Merge 2.6.38-rc5 into staging-next
[deliverable/linux.git] / fs / btrfs / ordered-data.c
CommitLineData
dc17ff8f
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
dc17ff8f 19#include <linux/slab.h>
d6bfde87 20#include <linux/blkdev.h>
f421950f
CM
21#include <linux/writeback.h>
22#include <linux/pagevec.h>
dc17ff8f
CM
23#include "ctree.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
e6dcd2dc 26#include "extent_io.h"
dc17ff8f 27
e6dcd2dc 28static u64 entry_end(struct btrfs_ordered_extent *entry)
dc17ff8f 29{
e6dcd2dc
CM
30 if (entry->file_offset + entry->len < entry->file_offset)
31 return (u64)-1;
32 return entry->file_offset + entry->len;
dc17ff8f
CM
33}
34
d352ac68
CM
35/* returns NULL if the insertion worked, or it returns the node it did find
36 * in the tree
37 */
e6dcd2dc
CM
38static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
39 struct rb_node *node)
dc17ff8f 40{
d397712b
CM
41 struct rb_node **p = &root->rb_node;
42 struct rb_node *parent = NULL;
e6dcd2dc 43 struct btrfs_ordered_extent *entry;
dc17ff8f 44
d397712b 45 while (*p) {
dc17ff8f 46 parent = *p;
e6dcd2dc 47 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
dc17ff8f 48
e6dcd2dc 49 if (file_offset < entry->file_offset)
dc17ff8f 50 p = &(*p)->rb_left;
e6dcd2dc 51 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
52 p = &(*p)->rb_right;
53 else
54 return parent;
55 }
56
57 rb_link_node(node, parent, p);
58 rb_insert_color(node, root);
59 return NULL;
60}
61
d352ac68
CM
62/*
63 * look for a given offset in the tree, and if it can't be found return the
64 * first lesser offset
65 */
e6dcd2dc
CM
66static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
67 struct rb_node **prev_ret)
dc17ff8f 68{
d397712b 69 struct rb_node *n = root->rb_node;
dc17ff8f 70 struct rb_node *prev = NULL;
e6dcd2dc
CM
71 struct rb_node *test;
72 struct btrfs_ordered_extent *entry;
73 struct btrfs_ordered_extent *prev_entry = NULL;
dc17ff8f 74
d397712b 75 while (n) {
e6dcd2dc 76 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
dc17ff8f
CM
77 prev = n;
78 prev_entry = entry;
dc17ff8f 79
e6dcd2dc 80 if (file_offset < entry->file_offset)
dc17ff8f 81 n = n->rb_left;
e6dcd2dc 82 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
83 n = n->rb_right;
84 else
85 return n;
86 }
87 if (!prev_ret)
88 return NULL;
89
d397712b 90 while (prev && file_offset >= entry_end(prev_entry)) {
e6dcd2dc
CM
91 test = rb_next(prev);
92 if (!test)
93 break;
94 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
95 rb_node);
96 if (file_offset < entry_end(prev_entry))
97 break;
98
99 prev = test;
100 }
101 if (prev)
102 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
103 rb_node);
d397712b 104 while (prev && file_offset < entry_end(prev_entry)) {
e6dcd2dc
CM
105 test = rb_prev(prev);
106 if (!test)
107 break;
108 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
109 rb_node);
110 prev = test;
dc17ff8f
CM
111 }
112 *prev_ret = prev;
113 return NULL;
114}
115
d352ac68
CM
116/*
117 * helper to check if a given offset is inside a given entry
118 */
e6dcd2dc
CM
119static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
120{
121 if (file_offset < entry->file_offset ||
122 entry->file_offset + entry->len <= file_offset)
123 return 0;
124 return 1;
125}
126
4b46fce2
JB
127static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
128 u64 len)
129{
130 if (file_offset + len <= entry->file_offset ||
131 entry->file_offset + entry->len <= file_offset)
132 return 0;
133 return 1;
134}
135
d352ac68
CM
136/*
137 * look find the first ordered struct that has this offset, otherwise
138 * the first one less than this offset
139 */
e6dcd2dc
CM
140static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
141 u64 file_offset)
dc17ff8f 142{
e6dcd2dc 143 struct rb_root *root = &tree->tree;
c87fb6fd 144 struct rb_node *prev = NULL;
dc17ff8f 145 struct rb_node *ret;
e6dcd2dc
CM
146 struct btrfs_ordered_extent *entry;
147
148 if (tree->last) {
149 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
150 rb_node);
151 if (offset_in_entry(entry, file_offset))
152 return tree->last;
153 }
154 ret = __tree_search(root, file_offset, &prev);
dc17ff8f 155 if (!ret)
e6dcd2dc
CM
156 ret = prev;
157 if (ret)
158 tree->last = ret;
dc17ff8f
CM
159 return ret;
160}
161
eb84ae03
CM
162/* allocate and add a new ordered_extent into the per-inode tree.
