Btrfs, replace: write dirty pages into the replace target device
[deliverable/linux.git] / fs / btrfs / raid56.c
CommitLineData
53b381b3
DW
1/*
2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19#include <linux/sched.h>
20#include <linux/wait.h>
21#include <linux/bio.h>
22#include <linux/slab.h>
23#include <linux/buffer_head.h>
24#include <linux/blkdev.h>
25#include <linux/random.h>
26#include <linux/iocontext.h>
27#include <linux/capability.h>
28#include <linux/ratelimit.h>
29#include <linux/kthread.h>
30#include <linux/raid/pq.h>
31#include <linux/hash.h>
32#include <linux/list_sort.h>
33#include <linux/raid/xor.h>
d7011f5b 34#include <linux/vmalloc.h>
53b381b3 35#include <asm/div64.h>
53b381b3
DW
36#include "ctree.h"
37#include "extent_map.h"
38#include "disk-io.h"
39#include "transaction.h"
40#include "print-tree.h"
41#include "volumes.h"
42#include "raid56.h"
43#include "async-thread.h"
44#include "check-integrity.h"
45#include "rcu-string.h"
46
47/* set when additional merges to this rbio are not allowed */
48#define RBIO_RMW_LOCKED_BIT 1
49
4ae10b3a
CM
50/*
51 * set when this rbio is sitting in the hash, but it is just a cache
52 * of past RMW
53 */
54#define RBIO_CACHE_BIT 2
55
56/*
57 * set when it is safe to trust the stripe_pages for caching
58 */
59#define RBIO_CACHE_READY_BIT 3
60
af8e2d1d
MX
61/*
62 * bbio and raid_map is managed by the caller, so we shouldn't free
63 * them here. And besides that, all rbios with this flag should not
64 * be cached, because we need raid_map to check the rbios' stripe
65 * is the same or not, but it is very likely that the caller has
66 * free raid_map, so don't cache those rbios.
67 */
68#define RBIO_HOLD_BBIO_MAP_BIT 4
69
4ae10b3a
CM
70#define RBIO_CACHE_SIZE 1024
71
1b94b556
MX
72enum btrfs_rbio_ops {
73 BTRFS_RBIO_WRITE = 0,
74 BTRFS_RBIO_READ_REBUILD = 1,
5a6ac9ea 75 BTRFS_RBIO_PARITY_SCRUB = 2,
1b94b556
MX
76};
77
53b381b3
DW
78struct btrfs_raid_bio {
79 struct btrfs_fs_info *fs_info;
80 struct btrfs_bio *bbio;
81
82 /*
83 * logical block numbers for the start of each stripe
84 * The last one or two are p/q. These are sorted,
85 * so raid_map[0] is the start of our full stripe
86 */
87 u64 *raid_map;
88
89 /* while we're doing rmw on a stripe
90 * we put it into a hash table so we can
91 * lock the stripe and merge more rbios
92 * into it.
93 */
94 struct list_head hash_list;
95
4ae10b3a
CM
96 /*
97 * LRU list for the stripe cache
98 */
99 struct list_head stripe_cache;
100
53b381b3
DW
101 /*
102 * for scheduling work in the helper threads
103 */
104 struct btrfs_work work;
105
106 /*
107 * bio list and bio_list_lock are used
108 * to add more bios into the stripe
109 * in hopes of avoiding the full rmw
110 */
111 struct bio_list bio_list;
112 spinlock_t bio_list_lock;
113
6ac0f488
CM
114 /* also protected by the bio_list_lock, the
115 * plug list is used by the plugging code
116 * to collect partial bios while plugged. The
117 * stripe locking code also uses it to hand off
53b381b3
DW
118 * the stripe lock to the next pending IO
119 */
120 struct list_head plug_list;
121
122 /*
123 * flags that tell us if it is safe to
124 * merge with this bio
125 */
126 unsigned long flags;
127
128 /* size of each individual stripe on disk */
129 int stripe_len;
130
131 /* number of data stripes (no p/q) */
132 int nr_data;
133
2c8cdd6e
MX
134 int real_stripes;
135
5a6ac9ea 136 int stripe_npages;
53b381b3
DW
137 /*
138 * set if we're doing a parity rebuild
139 * for a read from higher up, which is handled
140 * differently from a parity rebuild as part of
141 * rmw
142 */
1b94b556 143 enum btrfs_rbio_ops operation;
53b381b3
DW
144
145 /* first bad stripe */
146 int faila;
147
148 /* second bad stripe (for raid6 use) */
149 int failb;
150
5a6ac9ea 151 int scrubp;
53b381b3
DW
152 /*
153 * number of pages needed to represent the full
154 * stripe
155 */
156 int nr_pages;
157
158 /*
159 * size of all the bios in the bio_list. This
160 * helps us decide if the rbio maps to a full
161 * stripe or not
162 */
163 int bio_list_bytes;
164
165 atomic_t refs;
166
b89e1b01
MX
167 atomic_t stripes_pending;
168
169 atomic_t error;
53b381b3
DW
170 /*
171 * these are two arrays of pointers. We allocate the
172 * rbio big enough to hold them both and setup their
173 * locations when the rbio is allocated
174 */
175
176 /* pointers to pages that we allocated for
177 * reading/writing stripes directly from the disk (including P/Q)
178 */
179 struct page **stripe_pages;
180
181 /*
182 * pointers to the pages in the bio_list. Stored
183 * here for faster lookup
184 */
185 struct page **bio_pages;
5a6ac9ea
MX
186
187 /*
188 * bitmap to record which horizontal stripe has data
189 */
190 unsigned long *dbitmap;
53b381b3
DW
191};
192
193static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
194static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
195static void rmw_work(struct btrfs_work *work);
196static void read_rebuild_work(struct btrfs_work *work);
197static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
198static void async_read_rebuild(struct btrfs_raid_bio *rbio);
199static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
200static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
201static void __free_raid_bio(struct btrfs_raid_bio *rbio);
202static void index_rbio_pages(struct btrfs_raid_bio *rbio);
203static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
204
5a6ac9ea
MX
205static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
206 int need_check);
207static void async_scrub_parity(struct btrfs_raid_bio *rbio);
208
53b381b3
DW
209/*
210 * the stripe hash table is used for locking, and to collect
211 * bios in hopes of making a full stripe
212 */
213int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
214{
215 struct btrfs_stripe_hash_table *table;
216 struct btrfs_stripe_hash_table *x;
217 struct btrfs_stripe_hash *cur;
218 struct btrfs_stripe_hash *h;
219 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
220 int i;
83c8266a 221 int table_size;
53b381b3
DW
222
223 if (info->stripe_hash_table)
224 return 0;
225
83c8266a
DS
226 /*
227 * The table is large, starting with order 4 and can go as high as
228 * order 7 in case lock debugging is turned on.
229 *
230 * Try harder to allocate and fallback to vmalloc to lower the chance
231 * of a failing mount.
232 */
233 table_size = sizeof(*table) + sizeof(*h) * num_entries;
234 table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
235 if (!table) {
236 table = vzalloc(table_size);
237 if (!table)
238 return -ENOMEM;
239 }
53b381b3 240
4ae10b3a
CM
241 spin_lock_init(&table->cache_lock);
242 INIT_LIST_HEAD(&table->stripe_cache);
243
53b381b3
DW
244 h = table->table;
245
246 for (i = 0; i < num_entries; i++) {
247 cur = h + i;
248 INIT_LIST_HEAD(&cur->hash_list);
249 spin_lock_init(&cur->lock);
250 init_waitqueue_head(&cur->wait);
251 }
252
253 x = cmpxchg(&info->stripe_hash_table, NULL, table);
83c8266a
DS
254 if (x) {
255 if (is_vmalloc_addr(x))
256 vfree(x);
257 else
258 kfree(x);
259 }
53b381b3
DW
260 return 0;
261}
262
4ae10b3a
CM
263/*
264 * caching an rbio means to copy anything from the
265 * bio_pages array into the stripe_pages array. We
266 * use the page uptodate bit in the stripe cache array
267 * to indicate if it has valid data
268 *
269 * once the caching is done, we set the cache ready
270 * bit.
271 */
272static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
273{
274 int i;
275 char *s;
276 char *d;
277 int ret;
278
279 ret = alloc_rbio_pages(rbio);
280 if (ret)
281 return;
282
283 for (i = 0; i < rbio->nr_pages; i++) {
284 if (!rbio->bio_pages[i])
285 continue;
286
287 s = kmap(rbio->bio_pages[i]);
288 d = kmap(rbio->stripe_pages[i]);
289
290 memcpy(d, s, PAGE_CACHE_SIZE);
291
292 kunmap(rbio->bio_pages[i]);
293 kunmap(rbio->stripe_pages[i]);
294 SetPageUptodate(rbio->stripe_pages[i]);
295 }
296 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
297}
298
53b381b3
DW
299/*
300 * we hash on the first logical address of the stripe
301 */
302static int rbio_bucket(struct btrfs_raid_bio *rbio)
303{
304 u64 num = rbio->raid_map[0];
305
306 /*
307 * we shift down quite a bit. We're using byte
308 * addressing, and most of the lower bits are zeros.
309 * This tends to upset hash_64, and it consistently
310 * returns just one or two different values.
311 *
312 * shifting off the lower bits fixes things.
313 */
314 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
315}
316
4ae10b3a
CM
317/*
318 * stealing an rbio means taking all the uptodate pages from the stripe
319 * array in the source rbio and putting them into the destination rbio
320 */
321static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
322{
323 int i;
324 struct page *s;
325 struct page *d;
326
327 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
328 return;
329
330 for (i = 0; i < dest->nr_pages; i++) {
331 s = src->stripe_pages[i];
332 if (!s || !PageUptodate(s)) {
333 continue;
334 }
335
336 d = dest->stripe_pages[i];
337 if (d)
338 __free_page(d);
339
340 dest->stripe_pages[i] = s;
341 src->stripe_pages[i] = NULL;
342 }
343}
344
53b381b3
DW
345/*
346 * merging means we take the bio_list from the victim and
347 * splice it into the destination. The victim should
348 * be discarded afterwards.
349 *
350 * must be called with dest->rbio_list_lock held
351 */
352static void merge_rbio(struct btrfs_raid_bio *dest,
353 struct btrfs_raid_bio *victim)
354{
355 bio_list_merge(&dest->bio_list, &victim->bio_list);
356 dest->bio_list_bytes += victim->bio_list_bytes;
357 bio_list_init(&victim->bio_list);
358}
359
360/*
4ae10b3a
CM
361 * used to prune items that are in the cache. The caller
362 * must hold the hash table lock.
