Btrfs: fix sparse warning
[deliverable/linux.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
a27bb332 35#include <linux/aio.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
5a0e3ad6 40#include <linux/slab.h>
7a36ddec 41#include <linux/ratelimit.h>
22c44fe6 42#include <linux/mount.h>
55e301fd 43#include <linux/btrfs.h>
53b381b3 44#include <linux/blkdev.h>
f23b5a59 45#include <linux/posix_acl_xattr.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
39279cc3
CM
62
63struct btrfs_iget_args {
90d3e592 64 struct btrfs_key *location;
39279cc3
CM
65 struct btrfs_root *root;
66};
67
6e1d5dcc
AD
68static const struct inode_operations btrfs_dir_inode_operations;
69static const struct inode_operations btrfs_symlink_inode_operations;
70static const struct inode_operations btrfs_dir_ro_inode_operations;
71static const struct inode_operations btrfs_special_inode_operations;
72static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
73static const struct address_space_operations btrfs_aops;
74static const struct address_space_operations btrfs_symlink_aops;
828c0950 75static const struct file_operations btrfs_dir_file_operations;
d1310b2e 76static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
77
78static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 79static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
80struct kmem_cache *btrfs_trans_handle_cachep;
81struct kmem_cache *btrfs_transaction_cachep;
39279cc3 82struct kmem_cache *btrfs_path_cachep;
dc89e982 83struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
84
85#define S_SHIFT 12
86static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94};
95
3972f260 96static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 97static int btrfs_truncate(struct inode *inode);
5fd02043 98static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
99static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
70c8a91c
JB
103static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
cc95bef6
JB
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
7b128766 108
48a3b636 109static int btrfs_dirty_inode(struct inode *inode);
7b128766 110
f34f57a3 111static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
0279b4cd
JO
114{
115 int err;
116
f34f57a3 117 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 118 if (!err)
2a7dba39 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
120 return err;
121}
122
c8b97818
CM
123/*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
40f76580 128static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 129 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
130 struct btrfs_root *root, struct inode *inode,
131 u64 start, size_t size, size_t compressed_size,
fe3f566c 132 int compress_type,
c8b97818
CM
133 struct page **compressed_pages)
134{
c8b97818
CM
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
137 char *kaddr;
138 unsigned long ptr;
139 struct btrfs_file_extent_item *ei;
140 int err = 0;
141 int ret;
142 size_t cur_size = size;
c8b97818 143 unsigned long offset;
c8b97818 144
fe3f566c 145 if (compressed_size && compressed_pages)
c8b97818 146 cur_size = compressed_size;
c8b97818 147
1acae57b 148 inode_add_bytes(inode, size);
c8b97818 149
1acae57b
FDBM
150 if (!extent_inserted) {
151 struct btrfs_key key;
152 size_t datasize;
c8b97818 153
1acae57b
FDBM
154 key.objectid = btrfs_ino(inode);
155 key.offset = start;
962a298f 156 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 157
1acae57b
FDBM
158 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159 path->leave_spinning = 1;
160 ret = btrfs_insert_empty_item(trans, root, path, &key,
161 datasize);
162 if (ret) {
163 err = ret;
164 goto fail;
165 }
c8b97818
CM
166 }
167 leaf = path->nodes[0];
168 ei = btrfs_item_ptr(leaf, path->slots[0],
169 struct btrfs_file_extent_item);
170 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 btrfs_set_file_extent_encryption(leaf, ei, 0);
173 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 ptr = btrfs_file_extent_inline_start(ei);
176
261507a0 177 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
178 struct page *cpage;
179 int i = 0;
d397712b 180 while (compressed_size > 0) {
c8b97818 181 cpage = compressed_pages[i];
5b050f04 182 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
183 PAGE_CACHE_SIZE);
184
7ac687d9 185 kaddr = kmap_atomic(cpage);
c8b97818 186 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 187 kunmap_atomic(kaddr);
c8b97818
CM
188
189 i++;
190 ptr += cur_size;
191 compressed_size -= cur_size;
192 }
193 btrfs_set_file_extent_compression(leaf, ei,
261507a0 194 compress_type);
c8b97818
CM
195 } else {
196 page = find_get_page(inode->i_mapping,
197 start >> PAGE_CACHE_SHIFT);
198 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 199 kaddr = kmap_atomic(page);
c8b97818
CM
200 offset = start & (PAGE_CACHE_SIZE - 1);
201 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 202 kunmap_atomic(kaddr);
c8b97818
CM
203 page_cache_release(page);
204 }
205 btrfs_mark_buffer_dirty(leaf);
1acae57b 206 btrfs_release_path(path);
c8b97818 207
c2167754
YZ
208 /*
209 * we're an inline extent, so nobody can
210 * extend the file past i_size without locking
211 * a page we already have locked.
212 *
213 * We must do any isize and inode updates
214 * before we unlock the pages. Otherwise we
215 * could end up racing with unlink.
216 */
c8b97818 217 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 218 ret = btrfs_update_inode(trans, root, inode);
c2167754 219
79787eaa 220 return ret;
c8b97818 221fail:
c8b97818
CM
222 return err;
223}
224
225
226/*
227 * conditionally insert an inline extent into the file. This
228 * does the checks required to make sure the data is small enough
229 * to fit as an inline extent.
230 */
00361589
JB
231static noinline int cow_file_range_inline(struct btrfs_root *root,
232 struct inode *inode, u64 start,
233 u64 end, size_t compressed_size,
234 int compress_type,
235 struct page **compressed_pages)
c8b97818 236{
00361589 237 struct btrfs_trans_handle *trans;
c8b97818
CM
238 u64 isize = i_size_read(inode);
239 u64 actual_end = min(end + 1, isize);
240 u64 inline_len = actual_end - start;
fda2832f 241 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
242 u64 data_len = inline_len;
243 int ret;
1acae57b
FDBM
244 struct btrfs_path *path;
245 int extent_inserted = 0;
246 u32 extent_item_size;
c8b97818
CM
247
248 if (compressed_size)
249 data_len = compressed_size;
250
251 if (start > 0 ||
70b99e69 252 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
253 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
254 (!compressed_size &&
255 (actual_end & (root->sectorsize - 1)) == 0) ||
256 end + 1 < isize ||
257 data_len > root->fs_info->max_inline) {
258 return 1;
259 }
260
1acae57b
FDBM
261 path = btrfs_alloc_path();
262 if (!path)
263 return -ENOMEM;
264
00361589 265 trans = btrfs_join_transaction(root);
1acae57b
FDBM
266 if (IS_ERR(trans)) {
267 btrfs_free_path(path);
00361589 268 return PTR_ERR(trans);
1acae57b 269 }
00361589
JB
270 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271
1acae57b
FDBM
272 if (compressed_size && compressed_pages)
273 extent_item_size = btrfs_file_extent_calc_inline_size(
274 compressed_size);
275 else
276 extent_item_size = btrfs_file_extent_calc_inline_size(
277 inline_len);
278
279 ret = __btrfs_drop_extents(trans, root, inode, path,
280 start, aligned_end, NULL,
281 1, 1, extent_item_size, &extent_inserted);
00361589
JB
282 if (ret) {
283 btrfs_abort_transaction(trans, root, ret);
284 goto out;
285 }
c8b97818
CM
286
287 if (isize > actual_end)
288 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
289 ret = insert_inline_extent(trans, path, extent_inserted,
290 root, inode, start,
c8b97818 291 inline_len, compressed_size,
fe3f566c 292 compress_type, compressed_pages);
2adcac1a 293 if (ret && ret != -ENOSPC) {
79787eaa 294 btrfs_abort_transaction(trans, root, ret);
00361589 295 goto out;
2adcac1a 296 } else if (ret == -ENOSPC) {
00361589
JB
297 ret = 1;
298 goto out;
79787eaa 299 }
2adcac1a 300
bdc20e67 301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 302 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 303 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 304out:
1acae57b 305 btrfs_free_path(path);
00361589
JB
306 btrfs_end_transaction(trans, root);
307 return ret;
c8b97818
CM
308}
309
771ed689
CM
310struct async_extent {
311 u64 start;
312 u64 ram_size;
313 u64 compressed_size;
314 struct page **pages;
315 unsigned long nr_pages;
261507a0 316 int compress_type;
771ed689
CM
317 struct list_head list;
318};
319
320struct async_cow {
321 struct inode *inode;
322 struct btrfs_root *root;
323 struct page *locked_page;
324 u64 start;
325 u64 end;
326 struct list_head extents;
327 struct btrfs_work work;
328};
329
330static noinline int add_async_extent(struct async_cow *cow,
331 u64 start, u64 ram_size,
332 u64 compressed_size,
333 struct page **pages,
261507a0
LZ
334 unsigned long nr_pages,
335 int compress_type)
771ed689
CM
336{
337 struct async_extent *async_extent;
338
339 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 340 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
341 async_extent->start = start;
342 async_extent->ram_size = ram_size;
343 async_extent->compressed_size = compressed_size;
344 async_extent->pages = pages;
345 async_extent->nr_pages = nr_pages;
261507a0 346 async_extent->compress_type = compress_type;
771ed689
CM
347 list_add_tail(&async_extent->list, &cow->extents);
348 return 0;
349}
350
d352ac68 351/*
771ed689
CM
352 * we create compressed extents in two phases. The first
353 * phase compresses a range of pages that have already been
354 * locked (both pages and state bits are locked).
c8b97818 355 *
771ed689
CM
356 * This is done inside an ordered work queue, and the compression
357 * is spread across many cpus. The actual IO submission is step
358 * two, and the ordered work queue takes care of making sure that
359 * happens in the same order things were put onto the queue by
360 * writepages and friends.
c8b97818 361 *
771ed689
CM
362 * If this code finds it can't get good compression, it puts an
363 * entry onto the work queue to write the uncompressed bytes. This
364 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
365 * are written in the same order that the flusher thread sent them
366 * down.
d352ac68 367 */
771ed689
CM
368static noinline int compress_file_range(struct inode *inode,
369 struct page *locked_page,
370 u64 start, u64 end,
371 struct async_cow *async_cow,
372 int *num_added)
b888db2b
CM
373{
374 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 375 u64 num_bytes;
db94535d 376 u64 blocksize = root->sectorsize;
c8b97818 377 u64 actual_end;
42dc7bab 378 u64 isize = i_size_read(inode);
e6dcd2dc 379 int ret = 0;
c8b97818
CM
380 struct page **pages = NULL;
381 unsigned long nr_pages;
382 unsigned long nr_pages_ret = 0;
383 unsigned long total_compressed = 0;
384 unsigned long total_in = 0;
385 unsigned long max_compressed = 128 * 1024;
771ed689 386 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
387 int i;
388 int will_compress;
261507a0 389 int compress_type = root->fs_info->compress_type;
4adaa611 390 int redirty = 0;
b888db2b 391
4cb13e5d
LB
392 /* if this is a small write inside eof, kick off a defrag */
393 if ((end - start + 1) < 16 * 1024 &&
394 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
395 btrfs_add_inode_defrag(NULL, inode);
396
68bb462d
WS
397 /*
398 * skip compression for a small file range(<=blocksize) that
399 * isn't an inline extent, since it dosen't save disk space at all.
400 */
401 if ((end - start + 1) <= blocksize &&
402 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
403 goto cleanup_and_bail_uncompressed;
404
42dc7bab 405 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
406again:
407 will_compress = 0;
408 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
409 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 410
f03d9301
CM
411 /*
412 * we don't want to send crud past the end of i_size through
413 * compression, that's just a waste of CPU time. So, if the
414 * end of the file is before the start of our current
415 * requested range of bytes, we bail out to the uncompressed
416 * cleanup code that can deal with all of this.
417 *
418 * It isn't really the fastest way to fix things, but this is a
419 * very uncommon corner.
420 */
421 if (actual_end <= start)
422 goto cleanup_and_bail_uncompressed;
423
c8b97818
CM
424 total_compressed = actual_end - start;
425
426 /* we want to make sure that amount of ram required to uncompress
427 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
428 * of a compressed extent to 128k. This is a crucial number
429 * because it also controls how easily we can spread reads across
430 * cpus for decompression.
431 *
432 * We also want to make sure the amount of IO required to do
433 * a random read is reasonably small, so we limit the size of
434 * a compressed extent to 128k.
c8b97818
CM
435 */
436 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 437 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 438 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
439 total_in = 0;
440 ret = 0;
db94535d 441
771ed689
CM
442 /*
443 * we do compression for mount -o compress and when the
444 * inode has not been flagged as nocompress. This flag can
445 * change at any time if we discover bad compression ratios.
c8b97818 446 */
6cbff00f 447 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 448 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
449 (BTRFS_I(inode)->force_compress) ||
450 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 451 WARN_ON(pages);
cfbc246e 452 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
453 if (!pages) {
454 /* just bail out to the uncompressed code */
455 goto cont;
456 }
c8b97818 457
261507a0
LZ
458 if (BTRFS_I(inode)->force_compress)
459 compress_type = BTRFS_I(inode)->force_compress;
460
4adaa611
CM
461 /*
462 * we need to call clear_page_dirty_for_io on each
463 * page in the range. Otherwise applications with the file
464 * mmap'd can wander in and change the page contents while
465 * we are compressing them.
466 *
467 * If the compression fails for any reason, we set the pages
468 * dirty again later on.
469 */
470 extent_range_clear_dirty_for_io(inode, start, end);
471 redirty = 1;
261507a0
LZ
472 ret = btrfs_compress_pages(compress_type,
473 inode->i_mapping, start,
474 total_compressed, pages,
475 nr_pages, &nr_pages_ret,
476 &total_in,
477 &total_compressed,
478 max_compressed);
c8b97818
CM
479
480 if (!ret) {
481 unsigned long offset = total_compressed &
482 (PAGE_CACHE_SIZE - 1);
483 struct page *page = pages[nr_pages_ret - 1];
484 char *kaddr;
485
486 /* zero the tail end of the last page, we might be
487 * sending it down to disk
488 */
489 if (offset) {
7ac687d9 490 kaddr = kmap_atomic(page);
c8b97818
CM
491 memset(kaddr + offset, 0,
492 PAGE_CACHE_SIZE - offset);
7ac687d9 493 kunmap_atomic(kaddr);
c8b97818
CM
494 }
495 will_compress = 1;
496 }
497 }
560f7d75 498cont:
c8b97818
CM
499 if (start == 0) {
500 /* lets try to make an inline extent */
771ed689 501 if (ret || total_in < (actual_end - start)) {
c8b97818 502 /* we didn't compress the entire range, try
771ed689 503 * to make an uncompressed inline extent.
c8b97818 504 */
00361589
JB
505 ret = cow_file_range_inline(root, inode, start, end,
506 0, 0, NULL);
c8b97818 507 } else {
771ed689 508 /* try making a compressed inline extent */
00361589 509 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
510 total_compressed,
511 compress_type, pages);
c8b97818 512 }
79787eaa 513 if (ret <= 0) {
151a41bc
JB
514 unsigned long clear_flags = EXTENT_DELALLOC |
515 EXTENT_DEFRAG;
516 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
517
771ed689 518 /*
79787eaa
JM
519 * inline extent creation worked or returned error,
520 * we don't need to create any more async work items.
521 * Unlock and free up our temp pages.
771ed689 522 */
c2790a2e 523 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 524 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
525 PAGE_CLEAR_DIRTY |
526 PAGE_SET_WRITEBACK |
527 PAGE_END_WRITEBACK);
c8b97818
CM
528 goto free_pages_out;
529 }
530 }
531
532 if (will_compress) {
533 /*
534 * we aren't doing an inline extent round the compressed size
535 * up to a block size boundary so the allocator does sane
536 * things
537 */
fda2832f 538 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
539
540 /*
541 * one last check to make sure the compression is really a
542 * win, compare the page count read with the blocks on disk
543 */
fda2832f 544 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
545 if (total_compressed >= total_in) {
546 will_compress = 0;
547 } else {
c8b97818
CM
548 num_bytes = total_in;
549 }
550 }
551 if (!will_compress && pages) {
552 /*
553 * the compression code ran but failed to make things smaller,
554 * free any pages it allocated and our page pointer array
555 */
556 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 557 WARN_ON(pages[i]->mapping);
c8b97818
CM
558 page_cache_release(pages[i]);
559 }
560 kfree(pages);
561 pages = NULL;
562 total_compressed = 0;
563 nr_pages_ret = 0;
564
565 /* flag the file so we don't compress in the future */
1e701a32
CM
566 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
567 !(BTRFS_I(inode)->force_compress)) {
a555f810 568 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 569 }
c8b97818 570 }
771ed689
CM
571 if (will_compress) {
572 *num_added += 1;
c8b97818 573
771ed689
CM
574 /* the async work queues will take care of doing actual
575 * allocation on disk for these compressed pages,
576 * and will submit them to the elevator.
577 */
578 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
579 total_compressed, pages, nr_pages_ret,
580 compress_type);
179e29e4 581
24ae6365 582 if (start + num_bytes < end) {
771ed689
CM
583 start += num_bytes;
584 pages = NULL;
585 cond_resched();
586 goto again;
587 }
588 } else {
f03d9301 589cleanup_and_bail_uncompressed:
771ed689
CM
590 /*
591 * No compression, but we still need to write the pages in
592 * the file we've been given so far. redirty the locked
593 * page if it corresponds to our extent and set things up
594 * for the async work queue to run cow_file_range to do
595 * the normal delalloc dance
596 */
597 if (page_offset(locked_page) >= start &&
598 page_offset(locked_page) <= end) {
599 __set_page_dirty_nobuffers(locked_page);
600 /* unlocked later on in the async handlers */
601 }
4adaa611
CM
602 if (redirty)
603 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
604 add_async_extent(async_cow, start, end - start + 1,
605 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
606 *num_added += 1;
607 }
3b951516 608
771ed689 609out:
79787eaa 610 return ret;
771ed689
CM
611
612free_pages_out:
613 for (i = 0; i < nr_pages_ret; i++) {
614 WARN_ON(pages[i]->mapping);
615 page_cache_release(pages[i]);
616 }
d397712b 617 kfree(pages);
771ed689
CM
618
619 goto out;
620}
621
622/*
623 * phase two of compressed writeback. This is the ordered portion
624 * of the code, which only gets called in the order the work was
625 * queued. We walk all the async extents created by compress_file_range
626 * and send them down to the disk.
627 */
628static noinline int submit_compressed_extents(struct inode *inode,
629 struct async_cow *async_cow)
630{
631 struct async_extent *async_extent;
632 u64 alloc_hint = 0;
771ed689
CM
633 struct btrfs_key ins;
634 struct extent_map *em;
635 struct btrfs_root *root = BTRFS_I(inode)->root;
636 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
637 struct extent_io_tree *io_tree;
f5a84ee3 638 int ret = 0;
771ed689
CM
639
640 if (list_empty(&async_cow->extents))
641 return 0;
642
3e04e7f1 643again:
d397712b 644 while (!list_empty(&async_cow->extents)) {
771ed689
CM
645 async_extent = list_entry(async_cow->extents.next,
646 struct async_extent, list);
647 list_del(&async_extent->list);
c8b97818 648
771ed689
CM
649 io_tree = &BTRFS_I(inode)->io_tree;
650
f5a84ee3 651retry:
771ed689
CM
652 /* did the compression code fall back to uncompressed IO? */
653 if (!async_extent->pages) {
654 int page_started = 0;
655 unsigned long nr_written = 0;
656
657 lock_extent(io_tree, async_extent->start,
2ac55d41 658 async_extent->start +
d0082371 659 async_extent->ram_size - 1);
771ed689
CM
660
661 /* allocate blocks */
f5a84ee3
JB
662 ret = cow_file_range(inode, async_cow->locked_page,
663 async_extent->start,
664 async_extent->start +
665 async_extent->ram_size - 1,
666 &page_started, &nr_written, 0);
771ed689 667
79787eaa
JM
668 /* JDM XXX */
669
771ed689
CM
670 /*
671 * if page_started, cow_file_range inserted an
672 * inline extent and took care of all the unlocking
673 * and IO for us. Otherwise, we need to submit
674 * all those pages down to the drive.
675 */
f5a84ee3 676 if (!page_started && !ret)
771ed689
CM
677 extent_write_locked_range(io_tree,
678 inode, async_extent->start,
d397712b 679 async_extent->start +
771ed689
CM
680 async_extent->ram_size - 1,
681 btrfs_get_extent,
682 WB_SYNC_ALL);
3e04e7f1
JB
683 else if (ret)
684 unlock_page(async_cow->locked_page);
771ed689
CM
685 kfree(async_extent);
686 cond_resched();
687 continue;
688 }
689
690 lock_extent(io_tree, async_extent->start,
d0082371 691 async_extent->start + async_extent->ram_size - 1);
771ed689 692
00361589 693 ret = btrfs_reserve_extent(root,
771ed689
CM
694 async_extent->compressed_size,
695 async_extent->compressed_size,
e570fd27 696 0, alloc_hint, &ins, 1, 1);
f5a84ee3
JB
697 if (ret) {
698 int i;
3e04e7f1 699
f5a84ee3
JB
700 for (i = 0; i < async_extent->nr_pages; i++) {
701 WARN_ON(async_extent->pages[i]->mapping);
702 page_cache_release(async_extent->pages[i]);
703 }
704 kfree(async_extent->pages);
705 async_extent->nr_pages = 0;
706 async_extent->pages = NULL;
3e04e7f1 707
fdf8e2ea
JB
708 if (ret == -ENOSPC) {
709 unlock_extent(io_tree, async_extent->start,
710 async_extent->start +
711 async_extent->ram_size - 1);
ce62003f
LB
712
713 /*
714 * we need to redirty the pages if we decide to
715 * fallback to uncompressed IO, otherwise we
716 * will not submit these pages down to lower
717 * layers.
718 */
719 extent_range_redirty_for_io(inode,
720 async_extent->start,
721 async_extent->start +
722 async_extent->ram_size - 1);
723
79787eaa 724 goto retry;
fdf8e2ea 725 }
3e04e7f1 726 goto out_free;
f5a84ee3
JB
727 }
728
c2167754
YZ
729 /*
730 * here we're doing allocation and writeback of the
731 * compressed pages
732 */
733 btrfs_drop_extent_cache(inode, async_extent->start,
734 async_extent->start +
735 async_extent->ram_size - 1, 0);
736
172ddd60 737 em = alloc_extent_map();
b9aa55be
LB
738 if (!em) {
739 ret = -ENOMEM;
3e04e7f1 740 goto out_free_reserve;
b9aa55be 741 }
771ed689
CM
742 em->start = async_extent->start;
743 em->len = async_extent->ram_size;
445a6944 744 em->orig_start = em->start;
2ab28f32
JB
745 em->mod_start = em->start;
746 em->mod_len = em->len;
c8b97818 747
771ed689
CM
748 em->block_start = ins.objectid;
749 em->block_len = ins.offset;
b4939680 750 em->orig_block_len = ins.offset;
cc95bef6 751 em->ram_bytes = async_extent->ram_size;
771ed689 752 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 753 em->compress_type = async_extent->compress_type;
771ed689
CM
754 set_bit(EXTENT_FLAG_PINNED, &em->flags);
755 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 756 em->generation = -1;
771ed689 757
d397712b 758 while (1) {
890871be 759 write_lock(&em_tree->lock);
09a2a8f9 760 ret = add_extent_mapping(em_tree, em, 1);
890871be 761 write_unlock(&em_tree->lock);
771ed689
CM
762 if (ret != -EEXIST) {
763 free_extent_map(em);
764 break;
765 }
766 btrfs_drop_extent_cache(inode, async_extent->start,
767 async_extent->start +
768 async_extent->ram_size - 1, 0);
769 }
770
3e04e7f1
JB
771 if (ret)
772 goto out_free_reserve;
773
261507a0
LZ
774 ret = btrfs_add_ordered_extent_compress(inode,
775 async_extent->start,
776 ins.objectid,
777 async_extent->ram_size,
778 ins.offset,
779 BTRFS_ORDERED_COMPRESSED,
780 async_extent->compress_type);
d9f85963
FM
781 if (ret) {
782 btrfs_drop_extent_cache(inode, async_extent->start,
783 async_extent->start +
784 async_extent->ram_size - 1, 0);
3e04e7f1 785 goto out_free_reserve;
d9f85963 786 }
771ed689 787
771ed689
CM
788 /*
789 * clear dirty, set writeback and unlock the pages.
790 */
c2790a2e 791 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
792 async_extent->start +
793 async_extent->ram_size - 1,
151a41bc
JB
794 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
795 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 796 PAGE_SET_WRITEBACK);
771ed689 797 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
798 async_extent->start,
799 async_extent->ram_size,
800 ins.objectid,
801 ins.offset, async_extent->pages,
802 async_extent->nr_pages);
771ed689
CM
803 alloc_hint = ins.objectid + ins.offset;
804 kfree(async_extent);
3e04e7f1
JB
805 if (ret)
806 goto out;
771ed689
CM
807 cond_resched();
808 }
79787eaa
JM
809 ret = 0;
810out:
811 return ret;
3e04e7f1 812out_free_reserve:
e570fd27 813 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 814out_free:
c2790a2e 815 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
816 async_extent->start +
817 async_extent->ram_size - 1,
c2790a2e 818 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
819 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
820 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
821 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 822 kfree(async_extent);
3e04e7f1 823 goto again;
771ed689
CM
824}
825
4b46fce2
JB
826static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
827 u64 num_bytes)
828{
829 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
830 struct extent_map *em;
831 u64 alloc_hint = 0;
832
833 read_lock(&em_tree->lock);
834 em = search_extent_mapping(em_tree, start, num_bytes);
835 if (em) {
836 /*
837 * if block start isn't an actual block number then find the
838 * first block in this inode and use that as a hint. If that
839 * block is also bogus then just don't worry about it.
840 */
841 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
842 free_extent_map(em);
843 em = search_extent_mapping(em_tree, 0, 0);
844 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
845 alloc_hint = em->block_start;
846 if (em)
847 free_extent_map(em);
848 } else {
849 alloc_hint = em->block_start;
850 free_extent_map(em);
851 }
852 }
853 read_unlock(&em_tree->lock);
854
855 return alloc_hint;
856}
857
771ed689
CM
858/*
859 * when extent_io.c finds a delayed allocation range in the file,
860 * the call backs end up in this code. The basic idea is to
861 * allocate extents on disk for the range, and create ordered data structs
862 * in ram to track those extents.
863 *
864 * locked_page is the page that writepage had locked already. We use
865 * it to make sure we don't do extra locks or unlocks.
866 *
867 * *page_started is set to one if we unlock locked_page and do everything
868 * required to start IO on it. It may be clean and already done with
869 * IO when we return.
870 */
00361589
JB
871static noinline int cow_file_range(struct inode *inode,
872 struct page *locked_page,
873 u64 start, u64 end, int *page_started,
874 unsigned long *nr_written,
875 int unlock)
771ed689 876{
00361589 877 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
878 u64 alloc_hint = 0;
879 u64 num_bytes;
880 unsigned long ram_size;
881 u64 disk_num_bytes;
882 u64 cur_alloc_size;
883 u64 blocksize = root->sectorsize;
771ed689
CM
884 struct btrfs_key ins;
885 struct extent_map *em;
886 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
887 int ret = 0;
888
02ecd2c2
JB
889 if (btrfs_is_free_space_inode(inode)) {
890 WARN_ON_ONCE(1);
29bce2f3
JB
891 ret = -EINVAL;
892 goto out_unlock;
02ecd2c2 893 }
771ed689 894
fda2832f 895 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
896 num_bytes = max(blocksize, num_bytes);
897 disk_num_bytes = num_bytes;
771ed689 898
4cb5300b 899 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
900 if (num_bytes < 64 * 1024 &&
901 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 902 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 903
771ed689
CM
904 if (start == 0) {
905 /* lets try to make an inline extent */
00361589
JB
906 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
907 NULL);
771ed689 908 if (ret == 0) {
c2790a2e
JB
909 extent_clear_unlock_delalloc(inode, start, end, NULL,
910 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 911 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
912 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
913 PAGE_END_WRITEBACK);
c2167754 914
771ed689
CM
915 *nr_written = *nr_written +
916 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
917 *page_started = 1;
771ed689 918 goto out;
79787eaa 919 } else if (ret < 0) {
79787eaa 920 goto out_unlock;
771ed689
CM
921 }
922 }
923
924 BUG_ON(disk_num_bytes >
6c41761f 925 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 926
4b46fce2 927 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
928 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
929
d397712b 930 while (disk_num_bytes > 0) {
a791e35e
CM
931 unsigned long op;
932
287a0ab9 933 cur_alloc_size = disk_num_bytes;
00361589 934 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 935 root->sectorsize, 0, alloc_hint,
e570fd27 936 &ins, 1, 1);
00361589 937 if (ret < 0)
79787eaa 938 goto out_unlock;
d397712b 939
172ddd60 940 em = alloc_extent_map();
b9aa55be
LB
941 if (!em) {
942 ret = -ENOMEM;
ace68bac 943 goto out_reserve;
b9aa55be 944 }
e6dcd2dc 945 em->start = start;
445a6944 946 em->orig_start = em->start;
771ed689
CM
947 ram_size = ins.offset;
948 em->len = ins.offset;
2ab28f32
JB
949 em->mod_start = em->start;
950 em->mod_len = em->len;
c8b97818 951
e6dcd2dc 952 em->block_start = ins.objectid;
c8b97818 953 em->block_len = ins.offset;
b4939680 954 em->orig_block_len = ins.offset;
cc95bef6 955 em->ram_bytes = ram_size;
e6dcd2dc 956 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 957 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 958 em->generation = -1;
c8b97818 959
d397712b 960 while (1) {
890871be 961 write_lock(&em_tree->lock);
09a2a8f9 962 ret = add_extent_mapping(em_tree, em, 1);
890871be 963 write_unlock(&em_tree->lock);
e6dcd2dc
CM
964 if (ret != -EEXIST) {
965 free_extent_map(em);
966 break;
967 }
968 btrfs_drop_extent_cache(inode, start,
c8b97818 969 start + ram_size - 1, 0);
e6dcd2dc 970 }
ace68bac
LB
971 if (ret)
972 goto out_reserve;
e6dcd2dc 973
98d20f67 974 cur_alloc_size = ins.offset;
e6dcd2dc 975 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 976 ram_size, cur_alloc_size, 0);
ace68bac 977 if (ret)
d9f85963 978 goto out_drop_extent_cache;
c8b97818 979
17d217fe
YZ
980 if (root->root_key.objectid ==
981 BTRFS_DATA_RELOC_TREE_OBJECTID) {
982 ret = btrfs_reloc_clone_csums(inode, start,
983 cur_alloc_size);
00361589 984 if (ret)
d9f85963 985 goto out_drop_extent_cache;
17d217fe
YZ
986 }
987
d397712b 988 if (disk_num_bytes < cur_alloc_size)
3b951516 989 break;
d397712b 990
c8b97818
CM
991 /* we're not doing compressed IO, don't unlock the first
992 * page (which the caller expects to stay locked), don't
993 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
994 *
995 * Do set the Private2 bit so we know this page was properly
996 * setup for writepage
c8b97818 997 */
c2790a2e
JB
998 op = unlock ? PAGE_UNLOCK : 0;
999 op |= PAGE_SET_PRIVATE2;
a791e35e 1000
c2790a2e
JB
1001 extent_clear_unlock_delalloc(inode, start,
1002 start + ram_size - 1, locked_page,
1003 EXTENT_LOCKED | EXTENT_DELALLOC,
1004 op);
c8b97818 1005 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1006 num_bytes -= cur_alloc_size;
1007 alloc_hint = ins.objectid + ins.offset;
1008 start += cur_alloc_size;
b888db2b 1009 }
79787eaa 1010out:
be20aa9d 1011 return ret;
b7d5b0a8 1012
d9f85963
FM
1013out_drop_extent_cache:
1014 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1015out_reserve:
e570fd27 1016 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1017out_unlock:
c2790a2e 1018 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1019 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1020 EXTENT_DELALLOC | EXTENT_DEFRAG,
1021 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1022 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1023 goto out;
771ed689 1024}
c8b97818 1025
771ed689
CM
1026/*
1027 * work queue call back to started compression on a file and pages
1028 */
1029static noinline void async_cow_start(struct btrfs_work *work)
1030{
1031 struct async_cow *async_cow;
1032 int num_added = 0;
1033 async_cow = container_of(work, struct async_cow, work);
1034
1035 compress_file_range(async_cow->inode, async_cow->locked_page,
1036 async_cow->start, async_cow->end, async_cow,
1037 &num_added);
8180ef88 1038 if (num_added == 0) {
cb77fcd8 1039 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1040 async_cow->inode = NULL;
8180ef88 1041 }
771ed689
CM
1042}
1043
1044/*
1045 * work queue call back to submit previously compressed pages
1046 */
1047static noinline void async_cow_submit(struct btrfs_work *work)
1048{
1049 struct async_cow *async_cow;
1050 struct btrfs_root *root;
1051 unsigned long nr_pages;
1052
1053 async_cow = container_of(work, struct async_cow, work);
1054
1055 root = async_cow->root;
1056 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1057 PAGE_CACHE_SHIFT;
1058
66657b31 1059 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1060 5 * 1024 * 1024 &&
771ed689
CM
1061 waitqueue_active(&root->fs_info->async_submit_wait))
1062 wake_up(&root->fs_info->async_submit_wait);
1063
d397712b 1064 if (async_cow->inode)
771ed689 1065 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1066}
c8b97818 1067
771ed689
CM
1068static noinline void async_cow_free(struct btrfs_work *work)
1069{
1070 struct async_cow *async_cow;
1071 async_cow = container_of(work, struct async_cow, work);
8180ef88 1072 if (async_cow->inode)
cb77fcd8 1073 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1074 kfree(async_cow);
1075}
1076
1077static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1078 u64 start, u64 end, int *page_started,
1079 unsigned long *nr_written)
1080{
1081 struct async_cow *async_cow;
1082 struct btrfs_root *root = BTRFS_I(inode)->root;
1083 unsigned long nr_pages;
1084 u64 cur_end;
287082b0 1085 int limit = 10 * 1024 * 1024;
771ed689 1086
a3429ab7
CM
1087 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1088 1, 0, NULL, GFP_NOFS);
d397712b 1089 while (start < end) {
771ed689 1090 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1091 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1092 async_cow->inode = igrab(inode);
771ed689
CM
1093 async_cow->root = root;
1094 async_cow->locked_page = locked_page;
1095 async_cow->start = start;
1096
6cbff00f 1097 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1098 cur_end = end;
1099 else
1100 cur_end = min(end, start + 512 * 1024 - 1);
1101
1102 async_cow->end = cur_end;
1103 INIT_LIST_HEAD(&async_cow->extents);
1104
9e0af237
LB
1105 btrfs_init_work(&async_cow->work,
1106 btrfs_delalloc_helper,
1107 async_cow_start, async_cow_submit,
1108 async_cow_free);
771ed689 1109
771ed689
CM
1110 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1111 PAGE_CACHE_SHIFT;
1112 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1113
afe3d242
QW
1114 btrfs_queue_work(root->fs_info->delalloc_workers,
1115 &async_cow->work);
771ed689
CM
1116
1117 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1118 wait_event(root->fs_info->async_submit_wait,
1119 (atomic_read(&root->fs_info->async_delalloc_pages) <
1120 limit));
1121 }
1122
d397712b 1123 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1124 atomic_read(&root->fs_info->async_delalloc_pages)) {
1125 wait_event(root->fs_info->async_submit_wait,
1126 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1127 0));
1128 }
1129
1130 *nr_written += nr_pages;
1131 start = cur_end + 1;
1132 }
1133 *page_started = 1;
1134 return 0;
be20aa9d
CM
1135}
1136
d397712b 1137static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1138 u64 bytenr, u64 num_bytes)
1139{
1140 int ret;
1141 struct btrfs_ordered_sum *sums;
1142 LIST_HEAD(list);
1143
07d400a6 1144 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1145 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1146 if (ret == 0 && list_empty(&list))
1147 return 0;
1148
1149 while (!list_empty(&list)) {
1150 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1151 list_del(&sums->list);
1152 kfree(sums);
1153 }
1154 return 1;
1155}
1156
d352ac68
CM
1157/*
1158 * when nowcow writeback call back. This checks for snapshots or COW copies
1159 * of the extents that exist in the file, and COWs the file as required.