163 * file_offset is the logical offset in the file
164 *
165 * start is the disk block number of an extent already reserved in the
166 * extent allocation tree
167 *
168 * len is the length of the extent
169 *
eb84ae03
CM
170 * The tree is given a single reference on the ordered extent that was
171 * inserted.
172 */
4b46fce2
JB
173static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
174 u64 start, u64 len, u64 disk_len,
261507a0 175 int type, int dio, int compress_type)
dc17ff8f 176{
dc17ff8f 177 struct btrfs_ordered_inode_tree *tree;
e6dcd2dc
CM
178 struct rb_node *node;
179 struct btrfs_ordered_extent *entry;
dc17ff8f 180
e6dcd2dc
CM
181 tree = &BTRFS_I(inode)->ordered_tree;
182 entry = kzalloc(sizeof(*entry), GFP_NOFS);
dc17ff8f
CM
183 if (!entry)
184 return -ENOMEM;
185
e6dcd2dc
CM
186 entry->file_offset = file_offset;
187 entry->start = start;
188 entry->len = len;
c8b97818 189 entry->disk_len = disk_len;
8b62b72b 190 entry->bytes_left = len;
3eaa2885 191 entry->inode = inode;
261507a0 192 entry->compress_type = compress_type;
d899e052 193 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
80ff3856 194 set_bit(type, &entry->flags);
3eaa2885 195
4b46fce2
JB
196 if (dio)
197 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
198
e6dcd2dc
CM
199 /* one ref for the tree */
200 atomic_set(&entry->refs, 1);
201 init_waitqueue_head(&entry->wait);
202 INIT_LIST_HEAD(&entry->list);
3eaa2885 203 INIT_LIST_HEAD(&entry->root_extent_list);
dc17ff8f 204
49958fd7 205 spin_lock(&tree->lock);
e6dcd2dc
CM
206 node = tree_insert(&tree->tree, file_offset,
207 &entry->rb_node);
d397712b 208 BUG_ON(node);
49958fd7 209 spin_unlock(&tree->lock);
d397712b 210
3eaa2885
CM
211 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
212 list_add_tail(&entry->root_extent_list,
213 &BTRFS_I(inode)->root->fs_info->ordered_extents);
214 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
215
e6dcd2dc 216 BUG_ON(node);
dc17ff8f
CM
217 return 0;
218}
219
4b46fce2
JB
220int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
221 u64 start, u64 len, u64 disk_len, int type)
222{
223 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261507a0
LZ
224 disk_len, type, 0,
225 BTRFS_COMPRESS_NONE);
4b46fce2
JB
226}
227
228int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
229 u64 start, u64 len, u64 disk_len, int type)
230{
231 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261507a0
LZ
232 disk_len, type, 1,
233 BTRFS_COMPRESS_NONE);
234}
235
236int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
237 u64 start, u64 len, u64 disk_len,
238 int type, int compress_type)
239{
240 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
241 disk_len, type, 0,
242 compress_type);
4b46fce2
JB
243}
244
eb84ae03
CM
245/*
246 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
3edf7d33
CM
247 * when an ordered extent is finished. If the list covers more than one
248 * ordered extent, it is split across multiples.
eb84ae03 249 */
3edf7d33
CM
250int btrfs_add_ordered_sum(struct inode *inode,
251 struct btrfs_ordered_extent *entry,
252 struct btrfs_ordered_sum *sum)
dc17ff8f 253{
e6dcd2dc 254 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 255
e6dcd2dc 256 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 257 spin_lock(&tree->lock);
e6dcd2dc 258 list_add_tail(&sum->list, &entry->list);
49958fd7 259 spin_unlock(&tree->lock);
e6dcd2dc 260 return 0;
dc17ff8f
CM
261}
262
163cf09c
CM
263/*
264 * this is used to account for finished IO across a given range
265 * of the file. The IO may span ordered extents. If
266 * a given ordered_extent is completely done, 1 is returned, otherwise
267 * 0.