363 */
364static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
365{
366 int bucket = rbio_bucket(rbio);
367 struct btrfs_stripe_hash_table *table;
368 struct btrfs_stripe_hash *h;
369 int freeit = 0;
370
371 /*
372 * check the bit again under the hash table lock.
373 */
374 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
375 return;
376
377 table = rbio->fs_info->stripe_hash_table;
378 h = table->table + bucket;
379
380 /* hold the lock for the bucket because we may be
381 * removing it from the hash table
382 */
383 spin_lock(&h->lock);
384
385 /*
386 * hold the lock for the bio list because we need
387 * to make sure the bio list is empty
388 */
389 spin_lock(&rbio->bio_list_lock);
390
391 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
392 list_del_init(&rbio->stripe_cache);
393 table->cache_size -= 1;
394 freeit = 1;
395
396 /* if the bio list isn't empty, this rbio is
397 * still involved in an IO. We take it out
398 * of the cache list, and drop the ref that
399 * was held for the list.
400 *
401 * If the bio_list was empty, we also remove
402 * the rbio from the hash_table, and drop
403 * the corresponding ref
404 */
405 if (bio_list_empty(&rbio->bio_list)) {
406 if (!list_empty(&rbio->hash_list)) {
407 list_del_init(&rbio->hash_list);
408 atomic_dec(&rbio->refs);
409 BUG_ON(!list_empty(&rbio->plug_list));
410 }
411 }
412 }
413
414 spin_unlock(&rbio->bio_list_lock);
415 spin_unlock(&h->lock);
416
417 if (freeit)
418 __free_raid_bio(rbio);
419}
420
421/*
422 * prune a given rbio from the cache
423 */
424static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
425{
426 struct btrfs_stripe_hash_table *table;
427 unsigned long flags;
428
429 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
430 return;
431
432 table = rbio->fs_info->stripe_hash_table;
433
434 spin_lock_irqsave(&table->cache_lock, flags);
435 __remove_rbio_from_cache(rbio);
436 spin_unlock_irqrestore(&table->cache_lock, flags);
437}
438
439/*
440 * remove everything in the cache
441 */
48a3b636 442static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
4ae10b3a
CM
443{
444 struct btrfs_stripe_hash_table *table;
445 unsigned long flags;
446 struct btrfs_raid_bio *rbio;
447
448 table = info->stripe_hash_table;
449
450 spin_lock_irqsave(&table->cache_lock, flags);
451 while (!list_empty(&table->stripe_cache)) {
452 rbio = list_entry(table->stripe_cache.next,
453 struct btrfs_raid_bio,
454 stripe_cache);
455 __remove_rbio_from_cache(rbio);
456 }
457 spin_unlock_irqrestore(&table->cache_lock, flags);
458}
459
460/*
461 * remove all cached entries and free the hash table
462 * used by unmount
53b381b3
DW
463 */
464void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
465{
466 if (!info->stripe_hash_table)
467 return;
4ae10b3a 468 btrfs_clear_rbio_cache(info);
83c8266a
DS
469 if (is_vmalloc_addr(info->stripe_hash_table))
470 vfree(info->stripe_hash_table);
471 else
472 kfree(info->stripe_hash_table);
53b381b3
DW
473 info->stripe_hash_table = NULL;
474}
475
4ae10b3a
CM
476/*
477 * insert an rbio into the stripe cache. It
478 * must have already been prepared by calling
479 * cache_rbio_pages
480 *
481 * If this rbio was already cached, it gets
482 * moved to the front of the lru.
483 *
484 * If the size of the rbio cache is too big, we
485 * prune an item.
486 */
487static void cache_rbio(struct btrfs_raid_bio *rbio)
488{
489 struct btrfs_stripe_hash_table *table;
490 unsigned long flags;
491
492 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
493 return;
494
495 table = rbio->fs_info->stripe_hash_table;
496
497 spin_lock_irqsave(&table->cache_lock, flags);
498 spin_lock(&rbio->bio_list_lock);
499
500 /* bump our ref if we were not in the list before */
501 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
502 atomic_inc(&rbio->refs);
503
504 if (!list_empty(&rbio->stripe_cache)){
505 list_move(&rbio->stripe_cache, &table->stripe_cache);
506 } else {
507 list_add(&rbio->stripe_cache, &table->stripe_cache);
508 table->cache_size += 1;
509 }
510
511 spin_unlock(&rbio->bio_list_lock);
512
513 if (table->cache_size > RBIO_CACHE_SIZE) {
514 struct btrfs_raid_bio *found;
515
516 found = list_entry(table->stripe_cache.prev,
517 struct btrfs_raid_bio,
518 stripe_cache);
519
520 if (found != rbio)
521 __remove_rbio_from_cache(found);
522 }
523
524 spin_unlock_irqrestore(&table->cache_lock, flags);
525 return;
526}
527
53b381b3
DW
528/*
529 * helper function to run the xor_blocks api. It is only
530 * able to do MAX_XOR_BLOCKS at a time, so we need to
531 * loop through.
532 */
533static void run_xor(void **pages, int src_cnt, ssize_t len)
534{
535 int src_off = 0;
536 int xor_src_cnt = 0;
537 void *dest = pages[src_cnt];
538
539 while(src_cnt > 0) {
540 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
541 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
542
543 src_cnt -= xor_src_cnt;
544 src_off += xor_src_cnt;
545 }
546}
547
548/*
549 * returns true if the bio list inside this rbio
550 * covers an entire stripe (no rmw required).
551 * Must be called with the bio list lock held, or
552 * at a time when you know it is impossible to add
553 * new bios into the list
554 */
555static int __rbio_is_full(struct btrfs_raid_bio *rbio)
556{
557 unsigned long size = rbio->bio_list_bytes;
558 int ret = 1;
559
560 if (size != rbio->nr_data * rbio->stripe_len)
561 ret = 0;
562
563 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
564 return ret;
565}
566
567static int rbio_is_full(struct btrfs_raid_bio *rbio)
568{
569 unsigned long flags;
570 int ret;
571
572 spin_lock_irqsave(&rbio->bio_list_lock, flags);
573 ret = __rbio_is_full(rbio);
574 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
575 return ret;
576}
577
578/*
579 * returns 1 if it is safe to merge two rbios together.
580 * The merging is safe if the two rbios correspond to
581 * the same stripe and if they are both going in the same
582 * direction (read vs write), and if neither one is
583 * locked for final IO
584 *
585 * The caller is responsible for locking such that
586 * rmw_locked is safe to test
587 */
588static int rbio_can_merge(struct btrfs_raid_bio *last,
589 struct btrfs_raid_bio *cur)
590{
591 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
592 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
593 return 0;
594
4ae10b3a
CM
595 /*
596 * we can't merge with cached rbios, since the
597 * idea is that when we merge the destination
598 * rbio is going to run our IO for us. We can
599 * steal from cached rbio's though, other functions
600 * handle that.
601 */
602 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
603 test_bit(RBIO_CACHE_BIT, &cur->flags))
604 return 0;
605
53b381b3
DW
606 if (last->raid_map[0] !=
607 cur->raid_map[0])
608 return 0;
609
5a6ac9ea
MX
610 /* we can't merge with different operations */
611 if (last->operation != cur->operation)
612 return 0;
613 /*
614 * We've need read the full stripe from the drive.
615 * check and repair the parity and write the new results.
616 *
617 * We're not allowed to add any new bios to the
618 * bio list here, anyone else that wants to
619 * change this stripe needs to do their own rmw.
620 */
621 if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
622 cur->operation == BTRFS_RBIO_PARITY_SCRUB)
53b381b3 623 return 0;
53b381b3
DW
624
625 return 1;
626}
627
628/*
629 * helper to index into the pstripe
630 */
631static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
632{
633 index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
634 return rbio->stripe_pages[index];
635}
636
637/*
638 * helper to index into the qstripe, returns null
639 * if there is no qstripe
640 */
641static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
642{
2c8cdd6e 643 if (rbio->nr_data + 1 == rbio->real_stripes)
53b381b3
DW
644 return NULL;
645
646 index += ((rbio->nr_data + 1) * rbio->stripe_len) >>
647 PAGE_CACHE_SHIFT;
648 return rbio->stripe_pages[index];
649}
650
651/*
652 * The first stripe in the table for a logical address
653 * has the lock. rbios are added in one of three ways:
654 *
655 * 1) Nobody has the stripe locked yet. The rbio is given
656 * the lock and 0 is returned. The caller must start the IO
657 * themselves.
658 *
659 * 2) Someone has the stripe locked, but we're able to merge
660 * with the lock owner. The rbio is freed and the IO will
661 * start automatically along with the existing rbio. 1 is returned.
662 *
663 * 3) Someone has the stripe locked, but we're not able to merge.
664 * The rbio is added to the lock owner's plug list, or merged into
665 * an rbio already on the plug list. When the lock owner unlocks,
666 * the next rbio on the list is run and the IO is started automatically.
667 * 1 is returned
668 *
669 * If we return 0, the caller still owns the rbio and must continue with
670 * IO submission. If we return 1, the caller must assume the rbio has
671 * already been freed.
