Btrfs: more efficient io tree navigation on wait_extent_bit
[deliverable/linux.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
a27bb332 35#include <linux/aio.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
5a0e3ad6 40#include <linux/slab.h>
7a36ddec 41#include <linux/ratelimit.h>
22c44fe6 42#include <linux/mount.h>
55e301fd 43#include <linux/btrfs.h>
53b381b3 44#include <linux/blkdev.h>
f23b5a59 45#include <linux/posix_acl_xattr.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
39279cc3
CM
62
63struct btrfs_iget_args {
90d3e592 64 struct btrfs_key *location;
39279cc3
CM
65 struct btrfs_root *root;
66};
67
6e1d5dcc
AD
68static const struct inode_operations btrfs_dir_inode_operations;
69static const struct inode_operations btrfs_symlink_inode_operations;
70static const struct inode_operations btrfs_dir_ro_inode_operations;
71static const struct inode_operations btrfs_special_inode_operations;
72static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
73static const struct address_space_operations btrfs_aops;
74static const struct address_space_operations btrfs_symlink_aops;
828c0950 75static const struct file_operations btrfs_dir_file_operations;
d1310b2e 76static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
77
78static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 79static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
80struct kmem_cache *btrfs_trans_handle_cachep;
81struct kmem_cache *btrfs_transaction_cachep;
39279cc3 82struct kmem_cache *btrfs_path_cachep;
dc89e982 83struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
84
85#define S_SHIFT 12
86static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94};
95
3972f260 96static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 97static int btrfs_truncate(struct inode *inode);
5fd02043 98static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
99static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
70c8a91c
JB
103static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
cc95bef6
JB
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
7b128766 108
48a3b636 109static int btrfs_dirty_inode(struct inode *inode);
7b128766 110
f34f57a3 111static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
0279b4cd
JO
114{
115 int err;
116
f34f57a3 117 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 118 if (!err)
2a7dba39 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
120 return err;
121}
122
c8b97818
CM
123/*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
d397712b 128static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 129 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
130 struct btrfs_root *root, struct inode *inode,
131 u64 start, size_t size, size_t compressed_size,
fe3f566c 132 int compress_type,
c8b97818
CM
133 struct page **compressed_pages)
134{
c8b97818
CM
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
137 char *kaddr;
138 unsigned long ptr;
139 struct btrfs_file_extent_item *ei;
140 int err = 0;
141 int ret;
142 size_t cur_size = size;
c8b97818 143 unsigned long offset;
c8b97818 144
fe3f566c 145 if (compressed_size && compressed_pages)
c8b97818 146 cur_size = compressed_size;
c8b97818 147
1acae57b 148 inode_add_bytes(inode, size);
c8b97818 149
1acae57b
FDBM
150 if (!extent_inserted) {
151 struct btrfs_key key;
152 size_t datasize;
c8b97818 153
1acae57b
FDBM
154 key.objectid = btrfs_ino(inode);
155 key.offset = start;
156 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818 157
1acae57b
FDBM
158 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159 path->leave_spinning = 1;
160 ret = btrfs_insert_empty_item(trans, root, path, &key,
161 datasize);
162 if (ret) {
163 err = ret;
164 goto fail;
165 }
c8b97818
CM
166 }
167 leaf = path->nodes[0];
168 ei = btrfs_item_ptr(leaf, path->slots[0],
169 struct btrfs_file_extent_item);
170 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 btrfs_set_file_extent_encryption(leaf, ei, 0);
173 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 ptr = btrfs_file_extent_inline_start(ei);
176
261507a0 177 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
178 struct page *cpage;
179 int i = 0;
d397712b 180 while (compressed_size > 0) {
c8b97818 181 cpage = compressed_pages[i];
5b050f04 182 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
183 PAGE_CACHE_SIZE);
184
7ac687d9 185 kaddr = kmap_atomic(cpage);
c8b97818 186 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 187 kunmap_atomic(kaddr);
c8b97818
CM
188
189 i++;
190 ptr += cur_size;
191 compressed_size -= cur_size;
192 }
193 btrfs_set_file_extent_compression(leaf, ei,
261507a0 194 compress_type);
c8b97818
CM
195 } else {
196 page = find_get_page(inode->i_mapping,
197 start >> PAGE_CACHE_SHIFT);
198 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 199 kaddr = kmap_atomic(page);
c8b97818
CM
200 offset = start & (PAGE_CACHE_SIZE - 1);
201 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 202 kunmap_atomic(kaddr);
c8b97818
CM
203 page_cache_release(page);
204 }
205 btrfs_mark_buffer_dirty(leaf);
1acae57b 206 btrfs_release_path(path);
c8b97818 207
c2167754
YZ
208 /*
209 * we're an inline extent, so nobody can
210 * extend the file past i_size without locking
211 * a page we already have locked.
212 *
213 * We must do any isize and inode updates
214 * before we unlock the pages. Otherwise we
215 * could end up racing with unlink.
216 */
c8b97818 217 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 218 ret = btrfs_update_inode(trans, root, inode);
c2167754 219
79787eaa 220 return ret;
c8b97818 221fail:
c8b97818
CM
222 return err;
223}
224
225
226/*
227 * conditionally insert an inline extent into the file. This
228 * does the checks required to make sure the data is small enough
229 * to fit as an inline extent.
230 */
00361589
JB
231static noinline int cow_file_range_inline(struct btrfs_root *root,
232 struct inode *inode, u64 start,
233 u64 end, size_t compressed_size,
234 int compress_type,
235 struct page **compressed_pages)
c8b97818 236{
00361589 237 struct btrfs_trans_handle *trans;
c8b97818
CM
238 u64 isize = i_size_read(inode);
239 u64 actual_end = min(end + 1, isize);
240 u64 inline_len = actual_end - start;
fda2832f 241 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
242 u64 data_len = inline_len;
243 int ret;
1acae57b
FDBM
244 struct btrfs_path *path;
245 int extent_inserted = 0;
246 u32 extent_item_size;
c8b97818
CM
247
248 if (compressed_size)
249 data_len = compressed_size;
250
251 if (start > 0 ||
70b99e69 252 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
253 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
254 (!compressed_size &&
255 (actual_end & (root->sectorsize - 1)) == 0) ||
256 end + 1 < isize ||
257 data_len > root->fs_info->max_inline) {
258 return 1;
259 }
260
1acae57b
FDBM
261 path = btrfs_alloc_path();
262 if (!path)
263 return -ENOMEM;
264
00361589 265 trans = btrfs_join_transaction(root);
1acae57b
FDBM
266 if (IS_ERR(trans)) {
267 btrfs_free_path(path);
00361589 268 return PTR_ERR(trans);
1acae57b 269 }
00361589
JB
270 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271
1acae57b
FDBM
272 if (compressed_size && compressed_pages)
273 extent_item_size = btrfs_file_extent_calc_inline_size(
274 compressed_size);
275 else
276 extent_item_size = btrfs_file_extent_calc_inline_size(
277 inline_len);
278
279 ret = __btrfs_drop_extents(trans, root, inode, path,
280 start, aligned_end, NULL,
281 1, 1, extent_item_size, &extent_inserted);
00361589
JB
282 if (ret) {
283 btrfs_abort_transaction(trans, root, ret);
284 goto out;
285 }
c8b97818
CM
286
287 if (isize > actual_end)
288 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
289 ret = insert_inline_extent(trans, path, extent_inserted,
290 root, inode, start,
c8b97818 291 inline_len, compressed_size,
fe3f566c 292 compress_type, compressed_pages);
2adcac1a 293 if (ret && ret != -ENOSPC) {
79787eaa 294 btrfs_abort_transaction(trans, root, ret);
00361589 295 goto out;
2adcac1a 296 } else if (ret == -ENOSPC) {
00361589
JB
297 ret = 1;
298 goto out;
79787eaa 299 }
2adcac1a 300
bdc20e67 301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 302 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 303 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 304out:
1acae57b 305 btrfs_free_path(path);
00361589
JB
306 btrfs_end_transaction(trans, root);
307 return ret;
c8b97818
CM
308}
309
771ed689
CM
310struct async_extent {
311 u64 start;
312 u64 ram_size;
313 u64 compressed_size;
314 struct page **pages;
315 unsigned long nr_pages;
261507a0 316 int compress_type;
771ed689
CM
317 struct list_head list;
318};
319
320struct async_cow {
321 struct inode *inode;
322 struct btrfs_root *root;
323 struct page *locked_page;
324 u64 start;
325 u64 end;
326 struct list_head extents;
d458b054 327 struct btrfs_work work;
771ed689
CM
328};
329
330static noinline int add_async_extent(struct async_cow *cow,
331 u64 start, u64 ram_size,
332 u64 compressed_size,
333 struct page **pages,
261507a0
LZ
334 unsigned long nr_pages,
335 int compress_type)
771ed689
CM
336{
337 struct async_extent *async_extent;
338
339 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 340 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
341 async_extent->start = start;
342 async_extent->ram_size = ram_size;
343 async_extent->compressed_size = compressed_size;
344 async_extent->pages = pages;
345 async_extent->nr_pages = nr_pages;
261507a0 346 async_extent->compress_type = compress_type;
771ed689
CM
347 list_add_tail(&async_extent->list, &cow->extents);
348 return 0;
349}
350
d352ac68 351/*
771ed689
CM
352 * we create compressed extents in two phases. The first
353 * phase compresses a range of pages that have already been
354 * locked (both pages and state bits are locked).
c8b97818 355 *
771ed689
CM
356 * This is done inside an ordered work queue, and the compression
357 * is spread across many cpus. The actual IO submission is step
358 * two, and the ordered work queue takes care of making sure that
359 * happens in the same order things were put onto the queue by
360 * writepages and friends.
c8b97818 361 *
771ed689
CM
362 * If this code finds it can't get good compression, it puts an
363 * entry onto the work queue to write the uncompressed bytes. This
364 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
365 * are written in the same order that the flusher thread sent them
366 * down.
d352ac68 367 */
771ed689
CM
368static noinline int compress_file_range(struct inode *inode,
369 struct page *locked_page,
370 u64 start, u64 end,
371 struct async_cow *async_cow,
372 int *num_added)
b888db2b
CM
373{
374 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 375 u64 num_bytes;
db94535d 376 u64 blocksize = root->sectorsize;
c8b97818 377 u64 actual_end;
42dc7bab 378 u64 isize = i_size_read(inode);
e6dcd2dc 379 int ret = 0;
c8b97818
CM
380 struct page **pages = NULL;
381 unsigned long nr_pages;
382 unsigned long nr_pages_ret = 0;
383 unsigned long total_compressed = 0;
384 unsigned long total_in = 0;
385 unsigned long max_compressed = 128 * 1024;
771ed689 386 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
387 int i;
388 int will_compress;
261507a0 389 int compress_type = root->fs_info->compress_type;
4adaa611 390 int redirty = 0;
b888db2b 391
4cb13e5d
LB
392 /* if this is a small write inside eof, kick off a defrag */
393 if ((end - start + 1) < 16 * 1024 &&
394 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
395 btrfs_add_inode_defrag(NULL, inode);
396
42dc7bab 397 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
398again:
399 will_compress = 0;
400 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
401 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 402
f03d9301
CM
403 /*
404 * we don't want to send crud past the end of i_size through
405 * compression, that's just a waste of CPU time. So, if the
406 * end of the file is before the start of our current
407 * requested range of bytes, we bail out to the uncompressed
408 * cleanup code that can deal with all of this.
409 *
410 * It isn't really the fastest way to fix things, but this is a
411 * very uncommon corner.
412 */
413 if (actual_end <= start)
414 goto cleanup_and_bail_uncompressed;
415
c8b97818
CM
416 total_compressed = actual_end - start;
417
418 /* we want to make sure that amount of ram required to uncompress
419 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
420 * of a compressed extent to 128k. This is a crucial number
421 * because it also controls how easily we can spread reads across
422 * cpus for decompression.
423 *
424 * We also want to make sure the amount of IO required to do
425 * a random read is reasonably small, so we limit the size of
426 * a compressed extent to 128k.
c8b97818
CM
427 */
428 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 429 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 430 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
431 total_in = 0;
432 ret = 0;
db94535d 433
771ed689
CM
434 /*
435 * we do compression for mount -o compress and when the
436 * inode has not been flagged as nocompress. This flag can
437 * change at any time if we discover bad compression ratios.
c8b97818 438 */
6cbff00f 439 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 440 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
441 (BTRFS_I(inode)->force_compress) ||
442 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 443 WARN_ON(pages);
cfbc246e 444 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
445 if (!pages) {
446 /* just bail out to the uncompressed code */
447 goto cont;
448 }
c8b97818 449
261507a0
LZ
450 if (BTRFS_I(inode)->force_compress)
451 compress_type = BTRFS_I(inode)->force_compress;
452
4adaa611
CM
453 /*
454 * we need to call clear_page_dirty_for_io on each
455 * page in the range. Otherwise applications with the file
456 * mmap'd can wander in and change the page contents while
457 * we are compressing them.
458 *
459 * If the compression fails for any reason, we set the pages
460 * dirty again later on.
461 */
462 extent_range_clear_dirty_for_io(inode, start, end);
463 redirty = 1;
261507a0
LZ
464 ret = btrfs_compress_pages(compress_type,
465 inode->i_mapping, start,
466 total_compressed, pages,
467 nr_pages, &nr_pages_ret,
468 &total_in,
469 &total_compressed,
470 max_compressed);
c8b97818
CM
471
472 if (!ret) {
473 unsigned long offset = total_compressed &
474 (PAGE_CACHE_SIZE - 1);
475 struct page *page = pages[nr_pages_ret - 1];
476 char *kaddr;
477
478 /* zero the tail end of the last page, we might be
479 * sending it down to disk
480 */
481 if (offset) {
7ac687d9 482 kaddr = kmap_atomic(page);
c8b97818
CM
483 memset(kaddr + offset, 0,
484 PAGE_CACHE_SIZE - offset);
7ac687d9 485 kunmap_atomic(kaddr);
c8b97818
CM
486 }
487 will_compress = 1;
488 }
489 }
560f7d75 490cont:
c8b97818
CM
491 if (start == 0) {
492 /* lets try to make an inline extent */
771ed689 493 if (ret || total_in < (actual_end - start)) {
c8b97818 494 /* we didn't compress the entire range, try
771ed689 495 * to make an uncompressed inline extent.
c8b97818 496 */
00361589
JB
497 ret = cow_file_range_inline(root, inode, start, end,
498 0, 0, NULL);
c8b97818 499 } else {
771ed689 500 /* try making a compressed inline extent */
00361589 501 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
502 total_compressed,
503 compress_type, pages);
c8b97818 504 }
79787eaa 505 if (ret <= 0) {
151a41bc
JB
506 unsigned long clear_flags = EXTENT_DELALLOC |
507 EXTENT_DEFRAG;
508 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
509
771ed689 510 /*
79787eaa
JM
511 * inline extent creation worked or returned error,
512 * we don't need to create any more async work items.
513 * Unlock and free up our temp pages.
771ed689 514 */
c2790a2e 515 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 516 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
517 PAGE_CLEAR_DIRTY |
518 PAGE_SET_WRITEBACK |
519 PAGE_END_WRITEBACK);
c8b97818
CM
520 goto free_pages_out;
521 }
522 }
523
524 if (will_compress) {
525 /*
526 * we aren't doing an inline extent round the compressed size
527 * up to a block size boundary so the allocator does sane
528 * things
529 */
fda2832f 530 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
531
532 /*
533 * one last check to make sure the compression is really a
534 * win, compare the page count read with the blocks on disk
535 */
fda2832f 536 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
537 if (total_compressed >= total_in) {
538 will_compress = 0;
539 } else {
c8b97818
CM
540 num_bytes = total_in;
541 }
542 }
543 if (!will_compress && pages) {
544 /*
545 * the compression code ran but failed to make things smaller,
546 * free any pages it allocated and our page pointer array
547 */
548 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 549 WARN_ON(pages[i]->mapping);
c8b97818
CM
550 page_cache_release(pages[i]);
551 }
552 kfree(pages);
553 pages = NULL;
554 total_compressed = 0;
555 nr_pages_ret = 0;
556
557 /* flag the file so we don't compress in the future */
1e701a32
CM
558 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
559 !(BTRFS_I(inode)->force_compress)) {
a555f810 560 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 561 }
c8b97818 562 }
771ed689
CM
563 if (will_compress) {
564 *num_added += 1;
c8b97818 565
771ed689
CM
566 /* the async work queues will take care of doing actual
567 * allocation on disk for these compressed pages,
568 * and will submit them to the elevator.
569 */
570 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
571 total_compressed, pages, nr_pages_ret,
572 compress_type);
179e29e4 573
24ae6365 574 if (start + num_bytes < end) {
771ed689
CM
575 start += num_bytes;
576 pages = NULL;
577 cond_resched();
578 goto again;
579 }
580 } else {
f03d9301 581cleanup_and_bail_uncompressed:
771ed689
CM
582 /*
583 * No compression, but we still need to write the pages in
584 * the file we've been given so far. redirty the locked
585 * page if it corresponds to our extent and set things up
586 * for the async work queue to run cow_file_range to do
587 * the normal delalloc dance
588 */
589 if (page_offset(locked_page) >= start &&
590 page_offset(locked_page) <= end) {
591 __set_page_dirty_nobuffers(locked_page);
592 /* unlocked later on in the async handlers */
593 }
4adaa611
CM
594 if (redirty)
595 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
596 add_async_extent(async_cow, start, end - start + 1,
597 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
598 *num_added += 1;
599 }
3b951516 600
771ed689 601out:
79787eaa 602 return ret;
771ed689
CM
603
604free_pages_out:
605 for (i = 0; i < nr_pages_ret; i++) {
606 WARN_ON(pages[i]->mapping);
607 page_cache_release(pages[i]);
608 }
d397712b 609 kfree(pages);
771ed689
CM
610
611 goto out;
612}
613
614/*
615 * phase two of compressed writeback. This is the ordered portion
616 * of the code, which only gets called in the order the work was
617 * queued. We walk all the async extents created by compress_file_range
618 * and send them down to the disk.
619 */
620static noinline int submit_compressed_extents(struct inode *inode,
621 struct async_cow *async_cow)
622{
623 struct async_extent *async_extent;
624 u64 alloc_hint = 0;
771ed689
CM
625 struct btrfs_key ins;
626 struct extent_map *em;
627 struct btrfs_root *root = BTRFS_I(inode)->root;
628 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
629 struct extent_io_tree *io_tree;
f5a84ee3 630 int ret = 0;
771ed689
CM
631
632 if (list_empty(&async_cow->extents))
633 return 0;
634
3e04e7f1 635again:
d397712b 636 while (!list_empty(&async_cow->extents)) {
771ed689
CM
637 async_extent = list_entry(async_cow->extents.next,
638 struct async_extent, list);
639 list_del(&async_extent->list);
c8b97818 640
771ed689
CM
641 io_tree = &BTRFS_I(inode)->io_tree;
642
f5a84ee3 643retry:
771ed689
CM
644 /* did the compression code fall back to uncompressed IO? */
645 if (!async_extent->pages) {
646 int page_started = 0;
647 unsigned long nr_written = 0;
648
649 lock_extent(io_tree, async_extent->start,
2ac55d41 650 async_extent->start +
d0082371 651 async_extent->ram_size - 1);
771ed689
CM
652
653 /* allocate blocks */
f5a84ee3
JB
654 ret = cow_file_range(inode, async_cow->locked_page,
655 async_extent->start,
656 async_extent->start +
657 async_extent->ram_size - 1,
658 &page_started, &nr_written, 0);
771ed689 659
79787eaa
JM
660 /* JDM XXX */
661
771ed689
CM
662 /*
663 * if page_started, cow_file_range inserted an
664 * inline extent and took care of all the unlocking
665 * and IO for us. Otherwise, we need to submit
666 * all those pages down to the drive.
667 */
f5a84ee3 668 if (!page_started && !ret)
771ed689
CM
669 extent_write_locked_range(io_tree,
670 inode, async_extent->start,
d397712b 671 async_extent->start +
771ed689
CM
672 async_extent->ram_size - 1,
673 btrfs_get_extent,
674 WB_SYNC_ALL);
3e04e7f1
JB
675 else if (ret)
676 unlock_page(async_cow->locked_page);
771ed689
CM
677 kfree(async_extent);
678 cond_resched();
679 continue;
680 }
681
682 lock_extent(io_tree, async_extent->start,
d0082371 683 async_extent->start + async_extent->ram_size - 1);
771ed689 684
00361589 685 ret = btrfs_reserve_extent(root,
771ed689
CM
686 async_extent->compressed_size,
687 async_extent->compressed_size,
81c9ad23 688 0, alloc_hint, &ins, 1);
f5a84ee3
JB
689 if (ret) {
690 int i;
3e04e7f1 691
f5a84ee3
JB
692 for (i = 0; i < async_extent->nr_pages; i++) {
693 WARN_ON(async_extent->pages[i]->mapping);
694 page_cache_release(async_extent->pages[i]);
695 }
696 kfree(async_extent->pages);
697 async_extent->nr_pages = 0;
698 async_extent->pages = NULL;
3e04e7f1 699
fdf8e2ea
JB
700 if (ret == -ENOSPC) {
701 unlock_extent(io_tree, async_extent->start,
702 async_extent->start +
703 async_extent->ram_size - 1);
79787eaa 704 goto retry;
fdf8e2ea 705 }
3e04e7f1 706 goto out_free;
f5a84ee3
JB
707 }
708
c2167754
YZ
709 /*
710 * here we're doing allocation and writeback of the
711 * compressed pages
712 */
713 btrfs_drop_extent_cache(inode, async_extent->start,
714 async_extent->start +
715 async_extent->ram_size - 1, 0);
716
172ddd60 717 em = alloc_extent_map();
b9aa55be
LB
718 if (!em) {
719 ret = -ENOMEM;
3e04e7f1 720 goto out_free_reserve;
b9aa55be 721 }
771ed689
CM
722 em->start = async_extent->start;
723 em->len = async_extent->ram_size;
445a6944 724 em->orig_start = em->start;
2ab28f32
JB
725 em->mod_start = em->start;
726 em->mod_len = em->len;
c8b97818 727
771ed689
CM
728 em->block_start = ins.objectid;
729 em->block_len = ins.offset;
b4939680 730 em->orig_block_len = ins.offset;
cc95bef6 731 em->ram_bytes = async_extent->ram_size;
771ed689 732 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 733 em->compress_type = async_extent->compress_type;
771ed689
CM
734 set_bit(EXTENT_FLAG_PINNED, &em->flags);
735 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 736 em->generation = -1;
771ed689 737
d397712b 738 while (1) {
890871be 739 write_lock(&em_tree->lock);
09a2a8f9 740 ret = add_extent_mapping(em_tree, em, 1);
890871be 741 write_unlock(&em_tree->lock);
771ed689
CM
742 if (ret != -EEXIST) {
743 free_extent_map(em);
744 break;
745 }
746 btrfs_drop_extent_cache(inode, async_extent->start,
747 async_extent->start +
748 async_extent->ram_size - 1, 0);
749 }
750
3e04e7f1
JB
751 if (ret)
752 goto out_free_reserve;
753
261507a0
LZ
754 ret = btrfs_add_ordered_extent_compress(inode,
755 async_extent->start,
756 ins.objectid,
757 async_extent->ram_size,
758 ins.offset,
759 BTRFS_ORDERED_COMPRESSED,
760 async_extent->compress_type);
3e04e7f1
JB
761 if (ret)
762 goto out_free_reserve;
771ed689 763
771ed689
CM
764 /*
765 * clear dirty, set writeback and unlock the pages.
766 */
c2790a2e 767 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
768 async_extent->start +
769 async_extent->ram_size - 1,
151a41bc
JB
770 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
771 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 772 PAGE_SET_WRITEBACK);
771ed689 773 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
774 async_extent->start,
775 async_extent->ram_size,
776 ins.objectid,
777 ins.offset, async_extent->pages,
778 async_extent->nr_pages);
771ed689
CM
779 alloc_hint = ins.objectid + ins.offset;
780 kfree(async_extent);
3e04e7f1
JB
781 if (ret)
782 goto out;
771ed689
CM
783 cond_resched();
784 }
79787eaa
JM
785 ret = 0;
786out:
787 return ret;
3e04e7f1
JB
788out_free_reserve:
789 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 790out_free:
c2790a2e 791 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
792 async_extent->start +
793 async_extent->ram_size - 1,
c2790a2e 794 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
795 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
796 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
797 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 798 kfree(async_extent);
3e04e7f1 799 goto again;
771ed689
CM
800}
801
4b46fce2
JB
802static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
803 u64 num_bytes)
804{
805 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
806 struct extent_map *em;
807 u64 alloc_hint = 0;
808
809 read_lock(&em_tree->lock);
810 em = search_extent_mapping(em_tree, start, num_bytes);
811 if (em) {
812 /*
813 * if block start isn't an actual block number then find the
814 * first block in this inode and use that as a hint. If that
815 * block is also bogus then just don't worry about it.
816 */
817 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
818 free_extent_map(em);
819 em = search_extent_mapping(em_tree, 0, 0);
820 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
821 alloc_hint = em->block_start;
822 if (em)
823 free_extent_map(em);
824 } else {
825 alloc_hint = em->block_start;
826 free_extent_map(em);
827 }
828 }
829 read_unlock(&em_tree->lock);
830
831 return alloc_hint;
832}
833
771ed689
CM
834/*
835 * when extent_io.c finds a delayed allocation range in the file,
836 * the call backs end up in this code. The basic idea is to
837 * allocate extents on disk for the range, and create ordered data structs
838 * in ram to track those extents.
839 *
840 * locked_page is the page that writepage had locked already. We use
841 * it to make sure we don't do extra locks or unlocks.
842 *
843 * *page_started is set to one if we unlock locked_page and do everything
844 * required to start IO on it. It may be clean and already done with
845 * IO when we return.
846 */
00361589
JB
847static noinline int cow_file_range(struct inode *inode,
848 struct page *locked_page,
849 u64 start, u64 end, int *page_started,
850 unsigned long *nr_written,
851 int unlock)
771ed689 852{
00361589 853 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
854 u64 alloc_hint = 0;
855 u64 num_bytes;
856 unsigned long ram_size;
857 u64 disk_num_bytes;
858 u64 cur_alloc_size;
859 u64 blocksize = root->sectorsize;
771ed689
CM
860 struct btrfs_key ins;
861 struct extent_map *em;
862 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
863 int ret = 0;
864
02ecd2c2
JB
865 if (btrfs_is_free_space_inode(inode)) {
866 WARN_ON_ONCE(1);
29bce2f3
JB
867 ret = -EINVAL;
868 goto out_unlock;
02ecd2c2 869 }
771ed689 870
fda2832f 871 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
872 num_bytes = max(blocksize, num_bytes);
873 disk_num_bytes = num_bytes;
771ed689 874
4cb5300b 875 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
876 if (num_bytes < 64 * 1024 &&
877 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 878 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 879
771ed689
CM
880 if (start == 0) {
881 /* lets try to make an inline extent */
00361589
JB
882 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
883 NULL);
771ed689 884 if (ret == 0) {
c2790a2e
JB
885 extent_clear_unlock_delalloc(inode, start, end, NULL,
886 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 887 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
888 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
889 PAGE_END_WRITEBACK);
c2167754 890
771ed689
CM
891 *nr_written = *nr_written +
892 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
893 *page_started = 1;
771ed689 894 goto out;
79787eaa 895 } else if (ret < 0) {
79787eaa 896 goto out_unlock;
771ed689
CM
897 }
898 }
899
900 BUG_ON(disk_num_bytes >
6c41761f 901 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 902
4b46fce2 903 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
904 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
905
d397712b 906 while (disk_num_bytes > 0) {
a791e35e
CM
907 unsigned long op;
908
287a0ab9 909 cur_alloc_size = disk_num_bytes;
00361589 910 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 911 root->sectorsize, 0, alloc_hint,
81c9ad23 912 &ins, 1);
00361589 913 if (ret < 0)
79787eaa 914 goto out_unlock;
d397712b 915
172ddd60 916 em = alloc_extent_map();
b9aa55be
LB
917 if (!em) {
918 ret = -ENOMEM;
ace68bac 919 goto out_reserve;
b9aa55be 920 }
e6dcd2dc 921 em->start = start;
445a6944 922 em->orig_start = em->start;
771ed689
CM
923 ram_size = ins.offset;
924 em->len = ins.offset;
2ab28f32
JB
925 em->mod_start = em->start;
926 em->mod_len = em->len;
c8b97818 927
e6dcd2dc 928 em->block_start = ins.objectid;
c8b97818 929 em->block_len = ins.offset;
b4939680 930 em->orig_block_len = ins.offset;
cc95bef6 931 em->ram_bytes = ram_size;
e6dcd2dc 932 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 933 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 934 em->generation = -1;
c8b97818 935
d397712b 936 while (1) {
890871be 937 write_lock(&em_tree->lock);
09a2a8f9 938 ret = add_extent_mapping(em_tree, em, 1);
890871be 939 write_unlock(&em_tree->lock);
e6dcd2dc
CM
940 if (ret != -EEXIST) {
941 free_extent_map(em);
942 break;
943 }
944 btrfs_drop_extent_cache(inode, start,
c8b97818 945 start + ram_size - 1, 0);
e6dcd2dc 946 }
ace68bac
LB
947 if (ret)
948 goto out_reserve;
e6dcd2dc 949
98d20f67 950 cur_alloc_size = ins.offset;
e6dcd2dc 951 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 952 ram_size, cur_alloc_size, 0);
ace68bac
LB
953 if (ret)
954 goto out_reserve;
c8b97818 955
17d217fe
YZ
956 if (root->root_key.objectid ==
957 BTRFS_DATA_RELOC_TREE_OBJECTID) {
958 ret = btrfs_reloc_clone_csums(inode, start,
959 cur_alloc_size);
00361589 960 if (ret)
ace68bac 961 goto out_reserve;
17d217fe
YZ
962 }
963
d397712b 964 if (disk_num_bytes < cur_alloc_size)
3b951516 965 break;
d397712b 966
c8b97818
CM
967 /* we're not doing compressed IO, don't unlock the first
968 * page (which the caller expects to stay locked), don't
969 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
970 *
971 * Do set the Private2 bit so we know this page was properly
972 * setup for writepage
c8b97818 973 */
c2790a2e
JB
974 op = unlock ? PAGE_UNLOCK : 0;
975 op |= PAGE_SET_PRIVATE2;
a791e35e 976
c2790a2e
JB
977 extent_clear_unlock_delalloc(inode, start,
978 start + ram_size - 1, locked_page,
979 EXTENT_LOCKED | EXTENT_DELALLOC,
980 op);
c8b97818 981 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
982 num_bytes -= cur_alloc_size;
983 alloc_hint = ins.objectid + ins.offset;
984 start += cur_alloc_size;
b888db2b 985 }
79787eaa 986out:
be20aa9d 987 return ret;
b7d5b0a8 988
ace68bac
LB
989out_reserve:
990 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 991out_unlock:
c2790a2e 992 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
993 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
994 EXTENT_DELALLOC | EXTENT_DEFRAG,
995 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
996 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 997 goto out;
771ed689 998}
c8b97818 999
771ed689
CM
1000/*
1001 * work queue call back to started compression on a file and pages
1002 */
d458b054 1003static noinline void async_cow_start(struct btrfs_work *work)
771ed689
CM
1004{
1005 struct async_cow *async_cow;
1006 int num_added = 0;
1007 async_cow = container_of(work, struct async_cow, work);
1008
1009 compress_file_range(async_cow->inode, async_cow->locked_page,
1010 async_cow->start, async_cow->end, async_cow,
1011 &num_added);
8180ef88 1012 if (num_added == 0) {
cb77fcd8 1013 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1014 async_cow->inode = NULL;
8180ef88 1015 }
771ed689
CM
1016}
1017
1018/*
1019 * work queue call back to submit previously compressed pages
1020 */
d458b054 1021static noinline void async_cow_submit(struct btrfs_work *work)
771ed689
CM
1022{
1023 struct async_cow *async_cow;
1024 struct btrfs_root *root;
1025 unsigned long nr_pages;
1026
1027 async_cow = container_of(work, struct async_cow, work);
1028
1029 root = async_cow->root;
1030 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1031 PAGE_CACHE_SHIFT;
1032
66657b31 1033 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1034 5 * 1024 * 1024 &&
771ed689
CM
1035 waitqueue_active(&root->fs_info->async_submit_wait))
1036 wake_up(&root->fs_info->async_submit_wait);
1037
d397712b 1038 if (async_cow->inode)
771ed689 1039 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1040}
c8b97818 1041
d458b054 1042static noinline void async_cow_free(struct btrfs_work *work)
771ed689
CM
1043{
1044 struct async_cow *async_cow;
1045 async_cow = container_of(work, struct async_cow, work);
8180ef88 1046 if (async_cow->inode)
cb77fcd8 1047 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1048 kfree(async_cow);
1049}
1050
1051static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1052 u64 start, u64 end, int *page_started,
1053 unsigned long *nr_written)
1054{
1055 struct async_cow *async_cow;
1056 struct btrfs_root *root = BTRFS_I(inode)->root;
1057 unsigned long nr_pages;
1058 u64 cur_end;
287082b0 1059 int limit = 10 * 1024 * 1024;
771ed689 1060
a3429ab7
CM
1061 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1062 1, 0, NULL, GFP_NOFS);
d397712b 1063 while (start < end) {
771ed689 1064 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1065 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1066 async_cow->inode = igrab(inode);
771ed689
CM
1067 async_cow->root = root;
1068 async_cow->locked_page = locked_page;
1069 async_cow->start = start;
1070
6cbff00f 1071 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1072 cur_end = end;
1073 else
1074 cur_end = min(end, start + 512 * 1024 - 1);
1075
1076 async_cow->end = cur_end;
1077 INIT_LIST_HEAD(&async_cow->extents);
1078
afe3d242
QW
1079 btrfs_init_work(&async_cow->work, async_cow_start,
1080 async_cow_submit, async_cow_free);
771ed689 1081
771ed689
CM
1082 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1083 PAGE_CACHE_SHIFT;
1084 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1085
afe3d242
QW
1086 btrfs_queue_work(root->fs_info->delalloc_workers,
1087 &async_cow->work);
771ed689
CM
1088
1089 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1090 wait_event(root->fs_info->async_submit_wait,
1091 (atomic_read(&root->fs_info->async_delalloc_pages) <
1092 limit));
1093 }
1094
d397712b 1095 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1096 atomic_read(&root->fs_info->async_delalloc_pages)) {
1097 wait_event(root->fs_info->async_submit_wait,
1098 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1099 0));
1100 }
1101
1102 *nr_written += nr_pages;
1103 start = cur_end + 1;
1104 }
1105 *page_started = 1;
1106 return 0;
be20aa9d
CM
1107}
1108
d397712b 1109static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1110 u64 bytenr, u64 num_bytes)
1111{
1112 int ret;
1113 struct btrfs_ordered_sum *sums;
1114 LIST_HEAD(list);
1115
07d400a6 1116 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1117 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1118 if (ret == 0 && list_empty(&list))
1119 return 0;
1120
1121 while (!list_empty(&list)) {
1122 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1123 list_del(&sums->list);
1124 kfree(sums);
1125 }
1126 return 1;
1127}
1128
d352ac68
CM
1129/*
1130 * when nowcow writeback call back. This checks for snapshots or COW copies
1131 * of the extents that exist in the file, and COWs the file as required.
