Btrfs: fix send dealing with file renames and directory moves
[deliverable/linux.git] / fs / btrfs / send.c
CommitLineData
31db9f7c
AB
1/*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/bsearch.h>
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/sort.h>
23#include <linux/mount.h>
24#include <linux/xattr.h>
25#include <linux/posix_acl_xattr.h>
26#include <linux/radix-tree.h>
a1857ebe 27#include <linux/vmalloc.h>
ed84885d 28#include <linux/string.h>
31db9f7c
AB
29
30#include "send.h"
31#include "backref.h"
0b947aff 32#include "hash.h"
31db9f7c
AB
33#include "locking.h"
34#include "disk-io.h"
35#include "btrfs_inode.h"
36#include "transaction.h"
37
38static int g_verbose = 0;
39
40#define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41
42/*
43 * A fs_path is a helper to dynamically build path names with unknown size.
44 * It reallocates the internal buffer on demand.
45 * It allows fast adding of path elements on the right side (normal path) and
46 * fast adding to the left side (reversed path). A reversed path can also be
47 * unreversed if needed.
48 */
49struct fs_path {
50 union {
51 struct {
52 char *start;
53 char *end;
54 char *prepared;
55
56 char *buf;
57 int buf_len;
35a3621b
SB
58 unsigned int reversed:1;
59 unsigned int virtual_mem:1;
31db9f7c
AB
60 char inline_buf[];
61 };
62 char pad[PAGE_SIZE];
63 };
64};
65#define FS_PATH_INLINE_SIZE \
66 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
67
68
69/* reused for each extent */
70struct clone_root {
71 struct btrfs_root *root;
72 u64 ino;
73 u64 offset;
74
75 u64 found_refs;
76};
77
78#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
80
81struct send_ctx {
82 struct file *send_filp;
83 loff_t send_off;
84 char *send_buf;
85 u32 send_size;
86 u32 send_max_size;
87 u64 total_send_size;
88 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
cb95e7bf 89 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
31db9f7c 90
31db9f7c
AB
91 struct btrfs_root *send_root;
92 struct btrfs_root *parent_root;
93 struct clone_root *clone_roots;
94 int clone_roots_cnt;
95
96 /* current state of the compare_tree call */
97 struct btrfs_path *left_path;
98 struct btrfs_path *right_path;
99 struct btrfs_key *cmp_key;
100
101 /*
102 * infos of the currently processed inode. In case of deleted inodes,
103 * these are the values from the deleted inode.
104 */
105 u64 cur_ino;
106 u64 cur_inode_gen;
107 int cur_inode_new;
108 int cur_inode_new_gen;
109 int cur_inode_deleted;
31db9f7c
AB
110 u64 cur_inode_size;
111 u64 cur_inode_mode;
16e7549f 112 u64 cur_inode_last_extent;
31db9f7c
AB
113
114 u64 send_progress;
115
116 struct list_head new_refs;
117 struct list_head deleted_refs;
118
119 struct radix_tree_root name_cache;
120 struct list_head name_cache_list;
121 int name_cache_size;
122
31db9f7c 123 char *read_buf;
9f03740a
FDBM
124
125 /*
126 * We process inodes by their increasing order, so if before an
127 * incremental send we reverse the parent/child relationship of
128 * directories such that a directory with a lower inode number was
129 * the parent of a directory with a higher inode number, and the one
130 * becoming the new parent got renamed too, we can't rename/move the
131 * directory with lower inode number when we finish processing it - we
132 * must process the directory with higher inode number first, then
133 * rename/move it and then rename/move the directory with lower inode
134 * number. Example follows.
135 *
136 * Tree state when the first send was performed:
137 *
138 * .
139 * |-- a (ino 257)
140 * |-- b (ino 258)
141 * |
142 * |
143 * |-- c (ino 259)
144 * | |-- d (ino 260)
145 * |
146 * |-- c2 (ino 261)
147 *
148 * Tree state when the second (incremental) send is performed:
149 *
150 * .
151 * |-- a (ino 257)
152 * |-- b (ino 258)
153 * |-- c2 (ino 261)
154 * |-- d2 (ino 260)
155 * |-- cc (ino 259)
156 *
157 * The sequence of steps that lead to the second state was:
158 *
159 * mv /a/b/c/d /a/b/c2/d2
160 * mv /a/b/c /a/b/c2/d2/cc
161 *
162 * "c" has lower inode number, but we can't move it (2nd mv operation)
163 * before we move "d", which has higher inode number.
164 *
165 * So we just memorize which move/rename operations must be performed
166 * later when their respective parent is processed and moved/renamed.
167 */
168
169 /* Indexed by parent directory inode number. */
170 struct rb_root pending_dir_moves;
171
172 /*
173 * Reverse index, indexed by the inode number of a directory that
174 * is waiting for the move/rename of its immediate parent before its
175 * own move/rename can be performed.
176 */
177 struct rb_root waiting_dir_moves;
178};
179
180struct pending_dir_move {
181 struct rb_node node;
182 struct list_head list;
183 u64 parent_ino;
184 u64 ino;
185 u64 gen;
186 struct list_head update_refs;
187};
188
189struct waiting_dir_move {
190 struct rb_node node;
191 u64 ino;
31db9f7c
AB
192};
193
194struct name_cache_entry {
195 struct list_head list;
7e0926fe
AB
196 /*
197 * radix_tree has only 32bit entries but we need to handle 64bit inums.
198 * We use the lower 32bit of the 64bit inum to store it in the tree. If
199 * more then one inum would fall into the same entry, we use radix_list
200 * to store the additional entries. radix_list is also used to store
201 * entries where two entries have the same inum but different
202 * generations.
203 */
204 struct list_head radix_list;
31db9f7c
AB
205 u64 ino;
206 u64 gen;
207 u64 parent_ino;
208 u64 parent_gen;
209 int ret;
210 int need_later_update;
211 int name_len;
212 char name[];
213};
214
9f03740a
FDBM
215static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
216
16e7549f
JB
217static int need_send_hole(struct send_ctx *sctx)
218{
219 return (sctx->parent_root && !sctx->cur_inode_new &&
220 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
221 S_ISREG(sctx->cur_inode_mode));
222}
223
31db9f7c
AB
224static void fs_path_reset(struct fs_path *p)
225{
226 if (p->reversed) {
227 p->start = p->buf + p->buf_len - 1;
228 p->end = p->start;
229 *p->start = 0;
230 } else {
231 p->start = p->buf;
232 p->end = p->start;
233 *p->start = 0;
234 }
235}
236
924794c9 237static struct fs_path *fs_path_alloc(void)
31db9f7c
AB
238{
239 struct fs_path *p;
240
241 p = kmalloc(sizeof(*p), GFP_NOFS);
242 if (!p)
243 return NULL;
244 p->reversed = 0;
245 p->virtual_mem = 0;
246 p->buf = p->inline_buf;
247 p->buf_len = FS_PATH_INLINE_SIZE;
248 fs_path_reset(p);
249 return p;
250}
251
924794c9 252static struct fs_path *fs_path_alloc_reversed(void)
31db9f7c
AB
253{
254 struct fs_path *p;
255
924794c9 256 p = fs_path_alloc();
31db9f7c
AB
257 if (!p)
258 return NULL;
259 p->reversed = 1;
260 fs_path_reset(p);
261 return p;
262}
263
924794c9 264static void fs_path_free(struct fs_path *p)
31db9f7c
AB
265{
266 if (!p)
267 return;
268 if (p->buf != p->inline_buf) {
269 if (p->virtual_mem)
270 vfree(p->buf);
271 else
272 kfree(p->buf);
273 }
274 kfree(p);
275}
276
277static int fs_path_len(struct fs_path *p)
278{
279 return p->end - p->start;
280}
281
282static int fs_path_ensure_buf(struct fs_path *p, int len)
283{
284 char *tmp_buf;
285 int path_len;
286 int old_buf_len;
287
288 len++;
289
290 if (p->buf_len >= len)
291 return 0;
292
