Btrfs: sort raid_map before adding tgtdev stripes
[deliverable/linux.git] / fs / btrfs / scrub.c
CommitLineData
a2de733c 1/*
b6bfebc1 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
a2de733c
AJ
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a2de733c 19#include <linux/blkdev.h>
558540c1 20#include <linux/ratelimit.h>
a2de733c
AJ
21#include "ctree.h"
22#include "volumes.h"
23#include "disk-io.h"
24#include "ordered-data.h"
0ef8e451 25#include "transaction.h"
558540c1 26#include "backref.h"
5da6fcbc 27#include "extent_io.h"
ff023aac 28#include "dev-replace.h"
21adbd5c 29#include "check-integrity.h"
606686ee 30#include "rcu-string.h"
53b381b3 31#include "raid56.h"
a2de733c
AJ
32
33/*
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
37 * any can be found.
38 *
39 * Future enhancements:
a2de733c
AJ
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
a2de733c 42 * - track and record media errors, throw out bad devices
a2de733c 43 * - add a mode to also read unallocated space
a2de733c
AJ
44 */
45
b5d67f64 46struct scrub_block;
d9d181c1 47struct scrub_ctx;
a2de733c 48
ff023aac
SB
49/*
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
54 */
55#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
7a9e9987
SB
58
59/*
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
63 */
b5d67f64 64#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
a2de733c 65
af8e2d1d
MX
66struct scrub_recover {
67 atomic_t refs;
68 struct btrfs_bio *bbio;
69 u64 *raid_map;
70 u64 map_length;
71};
72
a2de733c 73struct scrub_page {
b5d67f64
SB
74 struct scrub_block *sblock;
75 struct page *page;
442a4f63 76 struct btrfs_device *dev;
5a6ac9ea 77 struct list_head list;
a2de733c
AJ
78 u64 flags; /* extent flags */
79 u64 generation;
b5d67f64
SB
80 u64 logical;
81 u64 physical;
ff023aac 82 u64 physical_for_dev_replace;
7a9e9987 83 atomic_t ref_count;
b5d67f64
SB
84 struct {
85 unsigned int mirror_num:8;
86 unsigned int have_csum:1;
87 unsigned int io_error:1;
88 };
a2de733c 89 u8 csum[BTRFS_CSUM_SIZE];
af8e2d1d
MX
90
91 struct scrub_recover *recover;
a2de733c
AJ
92};
93
94struct scrub_bio {
95 int index;
d9d181c1 96 struct scrub_ctx *sctx;
a36cf8b8 97 struct btrfs_device *dev;
a2de733c
AJ
98 struct bio *bio;
99 int err;
100 u64 logical;
101 u64 physical;
ff023aac
SB
102#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
103 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
104#else
105 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
106#endif
b5d67f64 107 int page_count;
a2de733c
AJ
108 int next_free;
109 struct btrfs_work work;
110};
111
b5d67f64 112struct scrub_block {
7a9e9987 113 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
b5d67f64
SB
114 int page_count;
115 atomic_t outstanding_pages;
116 atomic_t ref_count; /* free mem on transition to zero */
d9d181c1 117 struct scrub_ctx *sctx;
5a6ac9ea 118 struct scrub_parity *sparity;
b5d67f64
SB
119 struct {
120 unsigned int header_error:1;
121 unsigned int checksum_error:1;
122 unsigned int no_io_error_seen:1;
442a4f63 123 unsigned int generation_error:1; /* also sets header_error */
5a6ac9ea
MX
124
125 /* The following is for the data used to check parity */
126 /* It is for the data with checksum */
127 unsigned int data_corrected:1;
b5d67f64
SB
128 };
129};
130
5a6ac9ea
MX
131/* Used for the chunks with parity stripe such RAID5/6 */
132struct scrub_parity {
133 struct scrub_ctx *sctx;
134
135 struct btrfs_device *scrub_dev;
136
137 u64 logic_start;
138
139 u64 logic_end;
140
141 int nsectors;
142
143 int stripe_len;
144
145 atomic_t ref_count;
146
147 struct list_head spages;
148
149 /* Work of parity check and repair */
150 struct btrfs_work work;
151
152 /* Mark the parity blocks which have data */
153 unsigned long *dbitmap;
154
155 /*
156 * Mark the parity blocks which have data, but errors happen when
157 * read data or check data
158 */
159 unsigned long *ebitmap;
160
161 unsigned long bitmap[0];
162};
163
ff023aac
SB
164struct scrub_wr_ctx {
165 struct scrub_bio *wr_curr_bio;
166 struct btrfs_device *tgtdev;
167 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
168 atomic_t flush_all_writes;
169 struct mutex wr_lock;
170};
171
d9d181c1 172struct scrub_ctx {
ff023aac 173 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
a36cf8b8 174 struct btrfs_root *dev_root;
a2de733c
AJ
175 int first_free;
176 int curr;
b6bfebc1
SB
177 atomic_t bios_in_flight;
178 atomic_t workers_pending;
a2de733c
AJ
179 spinlock_t list_lock;
180 wait_queue_head_t list_wait;
181 u16 csum_size;
182 struct list_head csum_list;
183 atomic_t cancel_req;
8628764e 184 int readonly;
ff023aac 185 int pages_per_rd_bio;
b5d67f64
SB
186 u32 sectorsize;
187 u32 nodesize;
63a212ab
SB
188
189 int is_dev_replace;
ff023aac 190 struct scrub_wr_ctx wr_ctx;
63a212ab 191
a2de733c
AJ
192 /*
193 * statistics
194 */
195 struct btrfs_scrub_progress stat;
196 spinlock_t stat_lock;
197};
198
0ef8e451 199struct scrub_fixup_nodatasum {
d9d181c1 200 struct scrub_ctx *sctx;
a36cf8b8 201 struct btrfs_device *dev;
0ef8e451
JS
202 u64 logical;
203 struct btrfs_root *root;
204 struct btrfs_work work;
205 int mirror_num;
206};
207
652f25a2
JB
208struct scrub_nocow_inode {
209 u64 inum;
210 u64 offset;
211 u64 root;
212 struct list_head list;
213};
214
ff023aac
SB
215struct scrub_copy_nocow_ctx {
216 struct scrub_ctx *sctx;
217 u64 logical;
218 u64 len;
219 int mirror_num;
220 u64 physical_for_dev_replace;
652f25a2 221 struct list_head inodes;
ff023aac
SB
222 struct btrfs_work work;
223};
224
558540c1
JS
225struct scrub_warning {
226 struct btrfs_path *path;
227 u64 extent_item_size;
558540c1
JS
228 const char *errstr;
229 sector_t sector;
230 u64 logical;
231 struct btrfs_device *dev;
558540c1
JS
232};
233
b6bfebc1
SB
234static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
235static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
236static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
237static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
b5d67f64 238static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
d9d181c1 239static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
3ec706c8 240 struct btrfs_fs_info *fs_info,
ff023aac 241 struct scrub_block *original_sblock,
b5d67f64 242 u64 length, u64 logical,
ff023aac 243 struct scrub_block *sblocks_for_recheck);
34f5c8e9
SB
244static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
245 struct scrub_block *sblock, int is_metadata,
246 int have_csum, u8 *csum, u64 generation,
af8e2d1d 247 u16 csum_size, int retry_failed_mirror);
b5d67f64
SB
248static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
249 struct scrub_block *sblock,
250 int is_metadata, int have_csum,
251 const u8 *csum, u64 generation,
252 u16 csum_size);
b5d67f64
SB
253static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
254 struct scrub_block *sblock_good,
255 int force_write);
256static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
257 struct scrub_block *sblock_good,
258 int page_num, int force_write);
ff023aac
SB
259static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
260static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
261 int page_num);
b5d67f64
SB
262static int scrub_checksum_data(struct scrub_block *sblock);
263static int scrub_checksum_tree_block(struct scrub_block *sblock);
264static int scrub_checksum_super(struct scrub_block *sblock);
265static void scrub_block_get(struct scrub_block *sblock);
266static void scrub_block_put(struct scrub_block *sblock);
7a9e9987
SB
267static void scrub_page_get(struct scrub_page *spage);
268static void scrub_page_put(struct scrub_page *spage);
5a6ac9ea
MX
269static void scrub_parity_get(struct scrub_parity *sparity);
270static void scrub_parity_put(struct scrub_parity *sparity);
ff023aac
SB
271static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
272 struct scrub_page *spage);
d9d181c1 273static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 274 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
275 u64 gen, int mirror_num, u8 *csum, int force,
276 u64 physical_for_dev_replace);
1623edeb 277static void scrub_bio_end_io(struct bio *bio, int err);
b5d67f64
SB
278static void scrub_bio_end_io_worker(struct btrfs_work *work);
279static void scrub_block_complete(struct scrub_block *sblock);
ff023aac
SB
280static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
281 u64 extent_logical, u64 extent_len,
282 u64 *extent_physical,
283 struct btrfs_device **extent_dev,
284 int *extent_mirror_num);
285static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
286 struct scrub_wr_ctx *wr_ctx,
287 struct btrfs_fs_info *fs_info,
288 struct btrfs_device *dev,
289 int is_dev_replace);
290static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
291static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
292 struct scrub_page *spage);
293static void scrub_wr_submit(struct scrub_ctx *sctx);
294static void scrub_wr_bio_end_io(struct bio *bio, int err);
295static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
296static int write_page_nocow(struct scrub_ctx *sctx,
297 u64 physical_for_dev_replace, struct page *page);
298static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
652f25a2 299 struct scrub_copy_nocow_ctx *ctx);
ff023aac
SB
300static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
301 int mirror_num, u64 physical_for_dev_replace);
302static void copy_nocow_pages_worker(struct btrfs_work *work);
cb7ab021 303static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
3cb0929a 304static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
1623edeb
SB
305
306
b6bfebc1
SB
307static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
308{
309 atomic_inc(&sctx->bios_in_flight);
310}
311
312static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
313{
314 atomic_dec(&sctx->bios_in_flight);
315 wake_up(&sctx->list_wait);
316}
317
cb7ab021 318static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
3cb0929a
WS
319{
320 while (atomic_read(&fs_info->scrub_pause_req)) {
321 mutex_unlock(&fs_info->scrub_lock);
322 wait_event(fs_info->scrub_pause_wait,
323 atomic_read(&fs_info->scrub_pause_req) == 0);
324 mutex_lock(&fs_info->scrub_lock);
325 }
326}
327
cb7ab021
WS
328static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
329{
330 atomic_inc(&fs_info->scrubs_paused);
331 wake_up(&fs_info->scrub_pause_wait);
332
333 mutex_lock(&fs_info->scrub_lock);
334 __scrub_blocked_if_needed(fs_info);
335 atomic_dec(&fs_info->scrubs_paused);
336 mutex_unlock(&fs_info->scrub_lock);
337
338 wake_up(&fs_info->scrub_pause_wait);
339}
340
b6bfebc1
SB
341/*
342 * used for workers that require transaction commits (i.e., for the
343 * NOCOW case)
344 */
345static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
346{
347 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
348
349 /*
350 * increment scrubs_running to prevent cancel requests from
351 * completing as long as a worker is running. we must also
352 * increment scrubs_paused to prevent deadlocking on pause
353 * requests used for transactions commits (as the worker uses a
354 * transaction context). it is safe to regard the worker
355 * as paused for all matters practical. effectively, we only
356 * avoid cancellation requests from completing.
357 */
358 mutex_lock(&fs_info->scrub_lock);
359 atomic_inc(&fs_info->scrubs_running);
360 atomic_inc(&fs_info->scrubs_paused);
361 mutex_unlock(&fs_info->scrub_lock);
32a44789
WS
362
363 /*
364 * check if @scrubs_running=@scrubs_paused condition
365 * inside wait_event() is not an atomic operation.
366 * which means we may inc/dec @scrub_running/paused
367 * at any time. Let's wake up @scrub_pause_wait as
368 * much as we can to let commit transaction blocked less.
369 */
370 wake_up(&fs_info->scrub_pause_wait);
371
b6bfebc1
SB
372 atomic_inc(&sctx->workers_pending);
373}
374
375/* used for workers that require transaction commits */
376static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
377{
378 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
379
380 /*
381 * see scrub_pending_trans_workers_inc() why we're pretending
382 * to be paused in the scrub counters
383 */
384 mutex_lock(&fs_info->scrub_lock);
385 atomic_dec(&fs_info->scrubs_running);
386 atomic_dec(&fs_info->scrubs_paused);
387 mutex_unlock(&fs_info->scrub_lock);
388 atomic_dec(&sctx->workers_pending);
389 wake_up(&fs_info->scrub_pause_wait);
390 wake_up(&sctx->list_wait);
391}
392
d9d181c1 393static void scrub_free_csums(struct scrub_ctx *sctx)
a2de733c 394{
d9d181c1 395 while (!list_empty(&sctx->csum_list)) {
a2de733c 396 struct btrfs_ordered_sum *sum;
d9d181c1 397 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
398 struct btrfs_ordered_sum, list);
399 list_del(&sum->list);
400 kfree(sum);
401 }
402}
403
d9d181c1 404static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
a2de733c
AJ
405{
406 int i;
a2de733c 407
d9d181c1 408 if (!sctx)
a2de733c
AJ
409 return;
410
ff023aac
SB
411 scrub_free_wr_ctx(&sctx->wr_ctx);
412
b5d67f64 413 /* this can happen when scrub is cancelled */
d9d181c1
SB
414 if (sctx->curr != -1) {
415 struct scrub_bio *sbio = sctx->bios[sctx->curr];
b5d67f64
SB
416
417 for (i = 0; i < sbio->page_count; i++) {
ff023aac 418 WARN_ON(!sbio->pagev[i]->page);
b5d67f64
SB
419 scrub_block_put(sbio->pagev[i]->sblock);
420 }
421 bio_put(sbio->bio);
422 }
423
ff023aac 424 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
d9d181c1 425 struct scrub_bio *sbio = sctx->bios[i];
a2de733c
AJ
426
427 if (!sbio)
428 break;
a2de733c
AJ
429 kfree(sbio);
430 }
431
d9d181c1
SB
432 scrub_free_csums(sctx);
433 kfree(sctx);
a2de733c
AJ
434}
435
436static noinline_for_stack
63a212ab 437struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
a2de733c 438{
d9d181c1 439 struct scrub_ctx *sctx;
a2de733c 440 int i;
a2de733c 441 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
ff023aac
SB
442 int pages_per_rd_bio;
443 int ret;
a2de733c 444
ff023aac
SB
445 /*
446 * the setting of pages_per_rd_bio is correct for scrub but might
447 * be wrong for the dev_replace code where we might read from
448 * different devices in the initial huge bios. However, that
449 * code is able to correctly handle the case when adding a page
450 * to a bio fails.