1160 *
1161 * If no cow copies or snapshots exist, we write directly to the existing
1162 * blocks on disk
1163 */
7f366cfe
CM
1164static noinline int run_delalloc_nocow(struct inode *inode,
1165 struct page *locked_page,
771ed689
CM
1166 u64 start, u64 end, int *page_started, int force,
1167 unsigned long *nr_written)
be20aa9d 1168{
be20aa9d 1169 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1170 struct btrfs_trans_handle *trans;
be20aa9d 1171 struct extent_buffer *leaf;
be20aa9d 1172 struct btrfs_path *path;
80ff3856 1173 struct btrfs_file_extent_item *fi;
be20aa9d 1174 struct btrfs_key found_key;
80ff3856
YZ
1175 u64 cow_start;
1176 u64 cur_offset;
1177 u64 extent_end;
5d4f98a2 1178 u64 extent_offset;
80ff3856
YZ
1179 u64 disk_bytenr;
1180 u64 num_bytes;
b4939680 1181 u64 disk_num_bytes;
cc95bef6 1182 u64 ram_bytes;
80ff3856 1183 int extent_type;
79787eaa 1184 int ret, err;
d899e052 1185 int type;
80ff3856
YZ
1186 int nocow;
1187 int check_prev = 1;
82d5902d 1188 bool nolock;
33345d01 1189 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1190
1191 path = btrfs_alloc_path();
17ca04af 1192 if (!path) {
c2790a2e
JB
1193 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1194 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1195 EXTENT_DO_ACCOUNTING |
1196 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1197 PAGE_CLEAR_DIRTY |
1198 PAGE_SET_WRITEBACK |
1199 PAGE_END_WRITEBACK);
d8926bb3 1200 return -ENOMEM;
17ca04af 1201 }
82d5902d 1202
83eea1f1 1203 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1204
1205 if (nolock)
7a7eaa40 1206 trans = btrfs_join_transaction_nolock(root);
82d5902d 1207 else
7a7eaa40 1208 trans = btrfs_join_transaction(root);
ff5714cc 1209
79787eaa 1210 if (IS_ERR(trans)) {
c2790a2e
JB
1211 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1212 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1213 EXTENT_DO_ACCOUNTING |
1214 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1215 PAGE_CLEAR_DIRTY |
1216 PAGE_SET_WRITEBACK |
1217 PAGE_END_WRITEBACK);
79787eaa
JM
1218 btrfs_free_path(path);
1219 return PTR_ERR(trans);
1220 }
1221
74b21075 1222 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1223
80ff3856
YZ
1224 cow_start = (u64)-1;
1225 cur_offset = start;
1226 while (1) {
33345d01 1227 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1228 cur_offset, 0);
d788a349 1229 if (ret < 0)
79787eaa 1230 goto error;
80ff3856
YZ
1231 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1232 leaf = path->nodes[0];
1233 btrfs_item_key_to_cpu(leaf, &found_key,
1234 path->slots[0] - 1);
33345d01 1235 if (found_key.objectid == ino &&
80ff3856
YZ
1236 found_key.type == BTRFS_EXTENT_DATA_KEY)
1237 path->slots[0]--;
1238 }
1239 check_prev = 0;
1240next_slot:
1241 leaf = path->nodes[0];
1242 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1243 ret = btrfs_next_leaf(root, path);
d788a349 1244 if (ret < 0)
79787eaa 1245 goto error;
80ff3856
YZ
1246 if (ret > 0)
1247 break;
1248 leaf = path->nodes[0];
1249 }
be20aa9d 1250
80ff3856
YZ
1251 nocow = 0;
1252 disk_bytenr = 0;
17d217fe 1253 num_bytes = 0;
80ff3856
YZ
1254 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1255
33345d01 1256 if (found_key.objectid > ino ||
80ff3856
YZ
1257 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1258 found_key.offset > end)
1259 break;
1260
1261 if (found_key.offset > cur_offset) {
1262 extent_end = found_key.offset;
e9061e21 1263 extent_type = 0;
80ff3856
YZ
1264 goto out_check;
1265 }
1266
1267 fi = btrfs_item_ptr(leaf, path->slots[0],
1268 struct btrfs_file_extent_item);
1269 extent_type = btrfs_file_extent_type(leaf, fi);
1270
cc95bef6 1271 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1272 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1273 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1274 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1275 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1276 extent_end = found_key.offset +
1277 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1278 disk_num_bytes =
1279 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1280 if (extent_end <= start) {
1281 path->slots[0]++;
1282 goto next_slot;
1283 }
17d217fe
YZ
1284 if (disk_bytenr == 0)
1285 goto out_check;
80ff3856
YZ
1286 if (btrfs_file_extent_compression(leaf, fi) ||
1287 btrfs_file_extent_encryption(leaf, fi) ||
1288 btrfs_file_extent_other_encoding(leaf, fi))
1289 goto out_check;
d899e052
YZ
1290 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1291 goto out_check;
d2fb3437 1292 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1293 goto out_check;
33345d01 1294 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1295 found_key.offset -
1296 extent_offset, disk_bytenr))
17d217fe 1297 goto out_check;
5d4f98a2 1298 disk_bytenr += extent_offset;
17d217fe
YZ
1299 disk_bytenr += cur_offset - found_key.offset;
1300 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1301 /*
1302 * if there are pending snapshots for this root,
1303 * we fall into common COW way.
1304 */
1305 if (!nolock) {
1306 err = btrfs_start_nocow_write(root);
1307 if (!err)
1308 goto out_check;
1309 }
17d217fe
YZ
1310 /*
1311 * force cow if csum exists in the range.
1312 * this ensure that csum for a given extent are
1313 * either valid or do not exist.
1314 */
1315 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1316 goto out_check;
80ff3856
YZ
1317 nocow = 1;
1318 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1319 extent_end = found_key.offset +
514ac8ad
CM
1320 btrfs_file_extent_inline_len(leaf,
1321 path->slots[0], fi);
80ff3856
YZ
1322 extent_end = ALIGN(extent_end, root->sectorsize);
1323 } else {
1324 BUG_ON(1);
1325 }
1326out_check:
1327 if (extent_end <= start) {
1328 path->slots[0]++;
e9894fd3
WS
1329 if (!nolock && nocow)
1330 btrfs_end_nocow_write(root);
80ff3856
YZ
1331 goto next_slot;
1332 }
1333 if (!nocow) {
1334 if (cow_start == (u64)-1)
1335 cow_start = cur_offset;
1336 cur_offset = extent_end;
1337 if (cur_offset > end)
1338 break;
1339 path->slots[0]++;
1340 goto next_slot;
7ea394f1
YZ
1341 }
1342
b3b4aa74 1343 btrfs_release_path(path);
80ff3856 1344 if (cow_start != (u64)-1) {
00361589
JB
1345 ret = cow_file_range(inode, locked_page,
1346 cow_start, found_key.offset - 1,
1347 page_started, nr_written, 1);
e9894fd3
WS
1348 if (ret) {
1349 if (!nolock && nocow)
1350 btrfs_end_nocow_write(root);
79787eaa 1351 goto error;
e9894fd3 1352 }
80ff3856 1353 cow_start = (u64)-1;
7ea394f1 1354 }
80ff3856 1355
d899e052
YZ
1356 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1357 struct extent_map *em;
1358 struct extent_map_tree *em_tree;
1359 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1360 em = alloc_extent_map();
79787eaa 1361 BUG_ON(!em); /* -ENOMEM */
d899e052 1362 em->start = cur_offset;
70c8a91c 1363 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1364 em->len = num_bytes;
1365 em->block_len = num_bytes;
1366 em->block_start = disk_bytenr;
b4939680 1367 em->orig_block_len = disk_num_bytes;
cc95bef6 1368 em->ram_bytes = ram_bytes;
d899e052 1369 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1370 em->mod_start = em->start;
1371 em->mod_len = em->len;
d899e052 1372 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1373 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1374 em->generation = -1;
d899e052 1375 while (1) {
890871be 1376 write_lock(&em_tree->lock);
09a2a8f9 1377 ret = add_extent_mapping(em_tree, em, 1);
890871be 1378 write_unlock(&em_tree->lock);
d899e052
YZ
1379 if (ret != -EEXIST) {
1380 free_extent_map(em);
1381 break;
1382 }
1383 btrfs_drop_extent_cache(inode, em->start,
1384 em->start + em->len - 1, 0);
1385 }
1386 type = BTRFS_ORDERED_PREALLOC;
1387 } else {
1388 type = BTRFS_ORDERED_NOCOW;
1389 }
80ff3856
YZ
1390
1391 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1392 num_bytes, num_bytes, type);
79787eaa 1393 BUG_ON(ret); /* -ENOMEM */
771ed689 1394
efa56464
YZ
1395 if (root->root_key.objectid ==
1396 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1397 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1398 num_bytes);
e9894fd3
WS
1399 if (ret) {
1400 if (!nolock && nocow)
1401 btrfs_end_nocow_write(root);
79787eaa 1402 goto error;
e9894fd3 1403 }
efa56464
YZ
1404 }
1405
c2790a2e
JB
1406 extent_clear_unlock_delalloc(inode, cur_offset,
1407 cur_offset + num_bytes - 1,
1408 locked_page, EXTENT_LOCKED |
1409 EXTENT_DELALLOC, PAGE_UNLOCK |
1410 PAGE_SET_PRIVATE2);
e9894fd3
WS
1411 if (!nolock && nocow)
1412 btrfs_end_nocow_write(root);
80ff3856
YZ
1413 cur_offset = extent_end;
1414 if (cur_offset > end)
1415 break;
be20aa9d 1416 }
b3b4aa74 1417 btrfs_release_path(path);
80ff3856 1418
17ca04af 1419 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1420 cow_start = cur_offset;
17ca04af
JB
1421 cur_offset = end;
1422 }
1423
80ff3856 1424 if (cow_start != (u64)-1) {
00361589
JB
1425 ret = cow_file_range(inode, locked_page, cow_start, end,
1426 page_started, nr_written, 1);
d788a349 1427 if (ret)
79787eaa 1428 goto error;
80ff3856
YZ
1429 }
1430
79787eaa 1431error:
a698d075 1432 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1433 if (!ret)
1434 ret = err;
1435
17ca04af 1436 if (ret && cur_offset < end)
c2790a2e
JB
1437 extent_clear_unlock_delalloc(inode, cur_offset, end,
1438 locked_page, EXTENT_LOCKED |
151a41bc
JB
1439 EXTENT_DELALLOC | EXTENT_DEFRAG |
1440 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1441 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1442 PAGE_SET_WRITEBACK |
1443 PAGE_END_WRITEBACK);
7ea394f1 1444 btrfs_free_path(path);
79787eaa 1445 return ret;
be20aa9d
CM
1446}
1447
47059d93
WS
1448static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1449{
1450
1451 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1452 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1453 return 0;
1454
1455 /*
1456 * @defrag_bytes is a hint value, no spinlock held here,
1457 * if is not zero, it means the file is defragging.
1458 * Force cow if given extent needs to be defragged.
1459 */
1460 if (BTRFS_I(inode)->defrag_bytes &&
1461 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1462 EXTENT_DEFRAG, 0, NULL))
1463 return 1;
1464
1465 return 0;
1466}
1467
d352ac68
CM
1468/*
1469 * extent_io.c call back to do delayed allocation processing
1470 */
c8b97818 1471static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1472 u64 start, u64 end, int *page_started,
1473 unsigned long *nr_written)
be20aa9d 1474{
be20aa9d 1475 int ret;
7f366cfe 1476 struct btrfs_root *root = BTRFS_I(inode)->root;
47059d93 1477 int force_cow = need_force_cow(inode, start, end);
a2135011 1478
47059d93 1479 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1480 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1481 page_started, 1, nr_written);
47059d93 1482 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1483 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1484 page_started, 0, nr_written);
7ddf5a42
JB
1485 } else if (!btrfs_test_opt(root, COMPRESS) &&
1486 !(BTRFS_I(inode)->force_compress) &&
1487 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1488 ret = cow_file_range(inode, locked_page, start, end,
1489 page_started, nr_written, 1);
7ddf5a42
JB
1490 } else {
1491 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1492 &BTRFS_I(inode)->runtime_flags);
771ed689 1493 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1494 page_started, nr_written);
7ddf5a42 1495 }
b888db2b
CM
1496 return ret;
1497}
1498
1bf85046
JM
1499static void btrfs_split_extent_hook(struct inode *inode,
1500 struct extent_state *orig, u64 split)
9ed74f2d 1501{
0ca1f7ce 1502 /* not delalloc, ignore it */
9ed74f2d 1503 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1504 return;
9ed74f2d 1505
9e0baf60
JB
1506 spin_lock(&BTRFS_I(inode)->lock);
1507 BTRFS_I(inode)->outstanding_extents++;
1508 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1509}
1510
1511/*
1512 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1513 * extents so we can keep track of new extents that are just merged onto old
1514 * extents, such as when we are doing sequential writes, so we can properly
1515 * account for the metadata space we'll need.
1516 */
1bf85046
JM
1517static void btrfs_merge_extent_hook(struct inode *inode,
1518 struct extent_state *new,
1519 struct extent_state *other)
9ed74f2d 1520{
9ed74f2d
JB
1521 /* not delalloc, ignore it */
1522 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1523 return;
9ed74f2d 1524
9e0baf60
JB
1525 spin_lock(&BTRFS_I(inode)->lock);
1526 BTRFS_I(inode)->outstanding_extents--;
1527 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1528}
1529
eb73c1b7
MX
1530static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1531 struct inode *inode)
1532{
1533 spin_lock(&root->delalloc_lock);
1534 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1535 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1536 &root->delalloc_inodes);
1537 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1538 &BTRFS_I(inode)->runtime_flags);
1539 root->nr_delalloc_inodes++;
1540 if (root->nr_delalloc_inodes == 1) {
1541 spin_lock(&root->fs_info->delalloc_root_lock);
1542 BUG_ON(!list_empty(&root->delalloc_root));
1543 list_add_tail(&root->delalloc_root,
1544 &root->fs_info->delalloc_roots);
1545 spin_unlock(&root->fs_info->delalloc_root_lock);
1546 }
1547 }
1548 spin_unlock(&root->delalloc_lock);
1549}
1550
1551static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1552 struct inode *inode)
1553{
1554 spin_lock(&root->delalloc_lock);
1555 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1556 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1557 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1558 &BTRFS_I(inode)->runtime_flags);
1559 root->nr_delalloc_inodes--;
1560 if (!root->nr_delalloc_inodes) {
1561 spin_lock(&root->fs_info->delalloc_root_lock);
1562 BUG_ON(list_empty(&root->delalloc_root));
1563 list_del_init(&root->delalloc_root);
1564 spin_unlock(&root->fs_info->delalloc_root_lock);
1565 }
1566 }
1567 spin_unlock(&root->delalloc_lock);
1568}
1569
d352ac68
CM
1570/*
1571 * extent_io.c set_bit_hook, used to track delayed allocation
1572 * bytes in this file, and to maintain the list of inodes that
1573 * have pending delalloc work to be done.
1574 */
1bf85046 1575static void btrfs_set_bit_hook(struct inode *inode,
41074888 1576 struct extent_state *state, unsigned long *bits)
291d673e 1577{
9ed74f2d 1578
47059d93
WS
1579 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1580 WARN_ON(1);
75eff68e
CM
1581 /*
1582 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1583 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1584 * bit, which is only set or cleared with irqs on
1585 */
0ca1f7ce 1586 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1587 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1588 u64 len = state->end + 1 - state->start;
83eea1f1 1589 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1590
9e0baf60 1591 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1592 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1593 } else {
1594 spin_lock(&BTRFS_I(inode)->lock);
1595 BTRFS_I(inode)->outstanding_extents++;
1596 spin_unlock(&BTRFS_I(inode)->lock);
1597 }
287a0ab9 1598
963d678b
MX
1599 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1600 root->fs_info->delalloc_batch);
df0af1a5 1601 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1602 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1603 if (*bits & EXTENT_DEFRAG)
1604 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1605 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1606 &BTRFS_I(inode)->runtime_flags))
1607 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1608 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1609 }
291d673e
CM
1610}
1611
d352ac68
CM
1612/*
1613 * extent_io.c clear_bit_hook, see set_bit_hook for why
1614 */
1bf85046 1615static void btrfs_clear_bit_hook(struct inode *inode,
41074888
DS
1616 struct extent_state *state,
1617 unsigned long *bits)
291d673e 1618{
47059d93
WS
1619 u64 len = state->end + 1 - state->start;
1620
1621 spin_lock(&BTRFS_I(inode)->lock);
1622 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1623 BTRFS_I(inode)->defrag_bytes -= len;
1624 spin_unlock(&BTRFS_I(inode)->lock);
1625
75eff68e
CM
1626 /*
1627 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1628 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1629 * bit, which is only set or cleared with irqs on
1630 */
0ca1f7ce 1631 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1632 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1633 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1634
9e0baf60 1635 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1636 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1637 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1638 spin_lock(&BTRFS_I(inode)->lock);
1639 BTRFS_I(inode)->outstanding_extents--;
1640 spin_unlock(&BTRFS_I(inode)->lock);
1641 }
0ca1f7ce 1642
b6d08f06
JB
1643 /*
1644 * We don't reserve metadata space for space cache inodes so we
1645 * don't need to call dellalloc_release_metadata if there is an
1646 * error.
1647 */
1648 if (*bits & EXTENT_DO_ACCOUNTING &&
1649 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1650 btrfs_delalloc_release_metadata(inode, len);
1651
0cb59c99 1652 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1653 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1654 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1655
963d678b
MX
1656 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1657 root->fs_info->delalloc_batch);
df0af1a5 1658 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1659 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1660 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1661 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1662 &BTRFS_I(inode)->runtime_flags))
1663 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1664 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1665 }
291d673e
CM
1666}
1667
d352ac68
CM
1668/*
1669 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1670 * we don't create bios that span stripes or chunks
1671 */
64a16701 1672int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1673 size_t size, struct bio *bio,
1674 unsigned long bio_flags)
239b14b3
CM
1675{
1676 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1677 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1678 u64 length = 0;
1679 u64 map_length;
239b14b3
CM
1680 int ret;
1681
771ed689
CM
1682 if (bio_flags & EXTENT_BIO_COMPRESSED)
1683 return 0;
1684
4f024f37 1685 length = bio->bi_iter.bi_size;
239b14b3 1686 map_length = length;
64a16701 1687 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1688 &map_length, NULL, 0);
3ec706c8 1689 /* Will always return 0 with map_multi == NULL */
3444a972 1690 BUG_ON(ret < 0);
d397712b 1691 if (map_length < length + size)
239b14b3 1692 return 1;
3444a972 1693 return 0;
239b14b3
CM
1694}
1695
d352ac68
CM
1696/*
1697 * in order to insert checksums into the metadata in large chunks,
1698 * we wait until bio submission time. All the pages in the bio are
1699 * checksummed and sums are attached onto the ordered extent record.
1700 *
1701 * At IO completion time the cums attached on the ordered extent record
1702 * are inserted into the btree
1703 */
d397712b
CM
1704static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1705 struct bio *bio, int mirror_num,
eaf25d93
CM
1706 unsigned long bio_flags,
1707 u64 bio_offset)
065631f6 1708{
065631f6 1709 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1710 int ret = 0;
e015640f 1711
d20f7043 1712 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1713 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1714 return 0;
1715}
e015640f 1716
4a69a410
CM
1717/*
1718 * in order to insert checksums into the metadata in large chunks,
1719 * we wait until bio submission time. All the pages in the bio are
1720 * checksummed and sums are attached onto the ordered extent record.
1721 *
1722 * At IO completion time the cums attached on the ordered extent record
1723 * are inserted into the btree
1724 */
b2950863 1725static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1726 int mirror_num, unsigned long bio_flags,
1727 u64 bio_offset)
4a69a410
CM
1728{
1729 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1730 int ret;
1731
1732 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1733 if (ret)
1734 bio_endio(bio, ret);
1735 return ret;
44b8bd7e
CM
1736}
1737
d352ac68 1738/*
cad321ad
CM
1739 * extent_io.c submission hook. This does the right thing for csum calculation
1740 * on write, or reading the csums from the tree before a read
d352ac68 1741 */
b2950863 1742static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1743 int mirror_num, unsigned long bio_flags,
1744 u64 bio_offset)
44b8bd7e
CM
1745{
1746 struct btrfs_root *root = BTRFS_I(inode)->root;
1747 int ret = 0;
19b9bdb0 1748 int skip_sum;
0417341e 1749 int metadata = 0;
b812ce28 1750 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1751
6cbff00f 1752 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1753
83eea1f1 1754 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1755 metadata = 2;
1756
7b6d91da 1757 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1758 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1759 if (ret)
61891923 1760 goto out;
5fd02043 1761
d20f7043 1762 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1763 ret = btrfs_submit_compressed_read(inode, bio,
1764 mirror_num,
1765 bio_flags);
1766 goto out;
c2db1073
TI
1767 } else if (!skip_sum) {
1768 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1769 if (ret)
61891923 1770 goto out;
c2db1073 1771 }
4d1b5fb4 1772 goto mapit;
b812ce28 1773 } else if (async && !skip_sum) {
17d217fe
YZ
1774 /* csum items have already been cloned */
1775 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1776 goto mapit;
19b9bdb0 1777 /* we're doing a write, do the async checksumming */
61891923 1778 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1779 inode, rw, bio, mirror_num,
eaf25d93
CM
1780 bio_flags, bio_offset,
1781 __btrfs_submit_bio_start,
4a69a410 1782 __btrfs_submit_bio_done);
61891923 1783 goto out;
b812ce28
JB
1784 } else if (!skip_sum) {
1785 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1786 if (ret)
1787 goto out;
19b9bdb0
CM
1788 }
1789
0b86a832 1790mapit:
61891923
SB
1791 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1792
1793out:
1794 if (ret < 0)
1795 bio_endio(bio, ret);
1796 return ret;
065631f6 1797}
6885f308 1798
d352ac68
CM
1799/*
1800 * given a list of ordered sums record them in the inode. This happens
1801 * at IO completion time based on sums calculated at bio submission time.
1802 */
ba1da2f4 1803static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1804 struct inode *inode, u64 file_offset,
1805 struct list_head *list)
1806{
e6dcd2dc
CM
1807 struct btrfs_ordered_sum *sum;
1808
c6e30871 1809 list_for_each_entry(sum, list, list) {
39847c4d 1810 trans->adding_csums = 1;
d20f7043
CM
1811 btrfs_csum_file_blocks(trans,
1812 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1813 trans->adding_csums = 0;
e6dcd2dc
CM
1814 }
1815 return 0;
1816}
1817
2ac55d41
JB
1818int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1819 struct extent_state **cached_state)
ea8c2819 1820{
6c1500f2 1821 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1822 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1823 cached_state, GFP_NOFS);
ea8c2819
CM
1824}
1825
d352ac68 1826/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1827struct btrfs_writepage_fixup {
1828 struct page *page;
1829 struct btrfs_work work;
1830};
1831
b2950863 1832static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1833{
1834 struct btrfs_writepage_fixup *fixup;
1835 struct btrfs_ordered_extent *ordered;
2ac55d41 1836 struct extent_state *cached_state = NULL;
247e743c
CM
1837 struct page *page;
1838 struct inode *inode;
1839 u64 page_start;
1840 u64 page_end;
87826df0 1841 int ret;
247e743c
CM
1842
1843 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1844 page = fixup->page;
4a096752 1845again:
247e743c
CM
1846 lock_page(page);
1847 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1848 ClearPageChecked(page);
1849 goto out_page;
1850 }
1851
1852 inode = page->mapping->host;
1853 page_start = page_offset(page);
1854 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1855
2ac55d41 1856 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1857 &cached_state);
4a096752
CM
1858
1859 /* already ordered? We're done */
8b62b72b 1860 if (PagePrivate2(page))
247e743c 1861 goto out;
4a096752
CM
1862
1863 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1864 if (ordered) {
2ac55d41
JB
1865 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1866 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1867 unlock_page(page);
1868 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1869 btrfs_put_ordered_extent(ordered);
4a096752
CM
1870 goto again;
1871 }
247e743c 1872
87826df0
JM
1873 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1874 if (ret) {
1875 mapping_set_error(page->mapping, ret);
1876 end_extent_writepage(page, ret, page_start, page_end);
1877 ClearPageChecked(page);
1878 goto out;
1879 }
1880
2ac55d41 1881 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1882 ClearPageChecked(page);
87826df0 1883 set_page_dirty(page);
247e743c 1884out:
2ac55d41
JB
1885 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1886 &cached_state, GFP_NOFS);
247e743c
CM
1887out_page:
1888 unlock_page(page);
1889 page_cache_release(page);
b897abec 1890 kfree(fixup);
247e743c
CM
1891}
1892
1893/*
1894 * There are a few paths in the higher layers of the kernel that directly
1895 * set the page dirty bit without asking the filesystem if it is a
1896 * good idea. This causes problems because we want to make sure COW
1897 * properly happens and the data=ordered rules are followed.
1898 *
c8b97818 1899 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1900 * hasn't been properly setup for IO. We kick off an async process
1901 * to fix it up. The async helper will wait for ordered extents, set
1902 * the delalloc bit and make it safe to write the page.
1903 */
b2950863 1904static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1905{
1906 struct inode *inode = page->mapping->host;
1907 struct btrfs_writepage_fixup *fixup;
1908 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1909
8b62b72b
CM
1910 /* this page is properly in the ordered list */
1911 if (TestClearPagePrivate2(page))
247e743c
CM
1912 return 0;
1913
1914 if (PageChecked(page))
1915 return -EAGAIN;
1916
1917 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1918 if (!fixup)
1919 return -EAGAIN;
f421950f 1920
247e743c
CM
1921 SetPageChecked(page);
1922 page_cache_get(page);
9e0af237
LB
1923 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
1924 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 1925 fixup->page = page;
dc6e3209 1926 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 1927 return -EBUSY;
247e743c
CM
1928}
1929
d899e052
YZ
1930static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1931 struct inode *inode, u64 file_pos,
1932 u64 disk_bytenr, u64 disk_num_bytes,
1933 u64 num_bytes, u64 ram_bytes,
1934 u8 compression, u8 encryption,
1935 u16 other_encoding, int extent_type)
1936{
1937 struct btrfs_root *root = BTRFS_I(inode)->root;
1938 struct btrfs_file_extent_item *fi;
1939 struct btrfs_path *path;
1940 struct extent_buffer *leaf;
1941 struct btrfs_key ins;
1acae57b 1942 int extent_inserted = 0;
d899e052
YZ
1943 int ret;
1944
1945 path = btrfs_alloc_path();
d8926bb3
MF
1946 if (!path)
1947 return -ENOMEM;
d899e052 1948
a1ed835e
CM
1949 /*
1950 * we may be replacing one extent in the tree with another.
1951 * The new extent is pinned in the extent map, and we don't want
1952 * to drop it from the cache until it is completely in the btree.
1953 *
1954 * So, tell btrfs_drop_extents to leave this extent in the cache.
1955 * the caller is expected to unpin it and allow it to be merged
1956 * with the others.
1957 */
1acae57b
FDBM
1958 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1959 file_pos + num_bytes, NULL, 0,
1960 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
1961 if (ret)
1962 goto out;
d899e052 1963
1acae57b
FDBM
1964 if (!extent_inserted) {
1965 ins.objectid = btrfs_ino(inode);
1966 ins.offset = file_pos;
1967 ins.type = BTRFS_EXTENT_DATA_KEY;
1968
1969 path->leave_spinning = 1;
1970 ret = btrfs_insert_empty_item(trans, root, path, &ins,
1971 sizeof(*fi));
1972 if (ret)
1973 goto out;
1974 }
d899e052
YZ
1975 leaf = path->nodes[0];
1976 fi = btrfs_item_ptr(leaf, path->slots[0],
1977 struct btrfs_file_extent_item);
1978 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1979 btrfs_set_file_extent_type(leaf, fi, extent_type);
1980 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1981 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1982 btrfs_set_file_extent_offset(leaf, fi, 0);
1983 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1984 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1985 btrfs_set_file_extent_compression(leaf, fi, compression);
1986 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1987 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1988
d899e052 1989 btrfs_mark_buffer_dirty(leaf);
ce195332 1990 btrfs_release_path(path);
d899e052
YZ
1991
1992 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1993
1994 ins.objectid = disk_bytenr;
1995 ins.offset = disk_num_bytes;
1996 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1997 ret = btrfs_alloc_reserved_file_extent(trans, root,
1998 root->root_key.objectid,
33345d01 1999 btrfs_ino(inode), file_pos, &ins);
79787eaa 2000out:
d899e052 2001 btrfs_free_path(path);
b9473439 2002
79787eaa 2003 return ret;
d899e052
YZ
2004}
2005
38c227d8
LB
2006/* snapshot-aware defrag */
2007struct sa_defrag_extent_backref {
2008 struct rb_node node;
2009 struct old_sa_defrag_extent *old;
2010 u64 root_id;
2011 u64 inum;
2012 u64 file_pos;
2013 u64 extent_offset;
2014 u64 num_bytes;
2015 u64 generation;
2016};
2017
2018struct old_sa_defrag_extent {
2019 struct list_head list;
2020 struct new_sa_defrag_extent *new;
2021
2022 u64 extent_offset;
2023 u64 bytenr;
2024 u64 offset;
2025 u64 len;
2026 int count;
2027};
2028
2029struct new_sa_defrag_extent {
2030 struct rb_root root;
2031 struct list_head head;
2032 struct btrfs_path *path;
2033 struct inode *inode;
2034 u64 file_pos;
2035 u64 len;
2036 u64 bytenr;
2037 u64 disk_len;
2038 u8 compress_type;
2039};
2040
2041static int backref_comp(struct sa_defrag_extent_backref *b1,
2042 struct sa_defrag_extent_backref *b2)
2043{
2044 if (b1->root_id < b2->root_id)
2045 return -1;
2046 else if (b1->root_id > b2->root_id)
2047 return 1;
2048
2049 if (b1->inum < b2->inum)
2050 return -1;
2051 else if (b1->inum > b2->inum)
2052 return 1;
2053
2054 if (b1->file_pos < b2->file_pos)
2055 return -1;
2056 else if (b1->file_pos > b2->file_pos)
2057 return 1;
2058
2059 /*
2060 * [------------------------------] ===> (a range of space)
2061 * |<--->| |<---->| =============> (fs/file tree A)
2062 * |<---------------------------->| ===> (fs/file tree B)
2063 *
2064 * A range of space can refer to two file extents in one tree while
2065 * refer to only one file extent in another tree.
2066 *
2067 * So we may process a disk offset more than one time(two extents in A)
2068 * and locate at the same extent(one extent in B), then insert two same
2069 * backrefs(both refer to the extent in B).
2070 */
2071 return 0;
2072}
2073
2074static void backref_insert(struct rb_root *root,
2075 struct sa_defrag_extent_backref *backref)
2076{
2077 struct rb_node **p = &root->rb_node;
2078 struct rb_node *parent = NULL;
2079 struct sa_defrag_extent_backref *entry;
2080 int ret;
2081
2082 while (*p) {
2083 parent = *p;
2084 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2085
2086 ret = backref_comp(backref, entry);
2087 if (ret < 0)
2088 p = &(*p)->rb_left;
2089 else
2090 p = &(*p)->rb_right;
2091 }
2092
2093 rb_link_node(&backref->node, parent, p);
2094 rb_insert_color(&backref->node, root);
2095}
2096
2097/*
2098 * Note the backref might has changed, and in this case we just return 0.
2099 */
2100static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2101 void *ctx)
2102{
2103 struct btrfs_file_extent_item *extent;
2104 struct btrfs_fs_info *fs_info;
2105 struct old_sa_defrag_extent *old = ctx;
2106 struct new_sa_defrag_extent *new = old->new;
2107 struct btrfs_path *path = new->path;
2108 struct btrfs_key key;
2109 struct btrfs_root *root;
2110 struct sa_defrag_extent_backref *backref;
2111 struct extent_buffer *leaf;
2112 struct inode *inode = new->inode;
2113 int slot;
2114 int ret;
2115 u64 extent_offset;
2116 u64 num_bytes;
2117
2118 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2119 inum == btrfs_ino(inode))
2120 return 0;
2121
2122 key.objectid = root_id;
2123 key.type = BTRFS_ROOT_ITEM_KEY;
2124 key.offset = (u64)-1;
2125
2126 fs_info = BTRFS_I(inode)->root->fs_info;
2127 root = btrfs_read_fs_root_no_name(fs_info, &key);
2128 if (IS_ERR(root)) {
2129 if (PTR_ERR(root) == -ENOENT)
2130 return 0;
2131 WARN_ON(1);
2132 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2133 inum, offset, root_id);
2134 return PTR_ERR(root);
2135 }
2136
2137 key.objectid = inum;
2138 key.type = BTRFS_EXTENT_DATA_KEY;
2139 if (offset > (u64)-1 << 32)
2140 key.offset = 0;
2141 else
2142 key.offset = offset;
2143
2144 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2145 if (WARN_ON(ret < 0))
38c227d8 2146 return ret;
50f1319c 2147 ret = 0;
38c227d8
LB
2148
2149 while (1) {
2150 cond_resched();
2151
2152 leaf = path->nodes[0];
2153 slot = path->slots[0];
2154
2155 if (slot >= btrfs_header_nritems(leaf)) {
2156 ret = btrfs_next_leaf(root, path);
2157 if (ret < 0) {
2158 goto out;
2159 } else if (ret > 0) {
2160 ret = 0;
2161 goto out;
2162 }
2163 continue;
2164 }
2165
2166 path->slots[0]++;
2167
2168 btrfs_item_key_to_cpu(leaf, &key, slot);
2169
2170 if (key.objectid > inum)
2171 goto out;
2172
2173 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2174 continue;
2175
2176 extent = btrfs_item_ptr(leaf, slot,
2177 struct btrfs_file_extent_item);
2178
2179 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2180 continue;
2181
e68afa49
LB
2182 /*
2183 * 'offset' refers to the exact key.offset,
2184 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2185 * (key.offset - extent_offset).
2186 */
2187 if (key.offset != offset)
38c227d8
LB
2188 continue;
2189
e68afa49 2190 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2191 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2192
38c227d8
LB
2193 if (extent_offset >= old->extent_offset + old->offset +
2194 old->len || extent_offset + num_bytes <=
2195 old->extent_offset + old->offset)
2196 continue;
38c227d8
LB
2197 break;
2198 }
2199
2200 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2201 if (!backref) {
2202 ret = -ENOENT;
2203 goto out;
2204 }
2205
2206 backref->root_id = root_id;
2207 backref->inum = inum;
e68afa49 2208 backref->file_pos = offset;
38c227d8
LB
2209 backref->num_bytes = num_bytes;
2210 backref->extent_offset = extent_offset;
2211 backref->generation = btrfs_file_extent_generation(leaf, extent);
2212 backref->old = old;
2213 backref_insert(&new->root, backref);
2214 old->count++;
2215out:
2216 btrfs_release_path(path);
2217 WARN_ON(ret);
2218 return ret;
2219}
2220
2221static noinline bool record_extent_backrefs(struct btrfs_path *path,
2222 struct new_sa_defrag_extent *new)
2223{
2224 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2225 struct old_sa_defrag_extent *old, *tmp;
2226 int ret;
2227
2228 new->path = path;
2229
2230 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2231 ret = iterate_inodes_from_logical(old->bytenr +
2232 old->extent_offset, fs_info,
38c227d8
LB
2233 path, record_one_backref,
2234 old);
4724b106
JB
2235 if (ret < 0 && ret != -ENOENT)
2236 return false;
38c227d8
LB
2237
2238 /* no backref to be processed for this extent */
2239 if (!old->count) {
2240 list_del(&old->list);
2241 kfree(old);
2242 }
2243 }
2244
2245 if (list_empty(&new->head))
2246 return false;
2247
2248 return true;
2249}
2250
2251static int relink_is_mergable(struct extent_buffer *leaf,
2252 struct btrfs_file_extent_item *fi,
116e0024 2253 struct new_sa_defrag_extent *new)
38c227d8 2254{
116e0024 2255 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2256 return 0;
2257
2258 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2259 return 0;
2260
116e0024
LB
2261 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2262 return 0;
2263
2264 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2265 btrfs_file_extent_other_encoding(leaf, fi))
2266 return 0;
2267
2268 return 1;
2269}
2270
2271/*
2272 * Note the backref might has changed, and in this case we just return 0.
