btrfs: add free space tree to lockdep classes
[deliverable/linux.git] / fs / btrfs / raid56.c
CommitLineData
53b381b3
DW
1/*
2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19#include <linux/sched.h>
20#include <linux/wait.h>
21#include <linux/bio.h>
22#include <linux/slab.h>
23#include <linux/buffer_head.h>
24#include <linux/blkdev.h>
25#include <linux/random.h>
26#include <linux/iocontext.h>
27#include <linux/capability.h>
28#include <linux/ratelimit.h>
29#include <linux/kthread.h>
30#include <linux/raid/pq.h>
31#include <linux/hash.h>
32#include <linux/list_sort.h>
33#include <linux/raid/xor.h>
d7011f5b 34#include <linux/vmalloc.h>
53b381b3 35#include <asm/div64.h>
53b381b3
DW
36#include "ctree.h"
37#include "extent_map.h"
38#include "disk-io.h"
39#include "transaction.h"
40#include "print-tree.h"
41#include "volumes.h"
42#include "raid56.h"
43#include "async-thread.h"
44#include "check-integrity.h"
45#include "rcu-string.h"
46
47/* set when additional merges to this rbio are not allowed */
48#define RBIO_RMW_LOCKED_BIT 1
49
4ae10b3a
CM
50/*
51 * set when this rbio is sitting in the hash, but it is just a cache
52 * of past RMW
53 */
54#define RBIO_CACHE_BIT 2
55
56/*
57 * set when it is safe to trust the stripe_pages for caching
58 */
59#define RBIO_CACHE_READY_BIT 3
60
4ae10b3a
CM
61#define RBIO_CACHE_SIZE 1024
62
1b94b556 63enum btrfs_rbio_ops {
b4ee1782
OS
64 BTRFS_RBIO_WRITE,
65 BTRFS_RBIO_READ_REBUILD,
66 BTRFS_RBIO_PARITY_SCRUB,
67 BTRFS_RBIO_REBUILD_MISSING,
1b94b556
MX
68};
69
53b381b3
DW
70struct btrfs_raid_bio {
71 struct btrfs_fs_info *fs_info;
72 struct btrfs_bio *bbio;
73
53b381b3
DW
74 /* while we're doing rmw on a stripe
75 * we put it into a hash table so we can
76 * lock the stripe and merge more rbios
77 * into it.
78 */
79 struct list_head hash_list;
80
4ae10b3a
CM
81 /*
82 * LRU list for the stripe cache
83 */
84 struct list_head stripe_cache;
85
53b381b3
DW
86 /*
87 * for scheduling work in the helper threads
88 */
89 struct btrfs_work work;
90
91 /*
92 * bio list and bio_list_lock are used
93 * to add more bios into the stripe
94 * in hopes of avoiding the full rmw
95 */
96 struct bio_list bio_list;
97 spinlock_t bio_list_lock;
98
6ac0f488
CM
99 /* also protected by the bio_list_lock, the
100 * plug list is used by the plugging code
101 * to collect partial bios while plugged. The
102 * stripe locking code also uses it to hand off
53b381b3
DW
103 * the stripe lock to the next pending IO
104 */
105 struct list_head plug_list;
106
107 /*
108 * flags that tell us if it is safe to
109 * merge with this bio
110 */
111 unsigned long flags;
112
113 /* size of each individual stripe on disk */
114 int stripe_len;
115
116 /* number of data stripes (no p/q) */
117 int nr_data;
118
2c8cdd6e
MX
119 int real_stripes;
120
5a6ac9ea 121 int stripe_npages;
53b381b3
DW
122 /*
123 * set if we're doing a parity rebuild
124 * for a read from higher up, which is handled
125 * differently from a parity rebuild as part of
126 * rmw
127 */
1b94b556 128 enum btrfs_rbio_ops operation;
53b381b3
DW
129
130 /* first bad stripe */
131 int faila;
132
133 /* second bad stripe (for raid6 use) */
134 int failb;
135
5a6ac9ea 136 int scrubp;
53b381b3
DW
137 /*
138 * number of pages needed to represent the full
139 * stripe
140 */
141 int nr_pages;
142
143 /*
144 * size of all the bios in the bio_list. This
145 * helps us decide if the rbio maps to a full
146 * stripe or not
147 */
148 int bio_list_bytes;
149
4245215d
MX
150 int generic_bio_cnt;
151
53b381b3
DW
152 atomic_t refs;
153
b89e1b01
MX
154 atomic_t stripes_pending;
155
156 atomic_t error;
53b381b3
DW
157 /*
158 * these are two arrays of pointers. We allocate the
159 * rbio big enough to hold them both and setup their
160 * locations when the rbio is allocated
161 */
162
163 /* pointers to pages that we allocated for
164 * reading/writing stripes directly from the disk (including P/Q)
165 */
166 struct page **stripe_pages;
167
168 /*
169 * pointers to the pages in the bio_list. Stored
170 * here for faster lookup
171 */
172 struct page **bio_pages;
5a6ac9ea
MX
173
174 /*
175 * bitmap to record which horizontal stripe has data
176 */
177 unsigned long *dbitmap;
53b381b3
DW
178};
179
180static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182static void rmw_work(struct btrfs_work *work);
183static void read_rebuild_work(struct btrfs_work *work);
184static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
191
5a6ac9ea
MX
192static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 int need_check);
194static void async_scrub_parity(struct btrfs_raid_bio *rbio);
195
53b381b3
DW
196/*
197 * the stripe hash table is used for locking, and to collect
198 * bios in hopes of making a full stripe
199 */
200int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
201{
202 struct btrfs_stripe_hash_table *table;
203 struct btrfs_stripe_hash_table *x;
204 struct btrfs_stripe_hash *cur;
205 struct btrfs_stripe_hash *h;
206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 int i;
83c8266a 208 int table_size;
53b381b3
DW
209
210 if (info->stripe_hash_table)
211 return 0;
212
83c8266a
DS
213 /*
214 * The table is large, starting with order 4 and can go as high as
215 * order 7 in case lock debugging is turned on.
216 *
217 * Try harder to allocate and fallback to vmalloc to lower the chance
218 * of a failing mount.
219 */
220 table_size = sizeof(*table) + sizeof(*h) * num_entries;
221 table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
222 if (!table) {
223 table = vzalloc(table_size);
224 if (!table)
225 return -ENOMEM;
226 }
53b381b3 227
4ae10b3a
CM
228 spin_lock_init(&table->cache_lock);
229 INIT_LIST_HEAD(&table->stripe_cache);
230
53b381b3
DW
231 h = table->table;
232
233 for (i = 0; i < num_entries; i++) {
234 cur = h + i;
235 INIT_LIST_HEAD(&cur->hash_list);
236 spin_lock_init(&cur->lock);
237 init_waitqueue_head(&cur->wait);
238 }
239
240 x = cmpxchg(&info->stripe_hash_table, NULL, table);
f749303b
WS
241 if (x)
242 kvfree(x);
53b381b3
DW
243 return 0;
244}
245
4ae10b3a
CM
246/*
247 * caching an rbio means to copy anything from the
248 * bio_pages array into the stripe_pages array. We
249 * use the page uptodate bit in the stripe cache array
250 * to indicate if it has valid data
251 *
252 * once the caching is done, we set the cache ready
253 * bit.
254 */
255static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
256{
257 int i;
258 char *s;
259 char *d;
260 int ret;
261
262 ret = alloc_rbio_pages(rbio);
263 if (ret)
264 return;
265
266 for (i = 0; i < rbio->nr_pages; i++) {
267 if (!rbio->bio_pages[i])
268 continue;
269
270 s = kmap(rbio->bio_pages[i]);
271 d = kmap(rbio->stripe_pages[i]);
272
273 memcpy(d, s, PAGE_CACHE_SIZE);
274
275 kunmap(rbio->bio_pages[i]);
276 kunmap(rbio->stripe_pages[i]);
277 SetPageUptodate(rbio->stripe_pages[i]);
278 }
279 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
280}
281
53b381b3
DW
282/*
283 * we hash on the first logical address of the stripe
284 */
285static int rbio_bucket(struct btrfs_raid_bio *rbio)
286{
8e5cfb55 287 u64 num = rbio->bbio->raid_map[0];
53b381b3
DW
288
289 /*
290 * we shift down quite a bit. We're using byte
291 * addressing, and most of the lower bits are zeros.
292 * This tends to upset hash_64, and it consistently
293 * returns just one or two different values.
294 *
295 * shifting off the lower bits fixes things.
296 */
297 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
298}
299
4ae10b3a
CM
300/*
301 * stealing an rbio means taking all the uptodate pages from the stripe
302 * array in the source rbio and putting them into the destination rbio
303 */
304static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
305{
306 int i;
307 struct page *s;
308 struct page *d;
309
310 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
311 return;
312
313 for (i = 0; i < dest->nr_pages; i++) {
314 s = src->stripe_pages[i];
315 if (!s || !PageUptodate(s)) {
316 continue;
317 }
318
319 d = dest->stripe_pages[i];
320 if (d)
321 __free_page(d);
322
323 dest->stripe_pages[i] = s;
324 src->stripe_pages[i] = NULL;
325 }
326}
327
53b381b3
DW
328/*
329 * merging means we take the bio_list from the victim and
330 * splice it into the destination. The victim should
331 * be discarded afterwards.
332 *
333 * must be called with dest->rbio_list_lock held
334 */
335static void merge_rbio(struct btrfs_raid_bio *dest,
336 struct btrfs_raid_bio *victim)
337{
338 bio_list_merge(&dest->bio_list, &victim->bio_list);
339 dest->bio_list_bytes += victim->bio_list_bytes;
4245215d 340 dest->generic_bio_cnt += victim->generic_bio_cnt;
53b381b3
DW
341 bio_list_init(&victim->bio_list);
342}
343
344/*
4ae10b3a
CM
345 * used to prune items that are in the cache. The caller
346 * must hold the hash table lock.
347 */
348static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
349{
350 int bucket = rbio_bucket(rbio);
351 struct btrfs_stripe_hash_table *table;
352 struct btrfs_stripe_hash *h;
353 int freeit = 0;
354
355 /*
356 * check the bit again under the hash table lock.
357 */
358 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
359 return;
360
361 table = rbio->fs_info->stripe_hash_table;
362 h = table->table + bucket;
363
364 /* hold the lock for the bucket because we may be
365 * removing it from the hash table
366 */
367 spin_lock(&h->lock);
368
369 /*
370 * hold the lock for the bio list because we need
371 * to make sure the bio list is empty
372 */
373 spin_lock(&rbio->bio_list_lock);
374
375 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
376 list_del_init(&rbio->stripe_cache);
377 table->cache_size -= 1;
378 freeit = 1;
379
380 /* if the bio list isn't empty, this rbio is
381 * still involved in an IO. We take it out
382 * of the cache list, and drop the ref that
383 * was held for the list.