268 *
269 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
270 * to make sure this function only returns 1 once for a given ordered extent.
271 *
272 * file_offset is updated to one byte past the range that is recorded as
273 * complete. This allows you to walk forward in the file.
274 */
275int btrfs_dec_test_first_ordered_pending(struct inode *inode,
276 struct btrfs_ordered_extent **cached,
277 u64 *file_offset, u64 io_size)
278{
279 struct btrfs_ordered_inode_tree *tree;
280 struct rb_node *node;
281 struct btrfs_ordered_extent *entry = NULL;
282 int ret;
283 u64 dec_end;
284 u64 dec_start;
285 u64 to_dec;
286
287 tree = &BTRFS_I(inode)->ordered_tree;
288 spin_lock(&tree->lock);
289 node = tree_search(tree, *file_offset);
290 if (!node) {
291 ret = 1;
292 goto out;
293 }
294
295 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
296 if (!offset_in_entry(entry, *file_offset)) {
297 ret = 1;
298 goto out;
299 }
300
301 dec_start = max(*file_offset, entry->file_offset);
302 dec_end = min(*file_offset + io_size, entry->file_offset +
303 entry->len);
304 *file_offset = dec_end;
305 if (dec_start > dec_end) {
306 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
307 (unsigned long long)dec_start,
308 (unsigned long long)dec_end);
309 }
310 to_dec = dec_end - dec_start;
311 if (to_dec > entry->bytes_left) {
312 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
313 (unsigned long long)entry->bytes_left,
314 (unsigned long long)to_dec);
315 }
316 entry->bytes_left -= to_dec;
317 if (entry->bytes_left == 0)
318 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
319 else
320 ret = 1;
321out:
322 if (!ret && cached && entry) {
323 *cached = entry;
324 atomic_inc(&entry->refs);
325 }
326 spin_unlock(&tree->lock);
327 return ret == 0;
328}
329
eb84ae03
CM
330/*
331 * this is used to account for finished IO across a given range
332 * of the file. The IO should not span ordered extents. If
333 * a given ordered_extent is completely done, 1 is returned, otherwise
334 * 0.
335 *
336 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
337 * to make sure this function only returns 1 once for a given ordered extent.
338 */
e6dcd2dc 339int btrfs_dec_test_ordered_pending(struct inode *inode,
5a1a3df1 340 struct btrfs_ordered_extent **cached,
e6dcd2dc 341 u64 file_offset, u64 io_size)
dc17ff8f 342{
e6dcd2dc 343 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 344 struct rb_node *node;
5a1a3df1 345 struct btrfs_ordered_extent *entry = NULL;
e6dcd2dc
CM
346 int ret;
347
348 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 349 spin_lock(&tree->lock);
e6dcd2dc 350 node = tree_search(tree, file_offset);
dc17ff8f 351 if (!node) {
e6dcd2dc
CM
352 ret = 1;
353 goto out;
dc17ff8f
CM
354 }
355
e6dcd2dc
CM
356 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
357 if (!offset_in_entry(entry, file_offset)) {
358 ret = 1;
359 goto out;
dc17ff8f 360 }
e6dcd2dc 361
8b62b72b
CM
362 if (io_size > entry->bytes_left) {
363 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
364 (unsigned long long)entry->bytes_left,
365 (unsigned long long)io_size);
366 }
367 entry->bytes_left -= io_size;
368 if (entry->bytes_left == 0)
e6dcd2dc 369 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
8b62b72b
CM
370 else
371 ret = 1;
e6dcd2dc 372out:
5a1a3df1
JB
373 if (!ret && cached && entry) {
374 *cached = entry;
375 atomic_inc(&entry->refs);
376 }
49958fd7 377 spin_unlock(&tree->lock);
e6dcd2dc
CM
378 return ret == 0;
379}
dc17ff8f 380
eb84ae03
CM
381/*
382 * used to drop a reference on an ordered extent. This will free
383 * the extent if the last reference is dropped
384 */
e6dcd2dc
CM
385int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
386{
ba1da2f4
CM
387 struct list_head *cur;
388 struct btrfs_ordered_sum *sum;
389
390 if (atomic_dec_and_test(&entry->refs)) {
d397712b 391 while (!list_empty(&entry->list)) {
ba1da2f4
CM
392 cur = entry->list.next;
393 sum = list_entry(cur, struct btrfs_ordered_sum, list);
394 list_del(&sum->list);
395 kfree(sum);
396 }
e6dcd2dc 397 kfree(entry);
ba1da2f4 398 }
e6dcd2dc 399 return 0;
dc17ff8f 400}
cee36a03 401
eb84ae03
CM
402/*
403 * remove an ordered extent from the tree. No references are dropped
49958fd7 404 * and you must wake_up entry->wait. You must hold the tree lock
c2167754 405 * while you call this function.