293 path_len = p->end - p->start;
294 old_buf_len = p->buf_len;
295 len = PAGE_ALIGN(len);
296
297 if (p->buf == p->inline_buf) {
8be04b93 298 tmp_buf = kmalloc(len, GFP_NOFS | __GFP_NOWARN);
31db9f7c
AB
299 if (!tmp_buf) {
300 tmp_buf = vmalloc(len);
301 if (!tmp_buf)
302 return -ENOMEM;
303 p->virtual_mem = 1;
304 }
305 memcpy(tmp_buf, p->buf, p->buf_len);
306 p->buf = tmp_buf;
307 p->buf_len = len;
308 } else {
309 if (p->virtual_mem) {
310 tmp_buf = vmalloc(len);
311 if (!tmp_buf)
312 return -ENOMEM;
313 memcpy(tmp_buf, p->buf, p->buf_len);
314 vfree(p->buf);
315 } else {
316 tmp_buf = krealloc(p->buf, len, GFP_NOFS);
317 if (!tmp_buf) {
318 tmp_buf = vmalloc(len);
319 if (!tmp_buf)
320 return -ENOMEM;
321 memcpy(tmp_buf, p->buf, p->buf_len);
322 kfree(p->buf);
323 p->virtual_mem = 1;
324 }
325 }
326 p->buf = tmp_buf;
327 p->buf_len = len;
328 }
329 if (p->reversed) {
330 tmp_buf = p->buf + old_buf_len - path_len - 1;
331 p->end = p->buf + p->buf_len - 1;
332 p->start = p->end - path_len;
333 memmove(p->start, tmp_buf, path_len + 1);
334 } else {
335 p->start = p->buf;
336 p->end = p->start + path_len;
337 }
338 return 0;
339}
340
341static int fs_path_prepare_for_add(struct fs_path *p, int name_len)
342{
343 int ret;
344 int new_len;
345
346 new_len = p->end - p->start + name_len;
347 if (p->start != p->end)
348 new_len++;
349 ret = fs_path_ensure_buf(p, new_len);
350 if (ret < 0)
351 goto out;
352
353 if (p->reversed) {
354 if (p->start != p->end)
355 *--p->start = '/';
356 p->start -= name_len;
357 p->prepared = p->start;
358 } else {
359 if (p->start != p->end)
360 *p->end++ = '/';
361 p->prepared = p->end;
362 p->end += name_len;
363 *p->end = 0;
364 }
365
366out:
367 return ret;
368}
369
370static int fs_path_add(struct fs_path *p, const char *name, int name_len)
371{
372 int ret;
373
374 ret = fs_path_prepare_for_add(p, name_len);
375 if (ret < 0)
376 goto out;
377 memcpy(p->prepared, name, name_len);
378 p->prepared = NULL;
379
380out:
381 return ret;
382}
383
384static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
385{
386 int ret;
387
388 ret = fs_path_prepare_for_add(p, p2->end - p2->start);
389 if (ret < 0)
390 goto out;
391 memcpy(p->prepared, p2->start, p2->end - p2->start);
392 p->prepared = NULL;
393
394out:
395 return ret;
396}
397
398static int fs_path_add_from_extent_buffer(struct fs_path *p,
399 struct extent_buffer *eb,
400 unsigned long off, int len)
401{
402 int ret;
403
404 ret = fs_path_prepare_for_add(p, len);
405 if (ret < 0)
406 goto out;
407
408 read_extent_buffer(eb, p->prepared, off, len);
409 p->prepared = NULL;
410
411out:
412 return ret;
413}
414
31db9f7c
AB
415static int fs_path_copy(struct fs_path *p, struct fs_path *from)
416{
417 int ret;
418
419 p->reversed = from->reversed;
420 fs_path_reset(p);
421
422 ret = fs_path_add_path(p, from);
423
424 return ret;
425}
426
427
428static void fs_path_unreverse(struct fs_path *p)
429{
430 char *tmp;
431 int len;
432
433 if (!p->reversed)
434 return;
435
436 tmp = p->start;
437 len = p->end - p->start;
438 p->start = p->buf;
439 p->end = p->start + len;
440 memmove(p->start, tmp, len + 1);
441 p->reversed = 0;
442}
443
444static struct btrfs_path *alloc_path_for_send(void)
445{
446 struct btrfs_path *path;
447
448 path = btrfs_alloc_path();
449 if (!path)
450 return NULL;
451 path->search_commit_root = 1;
452 path->skip_locking = 1;
453 return path;
454}
455
48a3b636 456static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
31db9f7c
AB
457{
458 int ret;
459 mm_segment_t old_fs;
460 u32 pos = 0;
461
462 old_fs = get_fs();
463 set_fs(KERNEL_DS);
464
465 while (pos < len) {
1bcea355 466 ret = vfs_write(filp, (char *)buf + pos, len - pos, off);
31db9f7c
AB
467 /* TODO handle that correctly */
468 /*if (ret == -ERESTARTSYS) {
469 continue;
470 }*/
471 if (ret < 0)
472 goto out;
473 if (ret == 0) {
474 ret = -EIO;
475 goto out;
476 }
477 pos += ret;
478 }
479
480 ret = 0;
481
482out:
483 set_fs(old_fs);
484 return ret;
485}
486
487static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
488{
489 struct btrfs_tlv_header *hdr;
490 int total_len = sizeof(*hdr) + len;
491 int left = sctx->send_max_size - sctx->send_size;
492
493 if (unlikely(left < total_len))
494 return -EOVERFLOW;
495
496 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
497 hdr->tlv_type = cpu_to_le16(attr);
498 hdr->tlv_len = cpu_to_le16(len);
499 memcpy(hdr + 1, data, len);
500 sctx->send_size += total_len;
501
502 return 0;
503}
504
95bc79d5
DS
505#define TLV_PUT_DEFINE_INT(bits) \
506 static int tlv_put_u##bits(struct send_ctx *sctx, \
507 u##bits attr, u##bits value) \
508 { \
509 __le##bits __tmp = cpu_to_le##bits(value); \
510 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
511 }
31db9f7c 512
95bc79d5 513TLV_PUT_DEFINE_INT(64)
31db9f7c
AB
514
515static int tlv_put_string(struct send_ctx *sctx, u16 attr,
516 const char *str, int len)
517{
518 if (len == -1)
519 len = strlen(str);
520 return tlv_put(sctx, attr, str, len);
521}
522
523static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
524 const u8 *uuid)
525{
526 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
527}
528
31db9f7c
AB
529static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
530 struct extent_buffer *eb,
531 struct btrfs_timespec *ts)
532{
533 struct btrfs_timespec bts;
534 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
535 return tlv_put(sctx, attr, &bts, sizeof(bts));
536}
537
538
539#define TLV_PUT(sctx, attrtype, attrlen, data) \
540 do { \
541 ret = tlv_put(sctx, attrtype, attrlen, data); \
542 if (ret < 0) \
543 goto tlv_put_failure; \
544 } while (0)
545
546#define TLV_PUT_INT(sctx, attrtype, bits, value) \
547 do { \
548 ret = tlv_put_u##bits(sctx, attrtype, value); \
549 if (ret < 0) \
550 goto tlv_put_failure; \
551 } while (0)
552
553#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
554#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
555#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
556#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
557#define TLV_PUT_STRING(sctx, attrtype, str, len) \
558 do { \
559 ret = tlv_put_string(sctx, attrtype, str, len); \
560 if (ret < 0) \
561 goto tlv_put_failure; \
562 } while (0)
563#define TLV_PUT_PATH(sctx, attrtype, p) \
564 do { \
565 ret = tlv_put_string(sctx, attrtype, p->start, \
566 p->end - p->start); \
567 if (ret < 0) \
568 goto tlv_put_failure; \
569 } while(0)
570#define TLV_PUT_UUID(sctx, attrtype, uuid) \
571 do { \
572 ret = tlv_put_uuid(sctx, attrtype, uuid); \
573 if (ret < 0) \
574 goto tlv_put_failure; \
575 } while (0)
31db9f7c
AB
576#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
577 do { \
578 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
579 if (ret < 0) \
580 goto tlv_put_failure; \
581 } while (0)
582
583static int send_header(struct send_ctx *sctx)
584{
585 struct btrfs_stream_header hdr;
586
587 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
588 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
589
1bcea355
AJ
590 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
591 &sctx->send_off);
31db9f7c
AB
592}
593
594/*
595 * For each command/item we want to send to userspace, we call this function.