2273 */
2274static noinline int relink_extent_backref(struct btrfs_path *path,
2275 struct sa_defrag_extent_backref *prev,
2276 struct sa_defrag_extent_backref *backref)
2277{
2278 struct btrfs_file_extent_item *extent;
2279 struct btrfs_file_extent_item *item;
2280 struct btrfs_ordered_extent *ordered;
2281 struct btrfs_trans_handle *trans;
2282 struct btrfs_fs_info *fs_info;
2283 struct btrfs_root *root;
2284 struct btrfs_key key;
2285 struct extent_buffer *leaf;
2286 struct old_sa_defrag_extent *old = backref->old;
2287 struct new_sa_defrag_extent *new = old->new;
2288 struct inode *src_inode = new->inode;
2289 struct inode *inode;
2290 struct extent_state *cached = NULL;
2291 int ret = 0;
2292 u64 start;
2293 u64 len;
2294 u64 lock_start;
2295 u64 lock_end;
2296 bool merge = false;
2297 int index;
2298
2299 if (prev && prev->root_id == backref->root_id &&
2300 prev->inum == backref->inum &&
2301 prev->file_pos + prev->num_bytes == backref->file_pos)
2302 merge = true;
2303
2304 /* step 1: get root */
2305 key.objectid = backref->root_id;
2306 key.type = BTRFS_ROOT_ITEM_KEY;
2307 key.offset = (u64)-1;
2308
2309 fs_info = BTRFS_I(src_inode)->root->fs_info;
2310 index = srcu_read_lock(&fs_info->subvol_srcu);
2311
2312 root = btrfs_read_fs_root_no_name(fs_info, &key);
2313 if (IS_ERR(root)) {
2314 srcu_read_unlock(&fs_info->subvol_srcu, index);
2315 if (PTR_ERR(root) == -ENOENT)
2316 return 0;
2317 return PTR_ERR(root);
2318 }
38c227d8 2319
bcbba5e6
WS
2320 if (btrfs_root_readonly(root)) {
2321 srcu_read_unlock(&fs_info->subvol_srcu, index);
2322 return 0;
2323 }
2324
38c227d8
LB
2325 /* step 2: get inode */
2326 key.objectid = backref->inum;
2327 key.type = BTRFS_INODE_ITEM_KEY;
2328 key.offset = 0;
2329
2330 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2331 if (IS_ERR(inode)) {
2332 srcu_read_unlock(&fs_info->subvol_srcu, index);
2333 return 0;
2334 }
2335
2336 srcu_read_unlock(&fs_info->subvol_srcu, index);
2337
2338 /* step 3: relink backref */
2339 lock_start = backref->file_pos;
2340 lock_end = backref->file_pos + backref->num_bytes - 1;
2341 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2342 0, &cached);
2343
2344 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2345 if (ordered) {
2346 btrfs_put_ordered_extent(ordered);
2347 goto out_unlock;
2348 }
2349
2350 trans = btrfs_join_transaction(root);
2351 if (IS_ERR(trans)) {
2352 ret = PTR_ERR(trans);
2353 goto out_unlock;
2354 }
2355
2356 key.objectid = backref->inum;
2357 key.type = BTRFS_EXTENT_DATA_KEY;
2358 key.offset = backref->file_pos;
2359
2360 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2361 if (ret < 0) {
2362 goto out_free_path;
2363 } else if (ret > 0) {
2364 ret = 0;
2365 goto out_free_path;
2366 }
2367
2368 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2369 struct btrfs_file_extent_item);
2370
2371 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2372 backref->generation)
2373 goto out_free_path;
2374
2375 btrfs_release_path(path);
2376
2377 start = backref->file_pos;
2378 if (backref->extent_offset < old->extent_offset + old->offset)
2379 start += old->extent_offset + old->offset -
2380 backref->extent_offset;
2381
2382 len = min(backref->extent_offset + backref->num_bytes,
2383 old->extent_offset + old->offset + old->len);
2384 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2385
2386 ret = btrfs_drop_extents(trans, root, inode, start,
2387 start + len, 1);
2388 if (ret)
2389 goto out_free_path;
2390again:
2391 key.objectid = btrfs_ino(inode);
2392 key.type = BTRFS_EXTENT_DATA_KEY;
2393 key.offset = start;
2394
a09a0a70 2395 path->leave_spinning = 1;
38c227d8
LB
2396 if (merge) {
2397 struct btrfs_file_extent_item *fi;
2398 u64 extent_len;
2399 struct btrfs_key found_key;
2400
3c9665df 2401 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2402 if (ret < 0)
2403 goto out_free_path;
2404
2405 path->slots[0]--;
2406 leaf = path->nodes[0];
2407 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2408
2409 fi = btrfs_item_ptr(leaf, path->slots[0],
2410 struct btrfs_file_extent_item);
2411 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2412
116e0024
LB
2413 if (extent_len + found_key.offset == start &&
2414 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2415 btrfs_set_file_extent_num_bytes(leaf, fi,
2416 extent_len + len);
2417 btrfs_mark_buffer_dirty(leaf);
2418 inode_add_bytes(inode, len);
2419
2420 ret = 1;
2421 goto out_free_path;
2422 } else {
2423 merge = false;
2424 btrfs_release_path(path);
2425 goto again;
2426 }
2427 }
2428
2429 ret = btrfs_insert_empty_item(trans, root, path, &key,
2430 sizeof(*extent));
2431 if (ret) {
2432 btrfs_abort_transaction(trans, root, ret);
2433 goto out_free_path;
2434 }
2435
2436 leaf = path->nodes[0];
2437 item = btrfs_item_ptr(leaf, path->slots[0],
2438 struct btrfs_file_extent_item);
2439 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2440 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2441 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2442 btrfs_set_file_extent_num_bytes(leaf, item, len);
2443 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2444 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2445 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2446 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2447 btrfs_set_file_extent_encryption(leaf, item, 0);
2448 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2449
2450 btrfs_mark_buffer_dirty(leaf);
2451 inode_add_bytes(inode, len);
a09a0a70 2452 btrfs_release_path(path);
38c227d8
LB
2453
2454 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2455 new->disk_len, 0,
2456 backref->root_id, backref->inum,
2457 new->file_pos, 0); /* start - extent_offset */
2458 if (ret) {
2459 btrfs_abort_transaction(trans, root, ret);
2460 goto out_free_path;
2461 }
2462
2463 ret = 1;
2464out_free_path:
2465 btrfs_release_path(path);
a09a0a70 2466 path->leave_spinning = 0;
38c227d8
LB
2467 btrfs_end_transaction(trans, root);
2468out_unlock:
2469 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2470 &cached, GFP_NOFS);
2471 iput(inode);
2472 return ret;
2473}
2474
6f519564
LB
2475static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2476{
2477 struct old_sa_defrag_extent *old, *tmp;
2478
2479 if (!new)
2480 return;
2481
2482 list_for_each_entry_safe(old, tmp, &new->head, list) {
2483 list_del(&old->list);
2484 kfree(old);
2485 }
2486 kfree(new);
2487}
2488
38c227d8
LB
2489static void relink_file_extents(struct new_sa_defrag_extent *new)
2490{
2491 struct btrfs_path *path;
38c227d8
LB
2492 struct sa_defrag_extent_backref *backref;
2493 struct sa_defrag_extent_backref *prev = NULL;
2494 struct inode *inode;
2495 struct btrfs_root *root;
2496 struct rb_node *node;
2497 int ret;
2498
2499 inode = new->inode;
2500 root = BTRFS_I(inode)->root;
2501
2502 path = btrfs_alloc_path();
2503 if (!path)
2504 return;
2505
2506 if (!record_extent_backrefs(path, new)) {
2507 btrfs_free_path(path);
2508 goto out;
2509 }
2510 btrfs_release_path(path);
2511
2512 while (1) {
2513 node = rb_first(&new->root);
2514 if (!node)
2515 break;
2516 rb_erase(node, &new->root);
2517
2518 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2519
2520 ret = relink_extent_backref(path, prev, backref);
2521 WARN_ON(ret < 0);
2522
2523 kfree(prev);
2524
2525 if (ret == 1)
2526 prev = backref;
2527 else
2528 prev = NULL;
2529 cond_resched();
2530 }
2531 kfree(prev);
2532
2533 btrfs_free_path(path);
38c227d8 2534out:
6f519564
LB
2535 free_sa_defrag_extent(new);
2536
38c227d8
LB
2537 atomic_dec(&root->fs_info->defrag_running);
2538 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2539}
2540
2541static struct new_sa_defrag_extent *
2542record_old_file_extents(struct inode *inode,
2543 struct btrfs_ordered_extent *ordered)
2544{
2545 struct btrfs_root *root = BTRFS_I(inode)->root;
2546 struct btrfs_path *path;
2547 struct btrfs_key key;
6f519564 2548 struct old_sa_defrag_extent *old;
38c227d8
LB
2549 struct new_sa_defrag_extent *new;
2550 int ret;
2551
2552 new = kmalloc(sizeof(*new), GFP_NOFS);
2553 if (!new)
2554 return NULL;
2555
2556 new->inode = inode;
2557 new->file_pos = ordered->file_offset;
2558 new->len = ordered->len;
2559 new->bytenr = ordered->start;
2560 new->disk_len = ordered->disk_len;
2561 new->compress_type = ordered->compress_type;
2562 new->root = RB_ROOT;
2563 INIT_LIST_HEAD(&new->head);
2564
2565 path = btrfs_alloc_path();
2566 if (!path)
2567 goto out_kfree;
2568
2569 key.objectid = btrfs_ino(inode);
2570 key.type = BTRFS_EXTENT_DATA_KEY;
2571 key.offset = new->file_pos;
2572
2573 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2574 if (ret < 0)
2575 goto out_free_path;
2576 if (ret > 0 && path->slots[0] > 0)
2577 path->slots[0]--;
2578
2579 /* find out all the old extents for the file range */
2580 while (1) {
2581 struct btrfs_file_extent_item *extent;
2582 struct extent_buffer *l;
2583 int slot;
2584 u64 num_bytes;
2585 u64 offset;
2586 u64 end;
2587 u64 disk_bytenr;
2588 u64 extent_offset;
2589
2590 l = path->nodes[0];
2591 slot = path->slots[0];
2592
2593 if (slot >= btrfs_header_nritems(l)) {
2594 ret = btrfs_next_leaf(root, path);
2595 if (ret < 0)
6f519564 2596 goto out_free_path;
38c227d8
LB
2597 else if (ret > 0)
2598 break;
2599 continue;
2600 }
2601
2602 btrfs_item_key_to_cpu(l, &key, slot);
2603
2604 if (key.objectid != btrfs_ino(inode))
2605 break;
2606 if (key.type != BTRFS_EXTENT_DATA_KEY)
2607 break;
2608 if (key.offset >= new->file_pos + new->len)
2609 break;
2610
2611 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2612
2613 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2614 if (key.offset + num_bytes < new->file_pos)
2615 goto next;
2616
2617 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2618 if (!disk_bytenr)
2619 goto next;
2620
2621 extent_offset = btrfs_file_extent_offset(l, extent);
2622
2623 old = kmalloc(sizeof(*old), GFP_NOFS);
2624 if (!old)
6f519564 2625 goto out_free_path;
38c227d8
LB
2626
2627 offset = max(new->file_pos, key.offset);
2628 end = min(new->file_pos + new->len, key.offset + num_bytes);
2629
2630 old->bytenr = disk_bytenr;
2631 old->extent_offset = extent_offset;
2632 old->offset = offset - key.offset;
2633 old->len = end - offset;
2634 old->new = new;
2635 old->count = 0;
2636 list_add_tail(&old->list, &new->head);
2637next:
2638 path->slots[0]++;
2639 cond_resched();
2640 }
2641
2642 btrfs_free_path(path);
2643 atomic_inc(&root->fs_info->defrag_running);
2644
2645 return new;
2646
38c227d8
LB
2647out_free_path:
2648 btrfs_free_path(path);
2649out_kfree:
6f519564 2650 free_sa_defrag_extent(new);
38c227d8
LB
2651 return NULL;
2652}
2653
e570fd27
MX
2654static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2655 u64 start, u64 len)
2656{
2657 struct btrfs_block_group_cache *cache;
2658
2659 cache = btrfs_lookup_block_group(root->fs_info, start);
2660 ASSERT(cache);
2661
2662 spin_lock(&cache->lock);
2663 cache->delalloc_bytes -= len;
2664 spin_unlock(&cache->lock);
2665
2666 btrfs_put_block_group(cache);
2667}
2668
d352ac68
CM
2669/* as ordered data IO finishes, this gets called so we can finish
2670 * an ordered extent if the range of bytes in the file it covers are
2671 * fully written.
2672 */
5fd02043 2673static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2674{
5fd02043 2675 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2676 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2677 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2678 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2679 struct extent_state *cached_state = NULL;
38c227d8 2680 struct new_sa_defrag_extent *new = NULL;
261507a0 2681 int compress_type = 0;
77cef2ec
JB
2682 int ret = 0;
2683 u64 logical_len = ordered_extent->len;
82d5902d 2684 bool nolock;
77cef2ec 2685 bool truncated = false;
e6dcd2dc 2686
83eea1f1 2687 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2688
5fd02043
JB
2689 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2690 ret = -EIO;
2691 goto out;
2692 }
2693
77cef2ec
JB
2694 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2695 truncated = true;
2696 logical_len = ordered_extent->truncated_len;
2697 /* Truncated the entire extent, don't bother adding */
2698 if (!logical_len)
2699 goto out;
2700 }
2701
c2167754 2702 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2703 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2704 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2705 if (nolock)
2706 trans = btrfs_join_transaction_nolock(root);
2707 else
2708 trans = btrfs_join_transaction(root);
2709 if (IS_ERR(trans)) {
2710 ret = PTR_ERR(trans);
2711 trans = NULL;
2712 goto out;
c2167754 2713 }
6c760c07
JB
2714 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2715 ret = btrfs_update_inode_fallback(trans, root, inode);
2716 if (ret) /* -ENOMEM or corruption */
2717 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2718 goto out;
2719 }
e6dcd2dc 2720
2ac55d41
JB
2721 lock_extent_bits(io_tree, ordered_extent->file_offset,
2722 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2723 0, &cached_state);
e6dcd2dc 2724
38c227d8
LB
2725 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2726 ordered_extent->file_offset + ordered_extent->len - 1,
2727 EXTENT_DEFRAG, 1, cached_state);
2728 if (ret) {
2729 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2730 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2731 /* the inode is shared */
2732 new = record_old_file_extents(inode, ordered_extent);
2733
2734 clear_extent_bit(io_tree, ordered_extent->file_offset,
2735 ordered_extent->file_offset + ordered_extent->len - 1,
2736 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2737 }
2738
0cb59c99 2739 if (nolock)
7a7eaa40 2740 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2741 else
7a7eaa40 2742 trans = btrfs_join_transaction(root);
79787eaa
JM
2743 if (IS_ERR(trans)) {
2744 ret = PTR_ERR(trans);
2745 trans = NULL;
2746 goto out_unlock;
2747 }
a79b7d4b 2748
0ca1f7ce 2749 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2750
c8b97818 2751 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2752 compress_type = ordered_extent->compress_type;
d899e052 2753 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2754 BUG_ON(compress_type);
920bbbfb 2755 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2756 ordered_extent->file_offset,
2757 ordered_extent->file_offset +
77cef2ec 2758 logical_len);
d899e052 2759 } else {
0af3d00b 2760 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2761 ret = insert_reserved_file_extent(trans, inode,
2762 ordered_extent->file_offset,
2763 ordered_extent->start,
2764 ordered_extent->disk_len,
77cef2ec 2765 logical_len, logical_len,
261507a0 2766 compress_type, 0, 0,
d899e052 2767 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2768 if (!ret)
2769 btrfs_release_delalloc_bytes(root,
2770 ordered_extent->start,
2771 ordered_extent->disk_len);
d899e052 2772 }
5dc562c5
JB
2773 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2774 ordered_extent->file_offset, ordered_extent->len,
2775 trans->transid);
79787eaa
JM
2776 if (ret < 0) {
2777 btrfs_abort_transaction(trans, root, ret);
5fd02043 2778 goto out_unlock;
79787eaa 2779 }
2ac55d41 2780
e6dcd2dc
CM
2781 add_pending_csums(trans, inode, ordered_extent->file_offset,
2782 &ordered_extent->list);
2783
6c760c07
JB
2784 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2785 ret = btrfs_update_inode_fallback(trans, root, inode);
2786 if (ret) { /* -ENOMEM or corruption */
2787 btrfs_abort_transaction(trans, root, ret);
2788 goto out_unlock;
1ef30be1
JB
2789 }
2790 ret = 0;
5fd02043
JB
2791out_unlock:
2792 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2793 ordered_extent->file_offset +
2794 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2795out:
5b0e95bf 2796 if (root != root->fs_info->tree_root)
0cb59c99 2797 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2798 if (trans)
2799 btrfs_end_transaction(trans, root);
0cb59c99 2800
77cef2ec
JB
2801 if (ret || truncated) {
2802 u64 start, end;
2803
2804 if (truncated)
2805 start = ordered_extent->file_offset + logical_len;
2806 else
2807 start = ordered_extent->file_offset;
2808 end = ordered_extent->file_offset + ordered_extent->len - 1;
2809 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2810
2811 /* Drop the cache for the part of the extent we didn't write. */
2812 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2813
0bec9ef5
JB
2814 /*
2815 * If the ordered extent had an IOERR or something else went
2816 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2817 * back to the allocator. We only free the extent in the
2818 * truncated case if we didn't write out the extent at all.
0bec9ef5 2819 */
77cef2ec
JB
2820 if ((ret || !logical_len) &&
2821 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2822 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2823 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 2824 ordered_extent->disk_len, 1);
0bec9ef5
JB
2825 }
2826
2827
5fd02043 2828 /*
8bad3c02
LB
2829 * This needs to be done to make sure anybody waiting knows we are done
2830 * updating everything for this ordered extent.
5fd02043
JB
2831 */
2832 btrfs_remove_ordered_extent(inode, ordered_extent);
2833
38c227d8 2834 /* for snapshot-aware defrag */
6f519564
LB
2835 if (new) {
2836 if (ret) {
2837 free_sa_defrag_extent(new);
2838 atomic_dec(&root->fs_info->defrag_running);
2839 } else {
2840 relink_file_extents(new);
2841 }
2842 }
38c227d8 2843
e6dcd2dc
CM
2844 /* once for us */
2845 btrfs_put_ordered_extent(ordered_extent);
2846 /* once for the tree */
2847 btrfs_put_ordered_extent(ordered_extent);
2848
5fd02043
JB
2849 return ret;
2850}
2851
2852static void finish_ordered_fn(struct btrfs_work *work)
2853{
2854 struct btrfs_ordered_extent *ordered_extent;
2855 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2856 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2857}
2858
b2950863 2859static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2860 struct extent_state *state, int uptodate)
2861{
5fd02043
JB
2862 struct inode *inode = page->mapping->host;
2863 struct btrfs_root *root = BTRFS_I(inode)->root;
2864 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
2865 struct btrfs_workqueue *wq;
2866 btrfs_work_func_t func;
5fd02043 2867
1abe9b8a 2868 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2869
8b62b72b 2870 ClearPagePrivate2(page);
5fd02043
JB
2871 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2872 end - start + 1, uptodate))
2873 return 0;
2874
9e0af237
LB
2875 if (btrfs_is_free_space_inode(inode)) {
2876 wq = root->fs_info->endio_freespace_worker;
2877 func = btrfs_freespace_write_helper;
2878 } else {
2879 wq = root->fs_info->endio_write_workers;
2880 func = btrfs_endio_write_helper;
2881 }
5fd02043 2882
9e0af237
LB
2883 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
2884 NULL);
2885 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
2886
2887 return 0;
211f90e6
CM
2888}
2889
d352ac68
CM
2890/*
2891 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2892 * if there's a match, we allow the bio to finish. If not, the code in
2893 * extent_io.c will try to find good copies for us.
d352ac68 2894 */
facc8a22
MX
2895static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2896 u64 phy_offset, struct page *page,
2897 u64 start, u64 end, int mirror)
07157aac 2898{
4eee4fa4 2899 size_t offset = start - page_offset(page);
07157aac 2900 struct inode *inode = page->mapping->host;
d1310b2e 2901 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2902 char *kaddr;
ff79f819 2903 struct btrfs_root *root = BTRFS_I(inode)->root;
facc8a22 2904 u32 csum_expected;
ff79f819 2905 u32 csum = ~(u32)0;
c2cf52eb
SK
2906 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2907 DEFAULT_RATELIMIT_BURST);
d1310b2e 2908
d20f7043
CM
2909 if (PageChecked(page)) {
2910 ClearPageChecked(page);
2911 goto good;
2912 }
6cbff00f
CH
2913
2914 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2915 goto good;
17d217fe
YZ
2916
2917 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2918 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2919 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2920 GFP_NOFS);
b6cda9bc 2921 return 0;
17d217fe 2922 }
d20f7043 2923
facc8a22
MX
2924 phy_offset >>= inode->i_sb->s_blocksize_bits;
2925 csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
d397712b 2926
facc8a22 2927 kaddr = kmap_atomic(page);
b0496686 2928 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
ff79f819 2929 btrfs_csum_final(csum, (char *)&csum);
facc8a22 2930 if (csum != csum_expected)
07157aac 2931 goto zeroit;
d397712b 2932
7ac687d9 2933 kunmap_atomic(kaddr);
d20f7043 2934good:
07157aac
CM
2935 return 0;
2936
2937zeroit:
c2cf52eb 2938 if (__ratelimit(&_rs))
facc8a22 2939 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c 2940 btrfs_ino(page->mapping->host), start, csum, csum_expected);
db94535d
CM
2941 memset(kaddr + offset, 1, end - start + 1);
2942 flush_dcache_page(page);
7ac687d9 2943 kunmap_atomic(kaddr);
facc8a22 2944 if (csum_expected == 0)
3b951516 2945 return 0;
7e38326f 2946 return -EIO;
07157aac 2947}
b888db2b 2948
24bbcf04
YZ
2949struct delayed_iput {
2950 struct list_head list;
2951 struct inode *inode;
2952};
2953
79787eaa
JM
2954/* JDM: If this is fs-wide, why can't we add a pointer to
2955 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2956void btrfs_add_delayed_iput(struct inode *inode)
2957{
2958 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2959 struct delayed_iput *delayed;
2960
2961 if (atomic_add_unless(&inode->i_count, -1, 1))
2962 return;
2963
2964 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2965 delayed->inode = inode;
2966
2967 spin_lock(&fs_info->delayed_iput_lock);
2968 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2969 spin_unlock(&fs_info->delayed_iput_lock);
2970}
2971
2972void btrfs_run_delayed_iputs(struct btrfs_root *root)
2973{
2974 LIST_HEAD(list);
2975 struct btrfs_fs_info *fs_info = root->fs_info;
2976 struct delayed_iput *delayed;
2977 int empty;
2978
2979 spin_lock(&fs_info->delayed_iput_lock);
2980 empty = list_empty(&fs_info->delayed_iputs);
2981 spin_unlock(&fs_info->delayed_iput_lock);
2982 if (empty)
2983 return;
2984
24bbcf04
YZ
2985 spin_lock(&fs_info->delayed_iput_lock);
2986 list_splice_init(&fs_info->delayed_iputs, &list);
2987 spin_unlock(&fs_info->delayed_iput_lock);
2988
2989 while (!list_empty(&list)) {
2990 delayed = list_entry(list.next, struct delayed_iput, list);
2991 list_del(&delayed->list);
2992 iput(delayed->inode);
2993 kfree(delayed);
2994 }
24bbcf04
YZ
2995}
2996
d68fc57b 2997/*
42b2aa86 2998 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2999 * files in the subvolume, it removes orphan item and frees block_rsv
3000 * structure.
3001 */
3002void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3003 struct btrfs_root *root)
3004{
90290e19 3005 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3006 int ret;
3007
8a35d95f 3008 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3009 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3010 return;
3011
90290e19 3012 spin_lock(&root->orphan_lock);
8a35d95f 3013 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3014 spin_unlock(&root->orphan_lock);
3015 return;
3016 }
3017
3018 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3019 spin_unlock(&root->orphan_lock);
3020 return;
3021 }
3022
3023 block_rsv = root->orphan_block_rsv;
3024 root->orphan_block_rsv = NULL;
3025 spin_unlock(&root->orphan_lock);
3026
27cdeb70 3027 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3028 btrfs_root_refs(&root->root_item) > 0) {
3029 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3030 root->root_key.objectid);
4ef31a45
JB
3031 if (ret)
3032 btrfs_abort_transaction(trans, root, ret);
3033 else
27cdeb70
MX
3034 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3035 &root->state);
d68fc57b
YZ
3036 }
3037
90290e19
JB
3038 if (block_rsv) {
3039 WARN_ON(block_rsv->size > 0);
3040 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3041 }
3042}
3043
7b128766
JB
3044/*
3045 * This creates an orphan entry for the given inode in case something goes
3046 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3047 *
3048 * NOTE: caller of this function should reserve 5 units of metadata for
3049 * this function.
7b128766
JB
3050 */
3051int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3052{
3053 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3054 struct btrfs_block_rsv *block_rsv = NULL;
3055 int reserve = 0;
3056 int insert = 0;
3057 int ret;
7b128766 3058
d68fc57b 3059 if (!root->orphan_block_rsv) {
66d8f3dd 3060 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3061 if (!block_rsv)
3062 return -ENOMEM;
d68fc57b 3063 }
7b128766 3064
d68fc57b
YZ
3065 spin_lock(&root->orphan_lock);
3066 if (!root->orphan_block_rsv) {
3067 root->orphan_block_rsv = block_rsv;
3068 } else if (block_rsv) {
3069 btrfs_free_block_rsv(root, block_rsv);
3070 block_rsv = NULL;
7b128766 3071 }
7b128766 3072
8a35d95f
JB
3073 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3074 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3075#if 0
3076 /*
3077 * For proper ENOSPC handling, we should do orphan
3078 * cleanup when mounting. But this introduces backward
3079 * compatibility issue.
3080 */
3081 if (!xchg(&root->orphan_item_inserted, 1))
3082 insert = 2;
3083 else
3084 insert = 1;
3085#endif
3086 insert = 1;
321f0e70 3087 atomic_inc(&root->orphan_inodes);
7b128766
JB
3088 }
3089
72ac3c0d
JB
3090 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3091 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3092 reserve = 1;
d68fc57b 3093 spin_unlock(&root->orphan_lock);
7b128766 3094
d68fc57b
YZ
3095 /* grab metadata reservation from transaction handle */
3096 if (reserve) {
3097 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3098 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3099 }
7b128766 3100
d68fc57b
YZ
3101 /* insert an orphan item to track this unlinked/truncated file */
3102 if (insert >= 1) {
33345d01 3103 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3104 if (ret) {
703c88e0 3105 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3106 if (reserve) {
3107 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3108 &BTRFS_I(inode)->runtime_flags);
3109 btrfs_orphan_release_metadata(inode);
3110 }
3111 if (ret != -EEXIST) {
e8e7cff6
JB
3112 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3113 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3114 btrfs_abort_transaction(trans, root, ret);
3115 return ret;
3116 }
79787eaa
JM
3117 }
3118 ret = 0;
d68fc57b
YZ
3119 }
3120
3121 /* insert an orphan item to track subvolume contains orphan files */
3122 if (insert >= 2) {
3123 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3124 root->root_key.objectid);
79787eaa
JM
3125 if (ret && ret != -EEXIST) {
3126 btrfs_abort_transaction(trans, root, ret);
3127 return ret;
3128 }
d68fc57b
YZ
3129 }
3130 return 0;
7b128766
JB
3131}
3132
3133/*
3134 * We have done the truncate/delete so we can go ahead and remove the orphan
3135 * item for this particular inode.
3136 */
48a3b636
ES
3137static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3138 struct inode *inode)
7b128766
JB
3139{
3140 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3141 int delete_item = 0;
3142 int release_rsv = 0;
7b128766
JB
3143 int ret = 0;
3144
d68fc57b 3145 spin_lock(&root->orphan_lock);
8a35d95f
JB
3146 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3147 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3148 delete_item = 1;
7b128766 3149
72ac3c0d
JB
3150 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3151 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3152 release_rsv = 1;
d68fc57b 3153 spin_unlock(&root->orphan_lock);
7b128766 3154
703c88e0 3155 if (delete_item) {
8a35d95f 3156 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3157 if (trans)
3158 ret = btrfs_del_orphan_item(trans, root,
3159 btrfs_ino(inode));
8a35d95f 3160 }
7b128766 3161
703c88e0
FDBM
3162 if (release_rsv)
3163 btrfs_orphan_release_metadata(inode);
3164
4ef31a45 3165 return ret;
7b128766
JB
3166}
3167
3168/*
3169 * this cleans up any orphans that may be left on the list from the last use
3170 * of this root.
3171 */
66b4ffd1 3172int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3173{
3174 struct btrfs_path *path;
3175 struct extent_buffer *leaf;
7b128766
JB
3176 struct btrfs_key key, found_key;
3177 struct btrfs_trans_handle *trans;
3178 struct inode *inode;
8f6d7f4f 3179 u64 last_objectid = 0;
7b128766
JB
3180 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3181
d68fc57b 3182 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3183 return 0;
c71bf099
YZ
3184
3185 path = btrfs_alloc_path();
66b4ffd1
JB
3186 if (!path) {
3187 ret = -ENOMEM;
3188 goto out;
3189 }
7b128766
JB
3190 path->reada = -1;
3191
3192 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3193 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3194 key.offset = (u64)-1;
3195
7b128766
JB
3196 while (1) {
3197 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3198 if (ret < 0)
3199 goto out;
7b128766
JB
3200
3201 /*
3202 * if ret == 0 means we found what we were searching for, which
25985edc 3203 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3204 * find the key and see if we have stuff that matches
3205 */
3206 if (ret > 0) {
66b4ffd1 3207 ret = 0;
7b128766
JB
3208 if (path->slots[0] == 0)
3209 break;
3210 path->slots[0]--;
3211 }
3212
3213 /* pull out the item */
3214 leaf = path->nodes[0];
7b128766
JB
3215 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3216
3217 /* make sure the item matches what we want */
3218 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3219 break;
962a298f 3220 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3221 break;
3222
3223 /* release the path since we're done with it */
b3b4aa74 3224 btrfs_release_path(path);
7b128766
JB
3225
3226 /*
3227 * this is where we are basically btrfs_lookup, without the
3228 * crossing root thing. we store the inode number in the
3229 * offset of the orphan item.
3230 */
8f6d7f4f
JB
3231
3232 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3233 btrfs_err(root->fs_info,
3234 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3235 ret = -EINVAL;
3236 goto out;
3237 }
3238
3239 last_objectid = found_key.offset;
3240
5d4f98a2
YZ
3241 found_key.objectid = found_key.offset;
3242 found_key.type = BTRFS_INODE_ITEM_KEY;
3243 found_key.offset = 0;
73f73415 3244 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3245 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3246 if (ret && ret != -ESTALE)
66b4ffd1 3247 goto out;
7b128766 3248
f8e9e0b0
AJ
3249 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3250 struct btrfs_root *dead_root;
3251 struct btrfs_fs_info *fs_info = root->fs_info;
3252 int is_dead_root = 0;
3253
3254 /*
3255 * this is an orphan in the tree root. Currently these
3256 * could come from 2 sources:
3257 * a) a snapshot deletion in progress
3258 * b) a free space cache inode
3259 * We need to distinguish those two, as the snapshot
3260 * orphan must not get deleted.
3261 * find_dead_roots already ran before us, so if this
3262 * is a snapshot deletion, we should find the root
3263 * in the dead_roots list
3264 */
3265 spin_lock(&fs_info->trans_lock);
3266 list_for_each_entry(dead_root, &fs_info->dead_roots,
3267 root_list) {
3268 if (dead_root->root_key.objectid ==
3269 found_key.objectid) {
3270 is_dead_root = 1;
3271 break;
3272 }
3273 }
3274 spin_unlock(&fs_info->trans_lock);
3275 if (is_dead_root) {
3276 /* prevent this orphan from being found again */
3277 key.offset = found_key.objectid - 1;
3278 continue;
3279 }
3280 }
7b128766 3281 /*
a8c9e576
JB
3282 * Inode is already gone but the orphan item is still there,
3283 * kill the orphan item.
7b128766 3284 */
a8c9e576
JB
3285 if (ret == -ESTALE) {
3286 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3287 if (IS_ERR(trans)) {
3288 ret = PTR_ERR(trans);
3289 goto out;
3290 }
c2cf52eb
SK
3291 btrfs_debug(root->fs_info, "auto deleting %Lu",
3292 found_key.objectid);
a8c9e576
JB
3293 ret = btrfs_del_orphan_item(trans, root,
3294 found_key.objectid);
5b21f2ed 3295 btrfs_end_transaction(trans, root);
4ef31a45
JB
3296 if (ret)
3297 goto out;
7b128766
JB
3298 continue;
3299 }
3300
a8c9e576
JB
3301 /*
3302 * add this inode to the orphan list so btrfs_orphan_del does
3303 * the proper thing when we hit it
3304 */
8a35d95f
JB
3305 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3306 &BTRFS_I(inode)->runtime_flags);
925396ec 3307 atomic_inc(&root->orphan_inodes);
a8c9e576 3308
7b128766
JB
3309 /* if we have links, this was a truncate, lets do that */
3310 if (inode->i_nlink) {
fae7f21c 3311 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3312 iput(inode);
3313 continue;
3314 }
7b128766 3315 nr_truncate++;
f3fe820c
JB
3316
3317 /* 1 for the orphan item deletion. */
3318 trans = btrfs_start_transaction(root, 1);
3319 if (IS_ERR(trans)) {
c69b26b0 3320 iput(inode);
f3fe820c
JB
3321 ret = PTR_ERR(trans);
3322 goto out;
3323 }
3324 ret = btrfs_orphan_add(trans, inode);
3325 btrfs_end_transaction(trans, root);
c69b26b0
JB
3326 if (ret) {
3327 iput(inode);
f3fe820c 3328 goto out;
c69b26b0 3329 }
f3fe820c 3330
66b4ffd1 3331 ret = btrfs_truncate(inode);
4a7d0f68
JB
3332 if (ret)
3333 btrfs_orphan_del(NULL, inode);
7b128766
JB
3334 } else {
3335 nr_unlink++;
3336 }
3337
3338 /* this will do delete_inode and everything for us */
3339 iput(inode);
66b4ffd1
JB
3340 if (ret)
3341 goto out;
7b128766 3342 }
3254c876
MX
3343 /* release the path since we're done with it */
3344 btrfs_release_path(path);
3345
d68fc57b
YZ
3346 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3347
3348 if (root->orphan_block_rsv)
3349 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3350 (u64)-1);
3351
27cdeb70
MX
3352 if (root->orphan_block_rsv ||
3353 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3354 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3355 if (!IS_ERR(trans))
3356 btrfs_end_transaction(trans, root);
d68fc57b 3357 }
7b128766
JB
3358
3359 if (nr_unlink)
4884b476 3360 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3361 if (nr_truncate)
4884b476 3362 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3363
3364out:
3365 if (ret)
c2cf52eb
SK
3366 btrfs_crit(root->fs_info,
3367 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3368 btrfs_free_path(path);
3369 return ret;
7b128766
JB
3370}
3371
46a53cca
CM
3372/*
3373 * very simple check to peek ahead in the leaf looking for xattrs. If we
3374 * don't find any xattrs, we know there can't be any acls.
3375 *
3376 * slot is the slot the inode is in, objectid is the objectid of the inode
3377 */
3378static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3379 int slot, u64 objectid,
3380 int *first_xattr_slot)
46a53cca
CM
3381{
3382 u32 nritems = btrfs_header_nritems(leaf);
3383 struct btrfs_key found_key;
f23b5a59
JB
3384 static u64 xattr_access = 0;
3385 static u64 xattr_default = 0;
46a53cca
CM
3386 int scanned = 0;
3387
f23b5a59
JB
3388 if (!xattr_access) {
3389 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3390 strlen(POSIX_ACL_XATTR_ACCESS));
3391 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3392 strlen(POSIX_ACL_XATTR_DEFAULT));
3393 }
3394
46a53cca 3395 slot++;
63541927 3396 *first_xattr_slot = -1;
46a53cca
CM
3397 while (slot < nritems) {
3398 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3399
3400 /* we found a different objectid, there must not be acls */
3401 if (found_key.objectid != objectid)
3402 return 0;
3403
3404 /* we found an xattr, assume we've got an acl */
f23b5a59 3405 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3406 if (*first_xattr_slot == -1)
3407 *first_xattr_slot = slot;
f23b5a59
JB
3408 if (found_key.offset == xattr_access ||
3409 found_key.offset == xattr_default)
3410 return 1;
3411 }
46a53cca
CM
3412
3413 /*
3414 * we found a key greater than an xattr key, there can't
3415 * be any acls later on
3416 */
3417 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3418 return 0;
3419
3420 slot++;
3421 scanned++;
3422
3423 /*
3424 * it goes inode, inode backrefs, xattrs, extents,
3425 * so if there are a ton of hard links to an inode there can
3426 * be a lot of backrefs. Don't waste time searching too hard,
3427 * this is just an optimization
3428 */
3429 if (scanned >= 8)
3430 break;
3431 }
3432 /* we hit the end of the leaf before we found an xattr or
3433 * something larger than an xattr. We have to assume the inode
3434 * has acls
3435 */
63541927
FDBM
3436 if (*first_xattr_slot == -1)
3437 *first_xattr_slot = slot;
46a53cca
CM
3438 return 1;
3439}
3440
d352ac68
CM
3441/*
3442 * read an inode from the btree into the in-memory inode
3443 */
5d4f98a2 3444static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3445{
3446 struct btrfs_path *path;
5f39d397 3447 struct extent_buffer *leaf;
39279cc3 3448 struct btrfs_inode_item *inode_item;
0b86a832 3449 struct btrfs_timespec *tspec;
39279cc3
CM
3450 struct btrfs_root *root = BTRFS_I(inode)->root;
3451 struct btrfs_key location;
67de1176 3452 unsigned long ptr;
46a53cca 3453 int maybe_acls;
618e21d5 3454 u32 rdev;
39279cc3 3455 int ret;
2f7e33d4 3456 bool filled = false;
63541927 3457 int first_xattr_slot;
2f7e33d4
MX
3458
3459 ret = btrfs_fill_inode(inode, &rdev);
3460 if (!ret)
3461 filled = true;
39279cc3
CM
3462
3463 path = btrfs_alloc_path();
1748f843
MF
3464 if (!path)
3465 goto make_bad;
3466
39279cc3 3467 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3468
39279cc3 3469 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3470 if (ret)
39279cc3 3471 goto make_bad;
39279cc3 3472
5f39d397 3473 leaf = path->nodes[0];
2f7e33d4
MX
3474
3475 if (filled)
67de1176 3476 goto cache_index;
2f7e33d4 3477
5f39d397
CM
3478 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3479 struct btrfs_inode_item);
5f39d397 3480 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3481 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3482 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3483 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3484 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
3485
3486 tspec = btrfs_inode_atime(inode_item);
3487 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3488 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3489
3490 tspec = btrfs_inode_mtime(inode_item);
3491 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3492 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3493
3494 tspec = btrfs_inode_ctime(inode_item);
3495 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3496 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3497
a76a3cd4 3498 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3499 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3500 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3501
3502 /*
3503 * If we were modified in the current generation and evicted from memory
3504 * and then re-read we need to do a full sync since we don't have any
3505 * idea about which extents were modified before we were evicted from
3506 * cache.
3507 */
3508 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3509 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3510 &BTRFS_I(inode)->runtime_flags);
3511
0c4d2d95 3512 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3513 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3514 inode->i_rdev = 0;
5f39d397
CM
3515 rdev = btrfs_inode_rdev(leaf, inode_item);
3516
aec7477b 3517 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3518 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
67de1176
MX
3519
3520cache_index:
3521 path->slots[0]++;
3522 if (inode->i_nlink != 1 ||
3523 path->slots[0] >= btrfs_header_nritems(leaf))
3524 goto cache_acl;
3525
3526 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3527 if (location.objectid != btrfs_ino(inode))
3528 goto cache_acl;
3529
3530 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3531 if (location.type == BTRFS_INODE_REF_KEY) {
3532 struct btrfs_inode_ref *ref;
3533
3534 ref = (struct btrfs_inode_ref *)ptr;
3535 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3536 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3537 struct btrfs_inode_extref *extref;
3538
3539 extref = (struct btrfs_inode_extref *)ptr;
3540 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3541 extref);
3542 }
2f7e33d4 3543cache_acl:
46a53cca
CM
3544 /*
3545 * try to precache a NULL acl entry for files that don't have
3546 * any xattrs or acls
3547 */
33345d01 3548 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3549 btrfs_ino(inode), &first_xattr_slot);
3550 if (first_xattr_slot != -1) {
3551 path->slots[0] = first_xattr_slot;
3552 ret = btrfs_load_inode_props(inode, path);
3553 if (ret)
3554 btrfs_err(root->fs_info,
351fd353 3555 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3556 btrfs_ino(inode),
3557 root->root_key.objectid, ret);
3558 }
3559 btrfs_free_path(path);
3560
72c04902
AV
3561 if (!maybe_acls)
3562 cache_no_acl(inode);
46a53cca 3563
39279cc3 3564 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3565 case S_IFREG:
3566 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3567 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3568 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3569 inode->i_fop = &btrfs_file_operations;
3570 inode->i_op = &btrfs_file_inode_operations;
3571 break;
3572 case S_IFDIR:
3573 inode->i_fop = &btrfs_dir_file_operations;
3574 if (root == root->fs_info->tree_root)
3575 inode->i_op = &btrfs_dir_ro_inode_operations;
3576 else
3577 inode->i_op = &btrfs_dir_inode_operations;
3578 break;
3579 case S_IFLNK:
3580 inode->i_op = &btrfs_symlink_inode_operations;
3581 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3582 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3583 break;
618e21d5 3584 default:
0279b4cd 3585 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3586 init_special_inode(inode, inode->i_mode, rdev);
3587 break;
39279cc3 3588 }
6cbff00f
CH
3589
3590 btrfs_update_iflags(inode);
39279cc3
CM
3591 return;
3592
3593make_bad:
39279cc3 3594 btrfs_free_path(path);
39279cc3
CM
3595 make_bad_inode(inode);
3596}
3597
d352ac68
CM
3598/*
3599 * given a leaf and an inode, copy the inode fields into the leaf
3600 */
e02119d5
CM
3601static void fill_inode_item(struct btrfs_trans_handle *trans,
3602 struct extent_buffer *leaf,
5f39d397 3603 struct btrfs_inode_item *item,
39279cc3
CM
3604 struct inode *inode)
3605{
51fab693
LB
3606 struct btrfs_map_token token;
3607
3608 btrfs_init_map_token(&token);
5f39d397 3609
51fab693
LB
3610 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3611 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3612 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3613 &token);
3614 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3615 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3616
51fab693
LB
3617 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3618 inode->i_atime.tv_sec, &token);
3619 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3620 inode->i_atime.tv_nsec, &token);
5f39d397 3621
51fab693
LB
3622 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3623 inode->i_mtime.tv_sec, &token);
3624 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3625 inode->i_mtime.tv_nsec, &token);
5f39d397 3626
51fab693
LB
3627 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3628 inode->i_ctime.tv_sec, &token);
3629 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3630 inode->i_ctime.tv_nsec, &token);
5f39d397 3631
51fab693
LB
3632 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3633 &token);
3634 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3635 &token);
3636 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3637 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3638 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3639 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3640 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3641}
3642
d352ac68
CM
3643/*
3644 * copy everything in the in-memory inode into the btree.
