Btrfs: allow partial ordered extent completion
[deliverable/linux.git] / fs / btrfs / ordered-data.c
CommitLineData
dc17ff8f
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
dc17ff8f 19#include <linux/slab.h>
d6bfde87 20#include <linux/blkdev.h>
f421950f
CM
21#include <linux/writeback.h>
22#include <linux/pagevec.h>
dc17ff8f
CM
23#include "ctree.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
e6dcd2dc 26#include "extent_io.h"
199c2a9c 27#include "disk-io.h"
dc17ff8f 28
6352b91d
MX
29static struct kmem_cache *btrfs_ordered_extent_cache;
30
e6dcd2dc 31static u64 entry_end(struct btrfs_ordered_extent *entry)
dc17ff8f 32{
e6dcd2dc
CM
33 if (entry->file_offset + entry->len < entry->file_offset)
34 return (u64)-1;
35 return entry->file_offset + entry->len;
dc17ff8f
CM
36}
37
d352ac68
CM
38/* returns NULL if the insertion worked, or it returns the node it did find
39 * in the tree
40 */
e6dcd2dc
CM
41static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42 struct rb_node *node)
dc17ff8f 43{
d397712b
CM
44 struct rb_node **p = &root->rb_node;
45 struct rb_node *parent = NULL;
e6dcd2dc 46 struct btrfs_ordered_extent *entry;
dc17ff8f 47
d397712b 48 while (*p) {
dc17ff8f 49 parent = *p;
e6dcd2dc 50 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
dc17ff8f 51
e6dcd2dc 52 if (file_offset < entry->file_offset)
dc17ff8f 53 p = &(*p)->rb_left;
e6dcd2dc 54 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
55 p = &(*p)->rb_right;
56 else
57 return parent;
58 }
59
60 rb_link_node(node, parent, p);
61 rb_insert_color(node, root);
62 return NULL;
63}
64
43c04fb1
JM
65static void ordered_data_tree_panic(struct inode *inode, int errno,
66 u64 offset)
67{
68 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
c1c9ff7c 70 "%llu\n", offset);
43c04fb1
JM
71}
72
d352ac68
CM
73/*
74 * look for a given offset in the tree, and if it can't be found return the
75 * first lesser offset
76 */
e6dcd2dc
CM
77static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78 struct rb_node **prev_ret)
dc17ff8f 79{
d397712b 80 struct rb_node *n = root->rb_node;
dc17ff8f 81 struct rb_node *prev = NULL;
e6dcd2dc
CM
82 struct rb_node *test;
83 struct btrfs_ordered_extent *entry;
84 struct btrfs_ordered_extent *prev_entry = NULL;
dc17ff8f 85
d397712b 86 while (n) {
e6dcd2dc 87 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
dc17ff8f
CM
88 prev = n;
89 prev_entry = entry;
dc17ff8f 90
e6dcd2dc 91 if (file_offset < entry->file_offset)
dc17ff8f 92 n = n->rb_left;
e6dcd2dc 93 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
94 n = n->rb_right;
95 else
96 return n;
97 }
98 if (!prev_ret)
99 return NULL;
100
d397712b 101 while (prev && file_offset >= entry_end(prev_entry)) {
e6dcd2dc
CM
102 test = rb_next(prev);
103 if (!test)
104 break;
105 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 rb_node);
107 if (file_offset < entry_end(prev_entry))
108 break;
109
110 prev = test;
111 }
112 if (prev)
113 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114 rb_node);
d397712b 115 while (prev && file_offset < entry_end(prev_entry)) {
e6dcd2dc
CM
116 test = rb_prev(prev);
117 if (!test)
118 break;
119 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120 rb_node);
121 prev = test;
dc17ff8f
CM
122 }
123 *prev_ret = prev;
124 return NULL;
125}
126
d352ac68
CM
127/*
128 * helper to check if a given offset is inside a given entry
129 */
e6dcd2dc
CM
130static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131{
132 if (file_offset < entry->file_offset ||
133 entry->file_offset + entry->len <= file_offset)
134 return 0;
135 return 1;
136}
137
4b46fce2
JB
138static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139 u64 len)
140{
141 if (file_offset + len <= entry->file_offset ||
142 entry->file_offset + entry->len <= file_offset)
143 return 0;
144 return 1;
145}
146
d352ac68
CM
147/*
148 * look find the first ordered struct that has this offset, otherwise
149 * the first one less than this offset
150 */
e6dcd2dc
CM
151static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152 u64 file_offset)
dc17ff8f 153{
e6dcd2dc 154 struct rb_root *root = &tree->tree;
c87fb6fd 155 struct rb_node *prev = NULL;
dc17ff8f 156 struct rb_node *ret;
e6dcd2dc
CM
157 struct btrfs_ordered_extent *entry;
158
159 if (tree->last) {
160 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161 rb_node);
162 if (offset_in_entry(entry, file_offset))
163 return tree->last;
164 }
165 ret = __tree_search(root, file_offset, &prev);
dc17ff8f 166 if (!ret)
e6dcd2dc
CM
167 ret = prev;
168 if (ret)
169 tree->last = ret;
dc17ff8f
CM
170 return ret;
171}
172
eb84ae03
CM
173/* allocate and add a new ordered_extent into the per-inode tree.