384 *
385 * If the bio_list was empty, we also remove
386 * the rbio from the hash_table, and drop
387 * the corresponding ref
388 */
389 if (bio_list_empty(&rbio->bio_list)) {
390 if (!list_empty(&rbio->hash_list)) {
391 list_del_init(&rbio->hash_list);
392 atomic_dec(&rbio->refs);
393 BUG_ON(!list_empty(&rbio->plug_list));
394 }
395 }
396 }
397
398 spin_unlock(&rbio->bio_list_lock);
399 spin_unlock(&h->lock);
400
401 if (freeit)
402 __free_raid_bio(rbio);
403}
404
405/*
406 * prune a given rbio from the cache
407 */
408static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
409{
410 struct btrfs_stripe_hash_table *table;
411 unsigned long flags;
412
413 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
414 return;
415
416 table = rbio->fs_info->stripe_hash_table;
417
418 spin_lock_irqsave(&table->cache_lock, flags);
419 __remove_rbio_from_cache(rbio);
420 spin_unlock_irqrestore(&table->cache_lock, flags);
421}
422
423/*
424 * remove everything in the cache
425 */
48a3b636 426static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
4ae10b3a
CM
427{
428 struct btrfs_stripe_hash_table *table;
429 unsigned long flags;
430 struct btrfs_raid_bio *rbio;
431
432 table = info->stripe_hash_table;
433
434 spin_lock_irqsave(&table->cache_lock, flags);
435 while (!list_empty(&table->stripe_cache)) {
436 rbio = list_entry(table->stripe_cache.next,
437 struct btrfs_raid_bio,
438 stripe_cache);
439 __remove_rbio_from_cache(rbio);
440 }
441 spin_unlock_irqrestore(&table->cache_lock, flags);
442}
443
444/*
445 * remove all cached entries and free the hash table
446 * used by unmount
53b381b3
DW
447 */
448void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
449{
450 if (!info->stripe_hash_table)
451 return;
4ae10b3a 452 btrfs_clear_rbio_cache(info);
f749303b 453 kvfree(info->stripe_hash_table);
53b381b3
DW
454 info->stripe_hash_table = NULL;
455}
456
4ae10b3a
CM
457/*
458 * insert an rbio into the stripe cache. It
459 * must have already been prepared by calling
460 * cache_rbio_pages
461 *
462 * If this rbio was already cached, it gets
463 * moved to the front of the lru.
464 *
465 * If the size of the rbio cache is too big, we
466 * prune an item.
467 */
468static void cache_rbio(struct btrfs_raid_bio *rbio)
469{
470 struct btrfs_stripe_hash_table *table;
471 unsigned long flags;
472
473 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
474 return;
475
476 table = rbio->fs_info->stripe_hash_table;
477
478 spin_lock_irqsave(&table->cache_lock, flags);
479 spin_lock(&rbio->bio_list_lock);
480
481 /* bump our ref if we were not in the list before */
482 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
483 atomic_inc(&rbio->refs);
484
485 if (!list_empty(&rbio->stripe_cache)){
486 list_move(&rbio->stripe_cache, &table->stripe_cache);
487 } else {
488 list_add(&rbio->stripe_cache, &table->stripe_cache);
489 table->cache_size += 1;
490 }
491
492 spin_unlock(&rbio->bio_list_lock);
493
494 if (table->cache_size > RBIO_CACHE_SIZE) {
495 struct btrfs_raid_bio *found;
496
497 found = list_entry(table->stripe_cache.prev,
498 struct btrfs_raid_bio,
499 stripe_cache);
500
501 if (found != rbio)
502 __remove_rbio_from_cache(found);
503 }
504
505 spin_unlock_irqrestore(&table->cache_lock, flags);
4ae10b3a
CM
506}
507
53b381b3
DW
508/*
509 * helper function to run the xor_blocks api. It is only
510 * able to do MAX_XOR_BLOCKS at a time, so we need to
511 * loop through.
512 */
513static void run_xor(void **pages, int src_cnt, ssize_t len)
514{
515 int src_off = 0;
516 int xor_src_cnt = 0;
517 void *dest = pages[src_cnt];
518
519 while(src_cnt > 0) {
520 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
521 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
522
523 src_cnt -= xor_src_cnt;
524 src_off += xor_src_cnt;
525 }
526}
527
528/*
529 * returns true if the bio list inside this rbio
530 * covers an entire stripe (no rmw required).
531 * Must be called with the bio list lock held, or
532 * at a time when you know it is impossible to add
533 * new bios into the list
534 */
535static int __rbio_is_full(struct btrfs_raid_bio *rbio)
536{
537 unsigned long size = rbio->bio_list_bytes;
538 int ret = 1;
539
540 if (size != rbio->nr_data * rbio->stripe_len)
541 ret = 0;
542
543 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
544 return ret;
545}
546
547static int rbio_is_full(struct btrfs_raid_bio *rbio)
548{
549 unsigned long flags;
550 int ret;
551
552 spin_lock_irqsave(&rbio->bio_list_lock, flags);
553 ret = __rbio_is_full(rbio);
554 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
555 return ret;
556}
557
558/*
559 * returns 1 if it is safe to merge two rbios together.
560 * The merging is safe if the two rbios correspond to
561 * the same stripe and if they are both going in the same
562 * direction (read vs write), and if neither one is
563 * locked for final IO
564 *
565 * The caller is responsible for locking such that
566 * rmw_locked is safe to test
567 */
568static int rbio_can_merge(struct btrfs_raid_bio *last,
569 struct btrfs_raid_bio *cur)
570{
571 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
572 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
573 return 0;
574
4ae10b3a
CM
575 /*
576 * we can't merge with cached rbios, since the
577 * idea is that when we merge the destination
578 * rbio is going to run our IO for us. We can
579 * steal from cached rbio's though, other functions
580 * handle that.
581 */
582 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
583 test_bit(RBIO_CACHE_BIT, &cur->flags))
584 return 0;
585
8e5cfb55
ZL
586 if (last->bbio->raid_map[0] !=
587 cur->bbio->raid_map[0])
53b381b3
DW
588 return 0;
589
5a6ac9ea
MX
590 /* we can't merge with different operations */
591 if (last->operation != cur->operation)
592 return 0;
593 /*
594 * We've need read the full stripe from the drive.
595 * check and repair the parity and write the new results.
596 *
597 * We're not allowed to add any new bios to the
598 * bio list here, anyone else that wants to
599 * change this stripe needs to do their own rmw.
600 */
601 if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
602 cur->operation == BTRFS_RBIO_PARITY_SCRUB)
53b381b3 603 return 0;
53b381b3 604
b4ee1782
OS
605 if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
606 cur->operation == BTRFS_RBIO_REBUILD_MISSING)
607 return 0;
608
53b381b3
DW
609 return 1;
610}
611
612/*
613 * helper to index into the pstripe
614 */
615static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
616{
617 index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
618 return rbio->stripe_pages[index];
619}
620
621/*
622 * helper to index into the qstripe, returns null
623 * if there is no qstripe
624 */
625static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
626{
2c8cdd6e 627 if (rbio->nr_data + 1 == rbio->real_stripes)
53b381b3
DW
628 return NULL;
629
630 index += ((rbio->nr_data + 1) * rbio->stripe_len) >>
631 PAGE_CACHE_SHIFT;
632 return rbio->stripe_pages[index];
633}
634
635/*
636 * The first stripe in the table for a logical address
637 * has the lock. rbios are added in one of three ways:
638 *
639 * 1) Nobody has the stripe locked yet. The rbio is given
640 * the lock and 0 is returned. The caller must start the IO
641 * themselves.
642 *
643 * 2) Someone has the stripe locked, but we're able to merge
644 * with the lock owner. The rbio is freed and the IO will
645 * start automatically along with the existing rbio. 1 is returned.
646 *
647 * 3) Someone has the stripe locked, but we're not able to merge.
648 * The rbio is added to the lock owner's plug list, or merged into
649 * an rbio already on the plug list. When the lock owner unlocks,
650 * the next rbio on the list is run and the IO is started automatically.
651 * 1 is returned
652 *
653 * If we return 0, the caller still owns the rbio and must continue with
654 * IO submission. If we return 1, the caller must assume the rbio has
655 * already been freed.
656 */
657static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
658{
659 int bucket = rbio_bucket(rbio);
660 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
661 struct btrfs_raid_bio *cur;
662 struct btrfs_raid_bio *pending;
663 unsigned long flags;
664 DEFINE_WAIT(wait);
665 struct btrfs_raid_bio *freeit = NULL;
4ae10b3a 666 struct btrfs_raid_bio *cache_drop = NULL;
53b381b3
DW
667 int ret = 0;
668 int walk = 0;
669
670 spin_lock_irqsave(&h->lock, flags);
671 list_for_each_entry(cur, &h->hash_list, hash_list) {
672 walk++;
8e5cfb55 673 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
53b381b3
DW
674 spin_lock(&cur->bio_list_lock);
675
4ae10b3a
CM
676 /* can we steal this cached rbio's pages? */
677 if (bio_list_empty(&cur->bio_list) &&
678 list_empty(&cur->plug_list) &&
679 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
680 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
681 list_del_init(&cur->hash_list);
682 atomic_dec(&cur->refs);
683
684 steal_rbio(cur, rbio);
685 cache_drop = cur;
686 spin_unlock(&cur->bio_list_lock);
687
688 goto lockit;
689 }
690
53b381b3
DW
691 /* can we merge into the lock owner? */
692 if (rbio_can_merge(cur, rbio)) {
693 merge_rbio(cur, rbio);
694 spin_unlock(&cur->bio_list_lock);
695 freeit = rbio;
696 ret = 1;
697 goto out;
698 }
699
4ae10b3a 700
53b381b3
DW
701 /*
702 * we couldn't merge with the running
703 * rbio, see if we can merge with the
704 * pending ones. We don't have to
705 * check for rmw_locked because there
706 * is no way they are inside finish_rmw
707 * right now
708 */
709 list_for_each_entry(pending, &cur->plug_list,
710 plug_list) {
711 if (rbio_can_merge(pending, rbio)) {
712 merge_rbio(pending, rbio);
713 spin_unlock(&cur->bio_list_lock);
714 freeit = rbio;
715 ret = 1;
716 goto out;
717 }
718 }
719
720 /* no merging, put us on the tail of the plug list,
721 * our rbio will be started with the currently
722 * running rbio unlocks
723 */
724 list_add_tail(&rbio->plug_list, &cur->plug_list);
725 spin_unlock(&cur->bio_list_lock);
726 ret = 1;
727 goto out;
728 }
729 }
4ae10b3a 730lockit:
53b381b3
DW
731 atomic_inc(&rbio->refs);
732 list_add(&rbio->hash_list, &h->hash_list);
733out:
734 spin_unlock_irqrestore(&h->lock, flags);
4ae10b3a
CM
735 if (cache_drop)
736 remove_rbio_from_cache(cache_drop);
53b381b3
DW
737 if (freeit)
738 __free_raid_bio(freeit);
739 return ret;
740}
741
742/*
743 * called as rmw or parity rebuild is completed. If the plug list has more
744 * rbios waiting for this stripe, the next one on the list will be started
745 */
746static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
747{
748 int bucket;
749 struct btrfs_stripe_hash *h;
750 unsigned long flags;
4ae10b3a 751 int keep_cache = 0;
53b381b3
DW
752
753 bucket = rbio_bucket(rbio);
754 h = rbio->fs_info->stripe_hash_table->table + bucket;
755
4ae10b3a
CM
756 if (list_empty(&rbio->plug_list))
757 cache_rbio(rbio);
758
53b381b3
DW
759 spin_lock_irqsave(&h->lock, flags);
760 spin_lock(&rbio->bio_list_lock);
761
762 if (!list_empty(&rbio->hash_list)) {
4ae10b3a
CM
763 /*
764 * if we're still cached and there is no other IO
765 * to perform, just leave this rbio here for others
766 * to steal from later
767 */
768 if (list_empty(&rbio->plug_list) &&
769 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
770 keep_cache = 1;
771 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
772 BUG_ON(!bio_list_empty(&rbio->bio_list));
773 goto done;
774 }
53b381b3
DW
775
776 list_del_init(&rbio->hash_list);
777 atomic_dec(&rbio->refs);
778
779 /*
780 * we use the plug list to hold all the rbios
781 * waiting for the chance to lock this stripe.