3645 */
2115133f 3646static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3647 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3648{
3649 struct btrfs_inode_item *inode_item;
3650 struct btrfs_path *path;
5f39d397 3651 struct extent_buffer *leaf;
39279cc3
CM
3652 int ret;
3653
3654 path = btrfs_alloc_path();
16cdcec7
MX
3655 if (!path)
3656 return -ENOMEM;
3657
b9473439 3658 path->leave_spinning = 1;
16cdcec7
MX
3659 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3660 1);
39279cc3
CM
3661 if (ret) {
3662 if (ret > 0)
3663 ret = -ENOENT;
3664 goto failed;
3665 }
3666
5f39d397
CM
3667 leaf = path->nodes[0];
3668 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3669 struct btrfs_inode_item);
39279cc3 3670
e02119d5 3671 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3672 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3673 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3674 ret = 0;
3675failed:
39279cc3
CM
3676 btrfs_free_path(path);
3677 return ret;
3678}
3679
2115133f
CM
3680/*
3681 * copy everything in the in-memory inode into the btree.
3682 */
3683noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3684 struct btrfs_root *root, struct inode *inode)
3685{
3686 int ret;
3687
3688 /*
3689 * If the inode is a free space inode, we can deadlock during commit
3690 * if we put it into the delayed code.
3691 *
3692 * The data relocation inode should also be directly updated
3693 * without delay
3694 */
83eea1f1 3695 if (!btrfs_is_free_space_inode(inode)
2115133f 3696 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
3697 btrfs_update_root_times(trans, root);
3698
2115133f
CM
3699 ret = btrfs_delayed_update_inode(trans, root, inode);
3700 if (!ret)
3701 btrfs_set_inode_last_trans(trans, inode);
3702 return ret;
3703 }
3704
3705 return btrfs_update_inode_item(trans, root, inode);
3706}
3707
be6aef60
JB
3708noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3709 struct btrfs_root *root,
3710 struct inode *inode)
2115133f
CM
3711{
3712 int ret;
3713
3714 ret = btrfs_update_inode(trans, root, inode);
3715 if (ret == -ENOSPC)
3716 return btrfs_update_inode_item(trans, root, inode);
3717 return ret;
3718}
3719
d352ac68
CM
3720/*
3721 * unlink helper that gets used here in inode.c and in the tree logging
3722 * recovery code. It remove a link in a directory with a given name, and
3723 * also drops the back refs in the inode to the directory
3724 */
92986796
AV
3725static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3726 struct btrfs_root *root,
3727 struct inode *dir, struct inode *inode,
3728 const char *name, int name_len)
39279cc3
CM
3729{
3730 struct btrfs_path *path;
39279cc3 3731 int ret = 0;
5f39d397 3732 struct extent_buffer *leaf;
39279cc3 3733 struct btrfs_dir_item *di;
5f39d397 3734 struct btrfs_key key;
aec7477b 3735 u64 index;
33345d01
LZ
3736 u64 ino = btrfs_ino(inode);
3737 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3738
3739 path = btrfs_alloc_path();
54aa1f4d
CM
3740 if (!path) {
3741 ret = -ENOMEM;
554233a6 3742 goto out;
54aa1f4d
CM
3743 }
3744
b9473439 3745 path->leave_spinning = 1;
33345d01 3746 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3747 name, name_len, -1);
3748 if (IS_ERR(di)) {
3749 ret = PTR_ERR(di);
3750 goto err;
3751 }
3752 if (!di) {
3753 ret = -ENOENT;
3754 goto err;
3755 }
5f39d397
CM
3756 leaf = path->nodes[0];
3757 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3758 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3759 if (ret)
3760 goto err;
b3b4aa74 3761 btrfs_release_path(path);
39279cc3 3762
67de1176
MX
3763 /*
3764 * If we don't have dir index, we have to get it by looking up
3765 * the inode ref, since we get the inode ref, remove it directly,
3766 * it is unnecessary to do delayed deletion.
3767 *
3768 * But if we have dir index, needn't search inode ref to get it.
3769 * Since the inode ref is close to the inode item, it is better
3770 * that we delay to delete it, and just do this deletion when
3771 * we update the inode item.
3772 */
3773 if (BTRFS_I(inode)->dir_index) {
3774 ret = btrfs_delayed_delete_inode_ref(inode);
3775 if (!ret) {
3776 index = BTRFS_I(inode)->dir_index;
3777 goto skip_backref;
3778 }
3779 }
3780
33345d01
LZ
3781 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3782 dir_ino, &index);
aec7477b 3783 if (ret) {
c2cf52eb
SK
3784 btrfs_info(root->fs_info,
3785 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3786 name_len, name, ino, dir_ino);
79787eaa 3787 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3788 goto err;
3789 }
67de1176 3790skip_backref:
16cdcec7 3791 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3792 if (ret) {
3793 btrfs_abort_transaction(trans, root, ret);
39279cc3 3794 goto err;
79787eaa 3795 }
39279cc3 3796
e02119d5 3797 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3798 inode, dir_ino);
79787eaa
JM
3799 if (ret != 0 && ret != -ENOENT) {
3800 btrfs_abort_transaction(trans, root, ret);
3801 goto err;
3802 }
e02119d5
CM
3803
3804 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3805 dir, index);
6418c961
CM
3806 if (ret == -ENOENT)
3807 ret = 0;
d4e3991b
ZB
3808 else if (ret)
3809 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3810err:
3811 btrfs_free_path(path);
e02119d5
CM
3812 if (ret)
3813 goto out;
3814
3815 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3816 inode_inc_iversion(inode);
3817 inode_inc_iversion(dir);
e02119d5 3818 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3819 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3820out:
39279cc3
CM
3821 return ret;
3822}
3823
92986796
AV
3824int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3825 struct btrfs_root *root,
3826 struct inode *dir, struct inode *inode,
3827 const char *name, int name_len)
3828{
3829 int ret;
3830 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3831 if (!ret) {
8b558c5f 3832 drop_nlink(inode);
92986796
AV
3833 ret = btrfs_update_inode(trans, root, inode);
3834 }
3835 return ret;
3836}
39279cc3 3837
a22285a6
YZ
3838/*
3839 * helper to start transaction for unlink and rmdir.
3840 *
d52be818
JB
3841 * unlink and rmdir are special in btrfs, they do not always free space, so
3842 * if we cannot make our reservations the normal way try and see if there is
3843 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3844 * allow the unlink to occur.
a22285a6 3845 */
d52be818 3846static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3847{
39279cc3 3848 struct btrfs_trans_handle *trans;
a22285a6 3849 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
3850 int ret;
3851
e70bea5f
JB
3852 /*
3853 * 1 for the possible orphan item
3854 * 1 for the dir item
3855 * 1 for the dir index
3856 * 1 for the inode ref
e70bea5f
JB
3857 * 1 for the inode
3858 */
6e137ed3 3859 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3860 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3861 return trans;
4df27c4d 3862
d52be818
JB
3863 if (PTR_ERR(trans) == -ENOSPC) {
3864 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 3865
d52be818
JB
3866 trans = btrfs_start_transaction(root, 0);
3867 if (IS_ERR(trans))
3868 return trans;
3869 ret = btrfs_cond_migrate_bytes(root->fs_info,
3870 &root->fs_info->trans_block_rsv,
3871 num_bytes, 5);
3872 if (ret) {
3873 btrfs_end_transaction(trans, root);
3874 return ERR_PTR(ret);
a22285a6 3875 }
5a77d76c 3876 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 3877 trans->bytes_reserved = num_bytes;
a22285a6 3878 }
d52be818 3879 return trans;
a22285a6
YZ
3880}
3881
3882static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3883{
3884 struct btrfs_root *root = BTRFS_I(dir)->root;
3885 struct btrfs_trans_handle *trans;
3886 struct inode *inode = dentry->d_inode;
3887 int ret;
a22285a6 3888
d52be818 3889 trans = __unlink_start_trans(dir);
a22285a6
YZ
3890 if (IS_ERR(trans))
3891 return PTR_ERR(trans);
5f39d397 3892
12fcfd22
CM
3893 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3894
e02119d5
CM
3895 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3896 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3897 if (ret)
3898 goto out;
7b128766 3899
a22285a6 3900 if (inode->i_nlink == 0) {
7b128766 3901 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3902 if (ret)
3903 goto out;
a22285a6 3904 }
7b128766 3905
b532402e 3906out:
d52be818 3907 btrfs_end_transaction(trans, root);
b53d3f5d 3908 btrfs_btree_balance_dirty(root);
39279cc3
CM
3909 return ret;
3910}
3911
4df27c4d
YZ
3912int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3913 struct btrfs_root *root,
3914 struct inode *dir, u64 objectid,
3915 const char *name, int name_len)
3916{
3917 struct btrfs_path *path;
3918 struct extent_buffer *leaf;
3919 struct btrfs_dir_item *di;
3920 struct btrfs_key key;
3921 u64 index;
3922 int ret;
33345d01 3923 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3924
3925 path = btrfs_alloc_path();
3926 if (!path)
3927 return -ENOMEM;
3928
33345d01 3929 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3930 name, name_len, -1);
79787eaa
JM
3931 if (IS_ERR_OR_NULL(di)) {
3932 if (!di)
3933 ret = -ENOENT;
3934 else
3935 ret = PTR_ERR(di);
3936 goto out;
3937 }
4df27c4d
YZ
3938
3939 leaf = path->nodes[0];
3940 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3941 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3942 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3943 if (ret) {
3944 btrfs_abort_transaction(trans, root, ret);
3945 goto out;
3946 }
b3b4aa74 3947 btrfs_release_path(path);
4df27c4d
YZ
3948
3949 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3950 objectid, root->root_key.objectid,
33345d01 3951 dir_ino, &index, name, name_len);
4df27c4d 3952 if (ret < 0) {
79787eaa
JM
3953 if (ret != -ENOENT) {
3954 btrfs_abort_transaction(trans, root, ret);
3955 goto out;
3956 }
33345d01 3957 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3958 name, name_len);
79787eaa
JM
3959 if (IS_ERR_OR_NULL(di)) {
3960 if (!di)
3961 ret = -ENOENT;
3962 else
3963 ret = PTR_ERR(di);
3964 btrfs_abort_transaction(trans, root, ret);
3965 goto out;
3966 }
4df27c4d
YZ
3967
3968 leaf = path->nodes[0];
3969 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3970 btrfs_release_path(path);
4df27c4d
YZ
3971 index = key.offset;
3972 }
945d8962 3973 btrfs_release_path(path);
4df27c4d 3974
16cdcec7 3975 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3976 if (ret) {
3977 btrfs_abort_transaction(trans, root, ret);
3978 goto out;
3979 }
4df27c4d
YZ
3980
3981 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3982 inode_inc_iversion(dir);
4df27c4d 3983 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3984 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3985 if (ret)
3986 btrfs_abort_transaction(trans, root, ret);
3987out:
71d7aed0 3988 btrfs_free_path(path);
79787eaa 3989 return ret;
4df27c4d
YZ
3990}
3991
39279cc3
CM
3992static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3993{
3994 struct inode *inode = dentry->d_inode;
1832a6d5 3995 int err = 0;
39279cc3 3996 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3997 struct btrfs_trans_handle *trans;
39279cc3 3998
b3ae244e 3999 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4000 return -ENOTEMPTY;
b3ae244e
DS
4001 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4002 return -EPERM;
134d4512 4003
d52be818 4004 trans = __unlink_start_trans(dir);
a22285a6 4005 if (IS_ERR(trans))
5df6a9f6 4006 return PTR_ERR(trans);
5df6a9f6 4007
33345d01 4008 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4009 err = btrfs_unlink_subvol(trans, root, dir,
4010 BTRFS_I(inode)->location.objectid,
4011 dentry->d_name.name,
4012 dentry->d_name.len);
4013 goto out;
4014 }
4015
7b128766
JB
4016 err = btrfs_orphan_add(trans, inode);
4017 if (err)
4df27c4d 4018 goto out;
7b128766 4019
39279cc3 4020 /* now the directory is empty */
e02119d5
CM
4021 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4022 dentry->d_name.name, dentry->d_name.len);
d397712b 4023 if (!err)
dbe674a9 4024 btrfs_i_size_write(inode, 0);
4df27c4d 4025out:
d52be818 4026 btrfs_end_transaction(trans, root);
b53d3f5d 4027 btrfs_btree_balance_dirty(root);
3954401f 4028
39279cc3
CM
4029 return err;
4030}
4031
39279cc3
CM
4032/*
4033 * this can truncate away extent items, csum items and directory items.
4034 * It starts at a high offset and removes keys until it can't find
d352ac68 4035 * any higher than new_size
39279cc3
CM
4036 *
4037 * csum items that cross the new i_size are truncated to the new size
4038 * as well.
7b128766
JB
4039 *
4040 * min_type is the minimum key type to truncate down to. If set to 0, this
4041 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4042 */
8082510e
YZ
4043int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4044 struct btrfs_root *root,
4045 struct inode *inode,
4046 u64 new_size, u32 min_type)
39279cc3 4047{
39279cc3 4048 struct btrfs_path *path;
5f39d397 4049 struct extent_buffer *leaf;
39279cc3 4050 struct btrfs_file_extent_item *fi;
8082510e
YZ
4051 struct btrfs_key key;
4052 struct btrfs_key found_key;
39279cc3 4053 u64 extent_start = 0;
db94535d 4054 u64 extent_num_bytes = 0;
5d4f98a2 4055 u64 extent_offset = 0;
39279cc3 4056 u64 item_end = 0;
7f4f6e0a 4057 u64 last_size = (u64)-1;
8082510e 4058 u32 found_type = (u8)-1;
39279cc3
CM
4059 int found_extent;
4060 int del_item;
85e21bac
CM
4061 int pending_del_nr = 0;
4062 int pending_del_slot = 0;
179e29e4 4063 int extent_type = -1;
8082510e
YZ
4064 int ret;
4065 int err = 0;
33345d01 4066 u64 ino = btrfs_ino(inode);
8082510e
YZ
4067
4068 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4069
0eb0e19c
MF
4070 path = btrfs_alloc_path();
4071 if (!path)
4072 return -ENOMEM;
4073 path->reada = -1;
4074
5dc562c5
JB
4075 /*
4076 * We want to drop from the next block forward in case this new size is
4077 * not block aligned since we will be keeping the last block of the
4078 * extent just the way it is.
4079 */
27cdeb70
MX
4080 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4081 root == root->fs_info->tree_root)
fda2832f
QW
4082 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4083 root->sectorsize), (u64)-1, 0);
8082510e 4084
16cdcec7
MX
4085 /*
4086 * This function is also used to drop the items in the log tree before
4087 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4088 * it is used to drop the loged items. So we shouldn't kill the delayed
4089 * items.
4090 */
4091 if (min_type == 0 && root == BTRFS_I(inode)->root)
4092 btrfs_kill_delayed_inode_items(inode);
4093
33345d01 4094 key.objectid = ino;
39279cc3 4095 key.offset = (u64)-1;
5f39d397
CM
4096 key.type = (u8)-1;
4097
85e21bac 4098search_again:
b9473439 4099 path->leave_spinning = 1;
85e21bac 4100 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4101 if (ret < 0) {
4102 err = ret;
4103 goto out;
4104 }
d397712b 4105
85e21bac 4106 if (ret > 0) {
e02119d5
CM
4107 /* there are no items in the tree for us to truncate, we're
4108 * done
4109 */
8082510e
YZ
4110 if (path->slots[0] == 0)
4111 goto out;
85e21bac
CM
4112 path->slots[0]--;
4113 }
4114
d397712b 4115 while (1) {
39279cc3 4116 fi = NULL;
5f39d397
CM
4117 leaf = path->nodes[0];
4118 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4119 found_type = found_key.type;
39279cc3 4120
33345d01 4121 if (found_key.objectid != ino)
39279cc3 4122 break;
5f39d397 4123
85e21bac 4124 if (found_type < min_type)
39279cc3
CM
4125 break;
4126
5f39d397 4127 item_end = found_key.offset;
39279cc3 4128 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4129 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4130 struct btrfs_file_extent_item);
179e29e4
CM
4131 extent_type = btrfs_file_extent_type(leaf, fi);
4132 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4133 item_end +=
db94535d 4134 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4135 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4136 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4137 path->slots[0], fi);
39279cc3 4138 }
008630c1 4139 item_end--;
39279cc3 4140 }
8082510e
YZ
4141 if (found_type > min_type) {
4142 del_item = 1;
4143 } else {
4144 if (item_end < new_size)
b888db2b 4145 break;
8082510e
YZ
4146 if (found_key.offset >= new_size)
4147 del_item = 1;
4148 else
4149 del_item = 0;
39279cc3 4150 }
39279cc3 4151 found_extent = 0;
39279cc3 4152 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4153 if (found_type != BTRFS_EXTENT_DATA_KEY)
4154 goto delete;
4155
7f4f6e0a
JB
4156 if (del_item)
4157 last_size = found_key.offset;
4158 else
4159 last_size = new_size;
4160
179e29e4 4161 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4162 u64 num_dec;
db94535d 4163 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4164 if (!del_item) {
db94535d
CM
4165 u64 orig_num_bytes =
4166 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4167 extent_num_bytes = ALIGN(new_size -
4168 found_key.offset,
4169 root->sectorsize);
db94535d
CM
4170 btrfs_set_file_extent_num_bytes(leaf, fi,
4171 extent_num_bytes);
4172 num_dec = (orig_num_bytes -
9069218d 4173 extent_num_bytes);
27cdeb70
MX
4174 if (test_bit(BTRFS_ROOT_REF_COWS,
4175 &root->state) &&
4176 extent_start != 0)
a76a3cd4 4177 inode_sub_bytes(inode, num_dec);
5f39d397 4178 btrfs_mark_buffer_dirty(leaf);
39279cc3 4179 } else {
db94535d
CM
4180 extent_num_bytes =
4181 btrfs_file_extent_disk_num_bytes(leaf,
4182 fi);
5d4f98a2
YZ
4183 extent_offset = found_key.offset -
4184 btrfs_file_extent_offset(leaf, fi);
4185
39279cc3 4186 /* FIXME blocksize != 4096 */
9069218d 4187 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4188 if (extent_start != 0) {
4189 found_extent = 1;
27cdeb70
MX
4190 if (test_bit(BTRFS_ROOT_REF_COWS,
4191 &root->state))
a76a3cd4 4192 inode_sub_bytes(inode, num_dec);
e02119d5 4193 }
39279cc3 4194 }
9069218d 4195 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4196 /*
4197 * we can't truncate inline items that have had
4198 * special encodings
4199 */
4200 if (!del_item &&
4201 btrfs_file_extent_compression(leaf, fi) == 0 &&
4202 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4203 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
4204 u32 size = new_size - found_key.offset;
4205
27cdeb70 4206 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
a76a3cd4
YZ
4207 inode_sub_bytes(inode, item_end + 1 -
4208 new_size);
514ac8ad
CM
4209
4210 /*
4211 * update the ram bytes to properly reflect
4212 * the new size of our item
4213 */
4214 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
e02119d5
CM
4215 size =
4216 btrfs_file_extent_calc_inline_size(size);
afe5fea7 4217 btrfs_truncate_item(root, path, size, 1);
27cdeb70
MX
4218 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4219 &root->state)) {
a76a3cd4
YZ
4220 inode_sub_bytes(inode, item_end + 1 -
4221 found_key.offset);
9069218d 4222 }
39279cc3 4223 }
179e29e4 4224delete:
39279cc3 4225 if (del_item) {
85e21bac
CM
4226 if (!pending_del_nr) {
4227 /* no pending yet, add ourselves */
4228 pending_del_slot = path->slots[0];
4229 pending_del_nr = 1;
4230 } else if (pending_del_nr &&
4231 path->slots[0] + 1 == pending_del_slot) {
4232 /* hop on the pending chunk */
4233 pending_del_nr++;
4234 pending_del_slot = path->slots[0];
4235 } else {
d397712b 4236 BUG();
85e21bac 4237 }
39279cc3
CM
4238 } else {
4239 break;
4240 }
27cdeb70
MX
4241 if (found_extent &&
4242 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4243 root == root->fs_info->tree_root)) {
b9473439 4244 btrfs_set_path_blocking(path);
39279cc3 4245 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4246 extent_num_bytes, 0,
4247 btrfs_header_owner(leaf),
66d7e7f0 4248 ino, extent_offset, 0);
39279cc3
CM
4249 BUG_ON(ret);
4250 }
85e21bac 4251
8082510e
YZ
4252 if (found_type == BTRFS_INODE_ITEM_KEY)
4253 break;
4254
4255 if (path->slots[0] == 0 ||
4256 path->slots[0] != pending_del_slot) {
8082510e
YZ
4257 if (pending_del_nr) {
4258 ret = btrfs_del_items(trans, root, path,
4259 pending_del_slot,
4260 pending_del_nr);
79787eaa
JM
4261 if (ret) {
4262 btrfs_abort_transaction(trans,
4263 root, ret);
4264 goto error;
4265 }
8082510e
YZ
4266 pending_del_nr = 0;
4267 }
b3b4aa74 4268 btrfs_release_path(path);
85e21bac 4269 goto search_again;
8082510e
YZ
4270 } else {
4271 path->slots[0]--;
85e21bac 4272 }
39279cc3 4273 }
8082510e 4274out:
85e21bac
CM
4275 if (pending_del_nr) {
4276 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4277 pending_del_nr);
79787eaa
JM
4278 if (ret)
4279 btrfs_abort_transaction(trans, root, ret);
85e21bac 4280 }
79787eaa 4281error:
dac5705c
FM
4282 if (last_size != (u64)-1 &&
4283 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4284 btrfs_ordered_update_i_size(inode, last_size, NULL);
39279cc3 4285 btrfs_free_path(path);
8082510e 4286 return err;
39279cc3
CM
4287}
4288
4289/*
2aaa6655
JB
4290 * btrfs_truncate_page - read, zero a chunk and write a page
4291 * @inode - inode that we're zeroing
4292 * @from - the offset to start zeroing
4293 * @len - the length to zero, 0 to zero the entire range respective to the
4294 * offset
4295 * @front - zero up to the offset instead of from the offset on
4296 *
4297 * This will find the page for the "from" offset and cow the page and zero the
4298 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4299 */
2aaa6655
JB
4300int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4301 int front)
39279cc3 4302{
2aaa6655 4303 struct address_space *mapping = inode->i_mapping;
db94535d 4304 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4305 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4306 struct btrfs_ordered_extent *ordered;
2ac55d41 4307 struct extent_state *cached_state = NULL;
e6dcd2dc 4308 char *kaddr;
db94535d 4309 u32 blocksize = root->sectorsize;
39279cc3
CM
4310 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4311 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4312 struct page *page;
3b16a4e3 4313 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4314 int ret = 0;
a52d9a80 4315 u64 page_start;
e6dcd2dc 4316 u64 page_end;
39279cc3 4317
2aaa6655
JB
4318 if ((offset & (blocksize - 1)) == 0 &&
4319 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4320 goto out;
0ca1f7ce 4321 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4322 if (ret)
4323 goto out;
39279cc3 4324
211c17f5 4325again:
3b16a4e3 4326 page = find_or_create_page(mapping, index, mask);
5d5e103a 4327 if (!page) {
0ca1f7ce 4328 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4329 ret = -ENOMEM;
39279cc3 4330 goto out;
5d5e103a 4331 }
e6dcd2dc
CM
4332
4333 page_start = page_offset(page);
4334 page_end = page_start + PAGE_CACHE_SIZE - 1;
4335
39279cc3 4336 if (!PageUptodate(page)) {
9ebefb18 4337 ret = btrfs_readpage(NULL, page);
39279cc3 4338 lock_page(page);
211c17f5
CM
4339 if (page->mapping != mapping) {
4340 unlock_page(page);
4341 page_cache_release(page);
4342 goto again;
4343 }
39279cc3
CM
4344 if (!PageUptodate(page)) {
4345 ret = -EIO;
89642229 4346 goto out_unlock;
39279cc3
CM
4347 }
4348 }
211c17f5 4349 wait_on_page_writeback(page);
e6dcd2dc 4350
d0082371 4351 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4352 set_page_extent_mapped(page);
4353
4354 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4355 if (ordered) {
2ac55d41
JB
4356 unlock_extent_cached(io_tree, page_start, page_end,
4357 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4358 unlock_page(page);
4359 page_cache_release(page);
eb84ae03 4360 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4361 btrfs_put_ordered_extent(ordered);
4362 goto again;
4363 }
4364
2ac55d41 4365 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4366 EXTENT_DIRTY | EXTENT_DELALLOC |
4367 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4368 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4369
2ac55d41
JB
4370 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4371 &cached_state);
9ed74f2d 4372 if (ret) {
2ac55d41
JB
4373 unlock_extent_cached(io_tree, page_start, page_end,
4374 &cached_state, GFP_NOFS);
9ed74f2d
JB
4375 goto out_unlock;
4376 }
4377
e6dcd2dc 4378 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4379 if (!len)
4380 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4381 kaddr = kmap(page);
2aaa6655
JB
4382 if (front)
4383 memset(kaddr, 0, offset);
4384 else
4385 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4386 flush_dcache_page(page);
4387 kunmap(page);
4388 }
247e743c 4389 ClearPageChecked(page);
e6dcd2dc 4390 set_page_dirty(page);
2ac55d41
JB
4391 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4392 GFP_NOFS);
39279cc3 4393
89642229 4394out_unlock:
5d5e103a 4395 if (ret)
0ca1f7ce 4396 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4397 unlock_page(page);
4398 page_cache_release(page);
4399out:
4400 return ret;
4401}
4402
16e7549f
JB
4403static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4404 u64 offset, u64 len)
4405{
4406 struct btrfs_trans_handle *trans;
4407 int ret;
4408
4409 /*
4410 * Still need to make sure the inode looks like it's been updated so
4411 * that any holes get logged if we fsync.
4412 */
4413 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4414 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4415 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4416 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4417 return 0;
4418 }
4419
4420 /*
4421 * 1 - for the one we're dropping
4422 * 1 - for the one we're adding
4423 * 1 - for updating the inode.
4424 */
4425 trans = btrfs_start_transaction(root, 3);
4426 if (IS_ERR(trans))
4427 return PTR_ERR(trans);
4428
4429 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4430 if (ret) {
4431 btrfs_abort_transaction(trans, root, ret);
4432 btrfs_end_transaction(trans, root);
4433 return ret;
4434 }
4435
4436 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4437 0, 0, len, 0, len, 0, 0, 0);
4438 if (ret)
4439 btrfs_abort_transaction(trans, root, ret);
4440 else
4441 btrfs_update_inode(trans, root, inode);
4442 btrfs_end_transaction(trans, root);
4443 return ret;
4444}
4445
695a0d0d
JB
4446/*
4447 * This function puts in dummy file extents for the area we're creating a hole
4448 * for. So if we are truncating this file to a larger size we need to insert
4449 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4450 * the range between oldsize and size
4451 */
a41ad394 4452int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4453{
9036c102
YZ
4454 struct btrfs_root *root = BTRFS_I(inode)->root;
4455 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4456 struct extent_map *em = NULL;
2ac55d41 4457 struct extent_state *cached_state = NULL;
5dc562c5 4458 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4459 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4460 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4461 u64 last_byte;
4462 u64 cur_offset;
4463 u64 hole_size;
9ed74f2d 4464 int err = 0;
39279cc3 4465
a71754fc
JB
4466 /*
4467 * If our size started in the middle of a page we need to zero out the
4468 * rest of the page before we expand the i_size, otherwise we could
4469 * expose stale data.
4470 */
4471 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4472 if (err)
4473 return err;
4474
9036c102
YZ
4475 if (size <= hole_start)
4476 return 0;
4477
9036c102
YZ
4478 while (1) {
4479 struct btrfs_ordered_extent *ordered;
fa7c1494 4480
2ac55d41 4481 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4482 &cached_state);
fa7c1494
MX
4483 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4484 block_end - hole_start);
9036c102
YZ
4485 if (!ordered)
4486 break;
2ac55d41
JB
4487 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4488 &cached_state, GFP_NOFS);
fa7c1494 4489 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4490 btrfs_put_ordered_extent(ordered);
4491 }
39279cc3 4492
9036c102
YZ
4493 cur_offset = hole_start;
4494 while (1) {
4495 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4496 block_end - cur_offset, 0);
79787eaa
JM
4497 if (IS_ERR(em)) {
4498 err = PTR_ERR(em);
f2767956 4499 em = NULL;
79787eaa
JM
4500 break;
4501 }
9036c102 4502 last_byte = min(extent_map_end(em), block_end);
fda2832f 4503 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4504 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4505 struct extent_map *hole_em;
9036c102 4506 hole_size = last_byte - cur_offset;
9ed74f2d 4507
16e7549f
JB
4508 err = maybe_insert_hole(root, inode, cur_offset,
4509 hole_size);
4510 if (err)
3893e33b 4511 break;
5dc562c5
JB
4512 btrfs_drop_extent_cache(inode, cur_offset,
4513 cur_offset + hole_size - 1, 0);
4514 hole_em = alloc_extent_map();
4515 if (!hole_em) {
4516 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4517 &BTRFS_I(inode)->runtime_flags);
4518 goto next;
4519 }
4520 hole_em->start = cur_offset;
4521 hole_em->len = hole_size;
4522 hole_em->orig_start = cur_offset;
8082510e 4523
5dc562c5
JB
4524 hole_em->block_start = EXTENT_MAP_HOLE;
4525 hole_em->block_len = 0;
b4939680 4526 hole_em->orig_block_len = 0;
cc95bef6 4527 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4528 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4529 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4530 hole_em->generation = root->fs_info->generation;
8082510e 4531
5dc562c5
JB
4532 while (1) {
4533 write_lock(&em_tree->lock);
09a2a8f9 4534 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4535 write_unlock(&em_tree->lock);
4536 if (err != -EEXIST)
4537 break;
4538 btrfs_drop_extent_cache(inode, cur_offset,
4539 cur_offset +
4540 hole_size - 1, 0);
4541 }
4542 free_extent_map(hole_em);
9036c102 4543 }
16e7549f 4544next:
9036c102 4545 free_extent_map(em);
a22285a6 4546 em = NULL;
9036c102 4547 cur_offset = last_byte;
8082510e 4548 if (cur_offset >= block_end)
9036c102
YZ
4549 break;
4550 }
a22285a6 4551 free_extent_map(em);
2ac55d41
JB
4552 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4553 GFP_NOFS);
9036c102
YZ
4554 return err;
4555}
39279cc3 4556
3972f260 4557static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4558{
f4a2f4c5
MX
4559 struct btrfs_root *root = BTRFS_I(inode)->root;
4560 struct btrfs_trans_handle *trans;
a41ad394 4561 loff_t oldsize = i_size_read(inode);
3972f260
ES
4562 loff_t newsize = attr->ia_size;
4563 int mask = attr->ia_valid;
8082510e
YZ
4564 int ret;
4565
3972f260
ES
4566 /*
4567 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4568 * special case where we need to update the times despite not having
4569 * these flags set. For all other operations the VFS set these flags
4570 * explicitly if it wants a timestamp update.
4571 */
dff6efc3
CH
4572 if (newsize != oldsize) {
4573 inode_inc_iversion(inode);
4574 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4575 inode->i_ctime = inode->i_mtime =
4576 current_fs_time(inode->i_sb);
4577 }
3972f260 4578
a41ad394 4579 if (newsize > oldsize) {
7caef267 4580 truncate_pagecache(inode, newsize);
a41ad394 4581 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 4582 if (ret)
8082510e 4583 return ret;
8082510e 4584
f4a2f4c5
MX
4585 trans = btrfs_start_transaction(root, 1);
4586 if (IS_ERR(trans))
4587 return PTR_ERR(trans);
4588
4589 i_size_write(inode, newsize);
4590 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4591 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 4592 btrfs_end_transaction(trans, root);
a41ad394 4593 } else {
8082510e 4594
a41ad394
JB
4595 /*
4596 * We're truncating a file that used to have good data down to
4597 * zero. Make sure it gets into the ordered flush list so that
4598 * any new writes get down to disk quickly.
4599 */
4600 if (newsize == 0)
72ac3c0d
JB
4601 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4602 &BTRFS_I(inode)->runtime_flags);
8082510e 4603
f3fe820c
JB
4604 /*
4605 * 1 for the orphan item we're going to add
4606 * 1 for the orphan item deletion.
4607 */
4608 trans = btrfs_start_transaction(root, 2);
4609 if (IS_ERR(trans))
4610 return PTR_ERR(trans);
4611
4612 /*
4613 * We need to do this in case we fail at _any_ point during the
4614 * actual truncate. Once we do the truncate_setsize we could
4615 * invalidate pages which forces any outstanding ordered io to
4616 * be instantly completed which will give us extents that need
4617 * to be truncated. If we fail to get an orphan inode down we
4618 * could have left over extents that were never meant to live,
4619 * so we need to garuntee from this point on that everything
4620 * will be consistent.
4621 */
4622 ret = btrfs_orphan_add(trans, inode);
4623 btrfs_end_transaction(trans, root);
4624 if (ret)
4625 return ret;
4626
a41ad394
JB
4627 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4628 truncate_setsize(inode, newsize);
2e60a51e
MX
4629
4630 /* Disable nonlocked read DIO to avoid the end less truncate */
4631 btrfs_inode_block_unlocked_dio(inode);
4632 inode_dio_wait(inode);
4633 btrfs_inode_resume_unlocked_dio(inode);
4634
a41ad394 4635 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4636 if (ret && inode->i_nlink) {
4637 int err;
4638
4639 /*
4640 * failed to truncate, disk_i_size is only adjusted down
4641 * as we remove extents, so it should represent the true
4642 * size of the inode, so reset the in memory size and
4643 * delete our orphan entry.
4644 */
4645 trans = btrfs_join_transaction(root);
4646 if (IS_ERR(trans)) {
4647 btrfs_orphan_del(NULL, inode);
4648 return ret;
4649 }
4650 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4651 err = btrfs_orphan_del(trans, inode);
4652 if (err)
4653 btrfs_abort_transaction(trans, root, err);
4654 btrfs_end_transaction(trans, root);
4655 }
8082510e
YZ
4656 }
4657
a41ad394 4658 return ret;
8082510e
YZ
4659}
4660
9036c102
YZ
4661static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4662{
4663 struct inode *inode = dentry->d_inode;
b83cc969 4664 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4665 int err;
39279cc3 4666
b83cc969
LZ
4667 if (btrfs_root_readonly(root))
4668 return -EROFS;
4669
9036c102
YZ
4670 err = inode_change_ok(inode, attr);
4671 if (err)
4672 return err;
2bf5a725 4673
5a3f23d5 4674 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4675 err = btrfs_setsize(inode, attr);
8082510e
YZ
4676 if (err)
4677 return err;
39279cc3 4678 }
9036c102 4679
1025774c
CH
4680 if (attr->ia_valid) {
4681 setattr_copy(inode, attr);
0c4d2d95 4682 inode_inc_iversion(inode);
22c44fe6 4683 err = btrfs_dirty_inode(inode);
1025774c 4684
22c44fe6 4685 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 4686 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 4687 }
33268eaf 4688
39279cc3
CM
4689 return err;
4690}
61295eb8 4691
131e404a
FDBM
4692/*
4693 * While truncating the inode pages during eviction, we get the VFS calling
4694 * btrfs_invalidatepage() against each page of the inode. This is slow because
4695 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4696 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4697 * extent_state structures over and over, wasting lots of time.
4698 *
4699 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4700 * those expensive operations on a per page basis and do only the ordered io
4701 * finishing, while we release here the extent_map and extent_state structures,
4702 * without the excessive merging and splitting.