451 */
452 if (dev->bdev)
453 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
454 bio_get_nr_vecs(dev->bdev));
455 else
456 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
d9d181c1
SB
457 sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
458 if (!sctx)
a2de733c 459 goto nomem;
63a212ab 460 sctx->is_dev_replace = is_dev_replace;
ff023aac 461 sctx->pages_per_rd_bio = pages_per_rd_bio;
d9d181c1 462 sctx->curr = -1;
a36cf8b8 463 sctx->dev_root = dev->dev_root;
ff023aac 464 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
a2de733c
AJ
465 struct scrub_bio *sbio;
466
467 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
468 if (!sbio)
469 goto nomem;
d9d181c1 470 sctx->bios[i] = sbio;
a2de733c 471
a2de733c 472 sbio->index = i;
d9d181c1 473 sbio->sctx = sctx;
b5d67f64 474 sbio->page_count = 0;
9e0af237
LB
475 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
476 scrub_bio_end_io_worker, NULL, NULL);
a2de733c 477
ff023aac 478 if (i != SCRUB_BIOS_PER_SCTX - 1)
d9d181c1 479 sctx->bios[i]->next_free = i + 1;
0ef8e451 480 else
d9d181c1
SB
481 sctx->bios[i]->next_free = -1;
482 }
483 sctx->first_free = 0;
484 sctx->nodesize = dev->dev_root->nodesize;
d9d181c1 485 sctx->sectorsize = dev->dev_root->sectorsize;
b6bfebc1
SB
486 atomic_set(&sctx->bios_in_flight, 0);
487 atomic_set(&sctx->workers_pending, 0);
d9d181c1
SB
488 atomic_set(&sctx->cancel_req, 0);
489 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
490 INIT_LIST_HEAD(&sctx->csum_list);
491
492 spin_lock_init(&sctx->list_lock);
493 spin_lock_init(&sctx->stat_lock);
494 init_waitqueue_head(&sctx->list_wait);
ff023aac
SB
495
496 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
497 fs_info->dev_replace.tgtdev, is_dev_replace);
498 if (ret) {
499 scrub_free_ctx(sctx);
500 return ERR_PTR(ret);
501 }
d9d181c1 502 return sctx;
a2de733c
AJ
503
504nomem:
d9d181c1 505 scrub_free_ctx(sctx);
a2de733c
AJ
506 return ERR_PTR(-ENOMEM);
507}
508
ff023aac
SB
509static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
510 void *warn_ctx)
558540c1
JS
511{
512 u64 isize;
513 u32 nlink;
514 int ret;
515 int i;
516 struct extent_buffer *eb;
517 struct btrfs_inode_item *inode_item;
ff023aac 518 struct scrub_warning *swarn = warn_ctx;
558540c1
JS
519 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
520 struct inode_fs_paths *ipath = NULL;
521 struct btrfs_root *local_root;
522 struct btrfs_key root_key;
1d4c08e0 523 struct btrfs_key key;
558540c1
JS
524
525 root_key.objectid = root;
526 root_key.type = BTRFS_ROOT_ITEM_KEY;
527 root_key.offset = (u64)-1;
528 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
529 if (IS_ERR(local_root)) {
530 ret = PTR_ERR(local_root);
531 goto err;
532 }
533
14692cc1
DS
534 /*
535 * this makes the path point to (inum INODE_ITEM ioff)
536 */
1d4c08e0
DS
537 key.objectid = inum;
538 key.type = BTRFS_INODE_ITEM_KEY;
539 key.offset = 0;
540
541 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
558540c1
JS
542 if (ret) {
543 btrfs_release_path(swarn->path);
544 goto err;
545 }
546
547 eb = swarn->path->nodes[0];
548 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
549 struct btrfs_inode_item);
550 isize = btrfs_inode_size(eb, inode_item);
551 nlink = btrfs_inode_nlink(eb, inode_item);
552 btrfs_release_path(swarn->path);
553
554 ipath = init_ipath(4096, local_root, swarn->path);
26bdef54
DC
555 if (IS_ERR(ipath)) {
556 ret = PTR_ERR(ipath);
557 ipath = NULL;
558 goto err;
559 }
558540c1
JS
560 ret = paths_from_inode(inum, ipath);
561
562 if (ret < 0)
563 goto err;
564
565 /*
566 * we deliberately ignore the bit ipath might have been too small to
567 * hold all of the paths here
568 */
569 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
efe120a0 570 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
558540c1
JS
571 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
572 "length %llu, links %u (path: %s)\n", swarn->errstr,
606686ee 573 swarn->logical, rcu_str_deref(swarn->dev->name),
558540c1
JS
574 (unsigned long long)swarn->sector, root, inum, offset,
575 min(isize - offset, (u64)PAGE_SIZE), nlink,
745c4d8e 576 (char *)(unsigned long)ipath->fspath->val[i]);
558540c1
JS
577
578 free_ipath(ipath);
579 return 0;
580
581err:
efe120a0 582 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
558540c1
JS
583 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
584 "resolving failed with ret=%d\n", swarn->errstr,
606686ee 585 swarn->logical, rcu_str_deref(swarn->dev->name),
558540c1
JS
586 (unsigned long long)swarn->sector, root, inum, offset, ret);
587
588 free_ipath(ipath);
589 return 0;
590}
591
b5d67f64 592static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
558540c1 593{
a36cf8b8
SB
594 struct btrfs_device *dev;
595 struct btrfs_fs_info *fs_info;
558540c1
JS
596 struct btrfs_path *path;
597 struct btrfs_key found_key;
598 struct extent_buffer *eb;
599 struct btrfs_extent_item *ei;
600 struct scrub_warning swarn;
69917e43
LB
601 unsigned long ptr = 0;
602 u64 extent_item_pos;
603 u64 flags = 0;
558540c1 604 u64 ref_root;
69917e43 605 u32 item_size;
558540c1 606 u8 ref_level;
69917e43 607 int ret;
558540c1 608
a36cf8b8 609 WARN_ON(sblock->page_count < 1);
7a9e9987 610 dev = sblock->pagev[0]->dev;
a36cf8b8
SB
611 fs_info = sblock->sctx->dev_root->fs_info;
612
558540c1 613 path = btrfs_alloc_path();
8b9456da
DS
614 if (!path)
615 return;
558540c1 616
7a9e9987
SB
617 swarn.sector = (sblock->pagev[0]->physical) >> 9;
618 swarn.logical = sblock->pagev[0]->logical;
558540c1 619 swarn.errstr = errstr;
a36cf8b8 620 swarn.dev = NULL;
558540c1 621
69917e43
LB
622 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
623 &flags);
558540c1
JS
624 if (ret < 0)
625 goto out;
626
4692cf58 627 extent_item_pos = swarn.logical - found_key.objectid;
558540c1
JS
628 swarn.extent_item_size = found_key.offset;
629
630 eb = path->nodes[0];
631 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
632 item_size = btrfs_item_size_nr(eb, path->slots[0]);
633
69917e43 634 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
558540c1 635 do {
6eda71d0
LB
636 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
637 item_size, &ref_root,
638 &ref_level);
606686ee 639 printk_in_rcu(KERN_WARNING
efe120a0 640 "BTRFS: %s at logical %llu on dev %s, "
558540c1 641 "sector %llu: metadata %s (level %d) in tree "
606686ee
JB
642 "%llu\n", errstr, swarn.logical,
643 rcu_str_deref(dev->name),
558540c1
JS
644 (unsigned long long)swarn.sector,
645 ref_level ? "node" : "leaf",
646 ret < 0 ? -1 : ref_level,
647 ret < 0 ? -1 : ref_root);
648 } while (ret != 1);
d8fe29e9 649 btrfs_release_path(path);
558540c1 650 } else {
d8fe29e9 651 btrfs_release_path(path);
558540c1 652 swarn.path = path;
a36cf8b8 653 swarn.dev = dev;
7a3ae2f8
JS
654 iterate_extent_inodes(fs_info, found_key.objectid,
655 extent_item_pos, 1,
558540c1
JS
656 scrub_print_warning_inode, &swarn);
657 }
658
659out:
660 btrfs_free_path(path);
558540c1
JS
661}
662
ff023aac 663static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
0ef8e451 664{
5da6fcbc 665 struct page *page = NULL;
0ef8e451 666 unsigned long index;
ff023aac 667 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
0ef8e451 668 int ret;
5da6fcbc 669 int corrected = 0;
0ef8e451 670 struct btrfs_key key;
5da6fcbc 671 struct inode *inode = NULL;
6f1c3605 672 struct btrfs_fs_info *fs_info;
0ef8e451
JS
673 u64 end = offset + PAGE_SIZE - 1;
674 struct btrfs_root *local_root;
6f1c3605 675 int srcu_index;
0ef8e451
JS
676
677 key.objectid = root;
678 key.type = BTRFS_ROOT_ITEM_KEY;
679 key.offset = (u64)-1;
6f1c3605
LB
680
681 fs_info = fixup->root->fs_info;
682 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
683
684 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
685 if (IS_ERR(local_root)) {
686 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
0ef8e451 687 return PTR_ERR(local_root);
6f1c3605 688 }
0ef8e451
JS
689
690 key.type = BTRFS_INODE_ITEM_KEY;
691 key.objectid = inum;
692 key.offset = 0;
6f1c3605
LB
693 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
694 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
0ef8e451
JS
695 if (IS_ERR(inode))
696 return PTR_ERR(inode);
697
0ef8e451
JS
698 index = offset >> PAGE_CACHE_SHIFT;
699
700 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
5da6fcbc
JS
701 if (!page) {
702 ret = -ENOMEM;
703 goto out;
704 }
705
706 if (PageUptodate(page)) {
5da6fcbc
JS
707 if (PageDirty(page)) {
708 /*
709 * we need to write the data to the defect sector. the
710 * data that was in that sector is not in memory,
711 * because the page was modified. we must not write the
712 * modified page to that sector.
713 *
714 * TODO: what could be done here: wait for the delalloc
715 * runner to write out that page (might involve
716 * COW) and see whether the sector is still
717 * referenced afterwards.
718 *
719 * For the meantime, we'll treat this error
720 * incorrectable, although there is a chance that a
721 * later scrub will find the bad sector again and that
722 * there's no dirty page in memory, then.
723 */
724 ret = -EIO;
725 goto out;
726 }
1203b681 727 ret = repair_io_failure(inode, offset, PAGE_SIZE,
5da6fcbc 728 fixup->logical, page,
ffdd2018 729 offset - page_offset(page),
5da6fcbc
JS
730 fixup->mirror_num);
731 unlock_page(page);
732 corrected = !ret;
733 } else {
734 /*
735 * we need to get good data first. the general readpage path
736 * will call repair_io_failure for us, we just have to make
737 * sure we read the bad mirror.
738 */
739 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
740 EXTENT_DAMAGED, GFP_NOFS);
741 if (ret) {
742 /* set_extent_bits should give proper error */
743 WARN_ON(ret > 0);
744 if (ret > 0)
745 ret = -EFAULT;
746 goto out;
747 }
748
749 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
750 btrfs_get_extent,
751 fixup->mirror_num);
752 wait_on_page_locked(page);
753
754 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
755 end, EXTENT_DAMAGED, 0, NULL);
756 if (!corrected)
757 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
758 EXTENT_DAMAGED, GFP_NOFS);
759 }
760
761out:
762 if (page)
763 put_page(page);
7fb18a06
TK
764
765 iput(inode);
0ef8e451
JS
766
767 if (ret < 0)
768 return ret;
769
770 if (ret == 0 && corrected) {
771 /*
772 * we only need to call readpage for one of the inodes belonging
773 * to this extent. so make iterate_extent_inodes stop
774 */
775 return 1;
776 }
777
778 return -EIO;
779}
780
781static void scrub_fixup_nodatasum(struct btrfs_work *work)
782{
783 int ret;
784 struct scrub_fixup_nodatasum *fixup;
d9d181c1 785 struct scrub_ctx *sctx;
0ef8e451 786 struct btrfs_trans_handle *trans = NULL;
0ef8e451
JS
787 struct btrfs_path *path;
788 int uncorrectable = 0;
789
790 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
d9d181c1 791 sctx = fixup->sctx;
0ef8e451
JS
792
793 path = btrfs_alloc_path();
794 if (!path) {
d9d181c1
SB
795 spin_lock(&sctx->stat_lock);
796 ++sctx->stat.malloc_errors;
797 spin_unlock(&sctx->stat_lock);
0ef8e451
JS
798 uncorrectable = 1;
799 goto out;
800 }
801
802 trans = btrfs_join_transaction(fixup->root);
803 if (IS_ERR(trans)) {
804 uncorrectable = 1;
805 goto out;
806 }
807
808 /*
809 * the idea is to trigger a regular read through the standard path. we
810 * read a page from the (failed) logical address by specifying the
811 * corresponding copynum of the failed sector. thus, that readpage is
812 * expected to fail.
813 * that is the point where on-the-fly error correction will kick in
814 * (once it's finished) and rewrite the failed sector if a good copy
815 * can be found.
816 */
817 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
818 path, scrub_fixup_readpage,
819 fixup);
820 if (ret < 0) {
821 uncorrectable = 1;
822 goto out;
823 }
824 WARN_ON(ret != 1);
825
d9d181c1
SB
826 spin_lock(&sctx->stat_lock);
827 ++sctx->stat.corrected_errors;
828 spin_unlock(&sctx->stat_lock);
0ef8e451
JS
829
830out:
831 if (trans && !IS_ERR(trans))
832 btrfs_end_transaction(trans, fixup->root);
833 if (uncorrectable) {
d9d181c1
SB
834 spin_lock(&sctx->stat_lock);
835 ++sctx->stat.uncorrectable_errors;
836 spin_unlock(&sctx->stat_lock);
ff023aac
SB
837 btrfs_dev_replace_stats_inc(
838 &sctx->dev_root->fs_info->dev_replace.
839 num_uncorrectable_read_errors);
efe120a0
FH
840 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
841 "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
c1c9ff7c 842 fixup->logical, rcu_str_deref(fixup->dev->name));
0ef8e451
JS
843 }
844
845 btrfs_free_path(path);
846 kfree(fixup);
847
b6bfebc1 848 scrub_pending_trans_workers_dec(sctx);
0ef8e451
JS
849}
850
af8e2d1d
MX
851static inline void scrub_get_recover(struct scrub_recover *recover)
852{
853 atomic_inc(&recover->refs);
854}
855
856static inline void scrub_put_recover(struct scrub_recover *recover)
857{
858 if (atomic_dec_and_test(&recover->refs)) {
859 kfree(recover->bbio);
860 kfree(recover->raid_map);
861 kfree(recover);
862 }
863}
864
a2de733c 865/*
b5d67f64
SB
866 * scrub_handle_errored_block gets called when either verification of the
867 * pages failed or the bio failed to read, e.g. with EIO. In the latter
868 * case, this function handles all pages in the bio, even though only one
869 * may be bad.
870 * The goal of this function is to repair the errored block by using the
871 * contents of one of the mirrors.
a2de733c 872 */
b5d67f64 873static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
a2de733c 874{
d9d181c1 875 struct scrub_ctx *sctx = sblock_to_check->sctx;
a36cf8b8 876 struct btrfs_device *dev;
b5d67f64
SB
877 struct btrfs_fs_info *fs_info;
878 u64 length;
879 u64 logical;
880 u64 generation;
881 unsigned int failed_mirror_index;
882 unsigned int is_metadata;
883 unsigned int have_csum;
884 u8 *csum;
885 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
886 struct scrub_block *sblock_bad;
887 int ret;
888 int mirror_index;
889 int page_num;
890 int success;
558540c1 891 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
b5d67f64
SB
892 DEFAULT_RATELIMIT_BURST);
893
894 BUG_ON(sblock_to_check->page_count < 1);
a36cf8b8 895 fs_info = sctx->dev_root->fs_info;
4ded4f63
SB
896 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
897 /*
898 * if we find an error in a super block, we just report it.
899 * They will get written with the next transaction commit
900 * anyway
901 */
902 spin_lock(&sctx->stat_lock);
903 ++sctx->stat.super_errors;
904 spin_unlock(&sctx->stat_lock);
905 return 0;
906 }
b5d67f64 907 length = sblock_to_check->page_count * PAGE_SIZE;
7a9e9987
SB
908 logical = sblock_to_check->pagev[0]->logical;
909 generation = sblock_to_check->pagev[0]->generation;
910 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
911 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
912 is_metadata = !(sblock_to_check->pagev[0]->flags &
b5d67f64 913 BTRFS_EXTENT_FLAG_DATA);
7a9e9987
SB
914 have_csum = sblock_to_check->pagev[0]->have_csum;
915 csum = sblock_to_check->pagev[0]->csum;
916 dev = sblock_to_check->pagev[0]->dev;
13db62b7 917
ff023aac
SB
918 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
919 sblocks_for_recheck = NULL;
920 goto nodatasum_case;
921 }
922
b5d67f64
SB
923 /*
924 * read all mirrors one after the other. This includes to
925 * re-read the extent or metadata block that failed (that was
926 * the cause that this fixup code is called) another time,
927 * page by page this time in order to know which pages
928 * caused I/O errors and which ones are good (for all mirrors).
929 * It is the goal to handle the situation when more than one
930 * mirror contains I/O errors, but the errors do not
931 * overlap, i.e. the data can be repaired by selecting the
932 * pages from those mirrors without I/O error on the
933 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
934 * would be that mirror #1 has an I/O error on the first page,
935 * the second page is good, and mirror #2 has an I/O error on
936 * the second page, but the first page is good.
937 * Then the first page of the first mirror can be repaired by
938 * taking the first page of the second mirror, and the
939 * second page of the second mirror can be repaired by
940 * copying the contents of the 2nd page of the 1st mirror.
941 * One more note: if the pages of one mirror contain I/O
942 * errors, the checksum cannot be verified. In order to get
943 * the best data for repairing, the first attempt is to find
944 * a mirror without I/O errors and with a validated checksum.
945 * Only if this is not possible, the pages are picked from
946 * mirrors with I/O errors without considering the checksum.
947 * If the latter is the case, at the end, the checksum of the
948 * repaired area is verified in order to correctly maintain
949 * the statistics.
950 */
951
952 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
953 sizeof(*sblocks_for_recheck),
954 GFP_NOFS);
955 if (!sblocks_for_recheck) {
d9d181c1
SB
956 spin_lock(&sctx->stat_lock);
957 sctx->stat.malloc_errors++;
958 sctx->stat.read_errors++;
959 sctx->stat.uncorrectable_errors++;
960 spin_unlock(&sctx->stat_lock);
a36cf8b8 961 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 962 goto out;
a2de733c
AJ
963 }
964
b5d67f64 965 /* setup the context, map the logical blocks and alloc the pages */
ff023aac 966 ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
b5d67f64
SB
967 logical, sblocks_for_recheck);
968 if (ret) {
d9d181c1
SB
969 spin_lock(&sctx->stat_lock);
970 sctx->stat.read_errors++;
971 sctx->stat.uncorrectable_errors++;
972 spin_unlock(&sctx->stat_lock);
a36cf8b8 973 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64
SB
974 goto out;
975 }
976 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
977 sblock_bad = sblocks_for_recheck + failed_mirror_index;
13db62b7 978
b5d67f64 979 /* build and submit the bios for the failed mirror, check checksums */
34f5c8e9 980 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
af8e2d1d 981 csum, generation, sctx->csum_size, 1);
a2de733c 982
b5d67f64
SB
983 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
984 sblock_bad->no_io_error_seen) {
985 /*
986 * the error disappeared after reading page by page, or
987 * the area was part of a huge bio and other parts of the
988 * bio caused I/O errors, or the block layer merged several
989 * read requests into one and the error is caused by a
990 * different bio (usually one of the two latter cases is
991 * the cause)
992 */
d9d181c1
SB
993 spin_lock(&sctx->stat_lock);
994 sctx->stat.unverified_errors++;
5a6ac9ea 995 sblock_to_check->data_corrected = 1;
d9d181c1 996 spin_unlock(&sctx->stat_lock);
a2de733c 997
ff023aac
SB
998 if (sctx->is_dev_replace)
999 scrub_write_block_to_dev_replace(sblock_bad);
b5d67f64 1000 goto out;
a2de733c 1001 }
a2de733c 1002
b5d67f64 1003 if (!sblock_bad->no_io_error_seen) {
d9d181c1
SB
1004 spin_lock(&sctx->stat_lock);
1005 sctx->stat.read_errors++;
1006 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
1007 if (__ratelimit(&_rs))
1008 scrub_print_warning("i/o error", sblock_to_check);
a36cf8b8 1009 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 1010 } else if (sblock_bad->checksum_error) {
d9d181c1
SB
1011 spin_lock(&sctx->stat_lock);
1012 sctx->stat.csum_errors++;
1013 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
1014 if (__ratelimit(&_rs))
1015 scrub_print_warning("checksum error", sblock_to_check);
a36cf8b8 1016 btrfs_dev_stat_inc_and_print(dev,
442a4f63 1017 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 1018 } else if (sblock_bad->header_error) {
d9d181c1
SB
1019 spin_lock(&sctx->stat_lock);
1020 sctx->stat.verify_errors++;
1021 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
1022 if (__ratelimit(&_rs))
1023 scrub_print_warning("checksum/header error",
1024 sblock_to_check);
442a4f63 1025 if (sblock_bad->generation_error)
a36cf8b8 1026 btrfs_dev_stat_inc_and_print(dev,
442a4f63
SB
1027 BTRFS_DEV_STAT_GENERATION_ERRS);
1028 else
a36cf8b8 1029 btrfs_dev_stat_inc_and_print(dev,
442a4f63 1030 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 1031 }
a2de733c 1032
33ef30ad
ID
1033 if (sctx->readonly) {
1034 ASSERT(!sctx->is_dev_replace);
1035 goto out;
1036 }
a2de733c 1037
b5d67f64
SB
1038 if (!is_metadata && !have_csum) {
1039 struct scrub_fixup_nodatasum *fixup_nodatasum;
a2de733c 1040
ff023aac
SB
1041nodatasum_case:
1042 WARN_ON(sctx->is_dev_replace);
1043
b5d67f64
SB
1044 /*
1045 * !is_metadata and !have_csum, this means that the data
1046 * might not be COW'ed, that it might be modified
1047 * concurrently. The general strategy to work on the
1048 * commit root does not help in the case when COW is not
1049 * used.
1050 */
1051 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1052 if (!fixup_nodatasum)
1053 goto did_not_correct_error;
d9d181c1 1054 fixup_nodatasum->sctx = sctx;
a36cf8b8 1055 fixup_nodatasum->dev = dev;
b5d67f64
SB
1056 fixup_nodatasum->logical = logical;
1057 fixup_nodatasum->root = fs_info->extent_root;
1058 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
b6bfebc1 1059 scrub_pending_trans_workers_inc(sctx);
9e0af237
LB
1060 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1061 scrub_fixup_nodatasum, NULL, NULL);
0339ef2f
QW
1062 btrfs_queue_work(fs_info->scrub_workers,
1063 &fixup_nodatasum->work);
b5d67f64 1064 goto out;
a2de733c
AJ
1065 }
1066
b5d67f64
SB
1067 /*
1068 * now build and submit the bios for the other mirrors, check
cb2ced73
SB
1069 * checksums.
1070 * First try to pick the mirror which is completely without I/O
b5d67f64
SB
1071 * errors and also does not have a checksum error.
1072 * If one is found, and if a checksum is present, the full block
1073 * that is known to contain an error is rewritten. Afterwards
1074 * the block is known to be corrected.
1075 * If a mirror is found which is completely correct, and no
1076 * checksum is present, only those pages are rewritten that had
1077 * an I/O error in the block to be repaired, since it cannot be
1078 * determined, which copy of the other pages is better (and it
1079 * could happen otherwise that a correct page would be
1080 * overwritten by a bad one).