596 */
597static int begin_cmd(struct send_ctx *sctx, int cmd)
598{
599 struct btrfs_cmd_header *hdr;
600
fae7f21c 601 if (WARN_ON(!sctx->send_buf))
31db9f7c 602 return -EINVAL;
31db9f7c
AB
603
604 BUG_ON(sctx->send_size);
605
606 sctx->send_size += sizeof(*hdr);
607 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
608 hdr->cmd = cpu_to_le16(cmd);
609
610 return 0;
611}
612
613static int send_cmd(struct send_ctx *sctx)
614{
615 int ret;
616 struct btrfs_cmd_header *hdr;
617 u32 crc;
618
619 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
620 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
621 hdr->crc = 0;
622
0b947aff 623 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
31db9f7c
AB
624 hdr->crc = cpu_to_le32(crc);
625
1bcea355
AJ
626 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
627 &sctx->send_off);
31db9f7c
AB
628
629 sctx->total_send_size += sctx->send_size;
630 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
631 sctx->send_size = 0;
632
633 return ret;
634}
635
636/*
637 * Sends a move instruction to user space
638 */
639static int send_rename(struct send_ctx *sctx,
640 struct fs_path *from, struct fs_path *to)
641{
642 int ret;
643
644verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
645
646 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
647 if (ret < 0)
648 goto out;
649
650 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
651 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
652
653 ret = send_cmd(sctx);
654
655tlv_put_failure:
656out:
657 return ret;
658}
659
660/*
661 * Sends a link instruction to user space
662 */
663static int send_link(struct send_ctx *sctx,
664 struct fs_path *path, struct fs_path *lnk)
665{
666 int ret;
667
668verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
669
670 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
671 if (ret < 0)
672 goto out;
673
674 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
675 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
676
677 ret = send_cmd(sctx);
678
679tlv_put_failure:
680out:
681 return ret;
682}
683
684/*
685 * Sends an unlink instruction to user space
686 */
687static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
688{
689 int ret;
690
691verbose_printk("btrfs: send_unlink %s\n", path->start);
692
693 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
694 if (ret < 0)
695 goto out;
696
697 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
698
699 ret = send_cmd(sctx);
700
701tlv_put_failure:
702out:
703 return ret;
704}
705
706/*
707 * Sends a rmdir instruction to user space
708 */
709static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
710{
711 int ret;
712
713verbose_printk("btrfs: send_rmdir %s\n", path->start);
714
715 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
716 if (ret < 0)
717 goto out;
718
719 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
720
721 ret = send_cmd(sctx);
722
723tlv_put_failure:
724out:
725 return ret;
726}
727
728/*
729 * Helper function to retrieve some fields from an inode item.
730 */
731static int get_inode_info(struct btrfs_root *root,
732 u64 ino, u64 *size, u64 *gen,
85a7b33b
AB
733 u64 *mode, u64 *uid, u64 *gid,
734 u64 *rdev)
31db9f7c
AB
735{
736 int ret;
737 struct btrfs_inode_item *ii;
738 struct btrfs_key key;
739 struct btrfs_path *path;
740
741 path = alloc_path_for_send();
742 if (!path)
743 return -ENOMEM;
744
745 key.objectid = ino;
746 key.type = BTRFS_INODE_ITEM_KEY;
747 key.offset = 0;
748 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
749 if (ret < 0)
750 goto out;
751 if (ret) {
752 ret = -ENOENT;
753 goto out;
754 }
755
756 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
757 struct btrfs_inode_item);
758 if (size)
759 *size = btrfs_inode_size(path->nodes[0], ii);
760 if (gen)
761 *gen = btrfs_inode_generation(path->nodes[0], ii);
762 if (mode)
763 *mode = btrfs_inode_mode(path->nodes[0], ii);
764 if (uid)
765 *uid = btrfs_inode_uid(path->nodes[0], ii);
766 if (gid)
767 *gid = btrfs_inode_gid(path->nodes[0], ii);
85a7b33b
AB
768 if (rdev)
769 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
31db9f7c
AB
770
771out:
772 btrfs_free_path(path);
773 return ret;
774}
775
776typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
777 struct fs_path *p,
778 void *ctx);
779
780/*
96b5bd77
JS
781 * Helper function to iterate the entries in ONE btrfs_inode_ref or
782 * btrfs_inode_extref.
31db9f7c
AB
783 * The iterate callback may return a non zero value to stop iteration. This can
784 * be a negative value for error codes or 1 to simply stop it.
785 *
96b5bd77 786 * path must point to the INODE_REF or INODE_EXTREF when called.
31db9f7c 787 */
924794c9 788static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
789 struct btrfs_key *found_key, int resolve,
790 iterate_inode_ref_t iterate, void *ctx)
791{
96b5bd77 792 struct extent_buffer *eb = path->nodes[0];
31db9f7c
AB
793 struct btrfs_item *item;
794 struct btrfs_inode_ref *iref;
96b5bd77 795 struct btrfs_inode_extref *extref;
31db9f7c
AB
796 struct btrfs_path *tmp_path;
797 struct fs_path *p;
96b5bd77 798 u32 cur = 0;
31db9f7c 799 u32 total;
96b5bd77 800 int slot = path->slots[0];
31db9f7c
AB
801 u32 name_len;
802 char *start;
803 int ret = 0;
96b5bd77 804 int num = 0;
31db9f7c 805 int index;
96b5bd77
JS
806 u64 dir;
807 unsigned long name_off;
808 unsigned long elem_size;
809 unsigned long ptr;
31db9f7c 810
924794c9 811 p = fs_path_alloc_reversed();
31db9f7c
AB
812 if (!p)
813 return -ENOMEM;
814
815 tmp_path = alloc_path_for_send();
816 if (!tmp_path) {
924794c9 817 fs_path_free(p);
31db9f7c
AB
818 return -ENOMEM;
819 }
820
31db9f7c 821
96b5bd77
JS
822 if (found_key->type == BTRFS_INODE_REF_KEY) {
823 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
824 struct btrfs_inode_ref);
dd3cc16b 825 item = btrfs_item_nr(slot);
96b5bd77
JS
826 total = btrfs_item_size(eb, item);
827 elem_size = sizeof(*iref);
828 } else {
829 ptr = btrfs_item_ptr_offset(eb, slot);
830 total = btrfs_item_size_nr(eb, slot);
831 elem_size = sizeof(*extref);
832 }
833
31db9f7c
AB
834 while (cur < total) {
835 fs_path_reset(p);
836
96b5bd77
JS
837 if (found_key->type == BTRFS_INODE_REF_KEY) {
838 iref = (struct btrfs_inode_ref *)(ptr + cur);
839 name_len = btrfs_inode_ref_name_len(eb, iref);
840 name_off = (unsigned long)(iref + 1);
841 index = btrfs_inode_ref_index(eb, iref);
842 dir = found_key->offset;
843 } else {
844 extref = (struct btrfs_inode_extref *)(ptr + cur);
845 name_len = btrfs_inode_extref_name_len(eb, extref);
846 name_off = (unsigned long)&extref->name;
847 index = btrfs_inode_extref_index(eb, extref);
848 dir = btrfs_inode_extref_parent(eb, extref);
849 }
850
31db9f7c 851 if (resolve) {
96b5bd77
JS
852 start = btrfs_ref_to_path(root, tmp_path, name_len,
853 name_off, eb, dir,
854 p->buf, p->buf_len);
31db9f7c
AB
855 if (IS_ERR(start)) {
856 ret = PTR_ERR(start);
857 goto out;
858 }
859 if (start < p->buf) {
860 /* overflow , try again with larger buffer */
861 ret = fs_path_ensure_buf(p,
862 p->buf_len + p->buf - start);
863 if (ret < 0)
864 goto out;
96b5bd77
JS
865 start = btrfs_ref_to_path(root, tmp_path,
866 name_len, name_off,
867 eb, dir,
868 p->buf, p->buf_len);
31db9f7c
AB
869 if (IS_ERR(start)) {
870 ret = PTR_ERR(start);
871 goto out;
872 }
873 BUG_ON(start < p->buf);
874 }
875 p->start = start;
876 } else {
96b5bd77
JS
877 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
878 name_len);
31db9f7c
AB
879 if (ret < 0)
880 goto out;
881 }
882
96b5bd77
JS
883 cur += elem_size + name_len;
884 ret = iterate(num, dir, index, p, ctx);
31db9f7c
AB
885 if (ret)
886 goto out;
31db9f7c
AB
887 num++;
888 }
889
890out:
891 btrfs_free_path(tmp_path);
924794c9 892 fs_path_free(p);
31db9f7c
AB
893 return ret;
894}
895
896typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
897 const char *name, int name_len,
898 const char *data, int data_len,
899 u8 type, void *ctx);
900
901/*
902 * Helper function to iterate the entries in ONE btrfs_dir_item.
903 * The iterate callback may return a non zero value to stop iteration. This can
904 * be a negative value for error codes or 1 to simply stop it.
905 *
906 * path must point to the dir item when called.