4703 */
4704static void evict_inode_truncate_pages(struct inode *inode)
4705{
4706 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4707 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4708 struct rb_node *node;
4709
4710 ASSERT(inode->i_state & I_FREEING);
91b0abe3 4711 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
4712
4713 write_lock(&map_tree->lock);
4714 while (!RB_EMPTY_ROOT(&map_tree->map)) {
4715 struct extent_map *em;
4716
4717 node = rb_first(&map_tree->map);
4718 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
4719 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4720 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
4721 remove_extent_mapping(map_tree, em);
4722 free_extent_map(em);
7064dd5c
FM
4723 if (need_resched()) {
4724 write_unlock(&map_tree->lock);
4725 cond_resched();
4726 write_lock(&map_tree->lock);
4727 }
131e404a
FDBM
4728 }
4729 write_unlock(&map_tree->lock);
4730
4731 spin_lock(&io_tree->lock);
4732 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4733 struct extent_state *state;
4734 struct extent_state *cached_state = NULL;
4735
4736 node = rb_first(&io_tree->state);
4737 state = rb_entry(node, struct extent_state, rb_node);
4738 atomic_inc(&state->refs);
4739 spin_unlock(&io_tree->lock);
4740
4741 lock_extent_bits(io_tree, state->start, state->end,
4742 0, &cached_state);
4743 clear_extent_bit(io_tree, state->start, state->end,
4744 EXTENT_LOCKED | EXTENT_DIRTY |
4745 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4746 EXTENT_DEFRAG, 1, 1,
4747 &cached_state, GFP_NOFS);
4748 free_extent_state(state);
4749
7064dd5c 4750 cond_resched();
131e404a
FDBM
4751 spin_lock(&io_tree->lock);
4752 }
4753 spin_unlock(&io_tree->lock);
4754}
4755
bd555975 4756void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4757{
4758 struct btrfs_trans_handle *trans;
4759 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4760 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4761 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4762 int ret;
4763
1abe9b8a 4764 trace_btrfs_inode_evict(inode);
4765
131e404a
FDBM
4766 evict_inode_truncate_pages(inode);
4767
69e9c6c6
SB
4768 if (inode->i_nlink &&
4769 ((btrfs_root_refs(&root->root_item) != 0 &&
4770 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4771 btrfs_is_free_space_inode(inode)))
bd555975
AV
4772 goto no_delete;
4773
39279cc3 4774 if (is_bad_inode(inode)) {
7b128766 4775 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4776 goto no_delete;
4777 }
bd555975 4778 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4779 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4780
c71bf099 4781 if (root->fs_info->log_root_recovering) {
6bf02314 4782 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4783 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4784 goto no_delete;
4785 }
4786
76dda93c 4787 if (inode->i_nlink > 0) {
69e9c6c6
SB
4788 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4789 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
4790 goto no_delete;
4791 }
4792
0e8c36a9
MX
4793 ret = btrfs_commit_inode_delayed_inode(inode);
4794 if (ret) {
4795 btrfs_orphan_del(NULL, inode);
4796 goto no_delete;
4797 }
4798
66d8f3dd 4799 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4800 if (!rsv) {
4801 btrfs_orphan_del(NULL, inode);
4802 goto no_delete;
4803 }
4a338542 4804 rsv->size = min_size;
ca7e70f5 4805 rsv->failfast = 1;
726c35fa 4806 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4807
dbe674a9 4808 btrfs_i_size_write(inode, 0);
5f39d397 4809
4289a667 4810 /*
8407aa46
MX
4811 * This is a bit simpler than btrfs_truncate since we've already
4812 * reserved our space for our orphan item in the unlink, so we just
4813 * need to reserve some slack space in case we add bytes and update
4814 * inode item when doing the truncate.
4289a667 4815 */
8082510e 4816 while (1) {
08e007d2
MX
4817 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4818 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4819
4820 /*
4821 * Try and steal from the global reserve since we will
4822 * likely not use this space anyway, we want to try as
4823 * hard as possible to get this to work.
4824 */
4825 if (ret)
4826 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4827
d68fc57b 4828 if (ret) {
c2cf52eb
SK
4829 btrfs_warn(root->fs_info,
4830 "Could not get space for a delete, will truncate on mount %d",
4831 ret);
4289a667
JB
4832 btrfs_orphan_del(NULL, inode);
4833 btrfs_free_block_rsv(root, rsv);
4834 goto no_delete;
d68fc57b 4835 }
7b128766 4836
0e8c36a9 4837 trans = btrfs_join_transaction(root);
4289a667
JB
4838 if (IS_ERR(trans)) {
4839 btrfs_orphan_del(NULL, inode);
4840 btrfs_free_block_rsv(root, rsv);
4841 goto no_delete;
d68fc57b 4842 }
7b128766 4843
4289a667
JB
4844 trans->block_rsv = rsv;
4845
d68fc57b 4846 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4847 if (ret != -ENOSPC)
8082510e 4848 break;
85e21bac 4849
8407aa46 4850 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4851 btrfs_end_transaction(trans, root);
4852 trans = NULL;
b53d3f5d 4853 btrfs_btree_balance_dirty(root);
8082510e 4854 }
5f39d397 4855
4289a667
JB
4856 btrfs_free_block_rsv(root, rsv);
4857
4ef31a45
JB
4858 /*
4859 * Errors here aren't a big deal, it just means we leave orphan items
4860 * in the tree. They will be cleaned up on the next mount.
4861 */
8082510e 4862 if (ret == 0) {
4289a667 4863 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
4864 btrfs_orphan_del(trans, inode);
4865 } else {
4866 btrfs_orphan_del(NULL, inode);
8082510e 4867 }
54aa1f4d 4868
4289a667 4869 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4870 if (!(root == root->fs_info->tree_root ||
4871 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4872 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4873
54aa1f4d 4874 btrfs_end_transaction(trans, root);
b53d3f5d 4875 btrfs_btree_balance_dirty(root);
39279cc3 4876no_delete:
89042e5a 4877 btrfs_remove_delayed_node(inode);
dbd5768f 4878 clear_inode(inode);
8082510e 4879 return;
39279cc3
CM
4880}
4881
4882/*
4883 * this returns the key found in the dir entry in the location pointer.
4884 * If no dir entries were found, location->objectid is 0.
4885 */
4886static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4887 struct btrfs_key *location)
4888{
4889 const char *name = dentry->d_name.name;
4890 int namelen = dentry->d_name.len;
4891 struct btrfs_dir_item *di;
4892 struct btrfs_path *path;
4893 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4894 int ret = 0;
39279cc3
CM
4895
4896 path = btrfs_alloc_path();
d8926bb3
MF
4897 if (!path)
4898 return -ENOMEM;
3954401f 4899
33345d01 4900 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4901 namelen, 0);
0d9f7f3e
Y
4902 if (IS_ERR(di))
4903 ret = PTR_ERR(di);
d397712b 4904
c704005d 4905 if (IS_ERR_OR_NULL(di))
3954401f 4906 goto out_err;
d397712b 4907
5f39d397 4908 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4909out:
39279cc3
CM
4910 btrfs_free_path(path);
4911 return ret;
3954401f
CM
4912out_err:
4913 location->objectid = 0;
4914 goto out;
39279cc3
CM
4915}
4916
4917/*
4918 * when we hit a tree root in a directory, the btrfs part of the inode
4919 * needs to be changed to reflect the root directory of the tree root. This
4920 * is kind of like crossing a mount point.
4921 */
4922static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4923 struct inode *dir,
4924 struct dentry *dentry,
4925 struct btrfs_key *location,
4926 struct btrfs_root **sub_root)
39279cc3 4927{
4df27c4d
YZ
4928 struct btrfs_path *path;
4929 struct btrfs_root *new_root;
4930 struct btrfs_root_ref *ref;
4931 struct extent_buffer *leaf;
4932 int ret;
4933 int err = 0;
39279cc3 4934
4df27c4d
YZ
4935 path = btrfs_alloc_path();
4936 if (!path) {
4937 err = -ENOMEM;
4938 goto out;
4939 }
39279cc3 4940
4df27c4d 4941 err = -ENOENT;
75ac2dd9
KN
4942 ret = btrfs_find_item(root->fs_info->tree_root, path,
4943 BTRFS_I(dir)->root->root_key.objectid,
4944 location->objectid, BTRFS_ROOT_REF_KEY, NULL);
4df27c4d
YZ
4945 if (ret) {
4946 if (ret < 0)
4947 err = ret;
4948 goto out;
4949 }
39279cc3 4950
4df27c4d
YZ
4951 leaf = path->nodes[0];
4952 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4953 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4954 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4955 goto out;
39279cc3 4956
4df27c4d
YZ
4957 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4958 (unsigned long)(ref + 1),
4959 dentry->d_name.len);
4960 if (ret)
4961 goto out;
4962
b3b4aa74 4963 btrfs_release_path(path);
4df27c4d
YZ
4964
4965 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4966 if (IS_ERR(new_root)) {
4967 err = PTR_ERR(new_root);
4968 goto out;
4969 }
4970
4df27c4d
YZ
4971 *sub_root = new_root;
4972 location->objectid = btrfs_root_dirid(&new_root->root_item);
4973 location->type = BTRFS_INODE_ITEM_KEY;
4974 location->offset = 0;
4975 err = 0;
4976out:
4977 btrfs_free_path(path);
4978 return err;
39279cc3
CM
4979}
4980
5d4f98a2
YZ
4981static void inode_tree_add(struct inode *inode)
4982{
4983 struct btrfs_root *root = BTRFS_I(inode)->root;
4984 struct btrfs_inode *entry;
03e860bd
FNP
4985 struct rb_node **p;
4986 struct rb_node *parent;
cef21937 4987 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 4988 u64 ino = btrfs_ino(inode);
5d4f98a2 4989
1d3382cb 4990 if (inode_unhashed(inode))
76dda93c 4991 return;
e1409cef 4992 parent = NULL;
5d4f98a2 4993 spin_lock(&root->inode_lock);
e1409cef 4994 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
4995 while (*p) {
4996 parent = *p;
4997 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4998
33345d01 4999 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5000 p = &parent->rb_left;
33345d01 5001 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5002 p = &parent->rb_right;
5d4f98a2
YZ
5003 else {
5004 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5005 (I_WILL_FREE | I_FREEING)));
cef21937 5006 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5007 RB_CLEAR_NODE(parent);
5008 spin_unlock(&root->inode_lock);
cef21937 5009 return;
5d4f98a2
YZ
5010 }
5011 }
cef21937
FDBM
5012 rb_link_node(new, parent, p);
5013 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5014 spin_unlock(&root->inode_lock);
5015}
5016
5017static void inode_tree_del(struct inode *inode)
5018{
5019 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5020 int empty = 0;
5d4f98a2 5021
03e860bd 5022 spin_lock(&root->inode_lock);
5d4f98a2 5023 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5024 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5025 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5026 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5027 }
03e860bd 5028 spin_unlock(&root->inode_lock);
76dda93c 5029
69e9c6c6 5030 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5031 synchronize_srcu(&root->fs_info->subvol_srcu);
5032 spin_lock(&root->inode_lock);
5033 empty = RB_EMPTY_ROOT(&root->inode_tree);
5034 spin_unlock(&root->inode_lock);
5035 if (empty)
5036 btrfs_add_dead_root(root);
5037 }
5038}
5039
143bede5 5040void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5041{
5042 struct rb_node *node;
5043 struct rb_node *prev;
5044 struct btrfs_inode *entry;
5045 struct inode *inode;
5046 u64 objectid = 0;
5047
7813b3db
LB
5048 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5049 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5050
5051 spin_lock(&root->inode_lock);
5052again:
5053 node = root->inode_tree.rb_node;
5054 prev = NULL;
5055 while (node) {
5056 prev = node;
5057 entry = rb_entry(node, struct btrfs_inode, rb_node);
5058
33345d01 5059 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5060 node = node->rb_left;
33345d01 5061 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5062 node = node->rb_right;
5063 else
5064 break;
5065 }
5066 if (!node) {
5067 while (prev) {
5068 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5069 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5070 node = prev;
5071 break;
5072 }
5073 prev = rb_next(prev);
5074 }
5075 }
5076 while (node) {
5077 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5078 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5079 inode = igrab(&entry->vfs_inode);
5080 if (inode) {
5081 spin_unlock(&root->inode_lock);
5082 if (atomic_read(&inode->i_count) > 1)
5083 d_prune_aliases(inode);
5084 /*
45321ac5 5085 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5086 * the inode cache when its usage count
5087 * hits zero.
5088 */
5089 iput(inode);
5090 cond_resched();
5091 spin_lock(&root->inode_lock);
5092 goto again;
5093 }
5094
5095 if (cond_resched_lock(&root->inode_lock))
5096 goto again;
5097
5098 node = rb_next(node);
5099 }
5100 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5101}
5102
e02119d5
CM
5103static int btrfs_init_locked_inode(struct inode *inode, void *p)
5104{
5105 struct btrfs_iget_args *args = p;
90d3e592
CM
5106 inode->i_ino = args->location->objectid;
5107 memcpy(&BTRFS_I(inode)->location, args->location,
5108 sizeof(*args->location));
e02119d5 5109 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5110 return 0;
5111}
5112
5113static int btrfs_find_actor(struct inode *inode, void *opaque)
5114{
5115 struct btrfs_iget_args *args = opaque;
90d3e592 5116 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5117 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5118}
5119
5d4f98a2 5120static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5121 struct btrfs_key *location,
5d4f98a2 5122 struct btrfs_root *root)
39279cc3
CM
5123{
5124 struct inode *inode;
5125 struct btrfs_iget_args args;
90d3e592 5126 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5127
90d3e592 5128 args.location = location;
39279cc3
CM
5129 args.root = root;
5130
778ba82b 5131 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5132 btrfs_init_locked_inode,
5133 (void *)&args);
5134 return inode;
5135}
5136
1a54ef8c
BR
5137/* Get an inode object given its location and corresponding root.
5138 * Returns in *is_new if the inode was read from disk
5139 */
5140struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5141 struct btrfs_root *root, int *new)
1a54ef8c
BR
5142{
5143 struct inode *inode;
5144
90d3e592 5145 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5146 if (!inode)
5d4f98a2 5147 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5148
5149 if (inode->i_state & I_NEW) {
1a54ef8c 5150 btrfs_read_locked_inode(inode);
1748f843
MF
5151 if (!is_bad_inode(inode)) {
5152 inode_tree_add(inode);
5153 unlock_new_inode(inode);
5154 if (new)
5155 *new = 1;
5156 } else {
e0b6d65b
ST
5157 unlock_new_inode(inode);
5158 iput(inode);
5159 inode = ERR_PTR(-ESTALE);
1748f843
MF
5160 }
5161 }
5162
1a54ef8c
BR
5163 return inode;
5164}
5165
4df27c4d
YZ
5166static struct inode *new_simple_dir(struct super_block *s,
5167 struct btrfs_key *key,
5168 struct btrfs_root *root)
5169{
5170 struct inode *inode = new_inode(s);
5171
5172 if (!inode)
5173 return ERR_PTR(-ENOMEM);
5174
4df27c4d
YZ
5175 BTRFS_I(inode)->root = root;
5176 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5177 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5178
5179 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5180 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5181 inode->i_fop = &simple_dir_operations;
5182 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5183 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5184
5185 return inode;
5186}
5187
3de4586c 5188struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5189{
d397712b 5190 struct inode *inode;
4df27c4d 5191 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5192 struct btrfs_root *sub_root = root;
5193 struct btrfs_key location;
76dda93c 5194 int index;
b4aff1f8 5195 int ret = 0;
39279cc3
CM
5196
5197 if (dentry->d_name.len > BTRFS_NAME_LEN)
5198 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5199
39e3c955 5200 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5201 if (ret < 0)
5202 return ERR_PTR(ret);
5f39d397 5203
4df27c4d 5204 if (location.objectid == 0)
5662344b 5205 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5206
5207 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5208 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5209 return inode;
5210 }
5211
5212 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5213
76dda93c 5214 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5215 ret = fixup_tree_root_location(root, dir, dentry,
5216 &location, &sub_root);
5217 if (ret < 0) {
5218 if (ret != -ENOENT)
5219 inode = ERR_PTR(ret);
5220 else
5221 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5222 } else {
73f73415 5223 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5224 }
76dda93c
YZ
5225 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5226
34d19bad 5227 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5228 down_read(&root->fs_info->cleanup_work_sem);
5229 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5230 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5231 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5232 if (ret) {
5233 iput(inode);
66b4ffd1 5234 inode = ERR_PTR(ret);
01cd3367 5235 }
9c3b306e
FM
5236 /*
5237 * If orphan cleanup did remove any orphans, it means the tree
5238 * was modified and therefore the commit root is not the same as
5239 * the current root anymore. This is a problem, because send
5240 * uses the commit root and therefore can see inode items that
5241 * don't exist in the current root anymore, and for example make
5242 * calls to btrfs_iget, which will do tree lookups based on the
5243 * current root and not on the commit root. Those lookups will
5244 * fail, returning a -ESTALE error, and making send fail with
5245 * that error. So make sure a send does not see any orphans we
5246 * have just removed, and that it will see the same inodes
5247 * regardless of whether a transaction commit happened before
5248 * it started (meaning that the commit root will be the same as
5249 * the current root) or not.
5250 */
5251 if (sub_root->node != sub_root->commit_root) {
5252 u64 sub_flags = btrfs_root_flags(&sub_root->root_item);
5253
5254 if (sub_flags & BTRFS_ROOT_SUBVOL_RDONLY) {
5255 struct extent_buffer *eb;
5256
5257 /*
5258 * Assert we can't have races between dentry
5259 * lookup called through the snapshot creation
5260 * ioctl and the VFS.
5261 */
5262 ASSERT(mutex_is_locked(&dir->i_mutex));
5263
5264 down_write(&root->fs_info->commit_root_sem);
5265 eb = sub_root->commit_root;
5266 sub_root->commit_root =
5267 btrfs_root_node(sub_root);
5268 up_write(&root->fs_info->commit_root_sem);
5269 free_extent_buffer(eb);
5270 }
5271 }
c71bf099
YZ
5272 }
5273
3de4586c
CM
5274 return inode;
5275}
5276
fe15ce44 5277static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5278{
5279 struct btrfs_root *root;
848cce0d 5280 struct inode *inode = dentry->d_inode;
76dda93c 5281
848cce0d
LZ
5282 if (!inode && !IS_ROOT(dentry))
5283 inode = dentry->d_parent->d_inode;
76dda93c 5284
848cce0d
LZ
5285 if (inode) {
5286 root = BTRFS_I(inode)->root;
efefb143
YZ
5287 if (btrfs_root_refs(&root->root_item) == 0)
5288 return 1;
848cce0d
LZ
5289
5290 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5291 return 1;
efefb143 5292 }
76dda93c
YZ
5293 return 0;
5294}
5295
b4aff1f8
JB
5296static void btrfs_dentry_release(struct dentry *dentry)
5297{
944a4515 5298 kfree(dentry->d_fsdata);
b4aff1f8
JB
5299}
5300
3de4586c 5301static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5302 unsigned int flags)
3de4586c 5303{
5662344b 5304 struct inode *inode;
a66e7cc6 5305
5662344b
TI
5306 inode = btrfs_lookup_dentry(dir, dentry);
5307 if (IS_ERR(inode)) {
5308 if (PTR_ERR(inode) == -ENOENT)
5309 inode = NULL;
5310 else
5311 return ERR_CAST(inode);
5312 }
5313
3a0dfa6a 5314 return d_materialise_unique(dentry, inode);
39279cc3
CM
5315}
5316
16cdcec7 5317unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5318 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5319};
5320
9cdda8d3 5321static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5322{
9cdda8d3 5323 struct inode *inode = file_inode(file);
39279cc3
CM
5324 struct btrfs_root *root = BTRFS_I(inode)->root;
5325 struct btrfs_item *item;
5326 struct btrfs_dir_item *di;
5327 struct btrfs_key key;
5f39d397 5328 struct btrfs_key found_key;
39279cc3 5329 struct btrfs_path *path;
16cdcec7
MX
5330 struct list_head ins_list;
5331 struct list_head del_list;
39279cc3 5332 int ret;
5f39d397 5333 struct extent_buffer *leaf;
39279cc3 5334 int slot;
39279cc3
CM
5335 unsigned char d_type;
5336 int over = 0;
5337 u32 di_cur;
5338 u32 di_total;
5339 u32 di_len;
5340 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5341 char tmp_name[32];
5342 char *name_ptr;
5343 int name_len;
9cdda8d3 5344 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5345
5346 /* FIXME, use a real flag for deciding about the key type */
5347 if (root->fs_info->tree_root == root)
5348 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5349
9cdda8d3
AV
5350 if (!dir_emit_dots(file, ctx))
5351 return 0;
5352
49593bfa 5353 path = btrfs_alloc_path();
16cdcec7
MX
5354 if (!path)
5355 return -ENOMEM;
ff5714cc 5356
026fd317 5357 path->reada = 1;
49593bfa 5358
16cdcec7
MX
5359 if (key_type == BTRFS_DIR_INDEX_KEY) {
5360 INIT_LIST_HEAD(&ins_list);
5361 INIT_LIST_HEAD(&del_list);
5362 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5363 }
5364
962a298f 5365 key.type = key_type;
9cdda8d3 5366 key.offset = ctx->pos;
33345d01 5367 key.objectid = btrfs_ino(inode);
5f39d397 5368
39279cc3
CM
5369 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5370 if (ret < 0)
5371 goto err;
49593bfa
DW
5372
5373 while (1) {
5f39d397 5374 leaf = path->nodes[0];
39279cc3 5375 slot = path->slots[0];
b9e03af0
LZ
5376 if (slot >= btrfs_header_nritems(leaf)) {
5377 ret = btrfs_next_leaf(root, path);
5378 if (ret < 0)
5379 goto err;
5380 else if (ret > 0)
5381 break;
5382 continue;
39279cc3 5383 }
3de4586c 5384
dd3cc16b 5385 item = btrfs_item_nr(slot);
5f39d397
CM
5386 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5387
5388 if (found_key.objectid != key.objectid)
39279cc3 5389 break;
962a298f 5390 if (found_key.type != key_type)
39279cc3 5391 break;
9cdda8d3 5392 if (found_key.offset < ctx->pos)
b9e03af0 5393 goto next;
16cdcec7
MX
5394 if (key_type == BTRFS_DIR_INDEX_KEY &&
5395 btrfs_should_delete_dir_index(&del_list,
5396 found_key.offset))
5397 goto next;
5f39d397 5398
9cdda8d3 5399 ctx->pos = found_key.offset;
16cdcec7 5400 is_curr = 1;
49593bfa 5401
39279cc3
CM
5402 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5403 di_cur = 0;
5f39d397 5404 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5405
5406 while (di_cur < di_total) {
5f39d397
CM
5407 struct btrfs_key location;
5408
22a94d44
JB
5409 if (verify_dir_item(root, leaf, di))
5410 break;
5411
5f39d397 5412 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5413 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5414 name_ptr = tmp_name;
5415 } else {
5416 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5417 if (!name_ptr) {
5418 ret = -ENOMEM;
5419 goto err;
5420 }
5f39d397
CM
5421 }
5422 read_extent_buffer(leaf, name_ptr,
5423 (unsigned long)(di + 1), name_len);
5424
5425 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5426 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5427
fede766f 5428
3de4586c 5429 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5430 * skip it.
5431 *
5432 * In contrast to old kernels, we insert the snapshot's
5433 * dir item and dir index after it has been created, so
5434 * we won't find a reference to our own snapshot. We
5435 * still keep the following code for backward
5436 * compatibility.
3de4586c
CM
5437 */
5438 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5439 location.objectid == root->root_key.objectid) {
5440 over = 0;
5441 goto skip;
5442 }
9cdda8d3
AV
5443 over = !dir_emit(ctx, name_ptr, name_len,
5444 location.objectid, d_type);
5f39d397 5445
3de4586c 5446skip:
5f39d397
CM
5447 if (name_ptr != tmp_name)
5448 kfree(name_ptr);
5449
39279cc3
CM
5450 if (over)
5451 goto nopos;
5103e947 5452 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5453 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5454 di_cur += di_len;
5455 di = (struct btrfs_dir_item *)((char *)di + di_len);
5456 }
b9e03af0
LZ
5457next:
5458 path->slots[0]++;
39279cc3 5459 }
49593bfa 5460
16cdcec7
MX
5461 if (key_type == BTRFS_DIR_INDEX_KEY) {
5462 if (is_curr)
9cdda8d3
AV
5463 ctx->pos++;
5464 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5465 if (ret)
5466 goto nopos;
5467 }
5468
49593bfa 5469 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5470 ctx->pos++;
5471
5472 /*
5473 * Stop new entries from being returned after we return the last
5474 * entry.
5475 *
5476 * New directory entries are assigned a strictly increasing
5477 * offset. This means that new entries created during readdir
5478 * are *guaranteed* to be seen in the future by that readdir.
5479 * This has broken buggy programs which operate on names as
5480 * they're returned by readdir. Until we re-use freed offsets
5481 * we have this hack to stop new entries from being returned
5482 * under the assumption that they'll never reach this huge
5483 * offset.
5484 *
5485 * This is being careful not to overflow 32bit loff_t unless the
5486 * last entry requires it because doing so has broken 32bit apps
5487 * in the past.
5488 */
5489 if (key_type == BTRFS_DIR_INDEX_KEY) {
5490 if (ctx->pos >= INT_MAX)
5491 ctx->pos = LLONG_MAX;
5492 else
5493 ctx->pos = INT_MAX;
5494 }
39279cc3
CM
5495nopos:
5496 ret = 0;
5497err:
16cdcec7
MX
5498 if (key_type == BTRFS_DIR_INDEX_KEY)
5499 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5500 btrfs_free_path(path);
39279cc3
CM
5501 return ret;
5502}
5503
a9185b41 5504int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5505{
5506 struct btrfs_root *root = BTRFS_I(inode)->root;
5507 struct btrfs_trans_handle *trans;
5508 int ret = 0;
0af3d00b 5509 bool nolock = false;
39279cc3 5510
72ac3c0d 5511 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5512 return 0;
5513
83eea1f1 5514 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5515 nolock = true;
0af3d00b 5516
a9185b41 5517 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5518 if (nolock)
7a7eaa40 5519 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5520 else
7a7eaa40 5521 trans = btrfs_join_transaction(root);
3612b495
TI
5522 if (IS_ERR(trans))
5523 return PTR_ERR(trans);
a698d075 5524 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5525 }
5526 return ret;
5527}
5528
5529/*
54aa1f4d 5530 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5531 * inode changes. But, it is most likely to find the inode in cache.
5532 * FIXME, needs more benchmarking...there are no reasons other than performance
5533 * to keep or drop this code.
5534 */
48a3b636 5535static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5536{
5537 struct btrfs_root *root = BTRFS_I(inode)->root;
5538 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5539 int ret;
5540
72ac3c0d 5541 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5542 return 0;
39279cc3 5543
7a7eaa40 5544 trans = btrfs_join_transaction(root);
22c44fe6
JB
5545 if (IS_ERR(trans))
5546 return PTR_ERR(trans);
8929ecfa
YZ
5547
5548 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5549 if (ret && ret == -ENOSPC) {
5550 /* whoops, lets try again with the full transaction */
5551 btrfs_end_transaction(trans, root);
5552 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5553 if (IS_ERR(trans))
5554 return PTR_ERR(trans);
8929ecfa 5555
94b60442 5556 ret = btrfs_update_inode(trans, root, inode);
94b60442 5557 }
39279cc3 5558 btrfs_end_transaction(trans, root);
16cdcec7
MX
5559 if (BTRFS_I(inode)->delayed_node)
5560 btrfs_balance_delayed_items(root);
22c44fe6
JB
5561
5562 return ret;
5563}
5564
5565/*
5566 * This is a copy of file_update_time. We need this so we can return error on
5567 * ENOSPC for updating the inode in the case of file write and mmap writes.
5568 */
e41f941a
JB
5569static int btrfs_update_time(struct inode *inode, struct timespec *now,
5570 int flags)
22c44fe6 5571{
2bc55652
AB
5572 struct btrfs_root *root = BTRFS_I(inode)->root;
5573
5574 if (btrfs_root_readonly(root))
5575 return -EROFS;
5576
e41f941a 5577 if (flags & S_VERSION)
22c44fe6 5578 inode_inc_iversion(inode);
e41f941a
JB
5579 if (flags & S_CTIME)
5580 inode->i_ctime = *now;
5581 if (flags & S_MTIME)
5582 inode->i_mtime = *now;
5583 if (flags & S_ATIME)
5584 inode->i_atime = *now;
5585 return btrfs_dirty_inode(inode);
39279cc3
CM
5586}
5587
d352ac68
CM
5588/*
5589 * find the highest existing sequence number in a directory
5590 * and then set the in-memory index_cnt variable to reflect
5591 * free sequence numbers
5592 */
aec7477b
JB
5593static int btrfs_set_inode_index_count(struct inode *inode)
5594{
5595 struct btrfs_root *root = BTRFS_I(inode)->root;
5596 struct btrfs_key key, found_key;
5597 struct btrfs_path *path;
5598 struct extent_buffer *leaf;
5599 int ret;
5600
33345d01 5601 key.objectid = btrfs_ino(inode);
962a298f 5602 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
5603 key.offset = (u64)-1;
5604
5605 path = btrfs_alloc_path();
5606 if (!path)
5607 return -ENOMEM;
5608
5609 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5610 if (ret < 0)
5611 goto out;
5612 /* FIXME: we should be able to handle this */
5613 if (ret == 0)
5614 goto out;
5615 ret = 0;
5616
5617 /*
5618 * MAGIC NUMBER EXPLANATION:
5619 * since we search a directory based on f_pos we have to start at 2
5620 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5621 * else has to start at 2
5622 */
5623 if (path->slots[0] == 0) {
5624 BTRFS_I(inode)->index_cnt = 2;
5625 goto out;
5626 }
5627
5628 path->slots[0]--;
5629
5630 leaf = path->nodes[0];
5631 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5632
33345d01 5633 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 5634 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
5635 BTRFS_I(inode)->index_cnt = 2;
5636 goto out;
5637 }
5638
5639 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5640out:
5641 btrfs_free_path(path);
5642 return ret;
5643}
5644
d352ac68
CM
5645/*
5646 * helper to find a free sequence number in a given directory. This current
5647 * code is very simple, later versions will do smarter things in the btree
5648 */
3de4586c 5649int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5650{
5651 int ret = 0;
5652
5653 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5654 ret = btrfs_inode_delayed_dir_index_count(dir);
5655 if (ret) {
5656 ret = btrfs_set_inode_index_count(dir);
5657 if (ret)
5658 return ret;
5659 }
aec7477b
JB
5660 }
5661
00e4e6b3 5662 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5663 BTRFS_I(dir)->index_cnt++;
5664
5665 return ret;
5666}
5667
b0d5d10f
CM
5668static int btrfs_insert_inode_locked(struct inode *inode)
5669{
5670 struct btrfs_iget_args args;
5671 args.location = &BTRFS_I(inode)->location;
5672 args.root = BTRFS_I(inode)->root;
5673
5674 return insert_inode_locked4(inode,
5675 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5676 btrfs_find_actor, &args);
5677}
5678
39279cc3
CM
5679static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5680 struct btrfs_root *root,
aec7477b 5681 struct inode *dir,
9c58309d 5682 const char *name, int name_len,
175a4eb7
AV
5683 u64 ref_objectid, u64 objectid,
5684 umode_t mode, u64 *index)
39279cc3
CM
5685{
5686 struct inode *inode;
5f39d397 5687 struct btrfs_inode_item *inode_item;
39279cc3 5688 struct btrfs_key *location;
5f39d397 5689 struct btrfs_path *path;
9c58309d
CM
5690 struct btrfs_inode_ref *ref;
5691 struct btrfs_key key[2];
5692 u32 sizes[2];
ef3b9af5 5693 int nitems = name ? 2 : 1;
9c58309d 5694 unsigned long ptr;
39279cc3 5695 int ret;
39279cc3 5696
5f39d397 5697 path = btrfs_alloc_path();
d8926bb3
MF
5698 if (!path)
5699 return ERR_PTR(-ENOMEM);
5f39d397 5700
39279cc3 5701 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5702 if (!inode) {
5703 btrfs_free_path(path);
39279cc3 5704 return ERR_PTR(-ENOMEM);
8fb27640 5705 }
39279cc3 5706
5762b5c9
FM
5707 /*
5708 * O_TMPFILE, set link count to 0, so that after this point,
5709 * we fill in an inode item with the correct link count.
5710 */
5711 if (!name)
5712 set_nlink(inode, 0);
5713
581bb050
LZ
5714 /*
5715 * we have to initialize this early, so we can reclaim the inode
5716 * number if we fail afterwards in this function.
5717 */
5718 inode->i_ino = objectid;
5719
ef3b9af5 5720 if (dir && name) {
1abe9b8a 5721 trace_btrfs_inode_request(dir);
5722
3de4586c 5723 ret = btrfs_set_inode_index(dir, index);
09771430 5724 if (ret) {
8fb27640 5725 btrfs_free_path(path);
09771430 5726 iput(inode);
aec7477b 5727 return ERR_PTR(ret);
09771430 5728 }
ef3b9af5
FM
5729 } else if (dir) {
5730 *index = 0;
aec7477b
JB
5731 }
5732 /*
5733 * index_cnt is ignored for everything but a dir,
5734 * btrfs_get_inode_index_count has an explanation for the magic
5735 * number
5736 */
5737 BTRFS_I(inode)->index_cnt = 2;
67de1176 5738 BTRFS_I(inode)->dir_index = *index;
39279cc3 5739 BTRFS_I(inode)->root = root;
e02119d5 5740 BTRFS_I(inode)->generation = trans->transid;
76195853 5741 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5742
5dc562c5
JB
5743 /*
5744 * We could have gotten an inode number from somebody who was fsynced
5745 * and then removed in this same transaction, so let's just set full
5746 * sync since it will be a full sync anyway and this will blow away the
5747 * old info in the log.
5748 */
5749 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5750
9c58309d 5751 key[0].objectid = objectid;
962a298f 5752 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
5753 key[0].offset = 0;
5754
9c58309d 5755 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
5756
5757 if (name) {
5758 /*
5759 * Start new inodes with an inode_ref. This is slightly more
5760 * efficient for small numbers of hard links since they will
5761 * be packed into one item. Extended refs will kick in if we
5762 * add more hard links than can fit in the ref item.
5763 */
5764 key[1].objectid = objectid;
962a298f 5765 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
5766 key[1].offset = ref_objectid;
5767
5768 sizes[1] = name_len + sizeof(*ref);
5769 }
9c58309d 5770
b0d5d10f
CM
5771 location = &BTRFS_I(inode)->location;
5772 location->objectid = objectid;
5773 location->offset = 0;
962a298f 5774 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
5775
5776 ret = btrfs_insert_inode_locked(inode);
5777 if (ret < 0)
5778 goto fail;
5779
b9473439 5780 path->leave_spinning = 1;
ef3b9af5 5781 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 5782 if (ret != 0)
b0d5d10f 5783 goto fail_unlock;
5f39d397 5784
ecc11fab 5785 inode_init_owner(inode, dir, mode);
a76a3cd4 5786 inode_set_bytes(inode, 0);
39279cc3 5787 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
5788 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5789 struct btrfs_inode_item);
293f7e07
LZ
5790 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5791 sizeof(*inode_item));
e02119d5 5792 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 5793
ef3b9af5
FM
5794 if (name) {
5795 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5796 struct btrfs_inode_ref);
5797 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5798 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5799 ptr = (unsigned long)(ref + 1);
5800 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5801 }
9c58309d 5802
5f39d397
CM
5803 btrfs_mark_buffer_dirty(path->nodes[0]);
5804 btrfs_free_path(path);
5805
6cbff00f
CH
5806 btrfs_inherit_iflags(inode, dir);
5807
569254b0 5808 if (S_ISREG(mode)) {
94272164
CM
5809 if (btrfs_test_opt(root, NODATASUM))
5810 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5811 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5812 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5813 BTRFS_INODE_NODATASUM;
94272164
CM
5814 }
5815
5d4f98a2 5816 inode_tree_add(inode);
1abe9b8a 5817
5818 trace_btrfs_inode_new(inode);
1973f0fa 5819 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5820
8ea05e3a
AB
5821 btrfs_update_root_times(trans, root);
5822
63541927
FDBM
5823 ret = btrfs_inode_inherit_props(trans, inode, dir);
5824 if (ret)
5825 btrfs_err(root->fs_info,
5826 "error inheriting props for ino %llu (root %llu): %d",
5827 btrfs_ino(inode), root->root_key.objectid, ret);
5828
39279cc3 5829 return inode;
b0d5d10f
CM
5830
5831fail_unlock:
5832 unlock_new_inode(inode);
5f39d397 5833fail:
ef3b9af5 5834 if (dir && name)
aec7477b 5835 BTRFS_I(dir)->index_cnt--;
5f39d397 5836 btrfs_free_path(path);
09771430 5837 iput(inode);
5f39d397 5838 return ERR_PTR(ret);
39279cc3
CM
5839}
5840
5841static inline u8 btrfs_inode_type(struct inode *inode)
5842{
5843 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5844}
5845
d352ac68
CM
5846/*
5847 * utility function to add 'inode' into 'parent_inode' with
5848 * a give name and a given sequence number.
5849 * if 'add_backref' is true, also insert a backref from the
5850 * inode to the parent directory.
5851 */
e02119d5
CM
5852int btrfs_add_link(struct btrfs_trans_handle *trans,
5853 struct inode *parent_inode, struct inode *inode,
5854 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5855{
4df27c4d 5856 int ret = 0;
39279cc3 5857 struct btrfs_key key;
e02119d5 5858 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5859 u64 ino = btrfs_ino(inode);
5860 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5861
33345d01 5862 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5863 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5864 } else {
33345d01 5865 key.objectid = ino;
962a298f 5866 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
5867 key.offset = 0;
5868 }
5869
33345d01 5870 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5871 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5872 key.objectid, root->root_key.objectid,
33345d01 5873 parent_ino, index, name, name_len);
4df27c4d 5874 } else if (add_backref) {
33345d01
LZ
5875 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5876 parent_ino, index);
4df27c4d 5877 }
39279cc3 5878
79787eaa
JM
5879 /* Nothing to clean up yet */
5880 if (ret)
5881 return ret;
4df27c4d 5882
79787eaa
JM
5883 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5884 parent_inode, &key,
5885 btrfs_inode_type(inode), index);
9c52057c 5886 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
5887 goto fail_dir_item;
5888 else if (ret) {
5889 btrfs_abort_transaction(trans, root, ret);
5890 return ret;
39279cc3 5891 }
79787eaa
JM
5892
5893 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5894 name_len * 2);
0c4d2d95 5895 inode_inc_iversion(parent_inode);
79787eaa
JM
5896 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5897 ret = btrfs_update_inode(trans, root, parent_inode);
5898 if (ret)
5899 btrfs_abort_transaction(trans, root, ret);
39279cc3 5900 return ret;
fe66a05a
CM
5901
5902fail_dir_item:
5903 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5904 u64 local_index;
5905 int err;
5906 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5907 key.objectid, root->root_key.objectid,
5908 parent_ino, &local_index, name, name_len);
5909
5910 } else if (add_backref) {
5911 u64 local_index;
5912 int err;
5913
5914 err = btrfs_del_inode_ref(trans, root, name, name_len,
5915 ino, parent_ino, &local_index);
5916 }
5917 return ret;
39279cc3
CM
5918}
5919
5920static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5921 struct inode *dir, struct dentry *dentry,
5922 struct inode *inode, int backref, u64 index)
39279cc3 5923{
a1b075d2
JB
5924 int err = btrfs_add_link(trans, dir, inode,
5925 dentry->d_name.name, dentry->d_name.len,
5926 backref, index);
39279cc3
CM
5927 if (err > 0)
5928 err = -EEXIST;
5929 return err;
5930}
5931
618e21d5 5932static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5933 umode_t mode, dev_t rdev)
618e21d5
JB
5934{
5935 struct btrfs_trans_handle *trans;
5936 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5937 struct inode *inode = NULL;
618e21d5
JB
5938 int err;
5939 int drop_inode = 0;
5940 u64 objectid;
00e4e6b3 5941 u64 index = 0;
618e21d5
JB
5942
5943 if (!new_valid_dev(rdev))
5944 return -EINVAL;
5945
9ed74f2d
JB
5946 /*
5947 * 2 for inode item and ref
5948 * 2 for dir items
5949 * 1 for xattr if selinux is on
5950 */
a22285a6
YZ
5951 trans = btrfs_start_transaction(root, 5);
5952 if (IS_ERR(trans))
5953 return PTR_ERR(trans);
1832a6d5 5954
581bb050
LZ
5955 err = btrfs_find_free_ino(root, &objectid);
5956 if (err)
5957 goto out_unlock;
5958
aec7477b 5959 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5960 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5961 mode, &index);
7cf96da3
TI
5962 if (IS_ERR(inode)) {
5963 err = PTR_ERR(inode);
618e21d5 5964 goto out_unlock;
7cf96da3 5965 }
618e21d5 5966
ad19db71
CS
5967 /*
5968 * If the active LSM wants to access the inode during
5969 * d_instantiate it needs these. Smack checks to see
5970 * if the filesystem supports xattrs by looking at the
5971 * ops vector.
