btrfs: Add handler for invalidate page
[deliverable/linux.git] / fs / btrfs / ordered-data.c
CommitLineData
dc17ff8f
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
dc17ff8f 19#include <linux/slab.h>
d6bfde87 20#include <linux/blkdev.h>
f421950f
CM
21#include <linux/writeback.h>
22#include <linux/pagevec.h>
dc17ff8f
CM
23#include "ctree.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
e6dcd2dc 26#include "extent_io.h"
199c2a9c 27#include "disk-io.h"
dc17ff8f 28
6352b91d
MX
29static struct kmem_cache *btrfs_ordered_extent_cache;
30
e6dcd2dc 31static u64 entry_end(struct btrfs_ordered_extent *entry)
dc17ff8f 32{
e6dcd2dc
CM
33 if (entry->file_offset + entry->len < entry->file_offset)
34 return (u64)-1;
35 return entry->file_offset + entry->len;
dc17ff8f
CM
36}
37
d352ac68
CM
38/* returns NULL if the insertion worked, or it returns the node it did find
39 * in the tree
40 */
e6dcd2dc
CM
41static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42 struct rb_node *node)
dc17ff8f 43{
d397712b
CM
44 struct rb_node **p = &root->rb_node;
45 struct rb_node *parent = NULL;
e6dcd2dc 46 struct btrfs_ordered_extent *entry;
dc17ff8f 47
d397712b 48 while (*p) {
dc17ff8f 49 parent = *p;
e6dcd2dc 50 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
dc17ff8f 51
e6dcd2dc 52 if (file_offset < entry->file_offset)
dc17ff8f 53 p = &(*p)->rb_left;
e6dcd2dc 54 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
55 p = &(*p)->rb_right;
56 else
57 return parent;
58 }
59
60 rb_link_node(node, parent, p);
61 rb_insert_color(node, root);
62 return NULL;
63}
64
43c04fb1
JM
65static void ordered_data_tree_panic(struct inode *inode, int errno,
66 u64 offset)
67{
68 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
351fd353 70 "%llu", offset);
43c04fb1
JM
71}
72
d352ac68
CM
73/*
74 * look for a given offset in the tree, and if it can't be found return the
75 * first lesser offset
76 */
e6dcd2dc
CM
77static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78 struct rb_node **prev_ret)
dc17ff8f 79{
d397712b 80 struct rb_node *n = root->rb_node;
dc17ff8f 81 struct rb_node *prev = NULL;
e6dcd2dc
CM
82 struct rb_node *test;
83 struct btrfs_ordered_extent *entry;
84 struct btrfs_ordered_extent *prev_entry = NULL;
dc17ff8f 85
d397712b 86 while (n) {
e6dcd2dc 87 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
dc17ff8f
CM
88 prev = n;
89 prev_entry = entry;
dc17ff8f 90
e6dcd2dc 91 if (file_offset < entry->file_offset)
dc17ff8f 92 n = n->rb_left;
e6dcd2dc 93 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
94 n = n->rb_right;
95 else
96 return n;
97 }
98 if (!prev_ret)
99 return NULL;
100
d397712b 101 while (prev && file_offset >= entry_end(prev_entry)) {
e6dcd2dc
CM
102 test = rb_next(prev);
103 if (!test)
104 break;
105 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 rb_node);
107 if (file_offset < entry_end(prev_entry))
108 break;
109
110 prev = test;
111 }
112 if (prev)
113 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114 rb_node);
d397712b 115 while (prev && file_offset < entry_end(prev_entry)) {
e6dcd2dc
CM
116 test = rb_prev(prev);
117 if (!test)
118 break;
119 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120 rb_node);
121 prev = test;
dc17ff8f
CM
122 }
123 *prev_ret = prev;
124 return NULL;
125}
126
d352ac68
CM
127/*
128 * helper to check if a given offset is inside a given entry
129 */
e6dcd2dc
CM
130static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131{
132 if (file_offset < entry->file_offset ||
133 entry->file_offset + entry->len <= file_offset)
134 return 0;
135 return 1;
136}
137
4b46fce2
JB
138static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139 u64 len)
140{
141 if (file_offset + len <= entry->file_offset ||
142 entry->file_offset + entry->len <= file_offset)
143 return 0;
144 return 1;
145}
146
d352ac68
CM
147/*
148 * look find the first ordered struct that has this offset, otherwise
149 * the first one less than this offset
150 */
e6dcd2dc
CM
151static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152 u64 file_offset)
dc17ff8f 153{
e6dcd2dc 154 struct rb_root *root = &tree->tree;
c87fb6fd 155 struct rb_node *prev = NULL;
dc17ff8f 156 struct rb_node *ret;
e6dcd2dc
CM
157 struct btrfs_ordered_extent *entry;
158
159 if (tree->last) {
160 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161 rb_node);
162 if (offset_in_entry(entry, file_offset))
163 return tree->last;
164 }
165 ret = __tree_search(root, file_offset, &prev);
dc17ff8f 166 if (!ret)
e6dcd2dc
CM
167 ret = prev;
168 if (ret)
169 tree->last = ret;
dc17ff8f
CM
170 return ret;
171}
172
eb84ae03
CM
173/* allocate and add a new ordered_extent into the per-inode tree.