1081 */
1082 for (mirror_index = 0;
1083 mirror_index < BTRFS_MAX_MIRRORS &&
1084 sblocks_for_recheck[mirror_index].page_count > 0;
1085 mirror_index++) {
cb2ced73 1086 struct scrub_block *sblock_other;
b5d67f64 1087
cb2ced73
SB
1088 if (mirror_index == failed_mirror_index)
1089 continue;
1090 sblock_other = sblocks_for_recheck + mirror_index;
1091
1092 /* build and submit the bios, check checksums */
34f5c8e9
SB
1093 scrub_recheck_block(fs_info, sblock_other, is_metadata,
1094 have_csum, csum, generation,
af8e2d1d 1095 sctx->csum_size, 0);
34f5c8e9
SB
1096
1097 if (!sblock_other->header_error &&
b5d67f64
SB
1098 !sblock_other->checksum_error &&
1099 sblock_other->no_io_error_seen) {
ff023aac
SB
1100 if (sctx->is_dev_replace) {
1101 scrub_write_block_to_dev_replace(sblock_other);
1102 } else {
1103 int force_write = is_metadata || have_csum;
1104
1105 ret = scrub_repair_block_from_good_copy(
1106 sblock_bad, sblock_other,
1107 force_write);
1108 }
b5d67f64
SB
1109 if (0 == ret)
1110 goto corrected_error;
1111 }
1112 }
a2de733c
AJ
1113
1114 /*
ff023aac
SB
1115 * for dev_replace, pick good pages and write to the target device.
1116 */
1117 if (sctx->is_dev_replace) {
1118 success = 1;
1119 for (page_num = 0; page_num < sblock_bad->page_count;
1120 page_num++) {
1121 int sub_success;
1122
1123 sub_success = 0;
1124 for (mirror_index = 0;
1125 mirror_index < BTRFS_MAX_MIRRORS &&
1126 sblocks_for_recheck[mirror_index].page_count > 0;
1127 mirror_index++) {
1128 struct scrub_block *sblock_other =
1129 sblocks_for_recheck + mirror_index;
1130 struct scrub_page *page_other =
1131 sblock_other->pagev[page_num];
1132
1133 if (!page_other->io_error) {
1134 ret = scrub_write_page_to_dev_replace(
1135 sblock_other, page_num);
1136 if (ret == 0) {
1137 /* succeeded for this page */
1138 sub_success = 1;
1139 break;
1140 } else {
1141 btrfs_dev_replace_stats_inc(
1142 &sctx->dev_root->
1143 fs_info->dev_replace.
1144 num_write_errors);
1145 }
1146 }
1147 }
1148
1149 if (!sub_success) {
1150 /*
1151 * did not find a mirror to fetch the page
1152 * from. scrub_write_page_to_dev_replace()
1153 * handles this case (page->io_error), by
1154 * filling the block with zeros before
1155 * submitting the write request
1156 */
1157 success = 0;
1158 ret = scrub_write_page_to_dev_replace(
1159 sblock_bad, page_num);
1160 if (ret)
1161 btrfs_dev_replace_stats_inc(
1162 &sctx->dev_root->fs_info->
1163 dev_replace.num_write_errors);
1164 }
1165 }
1166
1167 goto out;
1168 }
1169
1170 /*
1171 * for regular scrub, repair those pages that are errored.
1172 * In case of I/O errors in the area that is supposed to be
b5d67f64
SB
1173 * repaired, continue by picking good copies of those pages.
1174 * Select the good pages from mirrors to rewrite bad pages from
1175 * the area to fix. Afterwards verify the checksum of the block
1176 * that is supposed to be repaired. This verification step is
1177 * only done for the purpose of statistic counting and for the
1178 * final scrub report, whether errors remain.
1179 * A perfect algorithm could make use of the checksum and try
1180 * all possible combinations of pages from the different mirrors
1181 * until the checksum verification succeeds. For example, when
1182 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1183 * of mirror #2 is readable but the final checksum test fails,
1184 * then the 2nd page of mirror #3 could be tried, whether now
1185 * the final checksum succeedes. But this would be a rare
1186 * exception and is therefore not implemented. At least it is
1187 * avoided that the good copy is overwritten.
1188 * A more useful improvement would be to pick the sectors
1189 * without I/O error based on sector sizes (512 bytes on legacy
1190 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1191 * mirror could be repaired by taking 512 byte of a different
1192 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1193 * area are unreadable.
a2de733c 1194 */
a2de733c 1195
b5d67f64
SB
1196 /* can only fix I/O errors from here on */
1197 if (sblock_bad->no_io_error_seen)
1198 goto did_not_correct_error;
1199
1200 success = 1;
1201 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
7a9e9987 1202 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
b5d67f64
SB
1203
1204 if (!page_bad->io_error)
a2de733c 1205 continue;
b5d67f64
SB
1206
1207 for (mirror_index = 0;
1208 mirror_index < BTRFS_MAX_MIRRORS &&
1209 sblocks_for_recheck[mirror_index].page_count > 0;
1210 mirror_index++) {
1211 struct scrub_block *sblock_other = sblocks_for_recheck +
1212 mirror_index;
7a9e9987
SB
1213 struct scrub_page *page_other = sblock_other->pagev[
1214 page_num];
b5d67f64
SB
1215
1216 if (!page_other->io_error) {
1217 ret = scrub_repair_page_from_good_copy(
1218 sblock_bad, sblock_other, page_num, 0);
1219 if (0 == ret) {
1220 page_bad->io_error = 0;
1221 break; /* succeeded for this page */
1222 }
1223 }
96e36920 1224 }
a2de733c 1225
b5d67f64
SB
1226 if (page_bad->io_error) {
1227 /* did not find a mirror to copy the page from */
1228 success = 0;
1229 }
a2de733c 1230 }
a2de733c 1231
b5d67f64
SB
1232 if (success) {
1233 if (is_metadata || have_csum) {
1234 /*
1235 * need to verify the checksum now that all
1236 * sectors on disk are repaired (the write
1237 * request for data to be repaired is on its way).
1238 * Just be lazy and use scrub_recheck_block()
1239 * which re-reads the data before the checksum
1240 * is verified, but most likely the data comes out
1241 * of the page cache.
1242 */
34f5c8e9
SB
1243 scrub_recheck_block(fs_info, sblock_bad,
1244 is_metadata, have_csum, csum,
af8e2d1d 1245 generation, sctx->csum_size, 1);
34f5c8e9 1246 if (!sblock_bad->header_error &&
b5d67f64
SB
1247 !sblock_bad->checksum_error &&
1248 sblock_bad->no_io_error_seen)
1249 goto corrected_error;
1250 else
1251 goto did_not_correct_error;
1252 } else {
1253corrected_error:
d9d181c1
SB
1254 spin_lock(&sctx->stat_lock);
1255 sctx->stat.corrected_errors++;
5a6ac9ea 1256 sblock_to_check->data_corrected = 1;
d9d181c1 1257 spin_unlock(&sctx->stat_lock);
606686ee 1258 printk_ratelimited_in_rcu(KERN_ERR
efe120a0 1259 "BTRFS: fixed up error at logical %llu on dev %s\n",
c1c9ff7c 1260 logical, rcu_str_deref(dev->name));
8628764e 1261 }
b5d67f64
SB
1262 } else {
1263did_not_correct_error:
d9d181c1
SB
1264 spin_lock(&sctx->stat_lock);
1265 sctx->stat.uncorrectable_errors++;
1266 spin_unlock(&sctx->stat_lock);
606686ee 1267 printk_ratelimited_in_rcu(KERN_ERR
efe120a0 1268 "BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
c1c9ff7c 1269 logical, rcu_str_deref(dev->name));
96e36920 1270 }
a2de733c 1271
b5d67f64
SB
1272out:
1273 if (sblocks_for_recheck) {
1274 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1275 mirror_index++) {
1276 struct scrub_block *sblock = sblocks_for_recheck +
1277 mirror_index;
af8e2d1d 1278 struct scrub_recover *recover;
b5d67f64
SB
1279 int page_index;
1280
7a9e9987
SB
1281 for (page_index = 0; page_index < sblock->page_count;
1282 page_index++) {
1283 sblock->pagev[page_index]->sblock = NULL;
af8e2d1d
MX
1284 recover = sblock->pagev[page_index]->recover;
1285 if (recover) {
1286 scrub_put_recover(recover);
1287 sblock->pagev[page_index]->recover =
1288 NULL;
1289 }
7a9e9987
SB
1290 scrub_page_put(sblock->pagev[page_index]);
1291 }
b5d67f64
SB
1292 }
1293 kfree(sblocks_for_recheck);
1294 }
a2de733c 1295
b5d67f64
SB
1296 return 0;
1297}
a2de733c 1298
af8e2d1d
MX
1299static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio, u64 *raid_map)
1300{
1301 if (raid_map) {
e34c330d
ZL
1302 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
1303
1304 if (raid_map[real_stripes - 1] == RAID6_Q_STRIPE)
af8e2d1d
MX
1305 return 3;
1306 else
1307 return 2;
1308 } else {
1309 return (int)bbio->num_stripes;
1310 }
1311}
1312
1313static inline void scrub_stripe_index_and_offset(u64 logical, u64 *raid_map,
1314 u64 mapped_length,
1315 int nstripes, int mirror,
1316 int *stripe_index,
1317 u64 *stripe_offset)
1318{
1319 int i;
1320
1321 if (raid_map) {
1322 /* RAID5/6 */
1323 for (i = 0; i < nstripes; i++) {
1324 if (raid_map[i] == RAID6_Q_STRIPE ||
1325 raid_map[i] == RAID5_P_STRIPE)
1326 continue;
1327
1328 if (logical >= raid_map[i] &&
1329 logical < raid_map[i] + mapped_length)
1330 break;
1331 }
1332
1333 *stripe_index = i;
1334 *stripe_offset = logical - raid_map[i];
1335 } else {
1336 /* The other RAID type */
1337 *stripe_index = mirror;
1338 *stripe_offset = 0;
1339 }
1340}
1341
d9d181c1 1342static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
3ec706c8 1343 struct btrfs_fs_info *fs_info,
ff023aac 1344 struct scrub_block *original_sblock,
b5d67f64
SB
1345 u64 length, u64 logical,
1346 struct scrub_block *sblocks_for_recheck)
1347{
af8e2d1d
MX
1348 struct scrub_recover *recover;
1349 struct btrfs_bio *bbio;
1350 u64 *raid_map;
1351 u64 sublen;
1352 u64 mapped_length;
1353 u64 stripe_offset;
1354 int stripe_index;
b5d67f64
SB
1355 int page_index;
1356 int mirror_index;
af8e2d1d 1357 int nmirrors;
b5d67f64
SB
1358 int ret;
1359
1360 /*
7a9e9987 1361 * note: the two members ref_count and outstanding_pages
b5d67f64
SB
1362 * are not used (and not set) in the blocks that are used for
1363 * the recheck procedure
1364 */
1365
1366 page_index = 0;
1367 while (length > 0) {
af8e2d1d
MX
1368 sublen = min_t(u64, length, PAGE_SIZE);
1369 mapped_length = sublen;
1370 bbio = NULL;
1371 raid_map = NULL;
a2de733c 1372
b5d67f64
SB
1373 /*
1374 * with a length of PAGE_SIZE, each returned stripe
1375 * represents one mirror
1376 */
af8e2d1d
MX
1377 ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1378 &mapped_length, &bbio, 0, &raid_map);
b5d67f64
SB
1379 if (ret || !bbio || mapped_length < sublen) {
1380 kfree(bbio);
af8e2d1d 1381 kfree(raid_map);
b5d67f64
SB
1382 return -EIO;
1383 }
a2de733c 1384
af8e2d1d
MX
1385 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1386 if (!recover) {
1387 kfree(bbio);
1388 kfree(raid_map);
1389 return -ENOMEM;
1390 }
1391
1392 atomic_set(&recover->refs, 1);
1393 recover->bbio = bbio;
1394 recover->raid_map = raid_map;
1395 recover->map_length = mapped_length;
1396
ff023aac 1397 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
af8e2d1d
MX
1398
1399 nmirrors = scrub_nr_raid_mirrors(bbio, raid_map);
1400 for (mirror_index = 0; mirror_index < nmirrors;
b5d67f64
SB
1401 mirror_index++) {
1402 struct scrub_block *sblock;
1403 struct scrub_page *page;
1404
1405 if (mirror_index >= BTRFS_MAX_MIRRORS)
1406 continue;
1407
1408 sblock = sblocks_for_recheck + mirror_index;
7a9e9987
SB
1409 sblock->sctx = sctx;
1410 page = kzalloc(sizeof(*page), GFP_NOFS);
1411 if (!page) {
1412leave_nomem:
d9d181c1
SB
1413 spin_lock(&sctx->stat_lock);
1414 sctx->stat.malloc_errors++;
1415 spin_unlock(&sctx->stat_lock);
af8e2d1d 1416 scrub_put_recover(recover);
b5d67f64
SB
1417 return -ENOMEM;
1418 }
7a9e9987
SB
1419 scrub_page_get(page);
1420 sblock->pagev[page_index] = page;
1421 page->logical = logical;
af8e2d1d
MX
1422
1423 scrub_stripe_index_and_offset(logical, raid_map,
1424 mapped_length,
e34c330d
ZL
1425 bbio->num_stripes -
1426 bbio->num_tgtdevs,
af8e2d1d
MX
1427 mirror_index,
1428 &stripe_index,
1429 &stripe_offset);
1430 page->physical = bbio->stripes[stripe_index].physical +
1431 stripe_offset;
1432 page->dev = bbio->stripes[stripe_index].dev;
1433
ff023aac
SB
1434 BUG_ON(page_index >= original_sblock->page_count);
1435 page->physical_for_dev_replace =
1436 original_sblock->pagev[page_index]->
1437 physical_for_dev_replace;
7a9e9987 1438 /* for missing devices, dev->bdev is NULL */
7a9e9987 1439 page->mirror_num = mirror_index + 1;
b5d67f64 1440 sblock->page_count++;
7a9e9987
SB
1441 page->page = alloc_page(GFP_NOFS);
1442 if (!page->page)
1443 goto leave_nomem;
af8e2d1d
MX
1444
1445 scrub_get_recover(recover);
1446 page->recover = recover;
b5d67f64 1447 }
af8e2d1d 1448 scrub_put_recover(recover);
b5d67f64
SB
1449 length -= sublen;
1450 logical += sublen;
1451 page_index++;
1452 }
1453
1454 return 0;
96e36920
ID
1455}
1456
af8e2d1d
MX
1457struct scrub_bio_ret {
1458 struct completion event;
1459 int error;
1460};
1461
1462static void scrub_bio_wait_endio(struct bio *bio, int error)
1463{
1464 struct scrub_bio_ret *ret = bio->bi_private;
1465
1466 ret->error = error;
1467 complete(&ret->event);
1468}
1469
1470static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1471{
1472 return page->recover && page->recover->raid_map;
1473}
1474
1475static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1476 struct bio *bio,
1477 struct scrub_page *page)
1478{
1479 struct scrub_bio_ret done;
1480 int ret;
1481
1482 init_completion(&done.event);
1483 done.error = 0;
1484 bio->bi_iter.bi_sector = page->logical >> 9;
1485 bio->bi_private = &done;
1486 bio->bi_end_io = scrub_bio_wait_endio;
1487
1488 ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
1489 page->recover->raid_map,
1490 page->recover->map_length,
4245215d 1491 page->mirror_num, 0);
af8e2d1d
MX
1492 if (ret)
1493 return ret;
1494
1495 wait_for_completion(&done.event);
1496 if (done.error)
1497 return -EIO;
1498
1499 return 0;
1500}
1501
b5d67f64
SB
1502/*
1503 * this function will check the on disk data for checksum errors, header
1504 * errors and read I/O errors. If any I/O errors happen, the exact pages
1505 * which are errored are marked as being bad. The goal is to enable scrub
1506 * to take those pages that are not errored from all the mirrors so that
1507 * the pages that are errored in the just handled mirror can be repaired.