1132 *
1133 * If no cow copies or snapshots exist, we write directly to the existing
1134 * blocks on disk
1135 */
7f366cfe
CM
1136static noinline int run_delalloc_nocow(struct inode *inode,
1137 struct page *locked_page,
771ed689
CM
1138 u64 start, u64 end, int *page_started, int force,
1139 unsigned long *nr_written)
be20aa9d 1140{
be20aa9d 1141 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1142 struct btrfs_trans_handle *trans;
be20aa9d 1143 struct extent_buffer *leaf;
be20aa9d 1144 struct btrfs_path *path;
80ff3856 1145 struct btrfs_file_extent_item *fi;
be20aa9d 1146 struct btrfs_key found_key;
80ff3856
YZ
1147 u64 cow_start;
1148 u64 cur_offset;
1149 u64 extent_end;
5d4f98a2 1150 u64 extent_offset;
80ff3856
YZ
1151 u64 disk_bytenr;
1152 u64 num_bytes;
b4939680 1153 u64 disk_num_bytes;
cc95bef6 1154 u64 ram_bytes;
80ff3856 1155 int extent_type;
79787eaa 1156 int ret, err;
d899e052 1157 int type;
80ff3856
YZ
1158 int nocow;
1159 int check_prev = 1;
82d5902d 1160 bool nolock;
33345d01 1161 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1162
1163 path = btrfs_alloc_path();
17ca04af 1164 if (!path) {
c2790a2e
JB
1165 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1166 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1167 EXTENT_DO_ACCOUNTING |
1168 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1169 PAGE_CLEAR_DIRTY |
1170 PAGE_SET_WRITEBACK |
1171 PAGE_END_WRITEBACK);
d8926bb3 1172 return -ENOMEM;
17ca04af 1173 }
82d5902d 1174
83eea1f1 1175 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1176
1177 if (nolock)
7a7eaa40 1178 trans = btrfs_join_transaction_nolock(root);
82d5902d 1179 else
7a7eaa40 1180 trans = btrfs_join_transaction(root);
ff5714cc 1181
79787eaa 1182 if (IS_ERR(trans)) {
c2790a2e
JB
1183 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1184 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1185 EXTENT_DO_ACCOUNTING |
1186 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1187 PAGE_CLEAR_DIRTY |
1188 PAGE_SET_WRITEBACK |
1189 PAGE_END_WRITEBACK);
79787eaa
JM
1190 btrfs_free_path(path);
1191 return PTR_ERR(trans);
1192 }
1193
74b21075 1194 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1195
80ff3856
YZ
1196 cow_start = (u64)-1;
1197 cur_offset = start;
1198 while (1) {
33345d01 1199 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1200 cur_offset, 0);
d788a349 1201 if (ret < 0)
79787eaa 1202 goto error;
80ff3856
YZ
1203 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1204 leaf = path->nodes[0];
1205 btrfs_item_key_to_cpu(leaf, &found_key,
1206 path->slots[0] - 1);
33345d01 1207 if (found_key.objectid == ino &&
80ff3856
YZ
1208 found_key.type == BTRFS_EXTENT_DATA_KEY)
1209 path->slots[0]--;
1210 }
1211 check_prev = 0;
1212next_slot:
1213 leaf = path->nodes[0];
1214 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1215 ret = btrfs_next_leaf(root, path);
d788a349 1216 if (ret < 0)
79787eaa 1217 goto error;
80ff3856
YZ
1218 if (ret > 0)
1219 break;
1220 leaf = path->nodes[0];
1221 }
be20aa9d 1222
80ff3856
YZ
1223 nocow = 0;
1224 disk_bytenr = 0;
17d217fe 1225 num_bytes = 0;
80ff3856
YZ
1226 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1227
33345d01 1228 if (found_key.objectid > ino ||
80ff3856
YZ
1229 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1230 found_key.offset > end)
1231 break;
1232
1233 if (found_key.offset > cur_offset) {
1234 extent_end = found_key.offset;
e9061e21 1235 extent_type = 0;
80ff3856
YZ
1236 goto out_check;
1237 }
1238
1239 fi = btrfs_item_ptr(leaf, path->slots[0],
1240 struct btrfs_file_extent_item);
1241 extent_type = btrfs_file_extent_type(leaf, fi);
1242
cc95bef6 1243 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1244 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1245 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1246 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1247 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1248 extent_end = found_key.offset +
1249 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1250 disk_num_bytes =
1251 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1252 if (extent_end <= start) {
1253 path->slots[0]++;
1254 goto next_slot;
1255 }
17d217fe
YZ
1256 if (disk_bytenr == 0)
1257 goto out_check;
80ff3856
YZ
1258 if (btrfs_file_extent_compression(leaf, fi) ||
1259 btrfs_file_extent_encryption(leaf, fi) ||
1260 btrfs_file_extent_other_encoding(leaf, fi))
1261 goto out_check;
d899e052
YZ
1262 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1263 goto out_check;
d2fb3437 1264 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1265 goto out_check;
33345d01 1266 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1267 found_key.offset -
1268 extent_offset, disk_bytenr))
17d217fe 1269 goto out_check;
5d4f98a2 1270 disk_bytenr += extent_offset;
17d217fe
YZ
1271 disk_bytenr += cur_offset - found_key.offset;
1272 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1273 /*
1274 * if there are pending snapshots for this root,
1275 * we fall into common COW way.
1276 */
1277 if (!nolock) {
1278 err = btrfs_start_nocow_write(root);
1279 if (!err)
1280 goto out_check;
1281 }
17d217fe
YZ
1282 /*
1283 * force cow if csum exists in the range.
1284 * this ensure that csum for a given extent are
1285 * either valid or do not exist.
1286 */
1287 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1288 goto out_check;
80ff3856
YZ
1289 nocow = 1;
1290 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1291 extent_end = found_key.offset +
514ac8ad
CM
1292 btrfs_file_extent_inline_len(leaf,
1293 path->slots[0], fi);
80ff3856
YZ
1294 extent_end = ALIGN(extent_end, root->sectorsize);
1295 } else {
1296 BUG_ON(1);
1297 }
1298out_check:
1299 if (extent_end <= start) {
1300 path->slots[0]++;
e9894fd3
WS
1301 if (!nolock && nocow)
1302 btrfs_end_nocow_write(root);
80ff3856
YZ
1303 goto next_slot;
1304 }
1305 if (!nocow) {
1306 if (cow_start == (u64)-1)
1307 cow_start = cur_offset;
1308 cur_offset = extent_end;
1309 if (cur_offset > end)
1310 break;
1311 path->slots[0]++;
1312 goto next_slot;
7ea394f1
YZ
1313 }
1314
b3b4aa74 1315 btrfs_release_path(path);
80ff3856 1316 if (cow_start != (u64)-1) {
00361589
JB
1317 ret = cow_file_range(inode, locked_page,
1318 cow_start, found_key.offset - 1,
1319 page_started, nr_written, 1);
e9894fd3
WS
1320 if (ret) {
1321 if (!nolock && nocow)
1322 btrfs_end_nocow_write(root);
79787eaa 1323 goto error;
e9894fd3 1324 }
80ff3856 1325 cow_start = (u64)-1;
7ea394f1 1326 }
80ff3856 1327
d899e052
YZ
1328 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1329 struct extent_map *em;
1330 struct extent_map_tree *em_tree;
1331 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1332 em = alloc_extent_map();
79787eaa 1333 BUG_ON(!em); /* -ENOMEM */
d899e052 1334 em->start = cur_offset;
70c8a91c 1335 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1336 em->len = num_bytes;
1337 em->block_len = num_bytes;
1338 em->block_start = disk_bytenr;
b4939680 1339 em->orig_block_len = disk_num_bytes;
cc95bef6 1340 em->ram_bytes = ram_bytes;
d899e052 1341 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1342 em->mod_start = em->start;
1343 em->mod_len = em->len;
d899e052 1344 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1345 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1346 em->generation = -1;
d899e052 1347 while (1) {
890871be 1348 write_lock(&em_tree->lock);
09a2a8f9 1349 ret = add_extent_mapping(em_tree, em, 1);
890871be 1350 write_unlock(&em_tree->lock);
d899e052
YZ
1351 if (ret != -EEXIST) {
1352 free_extent_map(em);
1353 break;
1354 }
1355 btrfs_drop_extent_cache(inode, em->start,
1356 em->start + em->len - 1, 0);
1357 }
1358 type = BTRFS_ORDERED_PREALLOC;
1359 } else {
1360 type = BTRFS_ORDERED_NOCOW;
1361 }
80ff3856
YZ
1362
1363 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1364 num_bytes, num_bytes, type);
79787eaa 1365 BUG_ON(ret); /* -ENOMEM */
771ed689 1366
efa56464
YZ
1367 if (root->root_key.objectid ==
1368 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1369 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1370 num_bytes);
e9894fd3
WS
1371 if (ret) {
1372 if (!nolock && nocow)
1373 btrfs_end_nocow_write(root);
79787eaa 1374 goto error;
e9894fd3 1375 }
efa56464
YZ
1376 }
1377
c2790a2e
JB
1378 extent_clear_unlock_delalloc(inode, cur_offset,
1379 cur_offset + num_bytes - 1,
1380 locked_page, EXTENT_LOCKED |
1381 EXTENT_DELALLOC, PAGE_UNLOCK |
1382 PAGE_SET_PRIVATE2);
e9894fd3
WS
1383 if (!nolock && nocow)
1384 btrfs_end_nocow_write(root);
80ff3856
YZ
1385 cur_offset = extent_end;
1386 if (cur_offset > end)
1387 break;
be20aa9d 1388 }
b3b4aa74 1389 btrfs_release_path(path);
80ff3856 1390
17ca04af 1391 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1392 cow_start = cur_offset;
17ca04af
JB
1393 cur_offset = end;
1394 }
1395
80ff3856 1396 if (cow_start != (u64)-1) {
00361589
JB
1397 ret = cow_file_range(inode, locked_page, cow_start, end,
1398 page_started, nr_written, 1);
d788a349 1399 if (ret)
79787eaa 1400 goto error;
80ff3856
YZ
1401 }
1402
79787eaa 1403error:
a698d075 1404 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1405 if (!ret)
1406 ret = err;
1407
17ca04af 1408 if (ret && cur_offset < end)
c2790a2e
JB
1409 extent_clear_unlock_delalloc(inode, cur_offset, end,
1410 locked_page, EXTENT_LOCKED |
151a41bc
JB
1411 EXTENT_DELALLOC | EXTENT_DEFRAG |
1412 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1413 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1414 PAGE_SET_WRITEBACK |
1415 PAGE_END_WRITEBACK);
7ea394f1 1416 btrfs_free_path(path);
79787eaa 1417 return ret;
be20aa9d
CM
1418}
1419
d352ac68
CM
1420/*
1421 * extent_io.c call back to do delayed allocation processing
1422 */
c8b97818 1423static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1424 u64 start, u64 end, int *page_started,
1425 unsigned long *nr_written)
be20aa9d 1426{
be20aa9d 1427 int ret;
7f366cfe 1428 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1429
7ddf5a42 1430 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1431 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1432 page_started, 1, nr_written);
7ddf5a42 1433 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1434 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1435 page_started, 0, nr_written);
7ddf5a42
JB
1436 } else if (!btrfs_test_opt(root, COMPRESS) &&
1437 !(BTRFS_I(inode)->force_compress) &&
1438 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1439 ret = cow_file_range(inode, locked_page, start, end,
1440 page_started, nr_written, 1);
7ddf5a42
JB
1441 } else {
1442 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1443 &BTRFS_I(inode)->runtime_flags);
771ed689 1444 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1445 page_started, nr_written);
7ddf5a42 1446 }
b888db2b
CM
1447 return ret;
1448}
1449
1bf85046
JM
1450static void btrfs_split_extent_hook(struct inode *inode,
1451 struct extent_state *orig, u64 split)
9ed74f2d 1452{
0ca1f7ce 1453 /* not delalloc, ignore it */
9ed74f2d 1454 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1455 return;
9ed74f2d 1456
9e0baf60
JB
1457 spin_lock(&BTRFS_I(inode)->lock);
1458 BTRFS_I(inode)->outstanding_extents++;
1459 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1460}
1461
1462/*
1463 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1464 * extents so we can keep track of new extents that are just merged onto old
1465 * extents, such as when we are doing sequential writes, so we can properly
1466 * account for the metadata space we'll need.
1467 */
1bf85046
JM
1468static void btrfs_merge_extent_hook(struct inode *inode,
1469 struct extent_state *new,
1470 struct extent_state *other)
9ed74f2d 1471{
9ed74f2d
JB
1472 /* not delalloc, ignore it */
1473 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1474 return;
9ed74f2d 1475
9e0baf60
JB
1476 spin_lock(&BTRFS_I(inode)->lock);
1477 BTRFS_I(inode)->outstanding_extents--;
1478 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1479}
1480
eb73c1b7
MX
1481static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1482 struct inode *inode)
1483{
1484 spin_lock(&root->delalloc_lock);
1485 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1486 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1487 &root->delalloc_inodes);
1488 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1489 &BTRFS_I(inode)->runtime_flags);
1490 root->nr_delalloc_inodes++;
1491 if (root->nr_delalloc_inodes == 1) {
1492 spin_lock(&root->fs_info->delalloc_root_lock);
1493 BUG_ON(!list_empty(&root->delalloc_root));
1494 list_add_tail(&root->delalloc_root,
1495 &root->fs_info->delalloc_roots);
1496 spin_unlock(&root->fs_info->delalloc_root_lock);
1497 }
1498 }
1499 spin_unlock(&root->delalloc_lock);
1500}
1501
1502static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1503 struct inode *inode)
1504{
1505 spin_lock(&root->delalloc_lock);
1506 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1507 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1508 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1509 &BTRFS_I(inode)->runtime_flags);
1510 root->nr_delalloc_inodes--;
1511 if (!root->nr_delalloc_inodes) {
1512 spin_lock(&root->fs_info->delalloc_root_lock);
1513 BUG_ON(list_empty(&root->delalloc_root));
1514 list_del_init(&root->delalloc_root);
1515 spin_unlock(&root->fs_info->delalloc_root_lock);
1516 }
1517 }
1518 spin_unlock(&root->delalloc_lock);
1519}
1520
d352ac68
CM
1521/*
1522 * extent_io.c set_bit_hook, used to track delayed allocation
1523 * bytes in this file, and to maintain the list of inodes that
1524 * have pending delalloc work to be done.
1525 */
1bf85046 1526static void btrfs_set_bit_hook(struct inode *inode,
41074888 1527 struct extent_state *state, unsigned long *bits)
291d673e 1528{
9ed74f2d 1529
75eff68e
CM
1530 /*
1531 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1532 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1533 * bit, which is only set or cleared with irqs on
1534 */
0ca1f7ce 1535 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1536 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1537 u64 len = state->end + 1 - state->start;
83eea1f1 1538 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1539
9e0baf60 1540 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1541 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1542 } else {
1543 spin_lock(&BTRFS_I(inode)->lock);
1544 BTRFS_I(inode)->outstanding_extents++;
1545 spin_unlock(&BTRFS_I(inode)->lock);
1546 }
287a0ab9 1547
963d678b
MX
1548 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1549 root->fs_info->delalloc_batch);
df0af1a5 1550 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1551 BTRFS_I(inode)->delalloc_bytes += len;
df0af1a5 1552 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1553 &BTRFS_I(inode)->runtime_flags))
1554 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1555 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1556 }
291d673e
CM
1557}
1558
d352ac68
CM
1559/*
1560 * extent_io.c clear_bit_hook, see set_bit_hook for why
1561 */
1bf85046 1562static void btrfs_clear_bit_hook(struct inode *inode,
41074888
DS
1563 struct extent_state *state,
1564 unsigned long *bits)
291d673e 1565{
75eff68e
CM
1566 /*
1567 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1568 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1569 * bit, which is only set or cleared with irqs on
1570 */
0ca1f7ce 1571 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1572 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1573 u64 len = state->end + 1 - state->start;
83eea1f1 1574 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1575
9e0baf60 1576 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1577 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1578 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1579 spin_lock(&BTRFS_I(inode)->lock);
1580 BTRFS_I(inode)->outstanding_extents--;
1581 spin_unlock(&BTRFS_I(inode)->lock);
1582 }
0ca1f7ce 1583
b6d08f06
JB
1584 /*
1585 * We don't reserve metadata space for space cache inodes so we
1586 * don't need to call dellalloc_release_metadata if there is an
1587 * error.
1588 */
1589 if (*bits & EXTENT_DO_ACCOUNTING &&
1590 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1591 btrfs_delalloc_release_metadata(inode, len);
1592
0cb59c99 1593 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1594 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1595 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1596
963d678b
MX
1597 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1598 root->fs_info->delalloc_batch);
df0af1a5 1599 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1600 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1601 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1602 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1603 &BTRFS_I(inode)->runtime_flags))
1604 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1605 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1606 }
291d673e
CM
1607}
1608
d352ac68
CM
1609/*
1610 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1611 * we don't create bios that span stripes or chunks
1612 */
64a16701 1613int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1614 size_t size, struct bio *bio,
1615 unsigned long bio_flags)
239b14b3
CM
1616{
1617 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
a62b9401 1618 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1619 u64 length = 0;
1620 u64 map_length;
239b14b3
CM
1621 int ret;
1622
771ed689
CM
1623 if (bio_flags & EXTENT_BIO_COMPRESSED)
1624 return 0;
1625
f2d8d74d 1626 length = bio->bi_size;
239b14b3 1627 map_length = length;
64a16701 1628 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1629 &map_length, NULL, 0);
3ec706c8 1630 /* Will always return 0 with map_multi == NULL */
3444a972 1631 BUG_ON(ret < 0);
d397712b 1632 if (map_length < length + size)
239b14b3 1633 return 1;
3444a972 1634 return 0;
239b14b3
CM
1635}
1636
d352ac68
CM
1637/*
1638 * in order to insert checksums into the metadata in large chunks,
1639 * we wait until bio submission time. All the pages in the bio are
1640 * checksummed and sums are attached onto the ordered extent record.
1641 *
1642 * At IO completion time the cums attached on the ordered extent record
1643 * are inserted into the btree
1644 */
d397712b
CM
1645static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1646 struct bio *bio, int mirror_num,
eaf25d93
CM
1647 unsigned long bio_flags,
1648 u64 bio_offset)
065631f6 1649{
065631f6 1650 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1651 int ret = 0;
e015640f 1652
d20f7043 1653 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1654 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1655 return 0;
1656}
e015640f 1657
4a69a410
CM
1658/*
1659 * in order to insert checksums into the metadata in large chunks,
1660 * we wait until bio submission time. All the pages in the bio are
1661 * checksummed and sums are attached onto the ordered extent record.
1662 *
1663 * At IO completion time the cums attached on the ordered extent record
1664 * are inserted into the btree
1665 */
b2950863 1666static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1667 int mirror_num, unsigned long bio_flags,
1668 u64 bio_offset)
4a69a410
CM
1669{
1670 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1671 int ret;
1672
1673 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1674 if (ret)
1675 bio_endio(bio, ret);
1676 return ret;
44b8bd7e
CM
1677}
1678
d352ac68 1679/*
cad321ad
CM
1680 * extent_io.c submission hook. This does the right thing for csum calculation
1681 * on write, or reading the csums from the tree before a read
d352ac68 1682 */
b2950863 1683static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1684 int mirror_num, unsigned long bio_flags,
1685 u64 bio_offset)
44b8bd7e
CM
1686{
1687 struct btrfs_root *root = BTRFS_I(inode)->root;
1688 int ret = 0;
19b9bdb0 1689 int skip_sum;
0417341e 1690 int metadata = 0;
b812ce28 1691 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1692
6cbff00f 1693 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1694
83eea1f1 1695 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1696 metadata = 2;
1697
7b6d91da 1698 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1699 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1700 if (ret)
61891923 1701 goto out;
5fd02043 1702
d20f7043 1703 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1704 ret = btrfs_submit_compressed_read(inode, bio,
1705 mirror_num,
1706 bio_flags);
1707 goto out;
c2db1073
TI
1708 } else if (!skip_sum) {
1709 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1710 if (ret)
61891923 1711 goto out;
c2db1073 1712 }
4d1b5fb4 1713 goto mapit;
b812ce28 1714 } else if (async && !skip_sum) {
17d217fe
YZ
1715 /* csum items have already been cloned */
1716 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1717 goto mapit;
19b9bdb0 1718 /* we're doing a write, do the async checksumming */
61891923 1719 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1720 inode, rw, bio, mirror_num,
eaf25d93
CM
1721 bio_flags, bio_offset,
1722 __btrfs_submit_bio_start,
4a69a410 1723 __btrfs_submit_bio_done);
61891923 1724 goto out;
b812ce28
JB
1725 } else if (!skip_sum) {
1726 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1727 if (ret)
1728 goto out;
19b9bdb0
CM
1729 }
1730
0b86a832 1731mapit:
61891923
SB
1732 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1733
1734out:
1735 if (ret < 0)
1736 bio_endio(bio, ret);
1737 return ret;
065631f6 1738}
6885f308 1739
d352ac68
CM
1740/*
1741 * given a list of ordered sums record them in the inode. This happens
1742 * at IO completion time based on sums calculated at bio submission time.
1743 */
ba1da2f4 1744static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1745 struct inode *inode, u64 file_offset,
1746 struct list_head *list)
1747{
e6dcd2dc
CM
1748 struct btrfs_ordered_sum *sum;
1749
c6e30871 1750 list_for_each_entry(sum, list, list) {
39847c4d 1751 trans->adding_csums = 1;
d20f7043
CM
1752 btrfs_csum_file_blocks(trans,
1753 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1754 trans->adding_csums = 0;
e6dcd2dc
CM
1755 }
1756 return 0;
1757}
1758
2ac55d41
JB
1759int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1760 struct extent_state **cached_state)
ea8c2819 1761{
6c1500f2 1762 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1763 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1764 cached_state, GFP_NOFS);
ea8c2819
CM
1765}
1766
d352ac68 1767/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1768struct btrfs_writepage_fixup {
1769 struct page *page;
d458b054 1770 struct btrfs_work work;
247e743c
CM
1771};
1772
d458b054 1773static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1774{
1775 struct btrfs_writepage_fixup *fixup;
1776 struct btrfs_ordered_extent *ordered;
2ac55d41 1777 struct extent_state *cached_state = NULL;
247e743c
CM
1778 struct page *page;
1779 struct inode *inode;
1780 u64 page_start;
1781 u64 page_end;
87826df0 1782 int ret;
247e743c
CM
1783
1784 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1785 page = fixup->page;
4a096752 1786again:
247e743c
CM
1787 lock_page(page);
1788 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1789 ClearPageChecked(page);
1790 goto out_page;
1791 }
1792
1793 inode = page->mapping->host;
1794 page_start = page_offset(page);
1795 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1796
2ac55d41 1797 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1798 &cached_state);
4a096752
CM
1799
1800 /* already ordered? We're done */
8b62b72b 1801 if (PagePrivate2(page))
247e743c 1802 goto out;
4a096752
CM
1803
1804 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1805 if (ordered) {
2ac55d41
JB
1806 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1807 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1808 unlock_page(page);
1809 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1810 btrfs_put_ordered_extent(ordered);
4a096752
CM
1811 goto again;
1812 }
247e743c 1813
87826df0
JM
1814 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1815 if (ret) {
1816 mapping_set_error(page->mapping, ret);
1817 end_extent_writepage(page, ret, page_start, page_end);
1818 ClearPageChecked(page);
1819 goto out;
1820 }
1821
2ac55d41 1822 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1823 ClearPageChecked(page);
87826df0 1824 set_page_dirty(page);
247e743c 1825out:
2ac55d41
JB
1826 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1827 &cached_state, GFP_NOFS);
247e743c
CM
1828out_page:
1829 unlock_page(page);
1830 page_cache_release(page);
b897abec 1831 kfree(fixup);
247e743c
CM
1832}
1833
1834/*
1835 * There are a few paths in the higher layers of the kernel that directly
1836 * set the page dirty bit without asking the filesystem if it is a
1837 * good idea. This causes problems because we want to make sure COW
1838 * properly happens and the data=ordered rules are followed.
1839 *
c8b97818 1840 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1841 * hasn't been properly setup for IO. We kick off an async process
1842 * to fix it up. The async helper will wait for ordered extents, set
1843 * the delalloc bit and make it safe to write the page.
1844 */
b2950863 1845static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1846{
1847 struct inode *inode = page->mapping->host;
1848 struct btrfs_writepage_fixup *fixup;
1849 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1850
8b62b72b
CM
1851 /* this page is properly in the ordered list */
1852 if (TestClearPagePrivate2(page))
247e743c
CM
1853 return 0;
1854
1855 if (PageChecked(page))
1856 return -EAGAIN;
1857
1858 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1859 if (!fixup)
1860 return -EAGAIN;
f421950f 1861
247e743c
CM
1862 SetPageChecked(page);
1863 page_cache_get(page);
dc6e3209 1864 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 1865 fixup->page = page;
dc6e3209 1866 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 1867 return -EBUSY;
247e743c
CM
1868}
1869
d899e052
YZ
1870static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1871 struct inode *inode, u64 file_pos,
1872 u64 disk_bytenr, u64 disk_num_bytes,
1873 u64 num_bytes, u64 ram_bytes,
1874 u8 compression, u8 encryption,
1875 u16 other_encoding, int extent_type)
1876{
1877 struct btrfs_root *root = BTRFS_I(inode)->root;
1878 struct btrfs_file_extent_item *fi;
1879 struct btrfs_path *path;
1880 struct extent_buffer *leaf;
1881 struct btrfs_key ins;
1acae57b 1882 int extent_inserted = 0;
d899e052
YZ
1883 int ret;
1884
1885 path = btrfs_alloc_path();
d8926bb3
MF
1886 if (!path)
1887 return -ENOMEM;
d899e052 1888
a1ed835e
CM
1889 /*
1890 * we may be replacing one extent in the tree with another.
1891 * The new extent is pinned in the extent map, and we don't want
1892 * to drop it from the cache until it is completely in the btree.
1893 *
1894 * So, tell btrfs_drop_extents to leave this extent in the cache.
1895 * the caller is expected to unpin it and allow it to be merged
1896 * with the others.
1897 */
1acae57b
FDBM
1898 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1899 file_pos + num_bytes, NULL, 0,
1900 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
1901 if (ret)
1902 goto out;
d899e052 1903
1acae57b
FDBM
1904 if (!extent_inserted) {
1905 ins.objectid = btrfs_ino(inode);
1906 ins.offset = file_pos;
1907 ins.type = BTRFS_EXTENT_DATA_KEY;
1908
1909 path->leave_spinning = 1;
1910 ret = btrfs_insert_empty_item(trans, root, path, &ins,
1911 sizeof(*fi));
1912 if (ret)
1913 goto out;
1914 }
d899e052
YZ
1915 leaf = path->nodes[0];
1916 fi = btrfs_item_ptr(leaf, path->slots[0],
1917 struct btrfs_file_extent_item);
1918 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1919 btrfs_set_file_extent_type(leaf, fi, extent_type);
1920 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1921 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1922 btrfs_set_file_extent_offset(leaf, fi, 0);
1923 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1924 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1925 btrfs_set_file_extent_compression(leaf, fi, compression);
1926 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1927 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1928
d899e052 1929 btrfs_mark_buffer_dirty(leaf);
ce195332 1930 btrfs_release_path(path);
d899e052
YZ
1931
1932 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1933
1934 ins.objectid = disk_bytenr;
1935 ins.offset = disk_num_bytes;
1936 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1937 ret = btrfs_alloc_reserved_file_extent(trans, root,
1938 root->root_key.objectid,
33345d01 1939 btrfs_ino(inode), file_pos, &ins);
79787eaa 1940out:
d899e052 1941 btrfs_free_path(path);
b9473439 1942
79787eaa 1943 return ret;
d899e052
YZ
1944}
1945
38c227d8
LB
1946/* snapshot-aware defrag */
1947struct sa_defrag_extent_backref {
1948 struct rb_node node;
1949 struct old_sa_defrag_extent *old;
1950 u64 root_id;
1951 u64 inum;
1952 u64 file_pos;
1953 u64 extent_offset;
1954 u64 num_bytes;
1955 u64 generation;
1956};
1957
1958struct old_sa_defrag_extent {
1959 struct list_head list;
1960 struct new_sa_defrag_extent *new;
1961
1962 u64 extent_offset;
1963 u64 bytenr;
1964 u64 offset;
1965 u64 len;
1966 int count;
1967};
1968
1969struct new_sa_defrag_extent {
1970 struct rb_root root;
1971 struct list_head head;
1972 struct btrfs_path *path;
1973 struct inode *inode;
1974 u64 file_pos;
1975 u64 len;
1976 u64 bytenr;
1977 u64 disk_len;
1978 u8 compress_type;
1979};
1980
1981static int backref_comp(struct sa_defrag_extent_backref *b1,
1982 struct sa_defrag_extent_backref *b2)
1983{
1984 if (b1->root_id < b2->root_id)
1985 return -1;
1986 else if (b1->root_id > b2->root_id)
1987 return 1;
1988
1989 if (b1->inum < b2->inum)
1990 return -1;
1991 else if (b1->inum > b2->inum)
1992 return 1;
1993
1994 if (b1->file_pos < b2->file_pos)
1995 return -1;
1996 else if (b1->file_pos > b2->file_pos)
1997 return 1;
1998
1999 /*
2000 * [------------------------------] ===> (a range of space)
2001 * |<--->| |<---->| =============> (fs/file tree A)
2002 * |<---------------------------->| ===> (fs/file tree B)
2003 *
2004 * A range of space can refer to two file extents in one tree while
2005 * refer to only one file extent in another tree.
2006 *
2007 * So we may process a disk offset more than one time(two extents in A)
2008 * and locate at the same extent(one extent in B), then insert two same
2009 * backrefs(both refer to the extent in B).
2010 */
2011 return 0;
2012}
2013
2014static void backref_insert(struct rb_root *root,
2015 struct sa_defrag_extent_backref *backref)
2016{
2017 struct rb_node **p = &root->rb_node;
2018 struct rb_node *parent = NULL;
2019 struct sa_defrag_extent_backref *entry;
2020 int ret;
2021
2022 while (*p) {
2023 parent = *p;
2024 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2025
2026 ret = backref_comp(backref, entry);
2027 if (ret < 0)
2028 p = &(*p)->rb_left;
2029 else
2030 p = &(*p)->rb_right;
2031 }
2032
2033 rb_link_node(&backref->node, parent, p);
2034 rb_insert_color(&backref->node, root);
2035}
2036
2037/*
2038 * Note the backref might has changed, and in this case we just return 0.
2039 */
2040static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2041 void *ctx)
2042{
2043 struct btrfs_file_extent_item *extent;
2044 struct btrfs_fs_info *fs_info;
2045 struct old_sa_defrag_extent *old = ctx;
2046 struct new_sa_defrag_extent *new = old->new;
2047 struct btrfs_path *path = new->path;
2048 struct btrfs_key key;
2049 struct btrfs_root *root;
2050 struct sa_defrag_extent_backref *backref;
2051 struct extent_buffer *leaf;
2052 struct inode *inode = new->inode;
2053 int slot;
2054 int ret;
2055 u64 extent_offset;
2056 u64 num_bytes;
2057
2058 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2059 inum == btrfs_ino(inode))
2060 return 0;
2061
2062 key.objectid = root_id;
2063 key.type = BTRFS_ROOT_ITEM_KEY;
2064 key.offset = (u64)-1;
2065
2066 fs_info = BTRFS_I(inode)->root->fs_info;
2067 root = btrfs_read_fs_root_no_name(fs_info, &key);
2068 if (IS_ERR(root)) {
2069 if (PTR_ERR(root) == -ENOENT)
2070 return 0;
2071 WARN_ON(1);
2072 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2073 inum, offset, root_id);
2074 return PTR_ERR(root);
2075 }
2076
2077 key.objectid = inum;
2078 key.type = BTRFS_EXTENT_DATA_KEY;
2079 if (offset > (u64)-1 << 32)
2080 key.offset = 0;
2081 else
2082 key.offset = offset;
2083
2084 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2085 if (WARN_ON(ret < 0))
38c227d8 2086 return ret;
50f1319c 2087 ret = 0;
38c227d8
LB
2088
2089 while (1) {
2090 cond_resched();
2091
2092 leaf = path->nodes[0];
2093 slot = path->slots[0];
2094
2095 if (slot >= btrfs_header_nritems(leaf)) {
2096 ret = btrfs_next_leaf(root, path);
2097 if (ret < 0) {
2098 goto out;
2099 } else if (ret > 0) {
2100 ret = 0;
2101 goto out;
2102 }
2103 continue;
2104 }
2105
2106 path->slots[0]++;
2107
2108 btrfs_item_key_to_cpu(leaf, &key, slot);
2109
2110 if (key.objectid > inum)
2111 goto out;
2112
2113 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2114 continue;
2115
2116 extent = btrfs_item_ptr(leaf, slot,
2117 struct btrfs_file_extent_item);
2118
2119 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2120 continue;
2121
e68afa49
LB
2122 /*
2123 * 'offset' refers to the exact key.offset,
2124 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2125 * (key.offset - extent_offset).
2126 */
2127 if (key.offset != offset)
38c227d8
LB
2128 continue;
2129
e68afa49 2130 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2131 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2132
38c227d8
LB
2133 if (extent_offset >= old->extent_offset + old->offset +
2134 old->len || extent_offset + num_bytes <=
2135 old->extent_offset + old->offset)
2136 continue;
38c227d8
LB
2137 break;
2138 }
2139
2140 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2141 if (!backref) {
2142 ret = -ENOENT;
2143 goto out;
2144 }
2145
2146 backref->root_id = root_id;
2147 backref->inum = inum;
e68afa49 2148 backref->file_pos = offset;
38c227d8
LB
2149 backref->num_bytes = num_bytes;
2150 backref->extent_offset = extent_offset;
2151 backref->generation = btrfs_file_extent_generation(leaf, extent);
2152 backref->old = old;
2153 backref_insert(&new->root, backref);
2154 old->count++;
2155out:
2156 btrfs_release_path(path);
2157 WARN_ON(ret);
2158 return ret;
2159}
2160
2161static noinline bool record_extent_backrefs(struct btrfs_path *path,
2162 struct new_sa_defrag_extent *new)
2163{
2164 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2165 struct old_sa_defrag_extent *old, *tmp;
2166 int ret;
2167
2168 new->path = path;
2169
2170 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2171 ret = iterate_inodes_from_logical(old->bytenr +
2172 old->extent_offset, fs_info,
38c227d8
LB
2173 path, record_one_backref,
2174 old);
4724b106
JB
2175 if (ret < 0 && ret != -ENOENT)
2176 return false;
38c227d8
LB
2177
2178 /* no backref to be processed for this extent */
2179 if (!old->count) {
2180 list_del(&old->list);
2181 kfree(old);
2182 }
2183 }
2184
2185 if (list_empty(&new->head))
2186 return false;
2187
2188 return true;
2189}
2190
2191static int relink_is_mergable(struct extent_buffer *leaf,
2192 struct btrfs_file_extent_item *fi,
116e0024 2193 struct new_sa_defrag_extent *new)
38c227d8 2194{
116e0024 2195 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2196 return 0;
2197
2198 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2199 return 0;
2200
116e0024
LB
2201 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2202 return 0;
2203
2204 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2205 btrfs_file_extent_other_encoding(leaf, fi))
2206 return 0;
2207
2208 return 1;
2209}
2210
2211/*
2212 * Note the backref might has changed, and in this case we just return 0.