907 */
924794c9 908static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
909 struct btrfs_key *found_key,
910 iterate_dir_item_t iterate, void *ctx)
911{
912 int ret = 0;
913 struct extent_buffer *eb;
914 struct btrfs_item *item;
915 struct btrfs_dir_item *di;
31db9f7c
AB
916 struct btrfs_key di_key;
917 char *buf = NULL;
918 char *buf2 = NULL;
919 int buf_len;
920 int buf_virtual = 0;
921 u32 name_len;
922 u32 data_len;
923 u32 cur;
924 u32 len;
925 u32 total;
926 int slot;
927 int num;
928 u8 type;
929
930 buf_len = PAGE_SIZE;
931 buf = kmalloc(buf_len, GFP_NOFS);
932 if (!buf) {
933 ret = -ENOMEM;
934 goto out;
935 }
936
31db9f7c
AB
937 eb = path->nodes[0];
938 slot = path->slots[0];
dd3cc16b 939 item = btrfs_item_nr(slot);
31db9f7c
AB
940 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
941 cur = 0;
942 len = 0;
943 total = btrfs_item_size(eb, item);
944
945 num = 0;
946 while (cur < total) {
947 name_len = btrfs_dir_name_len(eb, di);
948 data_len = btrfs_dir_data_len(eb, di);
949 type = btrfs_dir_type(eb, di);
950 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
951
952 if (name_len + data_len > buf_len) {
953 buf_len = PAGE_ALIGN(name_len + data_len);
954 if (buf_virtual) {
955 buf2 = vmalloc(buf_len);
956 if (!buf2) {
957 ret = -ENOMEM;
958 goto out;
959 }
960 vfree(buf);
961 } else {
962 buf2 = krealloc(buf, buf_len, GFP_NOFS);
963 if (!buf2) {
964 buf2 = vmalloc(buf_len);
965 if (!buf2) {
966 ret = -ENOMEM;
967 goto out;
968 }
969 kfree(buf);
970 buf_virtual = 1;
971 }
972 }
973
974 buf = buf2;
975 buf2 = NULL;
976 }
977
978 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
979 name_len + data_len);
980
981 len = sizeof(*di) + name_len + data_len;
982 di = (struct btrfs_dir_item *)((char *)di + len);
983 cur += len;
984
985 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
986 data_len, type, ctx);
987 if (ret < 0)
988 goto out;
989 if (ret) {
990 ret = 0;
991 goto out;
992 }
993
994 num++;
995 }
996
997out:
31db9f7c
AB
998 if (buf_virtual)
999 vfree(buf);
1000 else
1001 kfree(buf);
1002 return ret;
1003}
1004
1005static int __copy_first_ref(int num, u64 dir, int index,
1006 struct fs_path *p, void *ctx)
1007{
1008 int ret;
1009 struct fs_path *pt = ctx;
1010
1011 ret = fs_path_copy(pt, p);
1012 if (ret < 0)
1013 return ret;
1014
1015 /* we want the first only */
1016 return 1;
1017}
1018
1019/*
1020 * Retrieve the first path of an inode. If an inode has more then one
1021 * ref/hardlink, this is ignored.
1022 */
924794c9 1023static int get_inode_path(struct btrfs_root *root,
31db9f7c
AB
1024 u64 ino, struct fs_path *path)
1025{
1026 int ret;
1027 struct btrfs_key key, found_key;
1028 struct btrfs_path *p;
1029
1030 p = alloc_path_for_send();
1031 if (!p)
1032 return -ENOMEM;
1033
1034 fs_path_reset(path);
1035
1036 key.objectid = ino;
1037 key.type = BTRFS_INODE_REF_KEY;
1038 key.offset = 0;
1039
1040 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1041 if (ret < 0)
1042 goto out;
1043 if (ret) {
1044 ret = 1;
1045 goto out;
1046 }
1047 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1048 if (found_key.objectid != ino ||
96b5bd77
JS
1049 (found_key.type != BTRFS_INODE_REF_KEY &&
1050 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1051 ret = -ENOENT;
1052 goto out;
1053 }
1054
924794c9
TI
1055 ret = iterate_inode_ref(root, p, &found_key, 1,
1056 __copy_first_ref, path);
31db9f7c
AB
1057 if (ret < 0)
1058 goto out;
1059 ret = 0;
1060
1061out:
1062 btrfs_free_path(p);
1063 return ret;
1064}
1065
1066struct backref_ctx {
1067 struct send_ctx *sctx;
1068
1069 /* number of total found references */
1070 u64 found;
1071
1072 /*
1073 * used for clones found in send_root. clones found behind cur_objectid
1074 * and cur_offset are not considered as allowed clones.
1075 */
1076 u64 cur_objectid;
1077 u64 cur_offset;
1078
1079 /* may be truncated in case it's the last extent in a file */
1080 u64 extent_len;
1081
1082 /* Just to check for bugs in backref resolving */
ee849c04 1083 int found_itself;
31db9f7c
AB
1084};
1085
1086static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1087{
995e01b7 1088 u64 root = (u64)(uintptr_t)key;
31db9f7c
AB
1089 struct clone_root *cr = (struct clone_root *)elt;
1090
1091 if (root < cr->root->objectid)
1092 return -1;
1093 if (root > cr->root->objectid)
1094 return 1;
1095 return 0;
1096}
1097
1098static int __clone_root_cmp_sort(const void *e1, const void *e2)
1099{
1100 struct clone_root *cr1 = (struct clone_root *)e1;
1101 struct clone_root *cr2 = (struct clone_root *)e2;
1102
1103 if (cr1->root->objectid < cr2->root->objectid)
1104 return -1;
1105 if (cr1->root->objectid > cr2->root->objectid)
1106 return 1;
1107 return 0;
1108}
1109
1110/*
1111 * Called for every backref that is found for the current extent.
766702ef 1112 * Results are collected in sctx->clone_roots->ino/offset/found_refs
31db9f7c
AB
1113 */
1114static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1115{
1116 struct backref_ctx *bctx = ctx_;
1117 struct clone_root *found;
1118 int ret;
1119 u64 i_size;
1120
1121 /* First check if the root is in the list of accepted clone sources */
995e01b7 1122 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
31db9f7c
AB
1123 bctx->sctx->clone_roots_cnt,
1124 sizeof(struct clone_root),
1125 __clone_root_cmp_bsearch);
1126 if (!found)
1127 return 0;
1128
1129 if (found->root == bctx->sctx->send_root &&
1130 ino == bctx->cur_objectid &&
1131 offset == bctx->cur_offset) {
ee849c04 1132 bctx->found_itself = 1;
31db9f7c
AB
1133 }
1134
1135 /*
766702ef 1136 * There are inodes that have extents that lie behind its i_size. Don't
31db9f7c
AB
1137 * accept clones from these extents.
1138 */
85a7b33b
AB
1139 ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL,
1140 NULL);
31db9f7c
AB
1141 if (ret < 0)
1142 return ret;
1143
1144 if (offset + bctx->extent_len > i_size)
1145 return 0;
1146
1147 /*
1148 * Make sure we don't consider clones from send_root that are
1149 * behind the current inode/offset.
1150 */
1151 if (found->root == bctx->sctx->send_root) {
1152 /*
1153 * TODO for the moment we don't accept clones from the inode
1154 * that is currently send. We may change this when
1155 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1156 * file.
1157 */
1158 if (ino >= bctx->cur_objectid)
1159 return 0;
e938c8ad
AB
1160#if 0
1161 if (ino > bctx->cur_objectid)
1162 return 0;
1163 if (offset + bctx->extent_len > bctx->cur_offset)
31db9f7c 1164 return 0;
e938c8ad 1165#endif
31db9f7c
AB
1166 }
1167
1168 bctx->found++;
1169 found->found_refs++;
1170 if (ino < found->ino) {
1171 found->ino = ino;
1172 found->offset = offset;
1173 } else if (found->ino == ino) {
1174 /*
1175 * same extent found more then once in the same file.
1176 */
1177 if (found->offset > offset + bctx->extent_len)
1178 found->offset = offset;
1179 }
1180
1181 return 0;
1182}
1183
1184/*
766702ef
AB
1185 * Given an inode, offset and extent item, it finds a good clone for a clone
1186 * instruction. Returns -ENOENT when none could be found. The function makes
1187 * sure that the returned clone is usable at the point where sending is at the
1188 * moment. This means, that no clones are accepted which lie behind the current
1189 * inode+offset.
1190 *
31db9f7c
AB
1191 * path must point to the extent item when called.
1192 */
1193static int find_extent_clone(struct send_ctx *sctx,
1194 struct btrfs_path *path,
1195 u64 ino, u64 data_offset,
1196 u64 ino_size,
1197 struct clone_root **found)
1198{
1199 int ret;
1200 int extent_type;
1201 u64 logical;
74dd17fb 1202 u64 disk_byte;
31db9f7c
AB
1203 u64 num_bytes;
1204 u64 extent_item_pos;
69917e43 1205 u64 flags = 0;
31db9f7c
AB
1206 struct btrfs_file_extent_item *fi;
1207 struct extent_buffer *eb = path->nodes[0];
35075bb0 1208 struct backref_ctx *backref_ctx = NULL;
31db9f7c
AB
1209 struct clone_root *cur_clone_root;
1210 struct btrfs_key found_key;
1211 struct btrfs_path *tmp_path;
74dd17fb 1212 int compressed;
31db9f7c
AB
1213 u32 i;
1214
1215 tmp_path = alloc_path_for_send();
1216 if (!tmp_path)
1217 return -ENOMEM;
1218
35075bb0
AB
1219 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1220 if (!backref_ctx) {
1221 ret = -ENOMEM;
1222 goto out;
1223 }
1224
31db9f7c
AB
1225 if (data_offset >= ino_size) {
1226 /*
1227 * There may be extents that lie behind the file's size.