1508 */
34f5c8e9
SB
1509static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1510 struct scrub_block *sblock, int is_metadata,
1511 int have_csum, u8 *csum, u64 generation,
af8e2d1d 1512 u16 csum_size, int retry_failed_mirror)
96e36920 1513{
b5d67f64 1514 int page_num;
96e36920 1515
b5d67f64
SB
1516 sblock->no_io_error_seen = 1;
1517 sblock->header_error = 0;
1518 sblock->checksum_error = 0;
96e36920 1519
b5d67f64
SB
1520 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1521 struct bio *bio;
7a9e9987 1522 struct scrub_page *page = sblock->pagev[page_num];
b5d67f64 1523
442a4f63 1524 if (page->dev->bdev == NULL) {
ea9947b4
SB
1525 page->io_error = 1;
1526 sblock->no_io_error_seen = 0;
1527 continue;
1528 }
1529
7a9e9987 1530 WARN_ON(!page->page);
9be3395b 1531 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
34f5c8e9
SB
1532 if (!bio) {
1533 page->io_error = 1;
1534 sblock->no_io_error_seen = 0;
1535 continue;
1536 }
442a4f63 1537 bio->bi_bdev = page->dev->bdev;
b5d67f64 1538
34f5c8e9 1539 bio_add_page(bio, page->page, PAGE_SIZE, 0);
af8e2d1d
MX
1540 if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1541 if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
1542 sblock->no_io_error_seen = 0;
1543 } else {
1544 bio->bi_iter.bi_sector = page->physical >> 9;
1545
1546 if (btrfsic_submit_bio_wait(READ, bio))
1547 sblock->no_io_error_seen = 0;
1548 }
33879d45 1549
b5d67f64
SB
1550 bio_put(bio);
1551 }
96e36920 1552
b5d67f64
SB
1553 if (sblock->no_io_error_seen)
1554 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1555 have_csum, csum, generation,
1556 csum_size);
1557
34f5c8e9 1558 return;
a2de733c
AJ
1559}
1560
17a9be2f
MX
1561static inline int scrub_check_fsid(u8 fsid[],
1562 struct scrub_page *spage)
1563{
1564 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1565 int ret;
1566
1567 ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1568 return !ret;
1569}
1570
b5d67f64
SB
1571static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1572 struct scrub_block *sblock,
1573 int is_metadata, int have_csum,
1574 const u8 *csum, u64 generation,
1575 u16 csum_size)
a2de733c 1576{
b5d67f64
SB
1577 int page_num;
1578 u8 calculated_csum[BTRFS_CSUM_SIZE];
1579 u32 crc = ~(u32)0;
b5d67f64
SB
1580 void *mapped_buffer;
1581
7a9e9987 1582 WARN_ON(!sblock->pagev[0]->page);
b5d67f64
SB
1583 if (is_metadata) {
1584 struct btrfs_header *h;
1585
7a9e9987 1586 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
b5d67f64
SB
1587 h = (struct btrfs_header *)mapped_buffer;
1588
3cae210f 1589 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
17a9be2f 1590 !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
b5d67f64 1591 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
442a4f63 1592 BTRFS_UUID_SIZE)) {
b5d67f64 1593 sblock->header_error = 1;
3cae210f 1594 } else if (generation != btrfs_stack_header_generation(h)) {
442a4f63
SB
1595 sblock->header_error = 1;
1596 sblock->generation_error = 1;
1597 }
b5d67f64
SB
1598 csum = h->csum;
1599 } else {
1600 if (!have_csum)
1601 return;
a2de733c 1602
7a9e9987 1603 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
b5d67f64 1604 }
a2de733c 1605
b5d67f64
SB
1606 for (page_num = 0;;) {
1607 if (page_num == 0 && is_metadata)
b0496686 1608 crc = btrfs_csum_data(
b5d67f64
SB
1609 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1610 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1611 else
b0496686 1612 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
b5d67f64 1613
9613bebb 1614 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1615 page_num++;
1616 if (page_num >= sblock->page_count)
1617 break;
7a9e9987 1618 WARN_ON(!sblock->pagev[page_num]->page);
b5d67f64 1619
7a9e9987 1620 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
b5d67f64
SB
1621 }
1622
1623 btrfs_csum_final(crc, calculated_csum);
1624 if (memcmp(calculated_csum, csum, csum_size))
1625 sblock->checksum_error = 1;
a2de733c
AJ
1626}
1627
b5d67f64
SB
1628static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1629 struct scrub_block *sblock_good,
1630 int force_write)
1631{
1632 int page_num;
1633 int ret = 0;
96e36920 1634
b5d67f64
SB
1635 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1636 int ret_sub;
96e36920 1637
b5d67f64
SB
1638 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1639 sblock_good,
1640 page_num,
1641 force_write);
1642 if (ret_sub)
1643 ret = ret_sub;
a2de733c 1644 }
b5d67f64
SB
1645
1646 return ret;
1647}
1648
1649static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1650 struct scrub_block *sblock_good,
1651 int page_num, int force_write)
1652{
7a9e9987
SB
1653 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1654 struct scrub_page *page_good = sblock_good->pagev[page_num];
b5d67f64 1655
7a9e9987
SB
1656 BUG_ON(page_bad->page == NULL);
1657 BUG_ON(page_good->page == NULL);
b5d67f64
SB
1658 if (force_write || sblock_bad->header_error ||
1659 sblock_bad->checksum_error || page_bad->io_error) {
1660 struct bio *bio;
1661 int ret;
b5d67f64 1662
ff023aac 1663 if (!page_bad->dev->bdev) {
efe120a0
FH
1664 printk_ratelimited(KERN_WARNING "BTRFS: "
1665 "scrub_repair_page_from_good_copy(bdev == NULL) "
1666 "is unexpected!\n");
ff023aac
SB
1667 return -EIO;
1668 }
1669
9be3395b 1670 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
1671 if (!bio)
1672 return -EIO;
442a4f63 1673 bio->bi_bdev = page_bad->dev->bdev;
4f024f37 1674 bio->bi_iter.bi_sector = page_bad->physical >> 9;
b5d67f64
SB
1675
1676 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1677 if (PAGE_SIZE != ret) {
1678 bio_put(bio);
1679 return -EIO;
13db62b7 1680 }
b5d67f64 1681
33879d45 1682 if (btrfsic_submit_bio_wait(WRITE, bio)) {
442a4f63
SB
1683 btrfs_dev_stat_inc_and_print(page_bad->dev,
1684 BTRFS_DEV_STAT_WRITE_ERRS);
ff023aac
SB
1685 btrfs_dev_replace_stats_inc(
1686 &sblock_bad->sctx->dev_root->fs_info->
1687 dev_replace.num_write_errors);
442a4f63
SB
1688 bio_put(bio);
1689 return -EIO;
1690 }
b5d67f64 1691 bio_put(bio);
a2de733c
AJ
1692 }
1693
b5d67f64
SB
1694 return 0;
1695}
1696
ff023aac
SB
1697static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1698{
1699 int page_num;
1700
5a6ac9ea
MX
1701 /*
1702 * This block is used for the check of the parity on the source device,
1703 * so the data needn't be written into the destination device.
1704 */
1705 if (sblock->sparity)
1706 return;
1707
ff023aac
SB
1708 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1709 int ret;
1710
1711 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1712 if (ret)
1713 btrfs_dev_replace_stats_inc(
1714 &sblock->sctx->dev_root->fs_info->dev_replace.
1715 num_write_errors);
1716 }
1717}
1718
1719static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1720 int page_num)
1721{
1722 struct scrub_page *spage = sblock->pagev[page_num];
1723
1724 BUG_ON(spage->page == NULL);
1725 if (spage->io_error) {
1726 void *mapped_buffer = kmap_atomic(spage->page);
1727
1728 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1729 flush_dcache_page(spage->page);
1730 kunmap_atomic(mapped_buffer);
1731 }
1732 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1733}
1734
1735static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1736 struct scrub_page *spage)
1737{
1738 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1739 struct scrub_bio *sbio;
1740 int ret;
1741
1742 mutex_lock(&wr_ctx->wr_lock);
1743again:
1744 if (!wr_ctx->wr_curr_bio) {
1745 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1746 GFP_NOFS);
1747 if (!wr_ctx->wr_curr_bio) {
1748 mutex_unlock(&wr_ctx->wr_lock);
1749 return -ENOMEM;
1750 }
1751 wr_ctx->wr_curr_bio->sctx = sctx;
1752 wr_ctx->wr_curr_bio->page_count = 0;
1753 }
1754 sbio = wr_ctx->wr_curr_bio;
1755 if (sbio->page_count == 0) {
1756 struct bio *bio;
1757
1758 sbio->physical = spage->physical_for_dev_replace;
1759 sbio->logical = spage->logical;
1760 sbio->dev = wr_ctx->tgtdev;
1761 bio = sbio->bio;
1762 if (!bio) {
9be3395b 1763 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
ff023aac
SB
1764 if (!bio) {
1765 mutex_unlock(&wr_ctx->wr_lock);
1766 return -ENOMEM;
1767 }
1768 sbio->bio = bio;
1769 }
1770
1771 bio->bi_private = sbio;
1772 bio->bi_end_io = scrub_wr_bio_end_io;
1773 bio->bi_bdev = sbio->dev->bdev;
4f024f37 1774 bio->bi_iter.bi_sector = sbio->physical >> 9;
ff023aac
SB
1775 sbio->err = 0;
1776 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1777 spage->physical_for_dev_replace ||
1778 sbio->logical + sbio->page_count * PAGE_SIZE !=
1779 spage->logical) {
1780 scrub_wr_submit(sctx);
1781 goto again;
1782 }
1783
1784 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1785 if (ret != PAGE_SIZE) {
1786 if (sbio->page_count < 1) {
1787 bio_put(sbio->bio);
1788 sbio->bio = NULL;
1789 mutex_unlock(&wr_ctx->wr_lock);
1790 return -EIO;
1791 }
1792 scrub_wr_submit(sctx);
1793 goto again;
1794 }
1795
1796 sbio->pagev[sbio->page_count] = spage;
1797 scrub_page_get(spage);
1798 sbio->page_count++;
1799 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1800 scrub_wr_submit(sctx);
1801 mutex_unlock(&wr_ctx->wr_lock);
1802
1803 return 0;
1804}
1805
1806static void scrub_wr_submit(struct scrub_ctx *sctx)
1807{
1808 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1809 struct scrub_bio *sbio;
1810
1811 if (!wr_ctx->wr_curr_bio)
1812 return;
1813
1814 sbio = wr_ctx->wr_curr_bio;
1815 wr_ctx->wr_curr_bio = NULL;
1816 WARN_ON(!sbio->bio->bi_bdev);
1817 scrub_pending_bio_inc(sctx);
1818 /* process all writes in a single worker thread. Then the block layer
1819 * orders the requests before sending them to the driver which
1820 * doubled the write performance on spinning disks when measured
1821 * with Linux 3.5 */
1822 btrfsic_submit_bio(WRITE, sbio->bio);
1823}
1824
1825static void scrub_wr_bio_end_io(struct bio *bio, int err)
1826{
1827 struct scrub_bio *sbio = bio->bi_private;
1828 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1829
1830 sbio->err = err;
1831 sbio->bio = bio;
1832
9e0af237
LB
1833 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1834 scrub_wr_bio_end_io_worker, NULL, NULL);
0339ef2f 1835 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
ff023aac
SB
1836}
1837
1838static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1839{
1840 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1841 struct scrub_ctx *sctx = sbio->sctx;
1842 int i;
1843
1844 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1845 if (sbio->err) {
1846 struct btrfs_dev_replace *dev_replace =
1847 &sbio->sctx->dev_root->fs_info->dev_replace;
1848
1849 for (i = 0; i < sbio->page_count; i++) {
1850 struct scrub_page *spage = sbio->pagev[i];
1851
1852 spage->io_error = 1;
1853 btrfs_dev_replace_stats_inc(&dev_replace->
1854 num_write_errors);
1855 }
1856 }
1857
1858 for (i = 0; i < sbio->page_count; i++)
1859 scrub_page_put(sbio->pagev[i]);
1860
1861 bio_put(sbio->bio);
1862 kfree(sbio);
1863 scrub_pending_bio_dec(sctx);
1864}
1865
1866static int scrub_checksum(struct scrub_block *sblock)
b5d67f64
SB
1867{
1868 u64 flags;
1869 int ret;
1870
7a9e9987
SB
1871 WARN_ON(sblock->page_count < 1);
1872 flags = sblock->pagev[0]->flags;
b5d67f64
SB
1873 ret = 0;
1874 if (flags & BTRFS_EXTENT_FLAG_DATA)
1875 ret = scrub_checksum_data(sblock);
1876 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1877 ret = scrub_checksum_tree_block(sblock);
1878 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1879 (void)scrub_checksum_super(sblock);
1880 else
1881 WARN_ON(1);
1882 if (ret)
1883 scrub_handle_errored_block(sblock);
ff023aac
SB
1884
1885 return ret;
a2de733c
AJ
1886}
1887
b5d67f64 1888static int scrub_checksum_data(struct scrub_block *sblock)
a2de733c 1889{
d9d181c1 1890 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1891 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
1892 u8 *on_disk_csum;
1893 struct page *page;
1894 void *buffer;
a2de733c
AJ
1895 u32 crc = ~(u32)0;
1896 int fail = 0;
b5d67f64
SB
1897 u64 len;
1898 int index;
a2de733c 1899
b5d67f64 1900 BUG_ON(sblock->page_count < 1);
7a9e9987 1901 if (!sblock->pagev[0]->have_csum)
a2de733c
AJ
1902 return 0;
1903
7a9e9987
SB
1904 on_disk_csum = sblock->pagev[0]->csum;
1905 page = sblock->pagev[0]->page;
9613bebb 1906 buffer = kmap_atomic(page);
b5d67f64 1907
d9d181c1 1908 len = sctx->sectorsize;
b5d67f64
SB
1909 index = 0;
1910 for (;;) {
1911 u64 l = min_t(u64, len, PAGE_SIZE);
1912
b0496686 1913 crc = btrfs_csum_data(buffer, crc, l);
9613bebb 1914 kunmap_atomic(buffer);
b5d67f64
SB
1915 len -= l;
1916 if (len == 0)
1917 break;
1918 index++;
1919 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1920 BUG_ON(!sblock->pagev[index]->page);
1921 page = sblock->pagev[index]->page;
9613bebb 1922 buffer = kmap_atomic(page);
b5d67f64
SB
1923 }
1924
a2de733c 1925 btrfs_csum_final(crc, csum);
d9d181c1 1926 if (memcmp(csum, on_disk_csum, sctx->csum_size))
a2de733c
AJ
1927 fail = 1;
1928
a2de733c
AJ
1929 return fail;
1930}
1931
b5d67f64 1932static int scrub_checksum_tree_block(struct scrub_block *sblock)
a2de733c 1933{
d9d181c1 1934 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1935 struct btrfs_header *h;
a36cf8b8 1936 struct btrfs_root *root = sctx->dev_root;
a2de733c 1937 struct btrfs_fs_info *fs_info = root->fs_info;
b5d67f64
SB
1938 u8 calculated_csum[BTRFS_CSUM_SIZE];
1939 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1940 struct page *page;
1941 void *mapped_buffer;
1942 u64 mapped_size;
1943 void *p;
a2de733c
AJ
1944 u32 crc = ~(u32)0;
1945 int fail = 0;
1946 int crc_fail = 0;
b5d67f64
SB
1947 u64 len;
1948 int index;
1949
1950 BUG_ON(sblock->page_count < 1);
7a9e9987 1951 page = sblock->pagev[0]->page;
9613bebb 1952 mapped_buffer = kmap_atomic(page);
b5d67f64 1953 h = (struct btrfs_header *)mapped_buffer;
d9d181c1 1954 memcpy(on_disk_csum, h->csum, sctx->csum_size);
a2de733c
AJ
1955
1956 /*
1957 * we don't use the getter functions here, as we
1958 * a) don't have an extent buffer and
1959 * b) the page is already kmapped
1960 */
a2de733c 1961
3cae210f 1962 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
a2de733c
AJ
1963 ++fail;
1964
3cae210f 1965 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
a2de733c
AJ
1966 ++fail;
1967
17a9be2f 1968 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
a2de733c
AJ
1969 ++fail;
1970
1971 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1972 BTRFS_UUID_SIZE))
1973 ++fail;
1974
d9d181c1 1975 len = sctx->nodesize - BTRFS_CSUM_SIZE;
b5d67f64
SB
1976 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1977 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1978 index = 0;
1979 for (;;) {
1980 u64 l = min_t(u64, len, mapped_size);
1981
b0496686 1982 crc = btrfs_csum_data(p, crc, l);
9613bebb 1983 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1984 len -= l;
1985 if (len == 0)
1986 break;
1987 index++;
1988 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1989 BUG_ON(!sblock->pagev[index]->page);
1990 page = sblock->pagev[index]->page;
9613bebb 1991 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1992 mapped_size = PAGE_SIZE;
1993 p = mapped_buffer;
1994 }
1995
1996 btrfs_csum_final(crc, calculated_csum);
d9d181c1 1997 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
a2de733c
AJ
1998 ++crc_fail;
1999
a2de733c
AJ
2000 return fail || crc_fail;
2001}
2002
b5d67f64 2003static int scrub_checksum_super(struct scrub_block *sblock)
a2de733c
AJ
2004{
2005 struct btrfs_super_block *s;
d9d181c1 2006 struct scrub_ctx *sctx = sblock->sctx;
b5d67f64
SB
2007 u8 calculated_csum[BTRFS_CSUM_SIZE];
2008 u8 on_disk_csum[BTRFS_CSUM_SIZE];
2009 struct page *page;
2010 void *mapped_buffer;
2011 u64 mapped_size;
2012 void *p;
a2de733c 2013 u32 crc = ~(u32)0;
442a4f63
SB
2014 int fail_gen = 0;
2015 int fail_cor = 0;
b5d67f64
SB
2016 u64 len;
2017 int index;
a2de733c 2018
b5d67f64 2019 BUG_ON(sblock->page_count < 1);
7a9e9987 2020 page = sblock->pagev[0]->page;
9613bebb 2021 mapped_buffer = kmap_atomic(page);
b5d67f64 2022 s = (struct btrfs_super_block *)mapped_buffer;
d9d181c1 2023 memcpy(on_disk_csum, s->csum, sctx->csum_size);
a2de733c 2024
3cae210f 2025 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
442a4f63 2026 ++fail_cor;
a2de733c 2027
3cae210f 2028 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
442a4f63 2029 ++fail_gen;
a2de733c 2030
17a9be2f 2031 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
442a4f63 2032 ++fail_cor;
a2de733c 2033
b5d67f64
SB
2034 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
2035 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2036 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2037 index = 0;
2038 for (;;) {
2039 u64 l = min_t(u64, len, mapped_size);
2040
b0496686 2041 crc = btrfs_csum_data(p, crc, l);
9613bebb 2042 kunmap_atomic(mapped_buffer);
b5d67f64
SB
2043 len -= l;
2044 if (len == 0)
2045 break;
2046 index++;
2047 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
2048 BUG_ON(!sblock->pagev[index]->page);
2049 page = sblock->pagev[index]->page;
9613bebb 2050 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
2051 mapped_size = PAGE_SIZE;
2052 p = mapped_buffer;
2053 }
2054
2055 btrfs_csum_final(crc, calculated_csum);
d9d181c1 2056 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
442a4f63 2057 ++fail_cor;
a2de733c 2058
442a4f63 2059 if (fail_cor + fail_gen) {
a2de733c
AJ
2060 /*
2061 * if we find an error in a super block, we just report it.
2062 * They will get written with the next transaction commit
2063 * anyway
2064 */
d9d181c1
SB
2065 spin_lock(&sctx->stat_lock);
2066 ++sctx->stat.super_errors;
2067 spin_unlock(&sctx->stat_lock);
442a4f63 2068 if (fail_cor)
7a9e9987 2069 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63
SB
2070 BTRFS_DEV_STAT_CORRUPTION_ERRS);
2071 else
7a9e9987 2072 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63 2073 BTRFS_DEV_STAT_GENERATION_ERRS);
a2de733c
AJ
2074 }
2075
442a4f63 2076 return fail_cor + fail_gen;
a2de733c
AJ
2077}
2078
b5d67f64
SB
2079static void scrub_block_get(struct scrub_block *sblock)
2080{
2081 atomic_inc(&sblock->ref_count);
2082}
2083
2084static void scrub_block_put(struct scrub_block *sblock)
2085{
2086 if (atomic_dec_and_test(&sblock->ref_count)) {
2087 int i;
2088
5a6ac9ea
MX
2089 if (sblock->sparity)
2090 scrub_parity_put(sblock->sparity);
2091
b5d67f64 2092 for (i = 0; i < sblock->page_count; i++)
7a9e9987 2093 scrub_page_put(sblock->pagev[i]);
b5d67f64
SB
2094 kfree(sblock);
2095 }
2096}
2097
7a9e9987
SB
2098static void scrub_page_get(struct scrub_page *spage)
2099{
2100 atomic_inc(&spage->ref_count);
2101}
2102
2103static void scrub_page_put(struct scrub_page *spage)
2104{
2105 if (atomic_dec_and_test(&spage->ref_count)) {
2106 if (spage->page)
2107 __free_page(spage->page);
2108 kfree(spage);
2109 }
2110}
2111
d9d181c1 2112static void scrub_submit(struct scrub_ctx *sctx)
a2de733c
AJ
2113{
2114 struct scrub_bio *sbio;
2115
d9d181c1 2116 if (sctx->curr == -1)
1623edeb 2117 return;
a2de733c 2118
d9d181c1
SB
2119 sbio = sctx->bios[sctx->curr];
2120 sctx->curr = -1;
b6bfebc1 2121 scrub_pending_bio_inc(sctx);
a2de733c 2122
ff023aac
SB
2123 if (!sbio->bio->bi_bdev) {
2124 /*
2125 * this case should not happen. If btrfs_map_block() is
2126 * wrong, it could happen for dev-replace operations on
2127 * missing devices when no mirrors are available, but in
2128 * this case it should already fail the mount.
2129 * This case is handled correctly (but _very_ slowly).