672 */
673static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
674{
675 int bucket = rbio_bucket(rbio);
676 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
677 struct btrfs_raid_bio *cur;
678 struct btrfs_raid_bio *pending;
679 unsigned long flags;
680 DEFINE_WAIT(wait);
681 struct btrfs_raid_bio *freeit = NULL;
4ae10b3a 682 struct btrfs_raid_bio *cache_drop = NULL;
53b381b3
DW
683 int ret = 0;
684 int walk = 0;
685
686 spin_lock_irqsave(&h->lock, flags);
687 list_for_each_entry(cur, &h->hash_list, hash_list) {
688 walk++;
689 if (cur->raid_map[0] == rbio->raid_map[0]) {
690 spin_lock(&cur->bio_list_lock);
691
4ae10b3a
CM
692 /* can we steal this cached rbio's pages? */
693 if (bio_list_empty(&cur->bio_list) &&
694 list_empty(&cur->plug_list) &&
695 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
696 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
697 list_del_init(&cur->hash_list);
698 atomic_dec(&cur->refs);
699
700 steal_rbio(cur, rbio);
701 cache_drop = cur;
702 spin_unlock(&cur->bio_list_lock);
703
704 goto lockit;
705 }
706
53b381b3
DW
707 /* can we merge into the lock owner? */
708 if (rbio_can_merge(cur, rbio)) {
709 merge_rbio(cur, rbio);
710 spin_unlock(&cur->bio_list_lock);
711 freeit = rbio;
712 ret = 1;
713 goto out;
714 }
715
4ae10b3a 716
53b381b3
DW
717 /*
718 * we couldn't merge with the running
719 * rbio, see if we can merge with the
720 * pending ones. We don't have to
721 * check for rmw_locked because there
722 * is no way they are inside finish_rmw
723 * right now
724 */
725 list_for_each_entry(pending, &cur->plug_list,
726 plug_list) {
727 if (rbio_can_merge(pending, rbio)) {
728 merge_rbio(pending, rbio);
729 spin_unlock(&cur->bio_list_lock);
730 freeit = rbio;
731 ret = 1;
732 goto out;
733 }
734 }
735
736 /* no merging, put us on the tail of the plug list,
737 * our rbio will be started with the currently
738 * running rbio unlocks
739 */
740 list_add_tail(&rbio->plug_list, &cur->plug_list);
741 spin_unlock(&cur->bio_list_lock);
742 ret = 1;
743 goto out;
744 }
745 }
4ae10b3a 746lockit:
53b381b3
DW
747 atomic_inc(&rbio->refs);
748 list_add(&rbio->hash_list, &h->hash_list);
749out:
750 spin_unlock_irqrestore(&h->lock, flags);
4ae10b3a
CM
751 if (cache_drop)
752 remove_rbio_from_cache(cache_drop);
53b381b3
DW
753 if (freeit)
754 __free_raid_bio(freeit);
755 return ret;
756}
757
758/*
759 * called as rmw or parity rebuild is completed. If the plug list has more
760 * rbios waiting for this stripe, the next one on the list will be started
761 */
762static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
763{
764 int bucket;
765 struct btrfs_stripe_hash *h;
766 unsigned long flags;
4ae10b3a 767 int keep_cache = 0;
53b381b3
DW
768
769 bucket = rbio_bucket(rbio);
770 h = rbio->fs_info->stripe_hash_table->table + bucket;
771
4ae10b3a
CM
772 if (list_empty(&rbio->plug_list))
773 cache_rbio(rbio);
774
53b381b3
DW
775 spin_lock_irqsave(&h->lock, flags);
776 spin_lock(&rbio->bio_list_lock);
777
778 if (!list_empty(&rbio->hash_list)) {
4ae10b3a
CM
779 /*
780 * if we're still cached and there is no other IO
781 * to perform, just leave this rbio here for others
782 * to steal from later
783 */
784 if (list_empty(&rbio->plug_list) &&
785 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
786 keep_cache = 1;
787 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
788 BUG_ON(!bio_list_empty(&rbio->bio_list));
789 goto done;
790 }
53b381b3
DW
791
792 list_del_init(&rbio->hash_list);
793 atomic_dec(&rbio->refs);
794
795 /*
796 * we use the plug list to hold all the rbios
797 * waiting for the chance to lock this stripe.
798 * hand the lock over to one of them.
799 */
800 if (!list_empty(&rbio->plug_list)) {
801 struct btrfs_raid_bio *next;
802 struct list_head *head = rbio->plug_list.next;
803
804 next = list_entry(head, struct btrfs_raid_bio,
805 plug_list);
806
807 list_del_init(&rbio->plug_list);
808
809 list_add(&next->hash_list, &h->hash_list);
810 atomic_inc(&next->refs);
811 spin_unlock(&rbio->bio_list_lock);
812 spin_unlock_irqrestore(&h->lock, flags);
813
1b94b556 814 if (next->operation == BTRFS_RBIO_READ_REBUILD)
53b381b3 815 async_read_rebuild(next);
5a6ac9ea 816 else if (next->operation == BTRFS_RBIO_WRITE) {
4ae10b3a 817 steal_rbio(rbio, next);
53b381b3 818 async_rmw_stripe(next);
5a6ac9ea
MX
819 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
820 steal_rbio(rbio, next);
821 async_scrub_parity(next);
4ae10b3a 822 }
53b381b3
DW
823
824 goto done_nolock;
53b381b3
DW
825 } else if (waitqueue_active(&h->wait)) {
826 spin_unlock(&rbio->bio_list_lock);
827 spin_unlock_irqrestore(&h->lock, flags);
828 wake_up(&h->wait);
829 goto done_nolock;
830 }
831 }
4ae10b3a 832done:
53b381b3
DW
833 spin_unlock(&rbio->bio_list_lock);
834 spin_unlock_irqrestore(&h->lock, flags);
835
836done_nolock:
4ae10b3a
CM
837 if (!keep_cache)
838 remove_rbio_from_cache(rbio);
53b381b3
DW
839}
840
af8e2d1d
MX
841static inline void
842__free_bbio_and_raid_map(struct btrfs_bio *bbio, u64 *raid_map, int need)
843{
844 if (need) {
845 kfree(raid_map);
846 kfree(bbio);
847 }
848}
849
850static inline void free_bbio_and_raid_map(struct btrfs_raid_bio *rbio)
851{
852 __free_bbio_and_raid_map(rbio->bbio, rbio->raid_map,
853 !test_bit(RBIO_HOLD_BBIO_MAP_BIT, &rbio->flags));
854}
855
53b381b3
DW
856static void __free_raid_bio(struct btrfs_raid_bio *rbio)
857{
858 int i;
859
860 WARN_ON(atomic_read(&rbio->refs) < 0);
861 if (!atomic_dec_and_test(&rbio->refs))
862 return;
863
4ae10b3a 864 WARN_ON(!list_empty(&rbio->stripe_cache));
53b381b3
DW
865 WARN_ON(!list_empty(&rbio->hash_list));
866 WARN_ON(!bio_list_empty(&rbio->bio_list));
867
868 for (i = 0; i < rbio->nr_pages; i++) {
869 if (rbio->stripe_pages[i]) {
870 __free_page(rbio->stripe_pages[i]);
871 rbio->stripe_pages[i] = NULL;
872 }
873 }
af8e2d1d
MX
874
875 free_bbio_and_raid_map(rbio);
876
53b381b3
DW
877 kfree(rbio);
878}
879
880static void free_raid_bio(struct btrfs_raid_bio *rbio)
881{
882 unlock_stripe(rbio);
883 __free_raid_bio(rbio);
884}
885
886/*
887 * this frees the rbio and runs through all the bios in the
888 * bio_list and calls end_io on them
889 */
890static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err, int uptodate)
891{
892 struct bio *cur = bio_list_get(&rbio->bio_list);
893 struct bio *next;
894 free_raid_bio(rbio);
895
896 while (cur) {
897 next = cur->bi_next;
898 cur->bi_next = NULL;
899 if (uptodate)
900 set_bit(BIO_UPTODATE, &cur->bi_flags);
901 bio_endio(cur, err);
902 cur = next;
903 }
904}
905
906/*
907 * end io function used by finish_rmw. When we finally
908 * get here, we've written a full stripe
909 */
910static void raid_write_end_io(struct bio *bio, int err)
911{
912 struct btrfs_raid_bio *rbio = bio->bi_private;
913
914 if (err)
915 fail_bio_stripe(rbio, bio);
916
917 bio_put(bio);
918
b89e1b01 919 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
920 return;
921
922 err = 0;
923
924 /* OK, we have read all the stripes we need to. */
b89e1b01 925 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
53b381b3
DW
926 err = -EIO;
927
928 rbio_orig_end_io(rbio, err, 0);
929 return;
930}
931
932/*
933 * the read/modify/write code wants to use the original bio for
934 * any pages it included, and then use the rbio for everything
935 * else. This function decides if a given index (stripe number)
936 * and page number in that stripe fall inside the original bio
937 * or the rbio.
938 *
939 * if you set bio_list_only, you'll get a NULL back for any ranges
940 * that are outside the bio_list
941 *
942 * This doesn't take any refs on anything, you get a bare page pointer
943 * and the caller must bump refs as required.
944 *
945 * You must call index_rbio_pages once before you can trust
946 * the answers from this function.
947 */
948static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
949 int index, int pagenr, int bio_list_only)
950{
951 int chunk_page;
952 struct page *p = NULL;
953
954 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
955
956 spin_lock_irq(&rbio->bio_list_lock);
957 p = rbio->bio_pages[chunk_page];
958 spin_unlock_irq(&rbio->bio_list_lock);
959
960 if (p || bio_list_only)
961 return p;
962
963 return rbio->stripe_pages[chunk_page];
964}
965
966/*
967 * number of pages we need for the entire stripe across all the
968 * drives
969 */
970static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
971{
972 unsigned long nr = stripe_len * nr_stripes;
ed6078f7 973 return DIV_ROUND_UP(nr, PAGE_CACHE_SIZE);
53b381b3
DW
974}
975
976/*
977 * allocation and initial setup for the btrfs_raid_bio. Not
978 * this does not allocate any pages for rbio->pages.
979 */
980static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
981 struct btrfs_bio *bbio, u64 *raid_map,
982 u64 stripe_len)
983{
984 struct btrfs_raid_bio *rbio;
985 int nr_data = 0;
2c8cdd6e
MX
986 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
987 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
5a6ac9ea 988 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
53b381b3
DW
989 void *p;
990
5a6ac9ea
MX
991 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
992 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG / 8),
53b381b3 993 GFP_NOFS);
af8e2d1d 994 if (!rbio)
53b381b3 995 return ERR_PTR(-ENOMEM);
53b381b3
DW
996
997 bio_list_init(&rbio->bio_list);
998 INIT_LIST_HEAD(&rbio->plug_list);
999 spin_lock_init(&rbio->bio_list_lock);
4ae10b3a 1000 INIT_LIST_HEAD(&rbio->stripe_cache);
53b381b3
DW
1001 INIT_LIST_HEAD(&rbio->hash_list);
1002 rbio->bbio = bbio;
1003 rbio->raid_map = raid_map;
1004 rbio->fs_info = root->fs_info;
1005 rbio->stripe_len = stripe_len;
1006 rbio->nr_pages = num_pages;
2c8cdd6e 1007 rbio->real_stripes = real_stripes;
5a6ac9ea 1008 rbio->stripe_npages = stripe_npages;
53b381b3
DW
1009 rbio->faila = -1;
1010 rbio->failb = -1;
1011 atomic_set(&rbio->refs, 1);
b89e1b01
MX
1012 atomic_set(&rbio->error, 0);
1013 atomic_set(&rbio->stripes_pending, 0);
53b381b3
DW
1014
1015 /*
1016 * the stripe_pages and bio_pages array point to the extra
1017 * memory we allocated past the end of the rbio
1018 */
1019 p = rbio + 1;
1020 rbio->stripe_pages = p;
1021 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
5a6ac9ea 1022 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
53b381b3 1023
2c8cdd6e
MX
1024 if (raid_map[real_stripes - 1] == RAID6_Q_STRIPE)
1025 nr_data = real_stripes - 2;
53b381b3 1026 else
2c8cdd6e 1027 nr_data = real_stripes - 1;
53b381b3
DW
1028
1029 rbio->nr_data = nr_data;
1030 return rbio;
1031}
1032
1033/* allocate pages for all the stripes in the bio, including parity */
1034static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1035{
1036 int i;
1037 struct page *page;
1038
1039 for (i = 0; i < rbio->nr_pages; i++) {
1040 if (rbio->stripe_pages[i])
1041 continue;
1042 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1043 if (!page)
1044 return -ENOMEM;
1045 rbio->stripe_pages[i] = page;
1046 ClearPageUptodate(page);
1047 }
1048 return 0;
1049}
1050
1051/* allocate pages for just the p/q stripes */
1052static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1053{
1054 int i;
1055 struct page *page;
1056
1057 i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
1058
1059 for (; i < rbio->nr_pages; i++) {
1060 if (rbio->stripe_pages[i])
1061 continue;
1062 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1063 if (!page)
1064 return -ENOMEM;
1065 rbio->stripe_pages[i] = page;
1066 }
1067 return 0;
1068}
1069
1070/*
1071 * add a single page from a specific stripe into our list of bios for IO
1072 * this will try to merge into existing bios if possible, and returns
1073 * zero if all went well.