2213 */
2214static noinline int relink_extent_backref(struct btrfs_path *path,
2215 struct sa_defrag_extent_backref *prev,
2216 struct sa_defrag_extent_backref *backref)
2217{
2218 struct btrfs_file_extent_item *extent;
2219 struct btrfs_file_extent_item *item;
2220 struct btrfs_ordered_extent *ordered;
2221 struct btrfs_trans_handle *trans;
2222 struct btrfs_fs_info *fs_info;
2223 struct btrfs_root *root;
2224 struct btrfs_key key;
2225 struct extent_buffer *leaf;
2226 struct old_sa_defrag_extent *old = backref->old;
2227 struct new_sa_defrag_extent *new = old->new;
2228 struct inode *src_inode = new->inode;
2229 struct inode *inode;
2230 struct extent_state *cached = NULL;
2231 int ret = 0;
2232 u64 start;
2233 u64 len;
2234 u64 lock_start;
2235 u64 lock_end;
2236 bool merge = false;
2237 int index;
2238
2239 if (prev && prev->root_id == backref->root_id &&
2240 prev->inum == backref->inum &&
2241 prev->file_pos + prev->num_bytes == backref->file_pos)
2242 merge = true;
2243
2244 /* step 1: get root */
2245 key.objectid = backref->root_id;
2246 key.type = BTRFS_ROOT_ITEM_KEY;
2247 key.offset = (u64)-1;
2248
2249 fs_info = BTRFS_I(src_inode)->root->fs_info;
2250 index = srcu_read_lock(&fs_info->subvol_srcu);
2251
2252 root = btrfs_read_fs_root_no_name(fs_info, &key);
2253 if (IS_ERR(root)) {
2254 srcu_read_unlock(&fs_info->subvol_srcu, index);
2255 if (PTR_ERR(root) == -ENOENT)
2256 return 0;
2257 return PTR_ERR(root);
2258 }
38c227d8 2259
bcbba5e6
WS
2260 if (btrfs_root_readonly(root)) {
2261 srcu_read_unlock(&fs_info->subvol_srcu, index);
2262 return 0;
2263 }
2264
38c227d8
LB
2265 /* step 2: get inode */
2266 key.objectid = backref->inum;
2267 key.type = BTRFS_INODE_ITEM_KEY;
2268 key.offset = 0;
2269
2270 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2271 if (IS_ERR(inode)) {
2272 srcu_read_unlock(&fs_info->subvol_srcu, index);
2273 return 0;
2274 }
2275
2276 srcu_read_unlock(&fs_info->subvol_srcu, index);
2277
2278 /* step 3: relink backref */
2279 lock_start = backref->file_pos;
2280 lock_end = backref->file_pos + backref->num_bytes - 1;
2281 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2282 0, &cached);
2283
2284 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2285 if (ordered) {
2286 btrfs_put_ordered_extent(ordered);
2287 goto out_unlock;
2288 }
2289
2290 trans = btrfs_join_transaction(root);
2291 if (IS_ERR(trans)) {
2292 ret = PTR_ERR(trans);
2293 goto out_unlock;
2294 }
2295
2296 key.objectid = backref->inum;
2297 key.type = BTRFS_EXTENT_DATA_KEY;
2298 key.offset = backref->file_pos;
2299
2300 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2301 if (ret < 0) {
2302 goto out_free_path;
2303 } else if (ret > 0) {
2304 ret = 0;
2305 goto out_free_path;
2306 }
2307
2308 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2309 struct btrfs_file_extent_item);
2310
2311 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2312 backref->generation)
2313 goto out_free_path;
2314
2315 btrfs_release_path(path);
2316
2317 start = backref->file_pos;
2318 if (backref->extent_offset < old->extent_offset + old->offset)
2319 start += old->extent_offset + old->offset -
2320 backref->extent_offset;
2321
2322 len = min(backref->extent_offset + backref->num_bytes,
2323 old->extent_offset + old->offset + old->len);
2324 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2325
2326 ret = btrfs_drop_extents(trans, root, inode, start,
2327 start + len, 1);
2328 if (ret)
2329 goto out_free_path;
2330again:
2331 key.objectid = btrfs_ino(inode);
2332 key.type = BTRFS_EXTENT_DATA_KEY;
2333 key.offset = start;
2334
a09a0a70 2335 path->leave_spinning = 1;
38c227d8
LB
2336 if (merge) {
2337 struct btrfs_file_extent_item *fi;
2338 u64 extent_len;
2339 struct btrfs_key found_key;
2340
3c9665df 2341 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2342 if (ret < 0)
2343 goto out_free_path;
2344
2345 path->slots[0]--;
2346 leaf = path->nodes[0];
2347 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2348
2349 fi = btrfs_item_ptr(leaf, path->slots[0],
2350 struct btrfs_file_extent_item);
2351 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2352
116e0024
LB
2353 if (extent_len + found_key.offset == start &&
2354 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2355 btrfs_set_file_extent_num_bytes(leaf, fi,
2356 extent_len + len);
2357 btrfs_mark_buffer_dirty(leaf);
2358 inode_add_bytes(inode, len);
2359
2360 ret = 1;
2361 goto out_free_path;
2362 } else {
2363 merge = false;
2364 btrfs_release_path(path);
2365 goto again;
2366 }
2367 }
2368
2369 ret = btrfs_insert_empty_item(trans, root, path, &key,
2370 sizeof(*extent));
2371 if (ret) {
2372 btrfs_abort_transaction(trans, root, ret);
2373 goto out_free_path;
2374 }
2375
2376 leaf = path->nodes[0];
2377 item = btrfs_item_ptr(leaf, path->slots[0],
2378 struct btrfs_file_extent_item);
2379 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2380 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2381 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2382 btrfs_set_file_extent_num_bytes(leaf, item, len);
2383 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2384 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2385 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2386 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2387 btrfs_set_file_extent_encryption(leaf, item, 0);
2388 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2389
2390 btrfs_mark_buffer_dirty(leaf);
2391 inode_add_bytes(inode, len);
a09a0a70 2392 btrfs_release_path(path);
38c227d8
LB
2393
2394 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2395 new->disk_len, 0,
2396 backref->root_id, backref->inum,
2397 new->file_pos, 0); /* start - extent_offset */
2398 if (ret) {
2399 btrfs_abort_transaction(trans, root, ret);
2400 goto out_free_path;
2401 }
2402
2403 ret = 1;
2404out_free_path:
2405 btrfs_release_path(path);
a09a0a70 2406 path->leave_spinning = 0;
38c227d8
LB
2407 btrfs_end_transaction(trans, root);
2408out_unlock:
2409 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2410 &cached, GFP_NOFS);
2411 iput(inode);
2412 return ret;
2413}
2414
6f519564
LB
2415static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2416{
2417 struct old_sa_defrag_extent *old, *tmp;
2418
2419 if (!new)
2420 return;
2421
2422 list_for_each_entry_safe(old, tmp, &new->head, list) {
2423 list_del(&old->list);
2424 kfree(old);
2425 }
2426 kfree(new);
2427}
2428
38c227d8
LB
2429static void relink_file_extents(struct new_sa_defrag_extent *new)
2430{
2431 struct btrfs_path *path;
38c227d8
LB
2432 struct sa_defrag_extent_backref *backref;
2433 struct sa_defrag_extent_backref *prev = NULL;
2434 struct inode *inode;
2435 struct btrfs_root *root;
2436 struct rb_node *node;
2437 int ret;
2438
2439 inode = new->inode;
2440 root = BTRFS_I(inode)->root;
2441
2442 path = btrfs_alloc_path();
2443 if (!path)
2444 return;
2445
2446 if (!record_extent_backrefs(path, new)) {
2447 btrfs_free_path(path);
2448 goto out;
2449 }
2450 btrfs_release_path(path);
2451
2452 while (1) {
2453 node = rb_first(&new->root);
2454 if (!node)
2455 break;
2456 rb_erase(node, &new->root);
2457
2458 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2459
2460 ret = relink_extent_backref(path, prev, backref);
2461 WARN_ON(ret < 0);
2462
2463 kfree(prev);
2464
2465 if (ret == 1)
2466 prev = backref;
2467 else
2468 prev = NULL;
2469 cond_resched();
2470 }
2471 kfree(prev);
2472
2473 btrfs_free_path(path);
38c227d8 2474out:
6f519564
LB
2475 free_sa_defrag_extent(new);
2476
38c227d8
LB
2477 atomic_dec(&root->fs_info->defrag_running);
2478 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2479}
2480
2481static struct new_sa_defrag_extent *
2482record_old_file_extents(struct inode *inode,
2483 struct btrfs_ordered_extent *ordered)
2484{
2485 struct btrfs_root *root = BTRFS_I(inode)->root;
2486 struct btrfs_path *path;
2487 struct btrfs_key key;
6f519564 2488 struct old_sa_defrag_extent *old;
38c227d8
LB
2489 struct new_sa_defrag_extent *new;
2490 int ret;
2491
2492 new = kmalloc(sizeof(*new), GFP_NOFS);
2493 if (!new)
2494 return NULL;
2495
2496 new->inode = inode;
2497 new->file_pos = ordered->file_offset;
2498 new->len = ordered->len;
2499 new->bytenr = ordered->start;
2500 new->disk_len = ordered->disk_len;
2501 new->compress_type = ordered->compress_type;
2502 new->root = RB_ROOT;
2503 INIT_LIST_HEAD(&new->head);
2504
2505 path = btrfs_alloc_path();
2506 if (!path)
2507 goto out_kfree;
2508
2509 key.objectid = btrfs_ino(inode);
2510 key.type = BTRFS_EXTENT_DATA_KEY;
2511 key.offset = new->file_pos;
2512
2513 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2514 if (ret < 0)
2515 goto out_free_path;
2516 if (ret > 0 && path->slots[0] > 0)
2517 path->slots[0]--;
2518
2519 /* find out all the old extents for the file range */
2520 while (1) {
2521 struct btrfs_file_extent_item *extent;
2522 struct extent_buffer *l;
2523 int slot;
2524 u64 num_bytes;
2525 u64 offset;
2526 u64 end;
2527 u64 disk_bytenr;
2528 u64 extent_offset;
2529
2530 l = path->nodes[0];
2531 slot = path->slots[0];
2532
2533 if (slot >= btrfs_header_nritems(l)) {
2534 ret = btrfs_next_leaf(root, path);
2535 if (ret < 0)
6f519564 2536 goto out_free_path;
38c227d8
LB
2537 else if (ret > 0)
2538 break;
2539 continue;
2540 }
2541
2542 btrfs_item_key_to_cpu(l, &key, slot);
2543
2544 if (key.objectid != btrfs_ino(inode))
2545 break;
2546 if (key.type != BTRFS_EXTENT_DATA_KEY)
2547 break;
2548 if (key.offset >= new->file_pos + new->len)
2549 break;
2550
2551 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2552
2553 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2554 if (key.offset + num_bytes < new->file_pos)
2555 goto next;
2556
2557 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2558 if (!disk_bytenr)
2559 goto next;
2560
2561 extent_offset = btrfs_file_extent_offset(l, extent);
2562
2563 old = kmalloc(sizeof(*old), GFP_NOFS);
2564 if (!old)
6f519564 2565 goto out_free_path;
38c227d8
LB
2566
2567 offset = max(new->file_pos, key.offset);
2568 end = min(new->file_pos + new->len, key.offset + num_bytes);
2569
2570 old->bytenr = disk_bytenr;
2571 old->extent_offset = extent_offset;
2572 old->offset = offset - key.offset;
2573 old->len = end - offset;
2574 old->new = new;
2575 old->count = 0;
2576 list_add_tail(&old->list, &new->head);
2577next:
2578 path->slots[0]++;
2579 cond_resched();
2580 }
2581
2582 btrfs_free_path(path);
2583 atomic_inc(&root->fs_info->defrag_running);
2584
2585 return new;
2586
38c227d8
LB
2587out_free_path:
2588 btrfs_free_path(path);
2589out_kfree:
6f519564 2590 free_sa_defrag_extent(new);
38c227d8
LB
2591 return NULL;
2592}
2593
d352ac68
CM
2594/* as ordered data IO finishes, this gets called so we can finish
2595 * an ordered extent if the range of bytes in the file it covers are
2596 * fully written.
2597 */
5fd02043 2598static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2599{
5fd02043 2600 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2601 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2602 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2603 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2604 struct extent_state *cached_state = NULL;
38c227d8 2605 struct new_sa_defrag_extent *new = NULL;
261507a0 2606 int compress_type = 0;
77cef2ec
JB
2607 int ret = 0;
2608 u64 logical_len = ordered_extent->len;
82d5902d 2609 bool nolock;
77cef2ec 2610 bool truncated = false;
e6dcd2dc 2611
83eea1f1 2612 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2613
5fd02043
JB
2614 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2615 ret = -EIO;
2616 goto out;
2617 }
2618
77cef2ec
JB
2619 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2620 truncated = true;
2621 logical_len = ordered_extent->truncated_len;
2622 /* Truncated the entire extent, don't bother adding */
2623 if (!logical_len)
2624 goto out;
2625 }
2626
c2167754 2627 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2628 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2629 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2630 if (nolock)
2631 trans = btrfs_join_transaction_nolock(root);
2632 else
2633 trans = btrfs_join_transaction(root);
2634 if (IS_ERR(trans)) {
2635 ret = PTR_ERR(trans);
2636 trans = NULL;
2637 goto out;
c2167754 2638 }
6c760c07
JB
2639 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2640 ret = btrfs_update_inode_fallback(trans, root, inode);
2641 if (ret) /* -ENOMEM or corruption */
2642 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2643 goto out;
2644 }
e6dcd2dc 2645
2ac55d41
JB
2646 lock_extent_bits(io_tree, ordered_extent->file_offset,
2647 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2648 0, &cached_state);
e6dcd2dc 2649
38c227d8
LB
2650 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2651 ordered_extent->file_offset + ordered_extent->len - 1,
2652 EXTENT_DEFRAG, 1, cached_state);
2653 if (ret) {
2654 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2655 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2656 /* the inode is shared */
2657 new = record_old_file_extents(inode, ordered_extent);
2658
2659 clear_extent_bit(io_tree, ordered_extent->file_offset,
2660 ordered_extent->file_offset + ordered_extent->len - 1,
2661 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2662 }
2663
0cb59c99 2664 if (nolock)
7a7eaa40 2665 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2666 else
7a7eaa40 2667 trans = btrfs_join_transaction(root);
79787eaa
JM
2668 if (IS_ERR(trans)) {
2669 ret = PTR_ERR(trans);
2670 trans = NULL;
2671 goto out_unlock;
2672 }
0ca1f7ce 2673 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2674
c8b97818 2675 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2676 compress_type = ordered_extent->compress_type;
d899e052 2677 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2678 BUG_ON(compress_type);
920bbbfb 2679 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2680 ordered_extent->file_offset,
2681 ordered_extent->file_offset +
77cef2ec 2682 logical_len);
d899e052 2683 } else {
0af3d00b 2684 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2685 ret = insert_reserved_file_extent(trans, inode,
2686 ordered_extent->file_offset,
2687 ordered_extent->start,
2688 ordered_extent->disk_len,
77cef2ec 2689 logical_len, logical_len,
261507a0 2690 compress_type, 0, 0,
d899e052 2691 BTRFS_FILE_EXTENT_REG);
d899e052 2692 }
5dc562c5
JB
2693 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2694 ordered_extent->file_offset, ordered_extent->len,
2695 trans->transid);
79787eaa
JM
2696 if (ret < 0) {
2697 btrfs_abort_transaction(trans, root, ret);
5fd02043 2698 goto out_unlock;
79787eaa 2699 }
2ac55d41 2700
e6dcd2dc
CM
2701 add_pending_csums(trans, inode, ordered_extent->file_offset,
2702 &ordered_extent->list);
2703
6c760c07
JB
2704 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2705 ret = btrfs_update_inode_fallback(trans, root, inode);
2706 if (ret) { /* -ENOMEM or corruption */
2707 btrfs_abort_transaction(trans, root, ret);
2708 goto out_unlock;
1ef30be1
JB
2709 }
2710 ret = 0;
5fd02043
JB
2711out_unlock:
2712 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2713 ordered_extent->file_offset +
2714 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2715out:
5b0e95bf 2716 if (root != root->fs_info->tree_root)
0cb59c99 2717 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2718 if (trans)
2719 btrfs_end_transaction(trans, root);
0cb59c99 2720
77cef2ec
JB
2721 if (ret || truncated) {
2722 u64 start, end;
2723
2724 if (truncated)
2725 start = ordered_extent->file_offset + logical_len;
2726 else
2727 start = ordered_extent->file_offset;
2728 end = ordered_extent->file_offset + ordered_extent->len - 1;
2729 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2730
2731 /* Drop the cache for the part of the extent we didn't write. */
2732 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2733
0bec9ef5
JB
2734 /*
2735 * If the ordered extent had an IOERR or something else went
2736 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2737 * back to the allocator. We only free the extent in the
2738 * truncated case if we didn't write out the extent at all.
0bec9ef5 2739 */
77cef2ec
JB
2740 if ((ret || !logical_len) &&
2741 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2742 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2743 btrfs_free_reserved_extent(root, ordered_extent->start,
2744 ordered_extent->disk_len);
2745 }
2746
2747
5fd02043 2748 /*
8bad3c02
LB
2749 * This needs to be done to make sure anybody waiting knows we are done
2750 * updating everything for this ordered extent.
5fd02043
JB
2751 */
2752 btrfs_remove_ordered_extent(inode, ordered_extent);
2753
38c227d8 2754 /* for snapshot-aware defrag */
6f519564
LB
2755 if (new) {
2756 if (ret) {
2757 free_sa_defrag_extent(new);
2758 atomic_dec(&root->fs_info->defrag_running);
2759 } else {
2760 relink_file_extents(new);
2761 }
2762 }
38c227d8 2763
e6dcd2dc
CM
2764 /* once for us */
2765 btrfs_put_ordered_extent(ordered_extent);
2766 /* once for the tree */
2767 btrfs_put_ordered_extent(ordered_extent);
2768
5fd02043
JB
2769 return ret;
2770}
2771
d458b054 2772static void finish_ordered_fn(struct btrfs_work *work)
5fd02043
JB
2773{
2774 struct btrfs_ordered_extent *ordered_extent;
2775 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2776 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2777}
2778
b2950863 2779static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2780 struct extent_state *state, int uptodate)
2781{
5fd02043
JB
2782 struct inode *inode = page->mapping->host;
2783 struct btrfs_root *root = BTRFS_I(inode)->root;
2784 struct btrfs_ordered_extent *ordered_extent = NULL;
d458b054 2785 struct btrfs_workqueue *workers;
5fd02043 2786
1abe9b8a 2787 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2788
8b62b72b 2789 ClearPagePrivate2(page);
5fd02043
JB
2790 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2791 end - start + 1, uptodate))
2792 return 0;
2793
fccb5d86 2794 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
5fd02043 2795
83eea1f1 2796 if (btrfs_is_free_space_inode(inode))
fccb5d86 2797 workers = root->fs_info->endio_freespace_worker;
5fd02043 2798 else
fccb5d86
QW
2799 workers = root->fs_info->endio_write_workers;
2800 btrfs_queue_work(workers, &ordered_extent->work);
5fd02043
JB
2801
2802 return 0;
211f90e6
CM
2803}
2804
d352ac68
CM
2805/*
2806 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2807 * if there's a match, we allow the bio to finish. If not, the code in
2808 * extent_io.c will try to find good copies for us.
d352ac68 2809 */
facc8a22
MX
2810static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2811 u64 phy_offset, struct page *page,
2812 u64 start, u64 end, int mirror)
07157aac 2813{
4eee4fa4 2814 size_t offset = start - page_offset(page);
07157aac 2815 struct inode *inode = page->mapping->host;
d1310b2e 2816 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2817 char *kaddr;
ff79f819 2818 struct btrfs_root *root = BTRFS_I(inode)->root;
facc8a22 2819 u32 csum_expected;
ff79f819 2820 u32 csum = ~(u32)0;
c2cf52eb
SK
2821 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2822 DEFAULT_RATELIMIT_BURST);
d1310b2e 2823
d20f7043
CM
2824 if (PageChecked(page)) {
2825 ClearPageChecked(page);
2826 goto good;
2827 }
6cbff00f
CH
2828
2829 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2830 goto good;
17d217fe
YZ
2831
2832 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2833 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2834 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2835 GFP_NOFS);
b6cda9bc 2836 return 0;
17d217fe 2837 }
d20f7043 2838
facc8a22
MX
2839 phy_offset >>= inode->i_sb->s_blocksize_bits;
2840 csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
d397712b 2841
facc8a22 2842 kaddr = kmap_atomic(page);
b0496686 2843 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
ff79f819 2844 btrfs_csum_final(csum, (char *)&csum);
facc8a22 2845 if (csum != csum_expected)
07157aac 2846 goto zeroit;
d397712b 2847
7ac687d9 2848 kunmap_atomic(kaddr);
d20f7043 2849good:
07157aac
CM
2850 return 0;
2851
2852zeroit:
c2cf52eb 2853 if (__ratelimit(&_rs))
facc8a22 2854 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c 2855 btrfs_ino(page->mapping->host), start, csum, csum_expected);
db94535d
CM
2856 memset(kaddr + offset, 1, end - start + 1);
2857 flush_dcache_page(page);
7ac687d9 2858 kunmap_atomic(kaddr);
facc8a22 2859 if (csum_expected == 0)
3b951516 2860 return 0;
7e38326f 2861 return -EIO;
07157aac 2862}
b888db2b 2863
24bbcf04
YZ
2864struct delayed_iput {
2865 struct list_head list;
2866 struct inode *inode;
2867};
2868
79787eaa
JM
2869/* JDM: If this is fs-wide, why can't we add a pointer to
2870 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2871void btrfs_add_delayed_iput(struct inode *inode)
2872{
2873 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2874 struct delayed_iput *delayed;
2875
2876 if (atomic_add_unless(&inode->i_count, -1, 1))
2877 return;
2878
2879 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2880 delayed->inode = inode;
2881
2882 spin_lock(&fs_info->delayed_iput_lock);
2883 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2884 spin_unlock(&fs_info->delayed_iput_lock);
2885}
2886
2887void btrfs_run_delayed_iputs(struct btrfs_root *root)
2888{
2889 LIST_HEAD(list);
2890 struct btrfs_fs_info *fs_info = root->fs_info;
2891 struct delayed_iput *delayed;
2892 int empty;
2893
2894 spin_lock(&fs_info->delayed_iput_lock);
2895 empty = list_empty(&fs_info->delayed_iputs);
2896 spin_unlock(&fs_info->delayed_iput_lock);
2897 if (empty)
2898 return;
2899
24bbcf04
YZ
2900 spin_lock(&fs_info->delayed_iput_lock);
2901 list_splice_init(&fs_info->delayed_iputs, &list);
2902 spin_unlock(&fs_info->delayed_iput_lock);
2903
2904 while (!list_empty(&list)) {
2905 delayed = list_entry(list.next, struct delayed_iput, list);
2906 list_del(&delayed->list);
2907 iput(delayed->inode);
2908 kfree(delayed);
2909 }
24bbcf04
YZ
2910}
2911
d68fc57b 2912/*
42b2aa86 2913 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2914 * files in the subvolume, it removes orphan item and frees block_rsv
2915 * structure.
2916 */
2917void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2918 struct btrfs_root *root)
2919{
90290e19 2920 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2921 int ret;
2922
8a35d95f 2923 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2924 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2925 return;
2926
90290e19 2927 spin_lock(&root->orphan_lock);
8a35d95f 2928 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2929 spin_unlock(&root->orphan_lock);
2930 return;
2931 }
2932
2933 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2934 spin_unlock(&root->orphan_lock);
2935 return;
2936 }
2937
2938 block_rsv = root->orphan_block_rsv;
2939 root->orphan_block_rsv = NULL;
2940 spin_unlock(&root->orphan_lock);
2941
d68fc57b
YZ
2942 if (root->orphan_item_inserted &&
2943 btrfs_root_refs(&root->root_item) > 0) {
2944 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2945 root->root_key.objectid);
4ef31a45
JB
2946 if (ret)
2947 btrfs_abort_transaction(trans, root, ret);
2948 else
2949 root->orphan_item_inserted = 0;
d68fc57b
YZ
2950 }
2951
90290e19
JB
2952 if (block_rsv) {
2953 WARN_ON(block_rsv->size > 0);
2954 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2955 }
2956}
2957
7b128766
JB
2958/*
2959 * This creates an orphan entry for the given inode in case something goes
2960 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2961 *
2962 * NOTE: caller of this function should reserve 5 units of metadata for
2963 * this function.
7b128766
JB
2964 */
2965int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2966{
2967 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2968 struct btrfs_block_rsv *block_rsv = NULL;
2969 int reserve = 0;
2970 int insert = 0;
2971 int ret;
7b128766 2972
d68fc57b 2973 if (!root->orphan_block_rsv) {
66d8f3dd 2974 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2975 if (!block_rsv)
2976 return -ENOMEM;
d68fc57b 2977 }
7b128766 2978
d68fc57b
YZ
2979 spin_lock(&root->orphan_lock);
2980 if (!root->orphan_block_rsv) {
2981 root->orphan_block_rsv = block_rsv;
2982 } else if (block_rsv) {
2983 btrfs_free_block_rsv(root, block_rsv);
2984 block_rsv = NULL;
7b128766 2985 }
7b128766 2986
8a35d95f
JB
2987 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2988 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2989#if 0
2990 /*
2991 * For proper ENOSPC handling, we should do orphan
2992 * cleanup when mounting. But this introduces backward
2993 * compatibility issue.
2994 */
2995 if (!xchg(&root->orphan_item_inserted, 1))
2996 insert = 2;
2997 else
2998 insert = 1;
2999#endif
3000 insert = 1;
321f0e70 3001 atomic_inc(&root->orphan_inodes);
7b128766
JB
3002 }
3003
72ac3c0d
JB
3004 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3005 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3006 reserve = 1;
d68fc57b 3007 spin_unlock(&root->orphan_lock);
7b128766 3008
d68fc57b
YZ
3009 /* grab metadata reservation from transaction handle */
3010 if (reserve) {
3011 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3012 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3013 }
7b128766 3014
d68fc57b
YZ
3015 /* insert an orphan item to track this unlinked/truncated file */
3016 if (insert >= 1) {
33345d01 3017 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3018 if (ret) {
703c88e0 3019 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3020 if (reserve) {
3021 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3022 &BTRFS_I(inode)->runtime_flags);
3023 btrfs_orphan_release_metadata(inode);
3024 }
3025 if (ret != -EEXIST) {
e8e7cff6
JB
3026 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3027 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3028 btrfs_abort_transaction(trans, root, ret);
3029 return ret;
3030 }
79787eaa
JM
3031 }
3032 ret = 0;
d68fc57b
YZ
3033 }
3034
3035 /* insert an orphan item to track subvolume contains orphan files */
3036 if (insert >= 2) {
3037 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3038 root->root_key.objectid);
79787eaa
JM
3039 if (ret && ret != -EEXIST) {
3040 btrfs_abort_transaction(trans, root, ret);
3041 return ret;
3042 }
d68fc57b
YZ
3043 }
3044 return 0;
7b128766
JB
3045}
3046
3047/*
3048 * We have done the truncate/delete so we can go ahead and remove the orphan
3049 * item for this particular inode.
3050 */
48a3b636
ES
3051static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3052 struct inode *inode)
7b128766
JB
3053{
3054 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3055 int delete_item = 0;
3056 int release_rsv = 0;
7b128766
JB
3057 int ret = 0;
3058
d68fc57b 3059 spin_lock(&root->orphan_lock);
8a35d95f
JB
3060 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3061 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3062 delete_item = 1;
7b128766 3063
72ac3c0d
JB
3064 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3065 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3066 release_rsv = 1;
d68fc57b 3067 spin_unlock(&root->orphan_lock);
7b128766 3068
703c88e0 3069 if (delete_item) {
8a35d95f 3070 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3071 if (trans)
3072 ret = btrfs_del_orphan_item(trans, root,
3073 btrfs_ino(inode));
8a35d95f 3074 }
7b128766 3075
703c88e0
FDBM
3076 if (release_rsv)
3077 btrfs_orphan_release_metadata(inode);
3078
4ef31a45 3079 return ret;
7b128766
JB
3080}
3081
3082/*
3083 * this cleans up any orphans that may be left on the list from the last use
3084 * of this root.
3085 */
66b4ffd1 3086int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3087{
3088 struct btrfs_path *path;
3089 struct extent_buffer *leaf;
7b128766
JB
3090 struct btrfs_key key, found_key;
3091 struct btrfs_trans_handle *trans;
3092 struct inode *inode;
8f6d7f4f 3093 u64 last_objectid = 0;
7b128766
JB
3094 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3095
d68fc57b 3096 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3097 return 0;
c71bf099
YZ
3098
3099 path = btrfs_alloc_path();
66b4ffd1
JB
3100 if (!path) {
3101 ret = -ENOMEM;
3102 goto out;
3103 }
7b128766
JB
3104 path->reada = -1;
3105
3106 key.objectid = BTRFS_ORPHAN_OBJECTID;
3107 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3108 key.offset = (u64)-1;
3109
7b128766
JB
3110 while (1) {
3111 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3112 if (ret < 0)
3113 goto out;
7b128766
JB
3114
3115 /*
3116 * if ret == 0 means we found what we were searching for, which
25985edc 3117 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3118 * find the key and see if we have stuff that matches
3119 */
3120 if (ret > 0) {
66b4ffd1 3121 ret = 0;
7b128766
JB
3122 if (path->slots[0] == 0)
3123 break;
3124 path->slots[0]--;
3125 }
3126
3127 /* pull out the item */
3128 leaf = path->nodes[0];
7b128766
JB
3129 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3130
3131 /* make sure the item matches what we want */
3132 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3133 break;
3134 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3135 break;
3136
3137 /* release the path since we're done with it */
b3b4aa74 3138 btrfs_release_path(path);
7b128766
JB
3139
3140 /*
3141 * this is where we are basically btrfs_lookup, without the
3142 * crossing root thing. we store the inode number in the
3143 * offset of the orphan item.
3144 */
8f6d7f4f
JB
3145
3146 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3147 btrfs_err(root->fs_info,
3148 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3149 ret = -EINVAL;
3150 goto out;
3151 }
3152
3153 last_objectid = found_key.offset;
3154
5d4f98a2
YZ
3155 found_key.objectid = found_key.offset;
3156 found_key.type = BTRFS_INODE_ITEM_KEY;
3157 found_key.offset = 0;
73f73415 3158 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3159 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3160 if (ret && ret != -ESTALE)
66b4ffd1 3161 goto out;
7b128766 3162
f8e9e0b0
AJ
3163 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3164 struct btrfs_root *dead_root;
3165 struct btrfs_fs_info *fs_info = root->fs_info;
3166 int is_dead_root = 0;
3167
3168 /*
3169 * this is an orphan in the tree root. Currently these
3170 * could come from 2 sources:
3171 * a) a snapshot deletion in progress
3172 * b) a free space cache inode
3173 * We need to distinguish those two, as the snapshot
3174 * orphan must not get deleted.
3175 * find_dead_roots already ran before us, so if this
3176 * is a snapshot deletion, we should find the root
3177 * in the dead_roots list
3178 */
3179 spin_lock(&fs_info->trans_lock);
3180 list_for_each_entry(dead_root, &fs_info->dead_roots,
3181 root_list) {
3182 if (dead_root->root_key.objectid ==
3183 found_key.objectid) {
3184 is_dead_root = 1;
3185 break;
3186 }
3187 }
3188 spin_unlock(&fs_info->trans_lock);
3189 if (is_dead_root) {
3190 /* prevent this orphan from being found again */
3191 key.offset = found_key.objectid - 1;
3192 continue;
3193 }
3194 }
7b128766 3195 /*
a8c9e576
JB
3196 * Inode is already gone but the orphan item is still there,
3197 * kill the orphan item.
7b128766 3198 */
a8c9e576
JB
3199 if (ret == -ESTALE) {
3200 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3201 if (IS_ERR(trans)) {
3202 ret = PTR_ERR(trans);
3203 goto out;
3204 }
c2cf52eb
SK
3205 btrfs_debug(root->fs_info, "auto deleting %Lu",
3206 found_key.objectid);
a8c9e576
JB
3207 ret = btrfs_del_orphan_item(trans, root,
3208 found_key.objectid);
5b21f2ed 3209 btrfs_end_transaction(trans, root);
4ef31a45
JB
3210 if (ret)
3211 goto out;
7b128766
JB
3212 continue;
3213 }
3214
a8c9e576
JB
3215 /*
3216 * add this inode to the orphan list so btrfs_orphan_del does
3217 * the proper thing when we hit it
3218 */
8a35d95f
JB
3219 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3220 &BTRFS_I(inode)->runtime_flags);
925396ec 3221 atomic_inc(&root->orphan_inodes);
a8c9e576 3222
7b128766
JB
3223 /* if we have links, this was a truncate, lets do that */
3224 if (inode->i_nlink) {
fae7f21c 3225 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3226 iput(inode);
3227 continue;
3228 }
7b128766 3229 nr_truncate++;
f3fe820c
JB
3230
3231 /* 1 for the orphan item deletion. */
3232 trans = btrfs_start_transaction(root, 1);
3233 if (IS_ERR(trans)) {
c69b26b0 3234 iput(inode);
f3fe820c
JB
3235 ret = PTR_ERR(trans);
3236 goto out;
3237 }
3238 ret = btrfs_orphan_add(trans, inode);
3239 btrfs_end_transaction(trans, root);
c69b26b0
JB
3240 if (ret) {
3241 iput(inode);
f3fe820c 3242 goto out;
c69b26b0 3243 }
f3fe820c 3244
66b4ffd1 3245 ret = btrfs_truncate(inode);
4a7d0f68
JB
3246 if (ret)
3247 btrfs_orphan_del(NULL, inode);
7b128766
JB
3248 } else {
3249 nr_unlink++;
3250 }
3251
3252 /* this will do delete_inode and everything for us */
3253 iput(inode);
66b4ffd1
JB
3254 if (ret)
3255 goto out;
7b128766 3256 }
3254c876
MX
3257 /* release the path since we're done with it */
3258 btrfs_release_path(path);
3259
d68fc57b
YZ
3260 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3261
3262 if (root->orphan_block_rsv)
3263 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3264 (u64)-1);
3265
3266 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 3267 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3268 if (!IS_ERR(trans))
3269 btrfs_end_transaction(trans, root);
d68fc57b 3270 }
7b128766
JB
3271
3272 if (nr_unlink)
4884b476 3273 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3274 if (nr_truncate)
4884b476 3275 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3276
3277out:
3278 if (ret)
c2cf52eb
SK
3279 btrfs_crit(root->fs_info,
3280 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3281 btrfs_free_path(path);
3282 return ret;
7b128766
JB
3283}
3284
46a53cca
CM
3285/*
3286 * very simple check to peek ahead in the leaf looking for xattrs. If we
3287 * don't find any xattrs, we know there can't be any acls.
3288 *
3289 * slot is the slot the inode is in, objectid is the objectid of the inode
3290 */
3291static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3292 int slot, u64 objectid,
3293 int *first_xattr_slot)
46a53cca
CM
3294{
3295 u32 nritems = btrfs_header_nritems(leaf);
3296 struct btrfs_key found_key;
f23b5a59
JB
3297 static u64 xattr_access = 0;
3298 static u64 xattr_default = 0;
46a53cca
CM
3299 int scanned = 0;
3300
f23b5a59
JB
3301 if (!xattr_access) {
3302 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3303 strlen(POSIX_ACL_XATTR_ACCESS));
3304 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3305 strlen(POSIX_ACL_XATTR_DEFAULT));
3306 }
3307
46a53cca 3308 slot++;
63541927 3309 *first_xattr_slot = -1;
46a53cca
CM
3310 while (slot < nritems) {
3311 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3312
3313 /* we found a different objectid, there must not be acls */
3314 if (found_key.objectid != objectid)
3315 return 0;
3316
3317 /* we found an xattr, assume we've got an acl */
f23b5a59 3318 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3319 if (*first_xattr_slot == -1)
3320 *first_xattr_slot = slot;
f23b5a59
JB
3321 if (found_key.offset == xattr_access ||
3322 found_key.offset == xattr_default)
3323 return 1;
3324 }
46a53cca
CM
3325
3326 /*
3327 * we found a key greater than an xattr key, there can't
3328 * be any acls later on
3329 */
3330 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3331 return 0;
3332
3333 slot++;
3334 scanned++;
3335
3336 /*
3337 * it goes inode, inode backrefs, xattrs, extents,
3338 * so if there are a ton of hard links to an inode there can
3339 * be a lot of backrefs. Don't waste time searching too hard,
3340 * this is just an optimization
3341 */
3342 if (scanned >= 8)
3343 break;
3344 }
3345 /* we hit the end of the leaf before we found an xattr or
3346 * something larger than an xattr. We have to assume the inode
3347 * has acls
3348 */
63541927
FDBM
3349 if (*first_xattr_slot == -1)
3350 *first_xattr_slot = slot;
46a53cca
CM
3351 return 1;
3352}
3353
d352ac68
CM
3354/*
3355 * read an inode from the btree into the in-memory inode
3356 */
5d4f98a2 3357static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3358{
3359 struct btrfs_path *path;
5f39d397 3360 struct extent_buffer *leaf;
39279cc3 3361 struct btrfs_inode_item *inode_item;
0b86a832 3362 struct btrfs_timespec *tspec;
39279cc3
CM
3363 struct btrfs_root *root = BTRFS_I(inode)->root;
3364 struct btrfs_key location;
67de1176 3365 unsigned long ptr;
46a53cca 3366 int maybe_acls;
618e21d5 3367 u32 rdev;
39279cc3 3368 int ret;
2f7e33d4 3369 bool filled = false;
63541927 3370 int first_xattr_slot;
2f7e33d4
MX
3371
3372 ret = btrfs_fill_inode(inode, &rdev);
3373 if (!ret)
3374 filled = true;
39279cc3
CM
3375
3376 path = btrfs_alloc_path();
1748f843
MF
3377 if (!path)
3378 goto make_bad;
3379
39279cc3 3380 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3381
39279cc3 3382 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3383 if (ret)
39279cc3 3384 goto make_bad;
39279cc3 3385
5f39d397 3386 leaf = path->nodes[0];
2f7e33d4
MX
3387
3388 if (filled)
67de1176 3389 goto cache_index;
2f7e33d4 3390
5f39d397
CM
3391 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3392 struct btrfs_inode_item);
5f39d397 3393 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3394 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3395 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3396 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3397 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
3398
3399 tspec = btrfs_inode_atime(inode_item);
3400 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3401 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3402
3403 tspec = btrfs_inode_mtime(inode_item);
3404 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3405 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3406
3407 tspec = btrfs_inode_ctime(inode_item);
3408 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3409 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3410
a76a3cd4 3411 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3412 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3413 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3414
3415 /*
3416 * If we were modified in the current generation and evicted from memory
3417 * and then re-read we need to do a full sync since we don't have any
3418 * idea about which extents were modified before we were evicted from
3419 * cache.
