < 0)
6027 goto out;
6028 /* FIXME: we should be able to handle this */
6029 if (ret == 0)
6030 goto out;
6031 ret = 0;
6032
6033 /*
6034 * MAGIC NUMBER EXPLANATION:
6035 * since we search a directory based on f_pos we have to start at 2
6036 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6037 * else has to start at 2
6038 */
6039 if (path->slots[0] == 0) {
6040 BTRFS_I(inode)->index_cnt = 2;
6041 goto out;
6042 }
6043
6044 path->slots[0]--;
6045
6046 leaf = path->nodes[0];
6047 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6048
33345d01 6049 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6050 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
6051 BTRFS_I(inode)->index_cnt = 2;
6052 goto out;
6053 }
6054
6055 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6056out:
6057 btrfs_free_path(path);
6058 return ret;
6059}
6060
d352ac68
CM
6061/*
6062 * helper to find a free sequence number in a given directory. This current
6063 * code is very simple, later versions will do smarter things in the btree
6064 */
3de4586c 6065int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
6066{
6067 int ret = 0;
6068
6069 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
6070 ret = btrfs_inode_delayed_dir_index_count(dir);
6071 if (ret) {
6072 ret = btrfs_set_inode_index_count(dir);
6073 if (ret)
6074 return ret;
6075 }
aec7477b
JB
6076 }
6077
00e4e6b3 6078 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
6079 BTRFS_I(dir)->index_cnt++;
6080
6081 return ret;
6082}
6083
b0d5d10f
CM
6084static int btrfs_insert_inode_locked(struct inode *inode)
6085{
6086 struct btrfs_iget_args args;
6087 args.location = &BTRFS_I(inode)->location;
6088 args.root = BTRFS_I(inode)->root;
6089
6090 return insert_inode_locked4(inode,
6091 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6092 btrfs_find_actor, &args);
6093}
6094
39279cc3
CM
6095static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6096 struct btrfs_root *root,
aec7477b 6097 struct inode *dir,
9c58309d 6098 const char *name, int name_len,
175a4eb7
AV
6099 u64 ref_objectid, u64 objectid,
6100 umode_t mode, u64 *index)
39279cc3
CM
6101{
6102 struct inode *inode;
5f39d397 6103 struct btrfs_inode_item *inode_item;
39279cc3 6104 struct btrfs_key *location;
5f39d397 6105 struct btrfs_path *path;
9c58309d
CM
6106 struct btrfs_inode_ref *ref;
6107 struct btrfs_key key[2];
6108 u32 sizes[2];
ef3b9af5 6109 int nitems = name ? 2 : 1;
9c58309d 6110 unsigned long ptr;
39279cc3 6111 int ret;
39279cc3 6112
5f39d397 6113 path = btrfs_alloc_path();
d8926bb3
MF
6114 if (!path)
6115 return ERR_PTR(-ENOMEM);
5f39d397 6116
39279cc3 6117 inode = new_inode(root->fs_info->sb);
8fb27640
YS
6118 if (!inode) {
6119 btrfs_free_path(path);
39279cc3 6120 return ERR_PTR(-ENOMEM);
8fb27640 6121 }
39279cc3 6122
5762b5c9
FM
6123 /*
6124 * O_TMPFILE, set link count to 0, so that after this point,
6125 * we fill in an inode item with the correct link count.
6126 */
6127 if (!name)
6128 set_nlink(inode, 0);
6129
581bb050
LZ
6130 /*
6131 * we have to initialize this early, so we can reclaim the inode
6132 * number if we fail afterwards in this function.
6133 */
6134 inode->i_ino = objectid;
6135
ef3b9af5 6136 if (dir && name) {
1abe9b8a 6137 trace_btrfs_inode_request(dir);
6138
3de4586c 6139 ret = btrfs_set_inode_index(dir, index);
09771430 6140 if (ret) {
8fb27640 6141 btrfs_free_path(path);
09771430 6142 iput(inode);
aec7477b 6143 return ERR_PTR(ret);
09771430 6144 }
ef3b9af5
FM
6145 } else if (dir) {
6146 *index = 0;
aec7477b
JB
6147 }
6148 /*
6149 * index_cnt is ignored for everything but a dir,
6150 * btrfs_get_inode_index_count has an explanation for the magic
6151 * number
6152 */
6153 BTRFS_I(inode)->index_cnt = 2;
67de1176 6154 BTRFS_I(inode)->dir_index = *index;
39279cc3 6155 BTRFS_I(inode)->root = root;
e02119d5 6156 BTRFS_I(inode)->generation = trans->transid;
76195853 6157 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6158
5dc562c5
JB
6159 /*
6160 * We could have gotten an inode number from somebody who was fsynced
6161 * and then removed in this same transaction, so let's just set full
6162 * sync since it will be a full sync anyway and this will blow away the
6163 * old info in the log.
6164 */
6165 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6166
9c58309d 6167 key[0].objectid = objectid;
962a298f 6168 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6169 key[0].offset = 0;
6170
9c58309d 6171 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6172
6173 if (name) {
6174 /*
6175 * Start new inodes with an inode_ref. This is slightly more
6176 * efficient for small numbers of hard links since they will
6177 * be packed into one item. Extended refs will kick in if we
6178 * add more hard links than can fit in the ref item.
6179 */
6180 key[1].objectid = objectid;
962a298f 6181 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6182 key[1].offset = ref_objectid;
6183
6184 sizes[1] = name_len + sizeof(*ref);
6185 }
9c58309d 6186
b0d5d10f
CM
6187 location = &BTRFS_I(inode)->location;
6188 location->objectid = objectid;
6189 location->offset = 0;
962a298f 6190 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6191
6192 ret = btrfs_insert_inode_locked(inode);
6193 if (ret < 0)
6194 goto fail;
6195
b9473439 6196 path->leave_spinning = 1;
ef3b9af5 6197 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6198 if (ret != 0)
b0d5d10f 6199 goto fail_unlock;
5f39d397 6200
ecc11fab 6201 inode_init_owner(inode, dir, mode);
a76a3cd4 6202 inode_set_bytes(inode, 0);
9cc97d64 6203
04b285f3 6204 inode->i_mtime = current_fs_time(inode->i_sb);
9cc97d64 6205 inode->i_atime = inode->i_mtime;
6206 inode->i_ctime = inode->i_mtime;
6207 BTRFS_I(inode)->i_otime = inode->i_mtime;
6208
5f39d397
CM
6209 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6210 struct btrfs_inode_item);
293f7e07
LZ
6211 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6212 sizeof(*inode_item));
e02119d5 6213 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6214
ef3b9af5
FM
6215 if (name) {
6216 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6217 struct btrfs_inode_ref);
6218 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6219 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6220 ptr = (unsigned long)(ref + 1);
6221 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6222 }
9c58309d 6223
5f39d397
CM
6224 btrfs_mark_buffer_dirty(path->nodes[0]);
6225 btrfs_free_path(path);
6226
6cbff00f
CH
6227 btrfs_inherit_iflags(inode, dir);
6228
569254b0 6229 if (S_ISREG(mode)) {
94272164
CM
6230 if (btrfs_test_opt(root, NODATASUM))
6231 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 6232 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
6233 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6234 BTRFS_INODE_NODATASUM;
94272164
CM
6235 }
6236
5d4f98a2 6237 inode_tree_add(inode);
1abe9b8a 6238
6239 trace_btrfs_inode_new(inode);
1973f0fa 6240 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6241
8ea05e3a
AB
6242 btrfs_update_root_times(trans, root);
6243
63541927
FDBM
6244 ret = btrfs_inode_inherit_props(trans, inode, dir);
6245 if (ret)
6246 btrfs_err(root->fs_info,
6247 "error inheriting props for ino %llu (root %llu): %d",
6248 btrfs_ino(inode), root->root_key.objectid, ret);
6249
39279cc3 6250 return inode;
b0d5d10f
CM
6251
6252fail_unlock:
6253 unlock_new_inode(inode);
5f39d397 6254fail:
ef3b9af5 6255 if (dir && name)
aec7477b 6256 BTRFS_I(dir)->index_cnt--;
5f39d397 6257 btrfs_free_path(path);
09771430 6258 iput(inode);
5f39d397 6259 return ERR_PTR(ret);
39279cc3
CM
6260}
6261
6262static inline u8 btrfs_inode_type(struct inode *inode)
6263{
6264 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6265}
6266
d352ac68
CM
6267/*
6268 * utility function to add 'inode' into 'parent_inode' with
6269 * a give name and a given sequence number.
6270 * if 'add_backref' is true, also insert a backref from the
6271 * inode to the parent directory.
6272 */
e02119d5
CM
6273int btrfs_add_link(struct btrfs_trans_handle *trans,
6274 struct inode *parent_inode, struct inode *inode,
6275 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6276{
4df27c4d 6277 int ret = 0;
39279cc3 6278 struct btrfs_key key;
e02119d5 6279 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
6280 u64 ino = btrfs_ino(inode);
6281 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6282
33345d01 6283 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6284 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6285 } else {
33345d01 6286 key.objectid = ino;
962a298f 6287 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6288 key.offset = 0;
6289 }
6290
33345d01 6291 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6292 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6293 key.objectid, root->root_key.objectid,
33345d01 6294 parent_ino, index, name, name_len);
4df27c4d 6295 } else if (add_backref) {
33345d01
LZ
6296 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6297 parent_ino, index);
4df27c4d 6298 }
39279cc3 6299
79787eaa
JM
6300 /* Nothing to clean up yet */
6301 if (ret)
6302 return ret;
4df27c4d 6303
79787eaa
JM
6304 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6305 parent_inode, &key,
6306 btrfs_inode_type(inode), index);
9c52057c 6307 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6308 goto fail_dir_item;
6309 else if (ret) {
6310 btrfs_abort_transaction(trans, root, ret);
6311 return ret;
39279cc3 6312 }
79787eaa
JM
6313
6314 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6315 name_len * 2);
0c4d2d95 6316 inode_inc_iversion(parent_inode);
04b285f3
DD
6317 parent_inode->i_mtime = parent_inode->i_ctime =
6318 current_fs_time(parent_inode->i_sb);
79787eaa
JM
6319 ret = btrfs_update_inode(trans, root, parent_inode);
6320 if (ret)
6321 btrfs_abort_transaction(trans, root, ret);
39279cc3 6322 return ret;
fe66a05a
CM
6323
6324fail_dir_item:
6325 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6326 u64 local_index;
6327 int err;
6328 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6329 key.objectid, root->root_key.objectid,
6330 parent_ino, &local_index, name, name_len);
6331
6332 } else if (add_backref) {
6333 u64 local_index;
6334 int err;
6335
6336 err = btrfs_del_inode_ref(trans, root, name, name_len,
6337 ino, parent_ino, &local_index);
6338 }
6339 return ret;
39279cc3
CM
6340}
6341
6342static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
6343 struct inode *dir, struct dentry *dentry,
6344 struct inode *inode, int backref, u64 index)
39279cc3 6345{
a1b075d2
JB
6346 int err = btrfs_add_link(trans, dir, inode,
6347 dentry->d_name.name, dentry->d_name.len,
6348 backref, index);
39279cc3
CM
6349 if (err > 0)
6350 err = -EEXIST;
6351 return err;
6352}
6353
618e21d5 6354static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6355 umode_t mode, dev_t rdev)
618e21d5
JB
6356{
6357 struct btrfs_trans_handle *trans;
6358 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6359 struct inode *inode = NULL;
618e21d5
JB
6360 int err;
6361 int drop_inode = 0;
6362 u64 objectid;
00e4e6b3 6363 u64 index = 0;
618e21d5 6364
9ed74f2d
JB
6365 /*
6366 * 2 for inode item and ref
6367 * 2 for dir items
6368 * 1 for xattr if selinux is on
6369 */
a22285a6
YZ
6370 trans = btrfs_start_transaction(root, 5);
6371 if (IS_ERR(trans))
6372 return PTR_ERR(trans);
1832a6d5 6373
581bb050
LZ
6374 err = btrfs_find_free_ino(root, &objectid);
6375 if (err)
6376 goto out_unlock;
6377
aec7477b 6378 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6379 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6380 mode, &index);
7cf96da3
TI
6381 if (IS_ERR(inode)) {
6382 err = PTR_ERR(inode);
618e21d5 6383 goto out_unlock;
7cf96da3 6384 }
618e21d5 6385
ad19db71
CS
6386 /*
6387 * If the active LSM wants to access the inode during
6388 * d_instantiate it needs these. Smack checks to see
6389 * if the filesystem supports xattrs by looking at the
6390 * ops vector.
6391 */
ad19db71 6392 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6393 init_special_inode(inode, inode->i_mode, rdev);
6394
6395 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6396 if (err)
b0d5d10f
CM
6397 goto out_unlock_inode;
6398
6399 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6400 if (err) {
6401 goto out_unlock_inode;
6402 } else {
1b4ab1bb 6403 btrfs_update_inode(trans, root, inode);
b0d5d10f 6404 unlock_new_inode(inode);
08c422c2 6405 d_instantiate(dentry, inode);
618e21d5 6406 }
b0d5d10f 6407
618e21d5 6408out_unlock:
7ad85bb7 6409 btrfs_end_transaction(trans, root);
c581afc8 6410 btrfs_balance_delayed_items(root);
b53d3f5d 6411 btrfs_btree_balance_dirty(root);
618e21d5
JB
6412 if (drop_inode) {
6413 inode_dec_link_count(inode);
6414 iput(inode);
6415 }
618e21d5 6416 return err;
b0d5d10f
CM
6417
6418out_unlock_inode:
6419 drop_inode = 1;
6420 unlock_new_inode(inode);
6421 goto out_unlock;
6422
618e21d5
JB
6423}
6424
39279cc3 6425static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6426 umode_t mode, bool excl)
39279cc3
CM
6427{
6428 struct btrfs_trans_handle *trans;
6429 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6430 struct inode *inode = NULL;
43baa579 6431 int drop_inode_on_err = 0;
a22285a6 6432 int err;
39279cc3 6433 u64 objectid;
00e4e6b3 6434 u64 index = 0;
39279cc3 6435
9ed74f2d
JB
6436 /*
6437 * 2 for inode item and ref
6438 * 2 for dir items
6439 * 1 for xattr if selinux is on
6440 */
a22285a6
YZ
6441 trans = btrfs_start_transaction(root, 5);
6442 if (IS_ERR(trans))
6443 return PTR_ERR(trans);
9ed74f2d 6444
581bb050
LZ
6445 err = btrfs_find_free_ino(root, &objectid);
6446 if (err)
6447 goto out_unlock;
6448
aec7477b 6449 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6450 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6451 mode, &index);
7cf96da3
TI
6452 if (IS_ERR(inode)) {
6453 err = PTR_ERR(inode);
39279cc3 6454 goto out_unlock;
7cf96da3 6455 }
43baa579 6456 drop_inode_on_err = 1;
ad19db71
CS
6457 /*
6458 * If the active LSM wants to access the inode during
6459 * d_instantiate it needs these. Smack checks to see
6460 * if the filesystem supports xattrs by looking at the
6461 * ops vector.
6462 */
6463 inode->i_fop = &btrfs_file_operations;
6464 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6465 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6466
6467 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6468 if (err)
6469 goto out_unlock_inode;
6470
6471 err = btrfs_update_inode(trans, root, inode);
6472 if (err)
6473 goto out_unlock_inode;
ad19db71 6474
a1b075d2 6475 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6476 if (err)
b0d5d10f 6477 goto out_unlock_inode;
43baa579 6478
43baa579 6479 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6480 unlock_new_inode(inode);
43baa579
FB
6481 d_instantiate(dentry, inode);
6482
39279cc3 6483out_unlock:
7ad85bb7 6484 btrfs_end_transaction(trans, root);
43baa579 6485 if (err && drop_inode_on_err) {
39279cc3
CM
6486 inode_dec_link_count(inode);
6487 iput(inode);
6488 }
c581afc8 6489 btrfs_balance_delayed_items(root);
b53d3f5d 6490 btrfs_btree_balance_dirty(root);
39279cc3 6491 return err;
b0d5d10f
CM
6492
6493out_unlock_inode:
6494 unlock_new_inode(inode);
6495 goto out_unlock;
6496
39279cc3
CM
6497}
6498
6499static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6500 struct dentry *dentry)
6501{
271dba45 6502 struct btrfs_trans_handle *trans = NULL;
39279cc3 6503 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6504 struct inode *inode = d_inode(old_dentry);
00e4e6b3 6505 u64 index;
39279cc3
CM
6506 int err;
6507 int drop_inode = 0;
6508
4a8be425
TH
6509 /* do not allow sys_link's with other subvols of the same device */
6510 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6511 return -EXDEV;
4a8be425 6512
f186373f 6513 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6514 return -EMLINK;
4a8be425 6515
3de4586c 6516 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6517 if (err)
6518 goto fail;
6519
a22285a6 6520 /*
7e6b6465 6521 * 2 items for inode and inode ref
a22285a6 6522 * 2 items for dir items
7e6b6465 6523 * 1 item for parent inode
a22285a6 6524 */
7e6b6465 6525 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6526 if (IS_ERR(trans)) {
6527 err = PTR_ERR(trans);
271dba45 6528 trans = NULL;
a22285a6
YZ
6529 goto fail;
6530 }
5f39d397 6531
67de1176
MX
6532 /* There are several dir indexes for this inode, clear the cache. */
6533 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6534 inc_nlink(inode);
0c4d2d95 6535 inode_inc_iversion(inode);
04b285f3 6536 inode->i_ctime = current_fs_time(inode->i_sb);
7de9c6ee 6537 ihold(inode);
e9976151 6538 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6539
a1b075d2 6540 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6541
a5719521 6542 if (err) {
54aa1f4d 6543 drop_inode = 1;
a5719521 6544 } else {
10d9f309 6545 struct dentry *parent = dentry->d_parent;
a5719521 6546 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6547 if (err)
6548 goto fail;
ef3b9af5
FM
6549 if (inode->i_nlink == 1) {
6550 /*
6551 * If new hard link count is 1, it's a file created
6552 * with open(2) O_TMPFILE flag.
6553 */
6554 err = btrfs_orphan_del(trans, inode);
6555 if (err)
6556 goto fail;
6557 }
08c422c2 6558 d_instantiate(dentry, inode);
6a912213 6559 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6560 }
39279cc3 6561
c581afc8 6562 btrfs_balance_delayed_items(root);
1832a6d5 6563fail:
271dba45
FM
6564 if (trans)
6565 btrfs_end_transaction(trans, root);
39279cc3
CM
6566 if (drop_inode) {
6567 inode_dec_link_count(inode);
6568 iput(inode);
6569 }
b53d3f5d 6570 btrfs_btree_balance_dirty(root);
39279cc3
CM
6571 return err;
6572}
6573
18bb1db3 6574static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6575{
b9d86667 6576 struct inode *inode = NULL;
39279cc3
CM
6577 struct btrfs_trans_handle *trans;
6578 struct btrfs_root *root = BTRFS_I(dir)->root;
6579 int err = 0;
6580 int drop_on_err = 0;
b9d86667 6581 u64 objectid = 0;
00e4e6b3 6582 u64 index = 0;
39279cc3 6583
9ed74f2d
JB
6584 /*
6585 * 2 items for inode and ref
6586 * 2 items for dir items
6587 * 1 for xattr if selinux is on
6588 */
a22285a6
YZ
6589 trans = btrfs_start_transaction(root, 5);
6590 if (IS_ERR(trans))
6591 return PTR_ERR(trans);
39279cc3 6592
581bb050
LZ
6593 err = btrfs_find_free_ino(root, &objectid);
6594 if (err)
6595 goto out_fail;
6596
aec7477b 6597 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6598 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6599 S_IFDIR | mode, &index);
39279cc3
CM
6600 if (IS_ERR(inode)) {
6601 err = PTR_ERR(inode);
6602 goto out_fail;
6603 }
5f39d397 6604
39279cc3 6605 drop_on_err = 1;
b0d5d10f
CM
6606 /* these must be set before we unlock the inode */
6607 inode->i_op = &btrfs_dir_inode_operations;
6608 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6609
2a7dba39 6610 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6611 if (err)
b0d5d10f 6612 goto out_fail_inode;
39279cc3 6613
dbe674a9 6614 btrfs_i_size_write(inode, 0);
39279cc3
CM
6615 err = btrfs_update_inode(trans, root, inode);
6616 if (err)
b0d5d10f 6617 goto out_fail_inode;
5f39d397 6618
a1b075d2
JB
6619 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6620 dentry->d_name.len, 0, index);
39279cc3 6621 if (err)
b0d5d10f 6622 goto out_fail_inode;
5f39d397 6623
39279cc3 6624 d_instantiate(dentry, inode);
b0d5d10f
CM
6625 /*
6626 * mkdir is special. We're unlocking after we call d_instantiate
6627 * to avoid a race with nfsd calling d_instantiate.