1074 */
48a3b636
ES
1075static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1076 struct bio_list *bio_list,
1077 struct page *page,
1078 int stripe_nr,
1079 unsigned long page_index,
1080 unsigned long bio_max_len)
53b381b3
DW
1081{
1082 struct bio *last = bio_list->tail;
1083 u64 last_end = 0;
1084 int ret;
1085 struct bio *bio;
1086 struct btrfs_bio_stripe *stripe;
1087 u64 disk_start;
1088
1089 stripe = &rbio->bbio->stripes[stripe_nr];
1090 disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT);
1091
1092 /* if the device is missing, just fail this stripe */
1093 if (!stripe->dev->bdev)
1094 return fail_rbio_index(rbio, stripe_nr);
1095
1096 /* see if we can add this page onto our existing bio */
1097 if (last) {
4f024f37
KO
1098 last_end = (u64)last->bi_iter.bi_sector << 9;
1099 last_end += last->bi_iter.bi_size;
53b381b3
DW
1100
1101 /*
1102 * we can't merge these if they are from different
1103 * devices or if they are not contiguous
1104 */
1105 if (last_end == disk_start && stripe->dev->bdev &&
1106 test_bit(BIO_UPTODATE, &last->bi_flags) &&
1107 last->bi_bdev == stripe->dev->bdev) {
1108 ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0);
1109 if (ret == PAGE_CACHE_SIZE)
1110 return 0;
1111 }
1112 }
1113
1114 /* put a new bio on the list */
9be3395b 1115 bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
53b381b3
DW
1116 if (!bio)
1117 return -ENOMEM;
1118
4f024f37 1119 bio->bi_iter.bi_size = 0;
53b381b3 1120 bio->bi_bdev = stripe->dev->bdev;
4f024f37 1121 bio->bi_iter.bi_sector = disk_start >> 9;
53b381b3
DW
1122 set_bit(BIO_UPTODATE, &bio->bi_flags);
1123
1124 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
1125 bio_list_add(bio_list, bio);
1126 return 0;
1127}
1128
1129/*
1130 * while we're doing the read/modify/write cycle, we could
1131 * have errors in reading pages off the disk. This checks
1132 * for errors and if we're not able to read the page it'll
1133 * trigger parity reconstruction. The rmw will be finished
1134 * after we've reconstructed the failed stripes
1135 */
1136static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1137{
1138 if (rbio->faila >= 0 || rbio->failb >= 0) {
2c8cdd6e 1139 BUG_ON(rbio->faila == rbio->real_stripes - 1);
53b381b3
DW
1140 __raid56_parity_recover(rbio);
1141 } else {
1142 finish_rmw(rbio);
1143 }
1144}
1145
1146/*
1147 * these are just the pages from the rbio array, not from anything
1148 * the FS sent down to us
1149 */
1150static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page)
1151{
1152 int index;
1153 index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT);
1154 index += page;
1155 return rbio->stripe_pages[index];
1156}
1157
1158/*
1159 * helper function to walk our bio list and populate the bio_pages array with
1160 * the result. This seems expensive, but it is faster than constantly
1161 * searching through the bio list as we setup the IO in finish_rmw or stripe
1162 * reconstruction.
1163 *
1164 * This must be called before you trust the answers from page_in_rbio
1165 */
1166static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1167{
1168 struct bio *bio;
1169 u64 start;
1170 unsigned long stripe_offset;
1171 unsigned long page_index;
1172 struct page *p;
1173 int i;
1174
1175 spin_lock_irq(&rbio->bio_list_lock);
1176 bio_list_for_each(bio, &rbio->bio_list) {
4f024f37 1177 start = (u64)bio->bi_iter.bi_sector << 9;
53b381b3
DW
1178 stripe_offset = start - rbio->raid_map[0];
1179 page_index = stripe_offset >> PAGE_CACHE_SHIFT;
1180
1181 for (i = 0; i < bio->bi_vcnt; i++) {
1182 p = bio->bi_io_vec[i].bv_page;
1183 rbio->bio_pages[page_index + i] = p;
1184 }
1185 }
1186 spin_unlock_irq(&rbio->bio_list_lock);
1187}
1188
1189/*
1190 * this is called from one of two situations. We either
1191 * have a full stripe from the higher layers, or we've read all
1192 * the missing bits off disk.
1193 *
1194 * This will calculate the parity and then send down any
1195 * changed blocks.
1196 */
1197static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1198{
1199 struct btrfs_bio *bbio = rbio->bbio;
2c8cdd6e 1200 void *pointers[rbio->real_stripes];
53b381b3
DW
1201 int stripe_len = rbio->stripe_len;
1202 int nr_data = rbio->nr_data;
1203 int stripe;
1204 int pagenr;
1205 int p_stripe = -1;
1206 int q_stripe = -1;
1207 struct bio_list bio_list;
1208 struct bio *bio;
1209 int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT;
1210 int ret;
1211
1212 bio_list_init(&bio_list);
1213
2c8cdd6e
MX
1214 if (rbio->real_stripes - rbio->nr_data == 1) {
1215 p_stripe = rbio->real_stripes - 1;
1216 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1217 p_stripe = rbio->real_stripes - 2;
1218 q_stripe = rbio->real_stripes - 1;
53b381b3
DW
1219 } else {
1220 BUG();
1221 }
1222
1223 /* at this point we either have a full stripe,
1224 * or we've read the full stripe from the drive.
1225 * recalculate the parity and write the new results.
1226 *
1227 * We're not allowed to add any new bios to the
1228 * bio list here, anyone else that wants to
1229 * change this stripe needs to do their own rmw.
1230 */
1231 spin_lock_irq(&rbio->bio_list_lock);
1232 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1233 spin_unlock_irq(&rbio->bio_list_lock);
1234
b89e1b01 1235 atomic_set(&rbio->error, 0);
53b381b3
DW
1236
1237 /*
1238 * now that we've set rmw_locked, run through the
1239 * bio list one last time and map the page pointers
4ae10b3a
CM
1240 *
1241 * We don't cache full rbios because we're assuming
1242 * the higher layers are unlikely to use this area of
1243 * the disk again soon. If they do use it again,
1244 * hopefully they will send another full bio.
53b381b3
DW
1245 */
1246 index_rbio_pages(rbio);
4ae10b3a
CM
1247 if (!rbio_is_full(rbio))
1248 cache_rbio_pages(rbio);
1249 else
1250 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
53b381b3
DW
1251
1252 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1253 struct page *p;
1254 /* first collect one page from each data stripe */
1255 for (stripe = 0; stripe < nr_data; stripe++) {
1256 p = page_in_rbio(rbio, stripe, pagenr, 0);
1257 pointers[stripe] = kmap(p);
1258 }
1259
1260 /* then add the parity stripe */
1261 p = rbio_pstripe_page(rbio, pagenr);
1262 SetPageUptodate(p);
1263 pointers[stripe++] = kmap(p);
1264
1265 if (q_stripe != -1) {
1266
1267 /*
1268 * raid6, add the qstripe and call the
1269 * library function to fill in our p/q
1270 */
1271 p = rbio_qstripe_page(rbio, pagenr);
1272 SetPageUptodate(p);
1273 pointers[stripe++] = kmap(p);
1274
2c8cdd6e 1275 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
53b381b3
DW
1276 pointers);
1277 } else {
1278 /* raid5 */
1279 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1280 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
1281 }
1282
1283
2c8cdd6e 1284 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
53b381b3
DW
1285 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1286 }
1287
1288 /*
1289 * time to start writing. Make bios for everything from the
1290 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1291 * everything else.
1292 */
2c8cdd6e 1293 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1294 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1295 struct page *page;
1296 if (stripe < rbio->nr_data) {
1297 page = page_in_rbio(rbio, stripe, pagenr, 1);
1298 if (!page)
1299 continue;
1300 } else {
1301 page = rbio_stripe_page(rbio, stripe, pagenr);
1302 }
1303
1304 ret = rbio_add_io_page(rbio, &bio_list,
1305 page, stripe, pagenr, rbio->stripe_len);
1306 if (ret)
1307 goto cleanup;
1308 }
1309 }
1310
2c8cdd6e
MX
1311 if (likely(!bbio->num_tgtdevs))
1312 goto write_data;
1313
1314 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1315 if (!bbio->tgtdev_map[stripe])
1316 continue;
1317
1318 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1319 struct page *page;
1320 if (stripe < rbio->nr_data) {
1321 page = page_in_rbio(rbio, stripe, pagenr, 1);
1322 if (!page)
1323 continue;
1324 } else {
1325 page = rbio_stripe_page(rbio, stripe, pagenr);
1326 }
1327
1328 ret = rbio_add_io_page(rbio, &bio_list, page,
1329 rbio->bbio->tgtdev_map[stripe],
1330 pagenr, rbio->stripe_len);
1331 if (ret)
1332 goto cleanup;
1333 }
1334 }
1335
1336write_data:
b89e1b01
MX
1337 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1338 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
53b381b3
DW
1339
1340 while (1) {
1341 bio = bio_list_pop(&bio_list);
1342 if (!bio)
1343 break;
1344
1345 bio->bi_private = rbio;
1346 bio->bi_end_io = raid_write_end_io;
1347 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
1348 submit_bio(WRITE, bio);
1349 }
1350 return;
1351
1352cleanup:
1353 rbio_orig_end_io(rbio, -EIO, 0);
1354}
1355
1356/*
1357 * helper to find the stripe number for a given bio. Used to figure out which
1358 * stripe has failed. This expects the bio to correspond to a physical disk,
1359 * so it looks up based on physical sector numbers.