174 * file_offset is the logical offset in the file
175 *
176 * start is the disk block number of an extent already reserved in the
177 * extent allocation tree
178 *
179 * len is the length of the extent
180 *
eb84ae03
CM
181 * The tree is given a single reference on the ordered extent that was
182 * inserted.
183 */
4b46fce2
JB
184static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185 u64 start, u64 len, u64 disk_len,
261507a0 186 int type, int dio, int compress_type)
dc17ff8f 187{
199c2a9c 188 struct btrfs_root *root = BTRFS_I(inode)->root;
dc17ff8f 189 struct btrfs_ordered_inode_tree *tree;
e6dcd2dc
CM
190 struct rb_node *node;
191 struct btrfs_ordered_extent *entry;
dc17ff8f 192
e6dcd2dc 193 tree = &BTRFS_I(inode)->ordered_tree;
6352b91d 194 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
dc17ff8f
CM
195 if (!entry)
196 return -ENOMEM;
197
e6dcd2dc
CM
198 entry->file_offset = file_offset;
199 entry->start = start;
200 entry->len = len;
c8b97818 201 entry->disk_len = disk_len;
8b62b72b 202 entry->bytes_left = len;
5fd02043 203 entry->inode = igrab(inode);
261507a0 204 entry->compress_type = compress_type;
77cef2ec 205 entry->truncated_len = (u64)-1;
d899e052 206 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
80ff3856 207 set_bit(type, &entry->flags);
3eaa2885 208
4b46fce2
JB
209 if (dio)
210 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
211
e6dcd2dc
CM
212 /* one ref for the tree */
213 atomic_set(&entry->refs, 1);
214 init_waitqueue_head(&entry->wait);
215 INIT_LIST_HEAD(&entry->list);
3eaa2885 216 INIT_LIST_HEAD(&entry->root_extent_list);
9afab882
MX
217 INIT_LIST_HEAD(&entry->work_list);
218 init_completion(&entry->completion);
2ab28f32 219 INIT_LIST_HEAD(&entry->log_list);
50d9aa99 220 INIT_LIST_HEAD(&entry->trans_list);
dc17ff8f 221
1abe9b8a 222 trace_btrfs_ordered_extent_add(inode, entry);
223
5fd02043 224 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
225 node = tree_insert(&tree->tree, file_offset,
226 &entry->rb_node);
43c04fb1
JM
227 if (node)
228 ordered_data_tree_panic(inode, -EEXIST, file_offset);
5fd02043 229 spin_unlock_irq(&tree->lock);
d397712b 230
199c2a9c 231 spin_lock(&root->ordered_extent_lock);
3eaa2885 232 list_add_tail(&entry->root_extent_list,
199c2a9c
MX
233 &root->ordered_extents);
234 root->nr_ordered_extents++;
235 if (root->nr_ordered_extents == 1) {
236 spin_lock(&root->fs_info->ordered_root_lock);
237 BUG_ON(!list_empty(&root->ordered_root));
238 list_add_tail(&root->ordered_root,
239 &root->fs_info->ordered_roots);
240 spin_unlock(&root->fs_info->ordered_root_lock);
241 }
242 spin_unlock(&root->ordered_extent_lock);
3eaa2885 243
dc17ff8f
CM
244 return 0;
245}
246
4b46fce2
JB
247int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
248 u64 start, u64 len, u64 disk_len, int type)
249{
250 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261507a0
LZ
251 disk_len, type, 0,
252 BTRFS_COMPRESS_NONE);
4b46fce2
JB
253}
254
255int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
256 u64 start, u64 len, u64 disk_len, int type)
257{
258 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261507a0
LZ
259 disk_len, type, 1,
260 BTRFS_COMPRESS_NONE);
261}
262
263int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
264 u64 start, u64 len, u64 disk_len,
265 int type, int compress_type)
266{
267 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
268 disk_len, type, 0,
269 compress_type);
4b46fce2
JB
270}
271
eb84ae03
CM
272/*
273 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
3edf7d33
CM
274 * when an ordered extent is finished. If the list covers more than one
275 * ordered extent, it is split across multiples.
eb84ae03 276 */
143bede5
JM
277void btrfs_add_ordered_sum(struct inode *inode,
278 struct btrfs_ordered_extent *entry,
279 struct btrfs_ordered_sum *sum)
dc17ff8f 280{
e6dcd2dc 281 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 282
e6dcd2dc 283 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 284 spin_lock_irq(&tree->lock);
e6dcd2dc 285 list_add_tail(&sum->list, &entry->list);
5fd02043 286 spin_unlock_irq(&tree->lock);
dc17ff8f
CM
287}
288
163cf09c
CM
289/*
290 * this is used to account for finished IO across a given range
291 * of the file. The IO may span ordered extents. If
292 * a given ordered_extent is completely done, 1 is returned, otherwise
293 * 0.
294 *
295 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
296 * to make sure this function only returns 1 once for a given ordered extent.