2130 */
2131 printk_ratelimited(KERN_WARNING
efe120a0 2132 "BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
ff023aac
SB
2133 bio_endio(sbio->bio, -EIO);
2134 } else {
2135 btrfsic_submit_bio(READ, sbio->bio);
2136 }
a2de733c
AJ
2137}
2138
ff023aac
SB
2139static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2140 struct scrub_page *spage)
a2de733c 2141{
b5d67f64 2142 struct scrub_block *sblock = spage->sblock;
a2de733c 2143 struct scrub_bio *sbio;
69f4cb52 2144 int ret;
a2de733c
AJ
2145
2146again:
2147 /*
2148 * grab a fresh bio or wait for one to become available
2149 */
d9d181c1
SB
2150 while (sctx->curr == -1) {
2151 spin_lock(&sctx->list_lock);
2152 sctx->curr = sctx->first_free;
2153 if (sctx->curr != -1) {
2154 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2155 sctx->bios[sctx->curr]->next_free = -1;
2156 sctx->bios[sctx->curr]->page_count = 0;
2157 spin_unlock(&sctx->list_lock);
a2de733c 2158 } else {
d9d181c1
SB
2159 spin_unlock(&sctx->list_lock);
2160 wait_event(sctx->list_wait, sctx->first_free != -1);
a2de733c
AJ
2161 }
2162 }
d9d181c1 2163 sbio = sctx->bios[sctx->curr];
b5d67f64 2164 if (sbio->page_count == 0) {
69f4cb52
AJ
2165 struct bio *bio;
2166
b5d67f64
SB
2167 sbio->physical = spage->physical;
2168 sbio->logical = spage->logical;
a36cf8b8 2169 sbio->dev = spage->dev;
b5d67f64
SB
2170 bio = sbio->bio;
2171 if (!bio) {
9be3395b 2172 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
b5d67f64
SB
2173 if (!bio)
2174 return -ENOMEM;
2175 sbio->bio = bio;
2176 }
69f4cb52
AJ
2177
2178 bio->bi_private = sbio;
2179 bio->bi_end_io = scrub_bio_end_io;
a36cf8b8 2180 bio->bi_bdev = sbio->dev->bdev;
4f024f37 2181 bio->bi_iter.bi_sector = sbio->physical >> 9;
69f4cb52 2182 sbio->err = 0;
b5d67f64
SB
2183 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2184 spage->physical ||
2185 sbio->logical + sbio->page_count * PAGE_SIZE !=
a36cf8b8
SB
2186 spage->logical ||
2187 sbio->dev != spage->dev) {
d9d181c1 2188 scrub_submit(sctx);
a2de733c
AJ
2189 goto again;
2190 }
69f4cb52 2191
b5d67f64
SB
2192 sbio->pagev[sbio->page_count] = spage;
2193 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2194 if (ret != PAGE_SIZE) {
2195 if (sbio->page_count < 1) {
2196 bio_put(sbio->bio);
2197 sbio->bio = NULL;
2198 return -EIO;
2199 }
d9d181c1 2200 scrub_submit(sctx);
69f4cb52
AJ
2201 goto again;
2202 }
2203
ff023aac 2204 scrub_block_get(sblock); /* one for the page added to the bio */
b5d67f64
SB
2205 atomic_inc(&sblock->outstanding_pages);
2206 sbio->page_count++;
ff023aac 2207 if (sbio->page_count == sctx->pages_per_rd_bio)
d9d181c1 2208 scrub_submit(sctx);
b5d67f64
SB
2209
2210 return 0;
2211}
2212
d9d181c1 2213static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 2214 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
2215 u64 gen, int mirror_num, u8 *csum, int force,
2216 u64 physical_for_dev_replace)
b5d67f64
SB
2217{
2218 struct scrub_block *sblock;
2219 int index;
2220
2221 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2222 if (!sblock) {
d9d181c1
SB
2223 spin_lock(&sctx->stat_lock);
2224 sctx->stat.malloc_errors++;
2225 spin_unlock(&sctx->stat_lock);
b5d67f64 2226 return -ENOMEM;
a2de733c 2227 }
b5d67f64 2228
7a9e9987
SB
2229 /* one ref inside this function, plus one for each page added to
2230 * a bio later on */
b5d67f64 2231 atomic_set(&sblock->ref_count, 1);
d9d181c1 2232 sblock->sctx = sctx;
b5d67f64
SB
2233 sblock->no_io_error_seen = 1;
2234
2235 for (index = 0; len > 0; index++) {
7a9e9987 2236 struct scrub_page *spage;
b5d67f64
SB
2237 u64 l = min_t(u64, len, PAGE_SIZE);
2238
7a9e9987
SB
2239 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2240 if (!spage) {
2241leave_nomem:
d9d181c1
SB
2242 spin_lock(&sctx->stat_lock);
2243 sctx->stat.malloc_errors++;
2244 spin_unlock(&sctx->stat_lock);
7a9e9987 2245 scrub_block_put(sblock);
b5d67f64
SB
2246 return -ENOMEM;
2247 }
7a9e9987
SB
2248 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2249 scrub_page_get(spage);
2250 sblock->pagev[index] = spage;
b5d67f64 2251 spage->sblock = sblock;
a36cf8b8 2252 spage->dev = dev;
b5d67f64
SB
2253 spage->flags = flags;
2254 spage->generation = gen;
2255 spage->logical = logical;
2256 spage->physical = physical;
ff023aac 2257 spage->physical_for_dev_replace = physical_for_dev_replace;
b5d67f64
SB
2258 spage->mirror_num = mirror_num;
2259 if (csum) {
2260 spage->have_csum = 1;
d9d181c1 2261 memcpy(spage->csum, csum, sctx->csum_size);
b5d67f64
SB
2262 } else {
2263 spage->have_csum = 0;
2264 }
2265 sblock->page_count++;
7a9e9987
SB
2266 spage->page = alloc_page(GFP_NOFS);
2267 if (!spage->page)
2268 goto leave_nomem;
b5d67f64
SB
2269 len -= l;
2270 logical += l;
2271 physical += l;
ff023aac 2272 physical_for_dev_replace += l;
b5d67f64
SB
2273 }
2274
7a9e9987 2275 WARN_ON(sblock->page_count == 0);
b5d67f64 2276 for (index = 0; index < sblock->page_count; index++) {
7a9e9987 2277 struct scrub_page *spage = sblock->pagev[index];
1bc87793
AJ
2278 int ret;
2279
ff023aac 2280 ret = scrub_add_page_to_rd_bio(sctx, spage);
b5d67f64
SB
2281 if (ret) {
2282 scrub_block_put(sblock);
1bc87793 2283 return ret;
b5d67f64 2284 }
1bc87793 2285 }
a2de733c 2286
b5d67f64 2287 if (force)
d9d181c1 2288 scrub_submit(sctx);
a2de733c 2289
b5d67f64
SB
2290 /* last one frees, either here or in bio completion for last page */
2291 scrub_block_put(sblock);
a2de733c
AJ
2292 return 0;
2293}
2294
b5d67f64
SB
2295static void scrub_bio_end_io(struct bio *bio, int err)
2296{
2297 struct scrub_bio *sbio = bio->bi_private;
a36cf8b8 2298 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
b5d67f64
SB
2299
2300 sbio->err = err;
2301 sbio->bio = bio;
2302
0339ef2f 2303 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
b5d67f64
SB
2304}
2305
2306static void scrub_bio_end_io_worker(struct btrfs_work *work)
2307{
2308 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
d9d181c1 2309 struct scrub_ctx *sctx = sbio->sctx;
b5d67f64
SB
2310 int i;
2311
ff023aac 2312 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
b5d67f64
SB
2313 if (sbio->err) {
2314 for (i = 0; i < sbio->page_count; i++) {
2315 struct scrub_page *spage = sbio->pagev[i];
2316
2317 spage->io_error = 1;
2318 spage->sblock->no_io_error_seen = 0;
2319 }
2320 }
2321
2322 /* now complete the scrub_block items that have all pages completed */
2323 for (i = 0; i < sbio->page_count; i++) {
2324 struct scrub_page *spage = sbio->pagev[i];
2325 struct scrub_block *sblock = spage->sblock;
2326
2327 if (atomic_dec_and_test(&sblock->outstanding_pages))
2328 scrub_block_complete(sblock);
2329 scrub_block_put(sblock);
2330 }
2331
b5d67f64
SB
2332 bio_put(sbio->bio);
2333 sbio->bio = NULL;
d9d181c1
SB
2334 spin_lock(&sctx->list_lock);
2335 sbio->next_free = sctx->first_free;
2336 sctx->first_free = sbio->index;
2337 spin_unlock(&sctx->list_lock);
ff023aac
SB
2338
2339 if (sctx->is_dev_replace &&
2340 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2341 mutex_lock(&sctx->wr_ctx.wr_lock);
2342 scrub_wr_submit(sctx);
2343 mutex_unlock(&sctx->wr_ctx.wr_lock);
2344 }
2345
b6bfebc1 2346 scrub_pending_bio_dec(sctx);
b5d67f64
SB
2347}
2348
5a6ac9ea
MX
2349static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2350 unsigned long *bitmap,
2351 u64 start, u64 len)
2352{
2353 int offset;
2354 int nsectors;
2355 int sectorsize = sparity->sctx->dev_root->sectorsize;
2356
2357 if (len >= sparity->stripe_len) {
2358 bitmap_set(bitmap, 0, sparity->nsectors);
2359 return;
2360 }
2361
2362 start -= sparity->logic_start;
2363 offset = (int)do_div(start, sparity->stripe_len);
2364 offset /= sectorsize;
2365 nsectors = (int)len / sectorsize;
2366
2367 if (offset + nsectors <= sparity->nsectors) {
2368 bitmap_set(bitmap, offset, nsectors);
2369 return;
2370 }
2371
2372 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2373 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2374}
2375
2376static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2377 u64 start, u64 len)
2378{
2379 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2380}
2381
2382static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2383 u64 start, u64 len)
2384{
2385 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2386}
2387
b5d67f64
SB
2388static void scrub_block_complete(struct scrub_block *sblock)
2389{
5a6ac9ea
MX
2390 int corrupted = 0;
2391
ff023aac 2392 if (!sblock->no_io_error_seen) {
5a6ac9ea 2393 corrupted = 1;
b5d67f64 2394 scrub_handle_errored_block(sblock);
ff023aac
SB
2395 } else {
2396 /*
2397 * if has checksum error, write via repair mechanism in
2398 * dev replace case, otherwise write here in dev replace
2399 * case.
2400 */
5a6ac9ea
MX
2401 corrupted = scrub_checksum(sblock);
2402 if (!corrupted && sblock->sctx->is_dev_replace)
ff023aac
SB
2403 scrub_write_block_to_dev_replace(sblock);
2404 }
5a6ac9ea
MX
2405
2406 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2407 u64 start = sblock->pagev[0]->logical;
2408 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2409 PAGE_SIZE;
2410
2411 scrub_parity_mark_sectors_error(sblock->sparity,
2412 start, end - start);
2413 }
b5d67f64
SB
2414}
2415
d9d181c1 2416static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
a2de733c
AJ
2417 u8 *csum)
2418{
2419 struct btrfs_ordered_sum *sum = NULL;
f51a4a18 2420 unsigned long index;
a2de733c 2421 unsigned long num_sectors;
a2de733c 2422
d9d181c1
SB
2423 while (!list_empty(&sctx->csum_list)) {
2424 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
2425 struct btrfs_ordered_sum, list);
2426 if (sum->bytenr > logical)
2427 return 0;
2428 if (sum->bytenr + sum->len > logical)
2429 break;
2430
d9d181c1 2431 ++sctx->stat.csum_discards;
a2de733c
AJ
2432 list_del(&sum->list);
2433 kfree(sum);
2434 sum = NULL;
2435 }
2436 if (!sum)
2437 return 0;
2438
f51a4a18 2439 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
d9d181c1 2440 num_sectors = sum->len / sctx->sectorsize;
f51a4a18
MX
2441 memcpy(csum, sum->sums + index, sctx->csum_size);
2442 if (index == num_sectors - 1) {
a2de733c
AJ
2443 list_del(&sum->list);
2444 kfree(sum);
2445 }
f51a4a18 2446 return 1;
a2de733c
AJ
2447}
2448
2449/* scrub extent tries to collect up to 64 kB for each bio */
d9d181c1 2450static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 2451 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac 2452 u64 gen, int mirror_num, u64 physical_for_dev_replace)
a2de733c
AJ
2453{
2454 int ret;
2455 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
2456 u32 blocksize;
2457
2458 if (flags & BTRFS_EXTENT_FLAG_DATA) {
d9d181c1
SB
2459 blocksize = sctx->sectorsize;
2460 spin_lock(&sctx->stat_lock);
2461 sctx->stat.data_extents_scrubbed++;
2462 sctx->stat.data_bytes_scrubbed += len;
2463 spin_unlock(&sctx->stat_lock);
b5d67f64 2464 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
d9d181c1
SB
2465 blocksize = sctx->nodesize;
2466 spin_lock(&sctx->stat_lock);
2467 sctx->stat.tree_extents_scrubbed++;
2468 sctx->stat.tree_bytes_scrubbed += len;
2469 spin_unlock(&sctx->stat_lock);
b5d67f64 2470 } else {
d9d181c1 2471 blocksize = sctx->sectorsize;
ff023aac 2472 WARN_ON(1);
b5d67f64 2473 }
a2de733c
AJ
2474
2475 while (len) {
b5d67f64 2476 u64 l = min_t(u64, len, blocksize);
a2de733c
AJ
2477 int have_csum = 0;
2478
2479 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2480 /* push csums to sbio */
d9d181c1 2481 have_csum = scrub_find_csum(sctx, logical, l, csum);
a2de733c 2482 if (have_csum == 0)
d9d181c1 2483 ++sctx->stat.no_csum;
ff023aac
SB
2484 if (sctx->is_dev_replace && !have_csum) {
2485 ret = copy_nocow_pages(sctx, logical, l,
2486 mirror_num,
2487 physical_for_dev_replace);
2488 goto behind_scrub_pages;
2489 }
a2de733c 2490 }
a36cf8b8 2491 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
ff023aac
SB
2492 mirror_num, have_csum ? csum : NULL, 0,
2493 physical_for_dev_replace);
2494behind_scrub_pages:
a2de733c
AJ
2495 if (ret)
2496 return ret;
2497 len -= l;
2498 logical += l;
2499 physical += l;
ff023aac 2500 physical_for_dev_replace += l;
a2de733c
AJ
2501 }
2502 return 0;
2503}
2504
5a6ac9ea
MX
2505static int scrub_pages_for_parity(struct scrub_parity *sparity,
2506 u64 logical, u64 len,
2507 u64 physical, struct btrfs_device *dev,
2508 u64 flags, u64 gen, int mirror_num, u8 *csum)
2509{
2510 struct scrub_ctx *sctx = sparity->sctx;
2511 struct scrub_block *sblock;
2512 int index;
2513
2514 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2515 if (!sblock) {
2516 spin_lock(&sctx->stat_lock);
2517 sctx->stat.malloc_errors++;
2518 spin_unlock(&sctx->stat_lock);
2519 return -ENOMEM;
2520 }
2521
2522 /* one ref inside this function, plus one for each page added to
2523 * a bio later on */
2524 atomic_set(&sblock->ref_count, 1);
2525 sblock->sctx = sctx;
2526 sblock->no_io_error_seen = 1;
2527 sblock->sparity = sparity;
2528 scrub_parity_get(sparity);
2529
2530 for (index = 0; len > 0; index++) {
2531 struct scrub_page *spage;
2532 u64 l = min_t(u64, len, PAGE_SIZE);
2533
2534 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2535 if (!spage) {
2536leave_nomem:
2537 spin_lock(&sctx->stat_lock);
2538 sctx->stat.malloc_errors++;
2539 spin_unlock(&sctx->stat_lock);
2540 scrub_block_put(sblock);
2541 return -ENOMEM;
2542 }
2543 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2544 /* For scrub block */
2545 scrub_page_get(spage);
2546 sblock->pagev[index] = spage;
2547 /* For scrub parity */
2548 scrub_page_get(spage);
2549 list_add_tail(&spage->list, &sparity->spages);
2550 spage->sblock = sblock;
2551 spage->dev = dev;
2552 spage->flags = flags;
2553 spage->generation = gen;
2554 spage->logical = logical;
2555 spage->physical = physical;
2556 spage->mirror_num = mirror_num;
2557 if (csum) {
2558 spage->have_csum = 1;
2559 memcpy(spage->csum, csum, sctx->csum_size);
2560 } else {
2561 spage->have_csum = 0;
2562 }
2563 sblock->page_count++;
2564 spage->page = alloc_page(GFP_NOFS);
2565 if (!spage->page)
2566 goto leave_nomem;
2567 len -= l;
2568 logical += l;
2569 physical += l;
2570 }
2571
2572 WARN_ON(sblock->page_count == 0);
2573 for (index = 0; index < sblock->page_count; index++) {
2574 struct scrub_page *spage = sblock->pagev[index];
2575 int ret;
2576
2577 ret = scrub_add_page_to_rd_bio(sctx, spage);
2578 if (ret) {
2579 scrub_block_put(sblock);
2580 return ret;
2581 }
2582 }
2583
2584 /* last one frees, either here or in bio completion for last page */
2585 scrub_block_put(sblock);
2586 return 0;
2587}
2588
2589static int scrub_extent_for_parity(struct scrub_parity *sparity,
2590 u64 logical, u64 len,
2591 u64 physical, struct btrfs_device *dev,
2592 u64 flags, u64 gen, int mirror_num)
2593{
2594 struct scrub_ctx *sctx = sparity->sctx;
2595 int ret;
2596 u8 csum[BTRFS_CSUM_SIZE];
2597 u32 blocksize;
2598
2599 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2600 blocksize = sctx->sectorsize;
2601 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2602 blocksize = sctx->nodesize;
2603 } else {
2604 blocksize = sctx->sectorsize;
2605 WARN_ON(1);
2606 }
2607
2608 while (len) {
2609 u64 l = min_t(u64, len, blocksize);
2610 int have_csum = 0;
2611
2612 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2613 /* push csums to sbio */
2614 have_csum = scrub_find_csum(sctx, logical, l, csum);
2615 if (have_csum == 0)
2616 goto skip;
2617 }
2618 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2619 flags, gen, mirror_num,
2620 have_csum ? csum : NULL);
5a6ac9ea
MX
2621 if (ret)
2622 return ret;
6b6d24b3 2623skip:
5a6ac9ea
MX
2624 len -= l;
2625 logical += l;
2626 physical += l;
2627 }
2628 return 0;
2629}
2630
3b080b25
WS
2631/*
2632 * Given a physical address, this will calculate it's
2633 * logical offset. if this is a parity stripe, it will return
2634 * the most left data stripe's logical offset.
2635 *
2636 * return 0 if it is a data stripe, 1 means parity stripe.