1360 */
1361static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1362 struct bio *bio)
1363{
4f024f37 1364 u64 physical = bio->bi_iter.bi_sector;
53b381b3
DW
1365 u64 stripe_start;
1366 int i;
1367 struct btrfs_bio_stripe *stripe;
1368
1369 physical <<= 9;
1370
1371 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1372 stripe = &rbio->bbio->stripes[i];
1373 stripe_start = stripe->physical;
1374 if (physical >= stripe_start &&
2c8cdd6e
MX
1375 physical < stripe_start + rbio->stripe_len &&
1376 bio->bi_bdev == stripe->dev->bdev) {
53b381b3
DW
1377 return i;
1378 }
1379 }
1380 return -1;
1381}
1382
1383/*
1384 * helper to find the stripe number for a given
1385 * bio (before mapping). Used to figure out which stripe has
1386 * failed. This looks up based on logical block numbers.
1387 */
1388static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1389 struct bio *bio)
1390{
4f024f37 1391 u64 logical = bio->bi_iter.bi_sector;
53b381b3
DW
1392 u64 stripe_start;
1393 int i;
1394
1395 logical <<= 9;
1396
1397 for (i = 0; i < rbio->nr_data; i++) {
1398 stripe_start = rbio->raid_map[i];
1399 if (logical >= stripe_start &&
1400 logical < stripe_start + rbio->stripe_len) {
1401 return i;
1402 }
1403 }
1404 return -1;
1405}
1406
1407/*
1408 * returns -EIO if we had too many failures
1409 */
1410static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1411{
1412 unsigned long flags;
1413 int ret = 0;
1414
1415 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1416
1417 /* we already know this stripe is bad, move on */
1418 if (rbio->faila == failed || rbio->failb == failed)
1419 goto out;
1420
1421 if (rbio->faila == -1) {
1422 /* first failure on this rbio */
1423 rbio->faila = failed;
b89e1b01 1424 atomic_inc(&rbio->error);
53b381b3
DW
1425 } else if (rbio->failb == -1) {
1426 /* second failure on this rbio */
1427 rbio->failb = failed;
b89e1b01 1428 atomic_inc(&rbio->error);
53b381b3
DW
1429 } else {
1430 ret = -EIO;
1431 }
1432out:
1433 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1434
1435 return ret;
1436}
1437
1438/*
1439 * helper to fail a stripe based on a physical disk
1440 * bio.
1441 */
1442static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1443 struct bio *bio)
1444{
1445 int failed = find_bio_stripe(rbio, bio);
1446
1447 if (failed < 0)
1448 return -EIO;
1449
1450 return fail_rbio_index(rbio, failed);
1451}
1452
1453/*
1454 * this sets each page in the bio uptodate. It should only be used on private
1455 * rbio pages, nothing that comes in from the higher layers
1456 */
1457static void set_bio_pages_uptodate(struct bio *bio)
1458{
1459 int i;
1460 struct page *p;
1461
1462 for (i = 0; i < bio->bi_vcnt; i++) {
1463 p = bio->bi_io_vec[i].bv_page;
1464 SetPageUptodate(p);
1465 }
1466}
1467
1468/*
1469 * end io for the read phase of the rmw cycle. All the bios here are physical
1470 * stripe bios we've read from the disk so we can recalculate the parity of the
1471 * stripe.
1472 *
1473 * This will usually kick off finish_rmw once all the bios are read in, but it
1474 * may trigger parity reconstruction if we had any errors along the way
1475 */
1476static void raid_rmw_end_io(struct bio *bio, int err)
1477{
1478 struct btrfs_raid_bio *rbio = bio->bi_private;
1479
1480 if (err)
1481 fail_bio_stripe(rbio, bio);
1482 else
1483 set_bio_pages_uptodate(bio);
1484
1485 bio_put(bio);
1486
b89e1b01 1487 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
1488 return;
1489
1490 err = 0;
b89e1b01 1491 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
53b381b3
DW
1492 goto cleanup;
1493
1494 /*
1495 * this will normally call finish_rmw to start our write
1496 * but if there are any failed stripes we'll reconstruct
1497 * from parity first
1498 */
1499 validate_rbio_for_rmw(rbio);
1500 return;
1501
1502cleanup:
1503
1504 rbio_orig_end_io(rbio, -EIO, 0);
1505}
1506
1507static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1508{
9e0af237
LB
1509 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1510 rmw_work, NULL, NULL);
53b381b3 1511
d05a33ac
QW
1512 btrfs_queue_work(rbio->fs_info->rmw_workers,
1513 &rbio->work);
53b381b3
DW
1514}
1515
1516static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1517{
9e0af237
LB
1518 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1519 read_rebuild_work, NULL, NULL);
53b381b3 1520
d05a33ac
QW
1521 btrfs_queue_work(rbio->fs_info->rmw_workers,
1522 &rbio->work);
53b381b3
DW
1523}
1524
1525/*
1526 * the stripe must be locked by the caller. It will
1527 * unlock after all the writes are done
1528 */
1529static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1530{
1531 int bios_to_read = 0;
53b381b3
DW
1532 struct bio_list bio_list;
1533 int ret;
ed6078f7 1534 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
53b381b3
DW
1535 int pagenr;
1536 int stripe;
1537 struct bio *bio;
1538
1539 bio_list_init(&bio_list);
1540
1541 ret = alloc_rbio_pages(rbio);
1542 if (ret)
1543 goto cleanup;
1544
1545 index_rbio_pages(rbio);
1546
b89e1b01 1547 atomic_set(&rbio->error, 0);
53b381b3
DW
1548 /*
1549 * build a list of bios to read all the missing parts of this
1550 * stripe
1551 */
1552 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1553 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1554 struct page *page;
1555 /*
1556 * we want to find all the pages missing from
1557 * the rbio and read them from the disk. If
1558 * page_in_rbio finds a page in the bio list
1559 * we don't need to read it off the stripe.
1560 */
1561 page = page_in_rbio(rbio, stripe, pagenr, 1);
1562 if (page)
1563 continue;
1564
1565 page = rbio_stripe_page(rbio, stripe, pagenr);
4ae10b3a
CM
1566 /*
1567 * the bio cache may have handed us an uptodate
1568 * page. If so, be happy and use it
1569 */
1570 if (PageUptodate(page))
1571 continue;
1572
53b381b3
DW
1573 ret = rbio_add_io_page(rbio, &bio_list, page,
1574 stripe, pagenr, rbio->stripe_len);
1575 if (ret)
1576 goto cleanup;
1577 }
1578 }
1579
1580 bios_to_read = bio_list_size(&bio_list);
1581 if (!bios_to_read) {
1582 /*
1583 * this can happen if others have merged with
1584 * us, it means there is nothing left to read.
1585 * But if there are missing devices it may not be
1586 * safe to do the full stripe write yet.
1587 */
1588 goto finish;
1589 }
1590
1591 /*
1592 * the bbio may be freed once we submit the last bio. Make sure
1593 * not to touch it after that
1594 */
b89e1b01 1595 atomic_set(&rbio->stripes_pending, bios_to_read);
53b381b3
DW
1596 while (1) {
1597 bio = bio_list_pop(&bio_list);
1598 if (!bio)
1599 break;
1600
1601 bio->bi_private = rbio;
1602 bio->bi_end_io = raid_rmw_end_io;
1603
1604 btrfs_bio_wq_end_io(rbio->fs_info, bio,
1605 BTRFS_WQ_ENDIO_RAID56);
1606
1607 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
1608 submit_bio(READ, bio);
1609 }
1610 /* the actual write will happen once the reads are done */
1611 return 0;
1612
1613cleanup:
1614 rbio_orig_end_io(rbio, -EIO, 0);
1615 return -EIO;
1616
1617finish:
1618 validate_rbio_for_rmw(rbio);
1619 return 0;
1620}
1621
1622/*
1623 * if the upper layers pass in a full stripe, we thank them by only allocating
1624 * enough pages to hold the parity, and sending it all down quickly.
1625 */
1626static int full_stripe_write(struct btrfs_raid_bio *rbio)
1627{
1628 int ret;
1629
1630 ret = alloc_rbio_parity_pages(rbio);
3cd846d1
MX
1631 if (ret) {
1632 __free_raid_bio(rbio);
53b381b3 1633 return ret;
3cd846d1 1634 }
53b381b3
DW
1635
1636 ret = lock_stripe_add(rbio);
1637 if (ret == 0)
1638 finish_rmw(rbio);
1639 return 0;
1640}
1641
1642/*
1643 * partial stripe writes get handed over to async helpers.
1644 * We're really hoping to merge a few more writes into this
1645 * rbio before calculating new parity
1646 */
1647static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1648{
1649 int ret;
1650
1651 ret = lock_stripe_add(rbio);
1652 if (ret == 0)
1653 async_rmw_stripe(rbio);
1654 return 0;
1655}
1656
1657/*
1658 * sometimes while we were reading from the drive to
1659 * recalculate parity, enough new bios come into create
1660 * a full stripe. So we do a check here to see if we can
1661 * go directly to finish_rmw
1662 */
1663static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1664{
1665 /* head off into rmw land if we don't have a full stripe */
1666 if (!rbio_is_full(rbio))
1667 return partial_stripe_write(rbio);
1668 return full_stripe_write(rbio);
1669}
1670
6ac0f488
CM
1671/*
1672 * We use plugging call backs to collect full stripes.
1673 * Any time we get a partial stripe write while plugged
1674 * we collect it into a list. When the unplug comes down,
1675 * we sort the list by logical block number and merge
1676 * everything we can into the same rbios
1677 */
1678struct btrfs_plug_cb {
1679 struct blk_plug_cb cb;
1680 struct btrfs_fs_info *info;
1681 struct list_head rbio_list;
1682 struct btrfs_work work;
1683};
1684
1685/*
1686 * rbios on the plug list are sorted for easier merging.