174 * file_offset is the logical offset in the file
175 *
176 * start is the disk block number of an extent already reserved in the
177 * extent allocation tree
178 *
179 * len is the length of the extent
180 *
eb84ae03
CM
181 * The tree is given a single reference on the ordered extent that was
182 * inserted.
183 */
4b46fce2
JB
184static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185 u64 start, u64 len, u64 disk_len,
261507a0 186 int type, int dio, int compress_type)
dc17ff8f 187{
199c2a9c 188 struct btrfs_root *root = BTRFS_I(inode)->root;
dc17ff8f 189 struct btrfs_ordered_inode_tree *tree;
e6dcd2dc
CM
190 struct rb_node *node;
191 struct btrfs_ordered_extent *entry;
dc17ff8f 192
e6dcd2dc 193 tree = &BTRFS_I(inode)->ordered_tree;
6352b91d 194 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
dc17ff8f
CM
195 if (!entry)
196 return -ENOMEM;
197
e6dcd2dc
CM
198 entry->file_offset = file_offset;
199 entry->start = start;
200 entry->len = len;
2ab28f32
JB
201 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
202 !(type == BTRFS_ORDERED_NOCOW))
203 entry->csum_bytes_left = disk_len;
c8b97818 204 entry->disk_len = disk_len;
8b62b72b 205 entry->bytes_left = len;
5fd02043 206 entry->inode = igrab(inode);
261507a0 207 entry->compress_type = compress_type;
77cef2ec 208 entry->truncated_len = (u64)-1;
d899e052 209 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
80ff3856 210 set_bit(type, &entry->flags);
3eaa2885 211
4b46fce2
JB
212 if (dio)
213 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
214
e6dcd2dc
CM
215 /* one ref for the tree */
216 atomic_set(&entry->refs, 1);
217 init_waitqueue_head(&entry->wait);
218 INIT_LIST_HEAD(&entry->list);
3eaa2885 219 INIT_LIST_HEAD(&entry->root_extent_list);
9afab882
MX
220 INIT_LIST_HEAD(&entry->work_list);
221 init_completion(&entry->completion);
2ab28f32 222 INIT_LIST_HEAD(&entry->log_list);
dc17ff8f 223
1abe9b8a 224 trace_btrfs_ordered_extent_add(inode, entry);
225
5fd02043 226 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
227 node = tree_insert(&tree->tree, file_offset,
228 &entry->rb_node);
43c04fb1
JM
229 if (node)
230 ordered_data_tree_panic(inode, -EEXIST, file_offset);
5fd02043 231 spin_unlock_irq(&tree->lock);
d397712b 232
199c2a9c 233 spin_lock(&root->ordered_extent_lock);
3eaa2885 234 list_add_tail(&entry->root_extent_list,
199c2a9c
MX
235 &root->ordered_extents);
236 root->nr_ordered_extents++;
237 if (root->nr_ordered_extents == 1) {
238 spin_lock(&root->fs_info->ordered_root_lock);
239 BUG_ON(!list_empty(&root->ordered_root));
240 list_add_tail(&root->ordered_root,
241 &root->fs_info->ordered_roots);
242 spin_unlock(&root->fs_info->ordered_root_lock);
243 }
244 spin_unlock(&root->ordered_extent_lock);
3eaa2885 245
dc17ff8f
CM
246 return 0;
247}
248
4b46fce2
JB
249int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
250 u64 start, u64 len, u64 disk_len, int type)
251{
252 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261507a0
LZ
253 disk_len, type, 0,
254 BTRFS_COMPRESS_NONE);
4b46fce2
JB
255}
256
257int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
258 u64 start, u64 len, u64 disk_len, int type)
259{
260 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261507a0
LZ
261 disk_len, type, 1,
262 BTRFS_COMPRESS_NONE);
263}
264
265int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
266 u64 start, u64 len, u64 disk_len,
267 int type, int compress_type)
268{
269 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
270 disk_len, type, 0,
271 compress_type);
4b46fce2
JB
272}
273
eb84ae03
CM
274/*
275 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
3edf7d33
CM
276 * when an ordered extent is finished. If the list covers more than one
277 * ordered extent, it is split across multiples.
eb84ae03 278 */
143bede5
JM
279void btrfs_add_ordered_sum(struct inode *inode,
280 struct btrfs_ordered_extent *entry,
281 struct btrfs_ordered_sum *sum)
dc17ff8f 282{
e6dcd2dc 283 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 284
e6dcd2dc 285 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 286 spin_lock_irq(&tree->lock);
e6dcd2dc 287 list_add_tail(&sum->list, &entry->list);
2ab28f32
JB
288 WARN_ON(entry->csum_bytes_left < sum->len);
289 entry->csum_bytes_left -= sum->len;
290 if (entry->csum_bytes_left == 0)
291 wake_up(&entry->wait);
5fd02043 292 spin_unlock_irq(&tree->lock);
dc17ff8f
CM
293}
294
163cf09c
CM
295/*
296 * this is used to account for finished IO across a given range
297 * of the file. The IO may span ordered extents. If
298 * a given ordered_extent is completely done, 1 is returned, otherwise
299 * 0.