eb84ae03 406 */
c2167754 407static int __btrfs_remove_ordered_extent(struct inode *inode,
e6dcd2dc 408 struct btrfs_ordered_extent *entry)
cee36a03 409{
e6dcd2dc 410 struct btrfs_ordered_inode_tree *tree;
287a0ab9 411 struct btrfs_root *root = BTRFS_I(inode)->root;
cee36a03 412 struct rb_node *node;
cee36a03 413
e6dcd2dc 414 tree = &BTRFS_I(inode)->ordered_tree;
e6dcd2dc 415 node = &entry->rb_node;
cee36a03 416 rb_erase(node, &tree->tree);
e6dcd2dc
CM
417 tree->last = NULL;
418 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
3eaa2885 419
287a0ab9 420 spin_lock(&root->fs_info->ordered_extent_lock);
3eaa2885 421 list_del_init(&entry->root_extent_list);
5a3f23d5
CM
422
423 /*
424 * we have no more ordered extents for this inode and
425 * no dirty pages. We can safely remove it from the
426 * list of ordered extents
427 */
428 if (RB_EMPTY_ROOT(&tree->tree) &&
429 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
430 list_del_init(&BTRFS_I(inode)->ordered_operations);
431 }
287a0ab9 432 spin_unlock(&root->fs_info->ordered_extent_lock);
3eaa2885 433
c2167754
YZ
434 return 0;
435}
436
437/*
438 * remove an ordered extent from the tree. No references are dropped
439 * but any waiters are woken.
440 */
441int btrfs_remove_ordered_extent(struct inode *inode,
442 struct btrfs_ordered_extent *entry)
443{
444 struct btrfs_ordered_inode_tree *tree;
445 int ret;
446
447 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 448 spin_lock(&tree->lock);
c2167754 449 ret = __btrfs_remove_ordered_extent(inode, entry);
49958fd7 450 spin_unlock(&tree->lock);
e6dcd2dc 451 wake_up(&entry->wait);
c2167754
YZ
452
453 return ret;
cee36a03
CM
454}
455
d352ac68
CM
456/*
457 * wait for all the ordered extents in a root. This is done when balancing
458 * space between drives.
459 */
24bbcf04
YZ
460int btrfs_wait_ordered_extents(struct btrfs_root *root,
461 int nocow_only, int delay_iput)
3eaa2885
CM
462{
463 struct list_head splice;
464 struct list_head *cur;
465 struct btrfs_ordered_extent *ordered;
466 struct inode *inode;
467
468 INIT_LIST_HEAD(&splice);
469
470 spin_lock(&root->fs_info->ordered_extent_lock);
471 list_splice_init(&root->fs_info->ordered_extents, &splice);
5b21f2ed 472 while (!list_empty(&splice)) {
3eaa2885
CM
473 cur = splice.next;
474 ordered = list_entry(cur, struct btrfs_ordered_extent,
475 root_extent_list);
7ea394f1 476 if (nocow_only &&
d899e052
YZ
477 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
478 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5b21f2ed
ZY
479 list_move(&ordered->root_extent_list,
480 &root->fs_info->ordered_extents);
7ea394f1
YZ
481 cond_resched_lock(&root->fs_info->ordered_extent_lock);
482 continue;
483 }
484
3eaa2885
CM
485 list_del_init(&ordered->root_extent_list);
486 atomic_inc(&ordered->refs);
3eaa2885
CM
487
488 /*
5b21f2ed 489 * the inode may be getting freed (in sys_unlink path).