1228 * I at least had this in combination with snapshotting while
1229 * writing large files.
1230 */
1231 ret = 0;
1232 goto out;
1233 }
1234
1235 fi = btrfs_item_ptr(eb, path->slots[0],
1236 struct btrfs_file_extent_item);
1237 extent_type = btrfs_file_extent_type(eb, fi);
1238 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1239 ret = -ENOENT;
1240 goto out;
1241 }
74dd17fb 1242 compressed = btrfs_file_extent_compression(eb, fi);
31db9f7c
AB
1243
1244 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
74dd17fb
CM
1245 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1246 if (disk_byte == 0) {
31db9f7c
AB
1247 ret = -ENOENT;
1248 goto out;
1249 }
74dd17fb 1250 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
31db9f7c 1251
69917e43
LB
1252 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1253 &found_key, &flags);
31db9f7c
AB
1254 btrfs_release_path(tmp_path);
1255
1256 if (ret < 0)
1257 goto out;
69917e43 1258 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
31db9f7c
AB
1259 ret = -EIO;
1260 goto out;
1261 }
1262
1263 /*
1264 * Setup the clone roots.
1265 */
1266 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1267 cur_clone_root = sctx->clone_roots + i;
1268 cur_clone_root->ino = (u64)-1;
1269 cur_clone_root->offset = 0;
1270 cur_clone_root->found_refs = 0;
1271 }
1272
35075bb0
AB
1273 backref_ctx->sctx = sctx;
1274 backref_ctx->found = 0;
1275 backref_ctx->cur_objectid = ino;
1276 backref_ctx->cur_offset = data_offset;
1277 backref_ctx->found_itself = 0;
1278 backref_ctx->extent_len = num_bytes;
31db9f7c
AB
1279
1280 /*
1281 * The last extent of a file may be too large due to page alignment.
1282 * We need to adjust extent_len in this case so that the checks in
1283 * __iterate_backrefs work.
1284 */
1285 if (data_offset + num_bytes >= ino_size)
35075bb0 1286 backref_ctx->extent_len = ino_size - data_offset;
31db9f7c
AB
1287
1288 /*
1289 * Now collect all backrefs.
1290 */
74dd17fb
CM
1291 if (compressed == BTRFS_COMPRESS_NONE)
1292 extent_item_pos = logical - found_key.objectid;
1293 else
1294 extent_item_pos = 0;
1295
31db9f7c
AB
1296 extent_item_pos = logical - found_key.objectid;
1297 ret = iterate_extent_inodes(sctx->send_root->fs_info,
1298 found_key.objectid, extent_item_pos, 1,
35075bb0 1299 __iterate_backrefs, backref_ctx);
74dd17fb 1300
31db9f7c
AB
1301 if (ret < 0)
1302 goto out;
1303
35075bb0 1304 if (!backref_ctx->found_itself) {
31db9f7c
AB
1305 /* found a bug in backref code? */
1306 ret = -EIO;
efe120a0 1307 btrfs_err(sctx->send_root->fs_info, "did not find backref in "
31db9f7c 1308 "send_root. inode=%llu, offset=%llu, "
74dd17fb
CM
1309 "disk_byte=%llu found extent=%llu\n",
1310 ino, data_offset, disk_byte, found_key.objectid);
31db9f7c
AB
1311 goto out;
1312 }
1313
1314verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1315 "ino=%llu, "
1316 "num_bytes=%llu, logical=%llu\n",
1317 data_offset, ino, num_bytes, logical);
1318
35075bb0 1319 if (!backref_ctx->found)
31db9f7c
AB
1320 verbose_printk("btrfs: no clones found\n");
1321
1322 cur_clone_root = NULL;
1323 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1324 if (sctx->clone_roots[i].found_refs) {
1325 if (!cur_clone_root)
1326 cur_clone_root = sctx->clone_roots + i;
1327 else if (sctx->clone_roots[i].root == sctx->send_root)
1328 /* prefer clones from send_root over others */
1329 cur_clone_root = sctx->clone_roots + i;
31db9f7c
AB
1330 }
1331
1332 }
1333
1334 if (cur_clone_root) {
93de4ba8
FDBM
1335 if (compressed != BTRFS_COMPRESS_NONE) {
1336 /*
1337 * Offsets given by iterate_extent_inodes() are relative
1338 * to the start of the extent, we need to add logical
1339 * offset from the file extent item.
1340 * (See why at backref.c:check_extent_in_eb())
1341 */
1342 cur_clone_root->offset += btrfs_file_extent_offset(eb,
1343 fi);
1344 }
31db9f7c
AB
1345 *found = cur_clone_root;
1346 ret = 0;
1347 } else {
1348 ret = -ENOENT;
1349 }
1350
1351out:
1352 btrfs_free_path(tmp_path);
35075bb0 1353 kfree(backref_ctx);
31db9f7c
AB
1354 return ret;
1355}
1356
924794c9 1357static int read_symlink(struct btrfs_root *root,
31db9f7c
AB
1358 u64 ino,
1359 struct fs_path *dest)
1360{
1361 int ret;
1362 struct btrfs_path *path;
1363 struct btrfs_key key;
1364 struct btrfs_file_extent_item *ei;
1365 u8 type;
1366 u8 compression;
1367 unsigned long off;
1368 int len;
1369
1370 path = alloc_path_for_send();
1371 if (!path)
1372 return -ENOMEM;
1373
1374 key.objectid = ino;
1375 key.type = BTRFS_EXTENT_DATA_KEY;
1376 key.offset = 0;
1377 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1378 if (ret < 0)
1379 goto out;
1380 BUG_ON(ret);
1381
1382 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1383 struct btrfs_file_extent_item);
1384 type = btrfs_file_extent_type(path->nodes[0], ei);
1385 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1386 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1387 BUG_ON(compression);
1388
1389 off = btrfs_file_extent_inline_start(ei);
514ac8ad 1390 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
31db9f7c
AB
1391
1392 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
31db9f7c
AB
1393
1394out:
1395 btrfs_free_path(path);
1396 return ret;
1397}
1398
1399/*
1400 * Helper function to generate a file name that is unique in the root of
1401 * send_root and parent_root. This is used to generate names for orphan inodes.