3420 */
3421 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3422 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3423 &BTRFS_I(inode)->runtime_flags);
3424
0c4d2d95 3425 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3426 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3427 inode->i_rdev = 0;
5f39d397
CM
3428 rdev = btrfs_inode_rdev(leaf, inode_item);
3429
aec7477b 3430 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3431 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
67de1176
MX
3432
3433cache_index:
3434 path->slots[0]++;
3435 if (inode->i_nlink != 1 ||
3436 path->slots[0] >= btrfs_header_nritems(leaf))
3437 goto cache_acl;
3438
3439 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3440 if (location.objectid != btrfs_ino(inode))
3441 goto cache_acl;
3442
3443 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3444 if (location.type == BTRFS_INODE_REF_KEY) {
3445 struct btrfs_inode_ref *ref;
3446
3447 ref = (struct btrfs_inode_ref *)ptr;
3448 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3449 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3450 struct btrfs_inode_extref *extref;
3451
3452 extref = (struct btrfs_inode_extref *)ptr;
3453 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3454 extref);
3455 }
2f7e33d4 3456cache_acl:
46a53cca
CM
3457 /*
3458 * try to precache a NULL acl entry for files that don't have
3459 * any xattrs or acls
3460 */
33345d01 3461 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3462 btrfs_ino(inode), &first_xattr_slot);
3463 if (first_xattr_slot != -1) {
3464 path->slots[0] = first_xattr_slot;
3465 ret = btrfs_load_inode_props(inode, path);
3466 if (ret)
3467 btrfs_err(root->fs_info,
3468 "error loading props for ino %llu (root %llu): %d\n",
3469 btrfs_ino(inode),
3470 root->root_key.objectid, ret);
3471 }
3472 btrfs_free_path(path);
3473
72c04902
AV
3474 if (!maybe_acls)
3475 cache_no_acl(inode);
46a53cca 3476
39279cc3 3477 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3478 case S_IFREG:
3479 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3480 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3481 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3482 inode->i_fop = &btrfs_file_operations;
3483 inode->i_op = &btrfs_file_inode_operations;
3484 break;
3485 case S_IFDIR:
3486 inode->i_fop = &btrfs_dir_file_operations;
3487 if (root == root->fs_info->tree_root)
3488 inode->i_op = &btrfs_dir_ro_inode_operations;
3489 else
3490 inode->i_op = &btrfs_dir_inode_operations;
3491 break;
3492 case S_IFLNK:
3493 inode->i_op = &btrfs_symlink_inode_operations;
3494 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3495 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3496 break;
618e21d5 3497 default:
0279b4cd 3498 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3499 init_special_inode(inode, inode->i_mode, rdev);
3500 break;
39279cc3 3501 }
6cbff00f
CH
3502
3503 btrfs_update_iflags(inode);
39279cc3
CM
3504 return;
3505
3506make_bad:
39279cc3 3507 btrfs_free_path(path);
39279cc3
CM
3508 make_bad_inode(inode);
3509}
3510
d352ac68
CM
3511/*
3512 * given a leaf and an inode, copy the inode fields into the leaf
3513 */
e02119d5
CM
3514static void fill_inode_item(struct btrfs_trans_handle *trans,
3515 struct extent_buffer *leaf,
5f39d397 3516 struct btrfs_inode_item *item,
39279cc3
CM
3517 struct inode *inode)
3518{
51fab693
LB
3519 struct btrfs_map_token token;
3520
3521 btrfs_init_map_token(&token);
5f39d397 3522
51fab693
LB
3523 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3524 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3525 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3526 &token);
3527 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3528 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3529
51fab693
LB
3530 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3531 inode->i_atime.tv_sec, &token);
3532 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3533 inode->i_atime.tv_nsec, &token);
5f39d397 3534
51fab693
LB
3535 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3536 inode->i_mtime.tv_sec, &token);
3537 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3538 inode->i_mtime.tv_nsec, &token);
5f39d397 3539
51fab693
LB
3540 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3541 inode->i_ctime.tv_sec, &token);
3542 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3543 inode->i_ctime.tv_nsec, &token);
5f39d397 3544
51fab693
LB
3545 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3546 &token);
3547 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3548 &token);
3549 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3550 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3551 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3552 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3553 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3554}
3555
d352ac68
CM
3556/*
3557 * copy everything in the in-memory inode into the btree.
3558 */
2115133f 3559static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3560 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3561{
3562 struct btrfs_inode_item *inode_item;
3563 struct btrfs_path *path;
5f39d397 3564 struct extent_buffer *leaf;
39279cc3
CM
3565 int ret;
3566
3567 path = btrfs_alloc_path();
16cdcec7
MX
3568 if (!path)
3569 return -ENOMEM;
3570
b9473439 3571 path->leave_spinning = 1;
16cdcec7
MX
3572 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3573 1);
39279cc3
CM
3574 if (ret) {
3575 if (ret > 0)
3576 ret = -ENOENT;
3577 goto failed;
3578 }
3579
5f39d397
CM
3580 leaf = path->nodes[0];
3581 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3582 struct btrfs_inode_item);
39279cc3 3583
e02119d5 3584 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3585 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3586 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3587 ret = 0;
3588failed:
39279cc3
CM
3589 btrfs_free_path(path);
3590 return ret;
3591}
3592
2115133f
CM
3593/*
3594 * copy everything in the in-memory inode into the btree.
3595 */
3596noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3597 struct btrfs_root *root, struct inode *inode)
3598{
3599 int ret;
3600
3601 /*
3602 * If the inode is a free space inode, we can deadlock during commit
3603 * if we put it into the delayed code.
3604 *
3605 * The data relocation inode should also be directly updated
3606 * without delay
3607 */
83eea1f1 3608 if (!btrfs_is_free_space_inode(inode)
2115133f 3609 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
3610 btrfs_update_root_times(trans, root);
3611
2115133f
CM
3612 ret = btrfs_delayed_update_inode(trans, root, inode);
3613 if (!ret)
3614 btrfs_set_inode_last_trans(trans, inode);
3615 return ret;
3616 }
3617
3618 return btrfs_update_inode_item(trans, root, inode);
3619}
3620
be6aef60
JB
3621noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3622 struct btrfs_root *root,
3623 struct inode *inode)
2115133f
CM
3624{
3625 int ret;
3626
3627 ret = btrfs_update_inode(trans, root, inode);
3628 if (ret == -ENOSPC)
3629 return btrfs_update_inode_item(trans, root, inode);
3630 return ret;
3631}
3632
d352ac68
CM
3633/*
3634 * unlink helper that gets used here in inode.c and in the tree logging
3635 * recovery code. It remove a link in a directory with a given name, and
3636 * also drops the back refs in the inode to the directory
3637 */
92986796
AV
3638static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3639 struct btrfs_root *root,
3640 struct inode *dir, struct inode *inode,
3641 const char *name, int name_len)
39279cc3
CM
3642{
3643 struct btrfs_path *path;
39279cc3 3644 int ret = 0;
5f39d397 3645 struct extent_buffer *leaf;
39279cc3 3646 struct btrfs_dir_item *di;
5f39d397 3647 struct btrfs_key key;
aec7477b 3648 u64 index;
33345d01
LZ
3649 u64 ino = btrfs_ino(inode);
3650 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3651
3652 path = btrfs_alloc_path();
54aa1f4d
CM
3653 if (!path) {
3654 ret = -ENOMEM;
554233a6 3655 goto out;
54aa1f4d
CM
3656 }
3657
b9473439 3658 path->leave_spinning = 1;
33345d01 3659 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3660 name, name_len, -1);
3661 if (IS_ERR(di)) {
3662 ret = PTR_ERR(di);
3663 goto err;
3664 }
3665 if (!di) {
3666 ret = -ENOENT;
3667 goto err;
3668 }
5f39d397
CM
3669 leaf = path->nodes[0];
3670 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3671 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3672 if (ret)
3673 goto err;
b3b4aa74 3674 btrfs_release_path(path);
39279cc3 3675
67de1176
MX
3676 /*
3677 * If we don't have dir index, we have to get it by looking up
3678 * the inode ref, since we get the inode ref, remove it directly,
3679 * it is unnecessary to do delayed deletion.
3680 *
3681 * But if we have dir index, needn't search inode ref to get it.
3682 * Since the inode ref is close to the inode item, it is better
3683 * that we delay to delete it, and just do this deletion when
3684 * we update the inode item.
3685 */
3686 if (BTRFS_I(inode)->dir_index) {
3687 ret = btrfs_delayed_delete_inode_ref(inode);
3688 if (!ret) {
3689 index = BTRFS_I(inode)->dir_index;
3690 goto skip_backref;
3691 }
3692 }
3693
33345d01
LZ
3694 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3695 dir_ino, &index);
aec7477b 3696 if (ret) {
c2cf52eb
SK
3697 btrfs_info(root->fs_info,
3698 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3699 name_len, name, ino, dir_ino);
79787eaa 3700 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3701 goto err;
3702 }
67de1176 3703skip_backref:
16cdcec7 3704 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3705 if (ret) {
3706 btrfs_abort_transaction(trans, root, ret);
39279cc3 3707 goto err;
79787eaa 3708 }
39279cc3 3709
e02119d5 3710 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3711 inode, dir_ino);
79787eaa
JM
3712 if (ret != 0 && ret != -ENOENT) {
3713 btrfs_abort_transaction(trans, root, ret);
3714 goto err;
3715 }
e02119d5
CM
3716
3717 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3718 dir, index);
6418c961
CM
3719 if (ret == -ENOENT)
3720 ret = 0;
d4e3991b
ZB
3721 else if (ret)
3722 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3723err:
3724 btrfs_free_path(path);
e02119d5
CM
3725 if (ret)
3726 goto out;
3727
3728 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3729 inode_inc_iversion(inode);
3730 inode_inc_iversion(dir);
e02119d5 3731 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3732 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3733out:
39279cc3
CM
3734 return ret;
3735}
3736
92986796
AV
3737int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3738 struct btrfs_root *root,
3739 struct inode *dir, struct inode *inode,
3740 const char *name, int name_len)
3741{
3742 int ret;
3743 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3744 if (!ret) {
8b558c5f 3745 drop_nlink(inode);
92986796
AV
3746 ret = btrfs_update_inode(trans, root, inode);
3747 }
3748 return ret;
3749}
39279cc3 3750
a22285a6
YZ
3751/*
3752 * helper to start transaction for unlink and rmdir.
3753 *
d52be818
JB
3754 * unlink and rmdir are special in btrfs, they do not always free space, so
3755 * if we cannot make our reservations the normal way try and see if there is
3756 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3757 * allow the unlink to occur.
a22285a6 3758 */
d52be818 3759static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3760{
39279cc3 3761 struct btrfs_trans_handle *trans;
a22285a6 3762 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
3763 int ret;
3764
e70bea5f
JB
3765 /*
3766 * 1 for the possible orphan item
3767 * 1 for the dir item
3768 * 1 for the dir index
3769 * 1 for the inode ref
e70bea5f
JB
3770 * 1 for the inode
3771 */
6e137ed3 3772 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3773 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3774 return trans;
4df27c4d 3775
d52be818
JB
3776 if (PTR_ERR(trans) == -ENOSPC) {
3777 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 3778
d52be818
JB
3779 trans = btrfs_start_transaction(root, 0);
3780 if (IS_ERR(trans))
3781 return trans;
3782 ret = btrfs_cond_migrate_bytes(root->fs_info,
3783 &root->fs_info->trans_block_rsv,
3784 num_bytes, 5);
3785 if (ret) {
3786 btrfs_end_transaction(trans, root);
3787 return ERR_PTR(ret);
a22285a6 3788 }
5a77d76c 3789 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 3790 trans->bytes_reserved = num_bytes;
a22285a6 3791 }
d52be818 3792 return trans;
a22285a6
YZ
3793}
3794
3795static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3796{
3797 struct btrfs_root *root = BTRFS_I(dir)->root;
3798 struct btrfs_trans_handle *trans;
3799 struct inode *inode = dentry->d_inode;
3800 int ret;
a22285a6 3801
d52be818 3802 trans = __unlink_start_trans(dir);
a22285a6
YZ
3803 if (IS_ERR(trans))
3804 return PTR_ERR(trans);
5f39d397 3805
12fcfd22
CM
3806 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3807
e02119d5
CM
3808 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3809 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3810 if (ret)
3811 goto out;
7b128766 3812
a22285a6 3813 if (inode->i_nlink == 0) {
7b128766 3814 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3815 if (ret)
3816 goto out;
a22285a6 3817 }
7b128766 3818
b532402e 3819out:
d52be818 3820 btrfs_end_transaction(trans, root);
b53d3f5d 3821 btrfs_btree_balance_dirty(root);
39279cc3
CM
3822 return ret;
3823}
3824
4df27c4d
YZ
3825int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3826 struct btrfs_root *root,
3827 struct inode *dir, u64 objectid,
3828 const char *name, int name_len)
3829{
3830 struct btrfs_path *path;
3831 struct extent_buffer *leaf;
3832 struct btrfs_dir_item *di;
3833 struct btrfs_key key;
3834 u64 index;
3835 int ret;
33345d01 3836 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3837
3838 path = btrfs_alloc_path();
3839 if (!path)
3840 return -ENOMEM;
3841
33345d01 3842 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3843 name, name_len, -1);
79787eaa
JM
3844 if (IS_ERR_OR_NULL(di)) {
3845 if (!di)
3846 ret = -ENOENT;
3847 else
3848 ret = PTR_ERR(di);
3849 goto out;
3850 }
4df27c4d
YZ
3851
3852 leaf = path->nodes[0];
3853 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3854 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3855 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3856 if (ret) {
3857 btrfs_abort_transaction(trans, root, ret);
3858 goto out;
3859 }
b3b4aa74 3860 btrfs_release_path(path);
4df27c4d
YZ
3861
3862 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3863 objectid, root->root_key.objectid,
33345d01 3864 dir_ino, &index, name, name_len);
4df27c4d 3865 if (ret < 0) {
79787eaa
JM
3866 if (ret != -ENOENT) {
3867 btrfs_abort_transaction(trans, root, ret);
3868 goto out;
3869 }
33345d01 3870 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3871 name, name_len);
79787eaa
JM
3872 if (IS_ERR_OR_NULL(di)) {
3873 if (!di)
3874 ret = -ENOENT;
3875 else
3876 ret = PTR_ERR(di);
3877 btrfs_abort_transaction(trans, root, ret);
3878 goto out;
3879 }
4df27c4d
YZ
3880
3881 leaf = path->nodes[0];
3882 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3883 btrfs_release_path(path);
4df27c4d
YZ
3884 index = key.offset;
3885 }
945d8962 3886 btrfs_release_path(path);
4df27c4d 3887
16cdcec7 3888 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3889 if (ret) {
3890 btrfs_abort_transaction(trans, root, ret);
3891 goto out;
3892 }
4df27c4d
YZ
3893
3894 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3895 inode_inc_iversion(dir);
4df27c4d 3896 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3897 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3898 if (ret)
3899 btrfs_abort_transaction(trans, root, ret);
3900out:
71d7aed0 3901 btrfs_free_path(path);
79787eaa 3902 return ret;
4df27c4d
YZ
3903}
3904
39279cc3
CM
3905static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3906{
3907 struct inode *inode = dentry->d_inode;
1832a6d5 3908 int err = 0;
39279cc3 3909 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3910 struct btrfs_trans_handle *trans;
39279cc3 3911
b3ae244e 3912 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3913 return -ENOTEMPTY;
b3ae244e
DS
3914 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3915 return -EPERM;
134d4512 3916
d52be818 3917 trans = __unlink_start_trans(dir);
a22285a6 3918 if (IS_ERR(trans))
5df6a9f6 3919 return PTR_ERR(trans);
5df6a9f6 3920
33345d01 3921 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3922 err = btrfs_unlink_subvol(trans, root, dir,
3923 BTRFS_I(inode)->location.objectid,
3924 dentry->d_name.name,
3925 dentry->d_name.len);
3926 goto out;
3927 }
3928
7b128766
JB
3929 err = btrfs_orphan_add(trans, inode);
3930 if (err)
4df27c4d 3931 goto out;
7b128766 3932
39279cc3 3933 /* now the directory is empty */
e02119d5
CM
3934 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3935 dentry->d_name.name, dentry->d_name.len);
d397712b 3936 if (!err)
dbe674a9 3937 btrfs_i_size_write(inode, 0);
4df27c4d 3938out:
d52be818 3939 btrfs_end_transaction(trans, root);
b53d3f5d 3940 btrfs_btree_balance_dirty(root);
3954401f 3941
39279cc3
CM
3942 return err;
3943}
3944
39279cc3
CM
3945/*
3946 * this can truncate away extent items, csum items and directory items.
3947 * It starts at a high offset and removes keys until it can't find
d352ac68 3948 * any higher than new_size
39279cc3
CM
3949 *
3950 * csum items that cross the new i_size are truncated to the new size
3951 * as well.
7b128766
JB
3952 *
3953 * min_type is the minimum key type to truncate down to. If set to 0, this
3954 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3955 */
8082510e
YZ
3956int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3957 struct btrfs_root *root,
3958 struct inode *inode,
3959 u64 new_size, u32 min_type)
39279cc3 3960{
39279cc3 3961 struct btrfs_path *path;
5f39d397 3962 struct extent_buffer *leaf;
39279cc3 3963 struct btrfs_file_extent_item *fi;
8082510e
YZ
3964 struct btrfs_key key;
3965 struct btrfs_key found_key;
39279cc3 3966 u64 extent_start = 0;
db94535d 3967 u64 extent_num_bytes = 0;
5d4f98a2 3968 u64 extent_offset = 0;
39279cc3 3969 u64 item_end = 0;
7f4f6e0a 3970 u64 last_size = (u64)-1;
8082510e 3971 u32 found_type = (u8)-1;
39279cc3
CM
3972 int found_extent;
3973 int del_item;
85e21bac
CM
3974 int pending_del_nr = 0;
3975 int pending_del_slot = 0;
179e29e4 3976 int extent_type = -1;
8082510e
YZ
3977 int ret;
3978 int err = 0;
33345d01 3979 u64 ino = btrfs_ino(inode);
8082510e
YZ
3980
3981 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3982
0eb0e19c
MF
3983 path = btrfs_alloc_path();
3984 if (!path)
3985 return -ENOMEM;
3986 path->reada = -1;
3987
5dc562c5
JB
3988 /*
3989 * We want to drop from the next block forward in case this new size is
3990 * not block aligned since we will be keeping the last block of the
3991 * extent just the way it is.
3992 */
0af3d00b 3993 if (root->ref_cows || root == root->fs_info->tree_root)
fda2832f
QW
3994 btrfs_drop_extent_cache(inode, ALIGN(new_size,
3995 root->sectorsize), (u64)-1, 0);
8082510e 3996
16cdcec7
MX
3997 /*
3998 * This function is also used to drop the items in the log tree before
3999 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4000 * it is used to drop the loged items. So we shouldn't kill the delayed
4001 * items.
4002 */
4003 if (min_type == 0 && root == BTRFS_I(inode)->root)
4004 btrfs_kill_delayed_inode_items(inode);
4005
33345d01 4006 key.objectid = ino;
39279cc3 4007 key.offset = (u64)-1;
5f39d397
CM
4008 key.type = (u8)-1;
4009
85e21bac 4010search_again:
b9473439 4011 path->leave_spinning = 1;
85e21bac 4012 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4013 if (ret < 0) {
4014 err = ret;
4015 goto out;
4016 }
d397712b 4017
85e21bac 4018 if (ret > 0) {
e02119d5
CM
4019 /* there are no items in the tree for us to truncate, we're
4020 * done
4021 */
8082510e
YZ
4022 if (path->slots[0] == 0)
4023 goto out;
85e21bac
CM
4024 path->slots[0]--;
4025 }
4026
d397712b 4027 while (1) {
39279cc3 4028 fi = NULL;
5f39d397
CM
4029 leaf = path->nodes[0];
4030 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4031 found_type = btrfs_key_type(&found_key);
39279cc3 4032
33345d01 4033 if (found_key.objectid != ino)
39279cc3 4034 break;
5f39d397 4035
85e21bac 4036 if (found_type < min_type)
39279cc3
CM
4037 break;
4038
5f39d397 4039 item_end = found_key.offset;
39279cc3 4040 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4041 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4042 struct btrfs_file_extent_item);
179e29e4
CM
4043 extent_type = btrfs_file_extent_type(leaf, fi);
4044 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4045 item_end +=
db94535d 4046 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4047 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4048 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4049 path->slots[0], fi);
39279cc3 4050 }
008630c1 4051 item_end--;
39279cc3 4052 }
8082510e
YZ
4053 if (found_type > min_type) {
4054 del_item = 1;
4055 } else {
4056 if (item_end < new_size)
b888db2b 4057 break;
8082510e
YZ
4058 if (found_key.offset >= new_size)
4059 del_item = 1;
4060 else
4061 del_item = 0;
39279cc3 4062 }
39279cc3 4063 found_extent = 0;
39279cc3 4064 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4065 if (found_type != BTRFS_EXTENT_DATA_KEY)
4066 goto delete;
4067
7f4f6e0a
JB
4068 if (del_item)
4069 last_size = found_key.offset;
4070 else
4071 last_size = new_size;
4072
179e29e4 4073 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4074 u64 num_dec;
db94535d 4075 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4076 if (!del_item) {
db94535d
CM
4077 u64 orig_num_bytes =
4078 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4079 extent_num_bytes = ALIGN(new_size -
4080 found_key.offset,
4081 root->sectorsize);
db94535d
CM
4082 btrfs_set_file_extent_num_bytes(leaf, fi,
4083 extent_num_bytes);
4084 num_dec = (orig_num_bytes -
9069218d 4085 extent_num_bytes);
e02119d5 4086 if (root->ref_cows && extent_start != 0)
a76a3cd4 4087 inode_sub_bytes(inode, num_dec);
5f39d397 4088 btrfs_mark_buffer_dirty(leaf);
39279cc3 4089 } else {
db94535d
CM
4090 extent_num_bytes =
4091 btrfs_file_extent_disk_num_bytes(leaf,
4092 fi);
5d4f98a2
YZ
4093 extent_offset = found_key.offset -
4094 btrfs_file_extent_offset(leaf, fi);
4095
39279cc3 4096 /* FIXME blocksize != 4096 */
9069218d 4097 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4098 if (extent_start != 0) {
4099 found_extent = 1;
e02119d5 4100 if (root->ref_cows)
a76a3cd4 4101 inode_sub_bytes(inode, num_dec);
e02119d5 4102 }
39279cc3 4103 }
9069218d 4104 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4105 /*
4106 * we can't truncate inline items that have had
4107 * special encodings
4108 */
4109 if (!del_item &&
4110 btrfs_file_extent_compression(leaf, fi) == 0 &&
4111 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4112 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
4113 u32 size = new_size - found_key.offset;
4114
4115 if (root->ref_cows) {
a76a3cd4
YZ
4116 inode_sub_bytes(inode, item_end + 1 -
4117 new_size);
e02119d5 4118 }
514ac8ad
CM
4119
4120 /*
4121 * update the ram bytes to properly reflect
4122 * the new size of our item
4123 */
4124 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
e02119d5
CM
4125 size =
4126 btrfs_file_extent_calc_inline_size(size);
afe5fea7 4127 btrfs_truncate_item(root, path, size, 1);
e02119d5 4128 } else if (root->ref_cows) {
a76a3cd4
YZ
4129 inode_sub_bytes(inode, item_end + 1 -
4130 found_key.offset);
9069218d 4131 }
39279cc3 4132 }
179e29e4 4133delete:
39279cc3 4134 if (del_item) {
85e21bac
CM
4135 if (!pending_del_nr) {
4136 /* no pending yet, add ourselves */
4137 pending_del_slot = path->slots[0];
4138 pending_del_nr = 1;
4139 } else if (pending_del_nr &&
4140 path->slots[0] + 1 == pending_del_slot) {
4141 /* hop on the pending chunk */
4142 pending_del_nr++;
4143 pending_del_slot = path->slots[0];
4144 } else {
d397712b 4145 BUG();
85e21bac 4146 }
39279cc3
CM
4147 } else {
4148 break;
4149 }
0af3d00b
JB
4150 if (found_extent && (root->ref_cows ||
4151 root == root->fs_info->tree_root)) {
b9473439 4152 btrfs_set_path_blocking(path);
39279cc3 4153 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4154 extent_num_bytes, 0,
4155 btrfs_header_owner(leaf),
66d7e7f0 4156 ino, extent_offset, 0);
39279cc3
CM
4157 BUG_ON(ret);
4158 }
85e21bac 4159
8082510e
YZ
4160 if (found_type == BTRFS_INODE_ITEM_KEY)
4161 break;
4162
4163 if (path->slots[0] == 0 ||
4164 path->slots[0] != pending_del_slot) {
8082510e
YZ
4165 if (pending_del_nr) {
4166 ret = btrfs_del_items(trans, root, path,
4167 pending_del_slot,
4168 pending_del_nr);
79787eaa
JM
4169 if (ret) {
4170 btrfs_abort_transaction(trans,
4171 root, ret);
4172 goto error;
4173 }
8082510e
YZ
4174 pending_del_nr = 0;
4175 }
b3b4aa74 4176 btrfs_release_path(path);
85e21bac 4177 goto search_again;
8082510e
YZ
4178 } else {
4179 path->slots[0]--;
85e21bac 4180 }
39279cc3 4181 }
8082510e 4182out:
85e21bac
CM
4183 if (pending_del_nr) {
4184 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4185 pending_del_nr);
79787eaa
JM
4186 if (ret)
4187 btrfs_abort_transaction(trans, root, ret);
85e21bac 4188 }
79787eaa 4189error:
7f4f6e0a
JB
4190 if (last_size != (u64)-1)
4191 btrfs_ordered_update_i_size(inode, last_size, NULL);
39279cc3 4192 btrfs_free_path(path);
8082510e 4193 return err;
39279cc3
CM
4194}
4195
4196/*
2aaa6655
JB
4197 * btrfs_truncate_page - read, zero a chunk and write a page
4198 * @inode - inode that we're zeroing
4199 * @from - the offset to start zeroing
4200 * @len - the length to zero, 0 to zero the entire range respective to the
4201 * offset
4202 * @front - zero up to the offset instead of from the offset on
4203 *
4204 * This will find the page for the "from" offset and cow the page and zero the
4205 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4206 */
2aaa6655
JB
4207int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4208 int front)
39279cc3 4209{
2aaa6655 4210 struct address_space *mapping = inode->i_mapping;
db94535d 4211 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4212 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4213 struct btrfs_ordered_extent *ordered;
2ac55d41 4214 struct extent_state *cached_state = NULL;
e6dcd2dc 4215 char *kaddr;
db94535d 4216 u32 blocksize = root->sectorsize;
39279cc3
CM
4217 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4218 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4219 struct page *page;
3b16a4e3 4220 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4221 int ret = 0;
a52d9a80 4222 u64 page_start;
e6dcd2dc 4223 u64 page_end;
39279cc3 4224
2aaa6655
JB
4225 if ((offset & (blocksize - 1)) == 0 &&
4226 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4227 goto out;
0ca1f7ce 4228 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4229 if (ret)
4230 goto out;
39279cc3 4231
211c17f5 4232again:
3b16a4e3 4233 page = find_or_create_page(mapping, index, mask);
5d5e103a 4234 if (!page) {
0ca1f7ce 4235 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4236 ret = -ENOMEM;
39279cc3 4237 goto out;
5d5e103a 4238 }
e6dcd2dc
CM
4239
4240 page_start = page_offset(page);
4241 page_end = page_start + PAGE_CACHE_SIZE - 1;
4242
39279cc3 4243 if (!PageUptodate(page)) {
9ebefb18 4244 ret = btrfs_readpage(NULL, page);
39279cc3 4245 lock_page(page);
211c17f5
CM
4246 if (page->mapping != mapping) {
4247 unlock_page(page);
4248 page_cache_release(page);
4249 goto again;
4250 }
39279cc3
CM
4251 if (!PageUptodate(page)) {
4252 ret = -EIO;
89642229 4253 goto out_unlock;
39279cc3
CM
4254 }
4255 }
211c17f5 4256 wait_on_page_writeback(page);
e6dcd2dc 4257
d0082371 4258 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4259 set_page_extent_mapped(page);
4260
4261 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4262 if (ordered) {
2ac55d41
JB
4263 unlock_extent_cached(io_tree, page_start, page_end,
4264 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4265 unlock_page(page);
4266 page_cache_release(page);
eb84ae03 4267 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4268 btrfs_put_ordered_extent(ordered);
4269 goto again;
4270 }
4271
2ac55d41 4272 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4273 EXTENT_DIRTY | EXTENT_DELALLOC |
4274 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4275 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4276
2ac55d41
JB
4277 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4278 &cached_state);
9ed74f2d 4279 if (ret) {
2ac55d41
JB
4280 unlock_extent_cached(io_tree, page_start, page_end,
4281 &cached_state, GFP_NOFS);
9ed74f2d
JB
4282 goto out_unlock;
4283 }
4284
e6dcd2dc 4285 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4286 if (!len)
4287 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4288 kaddr = kmap(page);
2aaa6655
JB
4289 if (front)
4290 memset(kaddr, 0, offset);
4291 else
4292 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4293 flush_dcache_page(page);
4294 kunmap(page);
4295 }
247e743c 4296 ClearPageChecked(page);
e6dcd2dc 4297 set_page_dirty(page);
2ac55d41
JB
4298 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4299 GFP_NOFS);
39279cc3 4300
89642229 4301out_unlock:
5d5e103a 4302 if (ret)
0ca1f7ce 4303 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4304 unlock_page(page);
4305 page_cache_release(page);
4306out:
4307 return ret;
4308}
4309
16e7549f
JB
4310static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4311 u64 offset, u64 len)
4312{
4313 struct btrfs_trans_handle *trans;
4314 int ret;
4315
4316 /*
4317 * Still need to make sure the inode looks like it's been updated so
4318 * that any holes get logged if we fsync.
4319 */
4320 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4321 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4322 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4323 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4324 return 0;
4325 }
4326
4327 /*
4328 * 1 - for the one we're dropping
4329 * 1 - for the one we're adding
4330 * 1 - for updating the inode.
4331 */
4332 trans = btrfs_start_transaction(root, 3);
4333 if (IS_ERR(trans))
4334 return PTR_ERR(trans);
4335
4336 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4337 if (ret) {
4338 btrfs_abort_transaction(trans, root, ret);
4339 btrfs_end_transaction(trans, root);
4340 return ret;
4341 }
4342
4343 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4344 0, 0, len, 0, len, 0, 0, 0);
4345 if (ret)
4346 btrfs_abort_transaction(trans, root, ret);
4347 else
4348 btrfs_update_inode(trans, root, inode);
4349 btrfs_end_transaction(trans, root);
4350 return ret;
4351}
4352
695a0d0d
JB
4353/*
4354 * This function puts in dummy file extents for the area we're creating a hole
4355 * for. So if we are truncating this file to a larger size we need to insert
4356 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4357 * the range between oldsize and size
4358 */
a41ad394 4359int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4360{
9036c102
YZ
4361 struct btrfs_root *root = BTRFS_I(inode)->root;
4362 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4363 struct extent_map *em = NULL;
2ac55d41 4364 struct extent_state *cached_state = NULL;
5dc562c5 4365 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4366 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4367 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4368 u64 last_byte;
4369 u64 cur_offset;
4370 u64 hole_size;
9ed74f2d 4371 int err = 0;
39279cc3 4372
a71754fc
JB
4373 /*
4374 * If our size started in the middle of a page we need to zero out the
4375 * rest of the page before we expand the i_size, otherwise we could
4376 * expose stale data.
4377 */
4378 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4379 if (err)
4380 return err;
4381
9036c102
YZ
4382 if (size <= hole_start)
4383 return 0;
4384
9036c102
YZ
4385 while (1) {
4386 struct btrfs_ordered_extent *ordered;
fa7c1494 4387
2ac55d41 4388 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4389 &cached_state);
fa7c1494
MX
4390 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4391 block_end - hole_start);
9036c102
YZ
4392 if (!ordered)
4393 break;
2ac55d41
JB
4394 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4395 &cached_state, GFP_NOFS);
fa7c1494 4396 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4397 btrfs_put_ordered_extent(ordered);
4398 }
39279cc3 4399
9036c102
YZ
4400 cur_offset = hole_start;
4401 while (1) {
4402 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4403 block_end - cur_offset, 0);
79787eaa
JM
4404 if (IS_ERR(em)) {
4405 err = PTR_ERR(em);
f2767956 4406 em = NULL;
79787eaa
JM
4407 break;
4408 }
9036c102 4409 last_byte = min(extent_map_end(em), block_end);
fda2832f 4410 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4411 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4412 struct extent_map *hole_em;
9036c102 4413 hole_size = last_byte - cur_offset;
9ed74f2d 4414
16e7549f
JB
4415 err = maybe_insert_hole(root, inode, cur_offset,
4416 hole_size);
4417 if (err)
3893e33b 4418 break;
5dc562c5
JB
4419 btrfs_drop_extent_cache(inode, cur_offset,
4420 cur_offset + hole_size - 1, 0);
4421 hole_em = alloc_extent_map();
4422 if (!hole_em) {
4423 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4424 &BTRFS_I(inode)->runtime_flags);
4425 goto next;
4426 }
4427 hole_em->start = cur_offset;
4428 hole_em->len = hole_size;
4429 hole_em->orig_start = cur_offset;
8082510e 4430
5dc562c5
JB
4431 hole_em->block_start = EXTENT_MAP_HOLE;
4432 hole_em->block_len = 0;
b4939680 4433 hole_em->orig_block_len = 0;
cc95bef6 4434 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4435 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4436 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4437 hole_em->generation = root->fs_info->generation;
8082510e 4438
5dc562c5
JB
4439 while (1) {
4440 write_lock(&em_tree->lock);
09a2a8f9 4441 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4442 write_unlock(&em_tree->lock);
4443 if (err != -EEXIST)
4444 break;
4445 btrfs_drop_extent_cache(inode, cur_offset,
4446 cur_offset +
4447 hole_size - 1, 0);
4448 }
4449 free_extent_map(hole_em);
9036c102 4450 }
16e7549f 4451next:
9036c102 4452 free_extent_map(em);
a22285a6 4453 em = NULL;
9036c102 4454 cur_offset = last_byte;
8082510e 4455 if (cur_offset >= block_end)
9036c102
YZ
4456 break;
4457 }
a22285a6 4458 free_extent_map(em);
2ac55d41
JB
4459 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4460 GFP_NOFS);
9036c102
YZ
4461 return err;
4462}
39279cc3 4463
3972f260 4464static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4465{
f4a2f4c5
MX
4466 struct btrfs_root *root = BTRFS_I(inode)->root;
4467 struct btrfs_trans_handle *trans;
a41ad394 4468 loff_t oldsize = i_size_read(inode);
3972f260
ES
4469 loff_t newsize = attr->ia_size;
4470 int mask = attr->ia_valid;
8082510e
YZ
4471 int ret;
4472
3972f260
ES
4473 /*
4474 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4475 * special case where we need to update the times despite not having
4476 * these flags set. For all other operations the VFS set these flags
4477 * explicitly if it wants a timestamp update.
4478 */
4479 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4480 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4481
a41ad394 4482 if (newsize > oldsize) {
7caef267 4483 truncate_pagecache(inode, newsize);
a41ad394 4484 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 4485 if (ret)
8082510e 4486 return ret;
8082510e 4487
f4a2f4c5
MX
4488 trans = btrfs_start_transaction(root, 1);
4489 if (IS_ERR(trans))
4490 return PTR_ERR(trans);
4491
4492 i_size_write(inode, newsize);
4493 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4494 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 4495 btrfs_end_transaction(trans, root);
a41ad394 4496 } else {
8082510e 4497
a41ad394
JB
4498 /*
4499 * We're truncating a file that used to have good data down to
4500 * zero. Make sure it gets into the ordered flush list so that
4501 * any new writes get down to disk quickly.
4502 */
4503 if (newsize == 0)
72ac3c0d
JB
4504 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4505 &BTRFS_I(inode)->runtime_flags);
8082510e 4506
f3fe820c
JB
4507 /*
4508 * 1 for the orphan item we're going to add
4509 * 1 for the orphan item deletion.
4510 */
4511 trans = btrfs_start_transaction(root, 2);
4512 if (IS_ERR(trans))
4513 return PTR_ERR(trans);
4514
4515 /*
4516 * We need to do this in case we fail at _any_ point during the
4517 * actual truncate. Once we do the truncate_setsize we could
4518 * invalidate pages which forces any outstanding ordered io to
4519 * be instantly completed which will give us extents that need
4520 * to be truncated. If we fail to get an orphan inode down we
4521 * could have left over extents that were never meant to live,
4522 * so we need to garuntee from this point on that everything
4523 * will be consistent.
4524 */
4525 ret = btrfs_orphan_add(trans, inode);
4526 btrfs_end_transaction(trans, root);
4527 if (ret)
4528 return ret;
4529
a41ad394
JB
4530 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4531 truncate_setsize(inode, newsize);
2e60a51e
MX
4532
4533 /* Disable nonlocked read DIO to avoid the end less truncate */
4534 btrfs_inode_block_unlocked_dio(inode);
4535 inode_dio_wait(inode);
4536 btrfs_inode_resume_unlocked_dio(inode);
4537
a41ad394 4538 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4539 if (ret && inode->i_nlink) {
4540 int err;
4541
4542 /*
4543 * failed to truncate, disk_i_size is only adjusted down
4544 * as we remove extents, so it should represent the true
4545 * size of the inode, so reset the in memory size and
4546 * delete our orphan entry.
4547 */
4548 trans = btrfs_join_transaction(root);
4549 if (IS_ERR(trans)) {
4550 btrfs_orphan_del(NULL, inode);
4551 return ret;
4552 }
4553 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4554 err = btrfs_orphan_del(trans, inode);
4555 if (err)
4556 btrfs_abort_transaction(trans, root, err);
4557 btrfs_end_transaction(trans, root);
4558 }
8082510e
YZ
4559 }
4560
a41ad394 4561 return ret;
8082510e
YZ
4562}
4563
9036c102
YZ
4564static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4565{
4566 struct inode *inode = dentry->d_inode;
b83cc969 4567 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4568 int err;
39279cc3 4569
b83cc969
LZ
4570 if (btrfs_root_readonly(root))
4571 return -EROFS;
4572
9036c102
YZ
4573 err = inode_change_ok(inode, attr);
4574 if (err)
4575 return err;
2bf5a725 4576
5a3f23d5 4577 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4578 err = btrfs_setsize(inode, attr);
8082510e
YZ
4579 if (err)
4580 return err;
39279cc3 4581 }
9036c102 4582
1025774c
CH
4583 if (attr->ia_valid) {
4584 setattr_copy(inode, attr);
0c4d2d95 4585 inode_inc_iversion(inode);
22c44fe6 4586 err = btrfs_dirty_inode(inode);
1025774c 4587
22c44fe6 4588 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
4589 err = btrfs_acl_chmod(inode);
4590 }
33268eaf 4591
39279cc3
CM
4592 return err;
4593}
61295eb8 4594
131e404a
FDBM
4595/*
4596 * While truncating the inode pages during eviction, we get the VFS calling
4597 * btrfs_invalidatepage() against each page of the inode. This is slow because
4598 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4599 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4600 * extent_state structures over and over, wasting lots of time.