2637 */
2638static int get_raid56_logic_offset(u64 physical, int num,
5a6ac9ea
MX
2639 struct map_lookup *map, u64 *offset,
2640 u64 *stripe_start)
3b080b25
WS
2641{
2642 int i;
2643 int j = 0;
2644 u64 stripe_nr;
2645 u64 last_offset;
2646 int stripe_index;
2647 int rot;
2648
2649 last_offset = (physical - map->stripes[num].physical) *
2650 nr_data_stripes(map);
5a6ac9ea
MX
2651 if (stripe_start)
2652 *stripe_start = last_offset;
2653
3b080b25
WS
2654 *offset = last_offset;
2655 for (i = 0; i < nr_data_stripes(map); i++) {
2656 *offset = last_offset + i * map->stripe_len;
2657
2658 stripe_nr = *offset;
2659 do_div(stripe_nr, map->stripe_len);
2660 do_div(stripe_nr, nr_data_stripes(map));
2661
2662 /* Work out the disk rotation on this stripe-set */
2663 rot = do_div(stripe_nr, map->num_stripes);
2664 /* calculate which stripe this data locates */
2665 rot += i;
e4fbaee2 2666 stripe_index = rot % map->num_stripes;
3b080b25
WS
2667 if (stripe_index == num)
2668 return 0;
2669 if (stripe_index < num)
2670 j++;
2671 }
2672 *offset = last_offset + j * map->stripe_len;
2673 return 1;
2674}
2675
5a6ac9ea
MX
2676static void scrub_free_parity(struct scrub_parity *sparity)
2677{
2678 struct scrub_ctx *sctx = sparity->sctx;
2679 struct scrub_page *curr, *next;
2680 int nbits;
2681
2682 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2683 if (nbits) {
2684 spin_lock(&sctx->stat_lock);
2685 sctx->stat.read_errors += nbits;
2686 sctx->stat.uncorrectable_errors += nbits;
2687 spin_unlock(&sctx->stat_lock);
2688 }
2689
2690 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2691 list_del_init(&curr->list);
2692 scrub_page_put(curr);
2693 }
2694
2695 kfree(sparity);
2696}
2697
2698static void scrub_parity_bio_endio(struct bio *bio, int error)
2699{
2700 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2701 struct scrub_ctx *sctx = sparity->sctx;
2702
2703 if (error)
2704 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2705 sparity->nsectors);
2706
2707 scrub_free_parity(sparity);
2708 scrub_pending_bio_dec(sctx);
2709 bio_put(bio);
2710}
2711
2712static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2713{
2714 struct scrub_ctx *sctx = sparity->sctx;
2715 struct bio *bio;
2716 struct btrfs_raid_bio *rbio;
2717 struct scrub_page *spage;
2718 struct btrfs_bio *bbio = NULL;
2719 u64 *raid_map = NULL;
2720 u64 length;
2721 int ret;
2722
2723 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2724 sparity->nsectors))
2725 goto out;
2726
2727 length = sparity->logic_end - sparity->logic_start + 1;
76035976 2728 ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
5a6ac9ea
MX
2729 sparity->logic_start,
2730 &length, &bbio, 0, &raid_map);
2731 if (ret || !bbio || !raid_map)
2732 goto bbio_out;
2733
2734 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2735 if (!bio)
2736 goto bbio_out;
2737
2738 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2739 bio->bi_private = sparity;
2740 bio->bi_end_io = scrub_parity_bio_endio;
2741
2742 rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2743 raid_map, length,
2744 sparity->scrub_dev,
2745 sparity->dbitmap,
2746 sparity->nsectors);
2747 if (!rbio)
2748 goto rbio_out;
2749
2750 list_for_each_entry(spage, &sparity->spages, list)
2751 raid56_parity_add_scrub_pages(rbio, spage->page,
2752 spage->logical);
2753
2754 scrub_pending_bio_inc(sctx);
2755 raid56_parity_submit_scrub_rbio(rbio);
2756 return;
2757
2758rbio_out:
2759 bio_put(bio);
2760bbio_out:
2761 kfree(bbio);
2762 kfree(raid_map);
2763 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2764 sparity->nsectors);
2765 spin_lock(&sctx->stat_lock);
2766 sctx->stat.malloc_errors++;
2767 spin_unlock(&sctx->stat_lock);
2768out:
2769 scrub_free_parity(sparity);
2770}
2771
2772static inline int scrub_calc_parity_bitmap_len(int nsectors)
2773{
2774 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8);
2775}
2776
2777static void scrub_parity_get(struct scrub_parity *sparity)
2778{
2779 atomic_inc(&sparity->ref_count);
2780}
2781
2782static void scrub_parity_put(struct scrub_parity *sparity)
2783{
2784 if (!atomic_dec_and_test(&sparity->ref_count))
2785 return;
2786
2787 scrub_parity_check_and_repair(sparity);
2788}
2789
2790static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2791 struct map_lookup *map,
2792 struct btrfs_device *sdev,
2793 struct btrfs_path *path,
2794 u64 logic_start,
2795 u64 logic_end)
2796{
2797 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2798 struct btrfs_root *root = fs_info->extent_root;
2799 struct btrfs_root *csum_root = fs_info->csum_root;
2800 struct btrfs_extent_item *extent;
2801 u64 flags;
2802 int ret;
2803 int slot;
2804 struct extent_buffer *l;
2805 struct btrfs_key key;
2806 u64 generation;
2807 u64 extent_logical;
2808 u64 extent_physical;
2809 u64 extent_len;
2810 struct btrfs_device *extent_dev;
2811 struct scrub_parity *sparity;
2812 int nsectors;
2813 int bitmap_len;
2814 int extent_mirror_num;
2815 int stop_loop = 0;
2816
2817 nsectors = map->stripe_len / root->sectorsize;
2818 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2819 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2820 GFP_NOFS);
2821 if (!sparity) {
2822 spin_lock(&sctx->stat_lock);
2823 sctx->stat.malloc_errors++;
2824 spin_unlock(&sctx->stat_lock);
2825 return -ENOMEM;
2826 }
2827
2828 sparity->stripe_len = map->stripe_len;
2829 sparity->nsectors = nsectors;
2830 sparity->sctx = sctx;
2831 sparity->scrub_dev = sdev;
2832 sparity->logic_start = logic_start;
2833 sparity->logic_end = logic_end;
2834 atomic_set(&sparity->ref_count, 1);
2835 INIT_LIST_HEAD(&sparity->spages);
2836 sparity->dbitmap = sparity->bitmap;
2837 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2838
2839 ret = 0;
2840 while (logic_start < logic_end) {
2841 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2842 key.type = BTRFS_METADATA_ITEM_KEY;
2843 else
2844 key.type = BTRFS_EXTENT_ITEM_KEY;
2845 key.objectid = logic_start;
2846 key.offset = (u64)-1;
2847
2848 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2849 if (ret < 0)
2850 goto out;
2851
2852 if (ret > 0) {
2853 ret = btrfs_previous_extent_item(root, path, 0);
2854 if (ret < 0)
2855 goto out;
2856 if (ret > 0) {
2857 btrfs_release_path(path);
2858 ret = btrfs_search_slot(NULL, root, &key,
2859 path, 0, 0);
2860 if (ret < 0)
2861 goto out;
2862 }
2863 }
2864
2865 stop_loop = 0;
2866 while (1) {
2867 u64 bytes;
2868
2869 l = path->nodes[0];
2870 slot = path->slots[0];
2871 if (slot >= btrfs_header_nritems(l)) {
2872 ret = btrfs_next_leaf(root, path);
2873 if (ret == 0)
2874 continue;
2875 if (ret < 0)
2876 goto out;
2877
2878 stop_loop = 1;
2879 break;
2880 }
2881 btrfs_item_key_to_cpu(l, &key, slot);
2882
2883 if (key.type == BTRFS_METADATA_ITEM_KEY)
2884 bytes = root->nodesize;
2885 else
2886 bytes = key.offset;
2887
2888 if (key.objectid + bytes <= logic_start)
2889 goto next;
2890
2891 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2892 key.type != BTRFS_METADATA_ITEM_KEY)
2893 goto next;
2894
2895 if (key.objectid > logic_end) {
2896 stop_loop = 1;
2897 break;
2898 }
2899
2900 while (key.objectid >= logic_start + map->stripe_len)
2901 logic_start += map->stripe_len;
2902
2903 extent = btrfs_item_ptr(l, slot,
2904 struct btrfs_extent_item);
2905 flags = btrfs_extent_flags(l, extent);
2906 generation = btrfs_extent_generation(l, extent);
2907
2908 if (key.objectid < logic_start &&
2909 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2910 btrfs_err(fs_info,
2911 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2912 key.objectid, logic_start);
2913 goto next;
2914 }
2915again:
2916 extent_logical = key.objectid;
2917 extent_len = bytes;
2918
2919 if (extent_logical < logic_start) {
2920 extent_len -= logic_start - extent_logical;
2921 extent_logical = logic_start;
2922 }
2923
2924 if (extent_logical + extent_len >
2925 logic_start + map->stripe_len)
2926 extent_len = logic_start + map->stripe_len -
2927 extent_logical;
2928
2929 scrub_parity_mark_sectors_data(sparity, extent_logical,
2930 extent_len);
2931
2932 scrub_remap_extent(fs_info, extent_logical,
2933 extent_len, &extent_physical,
2934 &extent_dev,
2935 &extent_mirror_num);
2936
2937 ret = btrfs_lookup_csums_range(csum_root,
2938 extent_logical,
2939 extent_logical + extent_len - 1,
2940 &sctx->csum_list, 1);
2941 if (ret)
2942 goto out;
2943
2944 ret = scrub_extent_for_parity(sparity, extent_logical,
2945 extent_len,
2946 extent_physical,
2947 extent_dev, flags,
2948 generation,
2949 extent_mirror_num);
2950 if (ret)
2951 goto out;
2952
2953 scrub_free_csums(sctx);
2954 if (extent_logical + extent_len <
2955 key.objectid + bytes) {
2956 logic_start += map->stripe_len;
2957
2958 if (logic_start >= logic_end) {
2959 stop_loop = 1;
2960 break;
2961 }
2962
2963 if (logic_start < key.objectid + bytes) {
2964 cond_resched();
2965 goto again;
2966 }
2967 }
2968next:
2969 path->slots[0]++;
2970 }
2971
2972 btrfs_release_path(path);
2973
2974 if (stop_loop)
2975 break;
2976
2977 logic_start += map->stripe_len;
2978 }
2979out:
2980 if (ret < 0)
2981 scrub_parity_mark_sectors_error(sparity, logic_start,
2982 logic_end - logic_start + 1);
2983 scrub_parity_put(sparity);
2984 scrub_submit(sctx);
2985 mutex_lock(&sctx->wr_ctx.wr_lock);
2986 scrub_wr_submit(sctx);
2987 mutex_unlock(&sctx->wr_ctx.wr_lock);
2988
2989 btrfs_release_path(path);
2990 return ret < 0 ? ret : 0;
2991}
2992
d9d181c1 2993static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
a36cf8b8
SB
2994 struct map_lookup *map,
2995 struct btrfs_device *scrub_dev,
ff023aac
SB
2996 int num, u64 base, u64 length,
2997 int is_dev_replace)
a2de733c 2998{
5a6ac9ea 2999 struct btrfs_path *path, *ppath;
a36cf8b8 3000 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
a2de733c
AJ
3001 struct btrfs_root *root = fs_info->extent_root;
3002 struct btrfs_root *csum_root = fs_info->csum_root;
3003 struct btrfs_extent_item *extent;
e7786c3a 3004 struct blk_plug plug;
a2de733c
AJ
3005 u64 flags;
3006 int ret;
3007 int slot;
a2de733c 3008 u64 nstripes;
a2de733c
AJ
3009 struct extent_buffer *l;
3010 struct btrfs_key key;
3011 u64 physical;
3012 u64 logical;
625f1c8d 3013 u64 logic_end;
3b080b25 3014 u64 physical_end;
a2de733c 3015 u64 generation;
e12fa9cd 3016 int mirror_num;
7a26285e
AJ
3017 struct reada_control *reada1;
3018 struct reada_control *reada2;
3019 struct btrfs_key key_start;
3020 struct btrfs_key key_end;
a2de733c
AJ
3021 u64 increment = map->stripe_len;
3022 u64 offset;
ff023aac
SB
3023 u64 extent_logical;
3024 u64 extent_physical;
3025 u64 extent_len;
5a6ac9ea
MX
3026 u64 stripe_logical;
3027 u64 stripe_end;
ff023aac
SB
3028 struct btrfs_device *extent_dev;
3029 int extent_mirror_num;
3b080b25 3030 int stop_loop = 0;
53b381b3 3031
a2de733c 3032 nstripes = length;
3b080b25 3033 physical = map->stripes[num].physical;
a2de733c
AJ
3034 offset = 0;
3035 do_div(nstripes, map->stripe_len);
3036 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3037 offset = map->stripe_len * num;
3038 increment = map->stripe_len * map->num_stripes;
193ea74b 3039 mirror_num = 1;
a2de733c
AJ
3040 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3041 int factor = map->num_stripes / map->sub_stripes;
3042 offset = map->stripe_len * (num / map->sub_stripes);
3043 increment = map->stripe_len * factor;
193ea74b 3044 mirror_num = num % map->sub_stripes + 1;
a2de733c
AJ
3045 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3046 increment = map->stripe_len;
193ea74b 3047 mirror_num = num % map->num_stripes + 1;
a2de733c
AJ
3048 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3049 increment = map->stripe_len;
193ea74b 3050 mirror_num = num % map->num_stripes + 1;
3b080b25
WS
3051 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
3052 BTRFS_BLOCK_GROUP_RAID6)) {
5a6ac9ea 3053 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3b080b25
WS
3054 increment = map->stripe_len * nr_data_stripes(map);
3055 mirror_num = 1;
a2de733c
AJ
3056 } else {
3057 increment = map->stripe_len;
193ea74b 3058 mirror_num = 1;
a2de733c
AJ
3059 }
3060
3061 path = btrfs_alloc_path();
3062 if (!path)
3063 return -ENOMEM;
3064
5a6ac9ea
MX
3065 ppath = btrfs_alloc_path();
3066 if (!ppath) {
3067 btrfs_free_path(ppath);
3068 return -ENOMEM;
3069 }
3070
b5d67f64
SB
3071 /*
3072 * work on commit root. The related disk blocks are static as
3073 * long as COW is applied. This means, it is save to rewrite
3074 * them to repair disk errors without any race conditions
3075 */
a2de733c
AJ
3076 path->search_commit_root = 1;
3077 path->skip_locking = 1;
3078
3079 /*
7a26285e
AJ
3080 * trigger the readahead for extent tree csum tree and wait for
3081 * completion. During readahead, the scrub is officially paused
3082 * to not hold off transaction commits
a2de733c
AJ
3083 */
3084 logical = base + offset;
3b080b25
WS
3085 physical_end = physical + nstripes * map->stripe_len;
3086 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
3087 BTRFS_BLOCK_GROUP_RAID6)) {
3088 get_raid56_logic_offset(physical_end, num,
5a6ac9ea 3089 map, &logic_end, NULL);
3b080b25
WS
3090 logic_end += base;
3091 } else {
3092 logic_end = logical + increment * nstripes;
3093 }
d9d181c1 3094 wait_event(sctx->list_wait,
b6bfebc1 3095 atomic_read(&sctx->bios_in_flight) == 0);
cb7ab021 3096 scrub_blocked_if_needed(fs_info);
7a26285e
AJ
3097
3098 /* FIXME it might be better to start readahead at commit root */
3099 key_start.objectid = logical;
3100 key_start.type = BTRFS_EXTENT_ITEM_KEY;
3101 key_start.offset = (u64)0;
3b080b25 3102 key_end.objectid = logic_end;
3173a18f
JB
3103 key_end.type = BTRFS_METADATA_ITEM_KEY;
3104 key_end.offset = (u64)-1;
7a26285e
AJ
3105 reada1 = btrfs_reada_add(root, &key_start, &key_end);
3106
3107 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3108 key_start.type = BTRFS_EXTENT_CSUM_KEY;
3109 key_start.offset = logical;
3110 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3111 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3b080b25 3112 key_end.offset = logic_end;
7a26285e
AJ
3113 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
3114
3115 if (!IS_ERR(reada1))
3116 btrfs_reada_wait(reada1);
3117 if (!IS_ERR(reada2))
3118 btrfs_reada_wait(reada2);
3119
a2de733c
AJ
3120
3121 /*
3122 * collect all data csums for the stripe to avoid seeking during
3123 * the scrub. This might currently (crc32) end up to be about 1MB
3124 */
e7786c3a 3125 blk_start_plug(&plug);
a2de733c 3126
a2de733c
AJ
3127 /*
3128 * now find all extents for each stripe and scrub them
3129 */
a2de733c 3130 ret = 0;
3b080b25
WS
3131 while (physical < physical_end) {
3132 /* for raid56, we skip parity stripe */
3133 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
3134 BTRFS_BLOCK_GROUP_RAID6)) {
3135 ret = get_raid56_logic_offset(physical, num,
5a6ac9ea 3136 map, &logical, &stripe_logical);
3b080b25 3137 logical += base;
5a6ac9ea
MX
3138 if (ret) {
3139 stripe_logical += base;
3140 stripe_end = stripe_logical + increment - 1;
3141 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3142 ppath, stripe_logical,
3143 stripe_end);
3144 if (ret)
3145 goto out;
3b080b25 3146 goto skip;
5a6ac9ea 3147 }
3b080b25 3148 }
a2de733c
AJ
3149 /*
3150 * canceled?