300 *
301 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
302 * to make sure this function only returns 1 once for a given ordered extent.
303 *
304 * file_offset is updated to one byte past the range that is recorded as
305 * complete. This allows you to walk forward in the file.
306 */
307int btrfs_dec_test_first_ordered_pending(struct inode *inode,
308 struct btrfs_ordered_extent **cached,
5fd02043 309 u64 *file_offset, u64 io_size, int uptodate)
163cf09c
CM
310{
311 struct btrfs_ordered_inode_tree *tree;
312 struct rb_node *node;
313 struct btrfs_ordered_extent *entry = NULL;
314 int ret;
5fd02043 315 unsigned long flags;
163cf09c
CM
316 u64 dec_end;
317 u64 dec_start;
318 u64 to_dec;
319
320 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 321 spin_lock_irqsave(&tree->lock, flags);
163cf09c
CM
322 node = tree_search(tree, *file_offset);
323 if (!node) {
324 ret = 1;
325 goto out;
326 }
327
328 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
329 if (!offset_in_entry(entry, *file_offset)) {
330 ret = 1;
331 goto out;
332 }
333
334 dec_start = max(*file_offset, entry->file_offset);
335 dec_end = min(*file_offset + io_size, entry->file_offset +
336 entry->len);
337 *file_offset = dec_end;
338 if (dec_start > dec_end) {
339 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
c1c9ff7c 340 dec_start, dec_end);
163cf09c
CM
341 }
342 to_dec = dec_end - dec_start;
343 if (to_dec > entry->bytes_left) {
344 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
c1c9ff7c 345 entry->bytes_left, to_dec);
163cf09c
CM
346 }
347 entry->bytes_left -= to_dec;
5fd02043
JB
348 if (!uptodate)
349 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
350
163cf09c
CM
351 if (entry->bytes_left == 0)
352 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
353 else
354 ret = 1;
355out:
356 if (!ret && cached && entry) {
357 *cached = entry;
358 atomic_inc(&entry->refs);
359 }
5fd02043 360 spin_unlock_irqrestore(&tree->lock, flags);
163cf09c
CM
361 return ret == 0;
362}
363
eb84ae03
CM
364/*
365 * this is used to account for finished IO across a given range
366 * of the file. The IO should not span ordered extents. If
367 * a given ordered_extent is completely done, 1 is returned, otherwise
368 * 0.
369 *
370 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
371 * to make sure this function only returns 1 once for a given ordered extent.
372 */
e6dcd2dc 373int btrfs_dec_test_ordered_pending(struct inode *inode,
5a1a3df1 374 struct btrfs_ordered_extent **cached,
5fd02043 375 u64 file_offset, u64 io_size, int uptodate)
dc17ff8f 376{
e6dcd2dc 377 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 378 struct rb_node *node;
5a1a3df1 379 struct btrfs_ordered_extent *entry = NULL;
5fd02043 380 unsigned long flags;
e6dcd2dc
CM
381 int ret;
382
383 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043
JB
384 spin_lock_irqsave(&tree->lock, flags);
385 if (cached && *cached) {
386 entry = *cached;
387 goto have_entry;
388 }
389
e6dcd2dc 390 node = tree_search(tree, file_offset);
dc17ff8f 391 if (!node) {
e6dcd2dc
CM
392 ret = 1;
393 goto out;
dc17ff8f
CM
394 }
395
e6dcd2dc 396 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
5fd02043 397have_entry:
e6dcd2dc
CM
398 if (!offset_in_entry(entry, file_offset)) {
399 ret = 1;
400 goto out;
dc17ff8f 401 }
e6dcd2dc 402
8b62b72b
CM
403 if (io_size > entry->bytes_left) {
404 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
c1c9ff7c 405 entry->bytes_left, io_size);
8b62b72b
CM
406 }
407 entry->bytes_left -= io_size;
5fd02043
JB
408 if (!uptodate)
409 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
410
8b62b72b 411 if (entry->bytes_left == 0)
e6dcd2dc 412 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
8b62b72b
CM
413 else
414 ret = 1;
e6dcd2dc 415out:
5a1a3df1
JB
416 if (!ret && cached && entry) {
417 *cached = entry;
418 atomic_inc(&entry->refs);
419 }
5fd02043 420 spin_unlock_irqrestore(&tree->lock, flags);
e6dcd2dc
CM
421 return ret == 0;
422}
dc17ff8f 423
2ab28f32
JB
424/* Needs to either be called under a log transaction or the log_mutex */
425void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode)
426{
427 struct btrfs_ordered_inode_tree *tree;
428 struct btrfs_ordered_extent *ordered;
429 struct rb_node *n;
430 int index = log->log_transid % 2;
431
432 tree = &BTRFS_I(inode)->ordered_tree;
433 spin_lock_irq(&tree->lock);
434 for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
435 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
436 spin_lock(&log->log_extents_lock[index]);
437 if (list_empty(&ordered->log_list)) {
438 list_add_tail(&ordered->log_list, &log->logged_list[index]);
439 atomic_inc(&ordered->refs);
440 }
441 spin_unlock(&log->log_extents_lock[index]);
442 }
443 spin_unlock_irq(&tree->lock);
444}
445
446void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
447{