782 * hand the lock over to one of them.
783 */
784 if (!list_empty(&rbio->plug_list)) {
785 struct btrfs_raid_bio *next;
786 struct list_head *head = rbio->plug_list.next;
787
788 next = list_entry(head, struct btrfs_raid_bio,
789 plug_list);
790
791 list_del_init(&rbio->plug_list);
792
793 list_add(&next->hash_list, &h->hash_list);
794 atomic_inc(&next->refs);
795 spin_unlock(&rbio->bio_list_lock);
796 spin_unlock_irqrestore(&h->lock, flags);
797
1b94b556 798 if (next->operation == BTRFS_RBIO_READ_REBUILD)
53b381b3 799 async_read_rebuild(next);
b4ee1782
OS
800 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
801 steal_rbio(rbio, next);
802 async_read_rebuild(next);
803 } else if (next->operation == BTRFS_RBIO_WRITE) {
4ae10b3a 804 steal_rbio(rbio, next);
53b381b3 805 async_rmw_stripe(next);
5a6ac9ea
MX
806 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
807 steal_rbio(rbio, next);
808 async_scrub_parity(next);
4ae10b3a 809 }
53b381b3
DW
810
811 goto done_nolock;
33a9eca7
DS
812 /*
813 * The barrier for this waitqueue_active is not needed,
814 * we're protected by h->lock and can't miss a wakeup.
815 */
816 } else if (waitqueue_active(&h->wait)) {
53b381b3
DW
817 spin_unlock(&rbio->bio_list_lock);
818 spin_unlock_irqrestore(&h->lock, flags);
819 wake_up(&h->wait);
820 goto done_nolock;
821 }
822 }
4ae10b3a 823done:
53b381b3
DW
824 spin_unlock(&rbio->bio_list_lock);
825 spin_unlock_irqrestore(&h->lock, flags);
826
827done_nolock:
4ae10b3a
CM
828 if (!keep_cache)
829 remove_rbio_from_cache(rbio);
53b381b3
DW
830}
831
832static void __free_raid_bio(struct btrfs_raid_bio *rbio)
833{
834 int i;
835
836 WARN_ON(atomic_read(&rbio->refs) < 0);
837 if (!atomic_dec_and_test(&rbio->refs))
838 return;
839
4ae10b3a 840 WARN_ON(!list_empty(&rbio->stripe_cache));
53b381b3
DW
841 WARN_ON(!list_empty(&rbio->hash_list));
842 WARN_ON(!bio_list_empty(&rbio->bio_list));
843
844 for (i = 0; i < rbio->nr_pages; i++) {
845 if (rbio->stripe_pages[i]) {
846 __free_page(rbio->stripe_pages[i]);
847 rbio->stripe_pages[i] = NULL;
848 }
849 }
af8e2d1d 850
6e9606d2 851 btrfs_put_bbio(rbio->bbio);
53b381b3
DW
852 kfree(rbio);
853}
854
855static void free_raid_bio(struct btrfs_raid_bio *rbio)
856{
857 unlock_stripe(rbio);
858 __free_raid_bio(rbio);
859}
860
861/*
862 * this frees the rbio and runs through all the bios in the
863 * bio_list and calls end_io on them
864 */
4246a0b6 865static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err)
53b381b3
DW
866{
867 struct bio *cur = bio_list_get(&rbio->bio_list);
868 struct bio *next;
4245215d
MX
869
870 if (rbio->generic_bio_cnt)
871 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
872
53b381b3
DW
873 free_raid_bio(rbio);
874
875 while (cur) {
876 next = cur->bi_next;
877 cur->bi_next = NULL;
4246a0b6
CH
878 cur->bi_error = err;
879 bio_endio(cur);
53b381b3
DW
880 cur = next;
881 }
882}
883
884/*
885 * end io function used by finish_rmw. When we finally
886 * get here, we've written a full stripe
887 */
4246a0b6 888static void raid_write_end_io(struct bio *bio)
53b381b3
DW
889{
890 struct btrfs_raid_bio *rbio = bio->bi_private;
4246a0b6 891 int err = bio->bi_error;
53b381b3
DW
892
893 if (err)
894 fail_bio_stripe(rbio, bio);
895
896 bio_put(bio);
897
b89e1b01 898 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
899 return;
900
901 err = 0;
902
903 /* OK, we have read all the stripes we need to. */
b89e1b01 904 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
53b381b3
DW
905 err = -EIO;
906
4246a0b6 907 rbio_orig_end_io(rbio, err);
53b381b3
DW
908}
909
910/*
911 * the read/modify/write code wants to use the original bio for
912 * any pages it included, and then use the rbio for everything
913 * else. This function decides if a given index (stripe number)
914 * and page number in that stripe fall inside the original bio
915 * or the rbio.
916 *
917 * if you set bio_list_only, you'll get a NULL back for any ranges
918 * that are outside the bio_list
919 *
920 * This doesn't take any refs on anything, you get a bare page pointer
921 * and the caller must bump refs as required.
922 *
923 * You must call index_rbio_pages once before you can trust
924 * the answers from this function.
925 */
926static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
927 int index, int pagenr, int bio_list_only)
928{
929 int chunk_page;
930 struct page *p = NULL;
931
932 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
933
934 spin_lock_irq(&rbio->bio_list_lock);
935 p = rbio->bio_pages[chunk_page];
936 spin_unlock_irq(&rbio->bio_list_lock);
937
938 if (p || bio_list_only)
939 return p;
940
941 return rbio->stripe_pages[chunk_page];
942}
943
944/*
945 * number of pages we need for the entire stripe across all the
946 * drives
947 */
948static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
949{
950 unsigned long nr = stripe_len * nr_stripes;
ed6078f7 951 return DIV_ROUND_UP(nr, PAGE_CACHE_SIZE);
53b381b3
DW
952}
953
954/*
955 * allocation and initial setup for the btrfs_raid_bio. Not
956 * this does not allocate any pages for rbio->pages.
957 */
958static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
8e5cfb55 959 struct btrfs_bio *bbio, u64 stripe_len)
53b381b3
DW
960{
961 struct btrfs_raid_bio *rbio;
962 int nr_data = 0;
2c8cdd6e
MX
963 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
964 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
5a6ac9ea 965 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
53b381b3
DW
966 void *p;
967
5a6ac9ea
MX
968 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
969 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG / 8),
53b381b3 970 GFP_NOFS);
af8e2d1d 971 if (!rbio)
53b381b3 972 return ERR_PTR(-ENOMEM);
53b381b3
DW
973
974 bio_list_init(&rbio->bio_list);
975 INIT_LIST_HEAD(&rbio->plug_list);
976 spin_lock_init(&rbio->bio_list_lock);
4ae10b3a 977 INIT_LIST_HEAD(&rbio->stripe_cache);
53b381b3
DW
978 INIT_LIST_HEAD(&rbio->hash_list);
979 rbio->bbio = bbio;
53b381b3
DW
980 rbio->fs_info = root->fs_info;
981 rbio->stripe_len = stripe_len;
982 rbio->nr_pages = num_pages;
2c8cdd6e 983 rbio->real_stripes = real_stripes;
5a6ac9ea 984 rbio->stripe_npages = stripe_npages;
53b381b3
DW
985 rbio->faila = -1;
986 rbio->failb = -1;
987 atomic_set(&rbio->refs, 1);
b89e1b01
MX
988 atomic_set(&rbio->error, 0);
989 atomic_set(&rbio->stripes_pending, 0);
53b381b3
DW
990
991 /*
992 * the stripe_pages and bio_pages array point to the extra
993 * memory we allocated past the end of the rbio
994 */
995 p = rbio + 1;
996 rbio->stripe_pages = p;
997 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
5a6ac9ea 998 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
53b381b3 999
10f11900
ZL
1000 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1001 nr_data = real_stripes - 1;
1002 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
2c8cdd6e 1003 nr_data = real_stripes - 2;
53b381b3 1004 else
10f11900 1005 BUG();
53b381b3
DW
1006
1007 rbio->nr_data = nr_data;
1008 return rbio;
1009}
1010
1011/* allocate pages for all the stripes in the bio, including parity */
1012static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1013{
1014 int i;
1015 struct page *page;
1016
1017 for (i = 0; i < rbio->nr_pages; i++) {
1018 if (rbio->stripe_pages[i])
1019 continue;
1020 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1021 if (!page)
1022 return -ENOMEM;
1023 rbio->stripe_pages[i] = page;
1024 ClearPageUptodate(page);
1025 }
1026 return 0;
1027}
1028
1029/* allocate pages for just the p/q stripes */
1030static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1031{
1032 int i;
1033 struct page *page;
1034
1035 i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
1036
1037 for (; i < rbio->nr_pages; i++) {
1038 if (rbio->stripe_pages[i])
1039 continue;
1040 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1041 if (!page)
1042 return -ENOMEM;
1043 rbio->stripe_pages[i] = page;
1044 }
1045 return 0;
1046}
1047
1048/*
1049 * add a single page from a specific stripe into our list of bios for IO
1050 * this will try to merge into existing bios if possible, and returns
1051 * zero if all went well.