4601 *
4602 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4603 * those expensive operations on a per page basis and do only the ordered io
4604 * finishing, while we release here the extent_map and extent_state structures,
4605 * without the excessive merging and splitting.
4606 */
4607static void evict_inode_truncate_pages(struct inode *inode)
4608{
4609 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4610 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4611 struct rb_node *node;
4612
4613 ASSERT(inode->i_state & I_FREEING);
4614 truncate_inode_pages(&inode->i_data, 0);
4615
4616 write_lock(&map_tree->lock);
4617 while (!RB_EMPTY_ROOT(&map_tree->map)) {
4618 struct extent_map *em;
4619
4620 node = rb_first(&map_tree->map);
4621 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
4622 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4623 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
4624 remove_extent_mapping(map_tree, em);
4625 free_extent_map(em);
4626 }
4627 write_unlock(&map_tree->lock);
4628
4629 spin_lock(&io_tree->lock);
4630 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4631 struct extent_state *state;
4632 struct extent_state *cached_state = NULL;
4633
4634 node = rb_first(&io_tree->state);
4635 state = rb_entry(node, struct extent_state, rb_node);
4636 atomic_inc(&state->refs);
4637 spin_unlock(&io_tree->lock);
4638
4639 lock_extent_bits(io_tree, state->start, state->end,
4640 0, &cached_state);
4641 clear_extent_bit(io_tree, state->start, state->end,
4642 EXTENT_LOCKED | EXTENT_DIRTY |
4643 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4644 EXTENT_DEFRAG, 1, 1,
4645 &cached_state, GFP_NOFS);
4646 free_extent_state(state);
4647
4648 spin_lock(&io_tree->lock);
4649 }
4650 spin_unlock(&io_tree->lock);
4651}
4652
bd555975 4653void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4654{
4655 struct btrfs_trans_handle *trans;
4656 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4657 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4658 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4659 int ret;
4660
1abe9b8a 4661 trace_btrfs_inode_evict(inode);
4662
131e404a
FDBM
4663 evict_inode_truncate_pages(inode);
4664
69e9c6c6
SB
4665 if (inode->i_nlink &&
4666 ((btrfs_root_refs(&root->root_item) != 0 &&
4667 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4668 btrfs_is_free_space_inode(inode)))
bd555975
AV
4669 goto no_delete;
4670
39279cc3 4671 if (is_bad_inode(inode)) {
7b128766 4672 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4673 goto no_delete;
4674 }
bd555975 4675 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4676 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4677
c71bf099 4678 if (root->fs_info->log_root_recovering) {
6bf02314 4679 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4680 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4681 goto no_delete;
4682 }
4683
76dda93c 4684 if (inode->i_nlink > 0) {
69e9c6c6
SB
4685 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4686 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
4687 goto no_delete;
4688 }
4689
0e8c36a9
MX
4690 ret = btrfs_commit_inode_delayed_inode(inode);
4691 if (ret) {
4692 btrfs_orphan_del(NULL, inode);
4693 goto no_delete;
4694 }
4695
66d8f3dd 4696 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4697 if (!rsv) {
4698 btrfs_orphan_del(NULL, inode);
4699 goto no_delete;
4700 }
4a338542 4701 rsv->size = min_size;
ca7e70f5 4702 rsv->failfast = 1;
726c35fa 4703 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4704
dbe674a9 4705 btrfs_i_size_write(inode, 0);
5f39d397 4706
4289a667 4707 /*
8407aa46
MX
4708 * This is a bit simpler than btrfs_truncate since we've already
4709 * reserved our space for our orphan item in the unlink, so we just
4710 * need to reserve some slack space in case we add bytes and update
4711 * inode item when doing the truncate.
4289a667 4712 */
8082510e 4713 while (1) {
08e007d2
MX
4714 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4715 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4716
4717 /*
4718 * Try and steal from the global reserve since we will
4719 * likely not use this space anyway, we want to try as
4720 * hard as possible to get this to work.
4721 */
4722 if (ret)
4723 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4724
d68fc57b 4725 if (ret) {
c2cf52eb
SK
4726 btrfs_warn(root->fs_info,
4727 "Could not get space for a delete, will truncate on mount %d",
4728 ret);
4289a667
JB
4729 btrfs_orphan_del(NULL, inode);
4730 btrfs_free_block_rsv(root, rsv);
4731 goto no_delete;
d68fc57b 4732 }
7b128766 4733
0e8c36a9 4734 trans = btrfs_join_transaction(root);
4289a667
JB
4735 if (IS_ERR(trans)) {
4736 btrfs_orphan_del(NULL, inode);
4737 btrfs_free_block_rsv(root, rsv);
4738 goto no_delete;
d68fc57b 4739 }
7b128766 4740
4289a667
JB
4741 trans->block_rsv = rsv;
4742
d68fc57b 4743 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4744 if (ret != -ENOSPC)
8082510e 4745 break;
85e21bac 4746
8407aa46 4747 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4748 btrfs_end_transaction(trans, root);
4749 trans = NULL;
b53d3f5d 4750 btrfs_btree_balance_dirty(root);
8082510e 4751 }
5f39d397 4752
4289a667
JB
4753 btrfs_free_block_rsv(root, rsv);
4754
4ef31a45
JB
4755 /*
4756 * Errors here aren't a big deal, it just means we leave orphan items
4757 * in the tree. They will be cleaned up on the next mount.
4758 */
8082510e 4759 if (ret == 0) {
4289a667 4760 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
4761 btrfs_orphan_del(trans, inode);
4762 } else {
4763 btrfs_orphan_del(NULL, inode);
8082510e 4764 }
54aa1f4d 4765
4289a667 4766 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4767 if (!(root == root->fs_info->tree_root ||
4768 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4769 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4770
54aa1f4d 4771 btrfs_end_transaction(trans, root);
b53d3f5d 4772 btrfs_btree_balance_dirty(root);
39279cc3 4773no_delete:
89042e5a 4774 btrfs_remove_delayed_node(inode);
dbd5768f 4775 clear_inode(inode);
8082510e 4776 return;
39279cc3
CM
4777}
4778
4779/*
4780 * this returns the key found in the dir entry in the location pointer.
4781 * If no dir entries were found, location->objectid is 0.
4782 */
4783static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4784 struct btrfs_key *location)
4785{
4786 const char *name = dentry->d_name.name;
4787 int namelen = dentry->d_name.len;
4788 struct btrfs_dir_item *di;
4789 struct btrfs_path *path;
4790 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4791 int ret = 0;
39279cc3
CM
4792
4793 path = btrfs_alloc_path();
d8926bb3
MF
4794 if (!path)
4795 return -ENOMEM;
3954401f 4796
33345d01 4797 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4798 namelen, 0);
0d9f7f3e
Y
4799 if (IS_ERR(di))
4800 ret = PTR_ERR(di);
d397712b 4801
c704005d 4802 if (IS_ERR_OR_NULL(di))
3954401f 4803 goto out_err;
d397712b 4804
5f39d397 4805 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4806out:
39279cc3
CM
4807 btrfs_free_path(path);
4808 return ret;
3954401f
CM
4809out_err:
4810 location->objectid = 0;
4811 goto out;
39279cc3
CM
4812}
4813
4814/*
4815 * when we hit a tree root in a directory, the btrfs part of the inode
4816 * needs to be changed to reflect the root directory of the tree root. This
4817 * is kind of like crossing a mount point.
4818 */
4819static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4820 struct inode *dir,
4821 struct dentry *dentry,
4822 struct btrfs_key *location,
4823 struct btrfs_root **sub_root)
39279cc3 4824{
4df27c4d
YZ
4825 struct btrfs_path *path;
4826 struct btrfs_root *new_root;
4827 struct btrfs_root_ref *ref;
4828 struct extent_buffer *leaf;
4829 int ret;
4830 int err = 0;
39279cc3 4831
4df27c4d
YZ
4832 path = btrfs_alloc_path();
4833 if (!path) {
4834 err = -ENOMEM;
4835 goto out;
4836 }
39279cc3 4837
4df27c4d 4838 err = -ENOENT;
75ac2dd9
KN
4839 ret = btrfs_find_item(root->fs_info->tree_root, path,
4840 BTRFS_I(dir)->root->root_key.objectid,
4841 location->objectid, BTRFS_ROOT_REF_KEY, NULL);
4df27c4d
YZ
4842 if (ret) {
4843 if (ret < 0)
4844 err = ret;
4845 goto out;
4846 }
39279cc3 4847
4df27c4d
YZ
4848 leaf = path->nodes[0];
4849 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4850 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4851 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4852 goto out;
39279cc3 4853
4df27c4d
YZ
4854 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4855 (unsigned long)(ref + 1),
4856 dentry->d_name.len);
4857 if (ret)
4858 goto out;
4859
b3b4aa74 4860 btrfs_release_path(path);
4df27c4d
YZ
4861
4862 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4863 if (IS_ERR(new_root)) {
4864 err = PTR_ERR(new_root);
4865 goto out;
4866 }
4867
4df27c4d
YZ
4868 *sub_root = new_root;
4869 location->objectid = btrfs_root_dirid(&new_root->root_item);
4870 location->type = BTRFS_INODE_ITEM_KEY;
4871 location->offset = 0;
4872 err = 0;
4873out:
4874 btrfs_free_path(path);
4875 return err;
39279cc3
CM
4876}
4877
5d4f98a2
YZ
4878static void inode_tree_add(struct inode *inode)
4879{
4880 struct btrfs_root *root = BTRFS_I(inode)->root;
4881 struct btrfs_inode *entry;
03e860bd
FNP
4882 struct rb_node **p;
4883 struct rb_node *parent;
cef21937 4884 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 4885 u64 ino = btrfs_ino(inode);
5d4f98a2 4886
1d3382cb 4887 if (inode_unhashed(inode))
76dda93c 4888 return;
e1409cef 4889 parent = NULL;
5d4f98a2 4890 spin_lock(&root->inode_lock);
e1409cef 4891 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
4892 while (*p) {
4893 parent = *p;
4894 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4895
33345d01 4896 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4897 p = &parent->rb_left;
33345d01 4898 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4899 p = &parent->rb_right;
5d4f98a2
YZ
4900 else {
4901 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4902 (I_WILL_FREE | I_FREEING)));
cef21937 4903 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
4904 RB_CLEAR_NODE(parent);
4905 spin_unlock(&root->inode_lock);
cef21937 4906 return;
5d4f98a2
YZ
4907 }
4908 }
cef21937
FDBM
4909 rb_link_node(new, parent, p);
4910 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
4911 spin_unlock(&root->inode_lock);
4912}
4913
4914static void inode_tree_del(struct inode *inode)
4915{
4916 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4917 int empty = 0;
5d4f98a2 4918
03e860bd 4919 spin_lock(&root->inode_lock);
5d4f98a2 4920 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4921 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4922 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4923 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4924 }
03e860bd 4925 spin_unlock(&root->inode_lock);
76dda93c 4926
69e9c6c6 4927 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
4928 synchronize_srcu(&root->fs_info->subvol_srcu);
4929 spin_lock(&root->inode_lock);
4930 empty = RB_EMPTY_ROOT(&root->inode_tree);
4931 spin_unlock(&root->inode_lock);
4932 if (empty)
4933 btrfs_add_dead_root(root);
4934 }
4935}
4936
143bede5 4937void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4938{
4939 struct rb_node *node;
4940 struct rb_node *prev;
4941 struct btrfs_inode *entry;
4942 struct inode *inode;
4943 u64 objectid = 0;
4944
7813b3db
LB
4945 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
4946 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
4947
4948 spin_lock(&root->inode_lock);
4949again:
4950 node = root->inode_tree.rb_node;
4951 prev = NULL;
4952 while (node) {
4953 prev = node;
4954 entry = rb_entry(node, struct btrfs_inode, rb_node);
4955
33345d01 4956 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4957 node = node->rb_left;
33345d01 4958 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4959 node = node->rb_right;
4960 else
4961 break;
4962 }
4963 if (!node) {
4964 while (prev) {
4965 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4966 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4967 node = prev;
4968 break;
4969 }
4970 prev = rb_next(prev);
4971 }
4972 }
4973 while (node) {
4974 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4975 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4976 inode = igrab(&entry->vfs_inode);
4977 if (inode) {
4978 spin_unlock(&root->inode_lock);
4979 if (atomic_read(&inode->i_count) > 1)
4980 d_prune_aliases(inode);
4981 /*
45321ac5 4982 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4983 * the inode cache when its usage count
4984 * hits zero.
4985 */
4986 iput(inode);
4987 cond_resched();
4988 spin_lock(&root->inode_lock);
4989 goto again;
4990 }
4991
4992 if (cond_resched_lock(&root->inode_lock))
4993 goto again;
4994
4995 node = rb_next(node);
4996 }
4997 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4998}
4999
e02119d5
CM
5000static int btrfs_init_locked_inode(struct inode *inode, void *p)
5001{
5002 struct btrfs_iget_args *args = p;
90d3e592
CM
5003 inode->i_ino = args->location->objectid;
5004 memcpy(&BTRFS_I(inode)->location, args->location,
5005 sizeof(*args->location));
e02119d5 5006 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5007 return 0;
5008}
5009
5010static int btrfs_find_actor(struct inode *inode, void *opaque)
5011{
5012 struct btrfs_iget_args *args = opaque;
90d3e592 5013 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5014 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5015}
5016
5d4f98a2 5017static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5018 struct btrfs_key *location,
5d4f98a2 5019 struct btrfs_root *root)
39279cc3
CM
5020{
5021 struct inode *inode;
5022 struct btrfs_iget_args args;
90d3e592 5023 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5024
90d3e592 5025 args.location = location;
39279cc3
CM
5026 args.root = root;
5027
778ba82b 5028 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5029 btrfs_init_locked_inode,
5030 (void *)&args);
5031 return inode;
5032}
5033
1a54ef8c
BR
5034/* Get an inode object given its location and corresponding root.
5035 * Returns in *is_new if the inode was read from disk
5036 */
5037struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5038 struct btrfs_root *root, int *new)
1a54ef8c
BR
5039{
5040 struct inode *inode;
5041
90d3e592 5042 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5043 if (!inode)
5d4f98a2 5044 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5045
5046 if (inode->i_state & I_NEW) {
1a54ef8c 5047 btrfs_read_locked_inode(inode);
1748f843
MF
5048 if (!is_bad_inode(inode)) {
5049 inode_tree_add(inode);
5050 unlock_new_inode(inode);
5051 if (new)
5052 *new = 1;
5053 } else {
e0b6d65b
ST
5054 unlock_new_inode(inode);
5055 iput(inode);
5056 inode = ERR_PTR(-ESTALE);
1748f843
MF
5057 }
5058 }
5059
1a54ef8c
BR
5060 return inode;
5061}
5062
4df27c4d
YZ
5063static struct inode *new_simple_dir(struct super_block *s,
5064 struct btrfs_key *key,
5065 struct btrfs_root *root)
5066{
5067 struct inode *inode = new_inode(s);
5068
5069 if (!inode)
5070 return ERR_PTR(-ENOMEM);
5071
4df27c4d
YZ
5072 BTRFS_I(inode)->root = root;
5073 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5074 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5075
5076 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5077 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5078 inode->i_fop = &simple_dir_operations;
5079 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5080 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5081
5082 return inode;
5083}
5084
3de4586c 5085struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5086{
d397712b 5087 struct inode *inode;
4df27c4d 5088 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5089 struct btrfs_root *sub_root = root;
5090 struct btrfs_key location;
76dda93c 5091 int index;
b4aff1f8 5092 int ret = 0;
39279cc3
CM
5093
5094 if (dentry->d_name.len > BTRFS_NAME_LEN)
5095 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5096
39e3c955 5097 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5098 if (ret < 0)
5099 return ERR_PTR(ret);
5f39d397 5100
4df27c4d 5101 if (location.objectid == 0)
5662344b 5102 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5103
5104 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5105 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5106 return inode;
5107 }
5108
5109 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5110
76dda93c 5111 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5112 ret = fixup_tree_root_location(root, dir, dentry,
5113 &location, &sub_root);
5114 if (ret < 0) {
5115 if (ret != -ENOENT)
5116 inode = ERR_PTR(ret);
5117 else
5118 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5119 } else {
73f73415 5120 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5121 }
76dda93c
YZ
5122 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5123
34d19bad 5124 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5125 down_read(&root->fs_info->cleanup_work_sem);
5126 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5127 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5128 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5129 if (ret) {
5130 iput(inode);
66b4ffd1 5131 inode = ERR_PTR(ret);
01cd3367 5132 }
c71bf099
YZ
5133 }
5134
3de4586c
CM
5135 return inode;
5136}
5137
fe15ce44 5138static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5139{
5140 struct btrfs_root *root;
848cce0d 5141 struct inode *inode = dentry->d_inode;
76dda93c 5142
848cce0d
LZ
5143 if (!inode && !IS_ROOT(dentry))
5144 inode = dentry->d_parent->d_inode;
76dda93c 5145
848cce0d
LZ
5146 if (inode) {
5147 root = BTRFS_I(inode)->root;
efefb143
YZ
5148 if (btrfs_root_refs(&root->root_item) == 0)
5149 return 1;
848cce0d
LZ
5150
5151 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5152 return 1;
efefb143 5153 }
76dda93c
YZ
5154 return 0;
5155}
5156
b4aff1f8
JB
5157static void btrfs_dentry_release(struct dentry *dentry)
5158{
5159 if (dentry->d_fsdata)
5160 kfree(dentry->d_fsdata);
5161}
5162
3de4586c 5163static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5164 unsigned int flags)
3de4586c 5165{
5662344b 5166 struct inode *inode;
a66e7cc6 5167
5662344b
TI
5168 inode = btrfs_lookup_dentry(dir, dentry);
5169 if (IS_ERR(inode)) {
5170 if (PTR_ERR(inode) == -ENOENT)
5171 inode = NULL;
5172 else
5173 return ERR_CAST(inode);
5174 }
5175
3a0dfa6a 5176 return d_materialise_unique(dentry, inode);
39279cc3
CM
5177}
5178
16cdcec7 5179unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5180 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5181};
5182
9cdda8d3 5183static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5184{
9cdda8d3 5185 struct inode *inode = file_inode(file);
39279cc3
CM
5186 struct btrfs_root *root = BTRFS_I(inode)->root;
5187 struct btrfs_item *item;
5188 struct btrfs_dir_item *di;
5189 struct btrfs_key key;
5f39d397 5190 struct btrfs_key found_key;
39279cc3 5191 struct btrfs_path *path;
16cdcec7
MX
5192 struct list_head ins_list;
5193 struct list_head del_list;
39279cc3 5194 int ret;
5f39d397 5195 struct extent_buffer *leaf;
39279cc3 5196 int slot;
39279cc3
CM
5197 unsigned char d_type;
5198 int over = 0;
5199 u32 di_cur;
5200 u32 di_total;
5201 u32 di_len;
5202 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5203 char tmp_name[32];
5204 char *name_ptr;
5205 int name_len;
9cdda8d3 5206 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5207
5208 /* FIXME, use a real flag for deciding about the key type */
5209 if (root->fs_info->tree_root == root)
5210 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5211
9cdda8d3
AV
5212 if (!dir_emit_dots(file, ctx))
5213 return 0;
5214
49593bfa 5215 path = btrfs_alloc_path();
16cdcec7
MX
5216 if (!path)
5217 return -ENOMEM;
ff5714cc 5218
026fd317 5219 path->reada = 1;
49593bfa 5220
16cdcec7
MX
5221 if (key_type == BTRFS_DIR_INDEX_KEY) {
5222 INIT_LIST_HEAD(&ins_list);
5223 INIT_LIST_HEAD(&del_list);
5224 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5225 }
5226
39279cc3 5227 btrfs_set_key_type(&key, key_type);
9cdda8d3 5228 key.offset = ctx->pos;
33345d01 5229 key.objectid = btrfs_ino(inode);
5f39d397 5230
39279cc3
CM
5231 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5232 if (ret < 0)
5233 goto err;
49593bfa
DW
5234
5235 while (1) {
5f39d397 5236 leaf = path->nodes[0];
39279cc3 5237 slot = path->slots[0];
b9e03af0
LZ
5238 if (slot >= btrfs_header_nritems(leaf)) {
5239 ret = btrfs_next_leaf(root, path);
5240 if (ret < 0)
5241 goto err;
5242 else if (ret > 0)
5243 break;
5244 continue;
39279cc3 5245 }
3de4586c 5246
dd3cc16b 5247 item = btrfs_item_nr(slot);
5f39d397
CM
5248 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5249
5250 if (found_key.objectid != key.objectid)
39279cc3 5251 break;
5f39d397 5252 if (btrfs_key_type(&found_key) != key_type)
39279cc3 5253 break;
9cdda8d3 5254 if (found_key.offset < ctx->pos)
b9e03af0 5255 goto next;
16cdcec7
MX
5256 if (key_type == BTRFS_DIR_INDEX_KEY &&
5257 btrfs_should_delete_dir_index(&del_list,
5258 found_key.offset))
5259 goto next;
5f39d397 5260
9cdda8d3 5261 ctx->pos = found_key.offset;
16cdcec7 5262 is_curr = 1;
49593bfa 5263
39279cc3
CM
5264 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5265 di_cur = 0;
5f39d397 5266 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5267
5268 while (di_cur < di_total) {
5f39d397
CM
5269 struct btrfs_key location;
5270
22a94d44
JB
5271 if (verify_dir_item(root, leaf, di))
5272 break;
5273
5f39d397 5274 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5275 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5276 name_ptr = tmp_name;
5277 } else {
5278 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5279 if (!name_ptr) {
5280 ret = -ENOMEM;
5281 goto err;
5282 }
5f39d397
CM
5283 }
5284 read_extent_buffer(leaf, name_ptr,
5285 (unsigned long)(di + 1), name_len);
5286
5287 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5288 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5289
fede766f 5290
3de4586c 5291 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5292 * skip it.
5293 *
5294 * In contrast to old kernels, we insert the snapshot's
5295 * dir item and dir index after it has been created, so
5296 * we won't find a reference to our own snapshot. We
5297 * still keep the following code for backward
5298 * compatibility.
3de4586c
CM
5299 */
5300 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5301 location.objectid == root->root_key.objectid) {
5302 over = 0;
5303 goto skip;
5304 }
9cdda8d3
AV
5305 over = !dir_emit(ctx, name_ptr, name_len,
5306 location.objectid, d_type);
5f39d397 5307
3de4586c 5308skip:
5f39d397
CM
5309 if (name_ptr != tmp_name)
5310 kfree(name_ptr);
5311
39279cc3
CM
5312 if (over)
5313 goto nopos;
5103e947 5314 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5315 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5316 di_cur += di_len;
5317 di = (struct btrfs_dir_item *)((char *)di + di_len);
5318 }
b9e03af0
LZ
5319next:
5320 path->slots[0]++;
39279cc3 5321 }
49593bfa 5322
16cdcec7
MX
5323 if (key_type == BTRFS_DIR_INDEX_KEY) {
5324 if (is_curr)
9cdda8d3
AV
5325 ctx->pos++;
5326 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5327 if (ret)
5328 goto nopos;
5329 }
5330
49593bfa 5331 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5332 ctx->pos++;
5333
5334 /*
5335 * Stop new entries from being returned after we return the last
5336 * entry.
5337 *
5338 * New directory entries are assigned a strictly increasing
5339 * offset. This means that new entries created during readdir
5340 * are *guaranteed* to be seen in the future by that readdir.
5341 * This has broken buggy programs which operate on names as
5342 * they're returned by readdir. Until we re-use freed offsets
5343 * we have this hack to stop new entries from being returned
5344 * under the assumption that they'll never reach this huge
5345 * offset.
5346 *
5347 * This is being careful not to overflow 32bit loff_t unless the
5348 * last entry requires it because doing so has broken 32bit apps
5349 * in the past.
5350 */
5351 if (key_type == BTRFS_DIR_INDEX_KEY) {
5352 if (ctx->pos >= INT_MAX)
5353 ctx->pos = LLONG_MAX;
5354 else
5355 ctx->pos = INT_MAX;
5356 }
39279cc3
CM
5357nopos:
5358 ret = 0;
5359err:
16cdcec7
MX
5360 if (key_type == BTRFS_DIR_INDEX_KEY)
5361 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5362 btrfs_free_path(path);
39279cc3
CM
5363 return ret;
5364}
5365
a9185b41 5366int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5367{
5368 struct btrfs_root *root = BTRFS_I(inode)->root;
5369 struct btrfs_trans_handle *trans;
5370 int ret = 0;
0af3d00b 5371 bool nolock = false;
39279cc3 5372
72ac3c0d 5373 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5374 return 0;
5375
83eea1f1 5376 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5377 nolock = true;
0af3d00b 5378
a9185b41 5379 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5380 if (nolock)
7a7eaa40 5381 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5382 else
7a7eaa40 5383 trans = btrfs_join_transaction(root);
3612b495
TI
5384 if (IS_ERR(trans))
5385 return PTR_ERR(trans);
a698d075 5386 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5387 }
5388 return ret;
5389}
5390
5391/*
54aa1f4d 5392 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5393 * inode changes. But, it is most likely to find the inode in cache.
5394 * FIXME, needs more benchmarking...there are no reasons other than performance
5395 * to keep or drop this code.
5396 */
48a3b636 5397static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5398{
5399 struct btrfs_root *root = BTRFS_I(inode)->root;
5400 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5401 int ret;
5402
72ac3c0d 5403 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5404 return 0;
39279cc3 5405
7a7eaa40 5406 trans = btrfs_join_transaction(root);
22c44fe6
JB
5407 if (IS_ERR(trans))
5408 return PTR_ERR(trans);
8929ecfa
YZ
5409
5410 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5411 if (ret && ret == -ENOSPC) {
5412 /* whoops, lets try again with the full transaction */
5413 btrfs_end_transaction(trans, root);
5414 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5415 if (IS_ERR(trans))
5416 return PTR_ERR(trans);
8929ecfa 5417
94b60442 5418 ret = btrfs_update_inode(trans, root, inode);
94b60442 5419 }
39279cc3 5420 btrfs_end_transaction(trans, root);
16cdcec7
MX
5421 if (BTRFS_I(inode)->delayed_node)
5422 btrfs_balance_delayed_items(root);
22c44fe6
JB
5423
5424 return ret;
5425}
5426
5427/*
5428 * This is a copy of file_update_time. We need this so we can return error on
5429 * ENOSPC for updating the inode in the case of file write and mmap writes.
5430 */
e41f941a
JB
5431static int btrfs_update_time(struct inode *inode, struct timespec *now,
5432 int flags)
22c44fe6 5433{
2bc55652
AB
5434 struct btrfs_root *root = BTRFS_I(inode)->root;
5435
5436 if (btrfs_root_readonly(root))
5437 return -EROFS;
5438
e41f941a 5439 if (flags & S_VERSION)
22c44fe6 5440 inode_inc_iversion(inode);
e41f941a
JB
5441 if (flags & S_CTIME)
5442 inode->i_ctime = *now;
5443 if (flags & S_MTIME)
5444 inode->i_mtime = *now;
5445 if (flags & S_ATIME)
5446 inode->i_atime = *now;
5447 return btrfs_dirty_inode(inode);
39279cc3
CM
5448}
5449
d352ac68
CM
5450/*
5451 * find the highest existing sequence number in a directory
5452 * and then set the in-memory index_cnt variable to reflect
5453 * free sequence numbers
5454 */
aec7477b
JB
5455static int btrfs_set_inode_index_count(struct inode *inode)
5456{
5457 struct btrfs_root *root = BTRFS_I(inode)->root;
5458 struct btrfs_key key, found_key;
5459 struct btrfs_path *path;
5460 struct extent_buffer *leaf;
5461 int ret;
5462
33345d01 5463 key.objectid = btrfs_ino(inode);
aec7477b
JB
5464 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5465 key.offset = (u64)-1;
5466
5467 path = btrfs_alloc_path();
5468 if (!path)
5469 return -ENOMEM;
5470
5471 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5472 if (ret < 0)
5473 goto out;
5474 /* FIXME: we should be able to handle this */
5475 if (ret == 0)
5476 goto out;
5477 ret = 0;
5478
5479 /*
5480 * MAGIC NUMBER EXPLANATION:
5481 * since we search a directory based on f_pos we have to start at 2
5482 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5483 * else has to start at 2
5484 */
5485 if (path->slots[0] == 0) {
5486 BTRFS_I(inode)->index_cnt = 2;
5487 goto out;
5488 }
5489
5490 path->slots[0]--;
5491
5492 leaf = path->nodes[0];
5493 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5494
33345d01 5495 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
5496 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5497 BTRFS_I(inode)->index_cnt = 2;
5498 goto out;
5499 }
5500
5501 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5502out:
5503 btrfs_free_path(path);
5504 return ret;
5505}
5506
d352ac68
CM
5507/*
5508 * helper to find a free sequence number in a given directory. This current
5509 * code is very simple, later versions will do smarter things in the btree
5510 */
3de4586c 5511int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5512{
5513 int ret = 0;
5514
5515 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5516 ret = btrfs_inode_delayed_dir_index_count(dir);
5517 if (ret) {
5518 ret = btrfs_set_inode_index_count(dir);
5519 if (ret)
5520 return ret;
5521 }
aec7477b
JB
5522 }
5523
00e4e6b3 5524 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5525 BTRFS_I(dir)->index_cnt++;
5526
5527 return ret;
5528}
5529
39279cc3
CM
5530static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5531 struct btrfs_root *root,
aec7477b 5532 struct inode *dir,
9c58309d 5533 const char *name, int name_len,
175a4eb7
AV
5534 u64 ref_objectid, u64 objectid,
5535 umode_t mode, u64 *index)
39279cc3
CM
5536{
5537 struct inode *inode;
5f39d397 5538 struct btrfs_inode_item *inode_item;
39279cc3 5539 struct btrfs_key *location;
5f39d397 5540 struct btrfs_path *path;
9c58309d
CM
5541 struct btrfs_inode_ref *ref;
5542 struct btrfs_key key[2];
5543 u32 sizes[2];
5544 unsigned long ptr;
39279cc3 5545 int ret;
39279cc3 5546
5f39d397 5547 path = btrfs_alloc_path();
d8926bb3
MF
5548 if (!path)
5549 return ERR_PTR(-ENOMEM);
5f39d397 5550
39279cc3 5551 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5552 if (!inode) {
5553 btrfs_free_path(path);
39279cc3 5554 return ERR_PTR(-ENOMEM);
8fb27640 5555 }
39279cc3 5556
581bb050
LZ
5557 /*
5558 * we have to initialize this early, so we can reclaim the inode
5559 * number if we fail afterwards in this function.
5560 */
5561 inode->i_ino = objectid;
5562
aec7477b 5563 if (dir) {
1abe9b8a 5564 trace_btrfs_inode_request(dir);
5565
3de4586c 5566 ret = btrfs_set_inode_index(dir, index);
09771430 5567 if (ret) {
8fb27640 5568 btrfs_free_path(path);
09771430 5569 iput(inode);
aec7477b 5570 return ERR_PTR(ret);
09771430 5571 }
aec7477b
JB
5572 }
5573 /*
5574 * index_cnt is ignored for everything but a dir,
5575 * btrfs_get_inode_index_count has an explanation for the magic
5576 * number
5577 */
5578 BTRFS_I(inode)->index_cnt = 2;
67de1176 5579 BTRFS_I(inode)->dir_index = *index;
39279cc3 5580 BTRFS_I(inode)->root = root;
e02119d5 5581 BTRFS_I(inode)->generation = trans->transid;
76195853 5582 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5583
5dc562c5
JB
5584 /*
5585 * We could have gotten an inode number from somebody who was fsynced
5586 * and then removed in this same transaction, so let's just set full
5587 * sync since it will be a full sync anyway and this will blow away the
5588 * old info in the log.
5589 */
5590 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5591
9c58309d
CM
5592 key[0].objectid = objectid;
5593 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5594 key[0].offset = 0;
5595
f186373f
MF
5596 /*
5597 * Start new inodes with an inode_ref. This is slightly more
5598 * efficient for small numbers of hard links since they will
5599 * be packed into one item. Extended refs will kick in if we
5600 * add more hard links than can fit in the ref item.
5601 */
9c58309d
CM
5602 key[1].objectid = objectid;
5603 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5604 key[1].offset = ref_objectid;
5605
5606 sizes[0] = sizeof(struct btrfs_inode_item);
5607 sizes[1] = name_len + sizeof(*ref);
5608
b9473439 5609 path->leave_spinning = 1;
9c58309d
CM
5610 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5611 if (ret != 0)
5f39d397
CM
5612 goto fail;
5613
ecc11fab 5614 inode_init_owner(inode, dir, mode);
a76a3cd4 5615 inode_set_bytes(inode, 0);
39279cc3 5616 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
5617 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5618 struct btrfs_inode_item);
293f7e07
LZ
5619 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5620 sizeof(*inode_item));
e02119d5 5621 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
5622
5623 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5624 struct btrfs_inode_ref);
5625 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 5626 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
5627 ptr = (unsigned long)(ref + 1);
5628 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5629
5f39d397
CM
5630 btrfs_mark_buffer_dirty(path->nodes[0]);
5631 btrfs_free_path(path);
5632
39279cc3
CM
5633 location = &BTRFS_I(inode)->location;
5634 location->objectid = objectid;
39279cc3
CM
5635 location->offset = 0;
5636 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5637
6cbff00f
CH
5638 btrfs_inherit_iflags(inode, dir);
5639
569254b0 5640 if (S_ISREG(mode)) {
94272164
CM
5641 if (btrfs_test_opt(root, NODATASUM))
5642 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5643 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5644 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5645 BTRFS_INODE_NODATASUM;
94272164
CM
5646 }
5647
778ba82b 5648 btrfs_insert_inode_hash(inode);
5d4f98a2 5649 inode_tree_add(inode);
1abe9b8a 5650
5651 trace_btrfs_inode_new(inode);
1973f0fa 5652 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5653
8ea05e3a
AB
5654 btrfs_update_root_times(trans, root);
5655
63541927
FDBM
5656 ret = btrfs_inode_inherit_props(trans, inode, dir);
5657 if (ret)
5658 btrfs_err(root->fs_info,
5659 "error inheriting props for ino %llu (root %llu): %d",
5660 btrfs_ino(inode), root->root_key.objectid, ret);
5661
39279cc3 5662 return inode;
5f39d397 5663fail:
aec7477b
JB
5664 if (dir)
5665 BTRFS_I(dir)->index_cnt--;
5f39d397 5666 btrfs_free_path(path);
09771430 5667 iput(inode);
5f39d397 5668 return ERR_PTR(ret);
39279cc3
CM
5669}
5670
5671static inline u8 btrfs_inode_type(struct inode *inode)
5672{
5673 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5674}
5675
d352ac68
CM
5676/*
5677 * utility function to add 'inode' into 'parent_inode' with
5678 * a give name and a given sequence number.
5679 * if 'add_backref' is true, also insert a backref from the
5680 * inode to the parent directory.