448 struct btrfs_ordered_extent *ordered;
449 int index = transid % 2;
450
451 spin_lock_irq(&log->log_extents_lock[index]);
452 while (!list_empty(&log->logged_list[index])) {
453 ordered = list_first_entry(&log->logged_list[index],
454 struct btrfs_ordered_extent,
455 log_list);
456 list_del_init(&ordered->log_list);
457 spin_unlock_irq(&log->log_extents_lock[index]);
458 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
459 &ordered->flags));
460 btrfs_put_ordered_extent(ordered);
461 spin_lock_irq(&log->log_extents_lock[index]);
462 }
463 spin_unlock_irq(&log->log_extents_lock[index]);
464}
465
466void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
467{
468 struct btrfs_ordered_extent *ordered;
469 int index = transid % 2;
470
471 spin_lock_irq(&log->log_extents_lock[index]);
472 while (!list_empty(&log->logged_list[index])) {
473 ordered = list_first_entry(&log->logged_list[index],
474 struct btrfs_ordered_extent,
475 log_list);
476 list_del_init(&ordered->log_list);
477 spin_unlock_irq(&log->log_extents_lock[index]);
478 btrfs_put_ordered_extent(ordered);
479 spin_lock_irq(&log->log_extents_lock[index]);
480 }
481 spin_unlock_irq(&log->log_extents_lock[index]);
482}
483
eb84ae03
CM
484/*
485 * used to drop a reference on an ordered extent. This will free
486 * the extent if the last reference is dropped
487 */
143bede5 488void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
e6dcd2dc 489{
ba1da2f4
CM
490 struct list_head *cur;
491 struct btrfs_ordered_sum *sum;
492
1abe9b8a 493 trace_btrfs_ordered_extent_put(entry->inode, entry);
494
ba1da2f4 495 if (atomic_dec_and_test(&entry->refs)) {
5fd02043
JB
496 if (entry->inode)
497 btrfs_add_delayed_iput(entry->inode);
d397712b 498 while (!list_empty(&entry->list)) {
ba1da2f4
CM
499 cur = entry->list.next;
500 sum = list_entry(cur, struct btrfs_ordered_sum, list);
501 list_del(&sum->list);
502 kfree(sum);
503 }
6352b91d 504 kmem_cache_free(btrfs_ordered_extent_cache, entry);
ba1da2f4 505 }
dc17ff8f 506}
cee36a03 507
eb84ae03
CM
508/*
509 * remove an ordered extent from the tree. No references are dropped
5fd02043 510 * and waiters are woken up.
eb84ae03 511 */
5fd02043
JB
512void btrfs_remove_ordered_extent(struct inode *inode,
513 struct btrfs_ordered_extent *entry)
cee36a03 514{
e6dcd2dc 515 struct btrfs_ordered_inode_tree *tree;
287a0ab9 516 struct btrfs_root *root = BTRFS_I(inode)->root;
cee36a03 517 struct rb_node *node;
cee36a03 518
e6dcd2dc 519 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 520 spin_lock_irq(&tree->lock);
e6dcd2dc 521 node = &entry->rb_node;
cee36a03 522 rb_erase(node, &tree->tree);
e6dcd2dc
CM
523 tree->last = NULL;
524 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
5fd02043 525 spin_unlock_irq(&tree->lock);
3eaa2885 526
199c2a9c 527 spin_lock(&root->ordered_extent_lock);
3eaa2885 528 list_del_init(&entry->root_extent_list);
199c2a9c 529 root->nr_ordered_extents--;
5a3f23d5 530
1abe9b8a 531 trace_btrfs_ordered_extent_remove(inode, entry);
532
5a3f23d5
CM
533 /*
534 * we have no more ordered extents for this inode and
535 * no dirty pages. We can safely remove it from the
536 * list of ordered extents
537 */
538 if (RB_EMPTY_ROOT(&tree->tree) &&
539 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
540 list_del_init(&BTRFS_I(inode)->ordered_operations);
541 }
199c2a9c
MX
542
543 if (!root->nr_ordered_extents) {
544 spin_lock(&root->fs_info->ordered_root_lock);
545 BUG_ON(list_empty(&root->ordered_root));
546 list_del_init(&root->ordered_root);
547 spin_unlock(&root->fs_info->ordered_root_lock);
548 }
549 spin_unlock(&root->ordered_extent_lock);
e6dcd2dc 550 wake_up(&entry->wait);
cee36a03
CM
551}
552
9afab882
MX
553static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
554{
555 struct btrfs_ordered_extent *ordered;
556
557 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
558 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
559 complete(&ordered->completion);
560}
561
d352ac68
CM
562/*
563 * wait for all the ordered extents in a root. This is done when balancing
564 * space between drives.
565 */
6bbe3a9c 566void btrfs_wait_ordered_extents(struct btrfs_root *root, int delay_iput)
3eaa2885 567{
9afab882 568 struct list_head splice, works;
9afab882 569 struct btrfs_ordered_extent *ordered, *next;
3eaa2885
CM
570 struct inode *inode;
571
572 INIT_LIST_HEAD(&splice);
9afab882 573 INIT_LIST_HEAD(&works);
3eaa2885 574
db1d607d 575 mutex_lock(&root->fs_info->ordered_operations_mutex);
199c2a9c
MX
576 spin_lock(&root->ordered_extent_lock);
577 list_splice_init(&root->ordered_extents, &splice);
5b21f2ed 578 while (!list_empty(&splice)) {
199c2a9c
MX
579 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
580 root_extent_list);
581 list_move_tail(&ordered->root_extent_list,
582 &root->ordered_extents);
3eaa2885 583 /*
5b21f2ed 584 * the inode may be getting freed (in sys_unlink path).