297 *
298 * file_offset is updated to one byte past the range that is recorded as
299 * complete. This allows you to walk forward in the file.
300 */
301int btrfs_dec_test_first_ordered_pending(struct inode *inode,
302 struct btrfs_ordered_extent **cached,
5fd02043 303 u64 *file_offset, u64 io_size, int uptodate)
163cf09c
CM
304{
305 struct btrfs_ordered_inode_tree *tree;
306 struct rb_node *node;
307 struct btrfs_ordered_extent *entry = NULL;
308 int ret;
5fd02043 309 unsigned long flags;
163cf09c
CM
310 u64 dec_end;
311 u64 dec_start;
312 u64 to_dec;
313
314 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 315 spin_lock_irqsave(&tree->lock, flags);
163cf09c
CM
316 node = tree_search(tree, *file_offset);
317 if (!node) {
318 ret = 1;
319 goto out;
320 }
321
322 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
323 if (!offset_in_entry(entry, *file_offset)) {
324 ret = 1;
325 goto out;
326 }
327
328 dec_start = max(*file_offset, entry->file_offset);
329 dec_end = min(*file_offset + io_size, entry->file_offset +
330 entry->len);
331 *file_offset = dec_end;
332 if (dec_start > dec_end) {
efe120a0
FH
333 btrfs_crit(BTRFS_I(inode)->root->fs_info,
334 "bad ordering dec_start %llu end %llu", dec_start, dec_end);
163cf09c
CM
335 }
336 to_dec = dec_end - dec_start;
337 if (to_dec > entry->bytes_left) {
efe120a0
FH
338 btrfs_crit(BTRFS_I(inode)->root->fs_info,
339 "bad ordered accounting left %llu size %llu",
340 entry->bytes_left, to_dec);
163cf09c
CM
341 }
342 entry->bytes_left -= to_dec;
5fd02043
JB
343 if (!uptodate)
344 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
345
af7a6509 346 if (entry->bytes_left == 0) {
163cf09c 347 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
a83342aa
DS
348 /*
349 * Implicit memory barrier after test_and_set_bit
350 */
af7a6509
MX
351 if (waitqueue_active(&entry->wait))
352 wake_up(&entry->wait);
353 } else {
163cf09c 354 ret = 1;
af7a6509 355 }
163cf09c
CM
356out:
357 if (!ret && cached && entry) {
358 *cached = entry;
359 atomic_inc(&entry->refs);
360 }
5fd02043 361 spin_unlock_irqrestore(&tree->lock, flags);
163cf09c
CM
362 return ret == 0;
363}
364
eb84ae03
CM
365/*
366 * this is used to account for finished IO across a given range
367 * of the file. The IO should not span ordered extents. If
368 * a given ordered_extent is completely done, 1 is returned, otherwise
369 * 0.
370 *
371 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
372 * to make sure this function only returns 1 once for a given ordered extent.
373 */
e6dcd2dc 374int btrfs_dec_test_ordered_pending(struct inode *inode,
5a1a3df1 375 struct btrfs_ordered_extent **cached,
5fd02043 376 u64 file_offset, u64 io_size, int uptodate)
dc17ff8f 377{
e6dcd2dc 378 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 379 struct rb_node *node;
5a1a3df1 380 struct btrfs_ordered_extent *entry = NULL;
5fd02043 381 unsigned long flags;
e6dcd2dc
CM
382 int ret;
383
384 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043
JB
385 spin_lock_irqsave(&tree->lock, flags);
386 if (cached && *cached) {
387 entry = *cached;
388 goto have_entry;
389 }
390
e6dcd2dc 391 node = tree_search(tree, file_offset);
dc17ff8f 392 if (!node) {
e6dcd2dc
CM
393 ret = 1;
394 goto out;
dc17ff8f
CM
395 }
396
e6dcd2dc 397 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
5fd02043 398have_entry:
e6dcd2dc
CM
399 if (!offset_in_entry(entry, file_offset)) {
400 ret = 1;
401 goto out;
dc17ff8f 402 }
e6dcd2dc 403
8b62b72b 404 if (io_size > entry->bytes_left) {
efe120a0
FH
405 btrfs_crit(BTRFS_I(inode)->root->fs_info,
406 "bad ordered accounting left %llu size %llu",
c1c9ff7c 407 entry->bytes_left, io_size);
8b62b72b
CM
408 }
409 entry->bytes_left -= io_size;
5fd02043
JB
410 if (!uptodate)
411 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
412
af7a6509 413 if (entry->bytes_left == 0) {
e6dcd2dc 414 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
a83342aa
DS
415 /*
416 * Implicit memory barrier after test_and_set_bit
417 */
af7a6509
MX
418 if (waitqueue_active(&entry->wait))
419 wake_up(&entry->wait);
420 } else {
8b62b72b 421 ret = 1;
af7a6509 422 }
e6dcd2dc 423out:
5a1a3df1
JB
424 if (!ret && cached && entry) {
425 *cached = entry;
426 atomic_inc(&entry->refs);
427 }
5fd02043 428 spin_unlock_irqrestore(&tree->lock, flags);
e6dcd2dc
CM
429 return ret == 0;
430}
dc17ff8f 431
2ab28f32 432/* Needs to either be called under a log transaction or the log_mutex */
827463c4 433void btrfs_get_logged_extents(struct inode *inode,
0870295b
FM
434 struct list_head *logged_list,
435 const loff_t start,
436 const loff_t end)
2ab28f32
JB
437{
438 struct btrfs_ordered_inode_tree *tree;
439 struct btrfs_ordered_extent *ordered;
440 struct rb_node *n;
0870295b 441 struct rb_node *prev;
2ab28f32
JB
442