5681 */
e02119d5
CM
5682int btrfs_add_link(struct btrfs_trans_handle *trans,
5683 struct inode *parent_inode, struct inode *inode,
5684 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5685{
4df27c4d 5686 int ret = 0;
39279cc3 5687 struct btrfs_key key;
e02119d5 5688 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5689 u64 ino = btrfs_ino(inode);
5690 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5691
33345d01 5692 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5693 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5694 } else {
33345d01 5695 key.objectid = ino;
4df27c4d
YZ
5696 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5697 key.offset = 0;
5698 }
5699
33345d01 5700 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5701 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5702 key.objectid, root->root_key.objectid,
33345d01 5703 parent_ino, index, name, name_len);
4df27c4d 5704 } else if (add_backref) {
33345d01
LZ
5705 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5706 parent_ino, index);
4df27c4d 5707 }
39279cc3 5708
79787eaa
JM
5709 /* Nothing to clean up yet */
5710 if (ret)
5711 return ret;
4df27c4d 5712
79787eaa
JM
5713 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5714 parent_inode, &key,
5715 btrfs_inode_type(inode), index);
9c52057c 5716 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
5717 goto fail_dir_item;
5718 else if (ret) {
5719 btrfs_abort_transaction(trans, root, ret);
5720 return ret;
39279cc3 5721 }
79787eaa
JM
5722
5723 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5724 name_len * 2);
0c4d2d95 5725 inode_inc_iversion(parent_inode);
79787eaa
JM
5726 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5727 ret = btrfs_update_inode(trans, root, parent_inode);
5728 if (ret)
5729 btrfs_abort_transaction(trans, root, ret);
39279cc3 5730 return ret;
fe66a05a
CM
5731
5732fail_dir_item:
5733 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5734 u64 local_index;
5735 int err;
5736 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5737 key.objectid, root->root_key.objectid,
5738 parent_ino, &local_index, name, name_len);
5739
5740 } else if (add_backref) {
5741 u64 local_index;
5742 int err;
5743
5744 err = btrfs_del_inode_ref(trans, root, name, name_len,
5745 ino, parent_ino, &local_index);
5746 }
5747 return ret;
39279cc3
CM
5748}
5749
5750static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5751 struct inode *dir, struct dentry *dentry,
5752 struct inode *inode, int backref, u64 index)
39279cc3 5753{
a1b075d2
JB
5754 int err = btrfs_add_link(trans, dir, inode,
5755 dentry->d_name.name, dentry->d_name.len,
5756 backref, index);
39279cc3
CM
5757 if (err > 0)
5758 err = -EEXIST;
5759 return err;
5760}
5761
618e21d5 5762static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5763 umode_t mode, dev_t rdev)
618e21d5
JB
5764{
5765 struct btrfs_trans_handle *trans;
5766 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5767 struct inode *inode = NULL;
618e21d5
JB
5768 int err;
5769 int drop_inode = 0;
5770 u64 objectid;
00e4e6b3 5771 u64 index = 0;
618e21d5
JB
5772
5773 if (!new_valid_dev(rdev))
5774 return -EINVAL;
5775
9ed74f2d
JB
5776 /*
5777 * 2 for inode item and ref
5778 * 2 for dir items
5779 * 1 for xattr if selinux is on
5780 */
a22285a6
YZ
5781 trans = btrfs_start_transaction(root, 5);
5782 if (IS_ERR(trans))
5783 return PTR_ERR(trans);
1832a6d5 5784
581bb050
LZ
5785 err = btrfs_find_free_ino(root, &objectid);
5786 if (err)
5787 goto out_unlock;
5788
aec7477b 5789 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5790 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5791 mode, &index);
7cf96da3
TI
5792 if (IS_ERR(inode)) {
5793 err = PTR_ERR(inode);
618e21d5 5794 goto out_unlock;
7cf96da3 5795 }
618e21d5 5796
2a7dba39 5797 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5798 if (err) {
5799 drop_inode = 1;
5800 goto out_unlock;
5801 }
5802
ad19db71
CS
5803 /*
5804 * If the active LSM wants to access the inode during
5805 * d_instantiate it needs these. Smack checks to see
5806 * if the filesystem supports xattrs by looking at the
5807 * ops vector.
5808 */
5809
5810 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 5811 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
5812 if (err)
5813 drop_inode = 1;
5814 else {
618e21d5 5815 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 5816 btrfs_update_inode(trans, root, inode);
08c422c2 5817 d_instantiate(dentry, inode);
618e21d5 5818 }
618e21d5 5819out_unlock:
7ad85bb7 5820 btrfs_end_transaction(trans, root);
c581afc8 5821 btrfs_balance_delayed_items(root);
b53d3f5d 5822 btrfs_btree_balance_dirty(root);
618e21d5
JB
5823 if (drop_inode) {
5824 inode_dec_link_count(inode);
5825 iput(inode);
5826 }
618e21d5
JB
5827 return err;
5828}
5829
39279cc3 5830static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 5831 umode_t mode, bool excl)
39279cc3
CM
5832{
5833 struct btrfs_trans_handle *trans;
5834 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5835 struct inode *inode = NULL;
43baa579 5836 int drop_inode_on_err = 0;
a22285a6 5837 int err;
39279cc3 5838 u64 objectid;
00e4e6b3 5839 u64 index = 0;
39279cc3 5840
9ed74f2d
JB
5841 /*
5842 * 2 for inode item and ref
5843 * 2 for dir items
5844 * 1 for xattr if selinux is on
5845 */
a22285a6
YZ
5846 trans = btrfs_start_transaction(root, 5);
5847 if (IS_ERR(trans))
5848 return PTR_ERR(trans);
9ed74f2d 5849
581bb050
LZ
5850 err = btrfs_find_free_ino(root, &objectid);
5851 if (err)
5852 goto out_unlock;
5853
aec7477b 5854 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5855 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5856 mode, &index);
7cf96da3
TI
5857 if (IS_ERR(inode)) {
5858 err = PTR_ERR(inode);
39279cc3 5859 goto out_unlock;
7cf96da3 5860 }
43baa579 5861 drop_inode_on_err = 1;
39279cc3 5862
2a7dba39 5863 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5864 if (err)
33268eaf 5865 goto out_unlock;
33268eaf 5866
9185aa58
FB
5867 err = btrfs_update_inode(trans, root, inode);
5868 if (err)
5869 goto out_unlock;
5870
ad19db71
CS
5871 /*
5872 * If the active LSM wants to access the inode during
5873 * d_instantiate it needs these. Smack checks to see
5874 * if the filesystem supports xattrs by looking at the
5875 * ops vector.
5876 */
5877 inode->i_fop = &btrfs_file_operations;
5878 inode->i_op = &btrfs_file_inode_operations;
5879
a1b075d2 5880 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5881 if (err)
43baa579
FB
5882 goto out_unlock;
5883
5884 inode->i_mapping->a_ops = &btrfs_aops;
5885 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5886 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5887 d_instantiate(dentry, inode);
5888
39279cc3 5889out_unlock:
7ad85bb7 5890 btrfs_end_transaction(trans, root);
43baa579 5891 if (err && drop_inode_on_err) {
39279cc3
CM
5892 inode_dec_link_count(inode);
5893 iput(inode);
5894 }
c581afc8 5895 btrfs_balance_delayed_items(root);
b53d3f5d 5896 btrfs_btree_balance_dirty(root);
39279cc3
CM
5897 return err;
5898}
5899
5900static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5901 struct dentry *dentry)
5902{
5903 struct btrfs_trans_handle *trans;
5904 struct btrfs_root *root = BTRFS_I(dir)->root;
5905 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5906 u64 index;
39279cc3
CM
5907 int err;
5908 int drop_inode = 0;
5909
4a8be425
TH
5910 /* do not allow sys_link's with other subvols of the same device */
5911 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5912 return -EXDEV;
4a8be425 5913
f186373f 5914 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5915 return -EMLINK;
4a8be425 5916
3de4586c 5917 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5918 if (err)
5919 goto fail;
5920
a22285a6 5921 /*
7e6b6465 5922 * 2 items for inode and inode ref
a22285a6 5923 * 2 items for dir items
7e6b6465 5924 * 1 item for parent inode
a22285a6 5925 */
7e6b6465 5926 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5927 if (IS_ERR(trans)) {
5928 err = PTR_ERR(trans);
5929 goto fail;
5930 }
5f39d397 5931
67de1176
MX
5932 /* There are several dir indexes for this inode, clear the cache. */
5933 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 5934 inc_nlink(inode);
0c4d2d95 5935 inode_inc_iversion(inode);
3153495d 5936 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5937 ihold(inode);
e9976151 5938 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 5939
a1b075d2 5940 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5941
a5719521 5942 if (err) {
54aa1f4d 5943 drop_inode = 1;
a5719521 5944 } else {
10d9f309 5945 struct dentry *parent = dentry->d_parent;
a5719521 5946 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5947 if (err)
5948 goto fail;
08c422c2 5949 d_instantiate(dentry, inode);
6a912213 5950 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5951 }
39279cc3 5952
7ad85bb7 5953 btrfs_end_transaction(trans, root);
c581afc8 5954 btrfs_balance_delayed_items(root);
1832a6d5 5955fail:
39279cc3
CM
5956 if (drop_inode) {
5957 inode_dec_link_count(inode);
5958 iput(inode);
5959 }
b53d3f5d 5960 btrfs_btree_balance_dirty(root);
39279cc3
CM
5961 return err;
5962}
5963
18bb1db3 5964static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5965{
b9d86667 5966 struct inode *inode = NULL;
39279cc3
CM
5967 struct btrfs_trans_handle *trans;
5968 struct btrfs_root *root = BTRFS_I(dir)->root;
5969 int err = 0;
5970 int drop_on_err = 0;
b9d86667 5971 u64 objectid = 0;
00e4e6b3 5972 u64 index = 0;
39279cc3 5973
9ed74f2d
JB
5974 /*
5975 * 2 items for inode and ref
5976 * 2 items for dir items
5977 * 1 for xattr if selinux is on
5978 */
a22285a6
YZ
5979 trans = btrfs_start_transaction(root, 5);
5980 if (IS_ERR(trans))
5981 return PTR_ERR(trans);
39279cc3 5982
581bb050
LZ
5983 err = btrfs_find_free_ino(root, &objectid);
5984 if (err)
5985 goto out_fail;
5986
aec7477b 5987 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5988 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5989 S_IFDIR | mode, &index);
39279cc3
CM
5990 if (IS_ERR(inode)) {
5991 err = PTR_ERR(inode);
5992 goto out_fail;
5993 }
5f39d397 5994
39279cc3 5995 drop_on_err = 1;
33268eaf 5996
2a7dba39 5997 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5998 if (err)
5999 goto out_fail;
6000
39279cc3
CM
6001 inode->i_op = &btrfs_dir_inode_operations;
6002 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 6003
dbe674a9 6004 btrfs_i_size_write(inode, 0);
39279cc3
CM
6005 err = btrfs_update_inode(trans, root, inode);
6006 if (err)
6007 goto out_fail;
5f39d397 6008
a1b075d2
JB
6009 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6010 dentry->d_name.len, 0, index);
39279cc3
CM
6011 if (err)
6012 goto out_fail;
5f39d397 6013
39279cc3
CM
6014 d_instantiate(dentry, inode);
6015 drop_on_err = 0;
39279cc3
CM
6016
6017out_fail:
7ad85bb7 6018 btrfs_end_transaction(trans, root);
39279cc3
CM
6019 if (drop_on_err)
6020 iput(inode);
c581afc8 6021 btrfs_balance_delayed_items(root);
b53d3f5d 6022 btrfs_btree_balance_dirty(root);
39279cc3
CM
6023 return err;
6024}
6025
d352ac68
CM
6026/* helper for btfs_get_extent. Given an existing extent in the tree,
6027 * and an extent that you want to insert, deal with overlap and insert
6028 * the new extent into the tree.
6029 */
3b951516
CM
6030static int merge_extent_mapping(struct extent_map_tree *em_tree,
6031 struct extent_map *existing,
e6dcd2dc
CM
6032 struct extent_map *em,
6033 u64 map_start, u64 map_len)
3b951516
CM
6034{
6035 u64 start_diff;
3b951516 6036
e6dcd2dc
CM
6037 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6038 start_diff = map_start - em->start;
6039 em->start = map_start;
6040 em->len = map_len;
c8b97818
CM
6041 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6042 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6043 em->block_start += start_diff;
c8b97818
CM
6044 em->block_len -= start_diff;
6045 }
09a2a8f9 6046 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6047}
6048
c8b97818
CM
6049static noinline int uncompress_inline(struct btrfs_path *path,
6050 struct inode *inode, struct page *page,
6051 size_t pg_offset, u64 extent_offset,
6052 struct btrfs_file_extent_item *item)
6053{
6054 int ret;
6055 struct extent_buffer *leaf = path->nodes[0];
6056 char *tmp;
6057 size_t max_size;
6058 unsigned long inline_size;
6059 unsigned long ptr;
261507a0 6060 int compress_type;
c8b97818
CM
6061
6062 WARN_ON(pg_offset != 0);
261507a0 6063 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6064 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6065 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6066 btrfs_item_nr(path->slots[0]));
c8b97818 6067 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6068 if (!tmp)
6069 return -ENOMEM;
c8b97818
CM
6070 ptr = btrfs_file_extent_inline_start(item);
6071
6072 read_extent_buffer(leaf, tmp, ptr, inline_size);
6073
5b050f04 6074 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
6075 ret = btrfs_decompress(compress_type, tmp, page,
6076 extent_offset, inline_size, max_size);
c8b97818 6077 if (ret) {
7ac687d9 6078 char *kaddr = kmap_atomic(page);
c8b97818
CM
6079 unsigned long copy_size = min_t(u64,
6080 PAGE_CACHE_SIZE - pg_offset,
6081 max_size - extent_offset);
6082 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 6083 kunmap_atomic(kaddr);
c8b97818
CM
6084 }
6085 kfree(tmp);
6086 return 0;
6087}
6088
d352ac68
CM
6089/*
6090 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6091 * the ugly parts come from merging extents from the disk with the in-ram
6092 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6093 * where the in-ram extents might be locked pending data=ordered completion.
6094 *
6095 * This also copies inline extents directly into the page.
6096 */
d397712b 6097
a52d9a80 6098struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6099 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6100 int create)
6101{
6102 int ret;
6103 int err = 0;
db94535d 6104 u64 bytenr;
a52d9a80
CM
6105 u64 extent_start = 0;
6106 u64 extent_end = 0;
33345d01 6107 u64 objectid = btrfs_ino(inode);
a52d9a80 6108 u32 found_type;
f421950f 6109 struct btrfs_path *path = NULL;
a52d9a80
CM
6110 struct btrfs_root *root = BTRFS_I(inode)->root;
6111 struct btrfs_file_extent_item *item;
5f39d397
CM
6112 struct extent_buffer *leaf;
6113 struct btrfs_key found_key;
a52d9a80
CM
6114 struct extent_map *em = NULL;
6115 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6116 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6117 struct btrfs_trans_handle *trans = NULL;
261507a0 6118 int compress_type;
a52d9a80 6119
a52d9a80 6120again:
890871be 6121 read_lock(&em_tree->lock);
d1310b2e 6122 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6123 if (em)
6124 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6125 read_unlock(&em_tree->lock);
d1310b2e 6126
a52d9a80 6127 if (em) {
e1c4b745
CM
6128 if (em->start > start || em->start + em->len <= start)
6129 free_extent_map(em);
6130 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6131 free_extent_map(em);
6132 else
6133 goto out;
a52d9a80 6134 }
172ddd60 6135 em = alloc_extent_map();
a52d9a80 6136 if (!em) {
d1310b2e
CM
6137 err = -ENOMEM;
6138 goto out;
a52d9a80 6139 }
e6dcd2dc 6140 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6141 em->start = EXTENT_MAP_HOLE;
445a6944 6142 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6143 em->len = (u64)-1;
c8b97818 6144 em->block_len = (u64)-1;
f421950f
CM
6145
6146 if (!path) {
6147 path = btrfs_alloc_path();
026fd317
JB
6148 if (!path) {
6149 err = -ENOMEM;
6150 goto out;
6151 }
6152 /*
6153 * Chances are we'll be called again, so go ahead and do
6154 * readahead
6155 */
6156 path->reada = 1;
f421950f
CM
6157 }
6158
179e29e4
CM
6159 ret = btrfs_lookup_file_extent(trans, root, path,
6160 objectid, start, trans != NULL);
a52d9a80
CM
6161 if (ret < 0) {
6162 err = ret;
6163 goto out;
6164 }
6165
6166 if (ret != 0) {
6167 if (path->slots[0] == 0)
6168 goto not_found;
6169 path->slots[0]--;
6170 }
6171
5f39d397
CM
6172 leaf = path->nodes[0];
6173 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6174 struct btrfs_file_extent_item);
a52d9a80 6175 /* are we inside the extent that was found? */
5f39d397
CM
6176 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6177 found_type = btrfs_key_type(&found_key);
6178 if (found_key.objectid != objectid ||
a52d9a80 6179 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6180 /*
6181 * If we backup past the first extent we want to move forward
6182 * and see if there is an extent in front of us, otherwise we'll
6183 * say there is a hole for our whole search range which can
6184 * cause problems.
6185 */
6186 extent_end = start;
6187 goto next;
a52d9a80
CM
6188 }
6189
5f39d397
CM
6190 found_type = btrfs_file_extent_type(leaf, item);
6191 extent_start = found_key.offset;
261507a0 6192 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
6193 if (found_type == BTRFS_FILE_EXTENT_REG ||
6194 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6195 extent_end = extent_start +
db94535d 6196 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6197 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6198 size_t size;
514ac8ad 6199 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6200 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6201 }
25a50341 6202next:
9036c102
YZ
6203 if (start >= extent_end) {
6204 path->slots[0]++;
6205 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6206 ret = btrfs_next_leaf(root, path);
6207 if (ret < 0) {
6208 err = ret;
6209 goto out;
a52d9a80 6210 }
9036c102
YZ
6211 if (ret > 0)
6212 goto not_found;
6213 leaf = path->nodes[0];
a52d9a80 6214 }
9036c102
YZ
6215 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6216 if (found_key.objectid != objectid ||
6217 found_key.type != BTRFS_EXTENT_DATA_KEY)
6218 goto not_found;
6219 if (start + len <= found_key.offset)
6220 goto not_found;
6221 em->start = start;
70c8a91c 6222 em->orig_start = start;
9036c102
YZ
6223 em->len = found_key.offset - start;
6224 goto not_found_em;
6225 }
6226
cc95bef6 6227 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
d899e052
YZ
6228 if (found_type == BTRFS_FILE_EXTENT_REG ||
6229 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
6230 em->start = extent_start;
6231 em->len = extent_end - extent_start;
ff5b7ee3
YZ
6232 em->orig_start = extent_start -
6233 btrfs_file_extent_offset(leaf, item);
b4939680
JB
6234 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6235 item);
db94535d
CM
6236 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6237 if (bytenr == 0) {
5f39d397 6238 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
6239 goto insert;
6240 }
261507a0 6241 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 6242 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 6243 em->compress_type = compress_type;
c8b97818 6244 em->block_start = bytenr;
b4939680 6245 em->block_len = em->orig_block_len;
c8b97818
CM
6246 } else {
6247 bytenr += btrfs_file_extent_offset(leaf, item);
6248 em->block_start = bytenr;
6249 em->block_len = em->len;
d899e052
YZ
6250 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6251 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 6252 }
a52d9a80
CM
6253 goto insert;
6254 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6255 unsigned long ptr;
a52d9a80 6256 char *map;
3326d1b0
CM
6257 size_t size;
6258 size_t extent_offset;
6259 size_t copy_size;
a52d9a80 6260
689f9346 6261 em->block_start = EXTENT_MAP_INLINE;
c8b97818 6262 if (!page || create) {
689f9346 6263 em->start = extent_start;
9036c102 6264 em->len = extent_end - extent_start;
689f9346
Y
6265 goto out;
6266 }
5f39d397 6267
514ac8ad 6268 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6269 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6270 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6271 size - extent_offset);
3326d1b0 6272 em->start = extent_start + extent_offset;
fda2832f 6273 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6274 em->orig_block_len = em->len;
70c8a91c 6275 em->orig_start = em->start;
261507a0 6276 if (compress_type) {
c8b97818 6277 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
6278 em->compress_type = compress_type;
6279 }
689f9346 6280 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6281 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6282 if (btrfs_file_extent_compression(leaf, item) !=
6283 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6284 ret = uncompress_inline(path, inode, page,
6285 pg_offset,
6286 extent_offset, item);
79787eaa 6287 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
6288 } else {
6289 map = kmap(page);
6290 read_extent_buffer(leaf, map + pg_offset, ptr,
6291 copy_size);
93c82d57
CM
6292 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6293 memset(map + pg_offset + copy_size, 0,
6294 PAGE_CACHE_SIZE - pg_offset -
6295 copy_size);
6296 }
c8b97818
CM
6297 kunmap(page);
6298 }
179e29e4
CM
6299 flush_dcache_page(page);
6300 } else if (create && PageUptodate(page)) {
6bf7e080 6301 BUG();
179e29e4
CM
6302 if (!trans) {
6303 kunmap(page);
6304 free_extent_map(em);
6305 em = NULL;
ff5714cc 6306
b3b4aa74 6307 btrfs_release_path(path);
7a7eaa40 6308 trans = btrfs_join_transaction(root);
ff5714cc 6309
3612b495
TI
6310 if (IS_ERR(trans))
6311 return ERR_CAST(trans);
179e29e4
CM
6312 goto again;
6313 }
c8b97818 6314 map = kmap(page);
70dec807 6315 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6316 copy_size);
c8b97818 6317 kunmap(page);
179e29e4 6318 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6319 }
d1310b2e 6320 set_extent_uptodate(io_tree, em->start,
507903b8 6321 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
6322 goto insert;
6323 } else {
31b1a2bd 6324 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
6325 }
6326not_found:
6327 em->start = start;
70c8a91c 6328 em->orig_start = start;
d1310b2e 6329 em->len = len;
a52d9a80 6330not_found_em:
5f39d397 6331 em->block_start = EXTENT_MAP_HOLE;
9036c102 6332 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6333insert:
b3b4aa74 6334 btrfs_release_path(path);
d1310b2e 6335 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6336 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6337 em->start, em->len, start, len);
a52d9a80
CM
6338 err = -EIO;
6339 goto out;
6340 }
d1310b2e
CM
6341
6342 err = 0;
890871be 6343 write_lock(&em_tree->lock);
09a2a8f9 6344 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6345 /* it is possible that someone inserted the extent into the tree
6346 * while we had the lock dropped. It is also possible that
6347 * an overlapping map exists in the tree
6348 */
a52d9a80 6349 if (ret == -EEXIST) {
3b951516 6350 struct extent_map *existing;
e6dcd2dc
CM
6351
6352 ret = 0;
6353
3b951516 6354 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
6355 if (existing && (existing->start > start ||
6356 existing->start + existing->len <= start)) {
6357 free_extent_map(existing);
6358 existing = NULL;
6359 }
3b951516
CM
6360 if (!existing) {
6361 existing = lookup_extent_mapping(em_tree, em->start,
6362 em->len);
6363 if (existing) {
6364 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
6365 em, start,
6366 root->sectorsize);
3b951516
CM
6367 free_extent_map(existing);
6368 if (err) {
6369 free_extent_map(em);
6370 em = NULL;
6371 }
6372 } else {
6373 err = -EIO;
3b951516
CM
6374 free_extent_map(em);
6375 em = NULL;
6376 }
6377 } else {
6378 free_extent_map(em);
6379 em = existing;
e6dcd2dc 6380 err = 0;
a52d9a80 6381 }
a52d9a80 6382 }
890871be 6383 write_unlock(&em_tree->lock);
a52d9a80 6384out:
1abe9b8a 6385
4cd8587c 6386 trace_btrfs_get_extent(root, em);
1abe9b8a 6387
f421950f
CM
6388 if (path)
6389 btrfs_free_path(path);
a52d9a80
CM
6390 if (trans) {
6391 ret = btrfs_end_transaction(trans, root);
d397712b 6392 if (!err)
a52d9a80
CM
6393 err = ret;
6394 }
a52d9a80
CM
6395 if (err) {
6396 free_extent_map(em);
a52d9a80
CM
6397 return ERR_PTR(err);
6398 }
79787eaa 6399 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6400 return em;
6401}
6402
ec29ed5b
CM
6403struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6404 size_t pg_offset, u64 start, u64 len,
6405 int create)
6406{
6407 struct extent_map *em;
6408 struct extent_map *hole_em = NULL;
6409 u64 range_start = start;
6410 u64 end;
6411 u64 found;
6412 u64 found_end;
6413 int err = 0;
6414
6415 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6416 if (IS_ERR(em))
6417 return em;
6418 if (em) {
6419 /*
f9e4fb53
LB
6420 * if our em maps to
6421 * - a hole or
6422 * - a pre-alloc extent,
6423 * there might actually be delalloc bytes behind it.
ec29ed5b 6424 */
f9e4fb53
LB
6425 if (em->block_start != EXTENT_MAP_HOLE &&
6426 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6427 return em;
6428 else
6429 hole_em = em;
6430 }
6431
6432 /* check to see if we've wrapped (len == -1 or similar) */
6433 end = start + len;
6434 if (end < start)
6435 end = (u64)-1;
6436 else
6437 end -= 1;
6438
6439 em = NULL;
6440
6441 /* ok, we didn't find anything, lets look for delalloc */
6442 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6443 end, len, EXTENT_DELALLOC, 1);
6444 found_end = range_start + found;
6445 if (found_end < range_start)
6446 found_end = (u64)-1;
6447
6448 /*
6449 * we didn't find anything useful, return
6450 * the original results from get_extent()
6451 */
6452 if (range_start > end || found_end <= start) {
6453 em = hole_em;
6454 hole_em = NULL;
6455 goto out;
6456 }
6457
6458 /* adjust the range_start to make sure it doesn't
6459 * go backwards from the start they passed in
6460 */
67871254 6461 range_start = max(start, range_start);
ec29ed5b
CM
6462 found = found_end - range_start;
6463
6464 if (found > 0) {
6465 u64 hole_start = start;
6466 u64 hole_len = len;
6467
172ddd60 6468 em = alloc_extent_map();
ec29ed5b
CM
6469 if (!em) {
6470 err = -ENOMEM;
6471 goto out;
6472 }
6473 /*
6474 * when btrfs_get_extent can't find anything it
6475 * returns one huge hole
6476 *
6477 * make sure what it found really fits our range, and
6478 * adjust to make sure it is based on the start from
6479 * the caller
6480 */
6481 if (hole_em) {
6482 u64 calc_end = extent_map_end(hole_em);
6483
6484 if (calc_end <= start || (hole_em->start > end)) {
6485 free_extent_map(hole_em);
6486 hole_em = NULL;
6487 } else {
6488 hole_start = max(hole_em->start, start);
6489 hole_len = calc_end - hole_start;
6490 }
6491 }
6492 em->bdev = NULL;
6493 if (hole_em && range_start > hole_start) {
6494 /* our hole starts before our delalloc, so we
6495 * have to return just the parts of the hole
6496 * that go until the delalloc starts
6497 */
6498 em->len = min(hole_len,
6499 range_start - hole_start);
6500 em->start = hole_start;
6501 em->orig_start = hole_start;
6502 /*
6503 * don't adjust block start at all,
6504 * it is fixed at EXTENT_MAP_HOLE
6505 */
6506 em->block_start = hole_em->block_start;
6507 em->block_len = hole_len;
f9e4fb53
LB
6508 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6509 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6510 } else {
6511 em->start = range_start;
6512 em->len = found;
6513 em->orig_start = range_start;
6514 em->block_start = EXTENT_MAP_DELALLOC;
6515 em->block_len = found;
6516 }
6517 } else if (hole_em) {
6518 return hole_em;
6519 }
6520out:
6521
6522 free_extent_map(hole_em);
6523 if (err) {
6524 free_extent_map(em);
6525 return ERR_PTR(err);
6526 }
6527 return em;
6528}
6529
4b46fce2
JB
6530static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6531 u64 start, u64 len)
6532{
6533 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 6534 struct extent_map *em;
4b46fce2
JB
6535 struct btrfs_key ins;
6536 u64 alloc_hint;
6537 int ret;
4b46fce2 6538
4b46fce2 6539 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 6540 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
81c9ad23 6541 alloc_hint, &ins, 1);
00361589
JB
6542 if (ret)
6543 return ERR_PTR(ret);
4b46fce2 6544
70c8a91c 6545 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6546 ins.offset, ins.offset, ins.offset, 0);
00361589
JB
6547 if (IS_ERR(em)) {
6548 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6549 return em;
6550 }
4b46fce2
JB
6551
6552 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6553 ins.offset, ins.offset, 0);
6554 if (ret) {
6555 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
00361589
JB
6556 free_extent_map(em);
6557 return ERR_PTR(ret);
4b46fce2 6558 }
00361589 6559
4b46fce2
JB
6560 return em;
6561}
6562
46bfbb5c
CM
6563/*
6564 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6565 * block must be cow'd
6566 */
00361589 6567noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
6568 u64 *orig_start, u64 *orig_block_len,
6569 u64 *ram_bytes)
46bfbb5c 6570{
00361589 6571 struct btrfs_trans_handle *trans;
46bfbb5c
CM
6572 struct btrfs_path *path;
6573 int ret;
6574 struct extent_buffer *leaf;
6575 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 6576 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
6577 struct btrfs_file_extent_item *fi;
6578 struct btrfs_key key;
6579 u64 disk_bytenr;
6580 u64 backref_offset;
6581 u64 extent_end;
6582 u64 num_bytes;
6583 int slot;
6584 int found_type;
7ee9e440 6585 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 6586
46bfbb5c
CM
6587 path = btrfs_alloc_path();
6588 if (!path)
6589 return -ENOMEM;
6590
00361589 6591 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
6592 offset, 0);
6593 if (ret < 0)
6594 goto out;
6595
6596 slot = path->slots[0];
6597 if (ret == 1) {
6598 if (slot == 0) {
6599 /* can't find the item, must cow */
6600 ret = 0;
6601 goto out;
6602 }
6603 slot--;
6604 }
6605 ret = 0;
6606 leaf = path->nodes[0];
6607 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6608 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6609 key.type != BTRFS_EXTENT_DATA_KEY) {
6610 /* not our file or wrong item type, must cow */
6611 goto out;
6612 }
6613
6614 if (key.offset > offset) {
6615 /* Wrong offset, must cow */
6616 goto out;
6617 }
6618
6619 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6620 found_type = btrfs_file_extent_type(leaf, fi);
6621 if (found_type != BTRFS_FILE_EXTENT_REG &&
6622 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6623 /* not a regular extent, must cow */
6624 goto out;
6625 }
7ee9e440
JB
6626
6627 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6628 goto out;
6629
e77751aa
MX
6630 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6631 if (extent_end <= offset)
6632 goto out;
6633
46bfbb5c 6634 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
6635 if (disk_bytenr == 0)
6636 goto out;
6637
6638 if (btrfs_file_extent_compression(leaf, fi) ||
6639 btrfs_file_extent_encryption(leaf, fi) ||
6640 btrfs_file_extent_other_encoding(leaf, fi))
6641 goto out;
6642
46bfbb5c
CM
6643 backref_offset = btrfs_file_extent_offset(leaf, fi);
6644
7ee9e440
JB
6645 if (orig_start) {
6646 *orig_start = key.offset - backref_offset;
6647 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6648 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6649 }
eb384b55 6650
46bfbb5c
CM
6651 if (btrfs_extent_readonly(root, disk_bytenr))
6652 goto out;
7b2b7085
MX
6653
6654 num_bytes = min(offset + *len, extent_end) - offset;
6655 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6656 u64 range_end;
6657
6658 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6659 ret = test_range_bit(io_tree, offset, range_end,
6660 EXTENT_DELALLOC, 0, NULL);
6661 if (ret) {
6662 ret = -EAGAIN;
6663 goto out;
6664 }
6665 }
6666
1bda19eb 6667 btrfs_release_path(path);
46bfbb5c
CM
6668
6669 /*
6670 * look for other files referencing this extent, if we
6671 * find any we must cow
6672 */
00361589
JB
6673 trans = btrfs_join_transaction(root);
6674 if (IS_ERR(trans)) {
6675 ret = 0;
46bfbb5c 6676 goto out;
00361589
JB
6677 }
6678
6679 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6680 key.offset - backref_offset, disk_bytenr);
6681 btrfs_end_transaction(trans, root);
6682 if (ret) {
6683 ret = 0;
6684 goto out;
6685 }
46bfbb5c
CM
6686
6687 /*
6688 * adjust disk_bytenr and num_bytes to cover just the bytes
6689 * in this extent we are about to write. If there
6690 * are any csums in that range we have to cow in order
6691 * to keep the csums correct
6692 */
6693 disk_bytenr += backref_offset;
6694 disk_bytenr += offset - key.offset;
46bfbb5c
CM
6695 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6696 goto out;
6697 /*
6698 * all of the above have passed, it is safe to overwrite this extent
6699 * without cow
6700 */
eb384b55 6701 *len = num_bytes;
46bfbb5c
CM
6702 ret = 1;
6703out:
6704 btrfs_free_path(path);
6705 return ret;
6706}
6707
eb838e73
JB
6708static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6709 struct extent_state **cached_state, int writing)
6710{
6711 struct btrfs_ordered_extent *ordered;
6712 int ret = 0;
6713
6714 while (1) {
6715 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6716 0, cached_state);
6717 /*
6718 * We're concerned with the entire range that we're going to be
6719 * doing DIO to, so we need to make sure theres no ordered
6720 * extents in this range.
6721 */
6722 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6723 lockend - lockstart + 1);
6724
6725 /*
6726 * We need to make sure there are no buffered pages in this
6727 * range either, we could have raced between the invalidate in
6728 * generic_file_direct_write and locking the extent. The
6729 * invalidate needs to happen so that reads after a write do not
6730 * get stale data.
6731 */
6732 if (!ordered && (!writing ||
6733 !test_range_bit(&BTRFS_I(inode)->io_tree,
6734 lockstart, lockend, EXTENT_UPTODATE, 0,
6735 *cached_state)))
6736 break;
6737
6738 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6739 cached_state, GFP_NOFS);
6740
6741 if (ordered) {
6742 btrfs_start_ordered_extent(inode, ordered, 1);
6743 btrfs_put_ordered_extent(ordered);
6744 } else {
6745 /* Screw you mmap */
6746 ret = filemap_write_and_wait_range(inode->i_mapping,
6747 lockstart,
6748 lockend);
6749 if (ret)
6750 break;
6751
6752 /*
6753 * If we found a page that couldn't be invalidated just
6754 * fall back to buffered.
6755 */
6756 ret = invalidate_inode_pages2_range(inode->i_mapping,
6757 lockstart >> PAGE_CACHE_SHIFT,
6758 lockend >> PAGE_CACHE_SHIFT);
6759 if (ret)
6760 break;
6761 }
6762
6763 cond_resched();
6764 }
6765
6766 return ret;
6767}
6768
69ffb543
JB
6769static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6770 u64 len, u64 orig_start,
6771 u64 block_start, u64 block_len,
cc95bef6
JB
6772 u64 orig_block_len, u64 ram_bytes,
6773 int type)
69ffb543
JB
6774{
6775 struct extent_map_tree *em_tree;
6776 struct extent_map *em;
6777 struct btrfs_root *root = BTRFS_I(inode)->root;
6778 int ret;
6779
6780 em_tree = &BTRFS_I(inode)->extent_tree;
6781 em = alloc_extent_map();
6782 if (!em)
6783 return ERR_PTR(-ENOMEM);
6784
6785 em->start = start;
6786 em->orig_start = orig_start;
2ab28f32
JB
6787 em->mod_start = start;
6788 em->mod_len = len;
69ffb543
JB
6789 em->len = len;
6790 em->block_len = block_len;
6791 em->block_start = block_start;
6792 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 6793 em->orig_block_len = orig_block_len;
cc95bef6 6794 em->ram_bytes = ram_bytes;
70c8a91c 6795 em->generation = -1;
69ffb543
JB
6796 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6797 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 6798 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
6799
6800 do {
6801 btrfs_drop_extent_cache(inode, em->start,
6802 em->start + em->len - 1, 0);
6803 write_lock(&em_tree->lock);
09a2a8f9 6804 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
6805 write_unlock(&em_tree->lock);
6806 } while (ret == -EEXIST);
6807
6808 if (ret) {
6809 free_extent_map(em);
6810 return ERR_PTR(ret);
6811 }
6812
6813 return em;
6814}
6815
6816
4b46fce2
JB
6817static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6818 struct buffer_head *bh_result, int create)
6819{
6820 struct extent_map *em;
6821 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 6822 struct extent_state *cached_state = NULL;
4b46fce2 6823 u64 start = iblock << inode->i_blkbits;
eb838e73 6824 u64 lockstart, lockend;
4b46fce2 6825 u64 len = bh_result->b_size;
eb838e73 6826 int unlock_bits = EXTENT_LOCKED;
0934856d 6827 int ret = 0;
eb838e73 6828
172a5049 6829 if (create)
eb838e73 6830 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
172a5049 6831 else
c329861d 6832 len = min_t(u64, len, root->sectorsize);
eb838e73 6833
c329861d
JB
6834 lockstart = start;
6835 lockend = start + len - 1;
6836
eb838e73
JB
6837 /*
6838 * If this errors out it's because we couldn't invalidate pagecache for
6839 * this range and we need to fallback to buffered.
6840 */
6841 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6842 return -ENOTBLK;
6843
4b46fce2 6844 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
6845 if (IS_ERR(em)) {
6846 ret = PTR_ERR(em);
6847 goto unlock_err;
6848 }
4b46fce2
JB
6849
6850 /*
6851 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6852 * io. INLINE is special, and we could probably kludge it in here, but
6853 * it's still buffered so for safety lets just fall back to the generic
6854 * buffered path.
6855 *
6856 * For COMPRESSED we _have_ to read the entire extent in so we can
6857 * decompress it, so there will be buffering required no matter what we
6858 * do, so go ahead and fallback to buffered.
6859 *
6860 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6861 * to buffered IO. Don't blame me, this is the price we pay for using
6862 * the generic code.
6863 */
6864 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6865 em->block_start == EXTENT_MAP_INLINE) {
6866 free_extent_map(em);
eb838e73
JB
6867 ret = -ENOTBLK;
6868 goto unlock_err;
4b46fce2
JB
6869 }
6870
6871 /* Just a good old fashioned hole, return */
6872 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6873 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6874 free_extent_map(em);
eb838e73 6875 goto unlock_err;
4b46fce2
JB
6876 }
6877
6878 /*
6879 * We don't allocate a new extent in the following cases
6880 *
6881 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6882 * existing extent.
6883 * 2) The extent is marked as PREALLOC. We're good to go here and can
6884 * just use the extent.