1052 */
48a3b636
ES
1053static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1054 struct bio_list *bio_list,
1055 struct page *page,
1056 int stripe_nr,
1057 unsigned long page_index,
1058 unsigned long bio_max_len)
53b381b3
DW
1059{
1060 struct bio *last = bio_list->tail;
1061 u64 last_end = 0;
1062 int ret;
1063 struct bio *bio;
1064 struct btrfs_bio_stripe *stripe;
1065 u64 disk_start;
1066
1067 stripe = &rbio->bbio->stripes[stripe_nr];
1068 disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT);
1069
1070 /* if the device is missing, just fail this stripe */
1071 if (!stripe->dev->bdev)
1072 return fail_rbio_index(rbio, stripe_nr);
1073
1074 /* see if we can add this page onto our existing bio */
1075 if (last) {
4f024f37
KO
1076 last_end = (u64)last->bi_iter.bi_sector << 9;
1077 last_end += last->bi_iter.bi_size;
53b381b3
DW
1078
1079 /*
1080 * we can't merge these if they are from different
1081 * devices or if they are not contiguous
1082 */
1083 if (last_end == disk_start && stripe->dev->bdev &&
4246a0b6 1084 !last->bi_error &&
53b381b3
DW
1085 last->bi_bdev == stripe->dev->bdev) {
1086 ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0);
1087 if (ret == PAGE_CACHE_SIZE)
1088 return 0;
1089 }
1090 }
1091
1092 /* put a new bio on the list */
9be3395b 1093 bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
53b381b3
DW
1094 if (!bio)
1095 return -ENOMEM;
1096
4f024f37 1097 bio->bi_iter.bi_size = 0;
53b381b3 1098 bio->bi_bdev = stripe->dev->bdev;
4f024f37 1099 bio->bi_iter.bi_sector = disk_start >> 9;
53b381b3
DW
1100
1101 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
1102 bio_list_add(bio_list, bio);
1103 return 0;
1104}
1105
1106/*
1107 * while we're doing the read/modify/write cycle, we could
1108 * have errors in reading pages off the disk. This checks
1109 * for errors and if we're not able to read the page it'll
1110 * trigger parity reconstruction. The rmw will be finished
1111 * after we've reconstructed the failed stripes
1112 */
1113static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1114{
1115 if (rbio->faila >= 0 || rbio->failb >= 0) {
2c8cdd6e 1116 BUG_ON(rbio->faila == rbio->real_stripes - 1);
53b381b3
DW
1117 __raid56_parity_recover(rbio);
1118 } else {
1119 finish_rmw(rbio);
1120 }
1121}
1122
1123/*
1124 * these are just the pages from the rbio array, not from anything
1125 * the FS sent down to us
1126 */
1127static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page)
1128{
1129 int index;
1130 index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT);
1131 index += page;
1132 return rbio->stripe_pages[index];
1133}
1134
1135/*
1136 * helper function to walk our bio list and populate the bio_pages array with
1137 * the result. This seems expensive, but it is faster than constantly
1138 * searching through the bio list as we setup the IO in finish_rmw or stripe
1139 * reconstruction.
1140 *
1141 * This must be called before you trust the answers from page_in_rbio
1142 */
1143static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1144{
1145 struct bio *bio;
1146 u64 start;
1147 unsigned long stripe_offset;
1148 unsigned long page_index;
1149 struct page *p;
1150 int i;
1151
1152 spin_lock_irq(&rbio->bio_list_lock);
1153 bio_list_for_each(bio, &rbio->bio_list) {
4f024f37 1154 start = (u64)bio->bi_iter.bi_sector << 9;
8e5cfb55 1155 stripe_offset = start - rbio->bbio->raid_map[0];
53b381b3
DW
1156 page_index = stripe_offset >> PAGE_CACHE_SHIFT;
1157
1158 for (i = 0; i < bio->bi_vcnt; i++) {
1159 p = bio->bi_io_vec[i].bv_page;
1160 rbio->bio_pages[page_index + i] = p;
1161 }
1162 }
1163 spin_unlock_irq(&rbio->bio_list_lock);
1164}
1165
1166/*
1167 * this is called from one of two situations. We either
1168 * have a full stripe from the higher layers, or we've read all
1169 * the missing bits off disk.
1170 *
1171 * This will calculate the parity and then send down any
1172 * changed blocks.
1173 */
1174static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1175{
1176 struct btrfs_bio *bbio = rbio->bbio;
2c8cdd6e 1177 void *pointers[rbio->real_stripes];
53b381b3
DW
1178 int stripe_len = rbio->stripe_len;
1179 int nr_data = rbio->nr_data;
1180 int stripe;
1181 int pagenr;
1182 int p_stripe = -1;
1183 int q_stripe = -1;
1184 struct bio_list bio_list;
1185 struct bio *bio;
1186 int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT;
1187 int ret;
1188
1189 bio_list_init(&bio_list);
1190
2c8cdd6e
MX
1191 if (rbio->real_stripes - rbio->nr_data == 1) {
1192 p_stripe = rbio->real_stripes - 1;
1193 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1194 p_stripe = rbio->real_stripes - 2;
1195 q_stripe = rbio->real_stripes - 1;
53b381b3
DW
1196 } else {
1197 BUG();
1198 }
1199
1200 /* at this point we either have a full stripe,
1201 * or we've read the full stripe from the drive.
1202 * recalculate the parity and write the new results.
1203 *
1204 * We're not allowed to add any new bios to the
1205 * bio list here, anyone else that wants to
1206 * change this stripe needs to do their own rmw.
1207 */
1208 spin_lock_irq(&rbio->bio_list_lock);
1209 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1210 spin_unlock_irq(&rbio->bio_list_lock);
1211
b89e1b01 1212 atomic_set(&rbio->error, 0);
53b381b3
DW
1213
1214 /*
1215 * now that we've set rmw_locked, run through the
1216 * bio list one last time and map the page pointers
4ae10b3a
CM
1217 *
1218 * We don't cache full rbios because we're assuming
1219 * the higher layers are unlikely to use this area of
1220 * the disk again soon. If they do use it again,
1221 * hopefully they will send another full bio.
53b381b3
DW
1222 */
1223 index_rbio_pages(rbio);
4ae10b3a
CM
1224 if (!rbio_is_full(rbio))
1225 cache_rbio_pages(rbio);
1226 else
1227 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
53b381b3
DW
1228
1229 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1230 struct page *p;
1231 /* first collect one page from each data stripe */
1232 for (stripe = 0; stripe < nr_data; stripe++) {
1233 p = page_in_rbio(rbio, stripe, pagenr, 0);
1234 pointers[stripe] = kmap(p);
1235 }
1236
1237 /* then add the parity stripe */
1238 p = rbio_pstripe_page(rbio, pagenr);
1239 SetPageUptodate(p);
1240 pointers[stripe++] = kmap(p);
1241
1242 if (q_stripe != -1) {
1243
1244 /*
1245 * raid6, add the qstripe and call the
1246 * library function to fill in our p/q
1247 */
1248 p = rbio_qstripe_page(rbio, pagenr);
1249 SetPageUptodate(p);
1250 pointers[stripe++] = kmap(p);
1251
2c8cdd6e 1252 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
53b381b3
DW
1253 pointers);
1254 } else {
1255 /* raid5 */
1256 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1257 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
1258 }
1259
1260
2c8cdd6e 1261 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
53b381b3
DW
1262 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1263 }
1264
1265 /*
1266 * time to start writing. Make bios for everything from the
1267 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1268 * everything else.
1269 */
2c8cdd6e 1270 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1271 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1272 struct page *page;
1273 if (stripe < rbio->nr_data) {
1274 page = page_in_rbio(rbio, stripe, pagenr, 1);
1275 if (!page)
1276 continue;
1277 } else {
1278 page = rbio_stripe_page(rbio, stripe, pagenr);
1279 }
1280
1281 ret = rbio_add_io_page(rbio, &bio_list,
1282 page, stripe, pagenr, rbio->stripe_len);
1283 if (ret)
1284 goto cleanup;
1285 }
1286 }
1287
2c8cdd6e
MX
1288 if (likely(!bbio->num_tgtdevs))
1289 goto write_data;
1290
1291 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1292 if (!bbio->tgtdev_map[stripe])
1293 continue;
1294
1295 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1296 struct page *page;
1297 if (stripe < rbio->nr_data) {
1298 page = page_in_rbio(rbio, stripe, pagenr, 1);
1299 if (!page)
1300 continue;
1301 } else {
1302 page = rbio_stripe_page(rbio, stripe, pagenr);
1303 }
1304
1305 ret = rbio_add_io_page(rbio, &bio_list, page,
1306 rbio->bbio->tgtdev_map[stripe],
1307 pagenr, rbio->stripe_len);
1308 if (ret)
1309 goto cleanup;
1310 }
1311 }
1312
1313write_data:
b89e1b01
MX
1314 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1315 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
53b381b3
DW
1316
1317 while (1) {
1318 bio = bio_list_pop(&bio_list);
1319 if (!bio)
1320 break;
1321
1322 bio->bi_private = rbio;
1323 bio->bi_end_io = raid_write_end_io;
53b381b3
DW
1324 submit_bio(WRITE, bio);
1325 }
1326 return;
1327
1328cleanup:
4246a0b6 1329 rbio_orig_end_io(rbio, -EIO);
53b381b3
DW
1330}
1331
1332/*
1333 * helper to find the stripe number for a given bio. Used to figure out which
1334 * stripe has failed. This expects the bio to correspond to a physical disk,
1335 * so it looks up based on physical sector numbers.
1336 */
1337static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1338 struct bio *bio)
1339{
4f024f37 1340 u64 physical = bio->bi_iter.bi_sector;
53b381b3
DW
1341 u64 stripe_start;
1342 int i;
1343 struct btrfs_bio_stripe *stripe;
1344
1345 physical <<= 9;
1346
1347 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1348 stripe = &rbio->bbio->stripes[i];
1349 stripe_start = stripe->physical;
1350 if (physical >= stripe_start &&
2c8cdd6e
MX
1351 physical < stripe_start + rbio->stripe_len &&
1352 bio->bi_bdev == stripe->dev->bdev) {
53b381b3
DW
1353 return i;
1354 }
1355 }
1356 return -1;
1357}
1358
1359/*
1360 * helper to find the stripe number for a given
1361 * bio (before mapping). Used to figure out which stripe has
1362 * failed. This looks up based on logical block numbers.