3eaa2885 490 */
5b21f2ed
ZY
491 inode = igrab(ordered->inode);
492
3eaa2885
CM
493 spin_unlock(&root->fs_info->ordered_extent_lock);
494
5b21f2ed
ZY
495 if (inode) {
496 btrfs_start_ordered_extent(inode, ordered, 1);
497 btrfs_put_ordered_extent(ordered);
24bbcf04
YZ
498 if (delay_iput)
499 btrfs_add_delayed_iput(inode);
500 else
501 iput(inode);
5b21f2ed
ZY
502 } else {
503 btrfs_put_ordered_extent(ordered);
504 }
3eaa2885
CM
505
506 spin_lock(&root->fs_info->ordered_extent_lock);
507 }
508 spin_unlock(&root->fs_info->ordered_extent_lock);
509 return 0;
510}
511
5a3f23d5
CM
512/*
513 * this is used during transaction commit to write all the inodes
514 * added to the ordered operation list. These files must be fully on
515 * disk before the transaction commits.
516 *
517 * we have two modes here, one is to just start the IO via filemap_flush
518 * and the other is to wait for all the io. When we wait, we have an
519 * extra check to make sure the ordered operation list really is empty
520 * before we return
521 */
522int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
523{
524 struct btrfs_inode *btrfs_inode;
525 struct inode *inode;
526 struct list_head splice;
527
528 INIT_LIST_HEAD(&splice);
529
530 mutex_lock(&root->fs_info->ordered_operations_mutex);
531 spin_lock(&root->fs_info->ordered_extent_lock);
532again:
533 list_splice_init(&root->fs_info->ordered_operations, &splice);
534
535 while (!list_empty(&splice)) {
536 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
537 ordered_operations);
538
539 inode = &btrfs_inode->vfs_inode;
540
541 list_del_init(&btrfs_inode->ordered_operations);
542
543 /*
544 * the inode may be getting freed (in sys_unlink path).
545 */
546 inode = igrab(inode);
547
548 if (!wait && inode) {
549 list_add_tail(&BTRFS_I(inode)->ordered_operations,
550 &root->fs_info->ordered_operations);
551 }
552 spin_unlock(&root->fs_info->ordered_extent_lock);
553
554 if (inode) {
555 if (wait)
556 btrfs_wait_ordered_range(inode, 0, (u64)-1);
557 else
558 filemap_flush(inode->i_mapping);
24bbcf04 559 btrfs_add_delayed_iput(inode);
5a3f23d5
CM
560 }
561
562 cond_resched();
563 spin_lock(&root->fs_info->ordered_extent_lock);
564 }
565 if (wait && !list_empty(&root->fs_info->ordered_operations))
566 goto again;
567
568 spin_unlock(&root->fs_info->ordered_extent_lock);
569 mutex_unlock(&root->fs_info->ordered_operations_mutex);
570
571 return 0;
572}
573
eb84ae03
CM
574/*
575 * Used to start IO or wait for a given ordered extent to finish.
576 *
577 * If wait is one, this effectively waits on page writeback for all the pages
578 * in the extent, and it waits on the io completion code to insert
579 * metadata into the btree corresponding to the extent
580 */
581void btrfs_start_ordered_extent(struct inode *inode,
582 struct btrfs_ordered_extent *entry,
583 int wait)
e6dcd2dc
CM
584{
585 u64 start = entry->file_offset;
586 u64 end = start + entry->len - 1;
e1b81e67 587
eb84ae03
CM
588 /*
589 * pages in the range can be dirty, clean or writeback. We
590 * start IO on any dirty ones so the wait doesn't stall waiting
591 * for pdflush to find them
592 */
4b46fce2
JB
593 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
594 filemap_fdatawrite_range(inode->i_mapping, start, end);
c8b97818 595 if (wait) {
e6dcd2dc
CM
596 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
597 &entry->flags));
c8b97818 598 }
e6dcd2dc 599}
cee36a03 600
eb84ae03
CM
601/*
602 * Used to wait on ordered extents across a large range of bytes.