6628 */
6629 unlock_new_inode(inode);
39279cc3 6630 drop_on_err = 0;
39279cc3
CM
6631
6632out_fail:
7ad85bb7 6633 btrfs_end_transaction(trans, root);
c7cfb8a5
WS
6634 if (drop_on_err) {
6635 inode_dec_link_count(inode);
39279cc3 6636 iput(inode);
c7cfb8a5 6637 }
c581afc8 6638 btrfs_balance_delayed_items(root);
b53d3f5d 6639 btrfs_btree_balance_dirty(root);
39279cc3 6640 return err;
b0d5d10f
CM
6641
6642out_fail_inode:
6643 unlock_new_inode(inode);
6644 goto out_fail;
39279cc3
CM
6645}
6646
e6c4efd8
QW
6647/* Find next extent map of a given extent map, caller needs to ensure locks */
6648static struct extent_map *next_extent_map(struct extent_map *em)
6649{
6650 struct rb_node *next;
6651
6652 next = rb_next(&em->rb_node);
6653 if (!next)
6654 return NULL;
6655 return container_of(next, struct extent_map, rb_node);
6656}
6657
6658static struct extent_map *prev_extent_map(struct extent_map *em)
6659{
6660 struct rb_node *prev;
6661
6662 prev = rb_prev(&em->rb_node);
6663 if (!prev)
6664 return NULL;
6665 return container_of(prev, struct extent_map, rb_node);
6666}
6667
d352ac68 6668/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6669 * the existing extent is the nearest extent to map_start,
d352ac68 6670 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6671 * the best fitted new extent into the tree.
d352ac68 6672 */
3b951516
CM
6673static int merge_extent_mapping(struct extent_map_tree *em_tree,
6674 struct extent_map *existing,
e6dcd2dc 6675 struct extent_map *em,
51f395ad 6676 u64 map_start)
3b951516 6677{
e6c4efd8
QW
6678 struct extent_map *prev;
6679 struct extent_map *next;
6680 u64 start;
6681 u64 end;
3b951516 6682 u64 start_diff;
3b951516 6683
e6dcd2dc 6684 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6685
6686 if (existing->start > map_start) {
6687 next = existing;
6688 prev = prev_extent_map(next);
6689 } else {
6690 prev = existing;
6691 next = next_extent_map(prev);
6692 }
6693
6694 start = prev ? extent_map_end(prev) : em->start;
6695 start = max_t(u64, start, em->start);
6696 end = next ? next->start : extent_map_end(em);
6697 end = min_t(u64, end, extent_map_end(em));
6698 start_diff = start - em->start;
6699 em->start = start;
6700 em->len = end - start;
c8b97818
CM
6701 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6702 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6703 em->block_start += start_diff;
c8b97818
CM
6704 em->block_len -= start_diff;
6705 }
09a2a8f9 6706 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6707}
6708
c8b97818 6709static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6710 struct page *page,
c8b97818
CM
6711 size_t pg_offset, u64 extent_offset,
6712 struct btrfs_file_extent_item *item)
6713{
6714 int ret;
6715 struct extent_buffer *leaf = path->nodes[0];
6716 char *tmp;
6717 size_t max_size;
6718 unsigned long inline_size;
6719 unsigned long ptr;
261507a0 6720 int compress_type;
c8b97818
CM
6721
6722 WARN_ON(pg_offset != 0);
261507a0 6723 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6724 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6725 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6726 btrfs_item_nr(path->slots[0]));
c8b97818 6727 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6728 if (!tmp)
6729 return -ENOMEM;
c8b97818
CM
6730 ptr = btrfs_file_extent_inline_start(item);
6731
6732 read_extent_buffer(leaf, tmp, ptr, inline_size);
6733
09cbfeaf 6734 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6735 ret = btrfs_decompress(compress_type, tmp, page,
6736 extent_offset, inline_size, max_size);
c8b97818 6737 kfree(tmp);
166ae5a4 6738 return ret;
c8b97818
CM
6739}
6740
d352ac68
CM
6741/*
6742 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6743 * the ugly parts come from merging extents from the disk with the in-ram
6744 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6745 * where the in-ram extents might be locked pending data=ordered completion.
6746 *
6747 * This also copies inline extents directly into the page.
6748 */
d397712b 6749
a52d9a80 6750struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6751 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6752 int create)
6753{
6754 int ret;
6755 int err = 0;
a52d9a80
CM
6756 u64 extent_start = 0;
6757 u64 extent_end = 0;
33345d01 6758 u64 objectid = btrfs_ino(inode);
a52d9a80 6759 u32 found_type;
f421950f 6760 struct btrfs_path *path = NULL;
a52d9a80
CM
6761 struct btrfs_root *root = BTRFS_I(inode)->root;
6762 struct btrfs_file_extent_item *item;
5f39d397
CM
6763 struct extent_buffer *leaf;
6764 struct btrfs_key found_key;
a52d9a80
CM
6765 struct extent_map *em = NULL;
6766 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6767 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6768 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6769 const bool new_inline = !page || create;
a52d9a80 6770
a52d9a80 6771again:
890871be 6772 read_lock(&em_tree->lock);
d1310b2e 6773 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6774 if (em)
6775 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6776 read_unlock(&em_tree->lock);
d1310b2e 6777
a52d9a80 6778 if (em) {
e1c4b745
CM
6779 if (em->start > start || em->start + em->len <= start)
6780 free_extent_map(em);
6781 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6782 free_extent_map(em);
6783 else
6784 goto out;
a52d9a80 6785 }
172ddd60 6786 em = alloc_extent_map();
a52d9a80 6787 if (!em) {
d1310b2e
CM
6788 err = -ENOMEM;
6789 goto out;
a52d9a80 6790 }
e6dcd2dc 6791 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6792 em->start = EXTENT_MAP_HOLE;
445a6944 6793 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6794 em->len = (u64)-1;
c8b97818 6795 em->block_len = (u64)-1;
f421950f
CM
6796
6797 if (!path) {
6798 path = btrfs_alloc_path();
026fd317
JB
6799 if (!path) {
6800 err = -ENOMEM;
6801 goto out;
6802 }
6803 /*
6804 * Chances are we'll be called again, so go ahead and do
6805 * readahead
6806 */
e4058b54 6807 path->reada = READA_FORWARD;
f421950f
CM
6808 }
6809
179e29e4
CM
6810 ret = btrfs_lookup_file_extent(trans, root, path,
6811 objectid, start, trans != NULL);
a52d9a80
CM
6812 if (ret < 0) {
6813 err = ret;
6814 goto out;
6815 }
6816
6817 if (ret != 0) {
6818 if (path->slots[0] == 0)
6819 goto not_found;
6820 path->slots[0]--;
6821 }
6822
5f39d397
CM
6823 leaf = path->nodes[0];
6824 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6825 struct btrfs_file_extent_item);
a52d9a80 6826 /* are we inside the extent that was found? */
5f39d397 6827 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6828 found_type = found_key.type;
5f39d397 6829 if (found_key.objectid != objectid ||
a52d9a80 6830 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6831 /*
6832 * If we backup past the first extent we want to move forward
6833 * and see if there is an extent in front of us, otherwise we'll
6834 * say there is a hole for our whole search range which can
6835 * cause problems.
6836 */
6837 extent_end = start;
6838 goto next;
a52d9a80
CM
6839 }
6840
5f39d397
CM
6841 found_type = btrfs_file_extent_type(leaf, item);
6842 extent_start = found_key.offset;
d899e052
YZ
6843 if (found_type == BTRFS_FILE_EXTENT_REG ||
6844 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6845 extent_end = extent_start +
db94535d 6846 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6847 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6848 size_t size;
514ac8ad 6849 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6850 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6851 }
25a50341 6852next:
9036c102
YZ
6853 if (start >= extent_end) {
6854 path->slots[0]++;
6855 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6856 ret = btrfs_next_leaf(root, path);
6857 if (ret < 0) {
6858 err = ret;
6859 goto out;
a52d9a80 6860 }
9036c102
YZ
6861 if (ret > 0)
6862 goto not_found;
6863 leaf = path->nodes[0];
a52d9a80 6864 }
9036c102
YZ
6865 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6866 if (found_key.objectid != objectid ||
6867 found_key.type != BTRFS_EXTENT_DATA_KEY)
6868 goto not_found;
6869 if (start + len <= found_key.offset)
6870 goto not_found;
e2eca69d
WS
6871 if (start > found_key.offset)
6872 goto next;
9036c102 6873 em->start = start;
70c8a91c 6874 em->orig_start = start;
9036c102
YZ
6875 em->len = found_key.offset - start;
6876 goto not_found_em;
6877 }
6878
7ffbb598
FM
6879 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6880
d899e052
YZ
6881 if (found_type == BTRFS_FILE_EXTENT_REG ||
6882 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6883 goto insert;
6884 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6885 unsigned long ptr;
a52d9a80 6886 char *map;
3326d1b0
CM
6887 size_t size;
6888 size_t extent_offset;
6889 size_t copy_size;
a52d9a80 6890
7ffbb598 6891 if (new_inline)
689f9346 6892 goto out;
5f39d397 6893
514ac8ad 6894 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6895 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6896 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6897 size - extent_offset);
3326d1b0 6898 em->start = extent_start + extent_offset;
fda2832f 6899 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6900 em->orig_block_len = em->len;
70c8a91c 6901 em->orig_start = em->start;
689f9346 6902 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6903 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6904 if (btrfs_file_extent_compression(leaf, item) !=
6905 BTRFS_COMPRESS_NONE) {
e40da0e5 6906 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6907 extent_offset, item);
166ae5a4
ZB
6908 if (ret) {
6909 err = ret;
6910 goto out;
6911 }
c8b97818
CM
6912 } else {
6913 map = kmap(page);
6914 read_extent_buffer(leaf, map + pg_offset, ptr,
6915 copy_size);
09cbfeaf 6916 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6917 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6918 PAGE_SIZE - pg_offset -
93c82d57
CM
6919 copy_size);
6920 }
c8b97818
CM
6921 kunmap(page);
6922 }
179e29e4
CM
6923 flush_dcache_page(page);
6924 } else if (create && PageUptodate(page)) {
6bf7e080 6925 BUG();
179e29e4
CM
6926 if (!trans) {
6927 kunmap(page);
6928 free_extent_map(em);
6929 em = NULL;
ff5714cc 6930
b3b4aa74 6931 btrfs_release_path(path);
7a7eaa40 6932 trans = btrfs_join_transaction(root);
ff5714cc 6933
3612b495
TI
6934 if (IS_ERR(trans))
6935 return ERR_CAST(trans);
179e29e4
CM
6936 goto again;
6937 }
c8b97818 6938 map = kmap(page);
70dec807 6939 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6940 copy_size);
c8b97818 6941 kunmap(page);
179e29e4 6942 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6943 }
d1310b2e 6944 set_extent_uptodate(io_tree, em->start,
507903b8 6945 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6946 goto insert;
a52d9a80
CM
6947 }
6948not_found:
6949 em->start = start;
70c8a91c 6950 em->orig_start = start;
d1310b2e 6951 em->len = len;
a52d9a80 6952not_found_em:
5f39d397 6953 em->block_start = EXTENT_MAP_HOLE;
9036c102 6954 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6955insert:
b3b4aa74 6956 btrfs_release_path(path);
d1310b2e 6957 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6958 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6959 em->start, em->len, start, len);
a52d9a80
CM
6960 err = -EIO;
6961 goto out;
6962 }
d1310b2e
CM
6963
6964 err = 0;
890871be 6965 write_lock(&em_tree->lock);
09a2a8f9 6966 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6967 /* it is possible that someone inserted the extent into the tree
6968 * while we had the lock dropped. It is also possible that
6969 * an overlapping map exists in the tree
6970 */
a52d9a80 6971 if (ret == -EEXIST) {
3b951516 6972 struct extent_map *existing;
e6dcd2dc
CM
6973
6974 ret = 0;
6975
e6c4efd8
QW
6976 existing = search_extent_mapping(em_tree, start, len);
6977 /*
6978 * existing will always be non-NULL, since there must be
6979 * extent causing the -EEXIST.
6980 */
8dff9c85
CM
6981 if (existing->start == em->start &&
6982 extent_map_end(existing) == extent_map_end(em) &&
6983 em->block_start == existing->block_start) {
6984 /*
6985 * these two extents are the same, it happens
6986 * with inlines especially
6987 */
6988 free_extent_map(em);
6989 em = existing;
6990 err = 0;
6991
6992 } else if (start >= extent_map_end(existing) ||
32be3a1a 6993 start <= existing->start) {
e6c4efd8
QW
6994 /*
6995 * The existing extent map is the one nearest to
6996 * the [start, start + len) range which overlaps
6997 */
6998 err = merge_extent_mapping(em_tree, existing,
6999 em, start);
e1c4b745 7000 free_extent_map(existing);
e6c4efd8 7001 if (err) {
3b951516
CM
7002 free_extent_map(em);
7003 em = NULL;
7004 }
7005 } else {
7006 free_extent_map(em);
7007 em = existing;
e6dcd2dc 7008 err = 0;
a52d9a80 7009 }
a52d9a80 7010 }
890871be 7011 write_unlock(&em_tree->lock);
a52d9a80 7012out:
1abe9b8a 7013
4cd8587c 7014 trace_btrfs_get_extent(root, em);
1abe9b8a 7015
527afb44 7016 btrfs_free_path(path);
a52d9a80
CM
7017 if (trans) {
7018 ret = btrfs_end_transaction(trans, root);
d397712b 7019 if (!err)
a52d9a80
CM
7020 err = ret;
7021 }
a52d9a80
CM
7022 if (err) {
7023 free_extent_map(em);
a52d9a80
CM
7024 return ERR_PTR(err);
7025 }
79787eaa 7026 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7027 return em;
7028}
7029
ec29ed5b
CM
7030struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7031 size_t pg_offset, u64 start, u64 len,
7032 int create)
7033{
7034 struct extent_map *em;
7035 struct extent_map *hole_em = NULL;
7036 u64 range_start = start;
7037 u64 end;
7038 u64 found;
7039 u64 found_end;
7040 int err = 0;
7041
7042 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7043 if (IS_ERR(em))
7044 return em;
7045 if (em) {
7046 /*
f9e4fb53
LB
7047 * if our em maps to
7048 * - a hole or
7049 * - a pre-alloc extent,
7050 * there might actually be delalloc bytes behind it.