443 tree = &BTRFS_I(inode)->ordered_tree;
444 spin_lock_irq(&tree->lock);
0870295b
FM
445 n = __tree_search(&tree->tree, end, &prev);
446 if (!n)
447 n = prev;
448 for (; n; n = rb_prev(n)) {
2ab28f32 449 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
0870295b
FM
450 if (ordered->file_offset > end)
451 continue;
452 if (entry_end(ordered) <= start)
453 break;
4d884fce 454 if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
50d9aa99 455 continue;
0870295b 456 list_add(&ordered->log_list, logged_list);
827463c4 457 atomic_inc(&ordered->refs);
2ab28f32
JB
458 }
459 spin_unlock_irq(&tree->lock);
460}
461
827463c4
MX
462void btrfs_put_logged_extents(struct list_head *logged_list)
463{
464 struct btrfs_ordered_extent *ordered;
465
466 while (!list_empty(logged_list)) {
467 ordered = list_first_entry(logged_list,
468 struct btrfs_ordered_extent,
469 log_list);
470 list_del_init(&ordered->log_list);
471 btrfs_put_ordered_extent(ordered);
472 }
473}
474
475void btrfs_submit_logged_extents(struct list_head *logged_list,
476 struct btrfs_root *log)
477{
478 int index = log->log_transid % 2;
479
480 spin_lock_irq(&log->log_extents_lock[index]);
481 list_splice_tail(logged_list, &log->logged_list[index]);
482 spin_unlock_irq(&log->log_extents_lock[index]);
483}
484
50d9aa99
JB
485void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
486 struct btrfs_root *log, u64 transid)
2ab28f32
JB
487{
488 struct btrfs_ordered_extent *ordered;
489 int index = transid % 2;
490
491 spin_lock_irq(&log->log_extents_lock[index]);
492 while (!list_empty(&log->logged_list[index])) {
493 ordered = list_first_entry(&log->logged_list[index],
494 struct btrfs_ordered_extent,
495 log_list);
496 list_del_init(&ordered->log_list);
497 spin_unlock_irq(&log->log_extents_lock[index]);
98ce2ded
LB
498
499 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
500 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
501 struct inode *inode = ordered->inode;
502 u64 start = ordered->file_offset;
503 u64 end = ordered->file_offset + ordered->len - 1;
504
505 WARN_ON(!inode);
506 filemap_fdatawrite_range(inode->i_mapping, start, end);
507 }
2ab28f32
JB
508 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
509 &ordered->flags));
98ce2ded 510
7558c8bc
FM
511 /*
512 * If our ordered extent completed it means it updated the
513 * fs/subvol and csum trees already, so no need to make the
514 * current transaction's commit wait for it, as we end up
515 * holding memory unnecessarily and delaying the inode's iput
516 * until the transaction commit (we schedule an iput for the
517 * inode when the ordered extent's refcount drops to 0), which
518 * prevents it from being evictable until the transaction
519 * commits.
520 */
521 if (test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags))
522 btrfs_put_ordered_extent(ordered);
523 else
524 list_add_tail(&ordered->trans_list, &trans->ordered);
525
2ab28f32
JB
526 spin_lock_irq(&log->log_extents_lock[index]);
527 }
528 spin_unlock_irq(&log->log_extents_lock[index]);
529}
530
531void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
532{
533 struct btrfs_ordered_extent *ordered;
534 int index = transid % 2;
535
536 spin_lock_irq(&log->log_extents_lock[index]);
537 while (!list_empty(&log->logged_list[index])) {
538 ordered = list_first_entry(&log->logged_list[index],
539 struct btrfs_ordered_extent,
540 log_list);
541 list_del_init(&ordered->log_list);
542 spin_unlock_irq(&log->log_extents_lock[index]);
543 btrfs_put_ordered_extent(ordered);
544 spin_lock_irq(&log->log_extents_lock[index]);
545 }
546 spin_unlock_irq(&log->log_extents_lock[index]);
547}
548
eb84ae03
CM
549/*
550 * used to drop a reference on an ordered extent. This will free
551 * the extent if the last reference is dropped
552 */
143bede5 553void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
e6dcd2dc 554{
ba1da2f4
CM
555 struct list_head *cur;
556 struct btrfs_ordered_sum *sum;
557
1abe9b8a 558 trace_btrfs_ordered_extent_put(entry->inode, entry);
559
ba1da2f4 560 if (atomic_dec_and_test(&entry->refs)) {
61de718f
FM
561 ASSERT(list_empty(&entry->log_list));
562 ASSERT(list_empty(&entry->trans_list));
563 ASSERT(list_empty(&entry->root_extent_list));
564 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
5fd02043
JB
565 if (entry->inode)
566 btrfs_add_delayed_iput(entry->inode);
d397712b 567 while (!list_empty(&entry->list)) {
ba1da2f4
CM
568 cur = entry->list.next;
569 sum = list_entry(cur, struct btrfs_ordered_sum, list);
570 list_del(&sum->list);
571 kfree(sum);
572 }
6352b91d 573 kmem_cache_free(btrfs_ordered_extent_cache, entry);
ba1da2f4 574 }
dc17ff8f 575}
cee36a03 576
eb84ae03
CM
577/*
578 * remove an ordered extent from the tree. No references are dropped
5fd02043 579 * and waiters are woken up.