1363 */
1364static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1365 struct bio *bio)
1366{
4f024f37 1367 u64 logical = bio->bi_iter.bi_sector;
53b381b3
DW
1368 u64 stripe_start;
1369 int i;
1370
1371 logical <<= 9;
1372
1373 for (i = 0; i < rbio->nr_data; i++) {
8e5cfb55 1374 stripe_start = rbio->bbio->raid_map[i];
53b381b3
DW
1375 if (logical >= stripe_start &&
1376 logical < stripe_start + rbio->stripe_len) {
1377 return i;
1378 }
1379 }
1380 return -1;
1381}
1382
1383/*
1384 * returns -EIO if we had too many failures
1385 */
1386static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1387{
1388 unsigned long flags;
1389 int ret = 0;
1390
1391 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1392
1393 /* we already know this stripe is bad, move on */
1394 if (rbio->faila == failed || rbio->failb == failed)
1395 goto out;
1396
1397 if (rbio->faila == -1) {
1398 /* first failure on this rbio */
1399 rbio->faila = failed;
b89e1b01 1400 atomic_inc(&rbio->error);
53b381b3
DW
1401 } else if (rbio->failb == -1) {
1402 /* second failure on this rbio */
1403 rbio->failb = failed;
b89e1b01 1404 atomic_inc(&rbio->error);
53b381b3
DW
1405 } else {
1406 ret = -EIO;
1407 }
1408out:
1409 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1410
1411 return ret;
1412}
1413
1414/*
1415 * helper to fail a stripe based on a physical disk
1416 * bio.
1417 */
1418static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1419 struct bio *bio)
1420{
1421 int failed = find_bio_stripe(rbio, bio);
1422
1423 if (failed < 0)
1424 return -EIO;
1425
1426 return fail_rbio_index(rbio, failed);
1427}
1428
1429/*
1430 * this sets each page in the bio uptodate. It should only be used on private
1431 * rbio pages, nothing that comes in from the higher layers
1432 */
1433static void set_bio_pages_uptodate(struct bio *bio)
1434{
1435 int i;
1436 struct page *p;
1437
1438 for (i = 0; i < bio->bi_vcnt; i++) {
1439 p = bio->bi_io_vec[i].bv_page;
1440 SetPageUptodate(p);
1441 }
1442}
1443
1444/*
1445 * end io for the read phase of the rmw cycle. All the bios here are physical
1446 * stripe bios we've read from the disk so we can recalculate the parity of the
1447 * stripe.
1448 *
1449 * This will usually kick off finish_rmw once all the bios are read in, but it
1450 * may trigger parity reconstruction if we had any errors along the way
1451 */
4246a0b6 1452static void raid_rmw_end_io(struct bio *bio)
53b381b3
DW
1453{
1454 struct btrfs_raid_bio *rbio = bio->bi_private;
1455
4246a0b6 1456 if (bio->bi_error)
53b381b3
DW
1457 fail_bio_stripe(rbio, bio);
1458 else
1459 set_bio_pages_uptodate(bio);
1460
1461 bio_put(bio);
1462
b89e1b01 1463 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
1464 return;
1465
b89e1b01 1466 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
53b381b3
DW
1467 goto cleanup;
1468
1469 /*
1470 * this will normally call finish_rmw to start our write
1471 * but if there are any failed stripes we'll reconstruct
1472 * from parity first
1473 */
1474 validate_rbio_for_rmw(rbio);
1475 return;
1476
1477cleanup:
1478
4246a0b6 1479 rbio_orig_end_io(rbio, -EIO);
53b381b3
DW
1480}
1481
1482static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1483{
9e0af237
LB
1484 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1485 rmw_work, NULL, NULL);
53b381b3 1486
d05a33ac
QW
1487 btrfs_queue_work(rbio->fs_info->rmw_workers,
1488 &rbio->work);
53b381b3
DW
1489}
1490
1491static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1492{
9e0af237
LB
1493 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1494 read_rebuild_work, NULL, NULL);
53b381b3 1495
d05a33ac
QW
1496 btrfs_queue_work(rbio->fs_info->rmw_workers,
1497 &rbio->work);
53b381b3
DW
1498}
1499
1500/*
1501 * the stripe must be locked by the caller. It will
1502 * unlock after all the writes are done
1503 */
1504static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1505{
1506 int bios_to_read = 0;
53b381b3
DW
1507 struct bio_list bio_list;
1508 int ret;
ed6078f7 1509 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
53b381b3
DW
1510 int pagenr;
1511 int stripe;
1512 struct bio *bio;
1513
1514 bio_list_init(&bio_list);
1515
1516 ret = alloc_rbio_pages(rbio);
1517 if (ret)
1518 goto cleanup;
1519
1520 index_rbio_pages(rbio);
1521
b89e1b01 1522 atomic_set(&rbio->error, 0);
53b381b3
DW
1523 /*
1524 * build a list of bios to read all the missing parts of this
1525 * stripe
1526 */
1527 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1528 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1529 struct page *page;
1530 /*
1531 * we want to find all the pages missing from
1532 * the rbio and read them from the disk. If
1533 * page_in_rbio finds a page in the bio list
1534 * we don't need to read it off the stripe.
1535 */
1536 page = page_in_rbio(rbio, stripe, pagenr, 1);
1537 if (page)
1538 continue;
1539
1540 page = rbio_stripe_page(rbio, stripe, pagenr);
4ae10b3a
CM
1541 /*
1542 * the bio cache may have handed us an uptodate
1543 * page. If so, be happy and use it
1544 */
1545 if (PageUptodate(page))
1546 continue;
1547
53b381b3
DW
1548 ret = rbio_add_io_page(rbio, &bio_list, page,
1549 stripe, pagenr, rbio->stripe_len);
1550 if (ret)
1551 goto cleanup;
1552 }
1553 }
1554
1555 bios_to_read = bio_list_size(&bio_list);
1556 if (!bios_to_read) {
1557 /*
1558 * this can happen if others have merged with
1559 * us, it means there is nothing left to read.
1560 * But if there are missing devices it may not be
1561 * safe to do the full stripe write yet.
1562 */
1563 goto finish;
1564 }
1565
1566 /*
1567 * the bbio may be freed once we submit the last bio. Make sure
1568 * not to touch it after that
1569 */
b89e1b01 1570 atomic_set(&rbio->stripes_pending, bios_to_read);
53b381b3
DW
1571 while (1) {
1572 bio = bio_list_pop(&bio_list);
1573 if (!bio)
1574 break;
1575
1576 bio->bi_private = rbio;
1577 bio->bi_end_io = raid_rmw_end_io;
1578
1579 btrfs_bio_wq_end_io(rbio->fs_info, bio,
1580 BTRFS_WQ_ENDIO_RAID56);
1581
53b381b3
DW
1582 submit_bio(READ, bio);
1583 }
1584 /* the actual write will happen once the reads are done */
1585 return 0;
1586
1587cleanup:
4246a0b6 1588 rbio_orig_end_io(rbio, -EIO);
53b381b3
DW
1589 return -EIO;
1590
1591finish:
1592 validate_rbio_for_rmw(rbio);
1593 return 0;
1594}
1595
1596/*
1597 * if the upper layers pass in a full stripe, we thank them by only allocating
1598 * enough pages to hold the parity, and sending it all down quickly.
1599 */
1600static int full_stripe_write(struct btrfs_raid_bio *rbio)
1601{
1602 int ret;
1603
1604 ret = alloc_rbio_parity_pages(rbio);
3cd846d1
MX
1605 if (ret) {
1606 __free_raid_bio(rbio);
53b381b3 1607 return ret;
3cd846d1 1608 }
53b381b3
DW
1609
1610 ret = lock_stripe_add(rbio);
1611 if (ret == 0)
1612 finish_rmw(rbio);
1613 return 0;
1614}
1615
1616/*
1617 * partial stripe writes get handed over to async helpers.
1618 * We're really hoping to merge a few more writes into this
1619 * rbio before calculating new parity
1620 */
1621static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1622{
1623 int ret;
1624
1625 ret = lock_stripe_add(rbio);
1626 if (ret == 0)
1627 async_rmw_stripe(rbio);
1628 return 0;
1629}
1630
1631/*
1632 * sometimes while we were reading from the drive to
1633 * recalculate parity, enough new bios come into create
1634 * a full stripe. So we do a check here to see if we can
1635 * go directly to finish_rmw
1636 */
1637static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1638{
1639 /* head off into rmw land if we don't have a full stripe */
1640 if (!rbio_is_full(rbio))
1641 return partial_stripe_write(rbio);
1642 return full_stripe_write(rbio);
1643}
1644
6ac0f488
CM
1645/*
1646 * We use plugging call backs to collect full stripes.
1647 * Any time we get a partial stripe write while plugged
1648 * we collect it into a list. When the unplug comes down,
1649 * we sort the list by logical block number and merge
1650 * everything we can into the same rbios
1651 */
1652struct btrfs_plug_cb {
1653 struct blk_plug_cb cb;
1654 struct btrfs_fs_info *info;
1655 struct list_head rbio_list;
1656 struct btrfs_work work;
1657};
1658
1659/*
1660 * rbios on the plug list are sorted for easier merging.
1661 */
1662static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1663{
1664 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1665 plug_list);
1666 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1667 plug_list);
4f024f37
KO
1668 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1669 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
6ac0f488
CM
1670
1671 if (a_sector < b_sector)
1672 return -1;
1673 if (a_sector > b_sector)
1674 return 1;
1675 return 0;
1676}
1677
1678static void run_plug(struct btrfs_plug_cb *plug)
1679{
1680 struct btrfs_raid_bio *cur;
1681 struct btrfs_raid_bio *last = NULL;
1682
1683 /*
1684 * sort our plug list then try to merge
1685 * everything we can in hopes of creating full
1686 * stripes.
1687 */
1688 list_sort(NULL, &plug->rbio_list, plug_cmp);
1689 while (!list_empty(&plug->rbio_list)) {
1690 cur = list_entry(plug->rbio_list.next,
1691 struct btrfs_raid_bio, plug_list);
1692 list_del_init(&cur->plug_list);
1693
1694 if (rbio_is_full(cur)) {
1695 /* we have a full stripe, send it down */
1696 full_stripe_write(cur);
1697 continue;
1698 }
1699 if (last) {
1700 if (rbio_can_merge(last, cur)) {
1701 merge_rbio(last, cur);
1702 __free_raid_bio(cur);
1703 continue;
1704
1705 }
1706 __raid56_parity_write(last);
1707 }
1708 last = cur;
1709 }
1710 if (last) {
1711 __raid56_parity_write(last);
1712 }
1713 kfree(plug);
1714}
1715
1716/*
1717 * if the unplug comes from schedule, we have to push the
1718 * work off to a helper thread
1719 */
1720static void unplug_work(struct btrfs_work *work)
1721{
1722 struct btrfs_plug_cb *plug;
1723 plug = container_of(work, struct btrfs_plug_cb, work);
1724 run_plug(plug);
1725}
1726
1727static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1728{
1729 struct btrfs_plug_cb *plug;
1730 plug = container_of(cb, struct btrfs_plug_cb, cb);
1731
1732 if (from_schedule) {
9e0af237
LB
1733 btrfs_init_work(&plug->work, btrfs_rmw_helper,
1734 unplug_work, NULL, NULL);
d05a33ac
QW
1735 btrfs_queue_work(plug->info->rmw_workers,
1736 &plug->work);
6ac0f488
CM
1737 return;
1738 }
1739 run_plug(plug);
1740}
1741
53b381b3
DW
1742/*
1743 * our main entry point for writes from the rest of the FS.