5972 */
ad19db71 5973 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
5974 init_special_inode(inode, inode->i_mode, rdev);
5975
5976 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 5977 if (err)
b0d5d10f
CM
5978 goto out_unlock_inode;
5979
5980 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5981 if (err) {
5982 goto out_unlock_inode;
5983 } else {
1b4ab1bb 5984 btrfs_update_inode(trans, root, inode);
b0d5d10f 5985 unlock_new_inode(inode);
08c422c2 5986 d_instantiate(dentry, inode);
618e21d5 5987 }
b0d5d10f 5988
618e21d5 5989out_unlock:
7ad85bb7 5990 btrfs_end_transaction(trans, root);
c581afc8 5991 btrfs_balance_delayed_items(root);
b53d3f5d 5992 btrfs_btree_balance_dirty(root);
618e21d5
JB
5993 if (drop_inode) {
5994 inode_dec_link_count(inode);
5995 iput(inode);
5996 }
618e21d5 5997 return err;
b0d5d10f
CM
5998
5999out_unlock_inode:
6000 drop_inode = 1;
6001 unlock_new_inode(inode);
6002 goto out_unlock;
6003
618e21d5
JB
6004}
6005
39279cc3 6006static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6007 umode_t mode, bool excl)
39279cc3
CM
6008{
6009 struct btrfs_trans_handle *trans;
6010 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6011 struct inode *inode = NULL;
43baa579 6012 int drop_inode_on_err = 0;
a22285a6 6013 int err;
39279cc3 6014 u64 objectid;
00e4e6b3 6015 u64 index = 0;
39279cc3 6016
9ed74f2d
JB
6017 /*
6018 * 2 for inode item and ref
6019 * 2 for dir items
6020 * 1 for xattr if selinux is on
6021 */
a22285a6
YZ
6022 trans = btrfs_start_transaction(root, 5);
6023 if (IS_ERR(trans))
6024 return PTR_ERR(trans);
9ed74f2d 6025
581bb050
LZ
6026 err = btrfs_find_free_ino(root, &objectid);
6027 if (err)
6028 goto out_unlock;
6029
aec7477b 6030 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6031 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6032 mode, &index);
7cf96da3
TI
6033 if (IS_ERR(inode)) {
6034 err = PTR_ERR(inode);
39279cc3 6035 goto out_unlock;
7cf96da3 6036 }
43baa579 6037 drop_inode_on_err = 1;
ad19db71
CS
6038 /*
6039 * If the active LSM wants to access the inode during
6040 * d_instantiate it needs these. Smack checks to see
6041 * if the filesystem supports xattrs by looking at the
6042 * ops vector.
6043 */
6044 inode->i_fop = &btrfs_file_operations;
6045 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f
CM
6046 inode->i_mapping->a_ops = &btrfs_aops;
6047 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6048
6049 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6050 if (err)
6051 goto out_unlock_inode;
6052
6053 err = btrfs_update_inode(trans, root, inode);
6054 if (err)
6055 goto out_unlock_inode;
ad19db71 6056
a1b075d2 6057 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6058 if (err)
b0d5d10f 6059 goto out_unlock_inode;
43baa579 6060
43baa579 6061 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6062 unlock_new_inode(inode);
43baa579
FB
6063 d_instantiate(dentry, inode);
6064
39279cc3 6065out_unlock:
7ad85bb7 6066 btrfs_end_transaction(trans, root);
43baa579 6067 if (err && drop_inode_on_err) {
39279cc3
CM
6068 inode_dec_link_count(inode);
6069 iput(inode);
6070 }
c581afc8 6071 btrfs_balance_delayed_items(root);
b53d3f5d 6072 btrfs_btree_balance_dirty(root);
39279cc3 6073 return err;
b0d5d10f
CM
6074
6075out_unlock_inode:
6076 unlock_new_inode(inode);
6077 goto out_unlock;
6078
39279cc3
CM
6079}
6080
6081static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6082 struct dentry *dentry)
6083{
6084 struct btrfs_trans_handle *trans;
6085 struct btrfs_root *root = BTRFS_I(dir)->root;
6086 struct inode *inode = old_dentry->d_inode;
00e4e6b3 6087 u64 index;
39279cc3
CM
6088 int err;
6089 int drop_inode = 0;
6090
4a8be425
TH
6091 /* do not allow sys_link's with other subvols of the same device */
6092 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6093 return -EXDEV;
4a8be425 6094
f186373f 6095 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6096 return -EMLINK;
4a8be425 6097
3de4586c 6098 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6099 if (err)
6100 goto fail;
6101
a22285a6 6102 /*
7e6b6465 6103 * 2 items for inode and inode ref
a22285a6 6104 * 2 items for dir items
7e6b6465 6105 * 1 item for parent inode
a22285a6 6106 */
7e6b6465 6107 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6108 if (IS_ERR(trans)) {
6109 err = PTR_ERR(trans);
6110 goto fail;
6111 }
5f39d397 6112
67de1176
MX
6113 /* There are several dir indexes for this inode, clear the cache. */
6114 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6115 inc_nlink(inode);
0c4d2d95 6116 inode_inc_iversion(inode);
3153495d 6117 inode->i_ctime = CURRENT_TIME;
7de9c6ee 6118 ihold(inode);
e9976151 6119 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6120
a1b075d2 6121 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6122
a5719521 6123 if (err) {
54aa1f4d 6124 drop_inode = 1;
a5719521 6125 } else {
10d9f309 6126 struct dentry *parent = dentry->d_parent;
a5719521 6127 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6128 if (err)
6129 goto fail;
ef3b9af5
FM
6130 if (inode->i_nlink == 1) {
6131 /*
6132 * If new hard link count is 1, it's a file created
6133 * with open(2) O_TMPFILE flag.
6134 */
6135 err = btrfs_orphan_del(trans, inode);
6136 if (err)
6137 goto fail;
6138 }
08c422c2 6139 d_instantiate(dentry, inode);
6a912213 6140 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6141 }
39279cc3 6142
7ad85bb7 6143 btrfs_end_transaction(trans, root);
c581afc8 6144 btrfs_balance_delayed_items(root);
1832a6d5 6145fail:
39279cc3
CM
6146 if (drop_inode) {
6147 inode_dec_link_count(inode);
6148 iput(inode);
6149 }
b53d3f5d 6150 btrfs_btree_balance_dirty(root);
39279cc3
CM
6151 return err;
6152}
6153
18bb1db3 6154static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6155{
b9d86667 6156 struct inode *inode = NULL;
39279cc3
CM
6157 struct btrfs_trans_handle *trans;
6158 struct btrfs_root *root = BTRFS_I(dir)->root;
6159 int err = 0;
6160 int drop_on_err = 0;
b9d86667 6161 u64 objectid = 0;
00e4e6b3 6162 u64 index = 0;
39279cc3 6163
9ed74f2d
JB
6164 /*
6165 * 2 items for inode and ref
6166 * 2 items for dir items
6167 * 1 for xattr if selinux is on
6168 */
a22285a6
YZ
6169 trans = btrfs_start_transaction(root, 5);
6170 if (IS_ERR(trans))
6171 return PTR_ERR(trans);
39279cc3 6172
581bb050
LZ
6173 err = btrfs_find_free_ino(root, &objectid);
6174 if (err)
6175 goto out_fail;
6176
aec7477b 6177 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6178 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6179 S_IFDIR | mode, &index);
39279cc3
CM
6180 if (IS_ERR(inode)) {
6181 err = PTR_ERR(inode);
6182 goto out_fail;
6183 }
5f39d397 6184
39279cc3 6185 drop_on_err = 1;
b0d5d10f
CM
6186 /* these must be set before we unlock the inode */
6187 inode->i_op = &btrfs_dir_inode_operations;
6188 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6189
2a7dba39 6190 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6191 if (err)
b0d5d10f 6192 goto out_fail_inode;
39279cc3 6193
dbe674a9 6194 btrfs_i_size_write(inode, 0);
39279cc3
CM
6195 err = btrfs_update_inode(trans, root, inode);
6196 if (err)
b0d5d10f 6197 goto out_fail_inode;
5f39d397 6198
a1b075d2
JB
6199 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6200 dentry->d_name.len, 0, index);
39279cc3 6201 if (err)
b0d5d10f 6202 goto out_fail_inode;
5f39d397 6203
39279cc3 6204 d_instantiate(dentry, inode);
b0d5d10f
CM
6205 /*
6206 * mkdir is special. We're unlocking after we call d_instantiate
6207 * to avoid a race with nfsd calling d_instantiate.
6208 */
6209 unlock_new_inode(inode);
39279cc3 6210 drop_on_err = 0;
39279cc3
CM
6211
6212out_fail:
7ad85bb7 6213 btrfs_end_transaction(trans, root);
39279cc3
CM
6214 if (drop_on_err)
6215 iput(inode);
c581afc8 6216 btrfs_balance_delayed_items(root);
b53d3f5d 6217 btrfs_btree_balance_dirty(root);
39279cc3 6218 return err;
b0d5d10f
CM
6219
6220out_fail_inode:
6221 unlock_new_inode(inode);
6222 goto out_fail;
39279cc3
CM
6223}
6224
d352ac68
CM
6225/* helper for btfs_get_extent. Given an existing extent in the tree,
6226 * and an extent that you want to insert, deal with overlap and insert
6227 * the new extent into the tree.
6228 */
3b951516
CM
6229static int merge_extent_mapping(struct extent_map_tree *em_tree,
6230 struct extent_map *existing,
e6dcd2dc 6231 struct extent_map *em,
51f395ad 6232 u64 map_start)
3b951516
CM
6233{
6234 u64 start_diff;
3b951516 6235
e6dcd2dc
CM
6236 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6237 start_diff = map_start - em->start;
6238 em->start = map_start;
51f395ad 6239 em->len = existing->start - em->start;
c8b97818
CM
6240 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6241 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6242 em->block_start += start_diff;
c8b97818
CM
6243 em->block_len -= start_diff;
6244 }
09a2a8f9 6245 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6246}
6247
c8b97818
CM
6248static noinline int uncompress_inline(struct btrfs_path *path,
6249 struct inode *inode, struct page *page,
6250 size_t pg_offset, u64 extent_offset,
6251 struct btrfs_file_extent_item *item)
6252{
6253 int ret;
6254 struct extent_buffer *leaf = path->nodes[0];
6255 char *tmp;
6256 size_t max_size;
6257 unsigned long inline_size;
6258 unsigned long ptr;
261507a0 6259 int compress_type;
c8b97818
CM
6260
6261 WARN_ON(pg_offset != 0);
261507a0 6262 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6263 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6264 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6265 btrfs_item_nr(path->slots[0]));
c8b97818 6266 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6267 if (!tmp)
6268 return -ENOMEM;
c8b97818
CM
6269 ptr = btrfs_file_extent_inline_start(item);
6270
6271 read_extent_buffer(leaf, tmp, ptr, inline_size);
6272
5b050f04 6273 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
6274 ret = btrfs_decompress(compress_type, tmp, page,
6275 extent_offset, inline_size, max_size);
c8b97818 6276 kfree(tmp);
166ae5a4 6277 return ret;
c8b97818
CM
6278}
6279
d352ac68
CM
6280/*
6281 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6282 * the ugly parts come from merging extents from the disk with the in-ram
6283 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6284 * where the in-ram extents might be locked pending data=ordered completion.
6285 *
6286 * This also copies inline extents directly into the page.
6287 */
d397712b 6288
a52d9a80 6289struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6290 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6291 int create)
6292{
6293 int ret;
6294 int err = 0;
a52d9a80
CM
6295 u64 extent_start = 0;
6296 u64 extent_end = 0;
33345d01 6297 u64 objectid = btrfs_ino(inode);
a52d9a80 6298 u32 found_type;
f421950f 6299 struct btrfs_path *path = NULL;
a52d9a80
CM
6300 struct btrfs_root *root = BTRFS_I(inode)->root;
6301 struct btrfs_file_extent_item *item;
5f39d397
CM
6302 struct extent_buffer *leaf;
6303 struct btrfs_key found_key;
a52d9a80
CM
6304 struct extent_map *em = NULL;
6305 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6306 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6307 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6308 const bool new_inline = !page || create;
a52d9a80 6309
a52d9a80 6310again:
890871be 6311 read_lock(&em_tree->lock);
d1310b2e 6312 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6313 if (em)
6314 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6315 read_unlock(&em_tree->lock);
d1310b2e 6316
a52d9a80 6317 if (em) {
e1c4b745
CM
6318 if (em->start > start || em->start + em->len <= start)
6319 free_extent_map(em);
6320 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6321 free_extent_map(em);
6322 else
6323 goto out;
a52d9a80 6324 }
172ddd60 6325 em = alloc_extent_map();
a52d9a80 6326 if (!em) {
d1310b2e
CM
6327 err = -ENOMEM;
6328 goto out;
a52d9a80 6329 }
e6dcd2dc 6330 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6331 em->start = EXTENT_MAP_HOLE;
445a6944 6332 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6333 em->len = (u64)-1;
c8b97818 6334 em->block_len = (u64)-1;
f421950f
CM
6335
6336 if (!path) {
6337 path = btrfs_alloc_path();
026fd317
JB
6338 if (!path) {
6339 err = -ENOMEM;
6340 goto out;
6341 }
6342 /*
6343 * Chances are we'll be called again, so go ahead and do
6344 * readahead
6345 */
6346 path->reada = 1;
f421950f
CM
6347 }
6348
179e29e4
CM
6349 ret = btrfs_lookup_file_extent(trans, root, path,
6350 objectid, start, trans != NULL);
a52d9a80
CM
6351 if (ret < 0) {
6352 err = ret;
6353 goto out;
6354 }
6355
6356 if (ret != 0) {
6357 if (path->slots[0] == 0)
6358 goto not_found;
6359 path->slots[0]--;
6360 }
6361
5f39d397
CM
6362 leaf = path->nodes[0];
6363 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6364 struct btrfs_file_extent_item);
a52d9a80 6365 /* are we inside the extent that was found? */
5f39d397 6366 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6367 found_type = found_key.type;
5f39d397 6368 if (found_key.objectid != objectid ||
a52d9a80 6369 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6370 /*
6371 * If we backup past the first extent we want to move forward
6372 * and see if there is an extent in front of us, otherwise we'll
6373 * say there is a hole for our whole search range which can
6374 * cause problems.
6375 */
6376 extent_end = start;
6377 goto next;
a52d9a80
CM
6378 }
6379
5f39d397
CM
6380 found_type = btrfs_file_extent_type(leaf, item);
6381 extent_start = found_key.offset;
d899e052
YZ
6382 if (found_type == BTRFS_FILE_EXTENT_REG ||
6383 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6384 extent_end = extent_start +
db94535d 6385 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6386 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6387 size_t size;
514ac8ad 6388 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6389 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6390 }
25a50341 6391next:
9036c102
YZ
6392 if (start >= extent_end) {
6393 path->slots[0]++;
6394 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6395 ret = btrfs_next_leaf(root, path);
6396 if (ret < 0) {
6397 err = ret;
6398 goto out;
a52d9a80 6399 }
9036c102
YZ
6400 if (ret > 0)
6401 goto not_found;
6402 leaf = path->nodes[0];
a52d9a80 6403 }
9036c102
YZ
6404 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6405 if (found_key.objectid != objectid ||
6406 found_key.type != BTRFS_EXTENT_DATA_KEY)
6407 goto not_found;
6408 if (start + len <= found_key.offset)
6409 goto not_found;
e2eca69d
WS
6410 if (start > found_key.offset)
6411 goto next;
9036c102 6412 em->start = start;
70c8a91c 6413 em->orig_start = start;
9036c102
YZ
6414 em->len = found_key.offset - start;
6415 goto not_found_em;
6416 }
6417
7ffbb598
FM
6418 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6419
d899e052
YZ
6420 if (found_type == BTRFS_FILE_EXTENT_REG ||
6421 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6422 goto insert;
6423 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6424 unsigned long ptr;
a52d9a80 6425 char *map;
3326d1b0
CM
6426 size_t size;
6427 size_t extent_offset;
6428 size_t copy_size;
a52d9a80 6429
7ffbb598 6430 if (new_inline)
689f9346 6431 goto out;
5f39d397 6432
514ac8ad 6433 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6434 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6435 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6436 size - extent_offset);
3326d1b0 6437 em->start = extent_start + extent_offset;
fda2832f 6438 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6439 em->orig_block_len = em->len;
70c8a91c 6440 em->orig_start = em->start;
689f9346 6441 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6442 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6443 if (btrfs_file_extent_compression(leaf, item) !=
6444 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6445 ret = uncompress_inline(path, inode, page,
6446 pg_offset,
6447 extent_offset, item);
166ae5a4
ZB
6448 if (ret) {
6449 err = ret;
6450 goto out;
6451 }
c8b97818
CM
6452 } else {
6453 map = kmap(page);
6454 read_extent_buffer(leaf, map + pg_offset, ptr,
6455 copy_size);
93c82d57
CM
6456 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6457 memset(map + pg_offset + copy_size, 0,
6458 PAGE_CACHE_SIZE - pg_offset -
6459 copy_size);
6460 }
c8b97818
CM
6461 kunmap(page);
6462 }
179e29e4
CM
6463 flush_dcache_page(page);
6464 } else if (create && PageUptodate(page)) {
6bf7e080 6465 BUG();
179e29e4
CM
6466 if (!trans) {
6467 kunmap(page);
6468 free_extent_map(em);
6469 em = NULL;
ff5714cc 6470
b3b4aa74 6471 btrfs_release_path(path);
7a7eaa40 6472 trans = btrfs_join_transaction(root);
ff5714cc 6473
3612b495
TI
6474 if (IS_ERR(trans))
6475 return ERR_CAST(trans);
179e29e4
CM
6476 goto again;
6477 }
c8b97818 6478 map = kmap(page);
70dec807 6479 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6480 copy_size);
c8b97818 6481 kunmap(page);
179e29e4 6482 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6483 }
d1310b2e 6484 set_extent_uptodate(io_tree, em->start,
507903b8 6485 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6486 goto insert;
a52d9a80
CM
6487 }
6488not_found:
6489 em->start = start;
70c8a91c 6490 em->orig_start = start;
d1310b2e 6491 em->len = len;
a52d9a80 6492not_found_em:
5f39d397 6493 em->block_start = EXTENT_MAP_HOLE;
9036c102 6494 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6495insert:
b3b4aa74 6496 btrfs_release_path(path);
d1310b2e 6497 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6498 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6499 em->start, em->len, start, len);
a52d9a80
CM
6500 err = -EIO;
6501 goto out;
6502 }
d1310b2e
CM
6503
6504 err = 0;
890871be 6505 write_lock(&em_tree->lock);
09a2a8f9 6506 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6507 /* it is possible that someone inserted the extent into the tree
6508 * while we had the lock dropped. It is also possible that
6509 * an overlapping map exists in the tree
6510 */
a52d9a80 6511 if (ret == -EEXIST) {
3b951516 6512 struct extent_map *existing;
e6dcd2dc
CM
6513
6514 ret = 0;
6515
3b951516 6516 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
6517 if (existing && (existing->start > start ||
6518 existing->start + existing->len <= start)) {
6519 free_extent_map(existing);
6520 existing = NULL;
6521 }
3b951516
CM
6522 if (!existing) {
6523 existing = lookup_extent_mapping(em_tree, em->start,
6524 em->len);
6525 if (existing) {
6526 err = merge_extent_mapping(em_tree, existing,
51f395ad 6527 em, start);
3b951516
CM
6528 free_extent_map(existing);
6529 if (err) {
6530 free_extent_map(em);
6531 em = NULL;
6532 }
6533 } else {
6534 err = -EIO;
3b951516
CM
6535 free_extent_map(em);
6536 em = NULL;
6537 }
6538 } else {
6539 free_extent_map(em);
6540 em = existing;
e6dcd2dc 6541 err = 0;
a52d9a80 6542 }
a52d9a80 6543 }
890871be 6544 write_unlock(&em_tree->lock);
a52d9a80 6545out:
1abe9b8a 6546
4cd8587c 6547 trace_btrfs_get_extent(root, em);
1abe9b8a 6548
f421950f
CM
6549 if (path)
6550 btrfs_free_path(path);
a52d9a80
CM
6551 if (trans) {
6552 ret = btrfs_end_transaction(trans, root);
d397712b 6553 if (!err)
a52d9a80
CM
6554 err = ret;
6555 }
a52d9a80
CM
6556 if (err) {
6557 free_extent_map(em);
a52d9a80
CM
6558 return ERR_PTR(err);
6559 }
79787eaa 6560 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6561 return em;
6562}
6563
ec29ed5b
CM
6564struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6565 size_t pg_offset, u64 start, u64 len,
6566 int create)
6567{
6568 struct extent_map *em;
6569 struct extent_map *hole_em = NULL;
6570 u64 range_start = start;
6571 u64 end;
6572 u64 found;
6573 u64 found_end;
6574 int err = 0;
6575
6576 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6577 if (IS_ERR(em))
6578 return em;
6579 if (em) {
6580 /*
f9e4fb53
LB
6581 * if our em maps to
6582 * - a hole or
6583 * - a pre-alloc extent,
6584 * there might actually be delalloc bytes behind it.
ec29ed5b 6585 */
f9e4fb53
LB
6586 if (em->block_start != EXTENT_MAP_HOLE &&
6587 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6588 return em;
6589 else
6590 hole_em = em;
6591 }
6592
6593 /* check to see if we've wrapped (len == -1 or similar) */
6594 end = start + len;
6595 if (end < start)
6596 end = (u64)-1;
6597 else
6598 end -= 1;
6599
6600 em = NULL;
6601
6602 /* ok, we didn't find anything, lets look for delalloc */
6603 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6604 end, len, EXTENT_DELALLOC, 1);
6605 found_end = range_start + found;
6606 if (found_end < range_start)
6607 found_end = (u64)-1;
6608
6609 /*
6610 * we didn't find anything useful, return
6611 * the original results from get_extent()
6612 */
6613 if (range_start > end || found_end <= start) {
6614 em = hole_em;
6615 hole_em = NULL;
6616 goto out;
6617 }
6618
6619 /* adjust the range_start to make sure it doesn't
6620 * go backwards from the start they passed in
6621 */
67871254 6622 range_start = max(start, range_start);
ec29ed5b
CM
6623 found = found_end - range_start;
6624
6625 if (found > 0) {
6626 u64 hole_start = start;
6627 u64 hole_len = len;
6628
172ddd60 6629 em = alloc_extent_map();
ec29ed5b
CM
6630 if (!em) {
6631 err = -ENOMEM;
6632 goto out;
6633 }
6634 /*
6635 * when btrfs_get_extent can't find anything it
6636 * returns one huge hole
6637 *
6638 * make sure what it found really fits our range, and
6639 * adjust to make sure it is based on the start from
6640 * the caller
6641 */
6642 if (hole_em) {
6643 u64 calc_end = extent_map_end(hole_em);
6644
6645 if (calc_end <= start || (hole_em->start > end)) {
6646 free_extent_map(hole_em);
6647 hole_em = NULL;
6648 } else {
6649 hole_start = max(hole_em->start, start);
6650 hole_len = calc_end - hole_start;
6651 }
6652 }
6653 em->bdev = NULL;
6654 if (hole_em && range_start > hole_start) {
6655 /* our hole starts before our delalloc, so we
6656 * have to return just the parts of the hole
6657 * that go until the delalloc starts
6658 */
6659 em->len = min(hole_len,
6660 range_start - hole_start);
6661 em->start = hole_start;
6662 em->orig_start = hole_start;
6663 /*
6664 * don't adjust block start at all,
6665 * it is fixed at EXTENT_MAP_HOLE
6666 */
6667 em->block_start = hole_em->block_start;
6668 em->block_len = hole_len;
f9e4fb53
LB
6669 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6670 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6671 } else {
6672 em->start = range_start;
6673 em->len = found;
6674 em->orig_start = range_start;
6675 em->block_start = EXTENT_MAP_DELALLOC;
6676 em->block_len = found;
6677 }
6678 } else if (hole_em) {
6679 return hole_em;
6680 }
6681out:
6682
6683 free_extent_map(hole_em);
6684 if (err) {
6685 free_extent_map(em);
6686 return ERR_PTR(err);
6687 }
6688 return em;
6689}
6690
4b46fce2
JB
6691static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6692 u64 start, u64 len)
6693{
6694 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 6695 struct extent_map *em;
4b46fce2
JB
6696 struct btrfs_key ins;
6697 u64 alloc_hint;
6698 int ret;
4b46fce2 6699
4b46fce2 6700 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 6701 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
e570fd27 6702 alloc_hint, &ins, 1, 1);
00361589
JB
6703 if (ret)
6704 return ERR_PTR(ret);
4b46fce2 6705
70c8a91c 6706 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6707 ins.offset, ins.offset, ins.offset, 0);
00361589 6708 if (IS_ERR(em)) {
e570fd27 6709 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
6710 return em;
6711 }
4b46fce2
JB
6712
6713 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6714 ins.offset, ins.offset, 0);
6715 if (ret) {
e570fd27 6716 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
6717 free_extent_map(em);
6718 return ERR_PTR(ret);
4b46fce2 6719 }
00361589 6720
4b46fce2
JB
6721 return em;
6722}
6723
46bfbb5c
CM
6724/*
6725 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6726 * block must be cow'd
6727 */
00361589 6728noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
6729 u64 *orig_start, u64 *orig_block_len,
6730 u64 *ram_bytes)
46bfbb5c 6731{
00361589 6732 struct btrfs_trans_handle *trans;
46bfbb5c
CM
6733 struct btrfs_path *path;
6734 int ret;
6735 struct extent_buffer *leaf;
6736 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 6737 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
6738 struct btrfs_file_extent_item *fi;
6739 struct btrfs_key key;
6740 u64 disk_bytenr;
6741 u64 backref_offset;
6742 u64 extent_end;
6743 u64 num_bytes;
6744 int slot;
6745 int found_type;
7ee9e440 6746 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 6747
46bfbb5c
CM
6748 path = btrfs_alloc_path();
6749 if (!path)
6750 return -ENOMEM;
6751
00361589 6752 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
6753 offset, 0);
6754 if (ret < 0)
6755 goto out;
6756
6757 slot = path->slots[0];
6758 if (ret == 1) {
6759 if (slot == 0) {
6760 /* can't find the item, must cow */
6761 ret = 0;
6762 goto out;
6763 }
6764 slot--;
6765 }
6766 ret = 0;
6767 leaf = path->nodes[0];
6768 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6769 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6770 key.type != BTRFS_EXTENT_DATA_KEY) {
6771 /* not our file or wrong item type, must cow */
6772 goto out;
6773 }
6774
6775 if (key.offset > offset) {
6776 /* Wrong offset, must cow */
6777 goto out;
6778 }
6779
6780 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6781 found_type = btrfs_file_extent_type(leaf, fi);
6782 if (found_type != BTRFS_FILE_EXTENT_REG &&
6783 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6784 /* not a regular extent, must cow */
6785 goto out;
6786 }
7ee9e440
JB
6787
6788 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6789 goto out;
6790
e77751aa
MX
6791 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6792 if (extent_end <= offset)
6793 goto out;
6794
46bfbb5c 6795 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
6796 if (disk_bytenr == 0)
6797 goto out;
6798
6799 if (btrfs_file_extent_compression(leaf, fi) ||
6800 btrfs_file_extent_encryption(leaf, fi) ||
6801 btrfs_file_extent_other_encoding(leaf, fi))
6802 goto out;
6803
46bfbb5c
CM
6804 backref_offset = btrfs_file_extent_offset(leaf, fi);
6805
7ee9e440
JB
6806 if (orig_start) {
6807 *orig_start = key.offset - backref_offset;
6808 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6809 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6810 }
eb384b55 6811
46bfbb5c
CM
6812 if (btrfs_extent_readonly(root, disk_bytenr))
6813 goto out;
7b2b7085
MX
6814
6815 num_bytes = min(offset + *len, extent_end) - offset;
6816 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6817 u64 range_end;
6818
6819 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6820 ret = test_range_bit(io_tree, offset, range_end,
6821 EXTENT_DELALLOC, 0, NULL);
6822 if (ret) {
6823 ret = -EAGAIN;
6824 goto out;
6825 }
6826 }
6827
1bda19eb 6828 btrfs_release_path(path);
46bfbb5c
CM
6829
6830 /*
6831 * look for other files referencing this extent, if we
6832 * find any we must cow
6833 */
00361589
JB
6834 trans = btrfs_join_transaction(root);
6835 if (IS_ERR(trans)) {
6836 ret = 0;
46bfbb5c 6837 goto out;
00361589
JB
6838 }
6839
6840 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6841 key.offset - backref_offset, disk_bytenr);
6842 btrfs_end_transaction(trans, root);
6843 if (ret) {
6844 ret = 0;
6845 goto out;
6846 }
46bfbb5c
CM
6847
6848 /*
6849 * adjust disk_bytenr and num_bytes to cover just the bytes
6850 * in this extent we are about to write. If there
6851 * are any csums in that range we have to cow in order
6852 * to keep the csums correct
6853 */
6854 disk_bytenr += backref_offset;
6855 disk_bytenr += offset - key.offset;
46bfbb5c
CM
6856 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6857 goto out;
6858 /*
6859 * all of the above have passed, it is safe to overwrite this extent
6860 * without cow
6861 */
eb384b55 6862 *len = num_bytes;
46bfbb5c
CM
6863 ret = 1;
6864out:
6865 btrfs_free_path(path);
6866 return ret;
6867}
6868
fc4adbff
AG
6869bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
6870{
6871 struct radix_tree_root *root = &inode->i_mapping->page_tree;
6872 int found = false;
6873 void **pagep = NULL;
6874 struct page *page = NULL;
6875 int start_idx;
6876 int end_idx;
6877
6878 start_idx = start >> PAGE_CACHE_SHIFT;
6879
6880 /*
6881 * end is the last byte in the last page. end == start is legal
6882 */
6883 end_idx = end >> PAGE_CACHE_SHIFT;
6884
6885 rcu_read_lock();
6886
6887 /* Most of the code in this while loop is lifted from
6888 * find_get_page. It's been modified to begin searching from a
6889 * page and return just the first page found in that range. If the
6890 * found idx is less than or equal to the end idx then we know that
6891 * a page exists. If no pages are found or if those pages are
6892 * outside of the range then we're fine (yay!) */
6893 while (page == NULL &&
6894 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
6895 page = radix_tree_deref_slot(pagep);
6896 if (unlikely(!page))
6897 break;
6898
6899 if (radix_tree_exception(page)) {
809f9016
FM
6900 if (radix_tree_deref_retry(page)) {
6901 page = NULL;
fc4adbff 6902 continue;
809f9016 6903 }
fc4adbff
AG
6904 /*
6905 * Otherwise, shmem/tmpfs must be storing a swap entry
6906 * here as an exceptional entry: so return it without
6907 * attempting to raise page count.
6908 */
6fdef6d4 6909 page = NULL;
fc4adbff
AG
6910 break; /* TODO: Is this relevant for this use case? */
6911 }
6912
91405151
FM
6913 if (!page_cache_get_speculative(page)) {
6914 page = NULL;
fc4adbff 6915 continue;
91405151 6916 }
fc4adbff
AG
6917
6918 /*
6919 * Has the page moved?
6920 * This is part of the lockless pagecache protocol. See
6921 * include/linux/pagemap.h for details.
6922 */
6923 if (unlikely(page != *pagep)) {
6924 page_cache_release(page);
6925 page = NULL;
6926 }
6927 }
6928
6929 if (page) {
6930 if (page->index <= end_idx)
6931 found = true;
6932 page_cache_release(page);
6933 }
6934
6935 rcu_read_unlock();
6936 return found;
6937}
6938
eb838e73
JB
6939static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6940 struct extent_state **cached_state, int writing)
6941{
6942 struct btrfs_ordered_extent *ordered;
6943 int ret = 0;
6944
6945 while (1) {
6946 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6947 0, cached_state);
6948 /*
6949 * We're concerned with the entire range that we're going to be
6950 * doing DIO to, so we need to make sure theres no ordered
6951 * extents in this range.
6952 */
6953 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6954 lockend - lockstart + 1);
6955
6956 /*
6957 * We need to make sure there are no buffered pages in this
6958 * range either, we could have raced between the invalidate in
6959 * generic_file_direct_write and locking the extent. The
6960 * invalidate needs to happen so that reads after a write do not
6961 * get stale data.
6962 */
fc4adbff
AG
6963 if (!ordered &&
6964 (!writing ||
6965 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
6966 break;
6967
6968 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6969 cached_state, GFP_NOFS);
6970
6971 if (ordered) {
6972 btrfs_start_ordered_extent(inode, ordered, 1);
6973 btrfs_put_ordered_extent(ordered);
6974 } else {
6975 /* Screw you mmap */
6976 ret = filemap_write_and_wait_range(inode->i_mapping,
6977 lockstart,
6978 lockend);
6979 if (ret)
6980 break;
6981
6982 /*
6983 * If we found a page that couldn't be invalidated just
6984 * fall back to buffered.
6985 */
6986 ret = invalidate_inode_pages2_range(inode->i_mapping,
6987 lockstart >> PAGE_CACHE_SHIFT,
6988 lockend >> PAGE_CACHE_SHIFT);
6989 if (ret)
6990 break;
6991 }
6992
6993 cond_resched();
6994 }
6995
6996 return ret;
6997}
6998
69ffb543
JB
6999static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7000 u64 len, u64 orig_start,
7001 u64 block_start, u64 block_len,
cc95bef6
JB
7002 u64 orig_block_len, u64 ram_bytes,
7003 int type)
69ffb543
JB
7004{
7005 struct extent_map_tree *em_tree;
7006 struct extent_map *em;
7007 struct btrfs_root *root = BTRFS_I(inode)->root;
7008 int ret;
7009
7010 em_tree = &BTRFS_I(inode)->extent_tree;
7011 em = alloc_extent_map();
7012 if (!em)
7013 return ERR_PTR(-ENOMEM);
7014
7015 em->start = start;
7016 em->orig_start = orig_start;
2ab28f32
JB
7017 em->mod_start = start;
7018 em->mod_len = len;
69ffb543
JB
7019 em->len = len;
7020 em->block_len = block_len;
7021 em->block_start = block_start;
7022 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7023 em->orig_block_len = orig_block_len;
cc95bef6 7024 em->ram_bytes = ram_bytes;
70c8a91c 7025 em->generation = -1;
69ffb543
JB
7026 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7027 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7028 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7029
7030 do {
7031 btrfs_drop_extent_cache(inode, em->start,
7032 em->start + em->len - 1, 0);
7033 write_lock(&em_tree->lock);
09a2a8f9 7034 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7035 write_unlock(&em_tree->lock);
7036 } while (ret == -EEXIST);
7037
7038 if (ret) {
7039 free_extent_map(em);
7040 return ERR_PTR(ret);
7041 }
7042
7043 return em;
7044}
7045
7046
4b46fce2
JB
7047static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7048 struct buffer_head *bh_result, int create)
7049{
7050 struct extent_map *em;
7051 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7052 struct extent_state *cached_state = NULL;
4b46fce2 7053 u64 start = iblock << inode->i_blkbits;
eb838e73 7054 u64 lockstart, lockend;
4b46fce2 7055 u64 len = bh_result->b_size;
eb838e73 7056 int unlock_bits = EXTENT_LOCKED;
0934856d 7057 int ret = 0;
eb838e73 7058
172a5049 7059 if (create)
eb838e73 7060 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
172a5049 7061 else
c329861d 7062 len = min_t(u64, len, root->sectorsize);
eb838e73 7063
c329861d
JB
7064 lockstart = start;
7065 lockend = start + len - 1;
7066
eb838e73
JB
7067 /*
7068 * If this errors out it's because we couldn't invalidate pagecache for
7069 * this range and we need to fallback to buffered.
7070 */
7071 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7072 return -ENOTBLK;
7073
4b46fce2 7074 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7075 if (IS_ERR(em)) {
7076 ret = PTR_ERR(em);
7077 goto unlock_err;
7078 }
4b46fce2
JB
7079
7080 /*
7081 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7082 * io. INLINE is special, and we could probably kludge it in here, but
7083 * it's still buffered so for safety lets just fall back to the generic
7084 * buffered path.
7085 *
7086 * For COMPRESSED we _have_ to read the entire extent in so we can
7087 * decompress it, so there will be buffering required no matter what we
7088 * do, so go ahead and fallback to buffered.
7089 *
7090 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7091 * to buffered IO. Don't blame me, this is the price we pay for using
7092 * the generic code.
7093 */
7094 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7095 em->block_start == EXTENT_MAP_INLINE) {
7096 free_extent_map(em);
eb838e73
JB
7097 ret = -ENOTBLK;
7098 goto unlock_err;
4b46fce2
JB
7099 }
7100
7101 /* Just a good old fashioned hole, return */
7102 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7103 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7104 free_extent_map(em);
eb838e73 7105 goto unlock_err;
4b46fce2
JB
7106 }
7107
7108 /*
7109 * We don't allocate a new extent in the following cases
7110 *
7111 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7112 * existing extent.