eb84ae03 580 */
5fd02043
JB
581void btrfs_remove_ordered_extent(struct inode *inode,
582 struct btrfs_ordered_extent *entry)
cee36a03 583{
e6dcd2dc 584 struct btrfs_ordered_inode_tree *tree;
287a0ab9 585 struct btrfs_root *root = BTRFS_I(inode)->root;
cee36a03 586 struct rb_node *node;
cee36a03 587
e6dcd2dc 588 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 589 spin_lock_irq(&tree->lock);
e6dcd2dc 590 node = &entry->rb_node;
cee36a03 591 rb_erase(node, &tree->tree);
61de718f 592 RB_CLEAR_NODE(node);
1b8e7e45
FDBM
593 if (tree->last == node)
594 tree->last = NULL;
e6dcd2dc 595 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
5fd02043 596 spin_unlock_irq(&tree->lock);
3eaa2885 597
199c2a9c 598 spin_lock(&root->ordered_extent_lock);
3eaa2885 599 list_del_init(&entry->root_extent_list);
199c2a9c 600 root->nr_ordered_extents--;
5a3f23d5 601
1abe9b8a 602 trace_btrfs_ordered_extent_remove(inode, entry);
603
199c2a9c
MX
604 if (!root->nr_ordered_extents) {
605 spin_lock(&root->fs_info->ordered_root_lock);
606 BUG_ON(list_empty(&root->ordered_root));
607 list_del_init(&root->ordered_root);
608 spin_unlock(&root->fs_info->ordered_root_lock);
609 }
610 spin_unlock(&root->ordered_extent_lock);
e6dcd2dc 611 wake_up(&entry->wait);
cee36a03
CM
612}
613
d458b054 614static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
9afab882
MX
615{
616 struct btrfs_ordered_extent *ordered;
617
618 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
619 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
620 complete(&ordered->completion);
621}
622
d352ac68
CM
623/*
624 * wait for all the ordered extents in a root. This is done when balancing
625 * space between drives.
626 */
31f3d255 627int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
3eaa2885 628{
9afab882 629 struct list_head splice, works;
9afab882 630 struct btrfs_ordered_extent *ordered, *next;
b0244199 631 int count = 0;
3eaa2885
CM
632
633 INIT_LIST_HEAD(&splice);
9afab882 634 INIT_LIST_HEAD(&works);
3eaa2885 635
31f3d255 636 mutex_lock(&root->ordered_extent_mutex);
199c2a9c
MX
637 spin_lock(&root->ordered_extent_lock);
638 list_splice_init(&root->ordered_extents, &splice);
b0244199 639 while (!list_empty(&splice) && nr) {
199c2a9c
MX
640 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
641 root_extent_list);
642 list_move_tail(&ordered->root_extent_list,
643 &root->ordered_extents);
199c2a9c
MX
644 atomic_inc(&ordered->refs);
645 spin_unlock(&root->ordered_extent_lock);
3eaa2885 646
a44903ab 647 btrfs_init_work(&ordered->flush_work,
9e0af237 648 btrfs_flush_delalloc_helper,
a44903ab 649 btrfs_run_ordered_extent_work, NULL, NULL);
199c2a9c 650 list_add_tail(&ordered->work_list, &works);
a44903ab
QW
651 btrfs_queue_work(root->fs_info->flush_workers,
652 &ordered->flush_work);
3eaa2885 653
9afab882 654 cond_resched();
199c2a9c 655 spin_lock(&root->ordered_extent_lock);
b0244199
MX
656 if (nr != -1)
657 nr--;
658 count++;
3eaa2885 659 }
b0244199 660 list_splice_tail(&splice, &root->ordered_extents);
199c2a9c 661 spin_unlock(&root->ordered_extent_lock);
9afab882
MX
662
663 list_for_each_entry_safe(ordered, next, &works, work_list) {
664 list_del_init(&ordered->work_list);
665 wait_for_completion(&ordered->completion);
9afab882 666 btrfs_put_ordered_extent(ordered);
9afab882
MX
667 cond_resched();
668 }
31f3d255 669 mutex_unlock(&root->ordered_extent_mutex);
b0244199
MX
670
671 return count;
3eaa2885
CM
672}
673
b0244199 674void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
199c2a9c
MX
675{
676 struct btrfs_root *root;
677 struct list_head splice;
b0244199 678 int done;
199c2a9c
MX
679
680 INIT_LIST_HEAD(&splice);
681
8b9d83cd 682 mutex_lock(&fs_info->ordered_operations_mutex);
199c2a9c
MX
683 spin_lock(&fs_info->ordered_root_lock);
684 list_splice_init(&fs_info->ordered_roots, &splice);
b0244199 685 while (!list_empty(&splice) && nr) {
199c2a9c
MX
686 root = list_first_entry(&splice, struct btrfs_root,
687 ordered_root);
688 root = btrfs_grab_fs_root(root);
689 BUG_ON(!root);
690 list_move_tail(&root->ordered_root,
691 &fs_info->ordered_roots);
692 spin_unlock(&fs_info->ordered_root_lock);
693
31f3d255 694 done = btrfs_wait_ordered_extents(root, nr);
199c2a9c
MX
695 btrfs_put_fs_root(root);
696
697 spin_lock(&fs_info->ordered_root_lock);
b0244199
MX
698 if (nr != -1) {
699 nr -= done;
700 WARN_ON(nr < 0);
701 }
199c2a9c 702 }
931aa877 703 list_splice_tail(&splice, &fs_info->ordered_roots);
199c2a9c 704 spin_unlock(&fs_info->ordered_root_lock);
8b9d83cd 705 mutex_unlock(&fs_info->ordered_operations_mutex);
199c2a9c
MX
706}
707
eb84ae03
CM
708/*
709 * Used to start IO or wait for a given ordered extent to finish.