3eaa2885 585 */
5b21f2ed 586 inode = igrab(ordered->inode);
199c2a9c
MX
587 if (!inode) {
588 cond_resched_lock(&root->ordered_extent_lock);
589 continue;
590 }
5b21f2ed 591
199c2a9c
MX
592 atomic_inc(&ordered->refs);
593 spin_unlock(&root->ordered_extent_lock);
3eaa2885 594
199c2a9c
MX
595 ordered->flush_work.func = btrfs_run_ordered_extent_work;
596 list_add_tail(&ordered->work_list, &works);
597 btrfs_queue_worker(&root->fs_info->flush_workers,
598 &ordered->flush_work);
3eaa2885 599
9afab882 600 cond_resched();
199c2a9c 601 spin_lock(&root->ordered_extent_lock);
3eaa2885 602 }
199c2a9c 603 spin_unlock(&root->ordered_extent_lock);
9afab882
MX
604
605 list_for_each_entry_safe(ordered, next, &works, work_list) {
606 list_del_init(&ordered->work_list);
607 wait_for_completion(&ordered->completion);
608
609 inode = ordered->inode;
610 btrfs_put_ordered_extent(ordered);
611 if (delay_iput)
612 btrfs_add_delayed_iput(inode);
613 else
614 iput(inode);
615
616 cond_resched();
617 }
db1d607d 618 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3eaa2885
CM
619}
620
199c2a9c
MX
621void btrfs_wait_all_ordered_extents(struct btrfs_fs_info *fs_info,
622 int delay_iput)
623{
624 struct btrfs_root *root;
625 struct list_head splice;
626
627 INIT_LIST_HEAD(&splice);
628
629 spin_lock(&fs_info->ordered_root_lock);
630 list_splice_init(&fs_info->ordered_roots, &splice);
631 while (!list_empty(&splice)) {
632 root = list_first_entry(&splice, struct btrfs_root,
633 ordered_root);
634 root = btrfs_grab_fs_root(root);
635 BUG_ON(!root);
636 list_move_tail(&root->ordered_root,
637 &fs_info->ordered_roots);
638 spin_unlock(&fs_info->ordered_root_lock);
639
640 btrfs_wait_ordered_extents(root, delay_iput);
641 btrfs_put_fs_root(root);
642
643 spin_lock(&fs_info->ordered_root_lock);
644 }
645 spin_unlock(&fs_info->ordered_root_lock);
646}
647
5a3f23d5
CM
648/*
649 * this is used during transaction commit to write all the inodes
650 * added to the ordered operation list. These files must be fully on
651 * disk before the transaction commits.
652 *
653 * we have two modes here, one is to just start the IO via filemap_flush
654 * and the other is to wait for all the io. When we wait, we have an
655 * extra check to make sure the ordered operation list really is empty
656 * before we return
657 */
569e0f35
JB
658int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
659 struct btrfs_root *root, int wait)
5a3f23d5
CM
660{
661 struct btrfs_inode *btrfs_inode;
662 struct inode *inode;
569e0f35 663 struct btrfs_transaction *cur_trans = trans->transaction;
5a3f23d5 664 struct list_head splice;
25287e0a
MX
665 struct list_head works;
666 struct btrfs_delalloc_work *work, *next;
667 int ret = 0;
5a3f23d5
CM
668
669 INIT_LIST_HEAD(&splice);
25287e0a 670 INIT_LIST_HEAD(&works);
5a3f23d5 671
9ffba8cd 672 mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
199c2a9c 673 spin_lock(&root->fs_info->ordered_root_lock);
569e0f35 674 list_splice_init(&cur_trans->ordered_operations, &splice);
5a3f23d5
CM
675 while (!list_empty(&splice)) {
676 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
677 ordered_operations);
5a3f23d5
CM
678 inode = &btrfs_inode->vfs_inode;
679
680 list_del_init(&btrfs_inode->ordered_operations);
681
682 /*
683 * the inode may be getting freed (in sys_unlink path).