ec29ed5b 7051 */
f9e4fb53
LB
7052 if (em->block_start != EXTENT_MAP_HOLE &&
7053 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
7054 return em;
7055 else
7056 hole_em = em;
7057 }
7058
7059 /* check to see if we've wrapped (len == -1 or similar) */
7060 end = start + len;
7061 if (end < start)
7062 end = (u64)-1;
7063 else
7064 end -= 1;
7065
7066 em = NULL;
7067
7068 /* ok, we didn't find anything, lets look for delalloc */
7069 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7070 end, len, EXTENT_DELALLOC, 1);
7071 found_end = range_start + found;
7072 if (found_end < range_start)
7073 found_end = (u64)-1;
7074
7075 /*
7076 * we didn't find anything useful, return
7077 * the original results from get_extent()
7078 */
7079 if (range_start > end || found_end <= start) {
7080 em = hole_em;
7081 hole_em = NULL;
7082 goto out;
7083 }
7084
7085 /* adjust the range_start to make sure it doesn't
7086 * go backwards from the start they passed in
7087 */
67871254 7088 range_start = max(start, range_start);
ec29ed5b
CM
7089 found = found_end - range_start;
7090
7091 if (found > 0) {
7092 u64 hole_start = start;
7093 u64 hole_len = len;
7094
172ddd60 7095 em = alloc_extent_map();
ec29ed5b
CM
7096 if (!em) {
7097 err = -ENOMEM;
7098 goto out;
7099 }
7100 /*
7101 * when btrfs_get_extent can't find anything it
7102 * returns one huge hole
7103 *
7104 * make sure what it found really fits our range, and
7105 * adjust to make sure it is based on the start from
7106 * the caller
7107 */
7108 if (hole_em) {
7109 u64 calc_end = extent_map_end(hole_em);
7110
7111 if (calc_end <= start || (hole_em->start > end)) {
7112 free_extent_map(hole_em);
7113 hole_em = NULL;
7114 } else {
7115 hole_start = max(hole_em->start, start);
7116 hole_len = calc_end - hole_start;
7117 }
7118 }
7119 em->bdev = NULL;
7120 if (hole_em && range_start > hole_start) {
7121 /* our hole starts before our delalloc, so we
7122 * have to return just the parts of the hole
7123 * that go until the delalloc starts
7124 */
7125 em->len = min(hole_len,
7126 range_start - hole_start);
7127 em->start = hole_start;
7128 em->orig_start = hole_start;
7129 /*
7130 * don't adjust block start at all,
7131 * it is fixed at EXTENT_MAP_HOLE
7132 */
7133 em->block_start = hole_em->block_start;
7134 em->block_len = hole_len;
f9e4fb53
LB
7135 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7136 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7137 } else {
7138 em->start = range_start;
7139 em->len = found;
7140 em->orig_start = range_start;
7141 em->block_start = EXTENT_MAP_DELALLOC;
7142 em->block_len = found;
7143 }
7144 } else if (hole_em) {
7145 return hole_em;
7146 }
7147out:
7148
7149 free_extent_map(hole_em);
7150 if (err) {
7151 free_extent_map(em);
7152 return ERR_PTR(err);
7153 }
7154 return em;
7155}
7156
5f9a8a51
FM
7157static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7158 const u64 start,
7159 const u64 len,
7160 const u64 orig_start,
7161 const u64 block_start,
7162 const u64 block_len,
7163 const u64 orig_block_len,
7164 const u64 ram_bytes,
7165 const int type)
7166{
7167 struct extent_map *em = NULL;
7168 int ret;
7169
7170 down_read(&BTRFS_I(inode)->dio_sem);
7171 if (type != BTRFS_ORDERED_NOCOW) {
7172 em = create_pinned_em(inode, start, len, orig_start,
7173 block_start, block_len, orig_block_len,
7174 ram_bytes, type);
7175 if (IS_ERR(em))
7176 goto out;
7177 }
7178 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7179 len, block_len, type);
7180 if (ret) {
7181 if (em) {
7182 free_extent_map(em);
7183 btrfs_drop_extent_cache(inode, start,
7184 start + len - 1, 0);
7185 }
7186 em = ERR_PTR(ret);
7187 }
7188 out:
7189 up_read(&BTRFS_I(inode)->dio_sem);
7190
7191 return em;
7192}
7193
4b46fce2
JB
7194static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7195 u64 start, u64 len)
7196{
7197 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7198 struct extent_map *em;
4b46fce2
JB
7199 struct btrfs_key ins;
7200 u64 alloc_hint;
7201 int ret;
4b46fce2 7202
4b46fce2 7203 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 7204 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
e570fd27 7205 alloc_hint, &ins, 1, 1);
00361589
JB
7206 if (ret)
7207 return ERR_PTR(ret);
4b46fce2 7208
5f9a8a51
FM
7209 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7210 ins.objectid, ins.offset, ins.offset,
7211 ins.offset, 0);
9cfa3e34 7212 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
5f9a8a51 7213 if (IS_ERR(em))
e570fd27 7214 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
de0ee0ed 7215
4b46fce2
JB
7216 return em;
7217}
7218
46bfbb5c
CM
7219/*
7220 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7221 * block must be cow'd
7222 */
00361589 7223noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7224 u64 *orig_start, u64 *orig_block_len,
7225 u64 *ram_bytes)
46bfbb5c 7226{
00361589 7227 struct btrfs_trans_handle *trans;
46bfbb5c
CM
7228 struct btrfs_path *path;
7229 int ret;
7230 struct extent_buffer *leaf;
7231 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7232 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7233 struct btrfs_file_extent_item *fi;
7234 struct btrfs_key key;
7235 u64 disk_bytenr;
7236 u64 backref_offset;
7237 u64 extent_end;
7238 u64 num_bytes;
7239 int slot;
7240 int found_type;
7ee9e440 7241 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7242
46bfbb5c
CM
7243 path = btrfs_alloc_path();
7244 if (!path)
7245 return -ENOMEM;
7246
00361589 7247 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
7248 offset, 0);
7249 if (ret < 0)
7250 goto out;
7251
7252 slot = path->slots[0];
7253 if (ret == 1) {
7254 if (slot == 0) {
7255 /* can't find the item, must cow */
7256 ret = 0;
7257 goto out;
7258 }
7259 slot--;
7260 }
7261 ret = 0;
7262 leaf = path->nodes[0];
7263 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 7264 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
7265 key.type != BTRFS_EXTENT_DATA_KEY) {
7266 /* not our file or wrong item type, must cow */
7267 goto out;
7268 }
7269
7270 if (key.offset > offset) {
7271 /* Wrong offset, must cow */
7272 goto out;
7273 }
7274
7275 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7276 found_type = btrfs_file_extent_type(leaf, fi);
7277 if (found_type != BTRFS_FILE_EXTENT_REG &&
7278 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7279 /* not a regular extent, must cow */
7280 goto out;
7281 }
7ee9e440
JB
7282
7283 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7284 goto out;
7285
e77751aa
MX
7286 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7287 if (extent_end <= offset)
7288 goto out;
7289
46bfbb5c 7290 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7291 if (disk_bytenr == 0)
7292 goto out;
7293
7294 if (btrfs_file_extent_compression(leaf, fi) ||
7295 btrfs_file_extent_encryption(leaf, fi) ||
7296 btrfs_file_extent_other_encoding(leaf, fi))
7297 goto out;
7298
46bfbb5c
CM
7299 backref_offset = btrfs_file_extent_offset(leaf, fi);
7300
7ee9e440
JB
7301 if (orig_start) {
7302 *orig_start = key.offset - backref_offset;
7303 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7304 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7305 }
eb384b55 7306
46bfbb5c
CM
7307 if (btrfs_extent_readonly(root, disk_bytenr))
7308 goto out;
7b2b7085
MX
7309
7310 num_bytes = min(offset + *len, extent_end) - offset;
7311 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7312 u64 range_end;
7313
7314 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7315 ret = test_range_bit(io_tree, offset, range_end,
7316 EXTENT_DELALLOC, 0, NULL);
7317 if (ret) {
7318 ret = -EAGAIN;
7319 goto out;
7320 }
7321 }
7322
1bda19eb 7323 btrfs_release_path(path);
46bfbb5c
CM
7324
7325 /*
7326 * look for other files referencing this extent, if we
7327 * find any we must cow
7328 */
00361589
JB
7329 trans = btrfs_join_transaction(root);
7330 if (IS_ERR(trans)) {
7331 ret = 0;
46bfbb5c 7332 goto out;
00361589
JB
7333 }
7334
7335 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7336 key.offset - backref_offset, disk_bytenr);
7337 btrfs_end_transaction(trans, root);
7338 if (ret) {
7339 ret = 0;
7340 goto out;
7341 }
46bfbb5c
CM
7342
7343 /*
7344 * adjust disk_bytenr and num_bytes to cover just the bytes
7345 * in this extent we are about to write. If there
7346 * are any csums in that range we have to cow in order
7347 * to keep the csums correct
7348 */
7349 disk_bytenr += backref_offset;
7350 disk_bytenr += offset - key.offset;
46bfbb5c
CM
7351 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7352 goto out;
7353 /*
7354 * all of the above have passed, it is safe to overwrite this extent
7355 * without cow
7356 */
eb384b55 7357 *len = num_bytes;
46bfbb5c
CM
7358 ret = 1;
7359out:
7360 btrfs_free_path(path);
7361 return ret;
7362}
7363
fc4adbff
AG
7364bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7365{
7366 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7367 int found = false;
7368 void **pagep = NULL;
7369 struct page *page = NULL;
7370 int start_idx;
7371 int end_idx;
7372
09cbfeaf 7373 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7374
7375 /*
7376 * end is the last byte in the last page. end == start is legal
7377 */
09cbfeaf 7378 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7379
7380 rcu_read_lock();
7381
7382 /* Most of the code in this while loop is lifted from
7383 * find_get_page. It's been modified to begin searching from a
7384 * page and return just the first page found in that range. If the
7385 * found idx is less than or equal to the end idx then we know that
7386 * a page exists. If no pages are found or if those pages are
7387 * outside of the range then we're fine (yay!) */
7388 while (page == NULL &&
7389 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7390 page = radix_tree_deref_slot(pagep);
7391 if (unlikely(!page))
7392 break;
7393
7394 if (radix_tree_exception(page)) {
809f9016
FM
7395 if (radix_tree_deref_retry(page)) {
7396 page = NULL;
fc4adbff 7397 continue;
809f9016 7398 }
fc4adbff
AG
7399 /*
7400 * Otherwise, shmem/tmpfs must be storing a swap entry
7401 * here as an exceptional entry: so return it without
7402 * attempting to raise page count.
7403 */
6fdef6d4 7404 page = NULL;
fc4adbff
AG
7405 break; /* TODO: Is this relevant for this use case? */
7406 }
7407
91405151
FM
7408 if (!page_cache_get_speculative(page)) {
7409 page = NULL;
fc4adbff 7410 continue;
91405151 7411 }
fc4adbff
AG
7412
7413 /*
7414 * Has the page moved?
7415 * This is part of the lockless pagecache protocol. See
7416 * include/linux/pagemap.h for details.
7417 */
7418 if (unlikely(page != *pagep)) {
09cbfeaf 7419 put_page(page);
fc4adbff
AG
7420 page = NULL;
7421 }
7422 }
7423
7424 if (page) {
7425 if (page->index <= end_idx)
7426 found = true;
09cbfeaf 7427 put_page(page);
fc4adbff
AG
7428 }
7429
7430 rcu_read_unlock();
7431 return found;
7432}
7433
eb838e73
JB
7434static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7435 struct extent_state **cached_state, int writing)
7436{
7437 struct btrfs_ordered_extent *ordered;
7438 int ret = 0;
7439
7440 while (1) {
7441 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7442 cached_state);
eb838e73
JB
7443 /*
7444 * We're concerned with the entire range that we're going to be
01327610 7445 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7446 * extents in this range.
7447 */
7448 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7449 lockend - lockstart + 1);
7450
7451 /*
7452 * We need to make sure there are no buffered pages in this
7453 * range either, we could have raced between the invalidate in
7454 * generic_file_direct_write and locking the extent. The
7455 * invalidate needs to happen so that reads after a write do not
7456 * get stale data.
7457 */
fc4adbff
AG
7458 if (!ordered &&
7459 (!writing ||
7460 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7461 break;
7462
7463 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7464 cached_state, GFP_NOFS);
7465
7466 if (ordered) {
ade77029
FM
7467 /*
7468 * If we are doing a DIO read and the ordered extent we
7469 * found is for a buffered write, we can not wait for it
7470 * to complete and retry, because if we do so we can
7471 * deadlock with concurrent buffered writes on page
7472 * locks. This happens only if our DIO read covers more
7473 * than one extent map, if at this point has already
7474 * created an ordered extent for a previous extent map
7475 * and locked its range in the inode's io tree, and a
7476 * concurrent write against that previous extent map's
7477 * range and this range started (we unlock the ranges
7478 * in the io tree only when the bios complete and
7479 * buffered writes always lock pages before attempting
7480 * to lock range in the io tree).
7481 */
7482 if (writing ||
7483 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7484 btrfs_start_ordered_extent(inode, ordered, 1);
7485 else
7486 ret = -ENOTBLK;
eb838e73
JB
7487 btrfs_put_ordered_extent(ordered);
7488 } else {
eb838e73 7489 /*
b850ae14
FM
7490 * We could trigger writeback for this range (and wait
7491 * for it to complete) and then invalidate the pages for
7492 * this range (through invalidate_inode_pages2_range()),
7493 * but that can lead us to a deadlock with a concurrent
7494 * call to readpages() (a buffered read or a defrag call
7495 * triggered a readahead) on a page lock due to an
7496 * ordered dio extent we created before but did not have
7497 * yet a corresponding bio submitted (whence it can not
7498 * complete), which makes readpages() wait for that
7499 * ordered extent to complete while holding a lock on
7500 * that page.
eb838e73 7501 */
b850ae14 7502 ret = -ENOTBLK;
eb838e73
JB
7503 }
7504
ade77029
FM
7505 if (ret)
7506 break;
7507
eb838e73
JB
7508 cond_resched();
7509 }
7510
7511 return ret;
7512}
7513
69ffb543
JB
7514static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7515 u64 len, u64 orig_start,
7516 u64 block_start, u64 block_len,
cc95bef6
JB
7517 u64 orig_block_len, u64 ram_bytes,
7518 int type)
69ffb543
JB
7519{
7520 struct extent_map_tree *em_tree;
7521 struct extent_map *em;
7522 struct btrfs_root *root = BTRFS_I(inode)->root;
7523 int ret;
7524
7525 em_tree = &BTRFS_I(inode)->extent_tree;
7526 em = alloc_extent_map();
7527 if (!em)
7528 return ERR_PTR(-ENOMEM);
7529
7530 em->start = start;
7531 em->orig_start = orig_start;
2ab28f32
JB
7532 em->mod_start = start;
7533 em->mod_len = len;
69ffb543
JB
7534 em->len = len;
7535 em->block_len = block_len;
7536 em->block_start = block_start;
7537 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7538 em->orig_block_len = orig_block_len;
cc95bef6 7539 em->ram_bytes = ram_bytes;
70c8a91c 7540 em->generation = -1;
69ffb543
JB
7541 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7542 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7543 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7544
7545 do {
7546 btrfs_drop_extent_cache(inode, em->start,
7547 em->start + em->len - 1, 0);
7548 write_lock(&em_tree->lock);
09a2a8f9 7549 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7550 write_unlock(&em_tree->lock);
7551 } while (ret == -EEXIST);
7552
7553 if (ret) {
7554 free_extent_map(em);
7555 return ERR_PTR(ret);
7556 }
7557
7558 return em;
7559}
7560
9c9464cc
FM
7561static void adjust_dio_outstanding_extents(struct inode *inode,
7562 struct btrfs_dio_data *dio_data,
7563 const u64 len)
7564{
7565 unsigned num_extents;
7566
7567 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7568 BTRFS_MAX_EXTENT_SIZE);
7569 /*
7570 * If we have an outstanding_extents count still set then we're
7571 * within our reservation, otherwise we need to adjust our inode
7572 * counter appropriately.
7573 */
7574 if (dio_data->outstanding_extents) {
7575 dio_data->outstanding_extents -= num_extents;
7576 } else {
7577 spin_lock(&BTRFS_I(inode)->lock);
7578 BTRFS_I(inode)->outstanding_extents += num_extents;
7579 spin_unlock(&BTRFS_I(inode)->lock);
7580 }
7581}
7582
4b46fce2
JB
7583static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7584 struct buffer_head *bh_result, int create)
7585{
7586 struct extent_map *em;
7587 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7588 struct extent_state *cached_state = NULL;
50745b0a 7589 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7590 u64 start = iblock << inode->i_blkbits;
eb838e73 7591 u64 lockstart, lockend;
4b46fce2 7592 u64 len = bh_result->b_size;
eb838e73 7593 int unlock_bits = EXTENT_LOCKED;
0934856d 7594 int ret = 0;
eb838e73 7595
172a5049 7596 if (create)
3266789f 7597 unlock_bits |= EXTENT_DIRTY;
172a5049 7598 else
c329861d 7599 len = min_t(u64, len, root->sectorsize);
eb838e73 7600
c329861d
JB
7601 lockstart = start;
7602 lockend = start + len - 1;
7603
e1cbbfa5
JB
7604 if (current->journal_info) {
7605 /*
7606 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7607 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7608 * confused.
7609 */
50745b0a 7610 dio_data = current->journal_info;
e1cbbfa5
JB
7611 current->journal_info = NULL;
7612 }
7613
eb838e73
JB
7614 /*
7615 * If this errors out it's because we couldn't invalidate pagecache for
7616 * this range and we need to fallback to buffered.
7617 */
9c9464cc
FM
7618 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7619 create)) {
7620 ret = -ENOTBLK;
7621 goto err;
7622 }
eb838e73 7623
4b46fce2 7624 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7625 if (IS_ERR(em)) {
7626 ret = PTR_ERR(em);
7627 goto unlock_err;
7628 }
4b46fce2
JB
7629
7630 /*
7631 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7632 * io. INLINE is special, and we could probably kludge it in here, but
7633 * it's still buffered so for safety lets just fall back to the generic
7634 * buffered path.
7635 *
7636 * For COMPRESSED we _have_ to read the entire extent in so we can
7637 * decompress it, so there will be buffering required no matter what we
7638 * do, so go ahead and fallback to buffered.
7639 *
01327610 7640 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7641 * to buffered IO. Don't blame me, this is the price we pay for using
7642 * the generic code.
7643 */
7644 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7645 em->block_start == EXTENT_MAP_INLINE) {
7646 free_extent_map(em);
eb838e73
JB
7647 ret = -ENOTBLK;
7648 goto unlock_err;
4b46fce2
JB
7649 }
7650
7651 /* Just a good old fashioned hole, return */
7652 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7653 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7654 free_extent_map(em);
eb838e73 7655 goto unlock_err;
4b46fce2
JB
7656 }
7657
7658 /*
7659 * We don't allocate a new extent in the following cases
7660 *
7661 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7662 * existing extent.
7663 * 2) The extent is marked as PREALLOC. We're good to go here and can
7664 * just use the extent.
7665 *
7666 */
46bfbb5c 7667 if (!create) {
eb838e73
JB
7668 len = min(len, em->len - (start - em->start));
7669 lockstart = start + len;
7670 goto unlock;
46bfbb5c 7671 }
4b46fce2
JB
7672
7673 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7674 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7675 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7676 int type;
eb384b55 7677 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7678
7679 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7680 type = BTRFS_ORDERED_PREALLOC;
7681 else
7682 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7683 len = min(len, em->len - (start - em->start));
4b46fce2 7684 block_start = em->block_start + (start - em->start);
46bfbb5c 7685
00361589 7686 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c
FM
7687 &orig_block_len, &ram_bytes) == 1 &&
7688 btrfs_inc_nocow_writers(root->fs_info, block_start)) {
5f9a8a51 7689 struct extent_map *em2;
0b901916 7690
5f9a8a51
FM
7691 em2 = btrfs_create_dio_extent(inode, start, len,
7692 orig_start, block_start,
7693 len, orig_block_len,
7694 ram_bytes, type);
f78c436c 7695 btrfs_dec_nocow_writers(root->fs_info, block_start);
69ffb543
JB
7696 if (type == BTRFS_ORDERED_PREALLOC) {
7697 free_extent_map(em);
5f9a8a51 7698 em = em2;
69ffb543 7699 }
5f9a8a51
FM
7700 if (em2 && IS_ERR(em2)) {
7701 ret = PTR_ERR(em2);
eb838e73 7702 goto unlock_err;
46bfbb5c
CM
7703 }
7704 goto unlock;
4b46fce2 7705 }
4b46fce2 7706 }
00361589 7707
46bfbb5c
CM
7708 /*
7709 * this will cow the extent, reset the len in case we changed
7710 * it above
7711 */
7712 len = bh_result->b_size;
70c8a91c
JB
7713 free_extent_map(em);
7714 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7715 if (IS_ERR(em)) {
7716 ret = PTR_ERR(em);
7717 goto unlock_err;
7718 }
46bfbb5c
CM
7719 len = min(len, em->len - (start - em->start));
7720unlock:
4b46fce2
JB
7721 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7722 inode->i_blkbits;
46bfbb5c 7723 bh_result->b_size = len;
4b46fce2
JB
7724 bh_result->b_bdev = em->bdev;
7725 set_buffer_mapped(bh_result);
c3473e83
JB
7726 if (create) {
7727 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7728 set_buffer_new(bh_result);
7729
7730 /*
7731 * Need to update the i_size under the extent lock so buffered
7732 * readers will get the updated i_size when we unlock.
7733 */
7734 if (start + len > i_size_read(inode))
7735 i_size_write(inode, start + len);
0934856d 7736
9c9464cc 7737 adjust_dio_outstanding_extents(inode, dio_data, len);
7cf5b976 7738 btrfs_free_reserved_data_space(inode, start, len);
50745b0a 7739 WARN_ON(dio_data->reserve < len);
7740 dio_data->reserve -= len;
f28a4928 7741 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7742 current->journal_info = dio_data;
c3473e83 7743 }
4b46fce2 7744
eb838e73
JB
7745 /*
7746 * In the case of write we need to clear and unlock the entire range,
7747 * in the case of read we need to unlock only the end area that we
7748 * aren't using if there is any left over space.
7749 */
24c03fa5 7750 if (lockstart < lockend) {
0934856d
MX
7751 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7752 lockend, unlock_bits, 1, 0,
7753 &cached_state, GFP_NOFS);
24c03fa5 7754 } else {
eb838e73 7755 free_extent_state(cached_state);
24c03fa5 7756 }
eb838e73 7757
4b46fce2
JB
7758 free_extent_map(em);
7759
7760 return 0;
eb838e73
JB
7761
7762unlock_err:
eb838e73
JB
7763 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7764 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7765err:
50745b0a 7766 if (dio_data)
7767 current->journal_info = dio_data;
9c9464cc
FM
7768 /*
7769 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7770 * write less data then expected, so that we don't underflow our inode's
7771 * outstanding extents counter.
7772 */
7773 if (create && dio_data)
7774 adjust_dio_outstanding_extents(inode, dio_data, len);
7775
eb838e73 7776 return ret;
4b46fce2
JB
7777}
7778
8b110e39 7779static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
81a75f67 7780 int mirror_num)
8b110e39
MX
7781{
7782 struct btrfs_root *root = BTRFS_I(inode)->root;
7783 int ret;
7784
37226b21 7785 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39
MX
7786
7787 bio_get(bio);
7788
7789 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7790 BTRFS_WQ_ENDIO_DIO_REPAIR);
7791 if (ret)
7792 goto err;
7793
81a75f67 7794 ret = btrfs_map_bio(root, bio, mirror_num, 0);
8b110e39
MX
7795err:
7796 bio_put(bio);
7797 return ret;
7798}
7799
7800static int btrfs_check_dio_repairable(struct inode *inode,
7801 struct bio *failed_bio,
7802 struct io_failure_record *failrec,
7803 int failed_mirror)
7804{
7805 int num_copies;
7806
7807 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7808 failrec->logical, failrec->len);
7809 if (num_copies == 1) {
7810 /*
7811 * we only have a single copy of the data, so don't bother with
7812 * all the retry and error correction code that follows. no
7813 * matter what the error is, it is very likely to persist.