710 *
711 * If wait is one, this effectively waits on page writeback for all the pages
712 * in the extent, and it waits on the io completion code to insert
713 * metadata into the btree corresponding to the extent
714 */
715void btrfs_start_ordered_extent(struct inode *inode,
716 struct btrfs_ordered_extent *entry,
717 int wait)
e6dcd2dc
CM
718{
719 u64 start = entry->file_offset;
720 u64 end = start + entry->len - 1;
e1b81e67 721
1abe9b8a 722 trace_btrfs_ordered_extent_start(inode, entry);
723
eb84ae03
CM
724 /*
725 * pages in the range can be dirty, clean or writeback. We
726 * start IO on any dirty ones so the wait doesn't stall waiting
b2570314 727 * for the flusher thread to find them
eb84ae03 728 */
4b46fce2
JB
729 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
730 filemap_fdatawrite_range(inode->i_mapping, start, end);
c8b97818 731 if (wait) {
e6dcd2dc
CM
732 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
733 &entry->flags));
c8b97818 734 }
e6dcd2dc 735}
cee36a03 736
eb84ae03
CM
737/*
738 * Used to wait on ordered extents across a large range of bytes.
739 */
0ef8b726 740int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
e6dcd2dc 741{
0ef8b726 742 int ret = 0;
28aeeac1 743 int ret_wb = 0;
e6dcd2dc 744 u64 end;
e5a2217e 745 u64 orig_end;
e6dcd2dc 746 struct btrfs_ordered_extent *ordered;
e5a2217e
CM
747
748 if (start + len < start) {
f421950f 749 orig_end = INT_LIMIT(loff_t);
e5a2217e
CM
750 } else {
751 orig_end = start + len - 1;
f421950f
CM
752 if (orig_end > INT_LIMIT(loff_t))
753 orig_end = INT_LIMIT(loff_t);
e5a2217e 754 }
551ebb2d 755
e5a2217e
CM
756 /* start IO across the range first to instantiate any delalloc
757 * extents
758 */
728404da 759 ret = btrfs_fdatawrite_range(inode, start, orig_end);
0ef8b726
JB
760 if (ret)
761 return ret;
728404da 762
28aeeac1
FM
763 /*
764 * If we have a writeback error don't return immediately. Wait first
765 * for any ordered extents that haven't completed yet. This is to make
766 * sure no one can dirty the same page ranges and call writepages()
767 * before the ordered extents complete - to avoid failures (-EEXIST)
768 * when adding the new ordered extents to the ordered tree.
769 */
770 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
e5a2217e 771
f421950f 772 end = orig_end;
d397712b 773 while (1) {
e6dcd2dc 774 ordered = btrfs_lookup_first_ordered_extent(inode, end);
d397712b 775 if (!ordered)
e6dcd2dc 776 break;
e5a2217e 777 if (ordered->file_offset > orig_end) {
e6dcd2dc
CM
778 btrfs_put_ordered_extent(ordered);
779 break;
780 }
b52abf1e 781 if (ordered->file_offset + ordered->len <= start) {
e6dcd2dc
CM
782 btrfs_put_ordered_extent(ordered);
783 break;
784 }
e5a2217e 785 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc 786 end = ordered->file_offset;
0ef8b726
JB
787 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
788 ret = -EIO;
e6dcd2dc 789 btrfs_put_ordered_extent(ordered);
0ef8b726 790 if (ret || end == 0 || end == start)
e6dcd2dc
CM
791 break;
792 end--;
793 }
28aeeac1 794 return ret_wb ? ret_wb : ret;
cee36a03
CM
795}
796
eb84ae03
CM
797/*
798 * find an ordered extent corresponding to file_offset. return NULL if
799 * nothing is found, otherwise take a reference on the extent and return it
800 */
e6dcd2dc
CM
801struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
802 u64 file_offset)
803{
804 struct btrfs_ordered_inode_tree *tree;
805 struct rb_node *node;
806 struct btrfs_ordered_extent *entry = NULL;
807
808 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 809 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
810 node = tree_search(tree, file_offset);
811 if (!node)
812 goto out;
813
814 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
815 if (!offset_in_entry(entry, file_offset))
816 entry = NULL;
817 if (entry)
818 atomic_inc(&entry->refs);
819out:
5fd02043 820 spin_unlock_irq(&tree->lock);
e6dcd2dc
CM
821 return entry;
822}
823
4b46fce2
JB
824/* Since the DIO code tries to lock a wide area we need to look for any ordered
825 * extents that exist in the range, rather than just the start of the range.