1744 */
1745int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
8e5cfb55 1746 struct btrfs_bio *bbio, u64 stripe_len)
53b381b3
DW
1747{
1748 struct btrfs_raid_bio *rbio;
6ac0f488
CM
1749 struct btrfs_plug_cb *plug = NULL;
1750 struct blk_plug_cb *cb;
4245215d 1751 int ret;
53b381b3 1752
8e5cfb55 1753 rbio = alloc_rbio(root, bbio, stripe_len);
af8e2d1d 1754 if (IS_ERR(rbio)) {
6e9606d2 1755 btrfs_put_bbio(bbio);
53b381b3 1756 return PTR_ERR(rbio);
af8e2d1d 1757 }
53b381b3 1758 bio_list_add(&rbio->bio_list, bio);
4f024f37 1759 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1b94b556 1760 rbio->operation = BTRFS_RBIO_WRITE;
6ac0f488 1761
4245215d
MX
1762 btrfs_bio_counter_inc_noblocked(root->fs_info);
1763 rbio->generic_bio_cnt = 1;
1764
6ac0f488
CM
1765 /*
1766 * don't plug on full rbios, just get them out the door
1767 * as quickly as we can
1768 */
4245215d
MX
1769 if (rbio_is_full(rbio)) {
1770 ret = full_stripe_write(rbio);
1771 if (ret)
1772 btrfs_bio_counter_dec(root->fs_info);
1773 return ret;
1774 }
6ac0f488
CM
1775
1776 cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
1777 sizeof(*plug));
1778 if (cb) {
1779 plug = container_of(cb, struct btrfs_plug_cb, cb);
1780 if (!plug->info) {
1781 plug->info = root->fs_info;
1782 INIT_LIST_HEAD(&plug->rbio_list);
1783 }
1784 list_add_tail(&rbio->plug_list, &plug->rbio_list);
4245215d 1785 ret = 0;
6ac0f488 1786 } else {
4245215d
MX
1787 ret = __raid56_parity_write(rbio);
1788 if (ret)
1789 btrfs_bio_counter_dec(root->fs_info);
6ac0f488 1790 }
4245215d 1791 return ret;
53b381b3
DW
1792}
1793
1794/*
1795 * all parity reconstruction happens here. We've read in everything
1796 * we can find from the drives and this does the heavy lifting of
1797 * sorting the good from the bad.
1798 */
1799static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1800{
1801 int pagenr, stripe;
1802 void **pointers;
1803 int faila = -1, failb = -1;
ed6078f7 1804 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
53b381b3
DW
1805 struct page *page;
1806 int err;
1807 int i;
1808
31e818fe 1809 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
53b381b3
DW
1810 if (!pointers) {
1811 err = -ENOMEM;
1812 goto cleanup_io;
1813 }
1814
1815 faila = rbio->faila;
1816 failb = rbio->failb;
1817
b4ee1782
OS
1818 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1819 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
53b381b3
DW
1820 spin_lock_irq(&rbio->bio_list_lock);
1821 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1822 spin_unlock_irq(&rbio->bio_list_lock);
1823 }
1824
1825 index_rbio_pages(rbio);
1826
1827 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
5a6ac9ea
MX
1828 /*
1829 * Now we just use bitmap to mark the horizontal stripes in
1830 * which we have data when doing parity scrub.
1831 */
1832 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1833 !test_bit(pagenr, rbio->dbitmap))
1834 continue;
1835
53b381b3
DW
1836 /* setup our array of pointers with pages
1837 * from each stripe
1838 */
2c8cdd6e 1839 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1840 /*
1841 * if we're rebuilding a read, we have to use
1842 * pages from the bio list
1843 */
b4ee1782
OS
1844 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1845 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
53b381b3
DW
1846 (stripe == faila || stripe == failb)) {
1847 page = page_in_rbio(rbio, stripe, pagenr, 0);
1848 } else {
1849 page = rbio_stripe_page(rbio, stripe, pagenr);
1850 }
1851 pointers[stripe] = kmap(page);
1852 }
1853
1854 /* all raid6 handling here */
10f11900 1855 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
1856 /*
1857 * single failure, rebuild from parity raid5
1858 * style
1859 */
1860 if (failb < 0) {
1861 if (faila == rbio->nr_data) {
1862 /*
1863 * Just the P stripe has failed, without
1864 * a bad data or Q stripe.
1865 * TODO, we should redo the xor here.
1866 */
1867 err = -EIO;
1868 goto cleanup;
1869 }
1870 /*
1871 * a single failure in raid6 is rebuilt
1872 * in the pstripe code below
1873 */
1874 goto pstripe;
1875 }
1876
1877 /* make sure our ps and qs are in order */
1878 if (faila > failb) {
1879 int tmp = failb;
1880 failb = faila;
1881 faila = tmp;
1882 }
1883
1884 /* if the q stripe is failed, do a pstripe reconstruction
1885 * from the xors.
1886 * If both the q stripe and the P stripe are failed, we're
1887 * here due to a crc mismatch and we can't give them the
1888 * data they want
1889 */
8e5cfb55
ZL
1890 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1891 if (rbio->bbio->raid_map[faila] ==
1892 RAID5_P_STRIPE) {
53b381b3
DW
1893 err = -EIO;
1894 goto cleanup;
1895 }
1896 /*
1897 * otherwise we have one bad data stripe and
1898 * a good P stripe. raid5!
1899 */
1900 goto pstripe;
1901 }
1902
8e5cfb55 1903 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
2c8cdd6e 1904 raid6_datap_recov(rbio->real_stripes,
53b381b3
DW
1905 PAGE_SIZE, faila, pointers);
1906 } else {
2c8cdd6e 1907 raid6_2data_recov(rbio->real_stripes,
53b381b3
DW
1908 PAGE_SIZE, faila, failb,
1909 pointers);
1910 }
1911 } else {
1912 void *p;
1913
1914 /* rebuild from P stripe here (raid5 or raid6) */
1915 BUG_ON(failb != -1);
1916pstripe:
1917 /* Copy parity block into failed block to start with */
1918 memcpy(pointers[faila],
1919 pointers[rbio->nr_data],
1920 PAGE_CACHE_SIZE);
1921
1922 /* rearrange the pointer array */
1923 p = pointers[faila];
1924 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1925 pointers[stripe] = pointers[stripe + 1];
1926 pointers[rbio->nr_data - 1] = p;
1927
1928 /* xor in the rest */
1929 run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE);
1930 }
1931 /* if we're doing this rebuild as part of an rmw, go through
1932 * and set all of our private rbio pages in the
1933 * failed stripes as uptodate. This way finish_rmw will
1934 * know they can be trusted. If this was a read reconstruction,
1935 * other endio functions will fiddle the uptodate bits
1936 */
1b94b556 1937 if (rbio->operation == BTRFS_RBIO_WRITE) {
53b381b3
DW
1938 for (i = 0; i < nr_pages; i++) {
1939 if (faila != -1) {
1940 page = rbio_stripe_page(rbio, faila, i);
1941 SetPageUptodate(page);
1942 }
1943 if (failb != -1) {
1944 page = rbio_stripe_page(rbio, failb, i);
1945 SetPageUptodate(page);
1946 }
1947 }
1948 }
2c8cdd6e 1949 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1950 /*
1951 * if we're rebuilding a read, we have to use
1952 * pages from the bio list
1953 */
b4ee1782
OS
1954 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1955 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
53b381b3
DW
1956 (stripe == faila || stripe == failb)) {
1957 page = page_in_rbio(rbio, stripe, pagenr, 0);
1958 } else {
1959 page = rbio_stripe_page(rbio, stripe, pagenr);
1960 }
1961 kunmap(page);
1962 }
1963 }
1964
1965 err = 0;
1966cleanup:
1967 kfree(pointers);
1968
1969cleanup_io:
1b94b556 1970 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
6e9606d2 1971 if (err == 0)
4ae10b3a
CM
1972 cache_rbio_pages(rbio);
1973 else
1974 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1975
22365979 1976 rbio_orig_end_io(rbio, err);
b4ee1782 1977 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
4246a0b6 1978 rbio_orig_end_io(rbio, err);
53b381b3
DW
1979 } else if (err == 0) {
1980 rbio->faila = -1;
1981 rbio->failb = -1;
5a6ac9ea
MX
1982
1983 if (rbio->operation == BTRFS_RBIO_WRITE)
1984 finish_rmw(rbio);
1985 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1986 finish_parity_scrub(rbio, 0);
1987 else
1988 BUG();
53b381b3 1989 } else {
4246a0b6 1990 rbio_orig_end_io(rbio, err);
53b381b3
DW
1991 }
1992}
1993
1994/*
1995 * This is called only for stripes we've read from disk to
1996 * reconstruct the parity.
1997 */
4246a0b6 1998static void raid_recover_end_io(struct bio *bio)
53b381b3
DW
1999{
2000 struct btrfs_raid_bio *rbio = bio->bi_private;
2001
2002 /*
2003 * we only read stripe pages off the disk, set them
2004 * up to date if there were no errors
2005 */
4246a0b6 2006 if (bio->bi_error)
53b381b3
DW
2007 fail_bio_stripe(rbio, bio);
2008 else
2009 set_bio_pages_uptodate(bio);
2010 bio_put(bio);
2011
b89e1b01 2012 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
2013 return;
2014
b89e1b01 2015 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
4246a0b6 2016 rbio_orig_end_io(rbio, -EIO);
53b381b3
DW
2017 else
2018 __raid_recover_end_io(rbio);
2019}
2020
2021/*
2022 * reads everything we need off the disk to reconstruct
2023 * the parity. endio handlers trigger final reconstruction
2024 * when the IO is done.
2025 *
2026 * This is used both for reads from the higher layers and for
2027 * parity construction required to finish a rmw cycle.
2028 */
2029static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2030{
2031 int bios_to_read = 0;
53b381b3
DW
2032 struct bio_list bio_list;
2033 int ret;
ed6078f7 2034 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
53b381b3
DW
2035 int pagenr;
2036 int stripe;
2037 struct bio *bio;
2038
2039 bio_list_init(&bio_list);
2040
2041 ret = alloc_rbio_pages(rbio);
2042 if (ret)
2043 goto cleanup;
2044
b89e1b01 2045 atomic_set(&rbio->error, 0);
53b381b3
DW
2046
2047 /*
4ae10b3a
CM
2048 * read everything that hasn't failed. Thanks to the
2049 * stripe cache, it is possible that some or all of these
2050 * pages are going to be uptodate.