1687 */
1688static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1689{
1690 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1691 plug_list);
1692 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1693 plug_list);
4f024f37
KO
1694 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1695 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
6ac0f488
CM
1696
1697 if (a_sector < b_sector)
1698 return -1;
1699 if (a_sector > b_sector)
1700 return 1;
1701 return 0;
1702}
1703
1704static void run_plug(struct btrfs_plug_cb *plug)
1705{
1706 struct btrfs_raid_bio *cur;
1707 struct btrfs_raid_bio *last = NULL;
1708
1709 /*
1710 * sort our plug list then try to merge
1711 * everything we can in hopes of creating full
1712 * stripes.
1713 */
1714 list_sort(NULL, &plug->rbio_list, plug_cmp);
1715 while (!list_empty(&plug->rbio_list)) {
1716 cur = list_entry(plug->rbio_list.next,
1717 struct btrfs_raid_bio, plug_list);
1718 list_del_init(&cur->plug_list);
1719
1720 if (rbio_is_full(cur)) {
1721 /* we have a full stripe, send it down */
1722 full_stripe_write(cur);
1723 continue;
1724 }
1725 if (last) {
1726 if (rbio_can_merge(last, cur)) {
1727 merge_rbio(last, cur);
1728 __free_raid_bio(cur);
1729 continue;
1730
1731 }
1732 __raid56_parity_write(last);
1733 }
1734 last = cur;
1735 }
1736 if (last) {
1737 __raid56_parity_write(last);
1738 }
1739 kfree(plug);
1740}
1741
1742/*
1743 * if the unplug comes from schedule, we have to push the
1744 * work off to a helper thread
1745 */
1746static void unplug_work(struct btrfs_work *work)
1747{
1748 struct btrfs_plug_cb *plug;
1749 plug = container_of(work, struct btrfs_plug_cb, work);
1750 run_plug(plug);
1751}
1752
1753static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1754{
1755 struct btrfs_plug_cb *plug;
1756 plug = container_of(cb, struct btrfs_plug_cb, cb);
1757
1758 if (from_schedule) {
9e0af237
LB
1759 btrfs_init_work(&plug->work, btrfs_rmw_helper,
1760 unplug_work, NULL, NULL);
d05a33ac
QW
1761 btrfs_queue_work(plug->info->rmw_workers,
1762 &plug->work);
6ac0f488
CM
1763 return;
1764 }
1765 run_plug(plug);
1766}
1767
53b381b3
DW
1768/*
1769 * our main entry point for writes from the rest of the FS.
1770 */
1771int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
1772 struct btrfs_bio *bbio, u64 *raid_map,
1773 u64 stripe_len)
1774{
1775 struct btrfs_raid_bio *rbio;
6ac0f488
CM
1776 struct btrfs_plug_cb *plug = NULL;
1777 struct blk_plug_cb *cb;
53b381b3
DW
1778
1779 rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
af8e2d1d
MX
1780 if (IS_ERR(rbio)) {
1781 __free_bbio_and_raid_map(bbio, raid_map, 1);
53b381b3 1782 return PTR_ERR(rbio);
af8e2d1d 1783 }
53b381b3 1784 bio_list_add(&rbio->bio_list, bio);
4f024f37 1785 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1b94b556 1786 rbio->operation = BTRFS_RBIO_WRITE;
6ac0f488
CM
1787
1788 /*
1789 * don't plug on full rbios, just get them out the door
1790 * as quickly as we can
1791 */
1792 if (rbio_is_full(rbio))
1793 return full_stripe_write(rbio);
1794
1795 cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
1796 sizeof(*plug));
1797 if (cb) {
1798 plug = container_of(cb, struct btrfs_plug_cb, cb);
1799 if (!plug->info) {
1800 plug->info = root->fs_info;
1801 INIT_LIST_HEAD(&plug->rbio_list);
1802 }
1803 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1804 } else {
1805 return __raid56_parity_write(rbio);
1806 }
1807 return 0;
53b381b3
DW
1808}
1809
1810/*
1811 * all parity reconstruction happens here. We've read in everything
1812 * we can find from the drives and this does the heavy lifting of
1813 * sorting the good from the bad.
1814 */
1815static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1816{
1817 int pagenr, stripe;
1818 void **pointers;
1819 int faila = -1, failb = -1;
ed6078f7 1820 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
53b381b3
DW
1821 struct page *page;
1822 int err;
1823 int i;
1824
2c8cdd6e 1825 pointers = kzalloc(rbio->real_stripes * sizeof(void *),
53b381b3
DW
1826 GFP_NOFS);
1827 if (!pointers) {
1828 err = -ENOMEM;
1829 goto cleanup_io;
1830 }
1831
1832 faila = rbio->faila;
1833 failb = rbio->failb;
1834
1b94b556 1835 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
53b381b3
DW
1836 spin_lock_irq(&rbio->bio_list_lock);
1837 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1838 spin_unlock_irq(&rbio->bio_list_lock);
1839 }
1840
1841 index_rbio_pages(rbio);
1842
1843 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
5a6ac9ea
MX
1844 /*
1845 * Now we just use bitmap to mark the horizontal stripes in
1846 * which we have data when doing parity scrub.
1847 */
1848 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1849 !test_bit(pagenr, rbio->dbitmap))
1850 continue;
1851
53b381b3
DW
1852 /* setup our array of pointers with pages
1853 * from each stripe
1854 */
2c8cdd6e 1855 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1856 /*
1857 * if we're rebuilding a read, we have to use
1858 * pages from the bio list
1859 */
1b94b556 1860 if (rbio->operation == BTRFS_RBIO_READ_REBUILD &&
53b381b3
DW
1861 (stripe == faila || stripe == failb)) {
1862 page = page_in_rbio(rbio, stripe, pagenr, 0);
1863 } else {
1864 page = rbio_stripe_page(rbio, stripe, pagenr);
1865 }
1866 pointers[stripe] = kmap(page);
1867 }
1868
1869 /* all raid6 handling here */
2c8cdd6e 1870 if (rbio->raid_map[rbio->real_stripes - 1] ==
53b381b3
DW
1871 RAID6_Q_STRIPE) {
1872
1873 /*
1874 * single failure, rebuild from parity raid5
1875 * style
1876 */
1877 if (failb < 0) {
1878 if (faila == rbio->nr_data) {
1879 /*
1880 * Just the P stripe has failed, without
1881 * a bad data or Q stripe.
1882 * TODO, we should redo the xor here.
1883 */
1884 err = -EIO;
1885 goto cleanup;
1886 }
1887 /*
1888 * a single failure in raid6 is rebuilt
1889 * in the pstripe code below
1890 */
1891 goto pstripe;
1892 }
1893
1894 /* make sure our ps and qs are in order */
1895 if (faila > failb) {
1896 int tmp = failb;
1897 failb = faila;
1898 faila = tmp;
1899 }
1900
1901 /* if the q stripe is failed, do a pstripe reconstruction
1902 * from the xors.
1903 * If both the q stripe and the P stripe are failed, we're
1904 * here due to a crc mismatch and we can't give them the
1905 * data they want
1906 */
1907 if (rbio->raid_map[failb] == RAID6_Q_STRIPE) {
1908 if (rbio->raid_map[faila] == RAID5_P_STRIPE) {
1909 err = -EIO;
1910 goto cleanup;
1911 }
1912 /*
1913 * otherwise we have one bad data stripe and
1914 * a good P stripe. raid5!
1915 */
1916 goto pstripe;
1917 }
1918
1919 if (rbio->raid_map[failb] == RAID5_P_STRIPE) {
2c8cdd6e 1920 raid6_datap_recov(rbio->real_stripes,
53b381b3
DW
1921 PAGE_SIZE, faila, pointers);
1922 } else {
2c8cdd6e 1923 raid6_2data_recov(rbio->real_stripes,
53b381b3
DW
1924 PAGE_SIZE, faila, failb,
1925 pointers);
1926 }
1927 } else {
1928 void *p;
1929
1930 /* rebuild from P stripe here (raid5 or raid6) */
1931 BUG_ON(failb != -1);
1932pstripe:
1933 /* Copy parity block into failed block to start with */
1934 memcpy(pointers[faila],
1935 pointers[rbio->nr_data],
1936 PAGE_CACHE_SIZE);
1937
1938 /* rearrange the pointer array */
1939 p = pointers[faila];
1940 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1941 pointers[stripe] = pointers[stripe + 1];
1942 pointers[rbio->nr_data - 1] = p;
1943
1944 /* xor in the rest */
1945 run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE);
1946 }
1947 /* if we're doing this rebuild as part of an rmw, go through
1948 * and set all of our private rbio pages in the
1949 * failed stripes as uptodate. This way finish_rmw will
1950 * know they can be trusted. If this was a read reconstruction,
1951 * other endio functions will fiddle the uptodate bits
1952 */
1b94b556 1953 if (rbio->operation == BTRFS_RBIO_WRITE) {
53b381b3
DW
1954 for (i = 0; i < nr_pages; i++) {
1955 if (faila != -1) {
1956 page = rbio_stripe_page(rbio, faila, i);
1957 SetPageUptodate(page);
1958 }
1959 if (failb != -1) {
1960 page = rbio_stripe_page(rbio, failb, i);
1961 SetPageUptodate(page);
1962 }
1963 }
1964 }
2c8cdd6e 1965 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1966 /*
1967 * if we're rebuilding a read, we have to use
1968 * pages from the bio list
1969 */
1b94b556 1970 if (rbio->operation == BTRFS_RBIO_READ_REBUILD &&
53b381b3
DW
1971 (stripe == faila || stripe == failb)) {
1972 page = page_in_rbio(rbio, stripe, pagenr, 0);
1973 } else {
1974 page = rbio_stripe_page(rbio, stripe, pagenr);
1975 }
1976 kunmap(page);
1977 }
1978 }
1979
1980 err = 0;
1981cleanup:
1982 kfree(pointers);
1983
1984cleanup_io:
1b94b556 1985 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
af8e2d1d
MX
1986 if (err == 0 &&
1987 !test_bit(RBIO_HOLD_BBIO_MAP_BIT, &rbio->flags))
4ae10b3a
CM
1988 cache_rbio_pages(rbio);
1989 else
1990 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1991
53b381b3
DW
1992 rbio_orig_end_io(rbio, err, err == 0);
1993 } else if (err == 0) {
1994 rbio->faila = -1;
1995 rbio->failb = -1;
5a6ac9ea
MX
1996
1997 if (rbio->operation == BTRFS_RBIO_WRITE)
1998 finish_rmw(rbio);
1999 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
2000 finish_parity_scrub(rbio, 0);
2001 else
2002 BUG();
53b381b3
DW
2003 } else {
2004 rbio_orig_end_io(rbio, err, 0);
2005 }
2006}
2007
2008/*
2009 * This is called only for stripes we've read from disk to
2010 * reconstruct the parity.