603 */
cb843a6f 604int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
e6dcd2dc
CM
605{
606 u64 end;
e5a2217e 607 u64 orig_end;
e6dcd2dc 608 struct btrfs_ordered_extent *ordered;
8b62b72b 609 int found;
e5a2217e
CM
610
611 if (start + len < start) {
f421950f 612 orig_end = INT_LIMIT(loff_t);
e5a2217e
CM
613 } else {
614 orig_end = start + len - 1;
f421950f
CM
615 if (orig_end > INT_LIMIT(loff_t))
616 orig_end = INT_LIMIT(loff_t);
e5a2217e 617 }
4a096752 618again:
e5a2217e
CM
619 /* start IO across the range first to instantiate any delalloc
620 * extents
621 */
8aa38c31 622 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
f421950f 623
771ed689
CM
624 /* The compression code will leave pages locked but return from
625 * writepage without setting the page writeback. Starting again
626 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
627 */
8aa38c31 628 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
771ed689 629
8aa38c31 630 filemap_fdatawait_range(inode->i_mapping, start, orig_end);
e5a2217e 631
f421950f 632 end = orig_end;
8b62b72b 633 found = 0;
d397712b 634 while (1) {
e6dcd2dc 635 ordered = btrfs_lookup_first_ordered_extent(inode, end);
d397712b 636 if (!ordered)
e6dcd2dc 637 break;
e5a2217e 638 if (ordered->file_offset > orig_end) {
e6dcd2dc
CM
639 btrfs_put_ordered_extent(ordered);
640 break;
641 }
642 if (ordered->file_offset + ordered->len < start) {
643 btrfs_put_ordered_extent(ordered);
644 break;
645 }
8b62b72b 646 found++;
e5a2217e 647 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
648 end = ordered->file_offset;
649 btrfs_put_ordered_extent(ordered);
e5a2217e 650 if (end == 0 || end == start)
e6dcd2dc
CM
651 break;
652 end--;
653 }
8b62b72b
CM
654 if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
655 EXTENT_DELALLOC, 0, NULL)) {
771ed689 656 schedule_timeout(1);
4a096752
CM
657 goto again;
658 }
cb843a6f 659 return 0;
cee36a03
CM
660}
661
eb84ae03
CM
662/*
663 * find an ordered extent corresponding to file_offset. return NULL if
664 * nothing is found, otherwise take a reference on the extent and return it
665 */
e6dcd2dc
CM
666struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
667 u64 file_offset)
668{
669 struct btrfs_ordered_inode_tree *tree;
670 struct rb_node *node;
671 struct btrfs_ordered_extent *entry = NULL;
672
673 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 674 spin_lock(&tree->lock);
e6dcd2dc
CM
675 node = tree_search(tree, file_offset);
676 if (!node)
677 goto out;
678
679 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
680 if (!offset_in_entry(entry, file_offset))
681 entry = NULL;
682 if (entry)
683 atomic_inc(&entry->refs);
684out:
49958fd7 685 spin_unlock(&tree->lock);
e6dcd2dc
CM
686 return entry;
687}
688
4b46fce2
JB
689/* Since the DIO code tries to lock a wide area we need to look for any ordered
690 * extents that exist in the range, rather than just the start of the range.
691 */
692struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
693 u64 file_offset,
694 u64 len)
695{
696 struct btrfs_ordered_inode_tree *tree;
697 struct rb_node *node;
698 struct btrfs_ordered_extent *entry = NULL;
699
700 tree = &BTRFS_I(inode)->ordered_tree;
701 spin_lock(&tree->lock);
702 node = tree_search(tree, file_offset);
703 if (!node) {
704 node = tree_search(tree, file_offset + len);
705 if (!node)
706 goto out;
707 }
708
709 while (1) {
710 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
711 if (range_overlaps(entry, file_offset, len))
712 break;
713
714 if (entry->file_offset >= file_offset + len) {
715 entry = NULL;
716 break;
717 }
718 entry = NULL;
719 node = rb_next(node);
720 if (!node)
721 break;
722 }
723out:
724 if (entry)
725 atomic_inc(&entry->refs);
726 spin_unlock(&tree->lock);
727 return entry;
728}
729
eb84ae03
CM
730/*
731 * lookup and return any extent before 'file_offset'. NULL is returned
732 * if none is found
733 */
e6dcd2dc 734struct btrfs_ordered_extent *
d397712b 735btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
e6dcd2dc
CM
736{
737 struct btrfs_ordered_inode_tree *tree;
738 struct rb_node *node;
739 struct btrfs_ordered_extent *entry = NULL;
740
741 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 742 spin_lock(&tree->lock);
e6dcd2dc
CM
743 node = tree_search(tree, file_offset);
744 if (!node)
745 goto out;
746
747 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
748 atomic_inc(&entry->refs);
749out:
49958fd7 750 spin_unlock(&tree->lock);
e6dcd2dc 751 return entry;
81d7ed29 752}
dbe674a9 753
eb84ae03
CM
754/*
755 * After an extent is done, call this to conditionally update the on disk
756 * i_size. i_size is updated to cover any fully written part of the file.