6885 *
6886 */
46bfbb5c 6887 if (!create) {
eb838e73
JB
6888 len = min(len, em->len - (start - em->start));
6889 lockstart = start + len;
6890 goto unlock;
46bfbb5c 6891 }
4b46fce2
JB
6892
6893 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6894 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6895 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6896 int type;
6897 int ret;
eb384b55 6898 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
6899
6900 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6901 type = BTRFS_ORDERED_PREALLOC;
6902 else
6903 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6904 len = min(len, em->len - (start - em->start));
4b46fce2 6905 block_start = em->block_start + (start - em->start);
46bfbb5c 6906
00361589 6907 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 6908 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
6909 if (type == BTRFS_ORDERED_PREALLOC) {
6910 free_extent_map(em);
6911 em = create_pinned_em(inode, start, len,
6912 orig_start,
b4939680 6913 block_start, len,
cc95bef6
JB
6914 orig_block_len,
6915 ram_bytes, type);
00361589 6916 if (IS_ERR(em))
69ffb543 6917 goto unlock_err;
69ffb543
JB
6918 }
6919
46bfbb5c
CM
6920 ret = btrfs_add_ordered_extent_dio(inode, start,
6921 block_start, len, len, type);
46bfbb5c
CM
6922 if (ret) {
6923 free_extent_map(em);
eb838e73 6924 goto unlock_err;
46bfbb5c
CM
6925 }
6926 goto unlock;
4b46fce2 6927 }
4b46fce2 6928 }
00361589 6929
46bfbb5c
CM
6930 /*
6931 * this will cow the extent, reset the len in case we changed
6932 * it above
6933 */
6934 len = bh_result->b_size;
70c8a91c
JB
6935 free_extent_map(em);
6936 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
6937 if (IS_ERR(em)) {
6938 ret = PTR_ERR(em);
6939 goto unlock_err;
6940 }
46bfbb5c
CM
6941 len = min(len, em->len - (start - em->start));
6942unlock:
4b46fce2
JB
6943 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6944 inode->i_blkbits;
46bfbb5c 6945 bh_result->b_size = len;
4b46fce2
JB
6946 bh_result->b_bdev = em->bdev;
6947 set_buffer_mapped(bh_result);
c3473e83
JB
6948 if (create) {
6949 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6950 set_buffer_new(bh_result);
6951
6952 /*
6953 * Need to update the i_size under the extent lock so buffered
6954 * readers will get the updated i_size when we unlock.
6955 */
6956 if (start + len > i_size_read(inode))
6957 i_size_write(inode, start + len);
0934856d 6958
172a5049
MX
6959 spin_lock(&BTRFS_I(inode)->lock);
6960 BTRFS_I(inode)->outstanding_extents++;
6961 spin_unlock(&BTRFS_I(inode)->lock);
6962
0934856d
MX
6963 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6964 lockstart + len - 1, EXTENT_DELALLOC, NULL,
6965 &cached_state, GFP_NOFS);
6966 BUG_ON(ret);
c3473e83 6967 }
4b46fce2 6968
eb838e73
JB
6969 /*
6970 * In the case of write we need to clear and unlock the entire range,
6971 * in the case of read we need to unlock only the end area that we
6972 * aren't using if there is any left over space.
6973 */
24c03fa5 6974 if (lockstart < lockend) {
0934856d
MX
6975 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6976 lockend, unlock_bits, 1, 0,
6977 &cached_state, GFP_NOFS);
24c03fa5 6978 } else {
eb838e73 6979 free_extent_state(cached_state);
24c03fa5 6980 }
eb838e73 6981
4b46fce2
JB
6982 free_extent_map(em);
6983
6984 return 0;
eb838e73
JB
6985
6986unlock_err:
eb838e73
JB
6987 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6988 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6989 return ret;
4b46fce2
JB
6990}
6991
4b46fce2
JB
6992static void btrfs_endio_direct_read(struct bio *bio, int err)
6993{
e65e1535 6994 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6995 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6996 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6997 struct inode *inode = dip->inode;
6998 struct btrfs_root *root = BTRFS_I(inode)->root;
9be3395b 6999 struct bio *dio_bio;
facc8a22
MX
7000 u32 *csums = (u32 *)dip->csum;
7001 int index = 0;
4b46fce2 7002 u64 start;
4b46fce2
JB
7003
7004 start = dip->logical_offset;
7005 do {
7006 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
7007 struct page *page = bvec->bv_page;
7008 char *kaddr;
7009 u32 csum = ~(u32)0;
7010 unsigned long flags;
7011
7012 local_irq_save(flags);
7ac687d9 7013 kaddr = kmap_atomic(page);
b0496686 7014 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
4b46fce2
JB
7015 csum, bvec->bv_len);
7016 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 7017 kunmap_atomic(kaddr);
4b46fce2
JB
7018 local_irq_restore(flags);
7019
7020 flush_dcache_page(bvec->bv_page);
facc8a22
MX
7021 if (csum != csums[index]) {
7022 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c
GU
7023 btrfs_ino(inode), start, csum,
7024 csums[index]);
4b46fce2
JB
7025 err = -EIO;
7026 }
7027 }
7028
7029 start += bvec->bv_len;
4b46fce2 7030 bvec++;
facc8a22 7031 index++;
4b46fce2
JB
7032 } while (bvec <= bvec_end);
7033
7034 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 7035 dip->logical_offset + dip->bytes - 1);
9be3395b 7036 dio_bio = dip->dio_bio;
4b46fce2 7037
4b46fce2 7038 kfree(dip);
c0da7aa1
JB
7039
7040 /* If we had a csum failure make sure to clear the uptodate flag */
7041 if (err)
9be3395b
CM
7042 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7043 dio_end_io(dio_bio, err);
7044 bio_put(bio);
4b46fce2
JB
7045}
7046
7047static void btrfs_endio_direct_write(struct bio *bio, int err)
7048{
7049 struct btrfs_dio_private *dip = bio->bi_private;
7050 struct inode *inode = dip->inode;
7051 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 7052 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
7053 u64 ordered_offset = dip->logical_offset;
7054 u64 ordered_bytes = dip->bytes;
9be3395b 7055 struct bio *dio_bio;
4b46fce2
JB
7056 int ret;
7057
7058 if (err)
7059 goto out_done;
163cf09c
CM
7060again:
7061 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7062 &ordered_offset,
5fd02043 7063 ordered_bytes, !err);
4b46fce2 7064 if (!ret)
163cf09c 7065 goto out_test;
4b46fce2 7066
fccb5d86
QW
7067 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, NULL);
7068 btrfs_queue_work(root->fs_info->endio_write_workers,
7069 &ordered->work);
163cf09c
CM
7070out_test:
7071 /*
7072 * our bio might span multiple ordered extents. If we haven't
7073 * completed the accounting for the whole dio, go back and try again
7074 */
7075 if (ordered_offset < dip->logical_offset + dip->bytes) {
7076 ordered_bytes = dip->logical_offset + dip->bytes -
7077 ordered_offset;
5fd02043 7078 ordered = NULL;
163cf09c
CM
7079 goto again;
7080 }
4b46fce2 7081out_done:
9be3395b 7082 dio_bio = dip->dio_bio;
4b46fce2 7083
4b46fce2 7084 kfree(dip);
c0da7aa1
JB
7085
7086 /* If we had an error make sure to clear the uptodate flag */
7087 if (err)
9be3395b
CM
7088 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7089 dio_end_io(dio_bio, err);
7090 bio_put(bio);
4b46fce2
JB
7091}
7092
eaf25d93
CM
7093static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7094 struct bio *bio, int mirror_num,
7095 unsigned long bio_flags, u64 offset)
7096{
7097 int ret;
7098 struct btrfs_root *root = BTRFS_I(inode)->root;
7099 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 7100 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
7101 return 0;
7102}
7103
e65e1535
MX
7104static void btrfs_end_dio_bio(struct bio *bio, int err)
7105{
7106 struct btrfs_dio_private *dip = bio->bi_private;
7107
7108 if (err) {
efe120a0
FH
7109 btrfs_err(BTRFS_I(dip->inode)->root->fs_info,
7110 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
c1c9ff7c 7111 btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 7112 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
7113 dip->errors = 1;
7114
7115 /*
7116 * before atomic variable goto zero, we must make sure
7117 * dip->errors is perceived to be set.
7118 */
7119 smp_mb__before_atomic_dec();
7120 }
7121
7122 /* if there are more bios still pending for this dio, just exit */
7123 if (!atomic_dec_and_test(&dip->pending_bios))
7124 goto out;
7125
9be3395b 7126 if (dip->errors) {
e65e1535 7127 bio_io_error(dip->orig_bio);
9be3395b
CM
7128 } else {
7129 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
7130 bio_endio(dip->orig_bio, 0);
7131 }
7132out:
7133 bio_put(bio);
7134}
7135
7136static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7137 u64 first_sector, gfp_t gfp_flags)
7138{
7139 int nr_vecs = bio_get_nr_vecs(bdev);
7140 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7141}
7142
7143static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7144 int rw, u64 file_offset, int skip_sum,
c329861d 7145 int async_submit)
e65e1535 7146{
facc8a22 7147 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
7148 int write = rw & REQ_WRITE;
7149 struct btrfs_root *root = BTRFS_I(inode)->root;
7150 int ret;
7151
b812ce28
JB
7152 if (async_submit)
7153 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7154
e65e1535 7155 bio_get(bio);
5fd02043
JB
7156
7157 if (!write) {
7158 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7159 if (ret)
7160 goto err;
7161 }
e65e1535 7162
1ae39938
JB
7163 if (skip_sum)
7164 goto map;
7165
7166 if (write && async_submit) {
e65e1535
MX
7167 ret = btrfs_wq_submit_bio(root->fs_info,
7168 inode, rw, bio, 0, 0,
7169 file_offset,
7170 __btrfs_submit_bio_start_direct_io,
7171 __btrfs_submit_bio_done);
7172 goto err;
1ae39938
JB
7173 } else if (write) {
7174 /*
7175 * If we aren't doing async submit, calculate the csum of the
7176 * bio now.
7177 */
7178 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7179 if (ret)
7180 goto err;
c2db1073 7181 } else if (!skip_sum) {
facc8a22
MX
7182 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
7183 file_offset);
c2db1073
TI
7184 if (ret)
7185 goto err;
7186 }
e65e1535 7187
1ae39938
JB
7188map:
7189 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
7190err:
7191 bio_put(bio);
7192 return ret;
7193}
7194
7195static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7196 int skip_sum)
7197{
7198 struct inode *inode = dip->inode;
7199 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
7200 struct bio *bio;
7201 struct bio *orig_bio = dip->orig_bio;
7202 struct bio_vec *bvec = orig_bio->bi_io_vec;
7203 u64 start_sector = orig_bio->bi_sector;
7204 u64 file_offset = dip->logical_offset;
7205 u64 submit_len = 0;
7206 u64 map_length;
7207 int nr_pages = 0;
e65e1535 7208 int ret = 0;
1ae39938 7209 int async_submit = 0;
e65e1535 7210
e65e1535 7211 map_length = orig_bio->bi_size;
53b381b3 7212 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535
MX
7213 &map_length, NULL, 0);
7214 if (ret) {
64728bbb 7215 bio_put(orig_bio);
e65e1535
MX
7216 return -EIO;
7217 }
facc8a22 7218
02f57c7a
JB
7219 if (map_length >= orig_bio->bi_size) {
7220 bio = orig_bio;
7221 goto submit;
7222 }
7223
53b381b3
DW
7224 /* async crcs make it difficult to collect full stripe writes. */
7225 if (btrfs_get_alloc_profile(root, 1) &
7226 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7227 async_submit = 0;
7228 else
7229 async_submit = 1;
7230
02f57c7a
JB
7231 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7232 if (!bio)
7233 return -ENOMEM;
7234 bio->bi_private = dip;
7235 bio->bi_end_io = btrfs_end_dio_bio;
7236 atomic_inc(&dip->pending_bios);
7237
e65e1535
MX
7238 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7239 if (unlikely(map_length < submit_len + bvec->bv_len ||
7240 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7241 bvec->bv_offset) < bvec->bv_len)) {
7242 /*
7243 * inc the count before we submit the bio so
7244 * we know the end IO handler won't happen before
7245 * we inc the count. Otherwise, the dip might get freed
7246 * before we're done setting it up
7247 */
7248 atomic_inc(&dip->pending_bios);
7249 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7250 file_offset, skip_sum,
c329861d 7251 async_submit);
e65e1535
MX
7252 if (ret) {
7253 bio_put(bio);
7254 atomic_dec(&dip->pending_bios);
7255 goto out_err;
7256 }
7257
e65e1535
MX
7258 start_sector += submit_len >> 9;
7259 file_offset += submit_len;
7260
7261 submit_len = 0;
7262 nr_pages = 0;
7263
7264 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7265 start_sector, GFP_NOFS);
7266 if (!bio)
7267 goto out_err;
7268 bio->bi_private = dip;
7269 bio->bi_end_io = btrfs_end_dio_bio;
7270
7271 map_length = orig_bio->bi_size;
53b381b3 7272 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7273 start_sector << 9,
e65e1535
MX
7274 &map_length, NULL, 0);
7275 if (ret) {
7276 bio_put(bio);
7277 goto out_err;
7278 }
7279 } else {
7280 submit_len += bvec->bv_len;
67871254 7281 nr_pages++;
e65e1535
MX
7282 bvec++;
7283 }
7284 }
7285
02f57c7a 7286submit:
e65e1535 7287 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7288 async_submit);
e65e1535
MX
7289 if (!ret)
7290 return 0;
7291
7292 bio_put(bio);
7293out_err:
7294 dip->errors = 1;
7295 /*
7296 * before atomic variable goto zero, we must
7297 * make sure dip->errors is perceived to be set.
7298 */
7299 smp_mb__before_atomic_dec();
7300 if (atomic_dec_and_test(&dip->pending_bios))
7301 bio_io_error(dip->orig_bio);
7302
7303 /* bio_end_io() will handle error, so we needn't return it */
7304 return 0;
7305}
7306
9be3395b
CM
7307static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7308 struct inode *inode, loff_t file_offset)
4b46fce2
JB
7309{
7310 struct btrfs_root *root = BTRFS_I(inode)->root;
7311 struct btrfs_dio_private *dip;
9be3395b 7312 struct bio *io_bio;
4b46fce2 7313 int skip_sum;
facc8a22 7314 int sum_len;
7b6d91da 7315 int write = rw & REQ_WRITE;
4b46fce2 7316 int ret = 0;
facc8a22 7317 u16 csum_size;
4b46fce2
JB
7318
7319 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7320
9be3395b 7321 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
7322 if (!io_bio) {
7323 ret = -ENOMEM;
7324 goto free_ordered;
7325 }
7326
facc8a22
MX
7327 if (!skip_sum && !write) {
7328 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7329 sum_len = dio_bio->bi_size >> inode->i_sb->s_blocksize_bits;
7330 sum_len *= csum_size;
7331 } else {
7332 sum_len = 0;
7333 }
7334
7335 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
4b46fce2
JB
7336 if (!dip) {
7337 ret = -ENOMEM;
9be3395b 7338 goto free_io_bio;
4b46fce2 7339 }
4b46fce2 7340
9be3395b 7341 dip->private = dio_bio->bi_private;
4b46fce2
JB
7342 dip->inode = inode;
7343 dip->logical_offset = file_offset;
e6da5d2e 7344 dip->bytes = dio_bio->bi_size;
9be3395b
CM
7345 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7346 io_bio->bi_private = dip;
e65e1535 7347 dip->errors = 0;
9be3395b
CM
7348 dip->orig_bio = io_bio;
7349 dip->dio_bio = dio_bio;
e65e1535 7350 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
7351
7352 if (write)
9be3395b 7353 io_bio->bi_end_io = btrfs_endio_direct_write;
4b46fce2 7354 else
9be3395b 7355 io_bio->bi_end_io = btrfs_endio_direct_read;
4b46fce2 7356
e65e1535
MX
7357 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7358 if (!ret)
eaf25d93 7359 return;
9be3395b
CM
7360
7361free_io_bio:
7362 bio_put(io_bio);
7363
4b46fce2
JB
7364free_ordered:
7365 /*
7366 * If this is a write, we need to clean up the reserved space and kill
7367 * the ordered extent.
7368 */
7369 if (write) {
7370 struct btrfs_ordered_extent *ordered;
955256f2 7371 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
7372 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7373 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7374 btrfs_free_reserved_extent(root, ordered->start,
7375 ordered->disk_len);
7376 btrfs_put_ordered_extent(ordered);
7377 btrfs_put_ordered_extent(ordered);
7378 }
9be3395b 7379 bio_endio(dio_bio, ret);
4b46fce2
JB
7380}
7381
5a5f79b5
CM
7382static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7383 const struct iovec *iov, loff_t offset,
7384 unsigned long nr_segs)
7385{
7386 int seg;
a1b75f7d 7387 int i;
5a5f79b5
CM
7388 size_t size;
7389 unsigned long addr;
7390 unsigned blocksize_mask = root->sectorsize - 1;
7391 ssize_t retval = -EINVAL;
7392 loff_t end = offset;
7393
7394 if (offset & blocksize_mask)
7395 goto out;
7396
7397 /* Check the memory alignment. Blocks cannot straddle pages */
7398 for (seg = 0; seg < nr_segs; seg++) {
7399 addr = (unsigned long)iov[seg].iov_base;
7400 size = iov[seg].iov_len;
7401 end += size;
a1b75f7d 7402 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 7403 goto out;
a1b75f7d
JB
7404
7405 /* If this is a write we don't need to check anymore */
7406 if (rw & WRITE)
7407 continue;
7408
7409 /*
7410 * Check to make sure we don't have duplicate iov_base's in this
7411 * iovec, if so return EINVAL, otherwise we'll get csum errors
7412 * when reading back.
7413 */
7414 for (i = seg + 1; i < nr_segs; i++) {
7415 if (iov[seg].iov_base == iov[i].iov_base)
7416 goto out;
7417 }
5a5f79b5
CM
7418 }
7419 retval = 0;
7420out:
7421 return retval;
7422}
eb838e73 7423
16432985
CM
7424static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7425 const struct iovec *iov, loff_t offset,
7426 unsigned long nr_segs)
7427{
4b46fce2
JB
7428 struct file *file = iocb->ki_filp;
7429 struct inode *inode = file->f_mapping->host;
0934856d 7430 size_t count = 0;
2e60a51e 7431 int flags = 0;
38851cc1
MX
7432 bool wakeup = true;
7433 bool relock = false;
0934856d 7434 ssize_t ret;
4b46fce2 7435
5a5f79b5 7436 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 7437 offset, nr_segs))
5a5f79b5 7438 return 0;
3f7c579c 7439
38851cc1
MX
7440 atomic_inc(&inode->i_dio_count);
7441 smp_mb__after_atomic_inc();
7442
0e267c44 7443 /*
41bd9ca4
MX
7444 * The generic stuff only does filemap_write_and_wait_range, which
7445 * isn't enough if we've written compressed pages to this area, so
7446 * we need to flush the dirty pages again to make absolutely sure
7447 * that any outstanding dirty pages are on disk.
0e267c44
JB
7448 */
7449 count = iov_length(iov, nr_segs);
41bd9ca4
MX
7450 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7451 &BTRFS_I(inode)->runtime_flags))
7452 filemap_fdatawrite_range(inode->i_mapping, offset, count);
0e267c44 7453
0934856d 7454 if (rw & WRITE) {
38851cc1
MX
7455 /*
7456 * If the write DIO is beyond the EOF, we need update
7457 * the isize, but it is protected by i_mutex. So we can
7458 * not unlock the i_mutex at this case.
7459 */
7460 if (offset + count <= inode->i_size) {
7461 mutex_unlock(&inode->i_mutex);
7462 relock = true;
7463 }
0934856d
MX
7464 ret = btrfs_delalloc_reserve_space(inode, count);
7465 if (ret)
38851cc1
MX
7466 goto out;
7467 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7468 &BTRFS_I(inode)->runtime_flags))) {
7469 inode_dio_done(inode);
7470 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7471 wakeup = false;
0934856d
MX
7472 }
7473
7474 ret = __blockdev_direct_IO(rw, iocb, inode,
7475 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7476 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
2e60a51e 7477 btrfs_submit_direct, flags);
0934856d
MX
7478 if (rw & WRITE) {
7479 if (ret < 0 && ret != -EIOCBQUEUED)
7480 btrfs_delalloc_release_space(inode, count);
172a5049 7481 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
7482 btrfs_delalloc_release_space(inode,
7483 count - (size_t)ret);
172a5049
MX
7484 else
7485 btrfs_delalloc_release_metadata(inode, 0);
0934856d 7486 }
38851cc1 7487out:
2e60a51e
MX
7488 if (wakeup)
7489 inode_dio_done(inode);
38851cc1
MX
7490 if (relock)
7491 mutex_lock(&inode->i_mutex);
0934856d
MX
7492
7493 return ret;
16432985
CM
7494}
7495
05dadc09
TI
7496#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7497
1506fcc8
YS
7498static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7499 __u64 start, __u64 len)
7500{
05dadc09
TI
7501 int ret;
7502
7503 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7504 if (ret)
7505 return ret;
7506
ec29ed5b 7507 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
7508}
7509
a52d9a80 7510int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 7511{
d1310b2e
CM
7512 struct extent_io_tree *tree;
7513 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 7514 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 7515}
1832a6d5 7516
a52d9a80 7517static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 7518{
d1310b2e 7519 struct extent_io_tree *tree;
b888db2b
CM
7520
7521
7522 if (current->flags & PF_MEMALLOC) {
7523 redirty_page_for_writepage(wbc, page);
7524 unlock_page(page);
7525 return 0;
7526 }
d1310b2e 7527 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 7528 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
7529}
7530
48a3b636
ES
7531static int btrfs_writepages(struct address_space *mapping,
7532 struct writeback_control *wbc)
b293f02e 7533{
d1310b2e 7534 struct extent_io_tree *tree;
771ed689 7535
d1310b2e 7536 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
7537 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7538}
7539
3ab2fb5a
CM
7540static int
7541btrfs_readpages(struct file *file, struct address_space *mapping,
7542 struct list_head *pages, unsigned nr_pages)
7543{
d1310b2e
CM
7544 struct extent_io_tree *tree;
7545 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
7546 return extent_readpages(tree, mapping, pages, nr_pages,
7547 btrfs_get_extent);
7548}
e6dcd2dc 7549static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 7550{
d1310b2e
CM
7551 struct extent_io_tree *tree;
7552 struct extent_map_tree *map;
a52d9a80 7553 int ret;
8c2383c3 7554
d1310b2e
CM
7555 tree = &BTRFS_I(page->mapping->host)->io_tree;
7556 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 7557 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
7558 if (ret == 1) {
7559 ClearPagePrivate(page);
7560 set_page_private(page, 0);
7561 page_cache_release(page);
39279cc3 7562 }
a52d9a80 7563 return ret;
39279cc3
CM
7564}
7565
e6dcd2dc
CM
7566static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7567{
98509cfc
CM
7568 if (PageWriteback(page) || PageDirty(page))
7569 return 0;
b335b003 7570 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
7571}
7572
d47992f8
LC
7573static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7574 unsigned int length)
39279cc3 7575{
5fd02043 7576 struct inode *inode = page->mapping->host;
d1310b2e 7577 struct extent_io_tree *tree;
e6dcd2dc 7578 struct btrfs_ordered_extent *ordered;
2ac55d41 7579 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7580 u64 page_start = page_offset(page);
7581 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
131e404a 7582 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 7583
8b62b72b
CM
7584 /*
7585 * we have the page locked, so new writeback can't start,
7586 * and the dirty bit won't be cleared while we are here.
7587 *
7588 * Wait for IO on this page so that we can safely clear
7589 * the PagePrivate2 bit and do ordered accounting
7590 */
e6dcd2dc 7591 wait_on_page_writeback(page);
8b62b72b 7592
5fd02043 7593 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
7594 if (offset) {
7595 btrfs_releasepage(page, GFP_NOFS);
7596 return;
7597 }
131e404a
FDBM
7598
7599 if (!inode_evicting)
7600 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7601 ordered = btrfs_lookup_ordered_extent(inode, page_start);
e6dcd2dc 7602 if (ordered) {
eb84ae03
CM
7603 /*
7604 * IO on this page will never be started, so we need
7605 * to account for any ordered extents now
7606 */
131e404a
FDBM
7607 if (!inode_evicting)
7608 clear_extent_bit(tree, page_start, page_end,
7609 EXTENT_DIRTY | EXTENT_DELALLOC |
7610 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7611 EXTENT_DEFRAG, 1, 0, &cached_state,
7612 GFP_NOFS);
8b62b72b
CM
7613 /*
7614 * whoever cleared the private bit is responsible
7615 * for the finish_ordered_io
7616 */
77cef2ec
JB
7617 if (TestClearPagePrivate2(page)) {
7618 struct btrfs_ordered_inode_tree *tree;
7619 u64 new_len;
7620
7621 tree = &BTRFS_I(inode)->ordered_tree;
7622
7623 spin_lock_irq(&tree->lock);
7624 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7625 new_len = page_start - ordered->file_offset;
7626 if (new_len < ordered->truncated_len)
7627 ordered->truncated_len = new_len;
7628 spin_unlock_irq(&tree->lock);
7629
7630 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7631 page_start,
7632 PAGE_CACHE_SIZE, 1))
7633 btrfs_finish_ordered_io(ordered);
8b62b72b 7634 }
e6dcd2dc 7635 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
7636 if (!inode_evicting) {
7637 cached_state = NULL;
7638 lock_extent_bits(tree, page_start, page_end, 0,
7639 &cached_state);
7640 }
7641 }
7642
7643 if (!inode_evicting) {
7644 clear_extent_bit(tree, page_start, page_end,
7645 EXTENT_LOCKED | EXTENT_DIRTY |
7646 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7647 EXTENT_DEFRAG, 1, 1,
7648 &cached_state, GFP_NOFS);
7649
7650 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 7651 }
e6dcd2dc 7652
4a096752 7653 ClearPageChecked(page);
9ad6b7bc 7654 if (PagePrivate(page)) {
9ad6b7bc
CM
7655 ClearPagePrivate(page);
7656 set_page_private(page, 0);
7657 page_cache_release(page);
7658 }
39279cc3
CM
7659}
7660
9ebefb18
CM
7661/*
7662 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7663 * called from a page fault handler when a page is first dirtied. Hence we must
7664 * be careful to check for EOF conditions here. We set the page up correctly
7665 * for a written page which means we get ENOSPC checking when writing into
7666 * holes and correct delalloc and unwritten extent mapping on filesystems that
7667 * support these features.
7668 *
7669 * We are not allowed to take the i_mutex here so we have to play games to
7670 * protect against truncate races as the page could now be beyond EOF. Because
7671 * vmtruncate() writes the inode size before removing pages, once we have the
7672 * page lock we can determine safely if the page is beyond EOF. If it is not
7673 * beyond EOF, then the page is guaranteed safe against truncation until we
7674 * unlock the page.
7675 */
c2ec175c 7676int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 7677{
c2ec175c 7678 struct page *page = vmf->page;
496ad9aa 7679 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 7680 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
7681 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7682 struct btrfs_ordered_extent *ordered;
2ac55d41 7683 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7684 char *kaddr;
7685 unsigned long zero_start;
9ebefb18 7686 loff_t size;
1832a6d5 7687 int ret;
9998eb70 7688 int reserved = 0;
a52d9a80 7689 u64 page_start;
e6dcd2dc 7690 u64 page_end;
9ebefb18 7691
b2b5ef5c 7692 sb_start_pagefault(inode->i_sb);
0ca1f7ce 7693 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 7694 if (!ret) {
e41f941a 7695 ret = file_update_time(vma->vm_file);
9998eb70
CM
7696 reserved = 1;
7697 }
56a76f82
NP
7698 if (ret) {
7699 if (ret == -ENOMEM)
7700 ret = VM_FAULT_OOM;
7701 else /* -ENOSPC, -EIO, etc */
7702 ret = VM_FAULT_SIGBUS;
9998eb70
CM
7703 if (reserved)
7704 goto out;
7705 goto out_noreserve;
56a76f82 7706 }
1832a6d5 7707
56a76f82 7708 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 7709again:
9ebefb18 7710 lock_page(page);
9ebefb18 7711 size = i_size_read(inode);
e6dcd2dc
CM
7712 page_start = page_offset(page);
7713 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 7714
9ebefb18 7715 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 7716 (page_start >= size)) {
9ebefb18
CM
7717 /* page got truncated out from underneath us */
7718 goto out_unlock;
7719 }
e6dcd2dc
CM
7720 wait_on_page_writeback(page);
7721
d0082371 7722 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7723 set_page_extent_mapped(page);
7724
eb84ae03
CM
7725 /*
7726 * we can't set the delalloc bits if there are pending ordered
7727 * extents. Drop our locks and wait for them to finish
7728 */
e6dcd2dc
CM
7729 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7730 if (ordered) {
2ac55d41
JB
7731 unlock_extent_cached(io_tree, page_start, page_end,
7732 &cached_state, GFP_NOFS);
e6dcd2dc 7733 unlock_page(page);
eb84ae03 7734 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
7735 btrfs_put_ordered_extent(ordered);
7736 goto again;
7737 }
7738
fbf19087
JB
7739 /*
7740 * XXX - page_mkwrite gets called every time the page is dirtied, even
7741 * if it was already dirty, so for space accounting reasons we need to
7742 * clear any delalloc bits for the range we are fixing to save. There
7743 * is probably a better way to do this, but for now keep consistent with
7744 * prepare_pages in the normal write path.
7745 */
2ac55d41 7746 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
7747 EXTENT_DIRTY | EXTENT_DELALLOC |
7748 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 7749 0, 0, &cached_state, GFP_NOFS);
fbf19087 7750
2ac55d41
JB
7751 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7752 &cached_state);
9ed74f2d 7753 if (ret) {
2ac55d41
JB
7754 unlock_extent_cached(io_tree, page_start, page_end,
7755 &cached_state, GFP_NOFS);
9ed74f2d
JB
7756 ret = VM_FAULT_SIGBUS;
7757 goto out_unlock;
7758 }
e6dcd2dc 7759 ret = 0;
9ebefb18
CM
7760
7761 /* page is wholly or partially inside EOF */
a52d9a80 7762 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 7763 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 7764 else
e6dcd2dc 7765 zero_start = PAGE_CACHE_SIZE;
9ebefb18 7766
e6dcd2dc
CM
7767 if (zero_start != PAGE_CACHE_SIZE) {
7768 kaddr = kmap(page);
7769 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7770 flush_dcache_page(page);
7771 kunmap(page);
7772 }
247e743c 7773 ClearPageChecked(page);
e6dcd2dc 7774 set_page_dirty(page);
50a9b214 7775 SetPageUptodate(page);
5a3f23d5 7776
257c62e1
CM
7777 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7778 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 7779 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 7780
2ac55d41 7781 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
7782
7783out_unlock:
b2b5ef5c
JK
7784 if (!ret) {
7785 sb_end_pagefault(inode->i_sb);
50a9b214 7786 return VM_FAULT_LOCKED;
b2b5ef5c 7787 }
9ebefb18 7788 unlock_page(page);
1832a6d5 7789out:
ec39e180 7790 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 7791out_noreserve:
b2b5ef5c 7792 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
7793 return ret;
7794}
7795
a41ad394 7796static int btrfs_truncate(struct inode *inode)
39279cc3
CM
7797{
7798 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 7799 struct btrfs_block_rsv *rsv;
a71754fc 7800 int ret = 0;
3893e33b 7801 int err = 0;
39279cc3 7802 struct btrfs_trans_handle *trans;
dbe674a9 7803 u64 mask = root->sectorsize - 1;
07127184 7804 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 7805
0ef8b726
JB
7806 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
7807 (u64)-1);
7808 if (ret)
7809 return ret;
39279cc3 7810
fcb80c2a
JB
7811 /*
7812 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7813 * 3 things going on here
7814 *
7815 * 1) We need to reserve space for our orphan item and the space to
7816 * delete our orphan item. Lord knows we don't want to have a dangling
7817 * orphan item because we didn't reserve space to remove it.
7818 *
7819 * 2) We need to reserve space to update our inode.
7820 *
7821 * 3) We need to have something to cache all the space that is going to
7822 * be free'd up by the truncate operation, but also have some slack
7823 * space reserved in case it uses space during the truncate (thank you
7824 * very much snapshotting).
7825 *
7826 * And we need these to all be seperate. The fact is we can use alot of
7827 * space doing the truncate, and we have no earthly idea how much space
7828 * we will use, so we need the truncate reservation to be seperate so it
7829 * doesn't end up using space reserved for updating the inode or
7830 * removing the orphan item. We also need to be able to stop the
7831 * transaction and start a new one, which means we need to be able to
7832 * update the inode several times, and we have no idea of knowing how
7833 * many times that will be, so we can't just reserve 1 item for the
7834 * entirety of the opration, so that has to be done seperately as well.
7835 * Then there is the orphan item, which does indeed need to be held on
7836 * to for the whole operation, and we need nobody to touch this reserved
7837 * space except the orphan code.
7838 *
7839 * So that leaves us with
7840 *
7841 * 1) root->orphan_block_rsv - for the orphan deletion.
7842 * 2) rsv - for the truncate reservation, which we will steal from the
7843 * transaction reservation.
7844 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7845 * updating the inode.
7846 */
66d8f3dd 7847 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
7848 if (!rsv)
7849 return -ENOMEM;
4a338542 7850 rsv->size = min_size;
ca7e70f5 7851 rsv->failfast = 1;
f0cd846e 7852
907cbceb 7853 /*
07127184 7854 * 1 for the truncate slack space
907cbceb
JB
7855 * 1 for updating the inode.
7856 */
f3fe820c 7857 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
7858 if (IS_ERR(trans)) {
7859 err = PTR_ERR(trans);
7860 goto out;
7861 }
f0cd846e 7862
907cbceb
JB
7863 /* Migrate the slack space for the truncate to our reserve */
7864 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7865 min_size);
fcb80c2a 7866 BUG_ON(ret);
f0cd846e 7867
5a3f23d5
CM
7868 /*
7869 * setattr is responsible for setting the ordered_data_close flag,
7870 * but that is only tested during the last file release. That
7871 * could happen well after the next commit, leaving a great big
7872 * window where new writes may get lost if someone chooses to write
7873 * to this file after truncating to zero
7874 *
7875 * The inode doesn't have any dirty data here, and so if we commit
7876 * this is a noop. If someone immediately starts writing to the inode
7877 * it is very likely we'll catch some of their writes in this
7878 * transaction, and the commit will find this file on the ordered
7879 * data list with good things to send down.
7880 *
7881 * This is a best effort solution, there is still a window where
7882 * using truncate to replace the contents of the file will
7883 * end up with a zero length file after a crash.
7884 */
72ac3c0d
JB
7885 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7886 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
7887 btrfs_add_ordered_operation(trans, root, inode);
7888
5dc562c5
JB
7889 /*
7890 * So if we truncate and then write and fsync we normally would just
7891 * write the extents that changed, which is a problem if we need to
7892 * first truncate that entire inode. So set this flag so we write out
7893 * all of the extents in the inode to the sync log so we're completely
7894 * safe.
7895 */
7896 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 7897 trans->block_rsv = rsv;
907cbceb 7898
8082510e
YZ
7899 while (1) {
7900 ret = btrfs_truncate_inode_items(trans, root, inode,
7901 inode->i_size,
7902 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 7903 if (ret != -ENOSPC) {
3893e33b 7904 err = ret;
8082510e 7905 break;
3893e33b 7906 }
39279cc3 7907
fcb80c2a 7908 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 7909 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
7910 if (ret) {
7911 err = ret;
7912 break;
7913 }
ca7e70f5 7914
8082510e 7915 btrfs_end_transaction(trans, root);
b53d3f5d 7916 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7917
7918 trans = btrfs_start_transaction(root, 2);
7919 if (IS_ERR(trans)) {
7920 ret = err = PTR_ERR(trans);
7921 trans = NULL;
7922 break;
7923 }
7924
7925 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7926 rsv, min_size);
7927 BUG_ON(ret); /* shouldn't happen */
7928 trans->block_rsv = rsv;
8082510e
YZ
7929 }
7930
7931 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7932 trans->block_rsv = root->orphan_block_rsv;
8082510e 7933 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7934 if (ret)
7935 err = ret;
8082510e
YZ
7936 }
7937
917c16b2
CM
7938 if (trans) {
7939 trans->block_rsv = &root->fs_info->trans_block_rsv;
7940 ret = btrfs_update_inode(trans, root, inode);
7941 if (ret && !err)
7942 err = ret;
7b128766 7943
7ad85bb7 7944 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7945 btrfs_btree_balance_dirty(root);
917c16b2 7946 }
fcb80c2a
JB
7947
7948out:
7949 btrfs_free_block_rsv(root, rsv);
7950
3893e33b
JB
7951 if (ret && !err)
7952 err = ret;
a41ad394 7953
3893e33b 7954 return err;
39279cc3
CM
7955}
7956
d352ac68
CM
7957/*
7958 * create a new subvolume directory/inode (helper for the ioctl).