7814 */
7815 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7816 num_copies, failrec->this_mirror, failed_mirror);
7817 return 0;
7818 }
7819
7820 failrec->failed_mirror = failed_mirror;
7821 failrec->this_mirror++;
7822 if (failrec->this_mirror == failed_mirror)
7823 failrec->this_mirror++;
7824
7825 if (failrec->this_mirror > num_copies) {
7826 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7827 num_copies, failrec->this_mirror, failed_mirror);
7828 return 0;
7829 }
7830
7831 return 1;
7832}
7833
7834static int dio_read_error(struct inode *inode, struct bio *failed_bio,
2dabb324
CR
7835 struct page *page, unsigned int pgoff,
7836 u64 start, u64 end, int failed_mirror,
7837 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7838{
7839 struct io_failure_record *failrec;
7840 struct bio *bio;
7841 int isector;
7842 int read_mode;
7843 int ret;
7844
37226b21 7845 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7846
7847 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7848 if (ret)
7849 return ret;
7850
7851 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7852 failed_mirror);
7853 if (!ret) {
7854 free_io_failure(inode, failrec);
7855 return -EIO;
7856 }
7857
2dabb324
CR
7858 if ((failed_bio->bi_vcnt > 1)
7859 || (failed_bio->bi_io_vec->bv_len
7860 > BTRFS_I(inode)->root->sectorsize))
8b110e39
MX
7861 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7862 else
7863 read_mode = READ_SYNC;
7864
7865 isector = start - btrfs_io_bio(failed_bio)->logical;
7866 isector >>= inode->i_sb->s_blocksize_bits;
7867 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7868 pgoff, isector, repair_endio, repair_arg);
8b110e39
MX
7869 if (!bio) {
7870 free_io_failure(inode, failrec);
7871 return -EIO;
7872 }
37226b21 7873 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
7874
7875 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7876 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7877 read_mode, failrec->this_mirror, failrec->in_validation);
7878
81a75f67 7879 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8b110e39
MX
7880 if (ret) {
7881 free_io_failure(inode, failrec);
7882 bio_put(bio);
7883 }
7884
7885 return ret;
7886}
7887
7888struct btrfs_retry_complete {
7889 struct completion done;
7890 struct inode *inode;
7891 u64 start;
7892 int uptodate;
7893};
7894
4246a0b6 7895static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7896{
7897 struct btrfs_retry_complete *done = bio->bi_private;
2dabb324 7898 struct inode *inode;
8b110e39
MX
7899 struct bio_vec *bvec;
7900 int i;
7901
4246a0b6 7902 if (bio->bi_error)
8b110e39
MX
7903 goto end;
7904
2dabb324
CR
7905 ASSERT(bio->bi_vcnt == 1);
7906 inode = bio->bi_io_vec->bv_page->mapping->host;
7907 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7908
8b110e39
MX
7909 done->uptodate = 1;
7910 bio_for_each_segment_all(bvec, bio, i)
7911 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7912end:
7913 complete(&done->done);
7914 bio_put(bio);
7915}
7916
7917static int __btrfs_correct_data_nocsum(struct inode *inode,
7918 struct btrfs_io_bio *io_bio)
4b46fce2 7919{
2dabb324 7920 struct btrfs_fs_info *fs_info;
2c30c71b 7921 struct bio_vec *bvec;
8b110e39 7922 struct btrfs_retry_complete done;
4b46fce2 7923 u64 start;
2dabb324
CR
7924 unsigned int pgoff;
7925 u32 sectorsize;
7926 int nr_sectors;
2c30c71b 7927 int i;
c1dc0896 7928 int ret;
4b46fce2 7929
2dabb324
CR
7930 fs_info = BTRFS_I(inode)->root->fs_info;
7931 sectorsize = BTRFS_I(inode)->root->sectorsize;
7932
8b110e39
MX
7933 start = io_bio->logical;
7934 done.inode = inode;
7935
7936 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
7937 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7938 pgoff = bvec->bv_offset;
7939
7940next_block_or_try_again:
8b110e39
MX
7941 done.uptodate = 0;
7942 done.start = start;
7943 init_completion(&done.done);
7944
2dabb324
CR
7945 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7946 pgoff, start, start + sectorsize - 1,
7947 io_bio->mirror_num,
7948 btrfs_retry_endio_nocsum, &done);
8b110e39
MX
7949 if (ret)
7950 return ret;
7951
7952 wait_for_completion(&done.done);
7953
7954 if (!done.uptodate) {
7955 /* We might have another mirror, so try again */
2dabb324 7956 goto next_block_or_try_again;
8b110e39
MX
7957 }
7958
2dabb324
CR
7959 start += sectorsize;
7960
7961 if (nr_sectors--) {
7962 pgoff += sectorsize;
7963 goto next_block_or_try_again;
7964 }
8b110e39
MX
7965 }
7966
7967 return 0;
7968}
7969
4246a0b6 7970static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7971{
7972 struct btrfs_retry_complete *done = bio->bi_private;
7973 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2dabb324 7974 struct inode *inode;
8b110e39 7975 struct bio_vec *bvec;
2dabb324 7976 u64 start;
8b110e39
MX
7977 int uptodate;
7978 int ret;
7979 int i;
7980
4246a0b6 7981 if (bio->bi_error)
8b110e39
MX
7982 goto end;
7983
7984 uptodate = 1;
2dabb324
CR
7985
7986 start = done->start;
7987
7988 ASSERT(bio->bi_vcnt == 1);
7989 inode = bio->bi_io_vec->bv_page->mapping->host;
7990 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7991
8b110e39
MX
7992 bio_for_each_segment_all(bvec, bio, i) {
7993 ret = __readpage_endio_check(done->inode, io_bio, i,
2dabb324
CR
7994 bvec->bv_page, bvec->bv_offset,
7995 done->start, bvec->bv_len);
8b110e39
MX
7996 if (!ret)
7997 clean_io_failure(done->inode, done->start,
2dabb324 7998 bvec->bv_page, bvec->bv_offset);
8b110e39
MX
7999 else
8000 uptodate = 0;
8001 }
8002
8003 done->uptodate = uptodate;
8004end:
8005 complete(&done->done);
8006 bio_put(bio);
8007}
8008
8009static int __btrfs_subio_endio_read(struct inode *inode,
8010 struct btrfs_io_bio *io_bio, int err)
8011{
2dabb324 8012 struct btrfs_fs_info *fs_info;
8b110e39
MX
8013 struct bio_vec *bvec;
8014 struct btrfs_retry_complete done;
8015 u64 start;
8016 u64 offset = 0;
2dabb324
CR
8017 u32 sectorsize;
8018 int nr_sectors;
8019 unsigned int pgoff;
8020 int csum_pos;
8b110e39
MX
8021 int i;
8022 int ret;
dc380aea 8023
2dabb324
CR
8024 fs_info = BTRFS_I(inode)->root->fs_info;
8025 sectorsize = BTRFS_I(inode)->root->sectorsize;
8026
8b110e39 8027 err = 0;
c1dc0896 8028 start = io_bio->logical;
8b110e39
MX
8029 done.inode = inode;
8030
c1dc0896 8031 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
8032 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8033
8034 pgoff = bvec->bv_offset;
8035next_block:
8036 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8037 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8038 bvec->bv_page, pgoff, start,
8039 sectorsize);
8b110e39
MX
8040 if (likely(!ret))
8041 goto next;
8042try_again:
8043 done.uptodate = 0;
8044 done.start = start;
8045 init_completion(&done.done);
8046
2dabb324
CR
8047 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8048 pgoff, start, start + sectorsize - 1,
8049 io_bio->mirror_num,
8050 btrfs_retry_endio, &done);
8b110e39
MX
8051 if (ret) {
8052 err = ret;
8053 goto next;
8054 }
8055
8056 wait_for_completion(&done.done);
8057
8058 if (!done.uptodate) {
8059 /* We might have another mirror, so try again */
8060 goto try_again;
8061 }
8062next:
2dabb324
CR
8063 offset += sectorsize;
8064 start += sectorsize;
8065
8066 ASSERT(nr_sectors);
8067
8068 if (--nr_sectors) {
8069 pgoff += sectorsize;
8070 goto next_block;
8071 }
2c30c71b 8072 }
c1dc0896
MX
8073
8074 return err;
8075}
8076
8b110e39
MX
8077static int btrfs_subio_endio_read(struct inode *inode,
8078 struct btrfs_io_bio *io_bio, int err)
8079{
8080 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8081
8082 if (skip_csum) {
8083 if (unlikely(err))
8084 return __btrfs_correct_data_nocsum(inode, io_bio);
8085 else
8086 return 0;
8087 } else {
8088 return __btrfs_subio_endio_read(inode, io_bio, err);
8089 }
8090}
8091
4246a0b6 8092static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8093{
8094 struct btrfs_dio_private *dip = bio->bi_private;
8095 struct inode *inode = dip->inode;
8096 struct bio *dio_bio;
8097 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 8098 int err = bio->bi_error;
c1dc0896 8099
8b110e39
MX
8100 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8101 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8102
4b46fce2 8103 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8104 dip->logical_offset + dip->bytes - 1);
9be3395b 8105 dio_bio = dip->dio_bio;
4b46fce2 8106
4b46fce2 8107 kfree(dip);
c0da7aa1 8108
1636d1d7 8109 dio_bio->bi_error = bio->bi_error;
4246a0b6 8110 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
8111
8112 if (io_bio->end_io)
8113 io_bio->end_io(io_bio, err);
9be3395b 8114 bio_put(bio);
4b46fce2
JB
8115}
8116
14543774
FM
8117static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8118 const u64 offset,
8119 const u64 bytes,
8120 const int uptodate)
4b46fce2 8121{
4b46fce2 8122 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 8123 struct btrfs_ordered_extent *ordered = NULL;
14543774
FM
8124 u64 ordered_offset = offset;
8125 u64 ordered_bytes = bytes;
4b46fce2
JB
8126 int ret;
8127
163cf09c
CM
8128again:
8129 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8130 &ordered_offset,
4246a0b6 8131 ordered_bytes,
14543774 8132 uptodate);
4b46fce2 8133 if (!ret)
163cf09c 8134 goto out_test;
4b46fce2 8135
9e0af237
LB
8136 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8137 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
8138 btrfs_queue_work(root->fs_info->endio_write_workers,
8139 &ordered->work);
163cf09c
CM
8140out_test:
8141 /*
8142 * our bio might span multiple ordered extents. If we haven't
8143 * completed the accounting for the whole dio, go back and try again
8144 */
14543774
FM
8145 if (ordered_offset < offset + bytes) {
8146 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8147 ordered = NULL;
163cf09c
CM
8148 goto again;
8149 }
14543774
FM
8150}
8151
8152static void btrfs_endio_direct_write(struct bio *bio)
8153{
8154 struct btrfs_dio_private *dip = bio->bi_private;
8155 struct bio *dio_bio = dip->dio_bio;
8156
8157 btrfs_endio_direct_write_update_ordered(dip->inode,
8158 dip->logical_offset,
8159 dip->bytes,
8160 !bio->bi_error);
4b46fce2 8161
4b46fce2 8162 kfree(dip);
c0da7aa1 8163
1636d1d7 8164 dio_bio->bi_error = bio->bi_error;
4246a0b6 8165 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8166 bio_put(bio);
4b46fce2
JB
8167}
8168
81a75f67 8169static int __btrfs_submit_bio_start_direct_io(struct inode *inode,
eaf25d93
CM
8170 struct bio *bio, int mirror_num,
8171 unsigned long bio_flags, u64 offset)
8172{
8173 int ret;
8174 struct btrfs_root *root = BTRFS_I(inode)->root;
8175 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 8176 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8177 return 0;
8178}
8179
4246a0b6 8180static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8181{
8182 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8183 int err = bio->bi_error;
e65e1535 8184
8b110e39
MX
8185 if (err)
8186 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8187 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
37226b21 8188 btrfs_ino(dip->inode), bio_op(bio), bio->bi_rw,
8b110e39
MX
8189 (unsigned long long)bio->bi_iter.bi_sector,
8190 bio->bi_iter.bi_size, err);
8191
8192 if (dip->subio_endio)
8193 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8194
8195 if (err) {
e65e1535
MX
8196 dip->errors = 1;
8197
8198 /*
8199 * before atomic variable goto zero, we must make sure
8200 * dip->errors is perceived to be set.
8201 */
4e857c58 8202 smp_mb__before_atomic();
e65e1535
MX
8203 }
8204
8205 /* if there are more bios still pending for this dio, just exit */
8206 if (!atomic_dec_and_test(&dip->pending_bios))
8207 goto out;
8208
9be3395b 8209 if (dip->errors) {
e65e1535 8210 bio_io_error(dip->orig_bio);
9be3395b 8211 } else {
4246a0b6
CH
8212 dip->dio_bio->bi_error = 0;
8213 bio_endio(dip->orig_bio);
e65e1535
MX
8214 }
8215out:
8216 bio_put(bio);
8217}
8218
8219static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8220 u64 first_sector, gfp_t gfp_flags)
8221{
da2f0f74 8222 struct bio *bio;
22365979 8223 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
da2f0f74
CM
8224 if (bio)
8225 bio_associate_current(bio);
8226 return bio;
e65e1535
MX
8227}
8228
c1dc0896
MX
8229static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8230 struct inode *inode,
8231 struct btrfs_dio_private *dip,
8232 struct bio *bio,
8233 u64 file_offset)
8234{
8235 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8236 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8237 int ret;
8238
8239 /*
8240 * We load all the csum data we need when we submit
8241 * the first bio to reduce the csum tree search and
8242 * contention.
8243 */
8244 if (dip->logical_offset == file_offset) {
8245 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8246 file_offset);
8247 if (ret)
8248 return ret;
8249 }
8250
8251 if (bio == dip->orig_bio)
8252 return 0;
8253
8254 file_offset -= dip->logical_offset;
8255 file_offset >>= inode->i_sb->s_blocksize_bits;
8256 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8257
8258 return 0;
8259}
8260
e65e1535 8261static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
81a75f67 8262 u64 file_offset, int skip_sum,
c329861d 8263 int async_submit)
e65e1535 8264{
facc8a22 8265 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8266 bool write = bio_op(bio) == REQ_OP_WRITE;
e65e1535
MX
8267 struct btrfs_root *root = BTRFS_I(inode)->root;
8268 int ret;
8269
b812ce28
JB
8270 if (async_submit)
8271 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8272
e65e1535 8273 bio_get(bio);
5fd02043
JB
8274
8275 if (!write) {
bfebd8b5
DS
8276 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8277 BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8278 if (ret)
8279 goto err;
8280 }
e65e1535 8281
1ae39938
JB
8282 if (skip_sum)
8283 goto map;
8284
8285 if (write && async_submit) {
e65e1535 8286 ret = btrfs_wq_submit_bio(root->fs_info,
81a75f67 8287 inode, bio, 0, 0, file_offset,
e65e1535
MX
8288 __btrfs_submit_bio_start_direct_io,
8289 __btrfs_submit_bio_done);
8290 goto err;
1ae39938
JB
8291 } else if (write) {
8292 /*
8293 * If we aren't doing async submit, calculate the csum of the
8294 * bio now.
8295 */
8296 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8297 if (ret)
8298 goto err;
23ea8e5a 8299 } else {
c1dc0896
MX
8300 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8301 file_offset);
c2db1073
TI
8302 if (ret)
8303 goto err;
8304 }
1ae39938 8305map:
81a75f67 8306 ret = btrfs_map_bio(root, bio, 0, async_submit);
e65e1535
MX
8307err:
8308 bio_put(bio);
8309 return ret;
8310}
8311
81a75f67 8312static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
e65e1535
MX
8313 int skip_sum)
8314{
8315 struct inode *inode = dip->inode;
8316 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8317 struct bio *bio;
8318 struct bio *orig_bio = dip->orig_bio;
8319 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 8320 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8321 u64 file_offset = dip->logical_offset;
8322 u64 submit_len = 0;
8323 u64 map_length;
5f4dc8fc 8324 u32 blocksize = root->sectorsize;
1ae39938 8325 int async_submit = 0;
5f4dc8fc
CR
8326 int nr_sectors;
8327 int ret;
8328 int i;
e65e1535 8329
4f024f37 8330 map_length = orig_bio->bi_iter.bi_size;
37226b21
MC
8331 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
8332 start_sector << 9, &map_length, NULL, 0);
7a5c3c9b 8333 if (ret)
e65e1535 8334 return -EIO;
facc8a22 8335
4f024f37 8336 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8337 bio = orig_bio;
c1dc0896 8338 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8339 goto submit;
8340 }
8341
53b381b3 8342 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8343 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8344 async_submit = 0;
8345 else
8346 async_submit = 1;
8347
02f57c7a
JB
8348 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8349 if (!bio)
8350 return -ENOMEM;
7a5c3c9b 8351
37226b21 8352 bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_rw);
02f57c7a
JB
8353 bio->bi_private = dip;
8354 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8355 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8356 atomic_inc(&dip->pending_bios);
8357
e65e1535 8358 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5f4dc8fc
CR
8359 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8360 i = 0;
8361next_block:
8362 if (unlikely(map_length < submit_len + blocksize ||
8363 bio_add_page(bio, bvec->bv_page, blocksize,
8364 bvec->bv_offset + (i * blocksize)) < blocksize)) {
e65e1535
MX
8365 /*
8366 * inc the count before we submit the bio so
8367 * we know the end IO handler won't happen before
8368 * we inc the count. Otherwise, the dip might get freed
8369 * before we're done setting it up
8370 */
8371 atomic_inc(&dip->pending_bios);
81a75f67 8372 ret = __btrfs_submit_dio_bio(bio, inode,
e65e1535 8373 file_offset, skip_sum,
c329861d 8374 async_submit);
e65e1535
MX
8375 if (ret) {
8376 bio_put(bio);
8377 atomic_dec(&dip->pending_bios);
8378 goto out_err;
8379 }
8380
e65e1535
MX
8381 start_sector += submit_len >> 9;
8382 file_offset += submit_len;
8383
8384 submit_len = 0;
e65e1535
MX
8385
8386 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8387 start_sector, GFP_NOFS);
8388 if (!bio)
8389 goto out_err;
37226b21 8390 bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_rw);
e65e1535
MX
8391 bio->bi_private = dip;
8392 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8393 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8394
4f024f37 8395 map_length = orig_bio->bi_iter.bi_size;
37226b21 8396 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
3ec706c8 8397 start_sector << 9,
e65e1535
MX
8398 &map_length, NULL, 0);
8399 if (ret) {
8400 bio_put(bio);
8401 goto out_err;
8402 }
5f4dc8fc
CR
8403
8404 goto next_block;
e65e1535 8405 } else {
5f4dc8fc
CR
8406 submit_len += blocksize;
8407 if (--nr_sectors) {
8408 i++;
8409 goto next_block;
8410 }
e65e1535
MX
8411 bvec++;
8412 }
8413 }
8414
02f57c7a 8415submit:
81a75f67 8416 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
c329861d 8417 async_submit);
e65e1535
MX
8418 if (!ret)
8419 return 0;
8420
8421 bio_put(bio);
8422out_err:
8423 dip->errors = 1;
8424 /*
8425 * before atomic variable goto zero, we must
8426 * make sure dip->errors is perceived to be set.