2011 */
2012static void raid_recover_end_io(struct bio *bio, int err)
2013{
2014 struct btrfs_raid_bio *rbio = bio->bi_private;
2015
2016 /*
2017 * we only read stripe pages off the disk, set them
2018 * up to date if there were no errors
2019 */
2020 if (err)
2021 fail_bio_stripe(rbio, bio);
2022 else
2023 set_bio_pages_uptodate(bio);
2024 bio_put(bio);
2025
b89e1b01 2026 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
2027 return;
2028
b89e1b01 2029 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
53b381b3
DW
2030 rbio_orig_end_io(rbio, -EIO, 0);
2031 else
2032 __raid_recover_end_io(rbio);
2033}
2034
2035/*
2036 * reads everything we need off the disk to reconstruct
2037 * the parity. endio handlers trigger final reconstruction
2038 * when the IO is done.
2039 *
2040 * This is used both for reads from the higher layers and for
2041 * parity construction required to finish a rmw cycle.
2042 */
2043static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2044{
2045 int bios_to_read = 0;
53b381b3
DW
2046 struct bio_list bio_list;
2047 int ret;
ed6078f7 2048 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
53b381b3
DW
2049 int pagenr;
2050 int stripe;
2051 struct bio *bio;
2052
2053 bio_list_init(&bio_list);
2054
2055 ret = alloc_rbio_pages(rbio);
2056 if (ret)
2057 goto cleanup;
2058
b89e1b01 2059 atomic_set(&rbio->error, 0);
53b381b3
DW
2060
2061 /*
4ae10b3a
CM
2062 * read everything that hasn't failed. Thanks to the
2063 * stripe cache, it is possible that some or all of these
2064 * pages are going to be uptodate.
53b381b3 2065 */
2c8cdd6e 2066 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
5588383e 2067 if (rbio->faila == stripe || rbio->failb == stripe) {
b89e1b01 2068 atomic_inc(&rbio->error);
53b381b3 2069 continue;
5588383e 2070 }
53b381b3
DW
2071
2072 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
2073 struct page *p;
2074
2075 /*
2076 * the rmw code may have already read this
2077 * page in
2078 */
2079 p = rbio_stripe_page(rbio, stripe, pagenr);
2080 if (PageUptodate(p))
2081 continue;
2082
2083 ret = rbio_add_io_page(rbio, &bio_list,
2084 rbio_stripe_page(rbio, stripe, pagenr),
2085 stripe, pagenr, rbio->stripe_len);
2086 if (ret < 0)
2087 goto cleanup;
2088 }
2089 }
2090
2091 bios_to_read = bio_list_size(&bio_list);
2092 if (!bios_to_read) {
2093 /*
2094 * we might have no bios to read just because the pages
2095 * were up to date, or we might have no bios to read because
2096 * the devices were gone.
2097 */
b89e1b01 2098 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
53b381b3
DW
2099 __raid_recover_end_io(rbio);
2100 goto out;
2101 } else {
2102 goto cleanup;
2103 }
2104 }
2105
2106 /*
2107 * the bbio may be freed once we submit the last bio. Make sure
2108 * not to touch it after that
2109 */
b89e1b01 2110 atomic_set(&rbio->stripes_pending, bios_to_read);
53b381b3
DW
2111 while (1) {
2112 bio = bio_list_pop(&bio_list);
2113 if (!bio)
2114 break;
2115
2116 bio->bi_private = rbio;
2117 bio->bi_end_io = raid_recover_end_io;
2118
2119 btrfs_bio_wq_end_io(rbio->fs_info, bio,
2120 BTRFS_WQ_ENDIO_RAID56);
2121
2122 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
2123 submit_bio(READ, bio);
2124 }
2125out:
2126 return 0;
2127
2128cleanup:
1b94b556 2129 if (rbio->operation == BTRFS_RBIO_READ_REBUILD)
53b381b3
DW
2130 rbio_orig_end_io(rbio, -EIO, 0);
2131 return -EIO;
2132}
2133
2134/*
2135 * the main entry point for reads from the higher layers. This
2136 * is really only called when the normal read path had a failure,
2137 * so we assume the bio they send down corresponds to a failed part
2138 * of the drive.
2139 */
2140int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
2141 struct btrfs_bio *bbio, u64 *raid_map,
af8e2d1d 2142 u64 stripe_len, int mirror_num, int hold_bbio)
53b381b3
DW
2143{
2144 struct btrfs_raid_bio *rbio;
2145 int ret;
2146
2147 rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
af8e2d1d
MX
2148 if (IS_ERR(rbio)) {
2149 __free_bbio_and_raid_map(bbio, raid_map, !hold_bbio);
53b381b3 2150 return PTR_ERR(rbio);
af8e2d1d 2151 }
53b381b3 2152
af8e2d1d
MX
2153 if (hold_bbio)
2154 set_bit(RBIO_HOLD_BBIO_MAP_BIT, &rbio->flags);
1b94b556 2155 rbio->operation = BTRFS_RBIO_READ_REBUILD;
53b381b3 2156 bio_list_add(&rbio->bio_list, bio);
4f024f37 2157 rbio->bio_list_bytes = bio->bi_iter.bi_size;
53b381b3
DW
2158
2159 rbio->faila = find_logical_bio_stripe(rbio, bio);
2160 if (rbio->faila == -1) {
2161 BUG();
af8e2d1d 2162 __free_bbio_and_raid_map(bbio, raid_map, !hold_bbio);
53b381b3
DW
2163 kfree(rbio);
2164 return -EIO;
2165 }
2166
2167 /*
2168 * reconstruct from the q stripe if they are
2169 * asking for mirror 3
2170 */
2171 if (mirror_num == 3)
2c8cdd6e 2172 rbio->failb = rbio->real_stripes - 2;
53b381b3
DW
2173
2174 ret = lock_stripe_add(rbio);
2175
2176 /*
2177 * __raid56_parity_recover will end the bio with
2178 * any errors it hits. We don't want to return
2179 * its error value up the stack because our caller
2180 * will end up calling bio_endio with any nonzero
2181 * return
2182 */
2183 if (ret == 0)
2184 __raid56_parity_recover(rbio);
2185 /*
2186 * our rbio has been added to the list of
2187 * rbios that will be handled after the
2188 * currently lock owner is done
2189 */
2190 return 0;
2191
2192}
2193
2194static void rmw_work(struct btrfs_work *work)
2195{
2196 struct btrfs_raid_bio *rbio;
2197
2198 rbio = container_of(work, struct btrfs_raid_bio, work);
2199 raid56_rmw_stripe(rbio);
2200}
2201
2202static void read_rebuild_work(struct btrfs_work *work)
2203{
2204 struct btrfs_raid_bio *rbio;
2205
2206 rbio = container_of(work, struct btrfs_raid_bio, work);
2207 __raid56_parity_recover(rbio);
2208}
5a6ac9ea
MX
2209
2210/*
2211 * The following code is used to scrub/replace the parity stripe
2212 *
2213 * Note: We need make sure all the pages that add into the scrub/replace
2214 * raid bio are correct and not be changed during the scrub/replace. That
2215 * is those pages just hold metadata or file data with checksum.
2216 */
2217
2218struct btrfs_raid_bio *
2219raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio,
2220 struct btrfs_bio *bbio, u64 *raid_map,
2221 u64 stripe_len, struct btrfs_device *scrub_dev,
2222 unsigned long *dbitmap, int stripe_nsectors)
2223{
2224 struct btrfs_raid_bio *rbio;
2225 int i;
2226
2227 rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
2228 if (IS_ERR(rbio))
2229 return NULL;
2230 bio_list_add(&rbio->bio_list, bio);
2231 /*
2232 * This is a special bio which is used to hold the completion handler
2233 * and make the scrub rbio is similar to the other types
2234 */
2235 ASSERT(!bio->bi_iter.bi_size);
2236 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2237
2c8cdd6e 2238 for (i = 0; i < rbio->real_stripes; i++) {
5a6ac9ea
MX
2239 if (bbio->stripes[i].dev == scrub_dev) {
2240 rbio->scrubp = i;
2241 break;
2242 }
2243 }
2244
2245 /* Now we just support the sectorsize equals to page size */
2246 ASSERT(root->sectorsize == PAGE_SIZE);
2247 ASSERT(rbio->stripe_npages == stripe_nsectors);
2248 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2249
2250 return rbio;
2251}
2252
2253void raid56_parity_add_scrub_pages(struct btrfs_raid_bio *rbio,
2254 struct page *page, u64 logical)
2255{
2256 int stripe_offset;
2257 int index;
2258
2259 ASSERT(logical >= rbio->raid_map[0]);
2260 ASSERT(logical + PAGE_SIZE <= rbio->raid_map[0] +
2261 rbio->stripe_len * rbio->nr_data);
2262 stripe_offset = (int)(logical - rbio->raid_map[0]);
2263 index = stripe_offset >> PAGE_CACHE_SHIFT;
2264 rbio->bio_pages[index] = page;
2265}
2266
2267/*
2268 * We just scrub the parity that we have correct data on the same horizontal,
2269 * so we needn't allocate all pages for all the stripes.