684 */
685 inode = igrab(inode);
25287e0a
MX
686 if (!inode)
687 continue;
5b947f1b
MX
688
689 if (!wait)
690 list_add_tail(&BTRFS_I(inode)->ordered_operations,
569e0f35 691 &cur_trans->ordered_operations);
199c2a9c 692 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5 693
25287e0a
MX
694 work = btrfs_alloc_delalloc_work(inode, wait, 1);
695 if (!work) {
199c2a9c 696 spin_lock(&root->fs_info->ordered_root_lock);
25287e0a
MX
697 if (list_empty(&BTRFS_I(inode)->ordered_operations))
698 list_add_tail(&btrfs_inode->ordered_operations,
699 &splice);
25287e0a 700 list_splice_tail(&splice,
569e0f35 701 &cur_trans->ordered_operations);
199c2a9c 702 spin_unlock(&root->fs_info->ordered_root_lock);
25287e0a
MX
703 ret = -ENOMEM;
704 goto out;
5a3f23d5 705 }
25287e0a
MX
706 list_add_tail(&work->list, &works);
707 btrfs_queue_worker(&root->fs_info->flush_workers,
708 &work->work);
5a3f23d5
CM
709
710 cond_resched();
199c2a9c 711 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5 712 }
199c2a9c 713 spin_unlock(&root->fs_info->ordered_root_lock);
25287e0a
MX
714out:
715 list_for_each_entry_safe(work, next, &works, list) {
716 list_del_init(&work->list);
717 btrfs_wait_and_free_delalloc_work(work);
718 }
9ffba8cd 719 mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
25287e0a 720 return ret;
5a3f23d5
CM
721}
722
eb84ae03
CM
723/*
724 * Used to start IO or wait for a given ordered extent to finish.
725 *
726 * If wait is one, this effectively waits on page writeback for all the pages
727 * in the extent, and it waits on the io completion code to insert
728 * metadata into the btree corresponding to the extent
729 */
730void btrfs_start_ordered_extent(struct inode *inode,
731 struct btrfs_ordered_extent *entry,
732 int wait)
e6dcd2dc
CM
733{
734 u64 start = entry->file_offset;
735 u64 end = start + entry->len - 1;
e1b81e67 736
1abe9b8a 737 trace_btrfs_ordered_extent_start(inode, entry);
738
eb84ae03
CM
739 /*
740 * pages in the range can be dirty, clean or writeback. We
741 * start IO on any dirty ones so the wait doesn't stall waiting
b2570314 742 * for the flusher thread to find them
eb84ae03 743 */
4b46fce2
JB
744 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
745 filemap_fdatawrite_range(inode->i_mapping, start, end);
c8b97818 746 if (wait) {
e6dcd2dc
CM
747 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
748 &entry->flags));
c8b97818 749 }
e6dcd2dc 750}
cee36a03 751
eb84ae03
CM
752/*
753 * Used to wait on ordered extents across a large range of bytes.
754 */
143bede5 755void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
e6dcd2dc
CM
756{
757 u64 end;
e5a2217e 758 u64 orig_end;
e6dcd2dc 759 struct btrfs_ordered_extent *ordered;
e5a2217e
CM
760
761 if (start + len < start) {
f421950f 762 orig_end = INT_LIMIT(loff_t);
e5a2217e
CM
763 } else {
764 orig_end = start + len - 1;
f421950f
CM
765 if (orig_end > INT_LIMIT(loff_t))
766 orig_end = INT_LIMIT(loff_t);
e5a2217e 767 }
551ebb2d 768
e5a2217e
CM
769 /* start IO across the range first to instantiate any delalloc
770 * extents
771 */
7ddf5a42
JB
772 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
773
774 /*
775 * So with compression we will find and lock a dirty page and clear the
776 * first one as dirty, setup an async extent, and immediately return
777 * with the entire range locked but with nobody actually marked with
778 * writeback. So we can't just filemap_write_and_wait_range() and
779 * expect it to work since it will just kick off a thread to do the
780 * actual work. So we need to call filemap_fdatawrite_range _again_
781 * since it will wait on the page lock, which won't be unlocked until
782 * after the pages have been marked as writeback and so we're good to go
783 * from there. We have to do this otherwise we'll miss the ordered
784 * extents and that results in badness. Please Josef, do not think you
785 * know better and pull this out at some point in the future, it is
786 * right and you are wrong.
787 */
788 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
789 &BTRFS_I(inode)->runtime_flags))
790 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
791
792 filemap_fdatawait_range(inode->i_mapping, start, orig_end);
e5a2217e 793
f421950f 794 end = orig_end;
d397712b 795 while (1) {
e6dcd2dc 796 ordered = btrfs_lookup_first_ordered_extent(inode, end);
d397712b 797 if (!ordered)
e6dcd2dc 798 break;
e5a2217e 799 if (ordered->file_offset > orig_end) {
e6dcd2dc
CM
800 btrfs_put_ordered_extent(ordered);
801 break;
802 }
803 if (ordered->file_offset + ordered->len < start) {
804 btrfs_put_ordered_extent(ordered);
805 break;
806 }
e5a2217e 807 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
808 end = ordered->file_offset;
809 btrfs_put_ordered_extent(ordered);
e5a2217e 810 if (end == 0 || end == start)
e6dcd2dc
CM
811 break;
812 end--;
813 }
cee36a03
CM
814}
815
eb84ae03
CM
816/*
817 * find an ordered extent corresponding to file_offset. return NULL if
818 * nothing is found, otherwise take a reference on the extent and return it
819 */
e6dcd2dc
CM
820struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
821 u64 file_offset)
822{
823 struct btrfs_ordered_inode_tree *tree;
824 struct rb_node *node;
825 struct btrfs_ordered_extent *entry = NULL;
826
827 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 828 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
829 node = tree_search(tree, file_offset);
830 if (!node)
831 goto out;
832
833 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
834 if (!offset_in_entry(entry, file_offset))
835 entry = NULL;
836 if (entry)
837 atomic_inc(&entry->refs);
838out:
5fd02043 839 spin_unlock_irq(&tree->lock);
e6dcd2dc
CM
840 return entry;
841}
842
4b46fce2
JB
843/* Since the DIO code tries to lock a wide area we need to look for any ordered
844 * extents that exist in the range, rather than just the start of the range.