1402 */
1403static int gen_unique_name(struct send_ctx *sctx,
1404 u64 ino, u64 gen,
1405 struct fs_path *dest)
1406{
1407 int ret = 0;
1408 struct btrfs_path *path;
1409 struct btrfs_dir_item *di;
1410 char tmp[64];
1411 int len;
1412 u64 idx = 0;
1413
1414 path = alloc_path_for_send();
1415 if (!path)
1416 return -ENOMEM;
1417
1418 while (1) {
f74b86d8 1419 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
31db9f7c
AB
1420 ino, gen, idx);
1421 if (len >= sizeof(tmp)) {
1422 /* should really not happen */
1423 ret = -EOVERFLOW;
1424 goto out;
1425 }
1426
1427 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1428 path, BTRFS_FIRST_FREE_OBJECTID,
1429 tmp, strlen(tmp), 0);
1430 btrfs_release_path(path);
1431 if (IS_ERR(di)) {
1432 ret = PTR_ERR(di);
1433 goto out;
1434 }
1435 if (di) {
1436 /* not unique, try again */
1437 idx++;
1438 continue;
1439 }
1440
1441 if (!sctx->parent_root) {
1442 /* unique */
1443 ret = 0;
1444 break;
1445 }
1446
1447 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1448 path, BTRFS_FIRST_FREE_OBJECTID,
1449 tmp, strlen(tmp), 0);
1450 btrfs_release_path(path);
1451 if (IS_ERR(di)) {
1452 ret = PTR_ERR(di);
1453 goto out;
1454 }
1455 if (di) {
1456 /* not unique, try again */
1457 idx++;
1458 continue;
1459 }
1460 /* unique */
1461 break;
1462 }
1463
1464 ret = fs_path_add(dest, tmp, strlen(tmp));
1465
1466out:
1467 btrfs_free_path(path);
1468 return ret;
1469}
1470
1471enum inode_state {
1472 inode_state_no_change,
1473 inode_state_will_create,
1474 inode_state_did_create,
1475 inode_state_will_delete,
1476 inode_state_did_delete,
1477};
1478
1479static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1480{
1481 int ret;
1482 int left_ret;
1483 int right_ret;
1484 u64 left_gen;
1485 u64 right_gen;
1486
1487 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
85a7b33b 1488 NULL, NULL);
31db9f7c
AB
1489 if (ret < 0 && ret != -ENOENT)
1490 goto out;
1491 left_ret = ret;
1492
1493 if (!sctx->parent_root) {
1494 right_ret = -ENOENT;
1495 } else {
1496 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
85a7b33b 1497 NULL, NULL, NULL, NULL);
31db9f7c
AB
1498 if (ret < 0 && ret != -ENOENT)
1499 goto out;
1500 right_ret = ret;
1501 }
1502
1503 if (!left_ret && !right_ret) {
e938c8ad 1504 if (left_gen == gen && right_gen == gen) {
31db9f7c 1505 ret = inode_state_no_change;
e938c8ad 1506 } else if (left_gen == gen) {
31db9f7c
AB
1507 if (ino < sctx->send_progress)
1508 ret = inode_state_did_create;
1509 else
1510 ret = inode_state_will_create;
1511 } else if (right_gen == gen) {
1512 if (ino < sctx->send_progress)
1513 ret = inode_state_did_delete;
1514 else
1515 ret = inode_state_will_delete;
1516 } else {
1517 ret = -ENOENT;
1518 }
1519 } else if (!left_ret) {
1520 if (left_gen == gen) {
1521 if (ino < sctx->send_progress)
1522 ret = inode_state_did_create;
1523 else
1524 ret = inode_state_will_create;
1525 } else {
1526 ret = -ENOENT;
1527 }
1528 } else if (!right_ret) {
1529 if (right_gen == gen) {
1530 if (ino < sctx->send_progress)
1531 ret = inode_state_did_delete;
1532 else
1533 ret = inode_state_will_delete;
1534 } else {
1535 ret = -ENOENT;
1536 }
1537 } else {
1538 ret = -ENOENT;
1539 }
1540
1541out:
1542 return ret;
1543}
1544
1545static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1546{
1547 int ret;
1548
1549 ret = get_cur_inode_state(sctx, ino, gen);
1550 if (ret < 0)
1551 goto out;
1552
1553 if (ret == inode_state_no_change ||
1554 ret == inode_state_did_create ||
1555 ret == inode_state_will_delete)
1556 ret = 1;
1557 else
1558 ret = 0;
1559
1560out:
1561 return ret;
1562}
1563
1564/*
1565 * Helper function to lookup a dir item in a dir.
1566 */
1567static int lookup_dir_item_inode(struct btrfs_root *root,
1568 u64 dir, const char *name, int name_len,
1569 u64 *found_inode,
1570 u8 *found_type)
1571{
1572 int ret = 0;
1573 struct btrfs_dir_item *di;
1574 struct btrfs_key key;
1575 struct btrfs_path *path;
1576
1577 path = alloc_path_for_send();
1578 if (!path)
1579 return -ENOMEM;
1580
1581 di = btrfs_lookup_dir_item(NULL, root, path,
1582 dir, name, name_len, 0);
1583 if (!di) {
1584 ret = -ENOENT;
1585 goto out;
1586 }
1587 if (IS_ERR(di)) {
1588 ret = PTR_ERR(di);
1589 goto out;
1590 }
1591 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1592 *found_inode = key.objectid;
1593 *found_type = btrfs_dir_type(path->nodes[0], di);
1594
1595out:
1596 btrfs_free_path(path);
1597 return ret;
1598}
1599
766702ef
AB
1600/*
1601 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1602 * generation of the parent dir and the name of the dir entry.
1603 */
924794c9 1604static int get_first_ref(struct btrfs_root *root, u64 ino,
31db9f7c
AB
1605 u64 *dir, u64 *dir_gen, struct fs_path *name)
1606{
1607 int ret;
1608 struct btrfs_key key;
1609 struct btrfs_key found_key;
1610 struct btrfs_path *path;
31db9f7c 1611 int len;
96b5bd77 1612 u64 parent_dir;
31db9f7c
AB
1613
1614 path = alloc_path_for_send();
1615 if (!path)
1616 return -ENOMEM;
1617
1618 key.objectid = ino;
1619 key.type = BTRFS_INODE_REF_KEY;
1620 key.offset = 0;
1621
1622 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1623 if (ret < 0)
1624 goto out;
1625 if (!ret)
1626 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1627 path->slots[0]);
96b5bd77
JS
1628 if (ret || found_key.objectid != ino ||
1629 (found_key.type != BTRFS_INODE_REF_KEY &&
1630 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1631 ret = -ENOENT;
1632 goto out;
1633 }
1634
96b5bd77
JS
1635 if (key.type == BTRFS_INODE_REF_KEY) {
1636 struct btrfs_inode_ref *iref;
1637 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1638 struct btrfs_inode_ref);
1639 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1640 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1641 (unsigned long)(iref + 1),
1642 len);
1643 parent_dir = found_key.offset;
1644 } else {
1645 struct btrfs_inode_extref *extref;
1646 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1647 struct btrfs_inode_extref);
1648 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1649 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1650 (unsigned long)&extref->name, len);
1651 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1652 }
31db9f7c
AB
1653 if (ret < 0)
1654 goto out;
1655 btrfs_release_path(path);
1656
96b5bd77 1657 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, NULL,
85a7b33b 1658 NULL, NULL);
31db9f7c
AB
1659 if (ret < 0)
1660 goto out;
1661
96b5bd77 1662 *dir = parent_dir;
31db9f7c
AB
1663
1664out:
1665 btrfs_free_path(path);
1666 return ret;
1667}
1668
924794c9 1669static int is_first_ref(struct btrfs_root *root,
31db9f7c
AB
1670 u64 ino, u64 dir,
1671 const char *name, int name_len)
1672{
1673 int ret;
1674 struct fs_path *tmp_name;
1675 u64 tmp_dir;
1676 u64 tmp_dir_gen;
1677
924794c9 1678 tmp_name = fs_path_alloc();
31db9f7c
AB
1679 if (!tmp_name)
1680 return -ENOMEM;
1681
924794c9 1682 ret = get_first_ref(root, ino, &tmp_dir, &tmp_dir_gen, tmp_name);
31db9f7c
AB
1683 if (ret < 0)
1684 goto out;
1685
b9291aff 1686 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
31db9f7c
AB
1687 ret = 0;
1688 goto out;
1689 }
1690
e938c8ad 1691 ret = !memcmp(tmp_name->start, name, name_len);
31db9f7c
AB
1692
1693out:
924794c9 1694 fs_path_free(tmp_name);
31db9f7c
AB
1695 return ret;
1696}
1697
766702ef
AB
1698/*
1699 * Used by process_recorded_refs to determine if a new ref would overwrite an
1700 * already existing ref. In case it detects an overwrite, it returns the
1701 * inode/gen in who_ino/who_gen.
1702 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1703 * to make sure later references to the overwritten inode are possible.
1704 * Orphanizing is however only required for the first ref of an inode.
1705 * process_recorded_refs does an additional is_first_ref check to see if
1706 * orphanizing is really required.
1707 */
31db9f7c
AB
1708static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1709 const char *name, int name_len,
1710 u64 *who_ino, u64 *who_gen)
1711{
1712 int ret = 0;
ebdad913 1713 u64 gen;
31db9f7c
AB
1714 u64 other_inode = 0;
1715 u8 other_type = 0;
1716
1717 if (!sctx->parent_root)
1718 goto out;
1719
1720 ret = is_inode_existent(sctx, dir, dir_gen);
1721 if (ret <= 0)
1722 goto out;
1723
ebdad913
JB
1724 /*
1725 * If we have a parent root we need to verify that the parent dir was
1726 * not delted and then re-created, if it was then we have no overwrite
1727 * and we can just unlink this entry.
1728 */
1729 if (sctx->parent_root) {
1730 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1731 NULL, NULL, NULL);
1732 if (ret < 0 && ret != -ENOENT)
1733 goto out;
1734 if (ret) {
1735 ret = 0;
1736 goto out;
1737 }
1738 if (gen != dir_gen)
1739 goto out;
1740 }
1741
31db9f7c
AB
1742 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1743 &other_inode, &other_type);
1744 if (ret < 0 && ret != -ENOENT)
1745 goto out;
1746 if (ret) {
1747 ret = 0;
1748 goto out;
1749 }
1750
766702ef
AB
1751 /*
1752 * Check if the overwritten ref was already processed. If yes, the ref
1753 * was already unlinked/moved, so we can safely assume that we will not
1754 * overwrite anything at this point in time.