757 */
c2167754 758int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
dbe674a9
CM
759 struct btrfs_ordered_extent *ordered)
760{
761 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
762 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
763 u64 disk_i_size;
764 u64 new_i_size;
765 u64 i_size_test;
c2167754 766 u64 i_size = i_size_read(inode);
dbe674a9 767 struct rb_node *node;
c2167754 768 struct rb_node *prev = NULL;
dbe674a9 769 struct btrfs_ordered_extent *test;
c2167754
YZ
770 int ret = 1;
771
772 if (ordered)
773 offset = entry_end(ordered);
a038fab0
YZ
774 else
775 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
dbe674a9 776
49958fd7 777 spin_lock(&tree->lock);
dbe674a9
CM
778 disk_i_size = BTRFS_I(inode)->disk_i_size;
779
c2167754
YZ
780 /* truncate file */
781 if (disk_i_size > i_size) {
782 BTRFS_I(inode)->disk_i_size = i_size;
783 ret = 0;
784 goto out;
785 }
786
dbe674a9
CM
787 /*
788 * if the disk i_size is already at the inode->i_size, or
789 * this ordered extent is inside the disk i_size, we're done
790 */
c2167754 791 if (disk_i_size == i_size || offset <= disk_i_size) {
dbe674a9
CM
792 goto out;
793 }
794
795 /*
796 * we can't update the disk_isize if there are delalloc bytes
797 * between disk_i_size and this ordered extent
798 */
c2167754 799 if (test_range_bit(io_tree, disk_i_size, offset - 1,
9655d298 800 EXTENT_DELALLOC, 0, NULL)) {
dbe674a9
CM
801 goto out;
802 }
803 /*
804 * walk backward from this ordered extent to disk_i_size.
805 * if we find an ordered extent then we can't update disk i_size
806 * yet
807 */
c2167754
YZ
808 if (ordered) {
809 node = rb_prev(&ordered->rb_node);
810 } else {
811 prev = tree_search(tree, offset);
812 /*
813 * we insert file extents without involving ordered struct,
814 * so there should be no ordered struct cover this offset
815 */
816 if (prev) {
817 test = rb_entry(prev, struct btrfs_ordered_extent,
818 rb_node);
819 BUG_ON(offset_in_entry(test, offset));
820 }
821 node = prev;
822 }
823 while (node) {
dbe674a9
CM
824 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
825 if (test->file_offset + test->len <= disk_i_size)
826 break;
c2167754 827 if (test->file_offset >= i_size)
dbe674a9
CM
828 break;
829 if (test->file_offset >= disk_i_size)
830 goto out;
c2167754 831 node = rb_prev(node);
dbe674a9 832 }
c2167754 833 new_i_size = min_t(u64, offset, i_size);
dbe674a9
CM
834
835 /*
836 * at this point, we know we can safely update i_size to at least
837 * the offset from this ordered extent. But, we need to
838 * walk forward and see if ios from higher up in the file have
839 * finished.
840 */
c2167754
YZ
841 if (ordered) {
842 node = rb_next(&ordered->rb_node);
843 } else {
844 if (prev)
845 node = rb_next(prev);
846 else
847 node = rb_first(&tree->tree);
848 }
dbe674a9
CM
849 i_size_test = 0;
850 if (node) {
851 /*
852 * do we have an area where IO might have finished
853 * between our ordered extent and the next one.