8427 */
4e857c58 8428 smp_mb__before_atomic();
e65e1535
MX
8429 if (atomic_dec_and_test(&dip->pending_bios))
8430 bio_io_error(dip->orig_bio);
8431
8432 /* bio_end_io() will handle error, so we needn't return it */
8433 return 0;
8434}
8435
8a4c1e42
MC
8436static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8437 loff_t file_offset)
4b46fce2 8438{
61de718f
FM
8439 struct btrfs_dio_private *dip = NULL;
8440 struct bio *io_bio = NULL;
23ea8e5a 8441 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8442 int skip_sum;
8a4c1e42 8443 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8444 int ret = 0;
8445
8446 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8447
9be3395b 8448 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8449 if (!io_bio) {
8450 ret = -ENOMEM;
8451 goto free_ordered;
8452 }
8453
c1dc0896 8454 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8455 if (!dip) {
8456 ret = -ENOMEM;
61de718f 8457 goto free_ordered;
4b46fce2 8458 }
4b46fce2 8459
9be3395b 8460 dip->private = dio_bio->bi_private;
4b46fce2
JB
8461 dip->inode = inode;
8462 dip->logical_offset = file_offset;
4f024f37
KO
8463 dip->bytes = dio_bio->bi_iter.bi_size;
8464 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8465 io_bio->bi_private = dip;
9be3395b
CM
8466 dip->orig_bio = io_bio;
8467 dip->dio_bio = dio_bio;
e65e1535 8468 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8469 btrfs_bio = btrfs_io_bio(io_bio);
8470 btrfs_bio->logical = file_offset;
4b46fce2 8471
c1dc0896 8472 if (write) {
9be3395b 8473 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8474 } else {
9be3395b 8475 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8476 dip->subio_endio = btrfs_subio_endio_read;
8477 }
4b46fce2 8478
f28a4928
FM
8479 /*
8480 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8481 * even if we fail to submit a bio, because in such case we do the
8482 * corresponding error handling below and it must not be done a second
8483 * time by btrfs_direct_IO().
8484 */
8485 if (write) {
8486 struct btrfs_dio_data *dio_data = current->journal_info;
8487
8488 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8489 dip->bytes;
8490 dio_data->unsubmitted_oe_range_start =
8491 dio_data->unsubmitted_oe_range_end;
8492 }
8493
81a75f67 8494 ret = btrfs_submit_direct_hook(dip, skip_sum);
e65e1535 8495 if (!ret)
eaf25d93 8496 return;
9be3395b 8497
23ea8e5a
MX
8498 if (btrfs_bio->end_io)
8499 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8500
4b46fce2
JB
8501free_ordered:
8502 /*
61de718f
FM
8503 * If we arrived here it means either we failed to submit the dip
8504 * or we either failed to clone the dio_bio or failed to allocate the
8505 * dip. If we cloned the dio_bio and allocated the dip, we can just
8506 * call bio_endio against our io_bio so that we get proper resource
8507 * cleanup if we fail to submit the dip, otherwise, we must do the
8508 * same as btrfs_endio_direct_[write|read] because we can't call these
8509 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8510 */
61de718f 8511 if (io_bio && dip) {
4246a0b6
CH
8512 io_bio->bi_error = -EIO;
8513 bio_endio(io_bio);
61de718f
FM
8514 /*
8515 * The end io callbacks free our dip, do the final put on io_bio
8516 * and all the cleanup and final put for dio_bio (through
8517 * dio_end_io()).
8518 */
8519 dip = NULL;
8520 io_bio = NULL;
8521 } else {
14543774
FM
8522 if (write)
8523 btrfs_endio_direct_write_update_ordered(inode,
8524 file_offset,
8525 dio_bio->bi_iter.bi_size,
8526 0);
8527 else
61de718f
FM
8528 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8529 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8530
4246a0b6 8531 dio_bio->bi_error = -EIO;
61de718f
FM
8532 /*
8533 * Releases and cleans up our dio_bio, no need to bio_put()
8534 * nor bio_endio()/bio_io_error() against dio_bio.
8535 */
8536 dio_end_io(dio_bio, ret);
4b46fce2 8537 }
61de718f
FM
8538 if (io_bio)
8539 bio_put(io_bio);
8540 kfree(dip);
4b46fce2
JB
8541}
8542
6f673763 8543static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
28060d5d 8544 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8545{
8546 int seg;
a1b75f7d 8547 int i;
5a5f79b5
CM
8548 unsigned blocksize_mask = root->sectorsize - 1;
8549 ssize_t retval = -EINVAL;
5a5f79b5
CM
8550
8551 if (offset & blocksize_mask)
8552 goto out;
8553
28060d5d
AV
8554 if (iov_iter_alignment(iter) & blocksize_mask)
8555 goto out;
a1b75f7d 8556
28060d5d 8557 /* If this is a write we don't need to check anymore */
6f673763 8558 if (iov_iter_rw(iter) == WRITE)
28060d5d
AV
8559 return 0;
8560 /*
8561 * Check to make sure we don't have duplicate iov_base's in this
8562 * iovec, if so return EINVAL, otherwise we'll get csum errors
8563 * when reading back.
8564 */
8565 for (seg = 0; seg < iter->nr_segs; seg++) {
8566 for (i = seg + 1; i < iter->nr_segs; i++) {
8567 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8568 goto out;
8569 }
5a5f79b5
CM
8570 }
8571 retval = 0;
8572out:
8573 return retval;
8574}
eb838e73 8575
c8b8e32d 8576static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8577{
4b46fce2
JB
8578 struct file *file = iocb->ki_filp;
8579 struct inode *inode = file->f_mapping->host;
50745b0a 8580 struct btrfs_root *root = BTRFS_I(inode)->root;
8581 struct btrfs_dio_data dio_data = { 0 };
c8b8e32d 8582 loff_t offset = iocb->ki_pos;
0934856d 8583 size_t count = 0;
2e60a51e 8584 int flags = 0;
38851cc1
MX
8585 bool wakeup = true;
8586 bool relock = false;
0934856d 8587 ssize_t ret;
4b46fce2 8588
6f673763 8589 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
5a5f79b5 8590 return 0;
3f7c579c 8591
fe0f07d0 8592 inode_dio_begin(inode);
4e857c58 8593 smp_mb__after_atomic();
38851cc1 8594
0e267c44 8595 /*
41bd9ca4
MX
8596 * The generic stuff only does filemap_write_and_wait_range, which
8597 * isn't enough if we've written compressed pages to this area, so
8598 * we need to flush the dirty pages again to make absolutely sure
8599 * that any outstanding dirty pages are on disk.
0e267c44 8600 */
a6cbcd4a 8601 count = iov_iter_count(iter);
41bd9ca4
MX
8602 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8603 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8604 filemap_fdatawrite_range(inode->i_mapping, offset,
8605 offset + count - 1);
0e267c44 8606
6f673763 8607 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8608 /*
8609 * If the write DIO is beyond the EOF, we need update
8610 * the isize, but it is protected by i_mutex. So we can
8611 * not unlock the i_mutex at this case.
8612 */
8613 if (offset + count <= inode->i_size) {
5955102c 8614 inode_unlock(inode);
38851cc1
MX
8615 relock = true;
8616 }
7cf5b976 8617 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8618 if (ret)
38851cc1 8619 goto out;
50745b0a 8620 dio_data.outstanding_extents = div64_u64(count +
e1cbbfa5
JB
8621 BTRFS_MAX_EXTENT_SIZE - 1,
8622 BTRFS_MAX_EXTENT_SIZE);
8623
8624 /*
8625 * We need to know how many extents we reserved so that we can
8626 * do the accounting properly if we go over the number we
8627 * originally calculated. Abuse current->journal_info for this.
8628 */
50745b0a 8629 dio_data.reserve = round_up(count, root->sectorsize);
f28a4928
FM
8630 dio_data.unsubmitted_oe_range_start = (u64)offset;
8631 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8632 current->journal_info = &dio_data;
ee39b432
DS
8633 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8634 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8635 inode_dio_end(inode);
38851cc1
MX
8636 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8637 wakeup = false;
0934856d
MX
8638 }
8639
17f8c842
OS
8640 ret = __blockdev_direct_IO(iocb, inode,
8641 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
c8b8e32d 8642 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8643 btrfs_submit_direct, flags);
6f673763 8644 if (iov_iter_rw(iter) == WRITE) {
e1cbbfa5 8645 current->journal_info = NULL;
ddba1bfc 8646 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8647 if (dio_data.reserve)
7cf5b976
QW
8648 btrfs_delalloc_release_space(inode, offset,
8649 dio_data.reserve);
f28a4928
FM
8650 /*
8651 * On error we might have left some ordered extents
8652 * without submitting corresponding bios for them, so
8653 * cleanup them up to avoid other tasks getting them
8654 * and waiting for them to complete forever.
8655 */
8656 if (dio_data.unsubmitted_oe_range_start <
8657 dio_data.unsubmitted_oe_range_end)
8658 btrfs_endio_direct_write_update_ordered(inode,
8659 dio_data.unsubmitted_oe_range_start,
8660 dio_data.unsubmitted_oe_range_end -
8661 dio_data.unsubmitted_oe_range_start,
8662 0);
ddba1bfc 8663 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8664 btrfs_delalloc_release_space(inode, offset,
8665 count - (size_t)ret);
0934856d 8666 }
38851cc1 8667out:
2e60a51e 8668 if (wakeup)
fe0f07d0 8669 inode_dio_end(inode);
38851cc1 8670 if (relock)
5955102c 8671 inode_lock(inode);
0934856d
MX
8672
8673 return ret;
16432985
CM
8674}
8675
05dadc09
TI
8676#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8677
1506fcc8
YS
8678static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8679 __u64 start, __u64 len)
8680{
05dadc09
TI
8681 int ret;
8682
8683 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8684 if (ret)
8685 return ret;
8686
ec29ed5b 8687 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8688}
8689
a52d9a80 8690int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8691{
d1310b2e
CM
8692 struct extent_io_tree *tree;
8693 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8694 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8695}
1832a6d5 8696
a52d9a80 8697static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8698{
d1310b2e 8699 struct extent_io_tree *tree;
be7bd730
JB
8700 struct inode *inode = page->mapping->host;
8701 int ret;
b888db2b
CM
8702
8703 if (current->flags & PF_MEMALLOC) {
8704 redirty_page_for_writepage(wbc, page);
8705 unlock_page(page);
8706 return 0;
8707 }
be7bd730
JB
8708
8709 /*
8710 * If we are under memory pressure we will call this directly from the
8711 * VM, we need to make sure we have the inode referenced for the ordered
8712 * extent. If not just return like we didn't do anything.
8713 */
8714 if (!igrab(inode)) {
8715 redirty_page_for_writepage(wbc, page);
8716 return AOP_WRITEPAGE_ACTIVATE;
8717 }
d1310b2e 8718 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8719 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8720 btrfs_add_delayed_iput(inode);
8721 return ret;
9ebefb18
CM
8722}
8723
48a3b636
ES
8724static int btrfs_writepages(struct address_space *mapping,
8725 struct writeback_control *wbc)
b293f02e 8726{
d1310b2e 8727 struct extent_io_tree *tree;
771ed689 8728
d1310b2e 8729 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8730 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8731}
8732
3ab2fb5a
CM
8733static int
8734btrfs_readpages(struct file *file, struct address_space *mapping,
8735 struct list_head *pages, unsigned nr_pages)
8736{
d1310b2e
CM
8737 struct extent_io_tree *tree;
8738 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8739 return extent_readpages(tree, mapping, pages, nr_pages,
8740 btrfs_get_extent);
8741}
e6dcd2dc 8742static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8743{
d1310b2e
CM
8744 struct extent_io_tree *tree;
8745 struct extent_map_tree *map;
a52d9a80 8746 int ret;
8c2383c3 8747
d1310b2e
CM
8748 tree = &BTRFS_I(page->mapping->host)->io_tree;
8749 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8750 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8751 if (ret == 1) {
8752 ClearPagePrivate(page);
8753 set_page_private(page, 0);
09cbfeaf 8754 put_page(page);
39279cc3 8755 }
a52d9a80 8756 return ret;
39279cc3
CM
8757}
8758
e6dcd2dc
CM
8759static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8760{
98509cfc
CM
8761 if (PageWriteback(page) || PageDirty(page))
8762 return 0;
b335b003 8763 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8764}
8765
d47992f8
LC
8766static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8767 unsigned int length)
39279cc3 8768{
5fd02043 8769 struct inode *inode = page->mapping->host;
d1310b2e 8770 struct extent_io_tree *tree;
e6dcd2dc 8771 struct btrfs_ordered_extent *ordered;
2ac55d41 8772 struct extent_state *cached_state = NULL;
e6dcd2dc 8773 u64 page_start = page_offset(page);
09cbfeaf 8774 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8775 u64 start;
8776 u64 end;
131e404a 8777 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8778
8b62b72b
CM
8779 /*
8780 * we have the page locked, so new writeback can't start,
8781 * and the dirty bit won't be cleared while we are here.
8782 *
8783 * Wait for IO on this page so that we can safely clear
8784 * the PagePrivate2 bit and do ordered accounting
8785 */
e6dcd2dc 8786 wait_on_page_writeback(page);
8b62b72b 8787
5fd02043 8788 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8789 if (offset) {
8790 btrfs_releasepage(page, GFP_NOFS);
8791 return;
8792 }
131e404a
FDBM
8793
8794 if (!inode_evicting)
ff13db41 8795 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8796again:
8797 start = page_start;
8798 ordered = btrfs_lookup_ordered_range(inode, start,
8799 page_end - start + 1);
e6dcd2dc 8800 if (ordered) {
dbfdb6d1 8801 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8802 /*
8803 * IO on this page will never be started, so we need
8804 * to account for any ordered extents now
8805 */
131e404a 8806 if (!inode_evicting)
dbfdb6d1 8807 clear_extent_bit(tree, start, end,
131e404a
FDBM
8808 EXTENT_DIRTY | EXTENT_DELALLOC |
8809 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8810 EXTENT_DEFRAG, 1, 0, &cached_state,
8811 GFP_NOFS);
8b62b72b
CM
8812 /*
8813 * whoever cleared the private bit is responsible
8814 * for the finish_ordered_io
8815 */
77cef2ec
JB
8816 if (TestClearPagePrivate2(page)) {
8817 struct btrfs_ordered_inode_tree *tree;
8818 u64 new_len;
8819
8820 tree = &BTRFS_I(inode)->ordered_tree;
8821
8822 spin_lock_irq(&tree->lock);
8823 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8824 new_len = start - ordered->file_offset;
77cef2ec
JB
8825 if (new_len < ordered->truncated_len)
8826 ordered->truncated_len = new_len;
8827 spin_unlock_irq(&tree->lock);
8828
8829 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8830 start,
8831 end - start + 1, 1))
77cef2ec 8832 btrfs_finish_ordered_io(ordered);
8b62b72b 8833 }
e6dcd2dc 8834 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8835 if (!inode_evicting) {
8836 cached_state = NULL;
dbfdb6d1 8837 lock_extent_bits(tree, start, end,
131e404a
FDBM
8838 &cached_state);
8839 }
dbfdb6d1
CR
8840
8841 start = end + 1;
8842 if (start < page_end)
8843 goto again;
131e404a
FDBM
8844 }
8845
b9d0b389
QW
8846 /*
8847 * Qgroup reserved space handler
8848 * Page here will be either
8849 * 1) Already written to disk
8850 * In this case, its reserved space is released from data rsv map
8851 * and will be freed by delayed_ref handler finally.
8852 * So even we call qgroup_free_data(), it won't decrease reserved
8853 * space.
8854 * 2) Not written to disk
8855 * This means the reserved space should be freed here.
8856 */
09cbfeaf 8857 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
131e404a
FDBM
8858 if (!inode_evicting) {
8859 clear_extent_bit(tree, page_start, page_end,
8860 EXTENT_LOCKED | EXTENT_DIRTY |
8861 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8862 EXTENT_DEFRAG, 1, 1,
8863 &cached_state, GFP_NOFS);
8864
8865 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8866 }
e6dcd2dc 8867
4a096752 8868 ClearPageChecked(page);
9ad6b7bc 8869 if (PagePrivate(page)) {
9ad6b7bc
CM
8870 ClearPagePrivate(page);
8871 set_page_private(page, 0);
09cbfeaf 8872 put_page(page);
9ad6b7bc 8873 }
39279cc3
CM
8874}
8875
9ebefb18
CM
8876/*
8877 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8878 * called from a page fault handler when a page is first dirtied. Hence we must
8879 * be careful to check for EOF conditions here. We set the page up correctly
8880 * for a written page which means we get ENOSPC checking when writing into
8881 * holes and correct delalloc and unwritten extent mapping on filesystems that
8882 * support these features.
8883 *
8884 * We are not allowed to take the i_mutex here so we have to play games to
8885 * protect against truncate races as the page could now be beyond EOF. Because
8886 * vmtruncate() writes the inode size before removing pages, once we have the
8887 * page lock we can determine safely if the page is beyond EOF. If it is not
8888 * beyond EOF, then the page is guaranteed safe against truncation until we
8889 * unlock the page.
8890 */
c2ec175c 8891int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8892{
c2ec175c 8893 struct page *page = vmf->page;
496ad9aa 8894 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8895 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8896 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8897 struct btrfs_ordered_extent *ordered;
2ac55d41 8898 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8899 char *kaddr;
8900 unsigned long zero_start;
9ebefb18 8901 loff_t size;
1832a6d5 8902 int ret;
9998eb70 8903 int reserved = 0;
d0b7da88 8904 u64 reserved_space;
a52d9a80 8905 u64 page_start;
e6dcd2dc 8906 u64 page_end;
d0b7da88
CR
8907 u64 end;
8908
09cbfeaf 8909 reserved_space = PAGE_SIZE;
9ebefb18 8910
b2b5ef5c 8911 sb_start_pagefault(inode->i_sb);
df480633 8912 page_start = page_offset(page);
09cbfeaf 8913 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8914 end = page_end;
df480633 8915
d0b7da88
CR
8916 /*
8917 * Reserving delalloc space after obtaining the page lock can lead to
8918 * deadlock. For example, if a dirty page is locked by this function
8919 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8920 * dirty page write out, then the btrfs_writepage() function could
8921 * end up waiting indefinitely to get a lock on the page currently
8922 * being processed by btrfs_page_mkwrite() function.
8923 */
7cf5b976 8924 ret = btrfs_delalloc_reserve_space(inode, page_start,
d0b7da88 8925 reserved_space);
9998eb70 8926 if (!ret) {
e41f941a 8927 ret = file_update_time(vma->vm_file);
9998eb70
CM
8928 reserved = 1;
8929 }
56a76f82
NP
8930 if (ret) {
8931 if (ret == -ENOMEM)
8932 ret = VM_FAULT_OOM;
8933 else /* -ENOSPC, -EIO, etc */
8934 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8935 if (reserved)
8936 goto out;
8937 goto out_noreserve;
56a76f82 8938 }
1832a6d5 8939
56a76f82 8940 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8941again:
9ebefb18 8942 lock_page(page);
9ebefb18 8943 size = i_size_read(inode);
a52d9a80 8944
9ebefb18 8945 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8946 (page_start >= size)) {
9ebefb18
CM
8947 /* page got truncated out from underneath us */
8948 goto out_unlock;
8949 }
e6dcd2dc
CM
8950 wait_on_page_writeback(page);
8951
ff13db41 8952 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8953 set_page_extent_mapped(page);
8954
eb84ae03
CM
8955 /*
8956 * we can't set the delalloc bits if there are pending ordered
8957 * extents. Drop our locks and wait for them to finish
8958 */
d0b7da88 8959 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
e6dcd2dc 8960 if (ordered) {
2ac55d41
JB
8961 unlock_extent_cached(io_tree, page_start, page_end,
8962 &cached_state, GFP_NOFS);
e6dcd2dc 8963 unlock_page(page);
eb84ae03 8964 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8965 btrfs_put_ordered_extent(ordered);
8966 goto again;
8967 }
8968
09cbfeaf 8969 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
d0b7da88 8970 reserved_space = round_up(size - page_start, root->sectorsize);
09cbfeaf 8971 if (reserved_space < PAGE_SIZE) {
d0b7da88
CR
8972 end = page_start + reserved_space - 1;
8973 spin_lock(&BTRFS_I(inode)->lock);
8974 BTRFS_I(inode)->outstanding_extents++;
8975 spin_unlock(&BTRFS_I(inode)->lock);
8976 btrfs_delalloc_release_space(inode, page_start,
09cbfeaf 8977 PAGE_SIZE - reserved_space);
d0b7da88
CR
8978 }
8979 }
8980
fbf19087
JB
8981 /*
8982 * XXX - page_mkwrite gets called every time the page is dirtied, even
8983 * if it was already dirty, so for space accounting reasons we need to
8984 * clear any delalloc bits for the range we are fixing to save. There
8985 * is probably a better way to do this, but for now keep consistent with
8986 * prepare_pages in the normal write path.