1755 */
31db9f7c
AB
1756 if (other_inode > sctx->send_progress) {
1757 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
85a7b33b 1758 who_gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
1759 if (ret < 0)
1760 goto out;
1761
1762 ret = 1;
1763 *who_ino = other_inode;
1764 } else {
1765 ret = 0;
1766 }
1767
1768out:
1769 return ret;
1770}
1771
766702ef
AB
1772/*
1773 * Checks if the ref was overwritten by an already processed inode. This is
1774 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1775 * thus the orphan name needs be used.
1776 * process_recorded_refs also uses it to avoid unlinking of refs that were
1777 * overwritten.
1778 */
31db9f7c
AB
1779static int did_overwrite_ref(struct send_ctx *sctx,
1780 u64 dir, u64 dir_gen,
1781 u64 ino, u64 ino_gen,
1782 const char *name, int name_len)
1783{
1784 int ret = 0;
1785 u64 gen;
1786 u64 ow_inode;
1787 u8 other_type;
1788
1789 if (!sctx->parent_root)
1790 goto out;
1791
1792 ret = is_inode_existent(sctx, dir, dir_gen);
1793 if (ret <= 0)
1794 goto out;
1795
1796 /* check if the ref was overwritten by another ref */
1797 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1798 &ow_inode, &other_type);
1799 if (ret < 0 && ret != -ENOENT)
1800 goto out;
1801 if (ret) {
1802 /* was never and will never be overwritten */
1803 ret = 0;
1804 goto out;
1805 }
1806
1807 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
85a7b33b 1808 NULL, NULL);
31db9f7c
AB
1809 if (ret < 0)
1810 goto out;
1811
1812 if (ow_inode == ino && gen == ino_gen) {
1813 ret = 0;
1814 goto out;
1815 }
1816
1817 /* we know that it is or will be overwritten. check this now */
1818 if (ow_inode < sctx->send_progress)
1819 ret = 1;
1820 else
1821 ret = 0;
1822
1823out:
1824 return ret;
1825}
1826
766702ef
AB
1827/*
1828 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1829 * that got overwritten. This is used by process_recorded_refs to determine
1830 * if it has to use the path as returned by get_cur_path or the orphan name.
1831 */
31db9f7c
AB
1832static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1833{
1834 int ret = 0;
1835 struct fs_path *name = NULL;
1836 u64 dir;
1837 u64 dir_gen;
1838
1839 if (!sctx->parent_root)
1840 goto out;
1841
924794c9 1842 name = fs_path_alloc();
31db9f7c
AB
1843 if (!name)
1844 return -ENOMEM;
1845
924794c9 1846 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
31db9f7c
AB
1847 if (ret < 0)
1848 goto out;
1849
1850 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1851 name->start, fs_path_len(name));
31db9f7c
AB
1852
1853out:
924794c9 1854 fs_path_free(name);
31db9f7c
AB
1855 return ret;
1856}
1857
766702ef
AB
1858/*
1859 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1860 * so we need to do some special handling in case we have clashes. This function
1861 * takes care of this with the help of name_cache_entry::radix_list.
5dc67d0b 1862 * In case of error, nce is kfreed.
766702ef 1863 */
31db9f7c
AB
1864static int name_cache_insert(struct send_ctx *sctx,
1865 struct name_cache_entry *nce)
1866{
1867 int ret = 0;
7e0926fe
AB
1868 struct list_head *nce_head;
1869
1870 nce_head = radix_tree_lookup(&sctx->name_cache,
1871 (unsigned long)nce->ino);
1872 if (!nce_head) {
1873 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
cfa7a9cc
TI
1874 if (!nce_head) {
1875 kfree(nce);
31db9f7c 1876 return -ENOMEM;
cfa7a9cc 1877 }
7e0926fe 1878 INIT_LIST_HEAD(nce_head);
31db9f7c 1879
7e0926fe 1880 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
5dc67d0b
AB
1881 if (ret < 0) {
1882 kfree(nce_head);
1883 kfree(nce);
31db9f7c 1884 return ret;
5dc67d0b 1885 }
31db9f7c 1886 }
7e0926fe 1887 list_add_tail(&nce->radix_list, nce_head);
31db9f7c
AB
1888 list_add_tail(&nce->list, &sctx->name_cache_list);
1889 sctx->name_cache_size++;
1890
1891 return ret;
1892}
1893
1894static void name_cache_delete(struct send_ctx *sctx,
1895 struct name_cache_entry *nce)
1896{
7e0926fe 1897 struct list_head *nce_head;
31db9f7c 1898
7e0926fe
AB
1899 nce_head = radix_tree_lookup(&sctx->name_cache,
1900 (unsigned long)nce->ino);
1901 BUG_ON(!nce_head);
31db9f7c 1902
7e0926fe 1903 list_del(&nce->radix_list);
31db9f7c 1904 list_del(&nce->list);
31db9f7c 1905 sctx->name_cache_size--;
7e0926fe
AB
1906
1907 if (list_empty(nce_head)) {
1908 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
1909 kfree(nce_head);
1910 }
31db9f7c
AB
1911}
1912
1913static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
1914 u64 ino, u64 gen)
1915{
7e0926fe
AB
1916 struct list_head *nce_head;
1917 struct name_cache_entry *cur;
31db9f7c 1918
7e0926fe
AB
1919 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
1920 if (!nce_head)
31db9f7c
AB
1921 return NULL;
1922
7e0926fe
AB
1923 list_for_each_entry(cur, nce_head, radix_list) {
1924 if (cur->ino == ino && cur->gen == gen)
1925 return cur;
1926 }
31db9f7c
AB
1927 return NULL;
1928}
1929
766702ef
AB
1930/*
1931 * Removes the entry from the list and adds it back to the end. This marks the
1932 * entry as recently used so that name_cache_clean_unused does not remove it.
1933 */
31db9f7c
AB
1934static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
1935{
1936 list_del(&nce->list);
1937 list_add_tail(&nce->list, &sctx->name_cache_list);
1938}
1939
766702ef
AB
1940/*
1941 * Remove some entries from the beginning of name_cache_list.
1942 */
31db9f7c
AB
1943static void name_cache_clean_unused(struct send_ctx *sctx)
1944{
1945 struct name_cache_entry *nce;
1946
1947 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
1948 return;
1949
1950 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
1951 nce = list_entry(sctx->name_cache_list.next,
1952 struct name_cache_entry, list);
1953 name_cache_delete(sctx, nce);
1954 kfree(nce);
1955 }
1956}
1957
1958static void name_cache_free(struct send_ctx *sctx)
1959{
1960 struct name_cache_entry *nce;
31db9f7c 1961
e938c8ad
AB
1962 while (!list_empty(&sctx->name_cache_list)) {
1963 nce = list_entry(sctx->name_cache_list.next,
1964 struct name_cache_entry, list);
31db9f7c 1965 name_cache_delete(sctx, nce);
17589bd9 1966 kfree(nce);
31db9f7c
AB
1967 }
1968}
1969
766702ef
AB
1970/*
1971 * Used by get_cur_path for each ref up to the root.
1972 * Returns 0 if it succeeded.
1973 * Returns 1 if the inode is not existent or got overwritten. In that case, the
1974 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
1975 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
1976 * Returns <0 in case of error.
1977 */
31db9f7c
AB
1978static int __get_cur_name_and_parent(struct send_ctx *sctx,
1979 u64 ino, u64 gen,
9f03740a 1980 int skip_name_cache,
31db9f7c
AB
1981 u64 *parent_ino,
1982 u64 *parent_gen,
1983 struct fs_path *dest)
1984{
1985 int ret;
1986 int nce_ret;
1987 struct btrfs_path *path = NULL;
1988 struct name_cache_entry *nce = NULL;
1989
9f03740a
FDBM
1990 if (skip_name_cache)
1991 goto get_ref;
766702ef
AB
1992 /*
1993 * First check if we already did a call to this function with the same
1994 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
1995 * return the cached result.
1996 */
31db9f7c
AB
1997 nce = name_cache_search(sctx, ino, gen);
1998 if (nce) {
1999 if (ino < sctx->send_progress && nce->need_later_update) {
2000 name_cache_delete(sctx, nce);
2001 kfree(nce);
2002 nce = NULL;
2003 } else {
2004 name_cache_used(sctx, nce);
2005 *parent_ino = nce->parent_ino;
2006 *parent_gen = nce->parent_gen;
2007 ret = fs_path_add(dest, nce->name, nce->name_len);
2008 if (ret < 0)
2009 goto out;
2010 ret = nce->ret;
2011 goto out;
2012 }
2013 }
2014
2015 path = alloc_path_for_send();
2016 if (!path)
2017 return -ENOMEM;
2018
766702ef
AB
2019 /*
2020 * If the inode is not existent yet, add the orphan name and return 1.