53b381b3 2051 */
2c8cdd6e 2052 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
5588383e 2053 if (rbio->faila == stripe || rbio->failb == stripe) {
b89e1b01 2054 atomic_inc(&rbio->error);
53b381b3 2055 continue;
5588383e 2056 }
53b381b3
DW
2057
2058 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
2059 struct page *p;
2060
2061 /*
2062 * the rmw code may have already read this
2063 * page in
2064 */
2065 p = rbio_stripe_page(rbio, stripe, pagenr);
2066 if (PageUptodate(p))
2067 continue;
2068
2069 ret = rbio_add_io_page(rbio, &bio_list,
2070 rbio_stripe_page(rbio, stripe, pagenr),
2071 stripe, pagenr, rbio->stripe_len);
2072 if (ret < 0)
2073 goto cleanup;
2074 }
2075 }
2076
2077 bios_to_read = bio_list_size(&bio_list);
2078 if (!bios_to_read) {
2079 /*
2080 * we might have no bios to read just because the pages
2081 * were up to date, or we might have no bios to read because
2082 * the devices were gone.
2083 */
b89e1b01 2084 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
53b381b3
DW
2085 __raid_recover_end_io(rbio);
2086 goto out;
2087 } else {
2088 goto cleanup;
2089 }
2090 }
2091
2092 /*
2093 * the bbio may be freed once we submit the last bio. Make sure
2094 * not to touch it after that
2095 */
b89e1b01 2096 atomic_set(&rbio->stripes_pending, bios_to_read);
53b381b3
DW
2097 while (1) {
2098 bio = bio_list_pop(&bio_list);
2099 if (!bio)
2100 break;
2101
2102 bio->bi_private = rbio;
2103 bio->bi_end_io = raid_recover_end_io;
2104
2105 btrfs_bio_wq_end_io(rbio->fs_info, bio,
2106 BTRFS_WQ_ENDIO_RAID56);
2107
53b381b3
DW
2108 submit_bio(READ, bio);
2109 }
2110out:
2111 return 0;
2112
2113cleanup:
b4ee1782
OS
2114 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2115 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
4246a0b6 2116 rbio_orig_end_io(rbio, -EIO);
53b381b3
DW
2117 return -EIO;
2118}
2119
2120/*
2121 * the main entry point for reads from the higher layers. This
2122 * is really only called when the normal read path had a failure,
2123 * so we assume the bio they send down corresponds to a failed part
2124 * of the drive.
2125 */
2126int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
8e5cfb55
ZL
2127 struct btrfs_bio *bbio, u64 stripe_len,
2128 int mirror_num, int generic_io)
53b381b3
DW
2129{
2130 struct btrfs_raid_bio *rbio;
2131 int ret;
2132
8e5cfb55 2133 rbio = alloc_rbio(root, bbio, stripe_len);
af8e2d1d 2134 if (IS_ERR(rbio)) {
6e9606d2
ZL
2135 if (generic_io)
2136 btrfs_put_bbio(bbio);
53b381b3 2137 return PTR_ERR(rbio);
af8e2d1d 2138 }
53b381b3 2139
1b94b556 2140 rbio->operation = BTRFS_RBIO_READ_REBUILD;
53b381b3 2141 bio_list_add(&rbio->bio_list, bio);
4f024f37 2142 rbio->bio_list_bytes = bio->bi_iter.bi_size;
53b381b3
DW
2143
2144 rbio->faila = find_logical_bio_stripe(rbio, bio);
2145 if (rbio->faila == -1) {
2146 BUG();
6e9606d2
ZL
2147 if (generic_io)
2148 btrfs_put_bbio(bbio);
53b381b3
DW
2149 kfree(rbio);
2150 return -EIO;
2151 }
2152
4245215d
MX
2153 if (generic_io) {
2154 btrfs_bio_counter_inc_noblocked(root->fs_info);
2155 rbio->generic_bio_cnt = 1;
2156 } else {
6e9606d2 2157 btrfs_get_bbio(bbio);
4245215d
MX
2158 }
2159
53b381b3
DW
2160 /*
2161 * reconstruct from the q stripe if they are
2162 * asking for mirror 3
2163 */
2164 if (mirror_num == 3)
2c8cdd6e 2165 rbio->failb = rbio->real_stripes - 2;
53b381b3
DW
2166
2167 ret = lock_stripe_add(rbio);
2168
2169 /*
2170 * __raid56_parity_recover will end the bio with
2171 * any errors it hits. We don't want to return
2172 * its error value up the stack because our caller
2173 * will end up calling bio_endio with any nonzero
2174 * return
2175 */
2176 if (ret == 0)
2177 __raid56_parity_recover(rbio);
2178 /*
2179 * our rbio has been added to the list of
2180 * rbios that will be handled after the
2181 * currently lock owner is done
2182 */
2183 return 0;
2184
2185}
2186
2187static void rmw_work(struct btrfs_work *work)
2188{
2189 struct btrfs_raid_bio *rbio;
2190
2191 rbio = container_of(work, struct btrfs_raid_bio, work);
2192 raid56_rmw_stripe(rbio);
2193}
2194
2195static void read_rebuild_work(struct btrfs_work *work)
2196{
2197 struct btrfs_raid_bio *rbio;
2198
2199 rbio = container_of(work, struct btrfs_raid_bio, work);
2200 __raid56_parity_recover(rbio);
2201}
5a6ac9ea
MX
2202
2203/*
2204 * The following code is used to scrub/replace the parity stripe
2205 *
2206 * Note: We need make sure all the pages that add into the scrub/replace
2207 * raid bio are correct and not be changed during the scrub/replace. That
2208 * is those pages just hold metadata or file data with checksum.
2209 */
2210
2211struct btrfs_raid_bio *
2212raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio,
8e5cfb55
ZL
2213 struct btrfs_bio *bbio, u64 stripe_len,
2214 struct btrfs_device *scrub_dev,
5a6ac9ea
MX
2215 unsigned long *dbitmap, int stripe_nsectors)
2216{
2217 struct btrfs_raid_bio *rbio;
2218 int i;
2219
8e5cfb55 2220 rbio = alloc_rbio(root, bbio, stripe_len);
5a6ac9ea
MX
2221 if (IS_ERR(rbio))
2222 return NULL;
2223 bio_list_add(&rbio->bio_list, bio);
2224 /*
2225 * This is a special bio which is used to hold the completion handler
2226 * and make the scrub rbio is similar to the other types
2227 */
2228 ASSERT(!bio->bi_iter.bi_size);
2229 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2230
2c8cdd6e 2231 for (i = 0; i < rbio->real_stripes; i++) {
5a6ac9ea
MX
2232 if (bbio->stripes[i].dev == scrub_dev) {
2233 rbio->scrubp = i;
2234 break;
2235 }
2236 }
2237
2238 /* Now we just support the sectorsize equals to page size */
2239 ASSERT(root->sectorsize == PAGE_SIZE);
2240 ASSERT(rbio->stripe_npages == stripe_nsectors);
2241 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2242
2243 return rbio;
2244}
2245
b4ee1782
OS
2246/* Used for both parity scrub and missing. */
2247void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2248 u64 logical)
5a6ac9ea
MX
2249{
2250 int stripe_offset;
2251 int index;
2252
8e5cfb55
ZL
2253 ASSERT(logical >= rbio->bbio->raid_map[0]);
2254 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
5a6ac9ea 2255 rbio->stripe_len * rbio->nr_data);
8e5cfb55 2256 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
5a6ac9ea
MX
2257 index = stripe_offset >> PAGE_CACHE_SHIFT;
2258 rbio->bio_pages[index] = page;
2259}
2260
2261/*
2262 * We just scrub the parity that we have correct data on the same horizontal,
2263 * so we needn't allocate all pages for all the stripes.
2264 */
2265static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2266{
2267 int i;
2268 int bit;
2269 int index;
2270 struct page *page;
2271
2272 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2c8cdd6e 2273 for (i = 0; i < rbio->real_stripes; i++) {
5a6ac9ea
MX
2274 index = i * rbio->stripe_npages + bit;
2275 if (rbio->stripe_pages[index])
2276 continue;
2277
2278 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2279 if (!page)
2280 return -ENOMEM;
2281 rbio->stripe_pages[index] = page;
2282 ClearPageUptodate(page);
2283 }
2284 }
2285 return 0;
2286}
2287
2288/*
2289 * end io function used by finish_rmw. When we finally
2290 * get here, we've written a full stripe
2291 */
4246a0b6 2292static void raid_write_parity_end_io(struct bio *bio)
5a6ac9ea
MX
2293{
2294 struct btrfs_raid_bio *rbio = bio->bi_private;
4246a0b6 2295 int err = bio->bi_error;
5a6ac9ea 2296
4246a0b6 2297 if (bio->bi_error)
5a6ac9ea
MX
2298 fail_bio_stripe(rbio, bio);
2299
2300 bio_put(bio);
2301
2302 if (!atomic_dec_and_test(&rbio->stripes_pending))
2303 return;
2304
2305 err = 0;
2306
2307 if (atomic_read(&rbio->error))
2308 err = -EIO;
2309
4246a0b6 2310 rbio_orig_end_io(rbio, err);
5a6ac9ea
MX
2311}
2312
2313static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2314 int need_check)
2315{
76035976 2316 struct btrfs_bio *bbio = rbio->bbio;
2c8cdd6e 2317 void *pointers[rbio->real_stripes];
76035976 2318 DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
5a6ac9ea
MX
2319 int nr_data = rbio->nr_data;
2320 int stripe;
2321 int pagenr;
2322 int p_stripe = -1;
2323 int q_stripe = -1;
2324 struct page *p_page = NULL;
2325 struct page *q_page = NULL;
2326 struct bio_list bio_list;
2327 struct bio *bio;
76035976 2328 int is_replace = 0;
5a6ac9ea
MX
2329 int ret;
2330
2331 bio_list_init(&bio_list);
2332
2c8cdd6e
MX
2333 if (rbio->real_stripes - rbio->nr_data == 1) {
2334 p_stripe = rbio->real_stripes - 1;
2335 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2336 p_stripe = rbio->real_stripes - 2;
2337 q_stripe = rbio->real_stripes - 1;
5a6ac9ea
MX
2338 } else {
2339 BUG();
2340 }
2341
76035976
MX
2342 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2343 is_replace = 1;
2344 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2345 }
2346
5a6ac9ea
MX
2347 /*
2348 * Because the higher layers(scrubber) are unlikely to
2349 * use this area of the disk again soon, so don't cache
2350 * it.