7113 * 2) The extent is marked as PREALLOC. We're good to go here and can
7114 * just use the extent.
7115 *
7116 */
46bfbb5c 7117 if (!create) {
eb838e73
JB
7118 len = min(len, em->len - (start - em->start));
7119 lockstart = start + len;
7120 goto unlock;
46bfbb5c 7121 }
4b46fce2
JB
7122
7123 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7124 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7125 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
7126 int type;
7127 int ret;
eb384b55 7128 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7129
7130 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7131 type = BTRFS_ORDERED_PREALLOC;
7132 else
7133 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7134 len = min(len, em->len - (start - em->start));
4b46fce2 7135 block_start = em->block_start + (start - em->start);
46bfbb5c 7136
00361589 7137 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 7138 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
7139 if (type == BTRFS_ORDERED_PREALLOC) {
7140 free_extent_map(em);
7141 em = create_pinned_em(inode, start, len,
7142 orig_start,
b4939680 7143 block_start, len,
cc95bef6
JB
7144 orig_block_len,
7145 ram_bytes, type);
555e1286
FM
7146 if (IS_ERR(em)) {
7147 ret = PTR_ERR(em);
69ffb543 7148 goto unlock_err;
555e1286 7149 }
69ffb543
JB
7150 }
7151
46bfbb5c
CM
7152 ret = btrfs_add_ordered_extent_dio(inode, start,
7153 block_start, len, len, type);
46bfbb5c
CM
7154 if (ret) {
7155 free_extent_map(em);
eb838e73 7156 goto unlock_err;
46bfbb5c
CM
7157 }
7158 goto unlock;
4b46fce2 7159 }
4b46fce2 7160 }
00361589 7161
46bfbb5c
CM
7162 /*
7163 * this will cow the extent, reset the len in case we changed
7164 * it above
7165 */
7166 len = bh_result->b_size;
70c8a91c
JB
7167 free_extent_map(em);
7168 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7169 if (IS_ERR(em)) {
7170 ret = PTR_ERR(em);
7171 goto unlock_err;
7172 }
46bfbb5c
CM
7173 len = min(len, em->len - (start - em->start));
7174unlock:
4b46fce2
JB
7175 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7176 inode->i_blkbits;
46bfbb5c 7177 bh_result->b_size = len;
4b46fce2
JB
7178 bh_result->b_bdev = em->bdev;
7179 set_buffer_mapped(bh_result);
c3473e83
JB
7180 if (create) {
7181 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7182 set_buffer_new(bh_result);
7183
7184 /*
7185 * Need to update the i_size under the extent lock so buffered
7186 * readers will get the updated i_size when we unlock.
7187 */
7188 if (start + len > i_size_read(inode))
7189 i_size_write(inode, start + len);
0934856d 7190
172a5049
MX
7191 spin_lock(&BTRFS_I(inode)->lock);
7192 BTRFS_I(inode)->outstanding_extents++;
7193 spin_unlock(&BTRFS_I(inode)->lock);
7194
0934856d
MX
7195 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7196 lockstart + len - 1, EXTENT_DELALLOC, NULL,
7197 &cached_state, GFP_NOFS);
7198 BUG_ON(ret);
c3473e83 7199 }
4b46fce2 7200
eb838e73
JB
7201 /*
7202 * In the case of write we need to clear and unlock the entire range,
7203 * in the case of read we need to unlock only the end area that we
7204 * aren't using if there is any left over space.
7205 */
24c03fa5 7206 if (lockstart < lockend) {
0934856d
MX
7207 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7208 lockend, unlock_bits, 1, 0,
7209 &cached_state, GFP_NOFS);
24c03fa5 7210 } else {
eb838e73 7211 free_extent_state(cached_state);
24c03fa5 7212 }
eb838e73 7213
4b46fce2
JB
7214 free_extent_map(em);
7215
7216 return 0;
eb838e73
JB
7217
7218unlock_err:
eb838e73
JB
7219 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7220 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7221 return ret;
4b46fce2
JB
7222}
7223
4b46fce2
JB
7224static void btrfs_endio_direct_read(struct bio *bio, int err)
7225{
e65e1535 7226 struct btrfs_dio_private *dip = bio->bi_private;
2c30c71b 7227 struct bio_vec *bvec;
4b46fce2
JB
7228 struct inode *inode = dip->inode;
7229 struct btrfs_root *root = BTRFS_I(inode)->root;
9be3395b 7230 struct bio *dio_bio;
facc8a22 7231 u32 *csums = (u32 *)dip->csum;
4b46fce2 7232 u64 start;
2c30c71b 7233 int i;
4b46fce2
JB
7234
7235 start = dip->logical_offset;
2c30c71b 7236 bio_for_each_segment_all(bvec, bio, i) {
4b46fce2
JB
7237 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
7238 struct page *page = bvec->bv_page;
7239 char *kaddr;
7240 u32 csum = ~(u32)0;
7241 unsigned long flags;
7242
7243 local_irq_save(flags);
7ac687d9 7244 kaddr = kmap_atomic(page);
b0496686 7245 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
4b46fce2
JB
7246 csum, bvec->bv_len);
7247 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 7248 kunmap_atomic(kaddr);
4b46fce2
JB
7249 local_irq_restore(flags);
7250
7251 flush_dcache_page(bvec->bv_page);
2c30c71b 7252 if (csum != csums[i]) {
facc8a22 7253 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c 7254 btrfs_ino(inode), start, csum,
2c30c71b 7255 csums[i]);
4b46fce2
JB
7256 err = -EIO;
7257 }
7258 }
7259
7260 start += bvec->bv_len;
2c30c71b 7261 }
4b46fce2
JB
7262
7263 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 7264 dip->logical_offset + dip->bytes - 1);
9be3395b 7265 dio_bio = dip->dio_bio;
4b46fce2 7266
4b46fce2 7267 kfree(dip);
c0da7aa1
JB
7268
7269 /* If we had a csum failure make sure to clear the uptodate flag */
7270 if (err)
9be3395b
CM
7271 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7272 dio_end_io(dio_bio, err);
7273 bio_put(bio);
4b46fce2
JB
7274}
7275
7276static void btrfs_endio_direct_write(struct bio *bio, int err)
7277{
7278 struct btrfs_dio_private *dip = bio->bi_private;
7279 struct inode *inode = dip->inode;
7280 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 7281 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
7282 u64 ordered_offset = dip->logical_offset;
7283 u64 ordered_bytes = dip->bytes;
9be3395b 7284 struct bio *dio_bio;
4b46fce2
JB
7285 int ret;
7286
7287 if (err)
7288 goto out_done;
163cf09c
CM
7289again:
7290 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7291 &ordered_offset,
5fd02043 7292 ordered_bytes, !err);
4b46fce2 7293 if (!ret)
163cf09c 7294 goto out_test;
4b46fce2 7295
9e0af237
LB
7296 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7297 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
7298 btrfs_queue_work(root->fs_info->endio_write_workers,
7299 &ordered->work);
163cf09c
CM
7300out_test:
7301 /*
7302 * our bio might span multiple ordered extents. If we haven't
7303 * completed the accounting for the whole dio, go back and try again
7304 */
7305 if (ordered_offset < dip->logical_offset + dip->bytes) {
7306 ordered_bytes = dip->logical_offset + dip->bytes -
7307 ordered_offset;
5fd02043 7308 ordered = NULL;
163cf09c
CM
7309 goto again;
7310 }
4b46fce2 7311out_done:
9be3395b 7312 dio_bio = dip->dio_bio;
4b46fce2 7313
4b46fce2 7314 kfree(dip);
c0da7aa1
JB
7315
7316 /* If we had an error make sure to clear the uptodate flag */
7317 if (err)
9be3395b
CM
7318 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7319 dio_end_io(dio_bio, err);
7320 bio_put(bio);
4b46fce2
JB
7321}
7322
eaf25d93
CM
7323static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7324 struct bio *bio, int mirror_num,
7325 unsigned long bio_flags, u64 offset)
7326{
7327 int ret;
7328 struct btrfs_root *root = BTRFS_I(inode)->root;
7329 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 7330 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
7331 return 0;
7332}
7333
e65e1535
MX
7334static void btrfs_end_dio_bio(struct bio *bio, int err)
7335{
7336 struct btrfs_dio_private *dip = bio->bi_private;
7337
7338 if (err) {
efe120a0
FH
7339 btrfs_err(BTRFS_I(dip->inode)->root->fs_info,
7340 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
c1c9ff7c 7341 btrfs_ino(dip->inode), bio->bi_rw,
4f024f37
KO
7342 (unsigned long long)bio->bi_iter.bi_sector,
7343 bio->bi_iter.bi_size, err);
e65e1535
MX
7344 dip->errors = 1;
7345
7346 /*
7347 * before atomic variable goto zero, we must make sure
7348 * dip->errors is perceived to be set.
7349 */
4e857c58 7350 smp_mb__before_atomic();
e65e1535
MX
7351 }
7352
7353 /* if there are more bios still pending for this dio, just exit */
7354 if (!atomic_dec_and_test(&dip->pending_bios))
7355 goto out;
7356
9be3395b 7357 if (dip->errors) {
e65e1535 7358 bio_io_error(dip->orig_bio);
9be3395b
CM
7359 } else {
7360 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
7361 bio_endio(dip->orig_bio, 0);
7362 }
7363out:
7364 bio_put(bio);
7365}
7366
7367static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7368 u64 first_sector, gfp_t gfp_flags)
7369{
7370 int nr_vecs = bio_get_nr_vecs(bdev);
7371 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7372}
7373
7374static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7375 int rw, u64 file_offset, int skip_sum,
c329861d 7376 int async_submit)
e65e1535 7377{
facc8a22 7378 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
7379 int write = rw & REQ_WRITE;
7380 struct btrfs_root *root = BTRFS_I(inode)->root;
7381 int ret;
7382
b812ce28
JB
7383 if (async_submit)
7384 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7385
e65e1535 7386 bio_get(bio);
5fd02043
JB
7387
7388 if (!write) {
7389 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7390 if (ret)
7391 goto err;
7392 }
e65e1535 7393
1ae39938
JB
7394 if (skip_sum)
7395 goto map;
7396
7397 if (write && async_submit) {
e65e1535
MX
7398 ret = btrfs_wq_submit_bio(root->fs_info,
7399 inode, rw, bio, 0, 0,
7400 file_offset,
7401 __btrfs_submit_bio_start_direct_io,
7402 __btrfs_submit_bio_done);
7403 goto err;
1ae39938
JB
7404 } else if (write) {
7405 /*
7406 * If we aren't doing async submit, calculate the csum of the
7407 * bio now.
7408 */
7409 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7410 if (ret)
7411 goto err;
c2db1073 7412 } else if (!skip_sum) {
facc8a22
MX
7413 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
7414 file_offset);
c2db1073
TI
7415 if (ret)
7416 goto err;
7417 }
e65e1535 7418
1ae39938
JB
7419map:
7420 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
7421err:
7422 bio_put(bio);
7423 return ret;
7424}
7425
7426static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7427 int skip_sum)
7428{
7429 struct inode *inode = dip->inode;
7430 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
7431 struct bio *bio;
7432 struct bio *orig_bio = dip->orig_bio;
7433 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 7434 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
7435 u64 file_offset = dip->logical_offset;
7436 u64 submit_len = 0;
7437 u64 map_length;
7438 int nr_pages = 0;
e65e1535 7439 int ret = 0;
1ae39938 7440 int async_submit = 0;
e65e1535 7441
4f024f37 7442 map_length = orig_bio->bi_iter.bi_size;
53b381b3 7443 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535 7444 &map_length, NULL, 0);
7a5c3c9b 7445 if (ret)
e65e1535 7446 return -EIO;
facc8a22 7447
4f024f37 7448 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a
JB
7449 bio = orig_bio;
7450 goto submit;
7451 }
7452
53b381b3
DW
7453 /* async crcs make it difficult to collect full stripe writes. */
7454 if (btrfs_get_alloc_profile(root, 1) &
7455 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7456 async_submit = 0;
7457 else
7458 async_submit = 1;
7459
02f57c7a
JB
7460 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7461 if (!bio)
7462 return -ENOMEM;
7a5c3c9b 7463
02f57c7a
JB
7464 bio->bi_private = dip;
7465 bio->bi_end_io = btrfs_end_dio_bio;
7466 atomic_inc(&dip->pending_bios);
7467
e65e1535
MX
7468 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7469 if (unlikely(map_length < submit_len + bvec->bv_len ||
7470 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7471 bvec->bv_offset) < bvec->bv_len)) {
7472 /*
7473 * inc the count before we submit the bio so
7474 * we know the end IO handler won't happen before
7475 * we inc the count. Otherwise, the dip might get freed
7476 * before we're done setting it up
7477 */
7478 atomic_inc(&dip->pending_bios);
7479 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7480 file_offset, skip_sum,
c329861d 7481 async_submit);
e65e1535
MX
7482 if (ret) {
7483 bio_put(bio);
7484 atomic_dec(&dip->pending_bios);
7485 goto out_err;
7486 }
7487
e65e1535
MX
7488 start_sector += submit_len >> 9;
7489 file_offset += submit_len;
7490
7491 submit_len = 0;
7492 nr_pages = 0;
7493
7494 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7495 start_sector, GFP_NOFS);
7496 if (!bio)
7497 goto out_err;
7498 bio->bi_private = dip;
7499 bio->bi_end_io = btrfs_end_dio_bio;
7500
4f024f37 7501 map_length = orig_bio->bi_iter.bi_size;
53b381b3 7502 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7503 start_sector << 9,
e65e1535
MX
7504 &map_length, NULL, 0);
7505 if (ret) {
7506 bio_put(bio);
7507 goto out_err;
7508 }
7509 } else {
7510 submit_len += bvec->bv_len;
67871254 7511 nr_pages++;
e65e1535
MX
7512 bvec++;
7513 }
7514 }
7515
02f57c7a 7516submit:
e65e1535 7517 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7518 async_submit);
e65e1535
MX
7519 if (!ret)
7520 return 0;
7521
7522 bio_put(bio);
7523out_err:
7524 dip->errors = 1;
7525 /*
7526 * before atomic variable goto zero, we must
7527 * make sure dip->errors is perceived to be set.
7528 */
4e857c58 7529 smp_mb__before_atomic();
e65e1535
MX
7530 if (atomic_dec_and_test(&dip->pending_bios))
7531 bio_io_error(dip->orig_bio);
7532
7533 /* bio_end_io() will handle error, so we needn't return it */
7534 return 0;
7535}
7536
9be3395b
CM
7537static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7538 struct inode *inode, loff_t file_offset)
4b46fce2
JB
7539{
7540 struct btrfs_root *root = BTRFS_I(inode)->root;
7541 struct btrfs_dio_private *dip;
9be3395b 7542 struct bio *io_bio;
4b46fce2 7543 int skip_sum;
facc8a22 7544 int sum_len;
7b6d91da 7545 int write = rw & REQ_WRITE;
4b46fce2 7546 int ret = 0;
facc8a22 7547 u16 csum_size;
4b46fce2
JB
7548
7549 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7550
9be3395b 7551 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
7552 if (!io_bio) {
7553 ret = -ENOMEM;
7554 goto free_ordered;
7555 }
7556
facc8a22
MX
7557 if (!skip_sum && !write) {
7558 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
4f024f37
KO
7559 sum_len = dio_bio->bi_iter.bi_size >>
7560 inode->i_sb->s_blocksize_bits;
facc8a22
MX
7561 sum_len *= csum_size;
7562 } else {
7563 sum_len = 0;
7564 }
7565
7566 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
4b46fce2
JB
7567 if (!dip) {
7568 ret = -ENOMEM;
9be3395b 7569 goto free_io_bio;
4b46fce2 7570 }
4b46fce2 7571
9be3395b 7572 dip->private = dio_bio->bi_private;
4b46fce2
JB
7573 dip->inode = inode;
7574 dip->logical_offset = file_offset;
4f024f37
KO
7575 dip->bytes = dio_bio->bi_iter.bi_size;
7576 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 7577 io_bio->bi_private = dip;
e65e1535 7578 dip->errors = 0;
9be3395b
CM
7579 dip->orig_bio = io_bio;
7580 dip->dio_bio = dio_bio;
e65e1535 7581 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
7582
7583 if (write)
9be3395b 7584 io_bio->bi_end_io = btrfs_endio_direct_write;
4b46fce2 7585 else
9be3395b 7586 io_bio->bi_end_io = btrfs_endio_direct_read;
4b46fce2 7587
e65e1535
MX
7588 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7589 if (!ret)
eaf25d93 7590 return;
9be3395b
CM
7591
7592free_io_bio:
7593 bio_put(io_bio);
7594
4b46fce2
JB
7595free_ordered:
7596 /*
7597 * If this is a write, we need to clean up the reserved space and kill
7598 * the ordered extent.
7599 */
7600 if (write) {
7601 struct btrfs_ordered_extent *ordered;
955256f2 7602 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
7603 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7604 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7605 btrfs_free_reserved_extent(root, ordered->start,
e570fd27 7606 ordered->disk_len, 1);
4b46fce2
JB
7607 btrfs_put_ordered_extent(ordered);
7608 btrfs_put_ordered_extent(ordered);
7609 }
9be3395b 7610 bio_endio(dio_bio, ret);
4b46fce2
JB
7611}
7612
5a5f79b5 7613static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
28060d5d 7614 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
7615{
7616 int seg;
a1b75f7d 7617 int i;
5a5f79b5
CM
7618 unsigned blocksize_mask = root->sectorsize - 1;
7619 ssize_t retval = -EINVAL;
5a5f79b5
CM
7620
7621 if (offset & blocksize_mask)
7622 goto out;
7623
28060d5d
AV
7624 if (iov_iter_alignment(iter) & blocksize_mask)
7625 goto out;
a1b75f7d 7626
28060d5d
AV
7627 /* If this is a write we don't need to check anymore */
7628 if (rw & WRITE)
7629 return 0;
7630 /*
7631 * Check to make sure we don't have duplicate iov_base's in this
7632 * iovec, if so return EINVAL, otherwise we'll get csum errors
7633 * when reading back.
7634 */
7635 for (seg = 0; seg < iter->nr_segs; seg++) {
7636 for (i = seg + 1; i < iter->nr_segs; i++) {
7637 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
7638 goto out;
7639 }
5a5f79b5
CM
7640 }
7641 retval = 0;
7642out:
7643 return retval;
7644}
eb838e73 7645
16432985 7646static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
d8d3d94b 7647 struct iov_iter *iter, loff_t offset)
16432985 7648{
4b46fce2
JB
7649 struct file *file = iocb->ki_filp;
7650 struct inode *inode = file->f_mapping->host;
0934856d 7651 size_t count = 0;
2e60a51e 7652 int flags = 0;
38851cc1
MX
7653 bool wakeup = true;
7654 bool relock = false;
0934856d 7655 ssize_t ret;
4b46fce2 7656
28060d5d 7657 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
5a5f79b5 7658 return 0;
3f7c579c 7659
38851cc1 7660 atomic_inc(&inode->i_dio_count);
4e857c58 7661 smp_mb__after_atomic();
38851cc1 7662
0e267c44 7663 /*
41bd9ca4
MX
7664 * The generic stuff only does filemap_write_and_wait_range, which
7665 * isn't enough if we've written compressed pages to this area, so
7666 * we need to flush the dirty pages again to make absolutely sure
7667 * that any outstanding dirty pages are on disk.
0e267c44 7668 */
a6cbcd4a 7669 count = iov_iter_count(iter);
41bd9ca4
MX
7670 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7671 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
7672 filemap_fdatawrite_range(inode->i_mapping, offset,
7673 offset + count - 1);
0e267c44 7674
0934856d 7675 if (rw & WRITE) {
38851cc1
MX
7676 /*
7677 * If the write DIO is beyond the EOF, we need update
7678 * the isize, but it is protected by i_mutex. So we can
7679 * not unlock the i_mutex at this case.
7680 */
7681 if (offset + count <= inode->i_size) {
7682 mutex_unlock(&inode->i_mutex);
7683 relock = true;
7684 }
0934856d
MX
7685 ret = btrfs_delalloc_reserve_space(inode, count);
7686 if (ret)
38851cc1
MX
7687 goto out;
7688 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7689 &BTRFS_I(inode)->runtime_flags))) {
7690 inode_dio_done(inode);
7691 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7692 wakeup = false;
0934856d
MX
7693 }
7694
7695 ret = __blockdev_direct_IO(rw, iocb, inode,
7696 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
31b14039 7697 iter, offset, btrfs_get_blocks_direct, NULL,
2e60a51e 7698 btrfs_submit_direct, flags);
0934856d
MX
7699 if (rw & WRITE) {
7700 if (ret < 0 && ret != -EIOCBQUEUED)
7701 btrfs_delalloc_release_space(inode, count);
172a5049 7702 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
7703 btrfs_delalloc_release_space(inode,
7704 count - (size_t)ret);
172a5049
MX
7705 else
7706 btrfs_delalloc_release_metadata(inode, 0);
0934856d 7707 }
38851cc1 7708out:
2e60a51e
MX
7709 if (wakeup)
7710 inode_dio_done(inode);
38851cc1
MX
7711 if (relock)
7712 mutex_lock(&inode->i_mutex);
0934856d
MX
7713
7714 return ret;
16432985
CM
7715}
7716
05dadc09
TI
7717#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7718
1506fcc8
YS
7719static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7720 __u64 start, __u64 len)
7721{
05dadc09
TI
7722 int ret;
7723
7724 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7725 if (ret)
7726 return ret;
7727
ec29ed5b 7728 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
7729}
7730
a52d9a80 7731int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 7732{
d1310b2e
CM
7733 struct extent_io_tree *tree;
7734 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 7735 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 7736}
1832a6d5 7737
a52d9a80 7738static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 7739{
d1310b2e 7740 struct extent_io_tree *tree;
b888db2b
CM
7741
7742
7743 if (current->flags & PF_MEMALLOC) {
7744 redirty_page_for_writepage(wbc, page);
7745 unlock_page(page);
7746 return 0;
7747 }
d1310b2e 7748 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 7749 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
7750}
7751
48a3b636
ES
7752static int btrfs_writepages(struct address_space *mapping,
7753 struct writeback_control *wbc)
b293f02e 7754{
d1310b2e 7755 struct extent_io_tree *tree;
771ed689 7756
d1310b2e 7757 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
7758 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7759}
7760
3ab2fb5a
CM
7761static int
7762btrfs_readpages(struct file *file, struct address_space *mapping,
7763 struct list_head *pages, unsigned nr_pages)
7764{
d1310b2e
CM
7765 struct extent_io_tree *tree;
7766 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
7767 return extent_readpages(tree, mapping, pages, nr_pages,
7768 btrfs_get_extent);
7769}
e6dcd2dc 7770static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 7771{
d1310b2e
CM
7772 struct extent_io_tree *tree;
7773 struct extent_map_tree *map;
a52d9a80 7774 int ret;
8c2383c3 7775
d1310b2e
CM
7776 tree = &BTRFS_I(page->mapping->host)->io_tree;
7777 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 7778 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
7779 if (ret == 1) {
7780 ClearPagePrivate(page);
7781 set_page_private(page, 0);
7782 page_cache_release(page);
39279cc3 7783 }
a52d9a80 7784 return ret;
39279cc3
CM
7785}
7786
e6dcd2dc
CM
7787static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7788{
98509cfc
CM
7789 if (PageWriteback(page) || PageDirty(page))
7790 return 0;
b335b003 7791 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
7792}
7793
d47992f8
LC
7794static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7795 unsigned int length)
39279cc3 7796{
5fd02043 7797 struct inode *inode = page->mapping->host;
d1310b2e 7798 struct extent_io_tree *tree;
e6dcd2dc 7799 struct btrfs_ordered_extent *ordered;
2ac55d41 7800 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7801 u64 page_start = page_offset(page);
7802 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
131e404a 7803 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 7804
8b62b72b
CM
7805 /*
7806 * we have the page locked, so new writeback can't start,
7807 * and the dirty bit won't be cleared while we are here.
7808 *
7809 * Wait for IO on this page so that we can safely clear
7810 * the PagePrivate2 bit and do ordered accounting
7811 */
e6dcd2dc 7812 wait_on_page_writeback(page);
8b62b72b 7813
5fd02043 7814 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
7815 if (offset) {
7816 btrfs_releasepage(page, GFP_NOFS);
7817 return;
7818 }
131e404a
FDBM
7819
7820 if (!inode_evicting)
7821 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7822 ordered = btrfs_lookup_ordered_extent(inode, page_start);
e6dcd2dc 7823 if (ordered) {
eb84ae03
CM
7824 /*
7825 * IO on this page will never be started, so we need
7826 * to account for any ordered extents now
7827 */
131e404a
FDBM
7828 if (!inode_evicting)
7829 clear_extent_bit(tree, page_start, page_end,
7830 EXTENT_DIRTY | EXTENT_DELALLOC |
7831 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7832 EXTENT_DEFRAG, 1, 0, &cached_state,
7833 GFP_NOFS);
8b62b72b
CM
7834 /*
7835 * whoever cleared the private bit is responsible
7836 * for the finish_ordered_io
7837 */
77cef2ec
JB
7838 if (TestClearPagePrivate2(page)) {
7839 struct btrfs_ordered_inode_tree *tree;
7840 u64 new_len;
7841
7842 tree = &BTRFS_I(inode)->ordered_tree;
7843
7844 spin_lock_irq(&tree->lock);
7845 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7846 new_len = page_start - ordered->file_offset;
7847 if (new_len < ordered->truncated_len)
7848 ordered->truncated_len = new_len;
7849 spin_unlock_irq(&tree->lock);
7850
7851 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7852 page_start,
7853 PAGE_CACHE_SIZE, 1))
7854 btrfs_finish_ordered_io(ordered);
8b62b72b 7855 }
e6dcd2dc 7856 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
7857 if (!inode_evicting) {
7858 cached_state = NULL;
7859 lock_extent_bits(tree, page_start, page_end, 0,
7860 &cached_state);
7861 }
7862 }
7863
7864 if (!inode_evicting) {
7865 clear_extent_bit(tree, page_start, page_end,
7866 EXTENT_LOCKED | EXTENT_DIRTY |
7867 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7868 EXTENT_DEFRAG, 1, 1,
7869 &cached_state, GFP_NOFS);
7870
7871 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 7872 }
e6dcd2dc 7873
4a096752 7874 ClearPageChecked(page);
9ad6b7bc 7875 if (PagePrivate(page)) {
9ad6b7bc
CM
7876 ClearPagePrivate(page);
7877 set_page_private(page, 0);
7878 page_cache_release(page);
7879 }
39279cc3
CM
7880}
7881
9ebefb18
CM
7882/*
7883 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7884 * called from a page fault handler when a page is first dirtied. Hence we must
7885 * be careful to check for EOF conditions here. We set the page up correctly
7886 * for a written page which means we get ENOSPC checking when writing into
7887 * holes and correct delalloc and unwritten extent mapping on filesystems that
7888 * support these features.
7889 *
7890 * We are not allowed to take the i_mutex here so we have to play games to
7891 * protect against truncate races as the page could now be beyond EOF. Because
7892 * vmtruncate() writes the inode size before removing pages, once we have the
7893 * page lock we can determine safely if the page is beyond EOF. If it is not
7894 * beyond EOF, then the page is guaranteed safe against truncation until we
7895 * unlock the page.
7896 */
c2ec175c 7897int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 7898{
c2ec175c 7899 struct page *page = vmf->page;
496ad9aa 7900 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 7901 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
7902 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7903 struct btrfs_ordered_extent *ordered;
2ac55d41 7904 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7905 char *kaddr;
7906 unsigned long zero_start;
9ebefb18 7907 loff_t size;
1832a6d5 7908 int ret;
9998eb70 7909 int reserved = 0;
a52d9a80 7910 u64 page_start;
e6dcd2dc 7911 u64 page_end;
9ebefb18 7912
b2b5ef5c 7913 sb_start_pagefault(inode->i_sb);
0ca1f7ce 7914 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 7915 if (!ret) {
e41f941a 7916 ret = file_update_time(vma->vm_file);
9998eb70
CM
7917 reserved = 1;
7918 }
56a76f82
NP
7919 if (ret) {
7920 if (ret == -ENOMEM)
7921 ret = VM_FAULT_OOM;
7922 else /* -ENOSPC, -EIO, etc */
7923 ret = VM_FAULT_SIGBUS;
9998eb70
CM
7924 if (reserved)
7925 goto out;
7926 goto out_noreserve;
56a76f82 7927 }
1832a6d5 7928
56a76f82 7929 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 7930again:
9ebefb18 7931 lock_page(page);
9ebefb18 7932 size = i_size_read(inode);
e6dcd2dc
CM
7933 page_start = page_offset(page);
7934 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 7935
9ebefb18 7936 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 7937 (page_start >= size)) {
9ebefb18
CM
7938 /* page got truncated out from underneath us */
7939 goto out_unlock;
7940 }
e6dcd2dc
CM
7941 wait_on_page_writeback(page);
7942
d0082371 7943 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7944 set_page_extent_mapped(page);
7945
eb84ae03
CM
7946 /*
7947 * we can't set the delalloc bits if there are pending ordered
7948 * extents. Drop our locks and wait for them to finish
7949 */
e6dcd2dc
CM
7950 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7951 if (ordered) {
2ac55d41
JB
7952 unlock_extent_cached(io_tree, page_start, page_end,
7953 &cached_state, GFP_NOFS);
e6dcd2dc 7954 unlock_page(page);
eb84ae03 7955 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
7956 btrfs_put_ordered_extent(ordered);
7957 goto again;
7958 }
7959
fbf19087
JB
7960 /*
7961 * XXX - page_mkwrite gets called every time the page is dirtied, even
7962 * if it was already dirty, so for space accounting reasons we need to
7963 * clear any delalloc bits for the range we are fixing to save. There
7964 * is probably a better way to do this, but for now keep consistent with
7965 * prepare_pages in the normal write path.
7966 */
2ac55d41 7967 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
7968 EXTENT_DIRTY | EXTENT_DELALLOC |
7969 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 7970 0, 0, &cached_state, GFP_NOFS);
fbf19087 7971
2ac55d41
JB
7972 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7973 &cached_state);
9ed74f2d 7974 if (ret) {
2ac55d41
JB
7975 unlock_extent_cached(io_tree, page_start, page_end,
7976 &cached_state, GFP_NOFS);
9ed74f2d
JB
7977 ret = VM_FAULT_SIGBUS;
7978 goto out_unlock;
7979 }
e6dcd2dc 7980 ret = 0;
9ebefb18
CM
7981
7982 /* page is wholly or partially inside EOF */
a52d9a80 7983 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 7984 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 7985 else
e6dcd2dc 7986 zero_start = PAGE_CACHE_SIZE;
9ebefb18 7987
e6dcd2dc
CM
7988 if (zero_start != PAGE_CACHE_SIZE) {
7989 kaddr = kmap(page);
7990 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7991 flush_dcache_page(page);
7992 kunmap(page);
7993 }
247e743c 7994 ClearPageChecked(page);
e6dcd2dc 7995 set_page_dirty(page);
50a9b214 7996 SetPageUptodate(page);
5a3f23d5 7997
257c62e1
CM
7998 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7999 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8000 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8001
2ac55d41 8002 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
8003
8004out_unlock:
b2b5ef5c
JK
8005 if (!ret) {
8006 sb_end_pagefault(inode->i_sb);
50a9b214 8007 return VM_FAULT_LOCKED;
b2b5ef5c 8008 }
9ebefb18 8009 unlock_page(page);
1832a6d5 8010out:
ec39e180 8011 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 8012out_noreserve:
b2b5ef5c 8013 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
8014 return ret;
8015}
8016
a41ad394 8017static int btrfs_truncate(struct inode *inode)
39279cc3
CM
8018{
8019 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8020 struct btrfs_block_rsv *rsv;
a71754fc 8021 int ret = 0;
3893e33b 8022 int err = 0;
39279cc3 8023 struct btrfs_trans_handle *trans;
dbe674a9 8024 u64 mask = root->sectorsize - 1;
07127184 8025 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 8026
0ef8b726
JB
8027 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8028 (u64)-1);
8029 if (ret)
8030 return ret;
39279cc3 8031
fcb80c2a
JB
8032 /*
8033 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8034 * 3 things going on here
8035 *
8036 * 1) We need to reserve space for our orphan item and the space to
8037 * delete our orphan item. Lord knows we don't want to have a dangling
8038 * orphan item because we didn't reserve space to remove it.
8039 *
8040 * 2) We need to reserve space to update our inode.
8041 *
8042 * 3) We need to have something to cache all the space that is going to
8043 * be free'd up by the truncate operation, but also have some slack
8044 * space reserved in case it uses space during the truncate (thank you
8045 * very much snapshotting).
8046 *
8047 * And we need these to all be seperate. The fact is we can use alot of
8048 * space doing the truncate, and we have no earthly idea how much space
8049 * we will use, so we need the truncate reservation to be seperate so it
8050 * doesn't end up using space reserved for updating the inode or
8051 * removing the orphan item. We also need to be able to stop the
8052 * transaction and start a new one, which means we need to be able to
8053 * update the inode several times, and we have no idea of knowing how
8054 * many times that will be, so we can't just reserve 1 item for the
8055 * entirety of the opration, so that has to be done seperately as well.
8056 * Then there is the orphan item, which does indeed need to be held on
8057 * to for the whole operation, and we need nobody to touch this reserved
8058 * space except the orphan code.
8059 *
8060 * So that leaves us with
8061 *
8062 * 1) root->orphan_block_rsv - for the orphan deletion.
8063 * 2) rsv - for the truncate reservation, which we will steal from the
8064 * transaction reservation.
8065 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8066 * updating the inode.
8067 */
66d8f3dd 8068 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8069 if (!rsv)
8070 return -ENOMEM;
4a338542 8071 rsv->size = min_size;
ca7e70f5 8072 rsv->failfast = 1;
f0cd846e 8073
907cbceb 8074 /*
07127184 8075 * 1 for the truncate slack space
907cbceb
JB
8076 * 1 for updating the inode.
8077 */
f3fe820c 8078 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
8079 if (IS_ERR(trans)) {
8080 err = PTR_ERR(trans);
8081 goto out;
8082 }
f0cd846e 8083
907cbceb
JB
8084 /* Migrate the slack space for the truncate to our reserve */
8085 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8086 min_size);
fcb80c2a 8087 BUG_ON(ret);
f0cd846e 8088
5dc562c5
JB
8089 /*
8090 * So if we truncate and then write and fsync we normally would just
8091 * write the extents that changed, which is a problem if we need to
8092 * first truncate that entire inode. So set this flag so we write out
8093 * all of the extents in the inode to the sync log so we're completely
8094 * safe.
8095 */
8096 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8097 trans->block_rsv = rsv;
907cbceb 8098
8082510e
YZ
8099 while (1) {
8100 ret = btrfs_truncate_inode_items(trans, root, inode,
8101 inode->i_size,
8102 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 8103 if (ret != -ENOSPC) {
3893e33b 8104 err = ret;
8082510e 8105 break;
3893e33b 8106 }
39279cc3 8107
fcb80c2a 8108 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 8109 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
8110 if (ret) {
8111 err = ret;
8112 break;
8113 }
ca7e70f5 8114
8082510e 8115 btrfs_end_transaction(trans, root);
b53d3f5d 8116 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
8117
8118 trans = btrfs_start_transaction(root, 2);
8119 if (IS_ERR(trans)) {
8120 ret = err = PTR_ERR(trans);
8121 trans = NULL;
8122 break;
8123 }
8124
8125 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8126 rsv, min_size);
8127 BUG_ON(ret); /* shouldn't happen */
8128 trans->block_rsv = rsv;
8082510e
YZ
8129 }
8130
8131 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 8132 trans->block_rsv = root->orphan_block_rsv;
8082510e 8133 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
8134 if (ret)
8135 err = ret;
8082510e
YZ
8136 }
8137
917c16b2
CM
8138 if (trans) {
8139 trans->block_rsv = &root->fs_info->trans_block_rsv;
8140 ret = btrfs_update_inode(trans, root, inode);
8141 if (ret && !err)
8142 err = ret;
7b128766 8143
7ad85bb7 8144 ret = btrfs_end_transaction(trans, root);
b53d3f5d 8145 btrfs_btree_balance_dirty(root);
917c16b2 8146 }
fcb80c2a
JB
8147
8148out:
8149 btrfs_free_block_rsv(root, rsv);
8150
3893e33b
JB
8151 if (ret && !err)
8152 err = ret;
a41ad394 8153
3893e33b 8154 return err;
39279cc3
CM
8155}
8156
d352ac68
CM
8157/*
8158 * create a new subvolume directory/inode (helper for the ioctl).