826 */
827struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
828 u64 file_offset,
829 u64 len)
830{
831 struct btrfs_ordered_inode_tree *tree;
832 struct rb_node *node;
833 struct btrfs_ordered_extent *entry = NULL;
834
835 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 836 spin_lock_irq(&tree->lock);
4b46fce2
JB
837 node = tree_search(tree, file_offset);
838 if (!node) {
839 node = tree_search(tree, file_offset + len);
840 if (!node)
841 goto out;
842 }
843
844 while (1) {
845 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
846 if (range_overlaps(entry, file_offset, len))
847 break;
848
849 if (entry->file_offset >= file_offset + len) {
850 entry = NULL;
851 break;
852 }
853 entry = NULL;
854 node = rb_next(node);
855 if (!node)
856 break;
857 }
858out:
859 if (entry)
860 atomic_inc(&entry->refs);
5fd02043 861 spin_unlock_irq(&tree->lock);
4b46fce2
JB
862 return entry;
863}
864
b659ef02
FM
865bool btrfs_have_ordered_extents_in_range(struct inode *inode,
866 u64 file_offset,
867 u64 len)
868{
869 struct btrfs_ordered_extent *oe;
870
871 oe = btrfs_lookup_ordered_range(inode, file_offset, len);
872 if (oe) {
873 btrfs_put_ordered_extent(oe);
874 return true;
875 }
876 return false;
877}
878
eb84ae03
CM
879/*
880 * lookup and return any extent before 'file_offset'. NULL is returned
881 * if none is found
882 */
e6dcd2dc 883struct btrfs_ordered_extent *
d397712b 884btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
e6dcd2dc
CM
885{
886 struct btrfs_ordered_inode_tree *tree;
887 struct rb_node *node;
888 struct btrfs_ordered_extent *entry = NULL;
889
890 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 891 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
892 node = tree_search(tree, file_offset);
893 if (!node)
894 goto out;
895
896 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
897 atomic_inc(&entry->refs);
898out:
5fd02043 899 spin_unlock_irq(&tree->lock);
e6dcd2dc 900 return entry;
81d7ed29 901}
dbe674a9 902
eb84ae03
CM
903/*
904 * After an extent is done, call this to conditionally update the on disk
905 * i_size. i_size is updated to cover any fully written part of the file.
906 */
c2167754 907int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
dbe674a9
CM
908 struct btrfs_ordered_extent *ordered)
909{
910 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
dbe674a9
CM
911 u64 disk_i_size;
912 u64 new_i_size;
c2167754 913 u64 i_size = i_size_read(inode);
dbe674a9 914 struct rb_node *node;
c2167754 915 struct rb_node *prev = NULL;
dbe674a9 916 struct btrfs_ordered_extent *test;
c2167754
YZ
917 int ret = 1;
918
77cef2ec
JB
919 spin_lock_irq(&tree->lock);
920 if (ordered) {
c2167754 921 offset = entry_end(ordered);
77cef2ec
JB
922 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
923 offset = min(offset,
924 ordered->file_offset +
925 ordered->truncated_len);
926 } else {
a038fab0 927 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
77cef2ec 928 }
dbe674a9
CM
929 disk_i_size = BTRFS_I(inode)->disk_i_size;
930
c2167754
YZ
931 /* truncate file */
932 if (disk_i_size > i_size) {
933 BTRFS_I(inode)->disk_i_size = i_size;
934 ret = 0;
935 goto out;
936 }
937
dbe674a9
CM
938 /*
939 * if the disk i_size is already at the inode->i_size, or
940 * this ordered extent is inside the disk i_size, we're done
941 */
5d1f4020
JB
942 if (disk_i_size == i_size)
943 goto out;
944
945 /*
946 * We still need to update disk_i_size if outstanding_isize is greater
947 * than disk_i_size.
948 */
949 if (offset <= disk_i_size &&
950 (!ordered || ordered->outstanding_isize <= disk_i_size))
dbe674a9 951 goto out;
dbe674a9 952
dbe674a9
CM
953 /*
954 * walk backward from this ordered extent to disk_i_size.