8987 */
d0b7da88 8988 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
8989 EXTENT_DIRTY | EXTENT_DELALLOC |
8990 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 8991 0, 0, &cached_state, GFP_NOFS);
fbf19087 8992
d0b7da88 8993 ret = btrfs_set_extent_delalloc(inode, page_start, end,
2ac55d41 8994 &cached_state);
9ed74f2d 8995 if (ret) {
2ac55d41
JB
8996 unlock_extent_cached(io_tree, page_start, page_end,
8997 &cached_state, GFP_NOFS);
9ed74f2d
JB
8998 ret = VM_FAULT_SIGBUS;
8999 goto out_unlock;
9000 }
e6dcd2dc 9001 ret = 0;
9ebefb18
CM
9002
9003 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9004 if (page_start + PAGE_SIZE > size)
9005 zero_start = size & ~PAGE_MASK;
9ebefb18 9006 else
09cbfeaf 9007 zero_start = PAGE_SIZE;
9ebefb18 9008
09cbfeaf 9009 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9010 kaddr = kmap(page);
09cbfeaf 9011 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9012 flush_dcache_page(page);
9013 kunmap(page);
9014 }
247e743c 9015 ClearPageChecked(page);
e6dcd2dc 9016 set_page_dirty(page);
50a9b214 9017 SetPageUptodate(page);
5a3f23d5 9018
257c62e1
CM
9019 BTRFS_I(inode)->last_trans = root->fs_info->generation;
9020 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9021 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9022
2ac55d41 9023 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9024
9025out_unlock:
b2b5ef5c
JK
9026 if (!ret) {
9027 sb_end_pagefault(inode->i_sb);
50a9b214 9028 return VM_FAULT_LOCKED;
b2b5ef5c 9029 }
9ebefb18 9030 unlock_page(page);
1832a6d5 9031out:
d0b7da88 9032 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9998eb70 9033out_noreserve:
b2b5ef5c 9034 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
9035 return ret;
9036}
9037
a41ad394 9038static int btrfs_truncate(struct inode *inode)
39279cc3
CM
9039{
9040 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9041 struct btrfs_block_rsv *rsv;
a71754fc 9042 int ret = 0;
3893e33b 9043 int err = 0;
39279cc3 9044 struct btrfs_trans_handle *trans;
dbe674a9 9045 u64 mask = root->sectorsize - 1;
07127184 9046 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 9047
0ef8b726
JB
9048 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9049 (u64)-1);
9050 if (ret)
9051 return ret;
39279cc3 9052
fcb80c2a 9053 /*
01327610 9054 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9055 * 3 things going on here
9056 *
9057 * 1) We need to reserve space for our orphan item and the space to
9058 * delete our orphan item. Lord knows we don't want to have a dangling
9059 * orphan item because we didn't reserve space to remove it.
9060 *
9061 * 2) We need to reserve space to update our inode.
9062 *
9063 * 3) We need to have something to cache all the space that is going to
9064 * be free'd up by the truncate operation, but also have some slack
9065 * space reserved in case it uses space during the truncate (thank you
9066 * very much snapshotting).
9067 *
01327610 9068 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9069 * space doing the truncate, and we have no earthly idea how much space
01327610 9070 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9071 * doesn't end up using space reserved for updating the inode or
9072 * removing the orphan item. We also need to be able to stop the
9073 * transaction and start a new one, which means we need to be able to
9074 * update the inode several times, and we have no idea of knowing how
9075 * many times that will be, so we can't just reserve 1 item for the
01327610 9076 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9077 * Then there is the orphan item, which does indeed need to be held on
9078 * to for the whole operation, and we need nobody to touch this reserved
9079 * space except the orphan code.
9080 *
9081 * So that leaves us with
9082 *
9083 * 1) root->orphan_block_rsv - for the orphan deletion.
9084 * 2) rsv - for the truncate reservation, which we will steal from the
9085 * transaction reservation.
9086 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9087 * updating the inode.
9088 */
66d8f3dd 9089 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9090 if (!rsv)
9091 return -ENOMEM;
4a338542 9092 rsv->size = min_size;
ca7e70f5 9093 rsv->failfast = 1;
f0cd846e 9094
907cbceb 9095 /*
07127184 9096 * 1 for the truncate slack space
907cbceb
JB
9097 * 1 for updating the inode.
9098 */
f3fe820c 9099 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9100 if (IS_ERR(trans)) {
9101 err = PTR_ERR(trans);
9102 goto out;
9103 }
f0cd846e 9104
907cbceb
JB
9105 /* Migrate the slack space for the truncate to our reserve */
9106 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
9107 min_size);
fcb80c2a 9108 BUG_ON(ret);
f0cd846e 9109
5dc562c5
JB
9110 /*
9111 * So if we truncate and then write and fsync we normally would just
9112 * write the extents that changed, which is a problem if we need to
9113 * first truncate that entire inode. So set this flag so we write out
9114 * all of the extents in the inode to the sync log so we're completely
9115 * safe.
9116 */
9117 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9118 trans->block_rsv = rsv;
907cbceb 9119
8082510e
YZ
9120 while (1) {
9121 ret = btrfs_truncate_inode_items(trans, root, inode,
9122 inode->i_size,
9123 BTRFS_EXTENT_DATA_KEY);
28ed1345 9124 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9125 err = ret;
8082510e 9126 break;
3893e33b 9127 }
39279cc3 9128
fcb80c2a 9129 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 9130 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9131 if (ret) {
9132 err = ret;
9133 break;
9134 }
ca7e70f5 9135
8082510e 9136 btrfs_end_transaction(trans, root);
b53d3f5d 9137 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
9138
9139 trans = btrfs_start_transaction(root, 2);
9140 if (IS_ERR(trans)) {
9141 ret = err = PTR_ERR(trans);
9142 trans = NULL;
9143 break;
9144 }
9145
9146 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
9147 rsv, min_size);
9148 BUG_ON(ret); /* shouldn't happen */
9149 trans->block_rsv = rsv;
8082510e
YZ
9150 }
9151
9152 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9153 trans->block_rsv = root->orphan_block_rsv;
8082510e 9154 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
9155 if (ret)
9156 err = ret;
8082510e
YZ
9157 }
9158
917c16b2
CM
9159 if (trans) {
9160 trans->block_rsv = &root->fs_info->trans_block_rsv;
9161 ret = btrfs_update_inode(trans, root, inode);
9162 if (ret && !err)
9163 err = ret;
7b128766 9164
7ad85bb7 9165 ret = btrfs_end_transaction(trans, root);
b53d3f5d 9166 btrfs_btree_balance_dirty(root);
917c16b2 9167 }
fcb80c2a
JB
9168
9169out:
9170 btrfs_free_block_rsv(root, rsv);
9171
3893e33b
JB
9172 if (ret && !err)
9173 err = ret;
a41ad394 9174
3893e33b 9175 return err;
39279cc3
CM
9176}
9177
d352ac68
CM
9178/*
9179 * create a new subvolume directory/inode (helper for the ioctl).
9180 */
d2fb3437 9181int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9182 struct btrfs_root *new_root,
9183 struct btrfs_root *parent_root,
9184 u64 new_dirid)
39279cc3 9185{
39279cc3 9186 struct inode *inode;
76dda93c 9187 int err;
00e4e6b3 9188 u64 index = 0;
39279cc3 9189
12fc9d09
FA
9190 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9191 new_dirid, new_dirid,
9192 S_IFDIR | (~current_umask() & S_IRWXUGO),
9193 &index);
54aa1f4d 9194 if (IS_ERR(inode))
f46b5a66 9195 return PTR_ERR(inode);
39279cc3
CM
9196 inode->i_op = &btrfs_dir_inode_operations;
9197 inode->i_fop = &btrfs_dir_file_operations;
9198
bfe86848 9199 set_nlink(inode, 1);
dbe674a9 9200 btrfs_i_size_write(inode, 0);
b0d5d10f 9201 unlock_new_inode(inode);
3b96362c 9202
63541927
FDBM
9203 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9204 if (err)
9205 btrfs_err(new_root->fs_info,
351fd353 9206 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9207 new_root->root_key.objectid, err);
9208
76dda93c 9209 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9210
76dda93c 9211 iput(inode);
ce598979 9212 return err;
39279cc3
CM
9213}
9214
39279cc3
CM
9215struct inode *btrfs_alloc_inode(struct super_block *sb)
9216{
9217 struct btrfs_inode *ei;
2ead6ae7 9218 struct inode *inode;
39279cc3
CM
9219
9220 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9221 if (!ei)
9222 return NULL;
2ead6ae7
YZ
9223
9224 ei->root = NULL;
2ead6ae7 9225 ei->generation = 0;
15ee9bc7 9226 ei->last_trans = 0;
257c62e1 9227 ei->last_sub_trans = 0;
e02119d5 9228 ei->logged_trans = 0;
2ead6ae7 9229 ei->delalloc_bytes = 0;
47059d93 9230 ei->defrag_bytes = 0;
2ead6ae7
YZ
9231 ei->disk_i_size = 0;
9232 ei->flags = 0;
7709cde3 9233 ei->csum_bytes = 0;
2ead6ae7 9234 ei->index_cnt = (u64)-1;
67de1176 9235 ei->dir_index = 0;
2ead6ae7 9236 ei->last_unlink_trans = 0;
46d8bc34 9237 ei->last_log_commit = 0;
8089fe62 9238 ei->delayed_iput_count = 0;
2ead6ae7 9239
9e0baf60
JB
9240 spin_lock_init(&ei->lock);
9241 ei->outstanding_extents = 0;
9242 ei->reserved_extents = 0;
2ead6ae7 9243
72ac3c0d 9244 ei->runtime_flags = 0;
261507a0 9245 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9246
16cdcec7
MX
9247 ei->delayed_node = NULL;
9248
9cc97d64 9249 ei->i_otime.tv_sec = 0;
9250 ei->i_otime.tv_nsec = 0;
9251
2ead6ae7 9252 inode = &ei->vfs_inode;
a8067e02 9253 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
9254 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9255 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
9256 ei->io_tree.track_uptodate = 1;
9257 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9258 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9259 mutex_init(&ei->log_mutex);
f248679e 9260 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9261 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9262 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9263 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9264 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9265 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9266
9267 return inode;
39279cc3
CM
9268}
9269
aaedb55b
JB
9270#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9271void btrfs_test_destroy_inode(struct inode *inode)
9272{
9273 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9274 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9275}
9276#endif
9277
fa0d7e3d
NP
9278static void btrfs_i_callback(struct rcu_head *head)
9279{
9280 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9281 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9282}
9283
39279cc3
CM
9284void btrfs_destroy_inode(struct inode *inode)
9285{
e6dcd2dc 9286 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9287 struct btrfs_root *root = BTRFS_I(inode)->root;
9288
b3d9b7a3 9289 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9290 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9291 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9292 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
9293 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9294 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9295 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9296
a6dbd429
JB
9297 /*
9298 * This can happen where we create an inode, but somebody else also
9299 * created the same inode and we need to destroy the one we already
9300 * created.
9301 */
9302 if (!root)
9303 goto free;
9304
8a35d95f
JB
9305 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9306 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 9307 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 9308 btrfs_ino(inode));
8a35d95f 9309 atomic_dec(&root->orphan_inodes);
7b128766 9310 }
7b128766 9311
d397712b 9312 while (1) {
e6dcd2dc
CM
9313 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9314 if (!ordered)
9315 break;
9316 else {
c2cf52eb 9317 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 9318 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9319 btrfs_remove_ordered_extent(inode, ordered);
9320 btrfs_put_ordered_extent(ordered);
9321 btrfs_put_ordered_extent(ordered);
9322 }
9323 }
56fa9d07 9324 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9325 inode_tree_del(inode);
5b21f2ed 9326 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 9327free:
fa0d7e3d 9328 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9329}
9330
45321ac5 9331int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9332{
9333 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9334
6379ef9f
NA
9335 if (root == NULL)
9336 return 1;
9337
fa6ac876 9338 /* the snap/subvol tree is on deleting */
69e9c6c6 9339 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9340 return 1;
76dda93c 9341 else
45321ac5 9342 return generic_drop_inode(inode);
76dda93c
YZ
9343}
9344
0ee0fda0 9345static void init_once(void *foo)
39279cc3
CM
9346{
9347 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9348
9349 inode_init_once(&ei->vfs_inode);
9350}
9351
9352void btrfs_destroy_cachep(void)
9353{
8c0a8537
KS
9354 /*
9355 * Make sure all delayed rcu free inodes are flushed before we
9356 * destroy cache.
9357 */
9358 rcu_barrier();
5598e900
KM
9359 kmem_cache_destroy(btrfs_inode_cachep);
9360 kmem_cache_destroy(btrfs_trans_handle_cachep);
9361 kmem_cache_destroy(btrfs_transaction_cachep);
9362 kmem_cache_destroy(btrfs_path_cachep);
9363 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9364}
9365
9366int btrfs_init_cachep(void)
9367{
837e1972 9368 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9369 sizeof(struct btrfs_inode), 0,
5d097056
VD
9370 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9371 init_once);
39279cc3
CM
9372 if (!btrfs_inode_cachep)
9373 goto fail;
9601e3f6 9374
837e1972 9375 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
9376 sizeof(struct btrfs_trans_handle), 0,
9377 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9378 if (!btrfs_trans_handle_cachep)
9379 goto fail;
9601e3f6 9380
837e1972 9381 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
9382 sizeof(struct btrfs_transaction), 0,
9383 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9384 if (!btrfs_transaction_cachep)
9385 goto fail;
9601e3f6 9386
837e1972 9387 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
9388 sizeof(struct btrfs_path), 0,
9389 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9390 if (!btrfs_path_cachep)
9391 goto fail;
9601e3f6 9392
837e1972 9393 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
9394 sizeof(struct btrfs_free_space), 0,
9395 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9396 if (!btrfs_free_space_cachep)
9397 goto fail;
9398
39279cc3
CM
9399 return 0;
9400fail:
9401 btrfs_destroy_cachep();
9402 return -ENOMEM;
9403}
9404
9405static int btrfs_getattr(struct vfsmount *mnt,
9406 struct dentry *dentry, struct kstat *stat)
9407{
df0af1a5 9408 u64 delalloc_bytes;
2b0143b5 9409 struct inode *inode = d_inode(dentry);
fadc0d8b
DS
9410 u32 blocksize = inode->i_sb->s_blocksize;
9411
39279cc3 9412 generic_fillattr(inode, stat);
0ee5dc67 9413 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9414
9415 spin_lock(&BTRFS_I(inode)->lock);
9416 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9417 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9418 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9419 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9420 return 0;
9421}
9422
cdd1fedf
DF
9423static int btrfs_rename_exchange(struct inode *old_dir,
9424 struct dentry *old_dentry,
9425 struct inode *new_dir,
9426 struct dentry *new_dentry)
9427{
9428 struct btrfs_trans_handle *trans;
9429 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9430 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9431 struct inode *new_inode = new_dentry->d_inode;
9432 struct inode *old_inode = old_dentry->d_inode;
9433 struct timespec ctime = CURRENT_TIME;
9434 struct dentry *parent;
9435 u64 old_ino = btrfs_ino(old_inode);
9436 u64 new_ino = btrfs_ino(new_inode);
9437 u64 old_idx = 0;
9438 u64 new_idx = 0;
9439 u64 root_objectid;
9440 int ret;
86e8aa0e
FM
9441 bool root_log_pinned = false;
9442 bool dest_log_pinned = false;
cdd1fedf
DF
9443
9444 /* we only allow rename subvolume link between subvolumes */
9445 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9446 return -EXDEV;
9447
9448 /* close the race window with snapshot create/destroy ioctl */
9449 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9450 down_read(&root->fs_info->subvol_sem);
9451 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9452 down_read(&dest->fs_info->subvol_sem);
9453
9454 /*
9455 * We want to reserve the absolute worst case amount of items. So if
9456 * both inodes are subvols and we need to unlink them then that would
9457 * require 4 item modifications, but if they are both normal inodes it
9458 * would require 5 item modifications, so we'll assume their normal
9459 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9460 * should cover the worst case number of items we'll modify.
9461 */
9462 trans = btrfs_start_transaction(root, 12);
9463 if (IS_ERR(trans)) {
9464 ret = PTR_ERR(trans);
9465 goto out_notrans;
9466 }
9467
9468 /*
9469 * We need to find a free sequence number both in the source and
9470 * in the destination directory for the exchange.