854 */
855 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
c2167754 856 if (test->file_offset > offset)
b48652c1 857 i_size_test = test->file_offset;
dbe674a9 858 } else {
c2167754 859 i_size_test = i_size;
dbe674a9
CM
860 }
861
862 /*
863 * i_size_test is the end of a region after this ordered
864 * extent where there are no ordered extents. As long as there
865 * are no delalloc bytes in this area, it is safe to update
866 * disk_i_size to the end of the region.
867 */
c2167754
YZ
868 if (i_size_test > offset &&
869 !test_range_bit(io_tree, offset, i_size_test - 1,
870 EXTENT_DELALLOC, 0, NULL)) {
871 new_i_size = min_t(u64, i_size_test, i_size);
dbe674a9
CM
872 }
873 BTRFS_I(inode)->disk_i_size = new_i_size;
c2167754 874 ret = 0;
dbe674a9 875out:
c2167754
YZ
876 /*
877 * we need to remove the ordered extent with the tree lock held
878 * so that other people calling this function don't find our fully
879 * processed ordered entry and skip updating the i_size
880 */
881 if (ordered)
882 __btrfs_remove_ordered_extent(inode, ordered);
49958fd7 883 spin_unlock(&tree->lock);
c2167754
YZ
884 if (ordered)
885 wake_up(&ordered->wait);
886 return ret;
dbe674a9 887}
ba1da2f4 888
eb84ae03
CM
889/*
890 * search the ordered extents for one corresponding to 'offset' and
891 * try to find a checksum. This is used because we allow pages to
892 * be reclaimed before their checksum is actually put into the btree
893 */
d20f7043
CM
894int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
895 u32 *sum)
ba1da2f4
CM
896{
897 struct btrfs_ordered_sum *ordered_sum;
898 struct btrfs_sector_sum *sector_sums;
899 struct btrfs_ordered_extent *ordered;
900 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
3edf7d33
CM
901 unsigned long num_sectors;
902 unsigned long i;
903 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
ba1da2f4 904 int ret = 1;
ba1da2f4
CM
905
906 ordered = btrfs_lookup_ordered_extent(inode, offset);
907 if (!ordered)
908 return 1;
909
49958fd7 910 spin_lock(&tree->lock);
c6e30871 911 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
d20f7043 912 if (disk_bytenr >= ordered_sum->bytenr) {
3edf7d33 913 num_sectors = ordered_sum->len / sectorsize;
ed98b56a 914 sector_sums = ordered_sum->sums;
3edf7d33 915 for (i = 0; i < num_sectors; i++) {
d20f7043 916 if (sector_sums[i].bytenr == disk_bytenr) {
3edf7d33
CM
917 *sum = sector_sums[i].sum;
918 ret = 0;
919 goto out;
920 }
921 }
ba1da2f4
CM
922 }
923 }
924out:
49958fd7 925 spin_unlock(&tree->lock);
89642229 926 btrfs_put_ordered_extent(ordered);
ba1da2f4
CM
927 return ret;
928}
929
f421950f 930
5a3f23d5
CM
931/*
932 * add a given inode to the list of inodes that must be fully on
933 * disk before a transaction commit finishes.
934 *
935 * This basically gives us the ext3 style data=ordered mode, and it is mostly
936 * used to make sure renamed files are fully on disk.
937 *
938 * It is a noop if the inode is already fully on disk.
939 *
940 * If trans is not null, we'll do a friendly check for a transaction that
941 * is already flushing things and force the IO down ourselves.
942 */
943int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
944 struct btrfs_root *root,
945 struct inode *inode)
946{
947 u64 last_mod;
948
949 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
950
951 /*
952 * if this file hasn't been changed since the last transaction
953 * commit, we can safely return without doing anything
954 */
955 if (last_mod < root->fs_info->last_trans_committed)
956 return 0;
957
958 /*
959 * the transaction is already committing. Just start the IO and
960 * don't bother with all of this list nonsense
961 */
962 if (trans && root->fs_info->running_transaction->blocked) {
963 btrfs_wait_ordered_range(inode, 0, (u64)-1);
964 return 0;
965 }
966
967 spin_lock(&root->fs_info->ordered_extent_lock);
968 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
969 list_add_tail(&BTRFS_I(inode)->ordered_operations,
970 &root->fs_info->ordered_operations);
971 }
972 spin_unlock(&root->fs_info->ordered_extent_lock);
973
974 return 0;
975}
This page took 0.348018 seconds and 5 git commands to generate.