845 */
846struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
847 u64 file_offset,
848 u64 len)
849{
850 struct btrfs_ordered_inode_tree *tree;
851 struct rb_node *node;
852 struct btrfs_ordered_extent *entry = NULL;
853
854 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 855 spin_lock_irq(&tree->lock);
4b46fce2
JB
856 node = tree_search(tree, file_offset);
857 if (!node) {
858 node = tree_search(tree, file_offset + len);
859 if (!node)
860 goto out;
861 }
862
863 while (1) {
864 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
865 if (range_overlaps(entry, file_offset, len))
866 break;
867
868 if (entry->file_offset >= file_offset + len) {
869 entry = NULL;
870 break;
871 }
872 entry = NULL;
873 node = rb_next(node);
874 if (!node)
875 break;
876 }
877out:
878 if (entry)
879 atomic_inc(&entry->refs);
5fd02043 880 spin_unlock_irq(&tree->lock);
4b46fce2
JB
881 return entry;
882}
883
eb84ae03
CM
884/*
885 * lookup and return any extent before 'file_offset'. NULL is returned
886 * if none is found
887 */
e6dcd2dc 888struct btrfs_ordered_extent *
d397712b 889btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
e6dcd2dc
CM
890{
891 struct btrfs_ordered_inode_tree *tree;
892 struct rb_node *node;
893 struct btrfs_ordered_extent *entry = NULL;
894
895 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 896 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
897 node = tree_search(tree, file_offset);
898 if (!node)
899 goto out;
900
901 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
902 atomic_inc(&entry->refs);
903out:
5fd02043 904 spin_unlock_irq(&tree->lock);
e6dcd2dc 905 return entry;
81d7ed29 906}
dbe674a9 907
eb84ae03
CM
908/*
909 * After an extent is done, call this to conditionally update the on disk
910 * i_size. i_size is updated to cover any fully written part of the file.
911 */
c2167754 912int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
dbe674a9
CM
913 struct btrfs_ordered_extent *ordered)
914{
915 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
dbe674a9
CM
916 u64 disk_i_size;
917 u64 new_i_size;
c2167754 918 u64 i_size = i_size_read(inode);
dbe674a9 919 struct rb_node *node;
c2167754 920 struct rb_node *prev = NULL;
dbe674a9 921 struct btrfs_ordered_extent *test;
c2167754
YZ
922 int ret = 1;
923
77cef2ec
JB
924 spin_lock_irq(&tree->lock);
925 if (ordered) {
c2167754 926 offset = entry_end(ordered);
77cef2ec
JB
927 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
928 offset = min(offset,
929 ordered->file_offset +
930 ordered->truncated_len);
931 } else {
a038fab0 932 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
77cef2ec 933 }
dbe674a9
CM
934 disk_i_size = BTRFS_I(inode)->disk_i_size;
935
c2167754
YZ
936 /* truncate file */
937 if (disk_i_size > i_size) {
938 BTRFS_I(inode)->disk_i_size = i_size;
939 ret = 0;
940 goto out;
941 }
942
dbe674a9
CM
943 /*
944 * if the disk i_size is already at the inode->i_size, or
945 * this ordered extent is inside the disk i_size, we're done
946 */
5d1f4020
JB
947 if (disk_i_size == i_size)
948 goto out;
949
950 /*
951 * We still need to update disk_i_size if outstanding_isize is greater
952 * than disk_i_size.
953 */
954 if (offset <= disk_i_size &&
955 (!ordered || ordered->outstanding_isize <= disk_i_size))
dbe674a9 956 goto out;
dbe674a9 957
dbe674a9
CM
958 /*
959 * walk backward from this ordered extent to disk_i_size.
960 * if we find an ordered extent then we can't update disk i_size
961 * yet
962 */
c2167754
YZ
963 if (ordered) {
964 node = rb_prev(&ordered->rb_node);
965 } else {
966 prev = tree_search(tree, offset);
967 /*
968 * we insert file extents without involving ordered struct,
969 * so there should be no ordered struct cover this offset
970 */
971 if (prev) {
972 test = rb_entry(prev, struct btrfs_ordered_extent,
973 rb_node);
974 BUG_ON(offset_in_entry(test, offset));
975 }
976 node = prev;
977 }
5fd02043 978 for (; node; node = rb_prev(node)) {
dbe674a9 979 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
5fd02043
JB
980
981 /* We treat this entry as if it doesnt exist */
982 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
983 continue;
dbe674a9
CM
984 if (test->file_offset + test->len <= disk_i_size)
985 break;
c2167754 986 if (test->file_offset >= i_size)
dbe674a9 987 break;
59fe4f41 988 if (entry_end(test) > disk_i_size) {
b9a8cc5b
MX
989 /*
990 * we don't update disk_i_size now, so record this
991 * undealt i_size. Or we will not know the real
992 * i_size.