9471 */
9472 ret = btrfs_set_inode_index(new_dir, &old_idx);
9473 if (ret)
9474 goto out_fail;
9475 ret = btrfs_set_inode_index(old_dir, &new_idx);
9476 if (ret)
9477 goto out_fail;
9478
9479 BTRFS_I(old_inode)->dir_index = 0ULL;
9480 BTRFS_I(new_inode)->dir_index = 0ULL;
9481
9482 /* Reference for the source. */
9483 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9484 /* force full log commit if subvolume involved. */
9485 btrfs_set_log_full_commit(root->fs_info, trans);
9486 } else {
376e5a57
FM
9487 btrfs_pin_log_trans(root);
9488 root_log_pinned = true;
cdd1fedf
DF
9489 ret = btrfs_insert_inode_ref(trans, dest,
9490 new_dentry->d_name.name,
9491 new_dentry->d_name.len,
9492 old_ino,
9493 btrfs_ino(new_dir), old_idx);
9494 if (ret)
9495 goto out_fail;
cdd1fedf
DF
9496 }
9497
9498 /* And now for the dest. */
9499 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9500 /* force full log commit if subvolume involved. */
9501 btrfs_set_log_full_commit(dest->fs_info, trans);
9502 } else {
376e5a57
FM
9503 btrfs_pin_log_trans(dest);
9504 dest_log_pinned = true;
cdd1fedf
DF
9505 ret = btrfs_insert_inode_ref(trans, root,
9506 old_dentry->d_name.name,
9507 old_dentry->d_name.len,
9508 new_ino,
9509 btrfs_ino(old_dir), new_idx);
9510 if (ret)
9511 goto out_fail;
cdd1fedf
DF
9512 }
9513
9514 /* Update inode version and ctime/mtime. */
9515 inode_inc_iversion(old_dir);
9516 inode_inc_iversion(new_dir);
9517 inode_inc_iversion(old_inode);
9518 inode_inc_iversion(new_inode);
9519 old_dir->i_ctime = old_dir->i_mtime = ctime;
9520 new_dir->i_ctime = new_dir->i_mtime = ctime;
9521 old_inode->i_ctime = ctime;
9522 new_inode->i_ctime = ctime;
9523
9524 if (old_dentry->d_parent != new_dentry->d_parent) {
9525 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9526 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9527 }
9528
9529 /* src is a subvolume */
9530 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9531 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9532 ret = btrfs_unlink_subvol(trans, root, old_dir,
9533 root_objectid,
9534 old_dentry->d_name.name,
9535 old_dentry->d_name.len);
9536 } else { /* src is an inode */
9537 ret = __btrfs_unlink_inode(trans, root, old_dir,
9538 old_dentry->d_inode,
9539 old_dentry->d_name.name,
9540 old_dentry->d_name.len);
9541 if (!ret)
9542 ret = btrfs_update_inode(trans, root, old_inode);
9543 }
9544 if (ret) {
9545 btrfs_abort_transaction(trans, root, ret);
9546 goto out_fail;
9547 }
9548
9549 /* dest is a subvolume */
9550 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9551 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9552 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9553 root_objectid,
9554 new_dentry->d_name.name,
9555 new_dentry->d_name.len);
9556 } else { /* dest is an inode */
9557 ret = __btrfs_unlink_inode(trans, dest, new_dir,
9558 new_dentry->d_inode,
9559 new_dentry->d_name.name,
9560 new_dentry->d_name.len);
9561 if (!ret)
9562 ret = btrfs_update_inode(trans, dest, new_inode);
9563 }
9564 if (ret) {
9565 btrfs_abort_transaction(trans, root, ret);
9566 goto out_fail;
9567 }
9568
9569 ret = btrfs_add_link(trans, new_dir, old_inode,
9570 new_dentry->d_name.name,
9571 new_dentry->d_name.len, 0, old_idx);
9572 if (ret) {
9573 btrfs_abort_transaction(trans, root, ret);
9574 goto out_fail;
9575 }
9576
9577 ret = btrfs_add_link(trans, old_dir, new_inode,
9578 old_dentry->d_name.name,
9579 old_dentry->d_name.len, 0, new_idx);
9580 if (ret) {
9581 btrfs_abort_transaction(trans, root, ret);
9582 goto out_fail;
9583 }
9584
9585 if (old_inode->i_nlink == 1)
9586 BTRFS_I(old_inode)->dir_index = old_idx;
9587 if (new_inode->i_nlink == 1)
9588 BTRFS_I(new_inode)->dir_index = new_idx;
9589
86e8aa0e 9590 if (root_log_pinned) {
cdd1fedf
DF
9591 parent = new_dentry->d_parent;
9592 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9593 btrfs_end_log_trans(root);
86e8aa0e 9594 root_log_pinned = false;
cdd1fedf 9595 }
86e8aa0e 9596 if (dest_log_pinned) {
cdd1fedf
DF
9597 parent = old_dentry->d_parent;
9598 btrfs_log_new_name(trans, new_inode, new_dir, parent);
9599 btrfs_end_log_trans(dest);
86e8aa0e 9600 dest_log_pinned = false;
cdd1fedf
DF
9601 }
9602out_fail:
86e8aa0e
FM
9603 /*
9604 * If we have pinned a log and an error happened, we unpin tasks
9605 * trying to sync the log and force them to fallback to a transaction
9606 * commit if the log currently contains any of the inodes involved in
9607 * this rename operation (to ensure we do not persist a log with an
9608 * inconsistent state for any of these inodes or leading to any
9609 * inconsistencies when replayed). If the transaction was aborted, the
9610 * abortion reason is propagated to userspace when attempting to commit
9611 * the transaction. If the log does not contain any of these inodes, we
9612 * allow the tasks to sync it.
9613 */
9614 if (ret && (root_log_pinned || dest_log_pinned)) {
9615 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9616 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9617 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9618 (new_inode &&
9619 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9620 btrfs_set_log_full_commit(root->fs_info, trans);
9621
9622 if (root_log_pinned) {
9623 btrfs_end_log_trans(root);
9624 root_log_pinned = false;
9625 }
9626 if (dest_log_pinned) {
9627 btrfs_end_log_trans(dest);
9628 dest_log_pinned = false;
9629 }
9630 }
cdd1fedf
DF
9631 ret = btrfs_end_transaction(trans, root);
9632out_notrans:
9633 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9634 up_read(&dest->fs_info->subvol_sem);
9635 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9636 up_read(&root->fs_info->subvol_sem);
9637
9638 return ret;
9639}
9640
9641static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9642 struct btrfs_root *root,
9643 struct inode *dir,
9644 struct dentry *dentry)
9645{
9646 int ret;
9647 struct inode *inode;
9648 u64 objectid;
9649 u64 index;
9650
9651 ret = btrfs_find_free_ino(root, &objectid);
9652 if (ret)
9653 return ret;
9654
9655 inode = btrfs_new_inode(trans, root, dir,
9656 dentry->d_name.name,
9657 dentry->d_name.len,
9658 btrfs_ino(dir),
9659 objectid,
9660 S_IFCHR | WHITEOUT_MODE,
9661 &index);
9662
9663 if (IS_ERR(inode)) {
9664 ret = PTR_ERR(inode);
9665 return ret;
9666 }
9667
9668 inode->i_op = &btrfs_special_inode_operations;
9669 init_special_inode(inode, inode->i_mode,
9670 WHITEOUT_DEV);
9671
9672 ret = btrfs_init_inode_security(trans, inode, dir,
9673 &dentry->d_name);
9674 if (ret)
c9901618 9675 goto out;
cdd1fedf
DF
9676
9677 ret = btrfs_add_nondir(trans, dir, dentry,
9678 inode, 0, index);
9679 if (ret)
c9901618 9680 goto out;
cdd1fedf
DF
9681
9682 ret = btrfs_update_inode(trans, root, inode);
c9901618 9683out:
cdd1fedf 9684 unlock_new_inode(inode);
c9901618
FM
9685 if (ret)
9686 inode_dec_link_count(inode);
cdd1fedf
DF
9687 iput(inode);
9688
c9901618 9689 return ret;
cdd1fedf
DF
9690}
9691
d397712b 9692static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9693 struct inode *new_dir, struct dentry *new_dentry,
9694 unsigned int flags)
39279cc3
CM
9695{
9696 struct btrfs_trans_handle *trans;
5062af35 9697 unsigned int trans_num_items;
39279cc3 9698 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9699 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9700 struct inode *new_inode = d_inode(new_dentry);
9701 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9702 u64 index = 0;
4df27c4d 9703 u64 root_objectid;
39279cc3 9704 int ret;
33345d01 9705 u64 old_ino = btrfs_ino(old_inode);
3dc9e8f7 9706 bool log_pinned = false;
39279cc3 9707
33345d01 9708 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9709 return -EPERM;
9710
4df27c4d 9711 /* we only allow rename subvolume link between subvolumes */
33345d01 9712 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9713 return -EXDEV;
9714
33345d01
LZ
9715 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9716 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9717 return -ENOTEMPTY;
5f39d397 9718
4df27c4d
YZ
9719 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9720 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9721 return -ENOTEMPTY;
9c52057c
CM
9722
9723
9724 /* check for collisions, even if the name isn't there */
4871c158 9725 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9726 new_dentry->d_name.name,
9727 new_dentry->d_name.len);
9728
9729 if (ret) {
9730 if (ret == -EEXIST) {
9731 /* we shouldn't get
9732 * eexist without a new_inode */
fae7f21c 9733 if (WARN_ON(!new_inode)) {
9c52057c
CM
9734 return ret;
9735 }
9736 } else {
9737 /* maybe -EOVERFLOW */
9738 return ret;
9739 }
9740 }
9741 ret = 0;
9742
5a3f23d5 9743 /*
8d875f95
CM
9744 * we're using rename to replace one file with another. Start IO on it
9745 * now so we don't add too much work to the end of the transaction
5a3f23d5 9746 */
8d875f95 9747 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9748 filemap_flush(old_inode->i_mapping);
9749
76dda93c 9750 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9751 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9752 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
9753 /*
9754 * We want to reserve the absolute worst case amount of items. So if
9755 * both inodes are subvols and we need to unlink them then that would
9756 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9757 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9758 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9759 * should cover the worst case number of items we'll modify.
5062af35
FM
9760 * If our rename has the whiteout flag, we need more 5 units for the
9761 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9762 * when selinux is enabled).
a22285a6 9763 */
5062af35
FM
9764 trans_num_items = 11;
9765 if (flags & RENAME_WHITEOUT)
9766 trans_num_items += 5;
9767 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9768 if (IS_ERR(trans)) {
cdd1fedf
DF
9769 ret = PTR_ERR(trans);
9770 goto out_notrans;
9771 }
76dda93c 9772
4df27c4d
YZ
9773 if (dest != root)
9774 btrfs_record_root_in_trans(trans, dest);
5f39d397 9775
a5719521
YZ
9776 ret = btrfs_set_inode_index(new_dir, &index);
9777 if (ret)
9778 goto out_fail;
5a3f23d5 9779
67de1176 9780 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9781 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9782 /* force full log commit if subvolume involved. */
995946dd 9783 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 9784 } else {
c4aba954
FM
9785 btrfs_pin_log_trans(root);
9786 log_pinned = true;
a5719521
YZ
9787 ret = btrfs_insert_inode_ref(trans, dest,
9788 new_dentry->d_name.name,
9789 new_dentry->d_name.len,
33345d01
LZ
9790 old_ino,
9791 btrfs_ino(new_dir), index);
a5719521
YZ
9792 if (ret)
9793 goto out_fail;
4df27c4d 9794 }
5a3f23d5 9795
0c4d2d95
JB
9796 inode_inc_iversion(old_dir);
9797 inode_inc_iversion(new_dir);
9798 inode_inc_iversion(old_inode);
04b285f3
DD
9799 old_dir->i_ctime = old_dir->i_mtime =
9800 new_dir->i_ctime = new_dir->i_mtime =
9801 old_inode->i_ctime = current_fs_time(old_dir->i_sb);
5f39d397 9802
12fcfd22
CM
9803 if (old_dentry->d_parent != new_dentry->d_parent)
9804 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9805
33345d01 9806 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9807 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9808 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9809 old_dentry->d_name.name,
9810 old_dentry->d_name.len);
9811 } else {
92986796 9812 ret = __btrfs_unlink_inode(trans, root, old_dir,
2b0143b5 9813 d_inode(old_dentry),
92986796
AV
9814 old_dentry->d_name.name,
9815 old_dentry->d_name.len);
9816 if (!ret)
9817 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9818 }
79787eaa
JM
9819 if (ret) {
9820 btrfs_abort_transaction(trans, root, ret);
9821 goto out_fail;
9822 }
39279cc3
CM
9823
9824 if (new_inode) {
0c4d2d95 9825 inode_inc_iversion(new_inode);
04b285f3 9826 new_inode->i_ctime = current_fs_time(new_inode->i_sb);
33345d01 9827 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
9828 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9829 root_objectid = BTRFS_I(new_inode)->location.objectid;
9830 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9831 root_objectid,
9832 new_dentry->d_name.name,
9833 new_dentry->d_name.len);
9834 BUG_ON(new_inode->i_nlink == 0);
9835 } else {
9836 ret = btrfs_unlink_inode(trans, dest, new_dir,
2b0143b5 9837 d_inode(new_dentry),
4df27c4d
YZ
9838 new_dentry->d_name.name,
9839 new_dentry->d_name.len);
9840 }
4ef31a45 9841 if (!ret && new_inode->i_nlink == 0)
2b0143b5 9842 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
79787eaa
JM
9843 if (ret) {
9844 btrfs_abort_transaction(trans, root, ret);
9845 goto out_fail;
9846 }
39279cc3 9847 }
aec7477b 9848
4df27c4d
YZ
9849 ret = btrfs_add_link(trans, new_dir, old_inode,
9850 new_dentry->d_name.name,
a5719521 9851 new_dentry->d_name.len, 0, index);
79787eaa
JM
9852 if (ret) {
9853 btrfs_abort_transaction(trans, root, ret);
9854 goto out_fail;
9855 }
39279cc3 9856
67de1176
MX
9857 if (old_inode->i_nlink == 1)
9858 BTRFS_I(old_inode)->dir_index = index;
9859
3dc9e8f7 9860 if (log_pinned) {
10d9f309 9861 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9862
6a912213 9863 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d 9864 btrfs_end_log_trans(root);
3dc9e8f7 9865 log_pinned = false;
4df27c4d 9866 }
cdd1fedf
DF
9867
9868 if (flags & RENAME_WHITEOUT) {
9869 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9870 old_dentry);
9871
9872 if (ret) {
9873 btrfs_abort_transaction(trans, root, ret);
9874 goto out_fail;
9875 }
4df27c4d 9876 }
39279cc3 9877out_fail:
3dc9e8f7
FM
9878 /*
9879 * If we have pinned the log and an error happened, we unpin tasks
9880 * trying to sync the log and force them to fallback to a transaction
9881 * commit if the log currently contains any of the inodes involved in
9882 * this rename operation (to ensure we do not persist a log with an
9883 * inconsistent state for any of these inodes or leading to any
9884 * inconsistencies when replayed). If the transaction was aborted, the
9885 * abortion reason is propagated to userspace when attempting to commit
9886 * the transaction. If the log does not contain any of these inodes, we
9887 * allow the tasks to sync it.
9888 */
9889 if (ret && log_pinned) {
9890 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9891 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9892 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9893 (new_inode &&
9894 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9895 btrfs_set_log_full_commit(root->fs_info, trans);
9896
9897 btrfs_end_log_trans(root);
9898 log_pinned = false;
9899 }
7ad85bb7 9900 btrfs_end_transaction(trans, root);
b44c59a8 9901out_notrans:
33345d01 9902 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9903 up_read(&root->fs_info->subvol_sem);
9ed74f2d 9904
39279cc3
CM
9905 return ret;
9906}
9907
80ace85c
MS
9908static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9909 struct inode *new_dir, struct dentry *new_dentry,
9910 unsigned int flags)
9911{
cdd1fedf 9912 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9913 return -EINVAL;
9914
cdd1fedf
DF
9915 if (flags & RENAME_EXCHANGE)
9916 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9917 new_dentry);
9918
9919 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9920}
9921
8ccf6f19
MX
9922static void btrfs_run_delalloc_work(struct btrfs_work *work)
9923{
9924 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9925 struct inode *inode;
8ccf6f19
MX
9926
9927 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9928 work);
9f23e289 9929 inode = delalloc_work->inode;
30424601
DS
9930 filemap_flush(inode->i_mapping);
9931 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9932 &BTRFS_I(inode)->runtime_flags))
9f23e289 9933 filemap_flush(inode->i_mapping);
8ccf6f19
MX
9934
9935 if (delalloc_work->delay_iput)
9f23e289 9936 btrfs_add_delayed_iput(inode);
8ccf6f19 9937 else
9f23e289 9938 iput(inode);
8ccf6f19
MX
9939 complete(&delalloc_work->completion);
9940}
9941
9942struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 9943 int delay_iput)
8ccf6f19
MX
9944{
9945 struct btrfs_delalloc_work *work;
9946
100d5702 9947 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9948 if (!work)
9949 return NULL;
9950
9951 init_completion(&work->completion);
9952 INIT_LIST_HEAD(&work->list);
9953 work->inode = inode;
8ccf6f19 9954 work->delay_iput = delay_iput;
9e0af237
LB
9955 WARN_ON_ONCE(!inode);
9956 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9957 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9958
9959 return work;
9960}
9961
9962void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9963{
9964 wait_for_completion(&work->completion);
100d5702 9965 kfree(work);
8ccf6f19
MX
9966}
9967
d352ac68
CM
9968/*
9969 * some fairly slow code that needs optimization. This walks the list
9970 * of all the inodes with pending delalloc and forces them to disk.
9971 */
6c255e67
MX
9972static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9973 int nr)
ea8c2819 9974{
ea8c2819 9975 struct btrfs_inode *binode;
5b21f2ed 9976 struct inode *inode;
8ccf6f19
MX
9977 struct btrfs_delalloc_work *work, *next;
9978 struct list_head works;
1eafa6c7 9979 struct list_head splice;
8ccf6f19 9980 int ret = 0;
ea8c2819 9981
8ccf6f19 9982 INIT_LIST_HEAD(&works);
1eafa6c7 9983 INIT_LIST_HEAD(&splice);
63607cc8 9984
573bfb72 9985 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9986 spin_lock(&root->delalloc_lock);
9987 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9988 while (!list_empty(&splice)) {
9989 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9990 delalloc_inodes);
1eafa6c7 9991
eb73c1b7
MX
9992 list_move_tail(&binode->delalloc_inodes,
9993 &root->delalloc_inodes);
5b21f2ed 9994 inode = igrab(&binode->vfs_inode);
df0af1a5 9995 if (!inode) {
eb73c1b7 9996 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9997 continue;
df0af1a5 9998 }
eb73c1b7 9999 spin_unlock(&root->delalloc_lock);
1eafa6c7 10000
651d494a 10001 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10002 if (!work) {
f4ab9ea7
JB
10003 if (delay_iput)
10004 btrfs_add_delayed_iput(inode);
10005 else
10006 iput(inode);
1eafa6c7 10007 ret = -ENOMEM;
a1ecaabb 10008 goto out;
5b21f2ed 10009 }
1eafa6c7 10010 list_add_tail(&work->list, &works);
a44903ab
QW
10011 btrfs_queue_work(root->fs_info->flush_workers,
10012 &work->work);
6c255e67
MX
10013 ret++;
10014 if (nr != -1 && ret >= nr)
a1ecaabb 10015 goto out;
5b21f2ed 10016 cond_resched();
eb73c1b7 10017 spin_lock(&root->delalloc_lock);
ea8c2819 10018 }
eb73c1b7 10019 spin_unlock(&root->delalloc_lock);
8c8bee1d 10020
a1ecaabb 10021out:
eb73c1b7
MX
10022 list_for_each_entry_safe(work, next, &works, list) {
10023 list_del_init(&work->list);
10024 btrfs_wait_and_free_delalloc_work(work);
10025 }
10026
10027 if (!list_empty_careful(&splice)) {
10028 spin_lock(&root->delalloc_lock);
10029 list_splice_tail(&splice, &root->delalloc_inodes);
10030 spin_unlock(&root->delalloc_lock);
10031 }
573bfb72 10032 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10033 return ret;
10034}
1eafa6c7 10035
eb73c1b7
MX
10036int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10037{
10038 int ret;
1eafa6c7 10039
2c21b4d7 10040 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
10041 return -EROFS;
10042
6c255e67
MX
10043 ret = __start_delalloc_inodes(root, delay_iput, -1);
10044 if (ret > 0)
10045 ret = 0;
eb73c1b7
MX
10046 /*
10047 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
10048 * we have to make sure the IO is actually started and that
10049 * ordered extents get created before we return
10050 */
10051 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 10052 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 10053 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 10054 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
10055 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10056 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
10057 }
10058 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
10059 return ret;
10060}
10061
6c255e67
MX
10062int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10063 int nr)
eb73c1b7
MX
10064{
10065 struct btrfs_root *root;
10066 struct list_head splice;
10067 int ret;
10068
2c21b4d7 10069 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10070 return -EROFS;
10071
10072 INIT_LIST_HEAD(&splice);
10073
573bfb72 10074 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10075 spin_lock(&fs_info->delalloc_root_lock);
10076 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10077 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10078 root = list_first_entry(&splice, struct btrfs_root,
10079 delalloc_root);
10080 root = btrfs_grab_fs_root(root);
10081 BUG_ON(!root);
10082 list_move_tail(&root->delalloc_root,
10083 &fs_info->delalloc_roots);
10084 spin_unlock(&fs_info->delalloc_root_lock);
10085
6c255e67 10086 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10087 btrfs_put_fs_root(root);
6c255e67 10088 if (ret < 0)
eb73c1b7
MX
10089 goto out;
10090
6c255e67
MX
10091 if (nr != -1) {
10092 nr -= ret;
10093 WARN_ON(nr < 0);
10094 }
eb73c1b7 10095 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10096 }
eb73c1b7 10097 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10098
6c255e67 10099 ret = 0;
eb73c1b7
MX
10100 atomic_inc(&fs_info->async_submit_draining);
10101 while (atomic_read(&fs_info->nr_async_submits) ||
10102 atomic_read(&fs_info->async_delalloc_pages)) {
10103 wait_event(fs_info->async_submit_wait,
10104 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10105 atomic_read(&fs_info->async_delalloc_pages) == 0));
10106 }
10107 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 10108out:
1eafa6c7 10109 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10110 spin_lock(&fs_info->delalloc_root_lock);
10111 list_splice_tail(&splice, &fs_info->delalloc_roots);
10112 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10113 }
573bfb72 10114 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10115 return ret;
ea8c2819
CM
10116}
10117
39279cc3
CM
10118static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10119 const char *symname)
10120{
10121 struct btrfs_trans_handle *trans;
10122 struct btrfs_root *root = BTRFS_I(dir)->root;
10123 struct btrfs_path *path;
10124 struct btrfs_key key;
1832a6d5 10125 struct inode *inode = NULL;
39279cc3
CM
10126 int err;
10127 int drop_inode = 0;
10128 u64 objectid;
67871254 10129 u64 index = 0;
39279cc3
CM
10130 int name_len;
10131 int datasize;
5f39d397 10132 unsigned long ptr;
39279cc3 10133 struct btrfs_file_extent_item *ei;
5f39d397 10134 struct extent_buffer *leaf;
39279cc3 10135
f06becc4 10136 name_len = strlen(symname);
39279cc3
CM
10137 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10138 return -ENAMETOOLONG;
1832a6d5 10139
9ed74f2d
JB
10140 /*
10141 * 2 items for inode item and ref
10142 * 2 items for dir items
9269d12b
FM
10143 * 1 item for updating parent inode item
10144 * 1 item for the inline extent item
9ed74f2d
JB
10145 * 1 item for xattr if selinux is on
10146 */
9269d12b 10147 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10148 if (IS_ERR(trans))
10149 return PTR_ERR(trans);
1832a6d5 10150
581bb050
LZ
10151 err = btrfs_find_free_ino(root, &objectid);
10152 if (err)
10153 goto out_unlock;
10154
aec7477b 10155 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 10156 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 10157 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10158 if (IS_ERR(inode)) {
10159 err = PTR_ERR(inode);
39279cc3 10160 goto out_unlock;
7cf96da3 10161 }
39279cc3 10162
ad19db71
CS
10163 /*
10164 * If the active LSM wants to access the inode during
10165 * d_instantiate it needs these. Smack checks to see
10166 * if the filesystem supports xattrs by looking at the
10167 * ops vector.