8159 */
d2fb3437 8160int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
8161 struct btrfs_root *new_root,
8162 struct btrfs_root *parent_root,
8163 u64 new_dirid)
39279cc3 8164{
39279cc3 8165 struct inode *inode;
76dda93c 8166 int err;
00e4e6b3 8167 u64 index = 0;
39279cc3 8168
12fc9d09
FA
8169 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8170 new_dirid, new_dirid,
8171 S_IFDIR | (~current_umask() & S_IRWXUGO),
8172 &index);
54aa1f4d 8173 if (IS_ERR(inode))
f46b5a66 8174 return PTR_ERR(inode);
39279cc3
CM
8175 inode->i_op = &btrfs_dir_inode_operations;
8176 inode->i_fop = &btrfs_dir_file_operations;
8177
bfe86848 8178 set_nlink(inode, 1);
dbe674a9 8179 btrfs_i_size_write(inode, 0);
b0d5d10f 8180 unlock_new_inode(inode);
3b96362c 8181
63541927
FDBM
8182 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8183 if (err)
8184 btrfs_err(new_root->fs_info,
351fd353 8185 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
8186 new_root->root_key.objectid, err);
8187
76dda93c 8188 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 8189
76dda93c 8190 iput(inode);
ce598979 8191 return err;
39279cc3
CM
8192}
8193
39279cc3
CM
8194struct inode *btrfs_alloc_inode(struct super_block *sb)
8195{
8196 struct btrfs_inode *ei;
2ead6ae7 8197 struct inode *inode;
39279cc3
CM
8198
8199 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8200 if (!ei)
8201 return NULL;
2ead6ae7
YZ
8202
8203 ei->root = NULL;
2ead6ae7 8204 ei->generation = 0;
15ee9bc7 8205 ei->last_trans = 0;
257c62e1 8206 ei->last_sub_trans = 0;
e02119d5 8207 ei->logged_trans = 0;
2ead6ae7 8208 ei->delalloc_bytes = 0;
47059d93 8209 ei->defrag_bytes = 0;
2ead6ae7
YZ
8210 ei->disk_i_size = 0;
8211 ei->flags = 0;
7709cde3 8212 ei->csum_bytes = 0;
2ead6ae7 8213 ei->index_cnt = (u64)-1;
67de1176 8214 ei->dir_index = 0;
2ead6ae7 8215 ei->last_unlink_trans = 0;
46d8bc34 8216 ei->last_log_commit = 0;
2ead6ae7 8217
9e0baf60
JB
8218 spin_lock_init(&ei->lock);
8219 ei->outstanding_extents = 0;
8220 ei->reserved_extents = 0;
2ead6ae7 8221
72ac3c0d 8222 ei->runtime_flags = 0;
261507a0 8223 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8224
16cdcec7
MX
8225 ei->delayed_node = NULL;
8226
2ead6ae7 8227 inode = &ei->vfs_inode;
a8067e02 8228 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
8229 extent_io_tree_init(&ei->io_tree, &inode->i_data);
8230 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
8231 ei->io_tree.track_uptodate = 1;
8232 ei->io_failure_tree.track_uptodate = 1;
b812ce28 8233 atomic_set(&ei->sync_writers, 0);
2ead6ae7 8234 mutex_init(&ei->log_mutex);
f248679e 8235 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 8236 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 8237 INIT_LIST_HEAD(&ei->delalloc_inodes);
2ead6ae7
YZ
8238 RB_CLEAR_NODE(&ei->rb_node);
8239
8240 return inode;
39279cc3
CM
8241}
8242
aaedb55b
JB
8243#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8244void btrfs_test_destroy_inode(struct inode *inode)
8245{
8246 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8247 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8248}
8249#endif
8250
fa0d7e3d
NP
8251static void btrfs_i_callback(struct rcu_head *head)
8252{
8253 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
8254 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8255}
8256
39279cc3
CM
8257void btrfs_destroy_inode(struct inode *inode)
8258{
e6dcd2dc 8259 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
8260 struct btrfs_root *root = BTRFS_I(inode)->root;
8261
b3d9b7a3 8262 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 8263 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
8264 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8265 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
8266 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8267 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 8268 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 8269
a6dbd429
JB
8270 /*
8271 * This can happen where we create an inode, but somebody else also
8272 * created the same inode and we need to destroy the one we already
8273 * created.
8274 */
8275 if (!root)
8276 goto free;
8277
8a35d95f
JB
8278 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8279 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 8280 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 8281 btrfs_ino(inode));
8a35d95f 8282 atomic_dec(&root->orphan_inodes);
7b128766 8283 }
7b128766 8284
d397712b 8285 while (1) {
e6dcd2dc
CM
8286 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8287 if (!ordered)
8288 break;
8289 else {
c2cf52eb 8290 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 8291 ordered->file_offset, ordered->len);
e6dcd2dc
CM
8292 btrfs_remove_ordered_extent(inode, ordered);
8293 btrfs_put_ordered_extent(ordered);
8294 btrfs_put_ordered_extent(ordered);
8295 }
8296 }
5d4f98a2 8297 inode_tree_del(inode);
5b21f2ed 8298 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 8299free:
fa0d7e3d 8300 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
8301}
8302
45321ac5 8303int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8304{
8305 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8306
6379ef9f
NA
8307 if (root == NULL)
8308 return 1;
8309
fa6ac876 8310 /* the snap/subvol tree is on deleting */
69e9c6c6 8311 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8312 return 1;
76dda93c 8313 else
45321ac5 8314 return generic_drop_inode(inode);
76dda93c
YZ
8315}
8316
0ee0fda0 8317static void init_once(void *foo)
39279cc3
CM
8318{
8319 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8320
8321 inode_init_once(&ei->vfs_inode);
8322}
8323
8324void btrfs_destroy_cachep(void)
8325{
8c0a8537
KS
8326 /*
8327 * Make sure all delayed rcu free inodes are flushed before we
8328 * destroy cache.
8329 */
8330 rcu_barrier();
39279cc3
CM
8331 if (btrfs_inode_cachep)
8332 kmem_cache_destroy(btrfs_inode_cachep);
8333 if (btrfs_trans_handle_cachep)
8334 kmem_cache_destroy(btrfs_trans_handle_cachep);
8335 if (btrfs_transaction_cachep)
8336 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
8337 if (btrfs_path_cachep)
8338 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
8339 if (btrfs_free_space_cachep)
8340 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
8341 if (btrfs_delalloc_work_cachep)
8342 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
8343}
8344
8345int btrfs_init_cachep(void)
8346{
837e1972 8347 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
8348 sizeof(struct btrfs_inode), 0,
8349 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
8350 if (!btrfs_inode_cachep)
8351 goto fail;
9601e3f6 8352
837e1972 8353 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
8354 sizeof(struct btrfs_trans_handle), 0,
8355 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8356 if (!btrfs_trans_handle_cachep)
8357 goto fail;
9601e3f6 8358
837e1972 8359 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
8360 sizeof(struct btrfs_transaction), 0,
8361 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8362 if (!btrfs_transaction_cachep)
8363 goto fail;
9601e3f6 8364
837e1972 8365 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
8366 sizeof(struct btrfs_path), 0,
8367 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8368 if (!btrfs_path_cachep)
8369 goto fail;
9601e3f6 8370
837e1972 8371 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
8372 sizeof(struct btrfs_free_space), 0,
8373 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8374 if (!btrfs_free_space_cachep)
8375 goto fail;
8376
8ccf6f19
MX
8377 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8378 sizeof(struct btrfs_delalloc_work), 0,
8379 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8380 NULL);
8381 if (!btrfs_delalloc_work_cachep)
8382 goto fail;
8383
39279cc3
CM
8384 return 0;
8385fail:
8386 btrfs_destroy_cachep();
8387 return -ENOMEM;
8388}
8389
8390static int btrfs_getattr(struct vfsmount *mnt,
8391 struct dentry *dentry, struct kstat *stat)
8392{
df0af1a5 8393 u64 delalloc_bytes;
39279cc3 8394 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
8395 u32 blocksize = inode->i_sb->s_blocksize;
8396
39279cc3 8397 generic_fillattr(inode, stat);
0ee5dc67 8398 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 8399 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
8400
8401 spin_lock(&BTRFS_I(inode)->lock);
8402 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8403 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 8404 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 8405 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8406 return 0;
8407}
8408
d397712b
CM
8409static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8410 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
8411{
8412 struct btrfs_trans_handle *trans;
8413 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 8414 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
8415 struct inode *new_inode = new_dentry->d_inode;
8416 struct inode *old_inode = old_dentry->d_inode;
8417 struct timespec ctime = CURRENT_TIME;
00e4e6b3 8418 u64 index = 0;
4df27c4d 8419 u64 root_objectid;
39279cc3 8420 int ret;
33345d01 8421 u64 old_ino = btrfs_ino(old_inode);
39279cc3 8422
33345d01 8423 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
8424 return -EPERM;
8425
4df27c4d 8426 /* we only allow rename subvolume link between subvolumes */
33345d01 8427 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
8428 return -EXDEV;
8429
33345d01
LZ
8430 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8431 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 8432 return -ENOTEMPTY;
5f39d397 8433
4df27c4d
YZ
8434 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8435 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8436 return -ENOTEMPTY;
9c52057c
CM
8437
8438
8439 /* check for collisions, even if the name isn't there */
4871c158 8440 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
8441 new_dentry->d_name.name,
8442 new_dentry->d_name.len);
8443
8444 if (ret) {
8445 if (ret == -EEXIST) {
8446 /* we shouldn't get
8447 * eexist without a new_inode */
fae7f21c 8448 if (WARN_ON(!new_inode)) {
9c52057c
CM
8449 return ret;
8450 }
8451 } else {
8452 /* maybe -EOVERFLOW */
8453 return ret;
8454 }
8455 }
8456 ret = 0;
8457
5a3f23d5 8458 /*
8d875f95
CM
8459 * we're using rename to replace one file with another. Start IO on it
8460 * now so we don't add too much work to the end of the transaction
5a3f23d5 8461 */
8d875f95 8462 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
8463 filemap_flush(old_inode->i_mapping);
8464
76dda93c 8465 /* close the racy window with snapshot create/destroy ioctl */
33345d01 8466 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8467 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
8468 /*
8469 * We want to reserve the absolute worst case amount of items. So if
8470 * both inodes are subvols and we need to unlink them then that would
8471 * require 4 item modifications, but if they are both normal inodes it
8472 * would require 5 item modifications, so we'll assume their normal
8473 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8474 * should cover the worst case number of items we'll modify.
8475 */
6e137ed3 8476 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
8477 if (IS_ERR(trans)) {
8478 ret = PTR_ERR(trans);
8479 goto out_notrans;
8480 }
76dda93c 8481
4df27c4d
YZ
8482 if (dest != root)
8483 btrfs_record_root_in_trans(trans, dest);
5f39d397 8484
a5719521
YZ
8485 ret = btrfs_set_inode_index(new_dir, &index);
8486 if (ret)
8487 goto out_fail;
5a3f23d5 8488
67de1176 8489 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 8490 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 8491 /* force full log commit if subvolume involved. */
995946dd 8492 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 8493 } else {
a5719521
YZ
8494 ret = btrfs_insert_inode_ref(trans, dest,
8495 new_dentry->d_name.name,
8496 new_dentry->d_name.len,
33345d01
LZ
8497 old_ino,
8498 btrfs_ino(new_dir), index);
a5719521
YZ
8499 if (ret)
8500 goto out_fail;
4df27c4d
YZ
8501 /*
8502 * this is an ugly little race, but the rename is required
8503 * to make sure that if we crash, the inode is either at the
8504 * old name or the new one. pinning the log transaction lets
8505 * us make sure we don't allow a log commit to come in after
8506 * we unlink the name but before we add the new name back in.
8507 */
8508 btrfs_pin_log_trans(root);
8509 }
5a3f23d5 8510
0c4d2d95
JB
8511 inode_inc_iversion(old_dir);
8512 inode_inc_iversion(new_dir);
8513 inode_inc_iversion(old_inode);
39279cc3
CM
8514 old_dir->i_ctime = old_dir->i_mtime = ctime;
8515 new_dir->i_ctime = new_dir->i_mtime = ctime;
8516 old_inode->i_ctime = ctime;
5f39d397 8517
12fcfd22
CM
8518 if (old_dentry->d_parent != new_dentry->d_parent)
8519 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8520
33345d01 8521 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8522 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8523 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8524 old_dentry->d_name.name,
8525 old_dentry->d_name.len);
8526 } else {
92986796
AV
8527 ret = __btrfs_unlink_inode(trans, root, old_dir,
8528 old_dentry->d_inode,
8529 old_dentry->d_name.name,
8530 old_dentry->d_name.len);
8531 if (!ret)
8532 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8533 }
79787eaa
JM
8534 if (ret) {
8535 btrfs_abort_transaction(trans, root, ret);
8536 goto out_fail;
8537 }
39279cc3
CM
8538
8539 if (new_inode) {
0c4d2d95 8540 inode_inc_iversion(new_inode);
39279cc3 8541 new_inode->i_ctime = CURRENT_TIME;
33345d01 8542 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8543 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8544 root_objectid = BTRFS_I(new_inode)->location.objectid;
8545 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8546 root_objectid,
8547 new_dentry->d_name.name,
8548 new_dentry->d_name.len);
8549 BUG_ON(new_inode->i_nlink == 0);
8550 } else {
8551 ret = btrfs_unlink_inode(trans, dest, new_dir,
8552 new_dentry->d_inode,
8553 new_dentry->d_name.name,
8554 new_dentry->d_name.len);
8555 }
4ef31a45 8556 if (!ret && new_inode->i_nlink == 0)
e02119d5 8557 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
79787eaa
JM
8558 if (ret) {
8559 btrfs_abort_transaction(trans, root, ret);
8560 goto out_fail;
8561 }
39279cc3 8562 }
aec7477b 8563
4df27c4d
YZ
8564 ret = btrfs_add_link(trans, new_dir, old_inode,
8565 new_dentry->d_name.name,
a5719521 8566 new_dentry->d_name.len, 0, index);
79787eaa
JM
8567 if (ret) {
8568 btrfs_abort_transaction(trans, root, ret);
8569 goto out_fail;
8570 }
39279cc3 8571
67de1176
MX
8572 if (old_inode->i_nlink == 1)
8573 BTRFS_I(old_inode)->dir_index = index;
8574
33345d01 8575 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 8576 struct dentry *parent = new_dentry->d_parent;
6a912213 8577 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
8578 btrfs_end_log_trans(root);
8579 }
39279cc3 8580out_fail:
7ad85bb7 8581 btrfs_end_transaction(trans, root);
b44c59a8 8582out_notrans:
33345d01 8583 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8584 up_read(&root->fs_info->subvol_sem);
9ed74f2d 8585
39279cc3
CM
8586 return ret;
8587}
8588
80ace85c
MS
8589static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
8590 struct inode *new_dir, struct dentry *new_dentry,
8591 unsigned int flags)
8592{
8593 if (flags & ~RENAME_NOREPLACE)
8594 return -EINVAL;
8595
8596 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
8597}
8598
8ccf6f19
MX
8599static void btrfs_run_delalloc_work(struct btrfs_work *work)
8600{
8601 struct btrfs_delalloc_work *delalloc_work;
9f23e289 8602 struct inode *inode;
8ccf6f19
MX
8603
8604 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8605 work);
9f23e289
JB
8606 inode = delalloc_work->inode;
8607 if (delalloc_work->wait) {
8608 btrfs_wait_ordered_range(inode, 0, (u64)-1);
8609 } else {
8610 filemap_flush(inode->i_mapping);
8611 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8612 &BTRFS_I(inode)->runtime_flags))
8613 filemap_flush(inode->i_mapping);
8614 }
8ccf6f19
MX
8615
8616 if (delalloc_work->delay_iput)
9f23e289 8617 btrfs_add_delayed_iput(inode);
8ccf6f19 8618 else
9f23e289 8619 iput(inode);
8ccf6f19
MX
8620 complete(&delalloc_work->completion);
8621}
8622
8623struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8624 int wait, int delay_iput)
8625{
8626 struct btrfs_delalloc_work *work;
8627
8628 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8629 if (!work)
8630 return NULL;
8631
8632 init_completion(&work->completion);
8633 INIT_LIST_HEAD(&work->list);
8634 work->inode = inode;
8635 work->wait = wait;
8636 work->delay_iput = delay_iput;
9e0af237
LB
8637 WARN_ON_ONCE(!inode);
8638 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
8639 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
8640
8641 return work;
8642}
8643
8644void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8645{
8646 wait_for_completion(&work->completion);
8647 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8648}
8649
d352ac68
CM
8650/*
8651 * some fairly slow code that needs optimization. This walks the list
8652 * of all the inodes with pending delalloc and forces them to disk.
8653 */
6c255e67
MX
8654static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
8655 int nr)
ea8c2819 8656{
ea8c2819 8657 struct btrfs_inode *binode;
5b21f2ed 8658 struct inode *inode;
8ccf6f19
MX
8659 struct btrfs_delalloc_work *work, *next;
8660 struct list_head works;
1eafa6c7 8661 struct list_head splice;
8ccf6f19 8662 int ret = 0;
ea8c2819 8663
8ccf6f19 8664 INIT_LIST_HEAD(&works);
1eafa6c7 8665 INIT_LIST_HEAD(&splice);
63607cc8 8666
573bfb72 8667 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
8668 spin_lock(&root->delalloc_lock);
8669 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
8670 while (!list_empty(&splice)) {
8671 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 8672 delalloc_inodes);
1eafa6c7 8673
eb73c1b7
MX
8674 list_move_tail(&binode->delalloc_inodes,
8675 &root->delalloc_inodes);
5b21f2ed 8676 inode = igrab(&binode->vfs_inode);
df0af1a5 8677 if (!inode) {
eb73c1b7 8678 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 8679 continue;
df0af1a5 8680 }
eb73c1b7 8681 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
8682
8683 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8684 if (unlikely(!work)) {
f4ab9ea7
JB
8685 if (delay_iput)
8686 btrfs_add_delayed_iput(inode);
8687 else
8688 iput(inode);
1eafa6c7 8689 ret = -ENOMEM;
a1ecaabb 8690 goto out;
5b21f2ed 8691 }
1eafa6c7 8692 list_add_tail(&work->list, &works);
a44903ab
QW
8693 btrfs_queue_work(root->fs_info->flush_workers,
8694 &work->work);
6c255e67
MX
8695 ret++;
8696 if (nr != -1 && ret >= nr)
a1ecaabb 8697 goto out;
5b21f2ed 8698 cond_resched();
eb73c1b7 8699 spin_lock(&root->delalloc_lock);
ea8c2819 8700 }
eb73c1b7 8701 spin_unlock(&root->delalloc_lock);
8c8bee1d 8702
a1ecaabb 8703out:
eb73c1b7
MX
8704 list_for_each_entry_safe(work, next, &works, list) {
8705 list_del_init(&work->list);
8706 btrfs_wait_and_free_delalloc_work(work);
8707 }
8708
8709 if (!list_empty_careful(&splice)) {
8710 spin_lock(&root->delalloc_lock);
8711 list_splice_tail(&splice, &root->delalloc_inodes);
8712 spin_unlock(&root->delalloc_lock);
8713 }
573bfb72 8714 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
8715 return ret;
8716}
1eafa6c7 8717
eb73c1b7
MX
8718int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8719{
8720 int ret;
1eafa6c7 8721
2c21b4d7 8722 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
8723 return -EROFS;
8724
6c255e67
MX
8725 ret = __start_delalloc_inodes(root, delay_iput, -1);
8726 if (ret > 0)
8727 ret = 0;
eb73c1b7
MX
8728 /*
8729 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
8730 * we have to make sure the IO is actually started and that
8731 * ordered extents get created before we return
8732 */
8733 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 8734 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 8735 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 8736 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
8737 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8738 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
8739 }
8740 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
8741 return ret;
8742}
8743
6c255e67
MX
8744int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
8745 int nr)
eb73c1b7
MX
8746{
8747 struct btrfs_root *root;
8748 struct list_head splice;
8749 int ret;
8750
2c21b4d7 8751 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
8752 return -EROFS;
8753
8754 INIT_LIST_HEAD(&splice);
8755
573bfb72 8756 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
8757 spin_lock(&fs_info->delalloc_root_lock);
8758 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 8759 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
8760 root = list_first_entry(&splice, struct btrfs_root,
8761 delalloc_root);
8762 root = btrfs_grab_fs_root(root);
8763 BUG_ON(!root);
8764 list_move_tail(&root->delalloc_root,
8765 &fs_info->delalloc_roots);
8766 spin_unlock(&fs_info->delalloc_root_lock);
8767
6c255e67 8768 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 8769 btrfs_put_fs_root(root);
6c255e67 8770 if (ret < 0)
eb73c1b7
MX
8771 goto out;
8772
6c255e67
MX
8773 if (nr != -1) {
8774 nr -= ret;
8775 WARN_ON(nr < 0);
8776 }
eb73c1b7 8777 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 8778 }
eb73c1b7 8779 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8780
6c255e67 8781 ret = 0;
eb73c1b7
MX
8782 atomic_inc(&fs_info->async_submit_draining);
8783 while (atomic_read(&fs_info->nr_async_submits) ||
8784 atomic_read(&fs_info->async_delalloc_pages)) {
8785 wait_event(fs_info->async_submit_wait,
8786 (atomic_read(&fs_info->nr_async_submits) == 0 &&
8787 atomic_read(&fs_info->async_delalloc_pages) == 0));
8788 }
8789 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 8790out:
1eafa6c7 8791 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
8792 spin_lock(&fs_info->delalloc_root_lock);
8793 list_splice_tail(&splice, &fs_info->delalloc_roots);
8794 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8795 }
573bfb72 8796 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 8797 return ret;
ea8c2819
CM
8798}
8799
39279cc3
CM
8800static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8801 const char *symname)
8802{
8803 struct btrfs_trans_handle *trans;
8804 struct btrfs_root *root = BTRFS_I(dir)->root;
8805 struct btrfs_path *path;
8806 struct btrfs_key key;
1832a6d5 8807 struct inode *inode = NULL;
39279cc3
CM
8808 int err;
8809 int drop_inode = 0;
8810 u64 objectid;
67871254 8811 u64 index = 0;
39279cc3
CM
8812 int name_len;
8813 int datasize;
5f39d397 8814 unsigned long ptr;
39279cc3 8815 struct btrfs_file_extent_item *ei;
5f39d397 8816 struct extent_buffer *leaf;
39279cc3 8817
f06becc4 8818 name_len = strlen(symname);
39279cc3
CM
8819 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8820 return -ENAMETOOLONG;
1832a6d5 8821
9ed74f2d
JB
8822 /*
8823 * 2 items for inode item and ref
8824 * 2 items for dir items
8825 * 1 item for xattr if selinux is on
8826 */
a22285a6
YZ
8827 trans = btrfs_start_transaction(root, 5);
8828 if (IS_ERR(trans))
8829 return PTR_ERR(trans);
1832a6d5 8830
581bb050
LZ
8831 err = btrfs_find_free_ino(root, &objectid);
8832 if (err)
8833 goto out_unlock;
8834
aec7477b 8835 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 8836 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 8837 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
8838 if (IS_ERR(inode)) {
8839 err = PTR_ERR(inode);
39279cc3 8840 goto out_unlock;
7cf96da3 8841 }
39279cc3 8842
ad19db71
CS
8843 /*
8844 * If the active LSM wants to access the inode during
8845 * d_instantiate it needs these. Smack checks to see
8846 * if the filesystem supports xattrs by looking at the
8847 * ops vector.
8848 */
8849 inode->i_fop = &btrfs_file_operations;
8850 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f
CM
8851 inode->i_mapping->a_ops = &btrfs_aops;
8852 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8853 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8854
8855 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
8856 if (err)
8857 goto out_unlock_inode;
ad19db71 8858
a1b075d2 8859 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 8860 if (err)
b0d5d10f 8861 goto out_unlock_inode;
39279cc3
CM
8862
8863 path = btrfs_alloc_path();
d8926bb3
MF
8864 if (!path) {
8865 err = -ENOMEM;
b0d5d10f 8866 goto out_unlock_inode;
d8926bb3 8867 }
33345d01 8868 key.objectid = btrfs_ino(inode);
39279cc3 8869 key.offset = 0;
962a298f 8870 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
8871 datasize = btrfs_file_extent_calc_inline_size(name_len);
8872 err = btrfs_insert_empty_item(trans, root, path, &key,
8873 datasize);
54aa1f4d 8874 if (err) {
b0839166 8875 btrfs_free_path(path);
b0d5d10f 8876 goto out_unlock_inode;
54aa1f4d 8877 }
5f39d397
CM
8878 leaf = path->nodes[0];
8879 ei = btrfs_item_ptr(leaf, path->slots[0],
8880 struct btrfs_file_extent_item);
8881 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8882 btrfs_set_file_extent_type(leaf, ei,
39279cc3 8883 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
8884 btrfs_set_file_extent_encryption(leaf, ei, 0);
8885 btrfs_set_file_extent_compression(leaf, ei, 0);
8886 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8887 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8888
39279cc3 8889 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
8890 write_extent_buffer(leaf, symname, ptr, name_len);
8891 btrfs_mark_buffer_dirty(leaf);
39279cc3 8892 btrfs_free_path(path);
5f39d397 8893
39279cc3
CM
8894 inode->i_op = &btrfs_symlink_inode_operations;
8895 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 8896 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 8897 inode_set_bytes(inode, name_len);
f06becc4 8898 btrfs_i_size_write(inode, name_len);
54aa1f4d 8899 err = btrfs_update_inode(trans, root, inode);
b0d5d10f 8900 if (err) {
54aa1f4d 8901 drop_inode = 1;
b0d5d10f
CM
8902 goto out_unlock_inode;
8903 }
8904
8905 unlock_new_inode(inode);
8906 d_instantiate(dentry, inode);
39279cc3
CM
8907
8908out_unlock:
7ad85bb7 8909 btrfs_end_transaction(trans, root);
39279cc3
CM
8910 if (drop_inode) {
8911 inode_dec_link_count(inode);
8912 iput(inode);
8913 }
b53d3f5d 8914 btrfs_btree_balance_dirty(root);
39279cc3 8915 return err;
b0d5d10f
CM
8916
8917out_unlock_inode:
8918 drop_inode = 1;
8919 unlock_new_inode(inode);
8920 goto out_unlock;
39279cc3 8921}
16432985 8922
0af3d00b
JB
8923static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8924 u64 start, u64 num_bytes, u64 min_size,
8925 loff_t actual_len, u64 *alloc_hint,
8926 struct btrfs_trans_handle *trans)
d899e052 8927{
5dc562c5
JB
8928 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8929 struct extent_map *em;
d899e052
YZ
8930 struct btrfs_root *root = BTRFS_I(inode)->root;
8931 struct btrfs_key ins;
d899e052 8932 u64 cur_offset = start;
55a61d1d 8933 u64 i_size;
154ea289 8934 u64 cur_bytes;
d899e052 8935 int ret = 0;
0af3d00b 8936 bool own_trans = true;
d899e052 8937
0af3d00b
JB
8938 if (trans)
8939 own_trans = false;
d899e052 8940 while (num_bytes > 0) {
0af3d00b
JB
8941 if (own_trans) {
8942 trans = btrfs_start_transaction(root, 3);
8943 if (IS_ERR(trans)) {
8944 ret = PTR_ERR(trans);
8945 break;
8946 }
5a303d5d
YZ
8947 }
8948
154ea289
CM
8949 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8950 cur_bytes = max(cur_bytes, min_size);
00361589 8951 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
e570fd27 8952 *alloc_hint, &ins, 1, 0);
5a303d5d 8953 if (ret) {
0af3d00b
JB
8954 if (own_trans)
8955 btrfs_end_transaction(trans, root);
a22285a6 8956 break;
d899e052 8957 }
5a303d5d 8958
d899e052
YZ
8959 ret = insert_reserved_file_extent(trans, inode,
8960 cur_offset, ins.objectid,
8961 ins.offset, ins.offset,
920bbbfb 8962 ins.offset, 0, 0, 0,
d899e052 8963 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 8964 if (ret) {
857cc2fc 8965 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 8966 ins.offset, 0);
79787eaa
JM
8967 btrfs_abort_transaction(trans, root, ret);
8968 if (own_trans)
8969 btrfs_end_transaction(trans, root);
8970 break;
8971 }
a1ed835e
CM
8972 btrfs_drop_extent_cache(inode, cur_offset,
8973 cur_offset + ins.offset -1, 0);
5a303d5d 8974
5dc562c5
JB
8975 em = alloc_extent_map();
8976 if (!em) {
8977 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8978 &BTRFS_I(inode)->runtime_flags);
8979 goto next;
8980 }
8981
8982 em->start = cur_offset;
8983 em->orig_start = cur_offset;
8984 em->len = ins.offset;
8985 em->block_start = ins.objectid;
8986 em->block_len = ins.offset;
b4939680 8987 em->orig_block_len = ins.offset;
cc95bef6 8988 em->ram_bytes = ins.offset;
5dc562c5
JB
8989 em->bdev = root->fs_info->fs_devices->latest_bdev;
8990 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8991 em->generation = trans->transid;
8992
8993 while (1) {
8994 write_lock(&em_tree->lock);
09a2a8f9 8995 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
8996 write_unlock(&em_tree->lock);
8997 if (ret != -EEXIST)
8998 break;
8999 btrfs_drop_extent_cache(inode, cur_offset,
9000 cur_offset + ins.offset - 1,
9001 0);
9002 }
9003 free_extent_map(em);
9004next:
d899e052
YZ
9005 num_bytes -= ins.offset;
9006 cur_offset += ins.offset;
efa56464 9007 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9008
0c4d2d95 9009 inode_inc_iversion(inode);
d899e052 9010 inode->i_ctime = CURRENT_TIME;
6cbff00f 9011 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9012 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9013 (actual_len > inode->i_size) &&
9014 (cur_offset > inode->i_size)) {
d1ea6a61 9015 if (cur_offset > actual_len)
55a61d1d 9016 i_size = actual_len;
d1ea6a61 9017 else
55a61d1d
JB
9018 i_size = cur_offset;
9019 i_size_write(inode, i_size);
9020 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
9021 }
9022
d899e052 9023 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
9024
9025 if (ret) {
9026 btrfs_abort_transaction(trans, root, ret);
9027 if (own_trans)
9028 btrfs_end_transaction(trans, root);
9029 break;
9030 }
d899e052 9031
0af3d00b
JB
9032 if (own_trans)
9033 btrfs_end_transaction(trans, root);
5a303d5d 9034 }
d899e052
YZ
9035 return ret;
9036}
9037
0af3d00b
JB
9038int btrfs_prealloc_file_range(struct inode *inode, int mode,
9039 u64 start, u64 num_bytes, u64 min_size,
9040 loff_t actual_len, u64 *alloc_hint)
9041{
9042 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9043 min_size, actual_len, alloc_hint,
9044 NULL);
9045}
9046
9047int btrfs_prealloc_file_range_trans(struct inode *inode,
9048 struct btrfs_trans_handle *trans, int mode,
9049 u64 start, u64 num_bytes, u64 min_size,
9050 loff_t actual_len, u64 *alloc_hint)
9051{
9052 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9053 min_size, actual_len, alloc_hint, trans);
9054}
9055
e6dcd2dc
CM
9056static int btrfs_set_page_dirty(struct page *page)
9057{
e6dcd2dc
CM
9058 return __set_page_dirty_nobuffers(page);
9059}
9060
10556cb2 9061static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 9062{
b83cc969 9063 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9064 umode_t mode = inode->i_mode;
b83cc969 9065
cb6db4e5
JM
9066 if (mask & MAY_WRITE &&
9067 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9068 if (btrfs_root_readonly(root))
9069 return -EROFS;
9070 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9071 return -EACCES;
9072 }
2830ba7f 9073 return generic_permission(inode, mask);
fdebe2bd 9074}
39279cc3 9075
ef3b9af5
FM
9076static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9077{
9078 struct btrfs_trans_handle *trans;
9079 struct btrfs_root *root = BTRFS_I(dir)->root;
9080 struct inode *inode = NULL;
9081 u64 objectid;
9082 u64 index;
9083 int ret = 0;
9084
9085 /*
9086 * 5 units required for adding orphan entry
9087 */
9088 trans = btrfs_start_transaction(root, 5);
9089 if (IS_ERR(trans))
9090 return PTR_ERR(trans);
9091
9092 ret = btrfs_find_free_ino(root, &objectid);
9093 if (ret)
9094 goto out;
9095
9096 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9097 btrfs_ino(dir), objectid, mode, &index);
9098 if (IS_ERR(inode)) {
9099 ret = PTR_ERR(inode);
9100 inode = NULL;
9101 goto out;
9102 }
9103
ef3b9af5
FM
9104 inode->i_fop = &btrfs_file_operations;
9105 inode->i_op = &btrfs_file_inode_operations;
9106
9107 inode->i_mapping->a_ops = &btrfs_aops;
9108 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9109 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9110
b0d5d10f
CM
9111 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9112 if (ret)
9113 goto out_inode;
9114
9115 ret = btrfs_update_inode(trans, root, inode);
9116 if (ret)
9117 goto out_inode;
ef3b9af5
FM
9118 ret = btrfs_orphan_add(trans, inode);
9119 if (ret)
b0d5d10f 9120 goto out_inode;
ef3b9af5 9121
5762b5c9
FM
9122 /*
9123 * We set number of links to 0 in btrfs_new_inode(), and here we set
9124 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9125 * through:
9126 *
9127 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9128 */
9129 set_nlink(inode, 1);
b0d5d10f 9130 unlock_new_inode(inode);
ef3b9af5
FM
9131 d_tmpfile(dentry, inode);
9132 mark_inode_dirty(inode);
9133
9134out:
9135 btrfs_end_transaction(trans, root);
9136 if (ret)
9137 iput(inode);
9138 btrfs_balance_delayed_items(root);
9139 btrfs_btree_balance_dirty(root);
ef3b9af5 9140 return ret;
b0d5d10f
CM
9141
9142out_inode:
9143 unlock_new_inode(inode);
9144 goto out;
9145
ef3b9af5
FM
9146}
9147
6e1d5dcc 9148static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 9149 .getattr = btrfs_getattr,
39279cc3
CM
9150 .lookup = btrfs_lookup,
9151 .create = btrfs_create,
9152 .unlink = btrfs_unlink,
9153 .link = btrfs_link,
9154 .mkdir = btrfs_mkdir,
9155 .rmdir = btrfs_rmdir,
80ace85c 9156 .rename2 = btrfs_rename2,
39279cc3
CM
9157 .symlink = btrfs_symlink,
9158 .setattr = btrfs_setattr,
618e21d5 9159 .mknod = btrfs_mknod,
95819c05
CH
9160 .setxattr = btrfs_setxattr,
9161 .getxattr = btrfs_getxattr,
5103e947 9162 .listxattr = btrfs_listxattr,
95819c05 9163 .removexattr = btrfs_removexattr,
fdebe2bd 9164 .permission = btrfs_permission,
4e34e719 9165 .get_acl = btrfs_get_acl,
996a710d 9166 .set_acl = btrfs_set_acl,
93fd63c2 9167 .update_time = btrfs_update_time,
ef3b9af5 9168 .tmpfile = btrfs_tmpfile,
39279cc3 9169};
6e1d5dcc 9170static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 9171 .lookup = btrfs_lookup,
fdebe2bd 9172 .permission = btrfs_permission,
4e34e719 9173 .get_acl = btrfs_get_acl,
996a710d 9174 .set_acl = btrfs_set_acl,
93fd63c2 9175 .update_time = btrfs_update_time,
39279cc3 9176};
76dda93c 9177
828c0950 9178static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
9179 .llseek = generic_file_llseek,
9180 .read = generic_read_dir,
9cdda8d3 9181 .iterate = btrfs_real_readdir,
34287aa3 9182 .unlocked_ioctl = btrfs_ioctl,
39279cc3 9183#ifdef CONFIG_COMPAT
34287aa3 9184 .compat_ioctl = btrfs_ioctl,
39279cc3 9185#endif
6bf13c0c 9186 .release = btrfs_release_file,
e02119d5 9187 .fsync = btrfs_sync_file,
39279cc3
CM
9188};
9189
d1310b2e 9190static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 9191 .fill_delalloc = run_delalloc_range,
065631f6 9192 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 9193 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 9194 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 9195 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 9196 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
9197 .set_bit_hook = btrfs_set_bit_hook,
9198 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
9199 .merge_extent_hook = btrfs_merge_extent_hook,
9200 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
9201};
9202
35054394
CM
9203/*
9204 * btrfs doesn't support the bmap operation because swapfiles
9205 * use bmap to make a mapping of extents in the file. They assume
9206 * these extents won't change over the life of the file and they
9207 * use the bmap result to do IO directly to the drive.
9208 *
9209 * the btrfs bmap call would return logical addresses that aren't
9210 * suitable for IO and they also will change frequently as COW
9211 * operations happen. So, swapfile + btrfs == corruption.
9212 *
9213 * For now we're avoiding this by dropping bmap.
9214 */
7f09410b 9215static const struct address_space_operations btrfs_aops = {
39279cc3
CM
9216 .readpage = btrfs_readpage,
9217 .writepage = btrfs_writepage,
b293f02e 9218 .writepages = btrfs_writepages,
3ab2fb5a 9219 .readpages = btrfs_readpages,
16432985 9220 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
9221 .invalidatepage = btrfs_invalidatepage,
9222 .releasepage = btrfs_releasepage,
e6dcd2dc 9223 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 9224 .error_remove_page = generic_error_remove_page,
39279cc3
CM
9225};
9226
7f09410b 9227static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
9228 .readpage = btrfs_readpage,
9229 .writepage = btrfs_writepage,
2bf5a725
CM
9230 .invalidatepage = btrfs_invalidatepage,
9231 .releasepage = btrfs_releasepage,
39279cc3
CM
9232};
9233
6e1d5dcc 9234static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
9235 .getattr = btrfs_getattr,
9236 .setattr = btrfs_setattr,
95819c05
CH
9237 .setxattr = btrfs_setxattr,
9238 .getxattr = btrfs_getxattr,
5103e947 9239 .listxattr = btrfs_listxattr,
95819c05 9240 .removexattr = btrfs_removexattr,
fdebe2bd 9241 .permission = btrfs_permission,
1506fcc8 9242 .fiemap = btrfs_fiemap,
4e34e719 9243 .get_acl = btrfs_get_acl,
996a710d 9244 .set_acl = btrfs_set_acl,
e41f941a 9245 .update_time = btrfs_update_time,
39279cc3 9246};
6e1d5dcc 9247static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
9248 .getattr = btrfs_getattr,
9249 .setattr = btrfs_setattr,
fdebe2bd 9250 .permission = btrfs_permission,
95819c05
CH
9251 .setxattr = btrfs_setxattr,
9252 .getxattr = btrfs_getxattr,
33268eaf 9253 .listxattr = btrfs_listxattr,
95819c05 9254 .removexattr = btrfs_removexattr,
4e34e719 9255 .get_acl = btrfs_get_acl,
996a710d 9256 .set_acl = btrfs_set_acl,
e41f941a 9257 .update_time = btrfs_update_time,
618e21d5 9258};
6e1d5dcc 9259static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
9260 .readlink = generic_readlink,
9261 .follow_link = page_follow_link_light,
9262 .put_link = page_put_link,
f209561a 9263 .getattr = btrfs_getattr,
22c44fe6 9264 .setattr = btrfs_setattr,
fdebe2bd 9265 .permission = btrfs_permission,
0279b4cd
JO
9266 .setxattr = btrfs_setxattr,
9267 .getxattr = btrfs_getxattr,
9268 .listxattr = btrfs_listxattr,
9269 .removexattr = btrfs_removexattr,
e41f941a 9270 .update_time = btrfs_update_time,
39279cc3 9271};
76dda93c 9272
82d339d9 9273const struct dentry_operations btrfs_dentry_operations = {
76dda93c 9274 .d_delete = btrfs_dentry_delete,
b4aff1f8 9275 .d_release = btrfs_dentry_release,
76dda93c 9276};
This page took 3.834861 seconds and 5 git commands to generate.