2351 */
2352 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2353
2354 if (!need_check)
2355 goto writeback;
2356
2357 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2358 if (!p_page)
2359 goto cleanup;
2360 SetPageUptodate(p_page);
2361
2362 if (q_stripe != -1) {
2363 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2364 if (!q_page) {
2365 __free_page(p_page);
2366 goto cleanup;
2367 }
2368 SetPageUptodate(q_page);
2369 }
2370
2371 atomic_set(&rbio->error, 0);
2372
2373 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2374 struct page *p;
2375 void *parity;
2376 /* first collect one page from each data stripe */
2377 for (stripe = 0; stripe < nr_data; stripe++) {
2378 p = page_in_rbio(rbio, stripe, pagenr, 0);
2379 pointers[stripe] = kmap(p);
2380 }
2381
2382 /* then add the parity stripe */
2383 pointers[stripe++] = kmap(p_page);
2384
2385 if (q_stripe != -1) {
2386
2387 /*
2388 * raid6, add the qstripe and call the
2389 * library function to fill in our p/q
2390 */
2391 pointers[stripe++] = kmap(q_page);
2392
2c8cdd6e 2393 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
5a6ac9ea
MX
2394 pointers);
2395 } else {
2396 /* raid5 */
2397 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2398 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
2399 }
2400
2401 /* Check scrubbing pairty and repair it */
2402 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2403 parity = kmap(p);
2404 if (memcmp(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE))
2405 memcpy(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE);
2406 else
2407 /* Parity is right, needn't writeback */
2408 bitmap_clear(rbio->dbitmap, pagenr, 1);
2409 kunmap(p);
2410
2c8cdd6e 2411 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
5a6ac9ea
MX
2412 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2413 }
2414
2415 __free_page(p_page);
2416 if (q_page)
2417 __free_page(q_page);
2418
2419writeback:
2420 /*
2421 * time to start writing. Make bios for everything from the
2422 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2423 * everything else.
2424 */
2425 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2426 struct page *page;
2427
2428 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2429 ret = rbio_add_io_page(rbio, &bio_list,
2430 page, rbio->scrubp, pagenr, rbio->stripe_len);
2431 if (ret)
2432 goto cleanup;
2433 }
2434
76035976
MX
2435 if (!is_replace)
2436 goto submit_write;
2437
2438 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2439 struct page *page;
2440
2441 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2442 ret = rbio_add_io_page(rbio, &bio_list, page,
2443 bbio->tgtdev_map[rbio->scrubp],
2444 pagenr, rbio->stripe_len);
2445 if (ret)
2446 goto cleanup;
2447 }
2448
2449submit_write:
5a6ac9ea
MX
2450 nr_data = bio_list_size(&bio_list);
2451 if (!nr_data) {
2452 /* Every parity is right */
4246a0b6 2453 rbio_orig_end_io(rbio, 0);
5a6ac9ea
MX
2454 return;
2455 }
2456
2457 atomic_set(&rbio->stripes_pending, nr_data);
2458
2459 while (1) {
2460 bio = bio_list_pop(&bio_list);
2461 if (!bio)
2462 break;
2463
2464 bio->bi_private = rbio;
2465 bio->bi_end_io = raid_write_parity_end_io;
5a6ac9ea
MX
2466 submit_bio(WRITE, bio);
2467 }
2468 return;
2469
2470cleanup:
4246a0b6 2471 rbio_orig_end_io(rbio, -EIO);
5a6ac9ea
MX
2472}
2473
2474static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2475{
2476 if (stripe >= 0 && stripe < rbio->nr_data)
2477 return 1;
2478 return 0;
2479}
2480
2481/*
2482 * While we're doing the parity check and repair, we could have errors
2483 * in reading pages off the disk. This checks for errors and if we're
2484 * not able to read the page it'll trigger parity reconstruction. The
2485 * parity scrub will be finished after we've reconstructed the failed
2486 * stripes
2487 */
2488static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2489{
2490 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2491 goto cleanup;
2492
2493 if (rbio->faila >= 0 || rbio->failb >= 0) {
2494 int dfail = 0, failp = -1;
2495
2496 if (is_data_stripe(rbio, rbio->faila))
2497 dfail++;
2498 else if (is_parity_stripe(rbio->faila))
2499 failp = rbio->faila;
2500
2501 if (is_data_stripe(rbio, rbio->failb))
2502 dfail++;
2503 else if (is_parity_stripe(rbio->failb))
2504 failp = rbio->failb;
2505
2506 /*
2507 * Because we can not use a scrubbing parity to repair
2508 * the data, so the capability of the repair is declined.
2509 * (In the case of RAID5, we can not repair anything)
2510 */
2511 if (dfail > rbio->bbio->max_errors - 1)
2512 goto cleanup;
2513
2514 /*
2515 * If all data is good, only parity is correctly, just
2516 * repair the parity.
2517 */
2518 if (dfail == 0) {
2519 finish_parity_scrub(rbio, 0);
2520 return;
2521 }
2522
2523 /*
2524 * Here means we got one corrupted data stripe and one
2525 * corrupted parity on RAID6, if the corrupted parity
2526 * is scrubbing parity, luckly, use the other one to repair
2527 * the data, or we can not repair the data stripe.
2528 */
2529 if (failp != rbio->scrubp)
2530 goto cleanup;
2531
2532 __raid_recover_end_io(rbio);
2533 } else {
2534 finish_parity_scrub(rbio, 1);
2535 }
2536 return;
2537
2538cleanup:
4246a0b6 2539 rbio_orig_end_io(rbio, -EIO);
5a6ac9ea
MX
2540}
2541
2542/*
2543 * end io for the read phase of the rmw cycle. All the bios here are physical
2544 * stripe bios we've read from the disk so we can recalculate the parity of the
2545 * stripe.
2546 *
2547 * This will usually kick off finish_rmw once all the bios are read in, but it
2548 * may trigger parity reconstruction if we had any errors along the way
2549 */
4246a0b6 2550static void raid56_parity_scrub_end_io(struct bio *bio)
5a6ac9ea
MX
2551{
2552 struct btrfs_raid_bio *rbio = bio->bi_private;
2553
4246a0b6 2554 if (bio->bi_error)
5a6ac9ea
MX
2555 fail_bio_stripe(rbio, bio);
2556 else
2557 set_bio_pages_uptodate(bio);
2558
2559 bio_put(bio);
2560
2561 if (!atomic_dec_and_test(&rbio->stripes_pending))
2562 return;
2563
2564 /*
2565 * this will normally call finish_rmw to start our write
2566 * but if there are any failed stripes we'll reconstruct
2567 * from parity first
2568 */
2569 validate_rbio_for_parity_scrub(rbio);
2570}
2571
2572static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2573{
2574 int bios_to_read = 0;
5a6ac9ea
MX
2575 struct bio_list bio_list;
2576 int ret;
2577 int pagenr;
2578 int stripe;
2579 struct bio *bio;
2580
2581 ret = alloc_rbio_essential_pages(rbio);
2582 if (ret)
2583 goto cleanup;
2584
2585 bio_list_init(&bio_list);
2586
2587 atomic_set(&rbio->error, 0);
2588 /*
2589 * build a list of bios to read all the missing parts of this
2590 * stripe
2591 */
2c8cdd6e 2592 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
5a6ac9ea
MX
2593 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2594 struct page *page;
2595 /*
2596 * we want to find all the pages missing from
2597 * the rbio and read them from the disk. If
2598 * page_in_rbio finds a page in the bio list
2599 * we don't need to read it off the stripe.
2600 */
2601 page = page_in_rbio(rbio, stripe, pagenr, 1);
2602 if (page)
2603 continue;
2604
2605 page = rbio_stripe_page(rbio, stripe, pagenr);
2606 /*
2607 * the bio cache may have handed us an uptodate
2608 * page. If so, be happy and use it
2609 */
2610 if (PageUptodate(page))
2611 continue;
2612
2613 ret = rbio_add_io_page(rbio, &bio_list, page,
2614 stripe, pagenr, rbio->stripe_len);
2615 if (ret)
2616 goto cleanup;
2617 }
2618 }
2619
2620 bios_to_read = bio_list_size(&bio_list);
2621 if (!bios_to_read) {
2622 /*
2623 * this can happen if others have merged with
2624 * us, it means there is nothing left to read.
2625 * But if there are missing devices it may not be
2626 * safe to do the full stripe write yet.
2627 */
2628 goto finish;
2629 }
2630
2631 /*
2632 * the bbio may be freed once we submit the last bio. Make sure
2633 * not to touch it after that
2634 */
2635 atomic_set(&rbio->stripes_pending, bios_to_read);
2636 while (1) {
2637 bio = bio_list_pop(&bio_list);
2638 if (!bio)
2639 break;
2640
2641 bio->bi_private = rbio;
2642 bio->bi_end_io = raid56_parity_scrub_end_io;
2643
2644 btrfs_bio_wq_end_io(rbio->fs_info, bio,
2645 BTRFS_WQ_ENDIO_RAID56);
2646
5a6ac9ea
MX
2647 submit_bio(READ, bio);
2648 }
2649 /* the actual write will happen once the reads are done */
2650 return;
2651
2652cleanup:
4246a0b6 2653 rbio_orig_end_io(rbio, -EIO);
5a6ac9ea
MX
2654 return;
2655
2656finish:
2657 validate_rbio_for_parity_scrub(rbio);
2658}
2659
2660static void scrub_parity_work(struct btrfs_work *work)
2661{
2662 struct btrfs_raid_bio *rbio;
2663
2664 rbio = container_of(work, struct btrfs_raid_bio, work);
2665 raid56_parity_scrub_stripe(rbio);
2666}
2667
2668static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2669{
2670 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2671 scrub_parity_work, NULL, NULL);
2672
2673 btrfs_queue_work(rbio->fs_info->rmw_workers,
2674 &rbio->work);
2675}
2676
2677void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2678{
2679 if (!lock_stripe_add(rbio))
2680 async_scrub_parity(rbio);
2681}
b4ee1782
OS
2682
2683/* The following code is used for dev replace of a missing RAID 5/6 device. */
2684
2685struct btrfs_raid_bio *
2686raid56_alloc_missing_rbio(struct btrfs_root *root, struct bio *bio,
2687 struct btrfs_bio *bbio, u64 length)
2688{
2689 struct btrfs_raid_bio *rbio;
2690
2691 rbio = alloc_rbio(root, bbio, length);
2692 if (IS_ERR(rbio))
2693 return NULL;
2694
2695 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2696 bio_list_add(&rbio->bio_list, bio);
2697 /*
2698 * This is a special bio which is used to hold the completion handler
2699 * and make the scrub rbio is similar to the other types
2700 */
2701 ASSERT(!bio->bi_iter.bi_size);
2702
2703 rbio->faila = find_logical_bio_stripe(rbio, bio);
2704 if (rbio->faila == -1) {
2705 BUG();
2706 kfree(rbio);
2707 return NULL;
2708 }
2709
2710 return rbio;
2711}
2712
2713static void missing_raid56_work(struct btrfs_work *work)
2714{
2715 struct btrfs_raid_bio *rbio;
2716
2717 rbio = container_of(work, struct btrfs_raid_bio, work);
2718 __raid56_parity_recover(rbio);
2719}
2720
2721static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2722{
2723 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2724 missing_raid56_work, NULL, NULL);
2725
2726 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2727}
2728
2729void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2730{
2731 if (!lock_stripe_add(rbio))
2732 async_missing_raid56(rbio);
2733}
This page took 0.237789 seconds and 5 git commands to generate.