10168 */
10169 inode->i_fop = &btrfs_file_operations;
10170 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10171 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10172 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10173
10174 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10175 if (err)
10176 goto out_unlock_inode;
ad19db71 10177
39279cc3 10178 path = btrfs_alloc_path();
d8926bb3
MF
10179 if (!path) {
10180 err = -ENOMEM;
b0d5d10f 10181 goto out_unlock_inode;
d8926bb3 10182 }
33345d01 10183 key.objectid = btrfs_ino(inode);
39279cc3 10184 key.offset = 0;
962a298f 10185 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10186 datasize = btrfs_file_extent_calc_inline_size(name_len);
10187 err = btrfs_insert_empty_item(trans, root, path, &key,
10188 datasize);
54aa1f4d 10189 if (err) {
b0839166 10190 btrfs_free_path(path);
b0d5d10f 10191 goto out_unlock_inode;
54aa1f4d 10192 }
5f39d397
CM
10193 leaf = path->nodes[0];
10194 ei = btrfs_item_ptr(leaf, path->slots[0],
10195 struct btrfs_file_extent_item);
10196 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10197 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10198 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10199 btrfs_set_file_extent_encryption(leaf, ei, 0);
10200 btrfs_set_file_extent_compression(leaf, ei, 0);
10201 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10202 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10203
39279cc3 10204 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10205 write_extent_buffer(leaf, symname, ptr, name_len);
10206 btrfs_mark_buffer_dirty(leaf);
39279cc3 10207 btrfs_free_path(path);
5f39d397 10208
39279cc3 10209 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10210 inode_nohighmem(inode);
39279cc3 10211 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10212 inode_set_bytes(inode, name_len);
f06becc4 10213 btrfs_i_size_write(inode, name_len);
54aa1f4d 10214 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10215 /*
10216 * Last step, add directory indexes for our symlink inode. This is the
10217 * last step to avoid extra cleanup of these indexes if an error happens
10218 * elsewhere above.
10219 */
10220 if (!err)
10221 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
b0d5d10f 10222 if (err) {
54aa1f4d 10223 drop_inode = 1;
b0d5d10f
CM
10224 goto out_unlock_inode;
10225 }
10226
10227 unlock_new_inode(inode);
10228 d_instantiate(dentry, inode);
39279cc3
CM
10229
10230out_unlock:
7ad85bb7 10231 btrfs_end_transaction(trans, root);
39279cc3
CM
10232 if (drop_inode) {
10233 inode_dec_link_count(inode);
10234 iput(inode);
10235 }
b53d3f5d 10236 btrfs_btree_balance_dirty(root);
39279cc3 10237 return err;
b0d5d10f
CM
10238
10239out_unlock_inode:
10240 drop_inode = 1;
10241 unlock_new_inode(inode);
10242 goto out_unlock;
39279cc3 10243}
16432985 10244
0af3d00b
JB
10245static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10246 u64 start, u64 num_bytes, u64 min_size,
10247 loff_t actual_len, u64 *alloc_hint,
10248 struct btrfs_trans_handle *trans)
d899e052 10249{
5dc562c5
JB
10250 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10251 struct extent_map *em;
d899e052
YZ
10252 struct btrfs_root *root = BTRFS_I(inode)->root;
10253 struct btrfs_key ins;
d899e052 10254 u64 cur_offset = start;
55a61d1d 10255 u64 i_size;
154ea289 10256 u64 cur_bytes;
0b670dc4 10257 u64 last_alloc = (u64)-1;
d899e052 10258 int ret = 0;
0af3d00b 10259 bool own_trans = true;
d899e052 10260
0af3d00b
JB
10261 if (trans)
10262 own_trans = false;
d899e052 10263 while (num_bytes > 0) {
0af3d00b
JB
10264 if (own_trans) {
10265 trans = btrfs_start_transaction(root, 3);
10266 if (IS_ERR(trans)) {
10267 ret = PTR_ERR(trans);
10268 break;
10269 }
5a303d5d
YZ
10270 }
10271
ee22184b 10272 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10273 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10274 /*
10275 * If we are severely fragmented we could end up with really
10276 * small allocations, so if the allocator is returning small
10277 * chunks lets make its job easier by only searching for those
10278 * sized chunks.
10279 */
10280 cur_bytes = min(cur_bytes, last_alloc);
00361589 10281 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
e570fd27 10282 *alloc_hint, &ins, 1, 0);
5a303d5d 10283 if (ret) {
0af3d00b
JB
10284 if (own_trans)
10285 btrfs_end_transaction(trans, root);
a22285a6 10286 break;
d899e052 10287 }
9cfa3e34 10288 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
5a303d5d 10289
0b670dc4 10290 last_alloc = ins.offset;
d899e052
YZ
10291 ret = insert_reserved_file_extent(trans, inode,
10292 cur_offset, ins.objectid,
10293 ins.offset, ins.offset,
920bbbfb 10294 ins.offset, 0, 0, 0,
d899e052 10295 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10296 if (ret) {
857cc2fc 10297 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 10298 ins.offset, 0);
79787eaa
JM
10299 btrfs_abort_transaction(trans, root, ret);
10300 if (own_trans)
10301 btrfs_end_transaction(trans, root);
10302 break;
10303 }
31193213 10304
a1ed835e
CM
10305 btrfs_drop_extent_cache(inode, cur_offset,
10306 cur_offset + ins.offset -1, 0);
5a303d5d 10307
5dc562c5
JB
10308 em = alloc_extent_map();
10309 if (!em) {
10310 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10311 &BTRFS_I(inode)->runtime_flags);
10312 goto next;
10313 }
10314
10315 em->start = cur_offset;
10316 em->orig_start = cur_offset;
10317 em->len = ins.offset;
10318 em->block_start = ins.objectid;
10319 em->block_len = ins.offset;
b4939680 10320 em->orig_block_len = ins.offset;
cc95bef6 10321 em->ram_bytes = ins.offset;
5dc562c5
JB
10322 em->bdev = root->fs_info->fs_devices->latest_bdev;
10323 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10324 em->generation = trans->transid;
10325
10326 while (1) {
10327 write_lock(&em_tree->lock);
09a2a8f9 10328 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10329 write_unlock(&em_tree->lock);
10330 if (ret != -EEXIST)
10331 break;
10332 btrfs_drop_extent_cache(inode, cur_offset,
10333 cur_offset + ins.offset - 1,
10334 0);
10335 }
10336 free_extent_map(em);
10337next:
d899e052
YZ
10338 num_bytes -= ins.offset;
10339 cur_offset += ins.offset;
efa56464 10340 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10341
0c4d2d95 10342 inode_inc_iversion(inode);
04b285f3 10343 inode->i_ctime = current_fs_time(inode->i_sb);
6cbff00f 10344 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10345 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10346 (actual_len > inode->i_size) &&
10347 (cur_offset > inode->i_size)) {
d1ea6a61 10348 if (cur_offset > actual_len)
55a61d1d 10349 i_size = actual_len;
d1ea6a61 10350 else
55a61d1d
JB
10351 i_size = cur_offset;
10352 i_size_write(inode, i_size);
10353 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10354 }
10355
d899e052 10356 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10357
10358 if (ret) {
10359 btrfs_abort_transaction(trans, root, ret);
10360 if (own_trans)
10361 btrfs_end_transaction(trans, root);
10362 break;
10363 }
d899e052 10364
0af3d00b
JB
10365 if (own_trans)
10366 btrfs_end_transaction(trans, root);
5a303d5d 10367 }
d899e052
YZ
10368 return ret;
10369}
10370
0af3d00b
JB
10371int btrfs_prealloc_file_range(struct inode *inode, int mode,
10372 u64 start, u64 num_bytes, u64 min_size,
10373 loff_t actual_len, u64 *alloc_hint)
10374{
10375 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10376 min_size, actual_len, alloc_hint,
10377 NULL);
10378}
10379
10380int btrfs_prealloc_file_range_trans(struct inode *inode,
10381 struct btrfs_trans_handle *trans, int mode,
10382 u64 start, u64 num_bytes, u64 min_size,
10383 loff_t actual_len, u64 *alloc_hint)
10384{
10385 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10386 min_size, actual_len, alloc_hint, trans);
10387}
10388
e6dcd2dc
CM
10389static int btrfs_set_page_dirty(struct page *page)
10390{
e6dcd2dc
CM
10391 return __set_page_dirty_nobuffers(page);
10392}
10393
10556cb2 10394static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10395{
b83cc969 10396 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10397 umode_t mode = inode->i_mode;
b83cc969 10398
cb6db4e5
JM
10399 if (mask & MAY_WRITE &&
10400 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10401 if (btrfs_root_readonly(root))
10402 return -EROFS;
10403 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10404 return -EACCES;
10405 }
2830ba7f 10406 return generic_permission(inode, mask);
fdebe2bd 10407}
39279cc3 10408
ef3b9af5
FM
10409static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10410{
10411 struct btrfs_trans_handle *trans;
10412 struct btrfs_root *root = BTRFS_I(dir)->root;
10413 struct inode *inode = NULL;
10414 u64 objectid;
10415 u64 index;
10416 int ret = 0;
10417
10418 /*
10419 * 5 units required for adding orphan entry
10420 */
10421 trans = btrfs_start_transaction(root, 5);
10422 if (IS_ERR(trans))
10423 return PTR_ERR(trans);
10424
10425 ret = btrfs_find_free_ino(root, &objectid);
10426 if (ret)
10427 goto out;
10428
10429 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10430 btrfs_ino(dir), objectid, mode, &index);
10431 if (IS_ERR(inode)) {
10432 ret = PTR_ERR(inode);
10433 inode = NULL;
10434 goto out;
10435 }
10436
ef3b9af5
FM
10437 inode->i_fop = &btrfs_file_operations;
10438 inode->i_op = &btrfs_file_inode_operations;
10439
10440 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10441 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10442
b0d5d10f
CM
10443 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10444 if (ret)
10445 goto out_inode;
10446
10447 ret = btrfs_update_inode(trans, root, inode);
10448 if (ret)
10449 goto out_inode;
ef3b9af5
FM
10450 ret = btrfs_orphan_add(trans, inode);
10451 if (ret)
b0d5d10f 10452 goto out_inode;
ef3b9af5 10453
5762b5c9
FM
10454 /*
10455 * We set number of links to 0 in btrfs_new_inode(), and here we set
10456 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10457 * through:
10458 *
10459 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10460 */
10461 set_nlink(inode, 1);
b0d5d10f 10462 unlock_new_inode(inode);
ef3b9af5
FM
10463 d_tmpfile(dentry, inode);
10464 mark_inode_dirty(inode);
10465
10466out:
10467 btrfs_end_transaction(trans, root);
10468 if (ret)
10469 iput(inode);
10470 btrfs_balance_delayed_items(root);
10471 btrfs_btree_balance_dirty(root);
ef3b9af5 10472 return ret;
b0d5d10f
CM
10473
10474out_inode:
10475 unlock_new_inode(inode);
10476 goto out;
10477
ef3b9af5
FM
10478}
10479
b38ef71c
FM
10480/* Inspired by filemap_check_errors() */
10481int btrfs_inode_check_errors(struct inode *inode)
10482{
10483 int ret = 0;
10484
10485 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10486 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10487 ret = -ENOSPC;
10488 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10489 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10490 ret = -EIO;
10491
10492 return ret;
10493}
10494
6e1d5dcc 10495static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10496 .getattr = btrfs_getattr,
39279cc3
CM
10497 .lookup = btrfs_lookup,
10498 .create = btrfs_create,
10499 .unlink = btrfs_unlink,
10500 .link = btrfs_link,
10501 .mkdir = btrfs_mkdir,
10502 .rmdir = btrfs_rmdir,
80ace85c 10503 .rename2 = btrfs_rename2,
39279cc3
CM
10504 .symlink = btrfs_symlink,
10505 .setattr = btrfs_setattr,
618e21d5 10506 .mknod = btrfs_mknod,
e0d46f5c 10507 .setxattr = generic_setxattr,
9172abbc 10508 .getxattr = generic_getxattr,
5103e947 10509 .listxattr = btrfs_listxattr,
e0d46f5c 10510 .removexattr = generic_removexattr,
fdebe2bd 10511 .permission = btrfs_permission,
4e34e719 10512 .get_acl = btrfs_get_acl,
996a710d 10513 .set_acl = btrfs_set_acl,
93fd63c2 10514 .update_time = btrfs_update_time,
ef3b9af5 10515 .tmpfile = btrfs_tmpfile,
39279cc3 10516};
6e1d5dcc 10517static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10518 .lookup = btrfs_lookup,
fdebe2bd 10519 .permission = btrfs_permission,
4e34e719 10520 .get_acl = btrfs_get_acl,
996a710d 10521 .set_acl = btrfs_set_acl,
93fd63c2 10522 .update_time = btrfs_update_time,
39279cc3 10523};
76dda93c 10524
828c0950 10525static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10526 .llseek = generic_file_llseek,
10527 .read = generic_read_dir,
fe742fd4 10528 .iterate = btrfs_real_readdir,
34287aa3 10529 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10530#ifdef CONFIG_COMPAT
4c63c245 10531 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10532#endif
6bf13c0c 10533 .release = btrfs_release_file,
e02119d5 10534 .fsync = btrfs_sync_file,
39279cc3
CM
10535};
10536
20e5506b 10537static const struct extent_io_ops btrfs_extent_io_ops = {
07157aac 10538 .fill_delalloc = run_delalloc_range,
065631f6 10539 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 10540 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 10541 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 10542 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10543 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10544 .set_bit_hook = btrfs_set_bit_hook,
10545 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10546 .merge_extent_hook = btrfs_merge_extent_hook,
10547 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
10548};
10549
35054394
CM
10550/*
10551 * btrfs doesn't support the bmap operation because swapfiles
10552 * use bmap to make a mapping of extents in the file. They assume
10553 * these extents won't change over the life of the file and they
10554 * use the bmap result to do IO directly to the drive.
10555 *
10556 * the btrfs bmap call would return logical addresses that aren't
10557 * suitable for IO and they also will change frequently as COW
10558 * operations happen. So, swapfile + btrfs == corruption.
10559 *
10560 * For now we're avoiding this by dropping bmap.
10561 */
7f09410b 10562static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10563 .readpage = btrfs_readpage,
10564 .writepage = btrfs_writepage,
b293f02e 10565 .writepages = btrfs_writepages,
3ab2fb5a 10566 .readpages = btrfs_readpages,
16432985 10567 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10568 .invalidatepage = btrfs_invalidatepage,
10569 .releasepage = btrfs_releasepage,
e6dcd2dc 10570 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10571 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10572};
10573
7f09410b 10574static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10575 .readpage = btrfs_readpage,
10576 .writepage = btrfs_writepage,
2bf5a725
CM
10577 .invalidatepage = btrfs_invalidatepage,
10578 .releasepage = btrfs_releasepage,
39279cc3
CM
10579};
10580
6e1d5dcc 10581static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10582 .getattr = btrfs_getattr,
10583 .setattr = btrfs_setattr,
e0d46f5c 10584 .setxattr = generic_setxattr,
9172abbc 10585 .getxattr = generic_getxattr,
5103e947 10586 .listxattr = btrfs_listxattr,
e0d46f5c 10587 .removexattr = generic_removexattr,
fdebe2bd 10588 .permission = btrfs_permission,
1506fcc8 10589 .fiemap = btrfs_fiemap,
4e34e719 10590 .get_acl = btrfs_get_acl,
996a710d 10591 .set_acl = btrfs_set_acl,
e41f941a 10592 .update_time = btrfs_update_time,
39279cc3 10593};
6e1d5dcc 10594static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10595 .getattr = btrfs_getattr,
10596 .setattr = btrfs_setattr,
fdebe2bd 10597 .permission = btrfs_permission,
e0d46f5c 10598 .setxattr = generic_setxattr,
9172abbc 10599 .getxattr = generic_getxattr,
33268eaf 10600 .listxattr = btrfs_listxattr,
e0d46f5c 10601 .removexattr = generic_removexattr,
4e34e719 10602 .get_acl = btrfs_get_acl,
996a710d 10603 .set_acl = btrfs_set_acl,
e41f941a 10604 .update_time = btrfs_update_time,
618e21d5 10605};
6e1d5dcc 10606static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3 10607 .readlink = generic_readlink,
6b255391 10608 .get_link = page_get_link,
f209561a 10609 .getattr = btrfs_getattr,
22c44fe6 10610 .setattr = btrfs_setattr,
fdebe2bd 10611 .permission = btrfs_permission,
e0d46f5c 10612 .setxattr = generic_setxattr,
9172abbc 10613 .getxattr = generic_getxattr,
0279b4cd 10614 .listxattr = btrfs_listxattr,
e0d46f5c 10615 .removexattr = generic_removexattr,
e41f941a 10616 .update_time = btrfs_update_time,
39279cc3 10617};
76dda93c 10618
82d339d9 10619const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10620 .d_delete = btrfs_dentry_delete,
b4aff1f8 10621 .d_release = btrfs_dentry_release,
76dda93c 10622};
This page took 3.056499 seconds and 5 git commands to generate.