993 */
994 if (test->outstanding_isize < offset)
995 test->outstanding_isize = offset;
996 if (ordered &&
997 ordered->outstanding_isize >
998 test->outstanding_isize)
999 test->outstanding_isize =
1000 ordered->outstanding_isize;
dbe674a9 1001 goto out;
5fd02043 1002 }
dbe674a9 1003 }
b9a8cc5b 1004 new_i_size = min_t(u64, offset, i_size);
dbe674a9
CM
1005
1006 /*
b9a8cc5b
MX
1007 * Some ordered extents may completed before the current one, and
1008 * we hold the real i_size in ->outstanding_isize.
dbe674a9 1009 */
b9a8cc5b
MX
1010 if (ordered && ordered->outstanding_isize > new_i_size)
1011 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
dbe674a9 1012 BTRFS_I(inode)->disk_i_size = new_i_size;
c2167754 1013 ret = 0;
dbe674a9 1014out:
c2167754 1015 /*
5fd02043
JB
1016 * We need to do this because we can't remove ordered extents until
1017 * after the i_disk_size has been updated and then the inode has been
1018 * updated to reflect the change, so we need to tell anybody who finds
1019 * this ordered extent that we've already done all the real work, we
1020 * just haven't completed all the other work.
c2167754
YZ
1021 */
1022 if (ordered)
5fd02043
JB
1023 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1024 spin_unlock_irq(&tree->lock);
c2167754 1025 return ret;
dbe674a9 1026}
ba1da2f4 1027
eb84ae03
CM
1028/*
1029 * search the ordered extents for one corresponding to 'offset' and
1030 * try to find a checksum. This is used because we allow pages to
1031 * be reclaimed before their checksum is actually put into the btree
1032 */
d20f7043 1033int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
e4100d98 1034 u32 *sum, int len)
ba1da2f4
CM
1035{
1036 struct btrfs_ordered_sum *ordered_sum;
ba1da2f4
CM
1037 struct btrfs_ordered_extent *ordered;
1038 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
3edf7d33
CM
1039 unsigned long num_sectors;
1040 unsigned long i;
1041 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
e4100d98 1042 int index = 0;
ba1da2f4
CM
1043
1044 ordered = btrfs_lookup_ordered_extent(inode, offset);
1045 if (!ordered)
e4100d98 1046 return 0;
ba1da2f4 1047
5fd02043 1048 spin_lock_irq(&tree->lock);
c6e30871 1049 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
e4100d98
MX
1050 if (disk_bytenr >= ordered_sum->bytenr &&
1051 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1052 i = (disk_bytenr - ordered_sum->bytenr) >>
1053 inode->i_sb->s_blocksize_bits;
e4100d98
MX
1054 num_sectors = ordered_sum->len >>
1055 inode->i_sb->s_blocksize_bits;
f51a4a18
MX
1056 num_sectors = min_t(int, len - index, num_sectors - i);
1057 memcpy(sum + index, ordered_sum->sums + i,
1058 num_sectors);
1059
1060 index += (int)num_sectors;
1061 if (index == len)
1062 goto out;
1063 disk_bytenr += num_sectors * sectorsize;
ba1da2f4
CM
1064 }
1065 }
1066out:
5fd02043 1067 spin_unlock_irq(&tree->lock);
89642229 1068 btrfs_put_ordered_extent(ordered);
e4100d98 1069 return index;
ba1da2f4
CM
1070}
1071
f421950f 1072
5a3f23d5
CM
1073/*
1074 * add a given inode to the list of inodes that must be fully on
1075 * disk before a transaction commit finishes.
1076 *
1077 * This basically gives us the ext3 style data=ordered mode, and it is mostly
1078 * used to make sure renamed files are fully on disk.
1079 *
1080 * It is a noop if the inode is already fully on disk.
1081 *
1082 * If trans is not null, we'll do a friendly check for a transaction that
1083 * is already flushing things and force the IO down ourselves.
1084 */
143bede5
JM
1085void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
1086 struct btrfs_root *root, struct inode *inode)
5a3f23d5 1087{
569e0f35 1088 struct btrfs_transaction *cur_trans = trans->transaction;
5a3f23d5
CM
1089 u64 last_mod;
1090
1091 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
1092
1093 /*
1094 * if this file hasn't been changed since the last transaction
1095 * commit, we can safely return without doing anything
1096 */
1097 if (last_mod < root->fs_info->last_trans_committed)
143bede5 1098 return;
5a3f23d5 1099
199c2a9c 1100 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5
CM
1101 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
1102 list_add_tail(&BTRFS_I(inode)->ordered_operations,
569e0f35 1103 &cur_trans->ordered_operations);
5a3f23d5 1104 }
199c2a9c 1105 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5 1106}
6352b91d
MX
1107
1108int __init ordered_data_init(void)
1109{
1110 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1111 sizeof(struct btrfs_ordered_extent), 0,
1112 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1113 NULL);
1114 if (!btrfs_ordered_extent_cache)
1115 return -ENOMEM;
25287e0a 1116
6352b91d
MX
1117 return 0;
1118}
1119
1120void ordered_data_exit(void)
1121{
1122 if (btrfs_ordered_extent_cache)
1123 kmem_cache_destroy(btrfs_ordered_extent_cache);
1124}
This page took 0.272775 seconds and 5 git commands to generate.