7959 */
d2fb3437 7960int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
7961 struct btrfs_root *new_root,
7962 struct btrfs_root *parent_root,
7963 u64 new_dirid)
39279cc3 7964{
39279cc3 7965 struct inode *inode;
76dda93c 7966 int err;
00e4e6b3 7967 u64 index = 0;
39279cc3 7968
12fc9d09
FA
7969 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7970 new_dirid, new_dirid,
7971 S_IFDIR | (~current_umask() & S_IRWXUGO),
7972 &index);
54aa1f4d 7973 if (IS_ERR(inode))
f46b5a66 7974 return PTR_ERR(inode);
39279cc3
CM
7975 inode->i_op = &btrfs_dir_inode_operations;
7976 inode->i_fop = &btrfs_dir_file_operations;
7977
bfe86848 7978 set_nlink(inode, 1);
dbe674a9 7979 btrfs_i_size_write(inode, 0);
3b96362c 7980
63541927
FDBM
7981 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
7982 if (err)
7983 btrfs_err(new_root->fs_info,
7984 "error inheriting subvolume %llu properties: %d\n",
7985 new_root->root_key.objectid, err);
7986
76dda93c 7987 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7988
76dda93c 7989 iput(inode);
ce598979 7990 return err;
39279cc3
CM
7991}
7992
39279cc3
CM
7993struct inode *btrfs_alloc_inode(struct super_block *sb)
7994{
7995 struct btrfs_inode *ei;
2ead6ae7 7996 struct inode *inode;
39279cc3
CM
7997
7998 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7999 if (!ei)
8000 return NULL;
2ead6ae7
YZ
8001
8002 ei->root = NULL;
2ead6ae7 8003 ei->generation = 0;
15ee9bc7 8004 ei->last_trans = 0;
257c62e1 8005 ei->last_sub_trans = 0;
e02119d5 8006 ei->logged_trans = 0;
2ead6ae7 8007 ei->delalloc_bytes = 0;
2ead6ae7
YZ
8008 ei->disk_i_size = 0;
8009 ei->flags = 0;
7709cde3 8010 ei->csum_bytes = 0;
2ead6ae7 8011 ei->index_cnt = (u64)-1;
67de1176 8012 ei->dir_index = 0;
2ead6ae7 8013 ei->last_unlink_trans = 0;
46d8bc34 8014 ei->last_log_commit = 0;
2ead6ae7 8015
9e0baf60
JB
8016 spin_lock_init(&ei->lock);
8017 ei->outstanding_extents = 0;
8018 ei->reserved_extents = 0;
2ead6ae7 8019
72ac3c0d 8020 ei->runtime_flags = 0;
261507a0 8021 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8022
16cdcec7
MX
8023 ei->delayed_node = NULL;
8024
2ead6ae7 8025 inode = &ei->vfs_inode;
a8067e02 8026 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
8027 extent_io_tree_init(&ei->io_tree, &inode->i_data);
8028 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
8029 ei->io_tree.track_uptodate = 1;
8030 ei->io_failure_tree.track_uptodate = 1;
b812ce28 8031 atomic_set(&ei->sync_writers, 0);
2ead6ae7 8032 mutex_init(&ei->log_mutex);
f248679e 8033 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 8034 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 8035 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 8036 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
8037 RB_CLEAR_NODE(&ei->rb_node);
8038
8039 return inode;
39279cc3
CM
8040}
8041
aaedb55b
JB
8042#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8043void btrfs_test_destroy_inode(struct inode *inode)
8044{
8045 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8046 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8047}
8048#endif
8049
fa0d7e3d
NP
8050static void btrfs_i_callback(struct rcu_head *head)
8051{
8052 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
8053 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8054}
8055
39279cc3
CM
8056void btrfs_destroy_inode(struct inode *inode)
8057{
e6dcd2dc 8058 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
8059 struct btrfs_root *root = BTRFS_I(inode)->root;
8060
b3d9b7a3 8061 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 8062 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
8063 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8064 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
8065 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8066 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 8067
a6dbd429
JB
8068 /*
8069 * This can happen where we create an inode, but somebody else also
8070 * created the same inode and we need to destroy the one we already
8071 * created.
8072 */
8073 if (!root)
8074 goto free;
8075
5a3f23d5
CM
8076 /*
8077 * Make sure we're properly removed from the ordered operation
8078 * lists.
8079 */
8080 smp_mb();
8081 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
199c2a9c 8082 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5 8083 list_del_init(&BTRFS_I(inode)->ordered_operations);
199c2a9c 8084 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5
CM
8085 }
8086
8a35d95f
JB
8087 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8088 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 8089 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 8090 btrfs_ino(inode));
8a35d95f 8091 atomic_dec(&root->orphan_inodes);
7b128766 8092 }
7b128766 8093
d397712b 8094 while (1) {
e6dcd2dc
CM
8095 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8096 if (!ordered)
8097 break;
8098 else {
c2cf52eb 8099 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 8100 ordered->file_offset, ordered->len);
e6dcd2dc
CM
8101 btrfs_remove_ordered_extent(inode, ordered);
8102 btrfs_put_ordered_extent(ordered);
8103 btrfs_put_ordered_extent(ordered);
8104 }
8105 }
5d4f98a2 8106 inode_tree_del(inode);
5b21f2ed 8107 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 8108free:
fa0d7e3d 8109 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
8110}
8111
45321ac5 8112int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8113{
8114 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8115
6379ef9f
NA
8116 if (root == NULL)
8117 return 1;
8118
fa6ac876 8119 /* the snap/subvol tree is on deleting */
69e9c6c6 8120 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8121 return 1;
76dda93c 8122 else
45321ac5 8123 return generic_drop_inode(inode);
76dda93c
YZ
8124}
8125
0ee0fda0 8126static void init_once(void *foo)
39279cc3
CM
8127{
8128 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8129
8130 inode_init_once(&ei->vfs_inode);
8131}
8132
8133void btrfs_destroy_cachep(void)
8134{
8c0a8537
KS
8135 /*
8136 * Make sure all delayed rcu free inodes are flushed before we
8137 * destroy cache.
8138 */
8139 rcu_barrier();
39279cc3
CM
8140 if (btrfs_inode_cachep)
8141 kmem_cache_destroy(btrfs_inode_cachep);
8142 if (btrfs_trans_handle_cachep)
8143 kmem_cache_destroy(btrfs_trans_handle_cachep);
8144 if (btrfs_transaction_cachep)
8145 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
8146 if (btrfs_path_cachep)
8147 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
8148 if (btrfs_free_space_cachep)
8149 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
8150 if (btrfs_delalloc_work_cachep)
8151 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
8152}
8153
8154int btrfs_init_cachep(void)
8155{
837e1972 8156 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
8157 sizeof(struct btrfs_inode), 0,
8158 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
8159 if (!btrfs_inode_cachep)
8160 goto fail;
9601e3f6 8161
837e1972 8162 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
8163 sizeof(struct btrfs_trans_handle), 0,
8164 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8165 if (!btrfs_trans_handle_cachep)
8166 goto fail;
9601e3f6 8167
837e1972 8168 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
8169 sizeof(struct btrfs_transaction), 0,
8170 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8171 if (!btrfs_transaction_cachep)
8172 goto fail;
9601e3f6 8173
837e1972 8174 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
8175 sizeof(struct btrfs_path), 0,
8176 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8177 if (!btrfs_path_cachep)
8178 goto fail;
9601e3f6 8179
837e1972 8180 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
8181 sizeof(struct btrfs_free_space), 0,
8182 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8183 if (!btrfs_free_space_cachep)
8184 goto fail;
8185
8ccf6f19
MX
8186 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8187 sizeof(struct btrfs_delalloc_work), 0,
8188 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8189 NULL);
8190 if (!btrfs_delalloc_work_cachep)
8191 goto fail;
8192
39279cc3
CM
8193 return 0;
8194fail:
8195 btrfs_destroy_cachep();
8196 return -ENOMEM;
8197}
8198
8199static int btrfs_getattr(struct vfsmount *mnt,
8200 struct dentry *dentry, struct kstat *stat)
8201{
df0af1a5 8202 u64 delalloc_bytes;
39279cc3 8203 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
8204 u32 blocksize = inode->i_sb->s_blocksize;
8205
39279cc3 8206 generic_fillattr(inode, stat);
0ee5dc67 8207 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 8208 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
8209
8210 spin_lock(&BTRFS_I(inode)->lock);
8211 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8212 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 8213 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 8214 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8215 return 0;
8216}
8217
d397712b
CM
8218static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8219 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
8220{
8221 struct btrfs_trans_handle *trans;
8222 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 8223 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
8224 struct inode *new_inode = new_dentry->d_inode;
8225 struct inode *old_inode = old_dentry->d_inode;
8226 struct timespec ctime = CURRENT_TIME;
00e4e6b3 8227 u64 index = 0;
4df27c4d 8228 u64 root_objectid;
39279cc3 8229 int ret;
33345d01 8230 u64 old_ino = btrfs_ino(old_inode);
39279cc3 8231
33345d01 8232 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
8233 return -EPERM;
8234
4df27c4d 8235 /* we only allow rename subvolume link between subvolumes */
33345d01 8236 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
8237 return -EXDEV;
8238
33345d01
LZ
8239 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8240 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 8241 return -ENOTEMPTY;
5f39d397 8242
4df27c4d
YZ
8243 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8244 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8245 return -ENOTEMPTY;
9c52057c
CM
8246
8247
8248 /* check for collisions, even if the name isn't there */
4871c158 8249 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
8250 new_dentry->d_name.name,
8251 new_dentry->d_name.len);
8252
8253 if (ret) {
8254 if (ret == -EEXIST) {
8255 /* we shouldn't get
8256 * eexist without a new_inode */
fae7f21c 8257 if (WARN_ON(!new_inode)) {
9c52057c
CM
8258 return ret;
8259 }
8260 } else {
8261 /* maybe -EOVERFLOW */
8262 return ret;
8263 }
8264 }
8265 ret = 0;
8266
5a3f23d5
CM
8267 /*
8268 * we're using rename to replace one file with another.
8269 * and the replacement file is large. Start IO on it now so
8270 * we don't add too much work to the end of the transaction
8271 */
4baf8c92 8272 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
8273 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8274 filemap_flush(old_inode->i_mapping);
8275
76dda93c 8276 /* close the racy window with snapshot create/destroy ioctl */
33345d01 8277 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8278 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
8279 /*
8280 * We want to reserve the absolute worst case amount of items. So if
8281 * both inodes are subvols and we need to unlink them then that would
8282 * require 4 item modifications, but if they are both normal inodes it
8283 * would require 5 item modifications, so we'll assume their normal
8284 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8285 * should cover the worst case number of items we'll modify.
8286 */
6e137ed3 8287 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
8288 if (IS_ERR(trans)) {
8289 ret = PTR_ERR(trans);
8290 goto out_notrans;
8291 }
76dda93c 8292
4df27c4d
YZ
8293 if (dest != root)
8294 btrfs_record_root_in_trans(trans, dest);
5f39d397 8295
a5719521
YZ
8296 ret = btrfs_set_inode_index(new_dir, &index);
8297 if (ret)
8298 goto out_fail;
5a3f23d5 8299
67de1176 8300 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 8301 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8302 /* force full log commit if subvolume involved. */
8303 root->fs_info->last_trans_log_full_commit = trans->transid;
8304 } else {
a5719521
YZ
8305 ret = btrfs_insert_inode_ref(trans, dest,
8306 new_dentry->d_name.name,
8307 new_dentry->d_name.len,
33345d01
LZ
8308 old_ino,
8309 btrfs_ino(new_dir), index);
a5719521
YZ
8310 if (ret)
8311 goto out_fail;
4df27c4d
YZ
8312 /*
8313 * this is an ugly little race, but the rename is required
8314 * to make sure that if we crash, the inode is either at the
8315 * old name or the new one. pinning the log transaction lets
8316 * us make sure we don't allow a log commit to come in after
8317 * we unlink the name but before we add the new name back in.
8318 */
8319 btrfs_pin_log_trans(root);
8320 }
5a3f23d5
CM
8321 /*
8322 * make sure the inode gets flushed if it is replacing
8323 * something.
8324 */
33345d01 8325 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 8326 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 8327
0c4d2d95
JB
8328 inode_inc_iversion(old_dir);
8329 inode_inc_iversion(new_dir);
8330 inode_inc_iversion(old_inode);
39279cc3
CM
8331 old_dir->i_ctime = old_dir->i_mtime = ctime;
8332 new_dir->i_ctime = new_dir->i_mtime = ctime;
8333 old_inode->i_ctime = ctime;
5f39d397 8334
12fcfd22
CM
8335 if (old_dentry->d_parent != new_dentry->d_parent)
8336 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8337
33345d01 8338 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8339 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8340 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8341 old_dentry->d_name.name,
8342 old_dentry->d_name.len);
8343 } else {
92986796
AV
8344 ret = __btrfs_unlink_inode(trans, root, old_dir,
8345 old_dentry->d_inode,
8346 old_dentry->d_name.name,
8347 old_dentry->d_name.len);
8348 if (!ret)
8349 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8350 }
79787eaa
JM
8351 if (ret) {
8352 btrfs_abort_transaction(trans, root, ret);
8353 goto out_fail;
8354 }
39279cc3
CM
8355
8356 if (new_inode) {
0c4d2d95 8357 inode_inc_iversion(new_inode);
39279cc3 8358 new_inode->i_ctime = CURRENT_TIME;
33345d01 8359 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8360 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8361 root_objectid = BTRFS_I(new_inode)->location.objectid;
8362 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8363 root_objectid,
8364 new_dentry->d_name.name,
8365 new_dentry->d_name.len);
8366 BUG_ON(new_inode->i_nlink == 0);
8367 } else {
8368 ret = btrfs_unlink_inode(trans, dest, new_dir,
8369 new_dentry->d_inode,
8370 new_dentry->d_name.name,
8371 new_dentry->d_name.len);
8372 }
4ef31a45 8373 if (!ret && new_inode->i_nlink == 0)
e02119d5 8374 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
79787eaa
JM
8375 if (ret) {
8376 btrfs_abort_transaction(trans, root, ret);
8377 goto out_fail;
8378 }
39279cc3 8379 }
aec7477b 8380
4df27c4d
YZ
8381 ret = btrfs_add_link(trans, new_dir, old_inode,
8382 new_dentry->d_name.name,
a5719521 8383 new_dentry->d_name.len, 0, index);
79787eaa
JM
8384 if (ret) {
8385 btrfs_abort_transaction(trans, root, ret);
8386 goto out_fail;
8387 }
39279cc3 8388
67de1176
MX
8389 if (old_inode->i_nlink == 1)
8390 BTRFS_I(old_inode)->dir_index = index;
8391
33345d01 8392 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 8393 struct dentry *parent = new_dentry->d_parent;
6a912213 8394 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
8395 btrfs_end_log_trans(root);
8396 }
39279cc3 8397out_fail:
7ad85bb7 8398 btrfs_end_transaction(trans, root);
b44c59a8 8399out_notrans:
33345d01 8400 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8401 up_read(&root->fs_info->subvol_sem);
9ed74f2d 8402
39279cc3
CM
8403 return ret;
8404}
8405
d458b054 8406static void btrfs_run_delalloc_work(struct btrfs_work *work)
8ccf6f19
MX
8407{
8408 struct btrfs_delalloc_work *delalloc_work;
9f23e289 8409 struct inode *inode;
8ccf6f19
MX
8410
8411 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8412 work);
9f23e289
JB
8413 inode = delalloc_work->inode;
8414 if (delalloc_work->wait) {
8415 btrfs_wait_ordered_range(inode, 0, (u64)-1);
8416 } else {
8417 filemap_flush(inode->i_mapping);
8418 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8419 &BTRFS_I(inode)->runtime_flags))
8420 filemap_flush(inode->i_mapping);
8421 }
8ccf6f19
MX
8422
8423 if (delalloc_work->delay_iput)
9f23e289 8424 btrfs_add_delayed_iput(inode);
8ccf6f19 8425 else
9f23e289 8426 iput(inode);
8ccf6f19
MX
8427 complete(&delalloc_work->completion);
8428}
8429
8430struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8431 int wait, int delay_iput)
8432{
8433 struct btrfs_delalloc_work *work;
8434
8435 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8436 if (!work)
8437 return NULL;
8438
8439 init_completion(&work->completion);
8440 INIT_LIST_HEAD(&work->list);
8441 work->inode = inode;
8442 work->wait = wait;
8443 work->delay_iput = delay_iput;
a44903ab 8444 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
8445
8446 return work;
8447}
8448
8449void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8450{
8451 wait_for_completion(&work->completion);
8452 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8453}
8454
d352ac68
CM
8455/*
8456 * some fairly slow code that needs optimization. This walks the list
8457 * of all the inodes with pending delalloc and forces them to disk.
8458 */
6c255e67
MX
8459static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
8460 int nr)
ea8c2819 8461{
ea8c2819 8462 struct btrfs_inode *binode;
5b21f2ed 8463 struct inode *inode;
8ccf6f19
MX
8464 struct btrfs_delalloc_work *work, *next;
8465 struct list_head works;
1eafa6c7 8466 struct list_head splice;
8ccf6f19 8467 int ret = 0;
ea8c2819 8468
8ccf6f19 8469 INIT_LIST_HEAD(&works);
1eafa6c7 8470 INIT_LIST_HEAD(&splice);
63607cc8 8471
573bfb72 8472 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
8473 spin_lock(&root->delalloc_lock);
8474 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
8475 while (!list_empty(&splice)) {
8476 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 8477 delalloc_inodes);
1eafa6c7 8478
eb73c1b7
MX
8479 list_move_tail(&binode->delalloc_inodes,
8480 &root->delalloc_inodes);
5b21f2ed 8481 inode = igrab(&binode->vfs_inode);
df0af1a5 8482 if (!inode) {
eb73c1b7 8483 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 8484 continue;
df0af1a5 8485 }
eb73c1b7 8486 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
8487
8488 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8489 if (unlikely(!work)) {
f4ab9ea7
JB
8490 if (delay_iput)
8491 btrfs_add_delayed_iput(inode);
8492 else
8493 iput(inode);
1eafa6c7 8494 ret = -ENOMEM;
6c255e67 8495 break;
5b21f2ed 8496 }
1eafa6c7 8497 list_add_tail(&work->list, &works);
a44903ab
QW
8498 btrfs_queue_work(root->fs_info->flush_workers,
8499 &work->work);
6c255e67
MX
8500 ret++;
8501 if (nr != -1 && ret >= nr)
8502 break;
5b21f2ed 8503 cond_resched();
eb73c1b7 8504 spin_lock(&root->delalloc_lock);
ea8c2819 8505 }
eb73c1b7 8506 spin_unlock(&root->delalloc_lock);
8c8bee1d 8507
eb73c1b7
MX
8508 list_for_each_entry_safe(work, next, &works, list) {
8509 list_del_init(&work->list);
8510 btrfs_wait_and_free_delalloc_work(work);
8511 }
8512
8513 if (!list_empty_careful(&splice)) {
8514 spin_lock(&root->delalloc_lock);
8515 list_splice_tail(&splice, &root->delalloc_inodes);
8516 spin_unlock(&root->delalloc_lock);
8517 }
573bfb72 8518 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
8519 return ret;
8520}
1eafa6c7 8521
eb73c1b7
MX
8522int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8523{
8524 int ret;
1eafa6c7 8525
2c21b4d7 8526 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
8527 return -EROFS;
8528
6c255e67
MX
8529 ret = __start_delalloc_inodes(root, delay_iput, -1);
8530 if (ret > 0)
8531 ret = 0;
eb73c1b7
MX
8532 /*
8533 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
8534 * we have to make sure the IO is actually started and that
8535 * ordered extents get created before we return
8536 */
8537 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 8538 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 8539 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 8540 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
8541 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8542 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
8543 }
8544 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
8545 return ret;
8546}
8547
6c255e67
MX
8548int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
8549 int nr)
eb73c1b7
MX
8550{
8551 struct btrfs_root *root;
8552 struct list_head splice;
8553 int ret;
8554
2c21b4d7 8555 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
8556 return -EROFS;
8557
8558 INIT_LIST_HEAD(&splice);
8559
573bfb72 8560 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
8561 spin_lock(&fs_info->delalloc_root_lock);
8562 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 8563 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
8564 root = list_first_entry(&splice, struct btrfs_root,
8565 delalloc_root);
8566 root = btrfs_grab_fs_root(root);
8567 BUG_ON(!root);
8568 list_move_tail(&root->delalloc_root,
8569 &fs_info->delalloc_roots);
8570 spin_unlock(&fs_info->delalloc_root_lock);
8571
6c255e67 8572 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 8573 btrfs_put_fs_root(root);
6c255e67 8574 if (ret < 0)
eb73c1b7
MX
8575 goto out;
8576
6c255e67
MX
8577 if (nr != -1) {
8578 nr -= ret;
8579 WARN_ON(nr < 0);
8580 }
eb73c1b7 8581 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 8582 }
eb73c1b7 8583 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8584
6c255e67 8585 ret = 0;
eb73c1b7
MX
8586 atomic_inc(&fs_info->async_submit_draining);
8587 while (atomic_read(&fs_info->nr_async_submits) ||
8588 atomic_read(&fs_info->async_delalloc_pages)) {
8589 wait_event(fs_info->async_submit_wait,
8590 (atomic_read(&fs_info->nr_async_submits) == 0 &&
8591 atomic_read(&fs_info->async_delalloc_pages) == 0));
8592 }
8593 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 8594out:
1eafa6c7 8595 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
8596 spin_lock(&fs_info->delalloc_root_lock);
8597 list_splice_tail(&splice, &fs_info->delalloc_roots);
8598 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8599 }
573bfb72 8600 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 8601 return ret;
ea8c2819
CM
8602}
8603
39279cc3
CM
8604static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8605 const char *symname)
8606{
8607 struct btrfs_trans_handle *trans;
8608 struct btrfs_root *root = BTRFS_I(dir)->root;
8609 struct btrfs_path *path;
8610 struct btrfs_key key;
1832a6d5 8611 struct inode *inode = NULL;
39279cc3
CM
8612 int err;
8613 int drop_inode = 0;
8614 u64 objectid;
67871254 8615 u64 index = 0;
39279cc3
CM
8616 int name_len;
8617 int datasize;
5f39d397 8618 unsigned long ptr;
39279cc3 8619 struct btrfs_file_extent_item *ei;
5f39d397 8620 struct extent_buffer *leaf;
39279cc3 8621
f06becc4 8622 name_len = strlen(symname);
39279cc3
CM
8623 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8624 return -ENAMETOOLONG;
1832a6d5 8625
9ed74f2d
JB
8626 /*
8627 * 2 items for inode item and ref
8628 * 2 items for dir items
8629 * 1 item for xattr if selinux is on
8630 */
a22285a6
YZ
8631 trans = btrfs_start_transaction(root, 5);
8632 if (IS_ERR(trans))
8633 return PTR_ERR(trans);
1832a6d5 8634
581bb050
LZ
8635 err = btrfs_find_free_ino(root, &objectid);
8636 if (err)
8637 goto out_unlock;
8638
aec7477b 8639 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 8640 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 8641 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
8642 if (IS_ERR(inode)) {
8643 err = PTR_ERR(inode);
39279cc3 8644 goto out_unlock;
7cf96da3 8645 }
39279cc3 8646
2a7dba39 8647 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
8648 if (err) {
8649 drop_inode = 1;
8650 goto out_unlock;
8651 }
8652
ad19db71
CS
8653 /*
8654 * If the active LSM wants to access the inode during
8655 * d_instantiate it needs these. Smack checks to see
8656 * if the filesystem supports xattrs by looking at the
8657 * ops vector.
8658 */
8659 inode->i_fop = &btrfs_file_operations;
8660 inode->i_op = &btrfs_file_inode_operations;
8661
a1b075d2 8662 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
8663 if (err)
8664 drop_inode = 1;
8665 else {
8666 inode->i_mapping->a_ops = &btrfs_aops;
04160088 8667 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 8668 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 8669 }
39279cc3
CM
8670 if (drop_inode)
8671 goto out_unlock;
8672
8673 path = btrfs_alloc_path();
d8926bb3
MF
8674 if (!path) {
8675 err = -ENOMEM;
8676 drop_inode = 1;
8677 goto out_unlock;
8678 }
33345d01 8679 key.objectid = btrfs_ino(inode);
39279cc3 8680 key.offset = 0;
39279cc3
CM
8681 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8682 datasize = btrfs_file_extent_calc_inline_size(name_len);
8683 err = btrfs_insert_empty_item(trans, root, path, &key,
8684 datasize);
54aa1f4d
CM
8685 if (err) {
8686 drop_inode = 1;
b0839166 8687 btrfs_free_path(path);
54aa1f4d
CM
8688 goto out_unlock;
8689 }
5f39d397
CM
8690 leaf = path->nodes[0];
8691 ei = btrfs_item_ptr(leaf, path->slots[0],
8692 struct btrfs_file_extent_item);
8693 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8694 btrfs_set_file_extent_type(leaf, ei,
39279cc3 8695 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
8696 btrfs_set_file_extent_encryption(leaf, ei, 0);
8697 btrfs_set_file_extent_compression(leaf, ei, 0);
8698 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8699 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8700
39279cc3 8701 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
8702 write_extent_buffer(leaf, symname, ptr, name_len);
8703 btrfs_mark_buffer_dirty(leaf);
39279cc3 8704 btrfs_free_path(path);
5f39d397 8705
39279cc3
CM
8706 inode->i_op = &btrfs_symlink_inode_operations;
8707 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 8708 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 8709 inode_set_bytes(inode, name_len);
f06becc4 8710 btrfs_i_size_write(inode, name_len);
54aa1f4d
CM
8711 err = btrfs_update_inode(trans, root, inode);
8712 if (err)
8713 drop_inode = 1;
39279cc3
CM
8714
8715out_unlock:
08c422c2
AV
8716 if (!err)
8717 d_instantiate(dentry, inode);
7ad85bb7 8718 btrfs_end_transaction(trans, root);
39279cc3
CM
8719 if (drop_inode) {
8720 inode_dec_link_count(inode);
8721 iput(inode);
8722 }
b53d3f5d 8723 btrfs_btree_balance_dirty(root);
39279cc3
CM
8724 return err;
8725}
16432985 8726
0af3d00b
JB
8727static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8728 u64 start, u64 num_bytes, u64 min_size,
8729 loff_t actual_len, u64 *alloc_hint,
8730 struct btrfs_trans_handle *trans)
d899e052 8731{
5dc562c5
JB
8732 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8733 struct extent_map *em;
d899e052
YZ
8734 struct btrfs_root *root = BTRFS_I(inode)->root;
8735 struct btrfs_key ins;
d899e052 8736 u64 cur_offset = start;
55a61d1d 8737 u64 i_size;
154ea289 8738 u64 cur_bytes;
d899e052 8739 int ret = 0;
0af3d00b 8740 bool own_trans = true;
d899e052 8741
0af3d00b
JB
8742 if (trans)
8743 own_trans = false;
d899e052 8744 while (num_bytes > 0) {
0af3d00b
JB
8745 if (own_trans) {
8746 trans = btrfs_start_transaction(root, 3);
8747 if (IS_ERR(trans)) {
8748 ret = PTR_ERR(trans);
8749 break;
8750 }
5a303d5d
YZ
8751 }
8752
154ea289
CM
8753 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8754 cur_bytes = max(cur_bytes, min_size);
00361589
JB
8755 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
8756 *alloc_hint, &ins, 1);
5a303d5d 8757 if (ret) {
0af3d00b
JB
8758 if (own_trans)
8759 btrfs_end_transaction(trans, root);
a22285a6 8760 break;
d899e052 8761 }
5a303d5d 8762
d899e052
YZ
8763 ret = insert_reserved_file_extent(trans, inode,
8764 cur_offset, ins.objectid,
8765 ins.offset, ins.offset,
920bbbfb 8766 ins.offset, 0, 0, 0,
d899e052 8767 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 8768 if (ret) {
857cc2fc
JB
8769 btrfs_free_reserved_extent(root, ins.objectid,
8770 ins.offset);
79787eaa
JM
8771 btrfs_abort_transaction(trans, root, ret);
8772 if (own_trans)
8773 btrfs_end_transaction(trans, root);
8774 break;
8775 }
a1ed835e
CM
8776 btrfs_drop_extent_cache(inode, cur_offset,
8777 cur_offset + ins.offset -1, 0);
5a303d5d 8778
5dc562c5
JB
8779 em = alloc_extent_map();
8780 if (!em) {
8781 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8782 &BTRFS_I(inode)->runtime_flags);
8783 goto next;
8784 }
8785
8786 em->start = cur_offset;
8787 em->orig_start = cur_offset;
8788 em->len = ins.offset;
8789 em->block_start = ins.objectid;
8790 em->block_len = ins.offset;
b4939680 8791 em->orig_block_len = ins.offset;
cc95bef6 8792 em->ram_bytes = ins.offset;
5dc562c5
JB
8793 em->bdev = root->fs_info->fs_devices->latest_bdev;
8794 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8795 em->generation = trans->transid;
8796
8797 while (1) {
8798 write_lock(&em_tree->lock);
09a2a8f9 8799 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
8800 write_unlock(&em_tree->lock);
8801 if (ret != -EEXIST)
8802 break;
8803 btrfs_drop_extent_cache(inode, cur_offset,
8804 cur_offset + ins.offset - 1,
8805 0);
8806 }
8807 free_extent_map(em);
8808next:
d899e052
YZ
8809 num_bytes -= ins.offset;
8810 cur_offset += ins.offset;
efa56464 8811 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 8812
0c4d2d95 8813 inode_inc_iversion(inode);
d899e052 8814 inode->i_ctime = CURRENT_TIME;
6cbff00f 8815 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 8816 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
8817 (actual_len > inode->i_size) &&
8818 (cur_offset > inode->i_size)) {
d1ea6a61 8819 if (cur_offset > actual_len)
55a61d1d 8820 i_size = actual_len;
d1ea6a61 8821 else
55a61d1d
JB
8822 i_size = cur_offset;
8823 i_size_write(inode, i_size);
8824 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
8825 }
8826
d899e052 8827 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
8828
8829 if (ret) {
8830 btrfs_abort_transaction(trans, root, ret);
8831 if (own_trans)
8832 btrfs_end_transaction(trans, root);
8833 break;
8834 }
d899e052 8835
0af3d00b
JB
8836 if (own_trans)
8837 btrfs_end_transaction(trans, root);
5a303d5d 8838 }
d899e052
YZ
8839 return ret;
8840}
8841
0af3d00b
JB
8842int btrfs_prealloc_file_range(struct inode *inode, int mode,
8843 u64 start, u64 num_bytes, u64 min_size,
8844 loff_t actual_len, u64 *alloc_hint)
8845{
8846 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8847 min_size, actual_len, alloc_hint,
8848 NULL);
8849}
8850
8851int btrfs_prealloc_file_range_trans(struct inode *inode,
8852 struct btrfs_trans_handle *trans, int mode,
8853 u64 start, u64 num_bytes, u64 min_size,
8854 loff_t actual_len, u64 *alloc_hint)
8855{
8856 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8857 min_size, actual_len, alloc_hint, trans);
8858}
8859
e6dcd2dc
CM
8860static int btrfs_set_page_dirty(struct page *page)
8861{
e6dcd2dc
CM
8862 return __set_page_dirty_nobuffers(page);
8863}
8864
10556cb2 8865static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 8866{
b83cc969 8867 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 8868 umode_t mode = inode->i_mode;
b83cc969 8869
cb6db4e5
JM
8870 if (mask & MAY_WRITE &&
8871 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8872 if (btrfs_root_readonly(root))
8873 return -EROFS;
8874 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8875 return -EACCES;
8876 }
2830ba7f 8877 return generic_permission(inode, mask);
fdebe2bd 8878}
39279cc3 8879
6e1d5dcc 8880static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 8881 .getattr = btrfs_getattr,
39279cc3
CM
8882 .lookup = btrfs_lookup,
8883 .create = btrfs_create,
8884 .unlink = btrfs_unlink,
8885 .link = btrfs_link,
8886 .mkdir = btrfs_mkdir,
8887 .rmdir = btrfs_rmdir,
8888 .rename = btrfs_rename,
8889 .symlink = btrfs_symlink,
8890 .setattr = btrfs_setattr,
618e21d5 8891 .mknod = btrfs_mknod,
95819c05
CH
8892 .setxattr = btrfs_setxattr,
8893 .getxattr = btrfs_getxattr,
5103e947 8894 .listxattr = btrfs_listxattr,
95819c05 8895 .removexattr = btrfs_removexattr,
fdebe2bd 8896 .permission = btrfs_permission,
4e34e719 8897 .get_acl = btrfs_get_acl,
93fd63c2 8898 .update_time = btrfs_update_time,
39279cc3 8899};
6e1d5dcc 8900static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 8901 .lookup = btrfs_lookup,
fdebe2bd 8902 .permission = btrfs_permission,
4e34e719 8903 .get_acl = btrfs_get_acl,
93fd63c2 8904 .update_time = btrfs_update_time,
39279cc3 8905};
76dda93c 8906
828c0950 8907static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
8908 .llseek = generic_file_llseek,
8909 .read = generic_read_dir,
9cdda8d3 8910 .iterate = btrfs_real_readdir,
34287aa3 8911 .unlocked_ioctl = btrfs_ioctl,
39279cc3 8912#ifdef CONFIG_COMPAT
34287aa3 8913 .compat_ioctl = btrfs_ioctl,
39279cc3 8914#endif
6bf13c0c 8915 .release = btrfs_release_file,
e02119d5 8916 .fsync = btrfs_sync_file,
39279cc3
CM
8917};
8918
d1310b2e 8919static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 8920 .fill_delalloc = run_delalloc_range,
065631f6 8921 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 8922 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 8923 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 8924 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 8925 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
8926 .set_bit_hook = btrfs_set_bit_hook,
8927 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
8928 .merge_extent_hook = btrfs_merge_extent_hook,
8929 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
8930};
8931
35054394
CM
8932/*
8933 * btrfs doesn't support the bmap operation because swapfiles
8934 * use bmap to make a mapping of extents in the file. They assume
8935 * these extents won't change over the life of the file and they
8936 * use the bmap result to do IO directly to the drive.
8937 *
8938 * the btrfs bmap call would return logical addresses that aren't
8939 * suitable for IO and they also will change frequently as COW
8940 * operations happen. So, swapfile + btrfs == corruption.
8941 *
8942 * For now we're avoiding this by dropping bmap.
8943 */
7f09410b 8944static const struct address_space_operations btrfs_aops = {
39279cc3
CM
8945 .readpage = btrfs_readpage,
8946 .writepage = btrfs_writepage,
b293f02e 8947 .writepages = btrfs_writepages,
3ab2fb5a 8948 .readpages = btrfs_readpages,
16432985 8949 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
8950 .invalidatepage = btrfs_invalidatepage,
8951 .releasepage = btrfs_releasepage,
e6dcd2dc 8952 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 8953 .error_remove_page = generic_error_remove_page,
39279cc3
CM
8954};
8955
7f09410b 8956static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
8957 .readpage = btrfs_readpage,
8958 .writepage = btrfs_writepage,
2bf5a725
CM
8959 .invalidatepage = btrfs_invalidatepage,
8960 .releasepage = btrfs_releasepage,
39279cc3
CM
8961};
8962
6e1d5dcc 8963static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
8964 .getattr = btrfs_getattr,
8965 .setattr = btrfs_setattr,
95819c05
CH
8966 .setxattr = btrfs_setxattr,
8967 .getxattr = btrfs_getxattr,
5103e947 8968 .listxattr = btrfs_listxattr,
95819c05 8969 .removexattr = btrfs_removexattr,
fdebe2bd 8970 .permission = btrfs_permission,
1506fcc8 8971 .fiemap = btrfs_fiemap,
4e34e719 8972 .get_acl = btrfs_get_acl,
e41f941a 8973 .update_time = btrfs_update_time,
39279cc3 8974};
6e1d5dcc 8975static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
8976 .getattr = btrfs_getattr,
8977 .setattr = btrfs_setattr,
fdebe2bd 8978 .permission = btrfs_permission,
95819c05
CH
8979 .setxattr = btrfs_setxattr,
8980 .getxattr = btrfs_getxattr,
33268eaf 8981 .listxattr = btrfs_listxattr,
95819c05 8982 .removexattr = btrfs_removexattr,
4e34e719 8983 .get_acl = btrfs_get_acl,
e41f941a 8984 .update_time = btrfs_update_time,
618e21d5 8985};
6e1d5dcc 8986static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
8987 .readlink = generic_readlink,
8988 .follow_link = page_follow_link_light,
8989 .put_link = page_put_link,
f209561a 8990 .getattr = btrfs_getattr,
22c44fe6 8991 .setattr = btrfs_setattr,
fdebe2bd 8992 .permission = btrfs_permission,
0279b4cd
JO
8993 .setxattr = btrfs_setxattr,
8994 .getxattr = btrfs_getxattr,
8995 .listxattr = btrfs_listxattr,
8996 .removexattr = btrfs_removexattr,
4e34e719 8997 .get_acl = btrfs_get_acl,
e41f941a 8998 .update_time = btrfs_update_time,
39279cc3 8999};
76dda93c 9000
82d339d9 9001const struct dentry_operations btrfs_dentry_operations = {
76dda93c 9002 .d_delete = btrfs_dentry_delete,
b4aff1f8 9003 .d_release = btrfs_dentry_release,
76dda93c 9004};
This page took 1.52407 seconds and 5 git commands to generate.