3151 */
3152 if (atomic_read(&fs_info->scrub_cancel_req) ||
d9d181c1 3153 atomic_read(&sctx->cancel_req)) {
a2de733c
AJ
3154 ret = -ECANCELED;
3155 goto out;
3156 }
3157 /*
3158 * check to see if we have to pause
3159 */
3160 if (atomic_read(&fs_info->scrub_pause_req)) {
3161 /* push queued extents */
ff023aac 3162 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
d9d181c1 3163 scrub_submit(sctx);
ff023aac
SB
3164 mutex_lock(&sctx->wr_ctx.wr_lock);
3165 scrub_wr_submit(sctx);
3166 mutex_unlock(&sctx->wr_ctx.wr_lock);
d9d181c1 3167 wait_event(sctx->list_wait,
b6bfebc1 3168 atomic_read(&sctx->bios_in_flight) == 0);
ff023aac 3169 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3cb0929a 3170 scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3171 }
3172
7c76edb7
WS
3173 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3174 key.type = BTRFS_METADATA_ITEM_KEY;
3175 else
3176 key.type = BTRFS_EXTENT_ITEM_KEY;
a2de733c 3177 key.objectid = logical;
625f1c8d 3178 key.offset = (u64)-1;
a2de733c
AJ
3179
3180 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3181 if (ret < 0)
3182 goto out;
3173a18f 3183
8c51032f 3184 if (ret > 0) {
ade2e0b3 3185 ret = btrfs_previous_extent_item(root, path, 0);
a2de733c
AJ
3186 if (ret < 0)
3187 goto out;
8c51032f
AJ
3188 if (ret > 0) {
3189 /* there's no smaller item, so stick with the
3190 * larger one */
3191 btrfs_release_path(path);
3192 ret = btrfs_search_slot(NULL, root, &key,
3193 path, 0, 0);
3194 if (ret < 0)
3195 goto out;
3196 }
a2de733c
AJ
3197 }
3198
625f1c8d 3199 stop_loop = 0;
a2de733c 3200 while (1) {
3173a18f
JB
3201 u64 bytes;
3202
a2de733c
AJ
3203 l = path->nodes[0];
3204 slot = path->slots[0];
3205 if (slot >= btrfs_header_nritems(l)) {
3206 ret = btrfs_next_leaf(root, path);
3207 if (ret == 0)
3208 continue;
3209 if (ret < 0)
3210 goto out;
3211
625f1c8d 3212 stop_loop = 1;
a2de733c
AJ
3213 break;
3214 }
3215 btrfs_item_key_to_cpu(l, &key, slot);
3216
3173a18f 3217 if (key.type == BTRFS_METADATA_ITEM_KEY)
707e8a07 3218 bytes = root->nodesize;
3173a18f
JB
3219 else
3220 bytes = key.offset;
3221
3222 if (key.objectid + bytes <= logical)
a2de733c
AJ
3223 goto next;
3224
625f1c8d
LB
3225 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3226 key.type != BTRFS_METADATA_ITEM_KEY)
3227 goto next;
a2de733c 3228
625f1c8d
LB
3229 if (key.objectid >= logical + map->stripe_len) {
3230 /* out of this device extent */
3231 if (key.objectid >= logic_end)
3232 stop_loop = 1;
3233 break;
3234 }
a2de733c
AJ
3235
3236 extent = btrfs_item_ptr(l, slot,
3237 struct btrfs_extent_item);
3238 flags = btrfs_extent_flags(l, extent);
3239 generation = btrfs_extent_generation(l, extent);
3240
3241 if (key.objectid < logical &&
3242 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
efe120a0
FH
3243 btrfs_err(fs_info,
3244 "scrub: tree block %llu spanning "
3245 "stripes, ignored. logical=%llu",
c1c9ff7c 3246 key.objectid, logical);
a2de733c
AJ
3247 goto next;
3248 }
3249
625f1c8d
LB
3250again:
3251 extent_logical = key.objectid;
3252 extent_len = bytes;
3253
a2de733c
AJ
3254 /*
3255 * trim extent to this stripe
3256 */
625f1c8d
LB
3257 if (extent_logical < logical) {
3258 extent_len -= logical - extent_logical;
3259 extent_logical = logical;
a2de733c 3260 }
625f1c8d 3261 if (extent_logical + extent_len >
a2de733c 3262 logical + map->stripe_len) {
625f1c8d
LB
3263 extent_len = logical + map->stripe_len -
3264 extent_logical;
a2de733c
AJ
3265 }
3266
625f1c8d 3267 extent_physical = extent_logical - logical + physical;
ff023aac
SB
3268 extent_dev = scrub_dev;
3269 extent_mirror_num = mirror_num;
3270 if (is_dev_replace)
3271 scrub_remap_extent(fs_info, extent_logical,
3272 extent_len, &extent_physical,
3273 &extent_dev,
3274 &extent_mirror_num);
625f1c8d
LB
3275
3276 ret = btrfs_lookup_csums_range(csum_root, logical,
3277 logical + map->stripe_len - 1,
3278 &sctx->csum_list, 1);
3279 if (ret)
3280 goto out;
3281
ff023aac
SB
3282 ret = scrub_extent(sctx, extent_logical, extent_len,
3283 extent_physical, extent_dev, flags,
3284 generation, extent_mirror_num,
115930cb 3285 extent_logical - logical + physical);
a2de733c
AJ
3286 if (ret)
3287 goto out;
3288
d88d46c6 3289 scrub_free_csums(sctx);
625f1c8d
LB
3290 if (extent_logical + extent_len <
3291 key.objectid + bytes) {
3b080b25
WS
3292 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
3293 BTRFS_BLOCK_GROUP_RAID6)) {
3294 /*
3295 * loop until we find next data stripe
3296 * or we have finished all stripes.
3297 */
5a6ac9ea
MX
3298loop:
3299 physical += map->stripe_len;
3300 ret = get_raid56_logic_offset(physical,
3301 num, map, &logical,
3302 &stripe_logical);
3303 logical += base;
3304
3305 if (ret && physical < physical_end) {
3306 stripe_logical += base;
3307 stripe_end = stripe_logical +
3308 increment - 1;
3309 ret = scrub_raid56_parity(sctx,
3310 map, scrub_dev, ppath,
3311 stripe_logical,
3312 stripe_end);
3313 if (ret)
3314 goto out;
3315 goto loop;
3316 }
3b080b25
WS
3317 } else {
3318 physical += map->stripe_len;
3319 logical += increment;
3320 }
625f1c8d
LB
3321 if (logical < key.objectid + bytes) {
3322 cond_resched();
3323 goto again;
3324 }
3325
3b080b25 3326 if (physical >= physical_end) {
625f1c8d
LB
3327 stop_loop = 1;
3328 break;
3329 }
3330 }
a2de733c
AJ
3331next:
3332 path->slots[0]++;
3333 }
71267333 3334 btrfs_release_path(path);
3b080b25 3335skip:
a2de733c
AJ
3336 logical += increment;
3337 physical += map->stripe_len;
d9d181c1 3338 spin_lock(&sctx->stat_lock);
625f1c8d
LB
3339 if (stop_loop)
3340 sctx->stat.last_physical = map->stripes[num].physical +
3341 length;
3342 else
3343 sctx->stat.last_physical = physical;
d9d181c1 3344 spin_unlock(&sctx->stat_lock);
625f1c8d
LB
3345 if (stop_loop)
3346 break;
a2de733c 3347 }
ff023aac 3348out:
a2de733c 3349 /* push queued extents */
d9d181c1 3350 scrub_submit(sctx);
ff023aac
SB
3351 mutex_lock(&sctx->wr_ctx.wr_lock);
3352 scrub_wr_submit(sctx);
3353 mutex_unlock(&sctx->wr_ctx.wr_lock);
a2de733c 3354
e7786c3a 3355 blk_finish_plug(&plug);
a2de733c 3356 btrfs_free_path(path);
5a6ac9ea 3357 btrfs_free_path(ppath);
a2de733c
AJ
3358 return ret < 0 ? ret : 0;
3359}
3360
d9d181c1 3361static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
a36cf8b8
SB
3362 struct btrfs_device *scrub_dev,
3363 u64 chunk_tree, u64 chunk_objectid,
3364 u64 chunk_offset, u64 length,
ff023aac 3365 u64 dev_offset, int is_dev_replace)
a2de733c
AJ
3366{
3367 struct btrfs_mapping_tree *map_tree =
a36cf8b8 3368 &sctx->dev_root->fs_info->mapping_tree;
a2de733c
AJ
3369 struct map_lookup *map;
3370 struct extent_map *em;
3371 int i;
ff023aac 3372 int ret = 0;
a2de733c
AJ
3373
3374 read_lock(&map_tree->map_tree.lock);
3375 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3376 read_unlock(&map_tree->map_tree.lock);
3377
3378 if (!em)
3379 return -EINVAL;
3380
3381 map = (struct map_lookup *)em->bdev;
3382 if (em->start != chunk_offset)
3383 goto out;
3384
3385 if (em->len < length)
3386 goto out;
3387
3388 for (i = 0; i < map->num_stripes; ++i) {
a36cf8b8 3389 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
859acaf1 3390 map->stripes[i].physical == dev_offset) {
a36cf8b8 3391 ret = scrub_stripe(sctx, map, scrub_dev, i,
ff023aac
SB
3392 chunk_offset, length,
3393 is_dev_replace);
a2de733c
AJ
3394 if (ret)
3395 goto out;
3396 }
3397 }
3398out:
3399 free_extent_map(em);
3400
3401 return ret;
3402}
3403
3404static noinline_for_stack
a36cf8b8 3405int scrub_enumerate_chunks(struct scrub_ctx *sctx,
ff023aac
SB
3406 struct btrfs_device *scrub_dev, u64 start, u64 end,
3407 int is_dev_replace)
a2de733c
AJ
3408{
3409 struct btrfs_dev_extent *dev_extent = NULL;
3410 struct btrfs_path *path;
a36cf8b8 3411 struct btrfs_root *root = sctx->dev_root;
a2de733c
AJ
3412 struct btrfs_fs_info *fs_info = root->fs_info;
3413 u64 length;
3414 u64 chunk_tree;
3415 u64 chunk_objectid;
3416 u64 chunk_offset;
3417 int ret;
3418 int slot;
3419 struct extent_buffer *l;
3420 struct btrfs_key key;
3421 struct btrfs_key found_key;
3422 struct btrfs_block_group_cache *cache;
ff023aac 3423 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
a2de733c
AJ
3424
3425 path = btrfs_alloc_path();
3426 if (!path)
3427 return -ENOMEM;
3428
3429 path->reada = 2;
3430 path->search_commit_root = 1;
3431 path->skip_locking = 1;
3432
a36cf8b8 3433 key.objectid = scrub_dev->devid;
a2de733c
AJ
3434 key.offset = 0ull;
3435 key.type = BTRFS_DEV_EXTENT_KEY;
3436
a2de733c
AJ
3437 while (1) {
3438 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3439 if (ret < 0)
8c51032f
AJ
3440 break;
3441 if (ret > 0) {
3442 if (path->slots[0] >=
3443 btrfs_header_nritems(path->nodes[0])) {
3444 ret = btrfs_next_leaf(root, path);
3445 if (ret)
3446 break;
3447 }
3448 }
a2de733c
AJ
3449
3450 l = path->nodes[0];
3451 slot = path->slots[0];
3452
3453 btrfs_item_key_to_cpu(l, &found_key, slot);
3454
a36cf8b8 3455 if (found_key.objectid != scrub_dev->devid)
a2de733c
AJ
3456 break;
3457
962a298f 3458 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
a2de733c
AJ
3459 break;
3460
3461 if (found_key.offset >= end)
3462 break;
3463
3464 if (found_key.offset < key.offset)
3465 break;
3466
3467 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3468 length = btrfs_dev_extent_length(l, dev_extent);
3469
ced96edc
QW
3470 if (found_key.offset + length <= start)
3471 goto skip;
a2de733c
AJ
3472
3473 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3474 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3475 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3476
3477 /*
3478 * get a reference on the corresponding block group to prevent
3479 * the chunk from going away while we scrub it
3480 */
3481 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
ced96edc
QW
3482
3483 /* some chunks are removed but not committed to disk yet,
3484 * continue scrubbing */
3485 if (!cache)
3486 goto skip;
3487
ff023aac
SB
3488 dev_replace->cursor_right = found_key.offset + length;
3489 dev_replace->cursor_left = found_key.offset;
3490 dev_replace->item_needs_writeback = 1;
a36cf8b8 3491 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
ff023aac
SB
3492 chunk_offset, length, found_key.offset,
3493 is_dev_replace);
3494
3495 /*
3496 * flush, submit all pending read and write bios, afterwards
3497 * wait for them.
3498 * Note that in the dev replace case, a read request causes
3499 * write requests that are submitted in the read completion
3500 * worker. Therefore in the current situation, it is required
3501 * that all write requests are flushed, so that all read and
3502 * write requests are really completed when bios_in_flight
3503 * changes to 0.
3504 */
3505 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3506 scrub_submit(sctx);
3507 mutex_lock(&sctx->wr_ctx.wr_lock);
3508 scrub_wr_submit(sctx);
3509 mutex_unlock(&sctx->wr_ctx.wr_lock);
3510
3511 wait_event(sctx->list_wait,
3512 atomic_read(&sctx->bios_in_flight) == 0);
12cf9372
WS
3513 atomic_inc(&fs_info->scrubs_paused);
3514 wake_up(&fs_info->scrub_pause_wait);
3515
3516 /*
3517 * must be called before we decrease @scrub_paused.
3518 * make sure we don't block transaction commit while
3519 * we are waiting pending workers finished.
3520 */
ff023aac
SB
3521 wait_event(sctx->list_wait,
3522 atomic_read(&sctx->workers_pending) == 0);
12cf9372
WS
3523 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3524
3525 mutex_lock(&fs_info->scrub_lock);
3526 __scrub_blocked_if_needed(fs_info);
3527 atomic_dec(&fs_info->scrubs_paused);
3528 mutex_unlock(&fs_info->scrub_lock);
3529 wake_up(&fs_info->scrub_pause_wait);
ff023aac 3530
a2de733c
AJ
3531 btrfs_put_block_group(cache);
3532 if (ret)
3533 break;
af1be4f8
SB
3534 if (is_dev_replace &&
3535 atomic64_read(&dev_replace->num_write_errors) > 0) {
ff023aac
SB
3536 ret = -EIO;
3537 break;
3538 }
3539 if (sctx->stat.malloc_errors > 0) {
3540 ret = -ENOMEM;
3541 break;
3542 }
a2de733c 3543
539f358a
ID
3544 dev_replace->cursor_left = dev_replace->cursor_right;
3545 dev_replace->item_needs_writeback = 1;
ced96edc 3546skip:
a2de733c 3547 key.offset = found_key.offset + length;
71267333 3548 btrfs_release_path(path);
a2de733c
AJ
3549 }
3550
a2de733c 3551 btrfs_free_path(path);
8c51032f
AJ
3552
3553 /*
3554 * ret can still be 1 from search_slot or next_leaf,
3555 * that's not an error
3556 */
3557 return ret < 0 ? ret : 0;
a2de733c
AJ
3558}
3559
a36cf8b8
SB
3560static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3561 struct btrfs_device *scrub_dev)
a2de733c
AJ
3562{
3563 int i;
3564 u64 bytenr;
3565 u64 gen;
3566 int ret;
a36cf8b8 3567 struct btrfs_root *root = sctx->dev_root;
a2de733c 3568
87533c47 3569 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
79787eaa
JM
3570 return -EIO;
3571
5f546063
MX
3572 /* Seed devices of a new filesystem has their own generation. */
3573 if (scrub_dev->fs_devices != root->fs_info->fs_devices)
3574 gen = scrub_dev->generation;
3575 else
3576 gen = root->fs_info->last_trans_committed;
a2de733c
AJ
3577
3578 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3579 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3580 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3581 scrub_dev->commit_total_bytes)
a2de733c
AJ
3582 break;
3583
d9d181c1 3584 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
a36cf8b8 3585 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
ff023aac 3586 NULL, 1, bytenr);
a2de733c
AJ
3587 if (ret)
3588 return ret;
3589 }
b6bfebc1 3590 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3591
3592 return 0;
3593}
3594
3595/*
3596 * get a reference count on fs_info->scrub_workers. start worker if necessary
3597 */
ff023aac
SB
3598static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3599 int is_dev_replace)
a2de733c 3600{
0dc3b84a 3601 int ret = 0;
0339ef2f
QW
3602 int flags = WQ_FREEZABLE | WQ_UNBOUND;
3603 int max_active = fs_info->thread_pool_size;
a2de733c 3604
632dd772 3605 if (fs_info->scrub_workers_refcnt == 0) {
ff023aac 3606 if (is_dev_replace)
0339ef2f
QW
3607 fs_info->scrub_workers =
3608 btrfs_alloc_workqueue("btrfs-scrub", flags,
3609 1, 4);
ff023aac 3610 else
0339ef2f
QW
3611 fs_info->scrub_workers =
3612 btrfs_alloc_workqueue("btrfs-scrub", flags,
3613 max_active, 4);
3614 if (!fs_info->scrub_workers) {
3615 ret = -ENOMEM;
0dc3b84a 3616 goto out;
0339ef2f
QW
3617 }
3618 fs_info->scrub_wr_completion_workers =
3619 btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
3620 max_active, 2);
3621 if (!fs_info->scrub_wr_completion_workers) {
3622 ret = -ENOMEM;
ff023aac 3623 goto out;
0339ef2f
QW
3624 }
3625 fs_info->scrub_nocow_workers =
3626 btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
3627 if (!fs_info->scrub_nocow_workers) {
3628 ret = -ENOMEM;
ff023aac 3629 goto out;
0339ef2f 3630 }
632dd772 3631 }
a2de733c 3632 ++fs_info->scrub_workers_refcnt;
0dc3b84a 3633out:
0dc3b84a 3634 return ret;
a2de733c
AJ
3635}
3636
aa1b8cd4 3637static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
a2de733c 3638{
ff023aac 3639 if (--fs_info->scrub_workers_refcnt == 0) {
0339ef2f
QW
3640 btrfs_destroy_workqueue(fs_info->scrub_workers);
3641 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3642 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
ff023aac 3643 }
a2de733c 3644 WARN_ON(fs_info->scrub_workers_refcnt < 0);
a2de733c
AJ
3645}
3646
aa1b8cd4
SB
3647int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3648 u64 end, struct btrfs_scrub_progress *progress,
63a212ab 3649 int readonly, int is_dev_replace)
a2de733c 3650{
d9d181c1 3651 struct scrub_ctx *sctx;
a2de733c
AJ
3652 int ret;
3653 struct btrfs_device *dev;
5d68da3b 3654 struct rcu_string *name;
a2de733c 3655
aa1b8cd4 3656 if (btrfs_fs_closing(fs_info))
a2de733c
AJ
3657 return -EINVAL;
3658
aa1b8cd4 3659 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
b5d67f64
SB
3660 /*
3661 * in this case scrub is unable to calculate the checksum
3662 * the way scrub is implemented. Do not handle this
3663 * situation at all because it won't ever happen.
3664 */
efe120a0
FH
3665 btrfs_err(fs_info,
3666 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
aa1b8cd4 3667 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
b5d67f64
SB
3668 return -EINVAL;
3669 }
3670
aa1b8cd4 3671 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
b5d67f64 3672 /* not supported for data w/o checksums */
efe120a0
FH
3673 btrfs_err(fs_info,
3674 "scrub: size assumption sectorsize != PAGE_SIZE "
3675 "(%d != %lu) fails",
27f9f023 3676 fs_info->chunk_root->sectorsize, PAGE_SIZE);
a2de733c
AJ
3677 return -EINVAL;
3678 }
3679
7a9e9987
SB
3680 if (fs_info->chunk_root->nodesize >
3681 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3682 fs_info->chunk_root->sectorsize >
3683 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3684 /*
3685 * would exhaust the array bounds of pagev member in
3686 * struct scrub_block
3687 */
efe120a0
FH
3688 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
3689 "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
7a9e9987
SB
3690 fs_info->chunk_root->nodesize,
3691 SCRUB_MAX_PAGES_PER_BLOCK,
3692 fs_info->chunk_root->sectorsize,
3693 SCRUB_MAX_PAGES_PER_BLOCK);
3694 return -EINVAL;
3695 }
3696
a2de733c 3697
aa1b8cd4
SB
3698 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3699 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
63a212ab 3700 if (!dev || (dev->missing && !is_dev_replace)) {
aa1b8cd4 3701 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c
AJ
3702 return -ENODEV;
3703 }
a2de733c 3704
5d68da3b
MX
3705 if (!is_dev_replace && !readonly && !dev->writeable) {
3706 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3707 rcu_read_lock();
3708 name = rcu_dereference(dev->name);
3709 btrfs_err(fs_info, "scrub: device %s is not writable",
3710 name->str);
3711 rcu_read_unlock();
3712 return -EROFS;
3713 }
3714
3b7a016f 3715 mutex_lock(&fs_info->scrub_lock);
63a212ab 3716 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
a2de733c 3717 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 3718 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
aa1b8cd4 3719 return -EIO;
a2de733c
AJ
3720 }
3721
8dabb742
SB
3722 btrfs_dev_replace_lock(&fs_info->dev_replace);
3723 if (dev->scrub_device ||
3724 (!is_dev_replace &&
3725 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3726 btrfs_dev_replace_unlock(&fs_info->dev_replace);
a2de733c 3727 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 3728 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c
AJ
3729 return -EINPROGRESS;
3730 }
8dabb742 3731 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3b7a016f
WS
3732
3733 ret = scrub_workers_get(fs_info, is_dev_replace);
3734 if (ret) {
3735 mutex_unlock(&fs_info->scrub_lock);
3736 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3737 return ret;
3738 }
3739
63a212ab 3740 sctx = scrub_setup_ctx(dev, is_dev_replace);
d9d181c1 3741 if (IS_ERR(sctx)) {
a2de733c 3742 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4
SB
3743 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3744 scrub_workers_put(fs_info);
d9d181c1 3745 return PTR_ERR(sctx);
a2de733c 3746 }
d9d181c1
SB
3747 sctx->readonly = readonly;
3748 dev->scrub_device = sctx;
3cb0929a 3749 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 3750
3cb0929a
WS
3751 /*
3752 * checking @scrub_pause_req here, we can avoid
3753 * race between committing transaction and scrubbing.