2270 */
2271static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2272{
2273 int i;
2274 int bit;
2275 int index;
2276 struct page *page;
2277
2278 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2c8cdd6e 2279 for (i = 0; i < rbio->real_stripes; i++) {
5a6ac9ea
MX
2280 index = i * rbio->stripe_npages + bit;
2281 if (rbio->stripe_pages[index])
2282 continue;
2283
2284 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2285 if (!page)
2286 return -ENOMEM;
2287 rbio->stripe_pages[index] = page;
2288 ClearPageUptodate(page);
2289 }
2290 }
2291 return 0;
2292}
2293
2294/*
2295 * end io function used by finish_rmw. When we finally
2296 * get here, we've written a full stripe
2297 */
2298static void raid_write_parity_end_io(struct bio *bio, int err)
2299{
2300 struct btrfs_raid_bio *rbio = bio->bi_private;
2301
2302 if (err)
2303 fail_bio_stripe(rbio, bio);
2304
2305 bio_put(bio);
2306
2307 if (!atomic_dec_and_test(&rbio->stripes_pending))
2308 return;
2309
2310 err = 0;
2311
2312 if (atomic_read(&rbio->error))
2313 err = -EIO;
2314
2315 rbio_orig_end_io(rbio, err, 0);
2316}
2317
2318static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2319 int need_check)
2320{
2c8cdd6e 2321 void *pointers[rbio->real_stripes];
5a6ac9ea
MX
2322 int nr_data = rbio->nr_data;
2323 int stripe;
2324 int pagenr;
2325 int p_stripe = -1;
2326 int q_stripe = -1;
2327 struct page *p_page = NULL;
2328 struct page *q_page = NULL;
2329 struct bio_list bio_list;
2330 struct bio *bio;
2331 int ret;
2332
2333 bio_list_init(&bio_list);
2334
2c8cdd6e
MX
2335 if (rbio->real_stripes - rbio->nr_data == 1) {
2336 p_stripe = rbio->real_stripes - 1;
2337 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2338 p_stripe = rbio->real_stripes - 2;
2339 q_stripe = rbio->real_stripes - 1;
5a6ac9ea
MX
2340 } else {
2341 BUG();
2342 }
2343
2344 /*
2345 * Because the higher layers(scrubber) are unlikely to
2346 * use this area of the disk again soon, so don't cache
2347 * it.
2348 */
2349 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2350
2351 if (!need_check)
2352 goto writeback;
2353
2354 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2355 if (!p_page)
2356 goto cleanup;
2357 SetPageUptodate(p_page);
2358
2359 if (q_stripe != -1) {
2360 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2361 if (!q_page) {
2362 __free_page(p_page);
2363 goto cleanup;
2364 }
2365 SetPageUptodate(q_page);
2366 }
2367
2368 atomic_set(&rbio->error, 0);
2369
2370 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2371 struct page *p;
2372 void *parity;
2373 /* first collect one page from each data stripe */
2374 for (stripe = 0; stripe < nr_data; stripe++) {
2375 p = page_in_rbio(rbio, stripe, pagenr, 0);
2376 pointers[stripe] = kmap(p);
2377 }
2378
2379 /* then add the parity stripe */
2380 pointers[stripe++] = kmap(p_page);
2381
2382 if (q_stripe != -1) {
2383
2384 /*
2385 * raid6, add the qstripe and call the
2386 * library function to fill in our p/q
2387 */
2388 pointers[stripe++] = kmap(q_page);
2389
2c8cdd6e 2390 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
5a6ac9ea
MX
2391 pointers);
2392 } else {
2393 /* raid5 */
2394 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2395 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
2396 }
2397
2398 /* Check scrubbing pairty and repair it */
2399 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2400 parity = kmap(p);
2401 if (memcmp(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE))
2402 memcpy(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE);
2403 else
2404 /* Parity is right, needn't writeback */
2405 bitmap_clear(rbio->dbitmap, pagenr, 1);
2406 kunmap(p);
2407
2c8cdd6e 2408 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
5a6ac9ea
MX
2409 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2410 }
2411
2412 __free_page(p_page);
2413 if (q_page)
2414 __free_page(q_page);
2415
2416writeback:
2417 /*
2418 * time to start writing. Make bios for everything from the
2419 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2420 * everything else.
2421 */
2422 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2423 struct page *page;
2424
2425 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2426 ret = rbio_add_io_page(rbio, &bio_list,
2427 page, rbio->scrubp, pagenr, rbio->stripe_len);
2428 if (ret)
2429 goto cleanup;
2430 }
2431
2432 nr_data = bio_list_size(&bio_list);
2433 if (!nr_data) {
2434 /* Every parity is right */
2435 rbio_orig_end_io(rbio, 0, 0);
2436 return;
2437 }
2438
2439 atomic_set(&rbio->stripes_pending, nr_data);
2440
2441 while (1) {
2442 bio = bio_list_pop(&bio_list);
2443 if (!bio)
2444 break;
2445
2446 bio->bi_private = rbio;
2447 bio->bi_end_io = raid_write_parity_end_io;
2448 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
2449 submit_bio(WRITE, bio);
2450 }
2451 return;
2452
2453cleanup:
2454 rbio_orig_end_io(rbio, -EIO, 0);
2455}
2456
2457static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2458{
2459 if (stripe >= 0 && stripe < rbio->nr_data)
2460 return 1;
2461 return 0;
2462}
2463
2464/*
2465 * While we're doing the parity check and repair, we could have errors
2466 * in reading pages off the disk. This checks for errors and if we're
2467 * not able to read the page it'll trigger parity reconstruction. The
2468 * parity scrub will be finished after we've reconstructed the failed
2469 * stripes
2470 */
2471static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2472{
2473 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2474 goto cleanup;
2475
2476 if (rbio->faila >= 0 || rbio->failb >= 0) {
2477 int dfail = 0, failp = -1;
2478
2479 if (is_data_stripe(rbio, rbio->faila))
2480 dfail++;
2481 else if (is_parity_stripe(rbio->faila))
2482 failp = rbio->faila;
2483
2484 if (is_data_stripe(rbio, rbio->failb))
2485 dfail++;
2486 else if (is_parity_stripe(rbio->failb))
2487 failp = rbio->failb;
2488
2489 /*
2490 * Because we can not use a scrubbing parity to repair
2491 * the data, so the capability of the repair is declined.
2492 * (In the case of RAID5, we can not repair anything)
2493 */
2494 if (dfail > rbio->bbio->max_errors - 1)
2495 goto cleanup;
2496
2497 /*
2498 * If all data is good, only parity is correctly, just
2499 * repair the parity.
2500 */
2501 if (dfail == 0) {
2502 finish_parity_scrub(rbio, 0);
2503 return;
2504 }
2505
2506 /*
2507 * Here means we got one corrupted data stripe and one
2508 * corrupted parity on RAID6, if the corrupted parity
2509 * is scrubbing parity, luckly, use the other one to repair
2510 * the data, or we can not repair the data stripe.
2511 */
2512 if (failp != rbio->scrubp)
2513 goto cleanup;
2514
2515 __raid_recover_end_io(rbio);
2516 } else {
2517 finish_parity_scrub(rbio, 1);
2518 }
2519 return;
2520
2521cleanup:
2522 rbio_orig_end_io(rbio, -EIO, 0);
2523}
2524
2525/*
2526 * end io for the read phase of the rmw cycle. All the bios here are physical
2527 * stripe bios we've read from the disk so we can recalculate the parity of the
2528 * stripe.
2529 *
2530 * This will usually kick off finish_rmw once all the bios are read in, but it
2531 * may trigger parity reconstruction if we had any errors along the way
2532 */
2533static void raid56_parity_scrub_end_io(struct bio *bio, int err)
2534{
2535 struct btrfs_raid_bio *rbio = bio->bi_private;
2536
2537 if (err)
2538 fail_bio_stripe(rbio, bio);
2539 else
2540 set_bio_pages_uptodate(bio);
2541
2542 bio_put(bio);
2543
2544 if (!atomic_dec_and_test(&rbio->stripes_pending))
2545 return;
2546
2547 /*
2548 * this will normally call finish_rmw to start our write
2549 * but if there are any failed stripes we'll reconstruct
2550 * from parity first
2551 */
2552 validate_rbio_for_parity_scrub(rbio);
2553}
2554
2555static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2556{
2557 int bios_to_read = 0;
5a6ac9ea
MX
2558 struct bio_list bio_list;
2559 int ret;
2560 int pagenr;
2561 int stripe;
2562 struct bio *bio;
2563
2564 ret = alloc_rbio_essential_pages(rbio);
2565 if (ret)
2566 goto cleanup;
2567
2568 bio_list_init(&bio_list);
2569
2570 atomic_set(&rbio->error, 0);
2571 /*
2572 * build a list of bios to read all the missing parts of this
2573 * stripe
2574 */
2c8cdd6e 2575 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
5a6ac9ea
MX
2576 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2577 struct page *page;
2578 /*
2579 * we want to find all the pages missing from
2580 * the rbio and read them from the disk. If
2581 * page_in_rbio finds a page in the bio list
2582 * we don't need to read it off the stripe.
2583 */
2584 page = page_in_rbio(rbio, stripe, pagenr, 1);
2585 if (page)
2586 continue;
2587
2588 page = rbio_stripe_page(rbio, stripe, pagenr);
2589 /*
2590 * the bio cache may have handed us an uptodate
2591 * page. If so, be happy and use it
2592 */
2593 if (PageUptodate(page))
2594 continue;
2595
2596 ret = rbio_add_io_page(rbio, &bio_list, page,
2597 stripe, pagenr, rbio->stripe_len);
2598 if (ret)
2599 goto cleanup;
2600 }
2601 }
2602
2603 bios_to_read = bio_list_size(&bio_list);
2604 if (!bios_to_read) {
2605 /*
2606 * this can happen if others have merged with
2607 * us, it means there is nothing left to read.
2608 * But if there are missing devices it may not be
2609 * safe to do the full stripe write yet.
2610 */
2611 goto finish;
2612 }
2613
2614 /*
2615 * the bbio may be freed once we submit the last bio. Make sure
2616 * not to touch it after that
2617 */
2618 atomic_set(&rbio->stripes_pending, bios_to_read);
2619 while (1) {
2620 bio = bio_list_pop(&bio_list);
2621 if (!bio)
2622 break;
2623
2624 bio->bi_private = rbio;
2625 bio->bi_end_io = raid56_parity_scrub_end_io;
2626
2627 btrfs_bio_wq_end_io(rbio->fs_info, bio,
2628 BTRFS_WQ_ENDIO_RAID56);
2629
2630 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
2631 submit_bio(READ, bio);
2632 }
2633 /* the actual write will happen once the reads are done */
2634 return;
2635
2636cleanup:
2637 rbio_orig_end_io(rbio, -EIO, 0);
2638 return;
2639
2640finish:
2641 validate_rbio_for_parity_scrub(rbio);
2642}
2643
2644static void scrub_parity_work(struct btrfs_work *work)
2645{
2646 struct btrfs_raid_bio *rbio;
2647
2648 rbio = container_of(work, struct btrfs_raid_bio, work);
2649 raid56_parity_scrub_stripe(rbio);
2650}
2651
2652static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2653{
2654 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2655 scrub_parity_work, NULL, NULL);
2656
2657 btrfs_queue_work(rbio->fs_info->rmw_workers,
2658 &rbio->work);
2659}
2660
2661void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2662{
2663 if (!lock_stripe_add(rbio))
2664 async_scrub_parity(rbio);
2665}
This page took 0.257894 seconds and 5 git commands to generate.