955 * if we find an ordered extent then we can't update disk i_size
956 * yet
957 */
c2167754
YZ
958 if (ordered) {
959 node = rb_prev(&ordered->rb_node);
960 } else {
961 prev = tree_search(tree, offset);
962 /*
963 * we insert file extents without involving ordered struct,
964 * so there should be no ordered struct cover this offset
965 */
966 if (prev) {
967 test = rb_entry(prev, struct btrfs_ordered_extent,
968 rb_node);
969 BUG_ON(offset_in_entry(test, offset));
970 }
971 node = prev;
972 }
5fd02043 973 for (; node; node = rb_prev(node)) {
dbe674a9 974 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
5fd02043
JB
975
976 /* We treat this entry as if it doesnt exist */
977 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
978 continue;
dbe674a9
CM
979 if (test->file_offset + test->len <= disk_i_size)
980 break;
c2167754 981 if (test->file_offset >= i_size)
dbe674a9 982 break;
59fe4f41 983 if (entry_end(test) > disk_i_size) {
b9a8cc5b
MX
984 /*
985 * we don't update disk_i_size now, so record this
986 * undealt i_size. Or we will not know the real
987 * i_size.
988 */
989 if (test->outstanding_isize < offset)
990 test->outstanding_isize = offset;
991 if (ordered &&
992 ordered->outstanding_isize >
993 test->outstanding_isize)
994 test->outstanding_isize =
995 ordered->outstanding_isize;
dbe674a9 996 goto out;
5fd02043 997 }
dbe674a9 998 }
b9a8cc5b 999 new_i_size = min_t(u64, offset, i_size);
dbe674a9
CM
1000
1001 /*
b9a8cc5b
MX
1002 * Some ordered extents may completed before the current one, and
1003 * we hold the real i_size in ->outstanding_isize.
dbe674a9 1004 */
b9a8cc5b
MX
1005 if (ordered && ordered->outstanding_isize > new_i_size)
1006 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
dbe674a9 1007 BTRFS_I(inode)->disk_i_size = new_i_size;
c2167754 1008 ret = 0;
dbe674a9 1009out:
c2167754 1010 /*
5fd02043
JB
1011 * We need to do this because we can't remove ordered extents until
1012 * after the i_disk_size has been updated and then the inode has been
1013 * updated to reflect the change, so we need to tell anybody who finds
1014 * this ordered extent that we've already done all the real work, we
1015 * just haven't completed all the other work.
c2167754
YZ
1016 */
1017 if (ordered)
5fd02043
JB
1018 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1019 spin_unlock_irq(&tree->lock);
c2167754 1020 return ret;
dbe674a9 1021}
ba1da2f4 1022
eb84ae03
CM
1023/*
1024 * search the ordered extents for one corresponding to 'offset' and
1025 * try to find a checksum. This is used because we allow pages to
1026 * be reclaimed before their checksum is actually put into the btree
1027 */
d20f7043 1028int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
e4100d98 1029 u32 *sum, int len)
ba1da2f4
CM
1030{
1031 struct btrfs_ordered_sum *ordered_sum;
ba1da2f4
CM
1032 struct btrfs_ordered_extent *ordered;
1033 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
3edf7d33
CM
1034 unsigned long num_sectors;
1035 unsigned long i;
1036 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
e4100d98 1037 int index = 0;
ba1da2f4
CM
1038
1039 ordered = btrfs_lookup_ordered_extent(inode, offset);
1040 if (!ordered)
e4100d98 1041 return 0;
ba1da2f4 1042
5fd02043 1043 spin_lock_irq(&tree->lock);
c6e30871 1044 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
e4100d98
MX
1045 if (disk_bytenr >= ordered_sum->bytenr &&
1046 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1047 i = (disk_bytenr - ordered_sum->bytenr) >>
1048 inode->i_sb->s_blocksize_bits;
e4100d98
MX
1049 num_sectors = ordered_sum->len >>
1050 inode->i_sb->s_blocksize_bits;
f51a4a18
MX
1051 num_sectors = min_t(int, len - index, num_sectors - i);
1052 memcpy(sum + index, ordered_sum->sums + i,
1053 num_sectors);
1054
1055 index += (int)num_sectors;
1056 if (index == len)
1057 goto out;
1058 disk_bytenr += num_sectors * sectorsize;
ba1da2f4
CM
1059 }
1060 }
1061out:
5fd02043 1062 spin_unlock_irq(&tree->lock);
89642229 1063 btrfs_put_ordered_extent(ordered);
e4100d98 1064 return index;
ba1da2f4
CM
1065}
1066
6352b91d
MX
1067int __init ordered_data_init(void)
1068{
1069 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1070 sizeof(struct btrfs_ordered_extent), 0,
1071 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1072 NULL);
1073 if (!btrfs_ordered_extent_cache)
1074 return -ENOMEM;
25287e0a 1075
6352b91d
MX
1076 return 0;
1077}
1078
1079void ordered_data_exit(void)
1080{
1081 if (btrfs_ordered_extent_cache)
1082 kmem_cache_destroy(btrfs_ordered_extent_cache);
1083}
This page took 0.338803 seconds and 5 git commands to generate.