3754 */
cb7ab021 3755 __scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3756 atomic_inc(&fs_info->scrubs_running);
3757 mutex_unlock(&fs_info->scrub_lock);
a2de733c 3758
ff023aac 3759 if (!is_dev_replace) {
9b011adf
WS
3760 /*
3761 * by holding device list mutex, we can
3762 * kick off writing super in log tree sync.
3763 */
3cb0929a 3764 mutex_lock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3765 ret = scrub_supers(sctx, dev);
3cb0929a 3766 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3767 }
a2de733c
AJ
3768
3769 if (!ret)
ff023aac
SB
3770 ret = scrub_enumerate_chunks(sctx, dev, start, end,
3771 is_dev_replace);
a2de733c 3772
b6bfebc1 3773 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3774 atomic_dec(&fs_info->scrubs_running);
3775 wake_up(&fs_info->scrub_pause_wait);
3776
b6bfebc1 3777 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
0ef8e451 3778
a2de733c 3779 if (progress)
d9d181c1 3780 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c
AJ
3781
3782 mutex_lock(&fs_info->scrub_lock);
3783 dev->scrub_device = NULL;
3b7a016f 3784 scrub_workers_put(fs_info);
a2de733c
AJ
3785 mutex_unlock(&fs_info->scrub_lock);
3786
d9d181c1 3787 scrub_free_ctx(sctx);
a2de733c
AJ
3788
3789 return ret;
3790}
3791
143bede5 3792void btrfs_scrub_pause(struct btrfs_root *root)
a2de733c
AJ
3793{
3794 struct btrfs_fs_info *fs_info = root->fs_info;
3795
3796 mutex_lock(&fs_info->scrub_lock);
3797 atomic_inc(&fs_info->scrub_pause_req);
3798 while (atomic_read(&fs_info->scrubs_paused) !=
3799 atomic_read(&fs_info->scrubs_running)) {
3800 mutex_unlock(&fs_info->scrub_lock);
3801 wait_event(fs_info->scrub_pause_wait,
3802 atomic_read(&fs_info->scrubs_paused) ==
3803 atomic_read(&fs_info->scrubs_running));
3804 mutex_lock(&fs_info->scrub_lock);
3805 }
3806 mutex_unlock(&fs_info->scrub_lock);
a2de733c
AJ
3807}
3808
143bede5 3809void btrfs_scrub_continue(struct btrfs_root *root)
a2de733c
AJ
3810{
3811 struct btrfs_fs_info *fs_info = root->fs_info;
3812
3813 atomic_dec(&fs_info->scrub_pause_req);
3814 wake_up(&fs_info->scrub_pause_wait);
a2de733c
AJ
3815}
3816
aa1b8cd4 3817int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
a2de733c 3818{
a2de733c
AJ
3819 mutex_lock(&fs_info->scrub_lock);
3820 if (!atomic_read(&fs_info->scrubs_running)) {
3821 mutex_unlock(&fs_info->scrub_lock);
3822 return -ENOTCONN;
3823 }
3824
3825 atomic_inc(&fs_info->scrub_cancel_req);
3826 while (atomic_read(&fs_info->scrubs_running)) {
3827 mutex_unlock(&fs_info->scrub_lock);
3828 wait_event(fs_info->scrub_pause_wait,
3829 atomic_read(&fs_info->scrubs_running) == 0);
3830 mutex_lock(&fs_info->scrub_lock);
3831 }
3832 atomic_dec(&fs_info->scrub_cancel_req);
3833 mutex_unlock(&fs_info->scrub_lock);
3834
3835 return 0;
3836}
3837
aa1b8cd4
SB
3838int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3839 struct btrfs_device *dev)
49b25e05 3840{
d9d181c1 3841 struct scrub_ctx *sctx;
a2de733c
AJ
3842
3843 mutex_lock(&fs_info->scrub_lock);
d9d181c1
SB
3844 sctx = dev->scrub_device;
3845 if (!sctx) {
a2de733c
AJ
3846 mutex_unlock(&fs_info->scrub_lock);
3847 return -ENOTCONN;
3848 }
d9d181c1 3849 atomic_inc(&sctx->cancel_req);
a2de733c
AJ
3850 while (dev->scrub_device) {
3851 mutex_unlock(&fs_info->scrub_lock);
3852 wait_event(fs_info->scrub_pause_wait,
3853 dev->scrub_device == NULL);
3854 mutex_lock(&fs_info->scrub_lock);
3855 }
3856 mutex_unlock(&fs_info->scrub_lock);
3857
3858 return 0;
3859}
1623edeb 3860
a2de733c
AJ
3861int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3862 struct btrfs_scrub_progress *progress)
3863{
3864 struct btrfs_device *dev;
d9d181c1 3865 struct scrub_ctx *sctx = NULL;
a2de733c
AJ
3866
3867 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
aa1b8cd4 3868 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
a2de733c 3869 if (dev)
d9d181c1
SB
3870 sctx = dev->scrub_device;
3871 if (sctx)
3872 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c
AJ
3873 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3874
d9d181c1 3875 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
a2de733c 3876}
ff023aac
SB
3877
3878static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3879 u64 extent_logical, u64 extent_len,
3880 u64 *extent_physical,
3881 struct btrfs_device **extent_dev,
3882 int *extent_mirror_num)
3883{
3884 u64 mapped_length;
3885 struct btrfs_bio *bbio = NULL;
3886 int ret;
3887
3888 mapped_length = extent_len;
3889 ret = btrfs_map_block(fs_info, READ, extent_logical,
3890 &mapped_length, &bbio, 0);
3891 if (ret || !bbio || mapped_length < extent_len ||
3892 !bbio->stripes[0].dev->bdev) {
3893 kfree(bbio);
3894 return;
3895 }
3896
3897 *extent_physical = bbio->stripes[0].physical;
3898 *extent_mirror_num = bbio->mirror_num;
3899 *extent_dev = bbio->stripes[0].dev;
3900 kfree(bbio);
3901}
3902
3903static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3904 struct scrub_wr_ctx *wr_ctx,
3905 struct btrfs_fs_info *fs_info,
3906 struct btrfs_device *dev,
3907 int is_dev_replace)
3908{
3909 WARN_ON(wr_ctx->wr_curr_bio != NULL);
3910
3911 mutex_init(&wr_ctx->wr_lock);
3912 wr_ctx->wr_curr_bio = NULL;
3913 if (!is_dev_replace)
3914 return 0;
3915
3916 WARN_ON(!dev->bdev);
3917 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3918 bio_get_nr_vecs(dev->bdev));
3919 wr_ctx->tgtdev = dev;
3920 atomic_set(&wr_ctx->flush_all_writes, 0);
3921 return 0;
3922}
3923
3924static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3925{
3926 mutex_lock(&wr_ctx->wr_lock);
3927 kfree(wr_ctx->wr_curr_bio);
3928 wr_ctx->wr_curr_bio = NULL;
3929 mutex_unlock(&wr_ctx->wr_lock);
3930}
3931
3932static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3933 int mirror_num, u64 physical_for_dev_replace)
3934{
3935 struct scrub_copy_nocow_ctx *nocow_ctx;
3936 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3937
3938 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3939 if (!nocow_ctx) {
3940 spin_lock(&sctx->stat_lock);
3941 sctx->stat.malloc_errors++;
3942 spin_unlock(&sctx->stat_lock);
3943 return -ENOMEM;
3944 }
3945
3946 scrub_pending_trans_workers_inc(sctx);
3947
3948 nocow_ctx->sctx = sctx;
3949 nocow_ctx->logical = logical;
3950 nocow_ctx->len = len;
3951 nocow_ctx->mirror_num = mirror_num;
3952 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
9e0af237
LB
3953 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
3954 copy_nocow_pages_worker, NULL, NULL);
652f25a2 3955 INIT_LIST_HEAD(&nocow_ctx->inodes);
0339ef2f
QW
3956 btrfs_queue_work(fs_info->scrub_nocow_workers,
3957 &nocow_ctx->work);
ff023aac
SB
3958
3959 return 0;
3960}
3961
652f25a2
JB
3962static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3963{
3964 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3965 struct scrub_nocow_inode *nocow_inode;
3966
3967 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3968 if (!nocow_inode)
3969 return -ENOMEM;
3970 nocow_inode->inum = inum;
3971 nocow_inode->offset = offset;
3972 nocow_inode->root = root;
3973 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3974 return 0;
3975}
3976
3977#define COPY_COMPLETE 1
3978
ff023aac
SB
3979static void copy_nocow_pages_worker(struct btrfs_work *work)
3980{
3981 struct scrub_copy_nocow_ctx *nocow_ctx =
3982 container_of(work, struct scrub_copy_nocow_ctx, work);
3983 struct scrub_ctx *sctx = nocow_ctx->sctx;
3984 u64 logical = nocow_ctx->logical;
3985 u64 len = nocow_ctx->len;
3986 int mirror_num = nocow_ctx->mirror_num;
3987 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3988 int ret;
3989 struct btrfs_trans_handle *trans = NULL;
3990 struct btrfs_fs_info *fs_info;
3991 struct btrfs_path *path;
3992 struct btrfs_root *root;
3993 int not_written = 0;
3994
3995 fs_info = sctx->dev_root->fs_info;
3996 root = fs_info->extent_root;
3997
3998 path = btrfs_alloc_path();
3999 if (!path) {
4000 spin_lock(&sctx->stat_lock);
4001 sctx->stat.malloc_errors++;
4002 spin_unlock(&sctx->stat_lock);
4003 not_written = 1;
4004 goto out;
4005 }
4006
4007 trans = btrfs_join_transaction(root);
4008 if (IS_ERR(trans)) {
4009 not_written = 1;
4010 goto out;
4011 }
4012
4013 ret = iterate_inodes_from_logical(logical, fs_info, path,
652f25a2 4014 record_inode_for_nocow, nocow_ctx);
ff023aac 4015 if (ret != 0 && ret != -ENOENT) {
efe120a0
FH
4016 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
4017 "phys %llu, len %llu, mir %u, ret %d",
118a0a25
GU
4018 logical, physical_for_dev_replace, len, mirror_num,
4019 ret);
ff023aac
SB
4020 not_written = 1;
4021 goto out;
4022 }
4023
652f25a2
JB
4024 btrfs_end_transaction(trans, root);
4025 trans = NULL;
4026 while (!list_empty(&nocow_ctx->inodes)) {
4027 struct scrub_nocow_inode *entry;
4028 entry = list_first_entry(&nocow_ctx->inodes,
4029 struct scrub_nocow_inode,
4030 list);
4031 list_del_init(&entry->list);
4032 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4033 entry->root, nocow_ctx);
4034 kfree(entry);
4035 if (ret == COPY_COMPLETE) {
4036 ret = 0;
4037 break;
4038 } else if (ret) {
4039 break;
4040 }
4041 }
ff023aac 4042out:
652f25a2
JB
4043 while (!list_empty(&nocow_ctx->inodes)) {
4044 struct scrub_nocow_inode *entry;
4045 entry = list_first_entry(&nocow_ctx->inodes,
4046 struct scrub_nocow_inode,
4047 list);
4048 list_del_init(&entry->list);
4049 kfree(entry);
4050 }
ff023aac
SB
4051 if (trans && !IS_ERR(trans))
4052 btrfs_end_transaction(trans, root);
4053 if (not_written)
4054 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4055 num_uncorrectable_read_errors);
4056
4057 btrfs_free_path(path);
4058 kfree(nocow_ctx);
4059
4060 scrub_pending_trans_workers_dec(sctx);
4061}
4062
32159242
GH
4063static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
4064 u64 logical)
4065{
4066 struct extent_state *cached_state = NULL;
4067 struct btrfs_ordered_extent *ordered;
4068 struct extent_io_tree *io_tree;
4069 struct extent_map *em;
4070 u64 lockstart = start, lockend = start + len - 1;
4071 int ret = 0;
4072
4073 io_tree = &BTRFS_I(inode)->io_tree;
4074
4075 lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
4076 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4077 if (ordered) {
4078 btrfs_put_ordered_extent(ordered);
4079 ret = 1;
4080 goto out_unlock;
4081 }
4082
4083 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4084 if (IS_ERR(em)) {
4085 ret = PTR_ERR(em);
4086 goto out_unlock;
4087 }
4088
4089 /*
4090 * This extent does not actually cover the logical extent anymore,
4091 * move on to the next inode.
4092 */
4093 if (em->block_start > logical ||
4094 em->block_start + em->block_len < logical + len) {
4095 free_extent_map(em);
4096 ret = 1;
4097 goto out_unlock;
4098 }
4099 free_extent_map(em);
4100
4101out_unlock:
4102 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4103 GFP_NOFS);
4104 return ret;
4105}
4106
652f25a2
JB
4107static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4108 struct scrub_copy_nocow_ctx *nocow_ctx)
ff023aac 4109{
826aa0a8 4110 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
ff023aac 4111 struct btrfs_key key;
826aa0a8
MX
4112 struct inode *inode;
4113 struct page *page;
ff023aac 4114 struct btrfs_root *local_root;
652f25a2 4115 struct extent_io_tree *io_tree;
ff023aac 4116 u64 physical_for_dev_replace;
32159242 4117 u64 nocow_ctx_logical;
652f25a2 4118 u64 len = nocow_ctx->len;
826aa0a8 4119 unsigned long index;
6f1c3605 4120 int srcu_index;
652f25a2
JB
4121 int ret = 0;
4122 int err = 0;
ff023aac
SB
4123
4124 key.objectid = root;
4125 key.type = BTRFS_ROOT_ITEM_KEY;
4126 key.offset = (u64)-1;
6f1c3605
LB
4127
4128 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4129
ff023aac 4130 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
6f1c3605
LB
4131 if (IS_ERR(local_root)) {
4132 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
ff023aac 4133 return PTR_ERR(local_root);
6f1c3605 4134 }
ff023aac
SB
4135
4136 key.type = BTRFS_INODE_ITEM_KEY;
4137 key.objectid = inum;
4138 key.offset = 0;
4139 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
6f1c3605 4140 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
ff023aac
SB
4141 if (IS_ERR(inode))
4142 return PTR_ERR(inode);
4143
edd1400b
MX
4144 /* Avoid truncate/dio/punch hole.. */
4145 mutex_lock(&inode->i_mutex);
4146 inode_dio_wait(inode);
4147
ff023aac 4148 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
652f25a2 4149 io_tree = &BTRFS_I(inode)->io_tree;
32159242 4150 nocow_ctx_logical = nocow_ctx->logical;
652f25a2 4151
32159242
GH
4152 ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
4153 if (ret) {
4154 ret = ret > 0 ? 0 : ret;
4155 goto out;
652f25a2 4156 }
652f25a2 4157
ff023aac 4158 while (len >= PAGE_CACHE_SIZE) {
ff023aac 4159 index = offset >> PAGE_CACHE_SHIFT;
edd1400b 4160again:
ff023aac
SB
4161 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4162 if (!page) {
efe120a0 4163 btrfs_err(fs_info, "find_or_create_page() failed");
ff023aac 4164 ret = -ENOMEM;
826aa0a8 4165 goto out;
ff023aac
SB
4166 }
4167
4168 if (PageUptodate(page)) {
4169 if (PageDirty(page))
4170 goto next_page;
4171 } else {
4172 ClearPageError(page);
32159242 4173 err = extent_read_full_page(io_tree, page,
652f25a2
JB
4174 btrfs_get_extent,
4175 nocow_ctx->mirror_num);
826aa0a8
MX
4176 if (err) {
4177 ret = err;
ff023aac
SB
4178 goto next_page;
4179 }
edd1400b 4180
26b25891 4181 lock_page(page);
edd1400b
MX
4182 /*
4183 * If the page has been remove from the page cache,
4184 * the data on it is meaningless, because it may be
4185 * old one, the new data may be written into the new
4186 * page in the page cache.
4187 */
4188 if (page->mapping != inode->i_mapping) {
652f25a2 4189 unlock_page(page);
edd1400b
MX
4190 page_cache_release(page);
4191 goto again;
4192 }
ff023aac
SB
4193 if (!PageUptodate(page)) {
4194 ret = -EIO;
4195 goto next_page;
4196 }
4197 }
32159242
GH
4198
4199 ret = check_extent_to_block(inode, offset, len,
4200 nocow_ctx_logical);
4201 if (ret) {
4202 ret = ret > 0 ? 0 : ret;
4203 goto next_page;
4204 }
4205
826aa0a8
MX
4206 err = write_page_nocow(nocow_ctx->sctx,
4207 physical_for_dev_replace, page);
4208 if (err)
4209 ret = err;
ff023aac 4210next_page:
826aa0a8
MX
4211 unlock_page(page);
4212 page_cache_release(page);
4213
4214 if (ret)
4215 break;
4216
ff023aac
SB
4217 offset += PAGE_CACHE_SIZE;
4218 physical_for_dev_replace += PAGE_CACHE_SIZE;
32159242 4219 nocow_ctx_logical += PAGE_CACHE_SIZE;
ff023aac
SB
4220 len -= PAGE_CACHE_SIZE;
4221 }
652f25a2 4222 ret = COPY_COMPLETE;
826aa0a8 4223out:
edd1400b 4224 mutex_unlock(&inode->i_mutex);
826aa0a8 4225 iput(inode);
ff023aac
SB
4226 return ret;
4227}
4228
4229static int write_page_nocow(struct scrub_ctx *sctx,
4230 u64 physical_for_dev_replace, struct page *page)
4231{
4232 struct bio *bio;
4233 struct btrfs_device *dev;
4234 int ret;
ff023aac
SB
4235
4236 dev = sctx->wr_ctx.tgtdev;
4237 if (!dev)
4238 return -EIO;
4239 if (!dev->bdev) {
4240 printk_ratelimited(KERN_WARNING
efe120a0 4241 "BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
ff023aac
SB
4242 return -EIO;
4243 }
9be3395b 4244 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
ff023aac
SB
4245 if (!bio) {
4246 spin_lock(&sctx->stat_lock);
4247 sctx->stat.malloc_errors++;
4248 spin_unlock(&sctx->stat_lock);
4249 return -ENOMEM;
4250 }
4f024f37
KO
4251 bio->bi_iter.bi_size = 0;
4252 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
ff023aac
SB
4253 bio->bi_bdev = dev->bdev;
4254 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
4255 if (ret != PAGE_CACHE_SIZE) {
4256leave_with_eio:
4257 bio_put(bio);
4258 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4259 return -EIO;
4260 }
ff023aac 4261
33879d45 4262 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
ff023aac
SB
4263 goto leave_with_eio;
4264
4265 bio_put(bio);
4266 return 0;
4267}
This page took 0.389735 seconds and 5 git commands to generate.