2021 * This should only happen for the parent dir that we determine in
2022 * __record_new_ref
2023 */
31db9f7c
AB
2024 ret = is_inode_existent(sctx, ino, gen);
2025 if (ret < 0)
2026 goto out;
2027
2028 if (!ret) {
2029 ret = gen_unique_name(sctx, ino, gen, dest);
2030 if (ret < 0)
2031 goto out;
2032 ret = 1;
2033 goto out_cache;
2034 }
2035
9f03740a 2036get_ref:
766702ef
AB
2037 /*
2038 * Depending on whether the inode was already processed or not, use
2039 * send_root or parent_root for ref lookup.
2040 */
9f03740a 2041 if (ino < sctx->send_progress && !skip_name_cache)
924794c9
TI
2042 ret = get_first_ref(sctx->send_root, ino,
2043 parent_ino, parent_gen, dest);
31db9f7c 2044 else
924794c9
TI
2045 ret = get_first_ref(sctx->parent_root, ino,
2046 parent_ino, parent_gen, dest);
31db9f7c
AB
2047 if (ret < 0)
2048 goto out;
2049
766702ef
AB
2050 /*
2051 * Check if the ref was overwritten by an inode's ref that was processed
2052 * earlier. If yes, treat as orphan and return 1.
2053 */
31db9f7c
AB
2054 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2055 dest->start, dest->end - dest->start);
2056 if (ret < 0)
2057 goto out;
2058 if (ret) {
2059 fs_path_reset(dest);
2060 ret = gen_unique_name(sctx, ino, gen, dest);
2061 if (ret < 0)
2062 goto out;
2063 ret = 1;
2064 }
9f03740a
FDBM
2065 if (skip_name_cache)
2066 goto out;
31db9f7c
AB
2067
2068out_cache:
766702ef
AB
2069 /*
2070 * Store the result of the lookup in the name cache.
2071 */
31db9f7c
AB
2072 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2073 if (!nce) {
2074 ret = -ENOMEM;
2075 goto out;
2076 }
2077
2078 nce->ino = ino;
2079 nce->gen = gen;
2080 nce->parent_ino = *parent_ino;
2081 nce->parent_gen = *parent_gen;
2082 nce->name_len = fs_path_len(dest);
2083 nce->ret = ret;
2084 strcpy(nce->name, dest->start);
31db9f7c
AB
2085
2086 if (ino < sctx->send_progress)
2087 nce->need_later_update = 0;
2088 else
2089 nce->need_later_update = 1;
2090
2091 nce_ret = name_cache_insert(sctx, nce);
2092 if (nce_ret < 0)
2093 ret = nce_ret;
2094 name_cache_clean_unused(sctx);
2095
2096out:
2097 btrfs_free_path(path);
2098 return ret;
2099}
2100
2101/*
2102 * Magic happens here. This function returns the first ref to an inode as it
2103 * would look like while receiving the stream at this point in time.
2104 * We walk the path up to the root. For every inode in between, we check if it
2105 * was already processed/sent. If yes, we continue with the parent as found
2106 * in send_root. If not, we continue with the parent as found in parent_root.
2107 * If we encounter an inode that was deleted at this point in time, we use the
2108 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2109 * that were not created yet and overwritten inodes/refs.
2110 *
2111 * When do we have have orphan inodes:
2112 * 1. When an inode is freshly created and thus no valid refs are available yet
2113 * 2. When a directory lost all it's refs (deleted) but still has dir items
2114 * inside which were not processed yet (pending for move/delete). If anyone
2115 * tried to get the path to the dir items, it would get a path inside that
2116 * orphan directory.
2117 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2118 * of an unprocessed inode. If in that case the first ref would be
2119 * overwritten, the overwritten inode gets "orphanized". Later when we
2120 * process this overwritten inode, it is restored at a new place by moving
2121 * the orphan inode.
2122 *
2123 * sctx->send_progress tells this function at which point in time receiving
2124 * would be.
2125 */
2126static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2127 struct fs_path *dest)
2128{
2129 int ret = 0;
2130 struct fs_path *name = NULL;
2131 u64 parent_inode = 0;
2132 u64 parent_gen = 0;
2133 int stop = 0;
9f03740a 2134 int skip_name_cache = 0;
31db9f7c 2135
924794c9 2136 name = fs_path_alloc();
31db9f7c
AB
2137 if (!name) {
2138 ret = -ENOMEM;
2139 goto out;
2140 }
2141
9f03740a
FDBM
2142 if (is_waiting_for_move(sctx, ino))
2143 skip_name_cache = 1;
2144
31db9f7c
AB
2145 dest->reversed = 1;
2146 fs_path_reset(dest);
2147
2148 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2149 fs_path_reset(name);
2150
9f03740a 2151 ret = __get_cur_name_and_parent(sctx, ino, gen, skip_name_cache,
31db9f7c
AB
2152 &parent_inode, &parent_gen, name);
2153 if (ret < 0)
2154 goto out;
2155 if (ret)
2156 stop = 1;
2157
9f03740a 2158 if (!skip_name_cache &&
03cb4fb9 2159 is_waiting_for_move(sctx, parent_inode))
9f03740a 2160 skip_name_cache = 1;
9f03740a 2161
31db9f7c
AB
2162 ret = fs_path_add_path(dest, name);
2163 if (ret < 0)
2164 goto out;
2165
2166 ino = parent_inode;
2167 gen = parent_gen;
2168 }
2169
2170out:
924794c9 2171 fs_path_free(name);
31db9f7c
AB
2172 if (!ret)
2173 fs_path_unreverse(dest);
2174 return ret;
2175}
2176
31db9f7c
AB
2177/*
2178 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2179 */
2180static int send_subvol_begin(struct send_ctx *sctx)
2181{
2182 int ret;
2183 struct btrfs_root *send_root = sctx->send_root;
2184 struct btrfs_root *parent_root = sctx->parent_root;
2185 struct btrfs_path *path;
2186 struct btrfs_key key;
2187 struct btrfs_root_ref *ref;
2188 struct extent_buffer *leaf;
2189 char *name = NULL;
2190 int namelen;
2191
ffcfaf81 2192 path = btrfs_alloc_path();
31db9f7c
AB
2193 if (!path)
2194 return -ENOMEM;
2195
2196 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2197 if (!name) {
2198 btrfs_free_path(path);
2199 return -ENOMEM;
2200 }
2201
2202 key.objectid = send_root->objectid;
2203 key.type = BTRFS_ROOT_BACKREF_KEY;
2204 key.offset = 0;
2205
2206 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2207 &key, path, 1, 0);
2208 if (ret < 0)
2209 goto out;
2210 if (ret) {
2211 ret = -ENOENT;
2212 goto out;
2213 }
2214
2215 leaf = path->nodes[0];
2216 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2217 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2218 key.objectid != send_root->objectid) {
2219 ret = -ENOENT;
2220 goto out;
2221 }
2222 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2223 namelen = btrfs_root_ref_name_len(leaf, ref);
2224 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2225 btrfs_release_path(path);
2226
31db9f7c
AB
2227 if (parent_root) {
2228 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2229 if (ret < 0)
2230 goto out;
2231 } else {
2232 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2233 if (ret < 0)
2234 goto out;
2235 }
2236
2237 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2238 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2239 sctx->send_root->root_item.uuid);
2240 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
5a0f4e2c 2241 le64_to_cpu(sctx->send_root->root_item.ctransid));
31db9f7c
AB
2242 if (parent_root) {
2243 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2244 sctx->parent_root->root_item.uuid);
2245 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5a0f4e2c 2246 le64_to_cpu(sctx->parent_root->root_item.ctransid));
31db9f7c
AB
2247 }
2248
2249 ret = send_cmd(sctx);
2250
2251tlv_put_failure:
2252out:
2253 btrfs_free_path(path);
2254 kfree(name);
2255 return ret;
2256}
2257
2258static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2259{
2260 int ret = 0;
2261 struct fs_path *p;
2262
2263verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2264
924794c9 2265 p = fs_path_alloc();
31db9f7c
AB
2266 if (!p)
2267 return -ENOMEM;
2268
2269 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2270 if (ret < 0)
2271 goto out;
2272
2273 ret = get_cur_path(sctx, ino, gen, p);
2274 if (ret < 0)
2275 goto out;
2276 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2277 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2278
2279 ret = send_cmd(sctx);
2280
2281tlv_put_failure:
2282out:
924794c9 2283 fs_path_free(p);
31db9f7c
AB
2284 return ret;
2285}
2286
2287static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2288{
2289 int ret = 0;
2290 struct fs_path *p;
2291
2292verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2293
924794c9 2294 p = fs_path_alloc();
31db9f7c
AB
2295 if (!p)
2296 return -ENOMEM;
2297
2298 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2299 if (ret < 0)
2300 goto out;
2301
2302 ret = get_cur_path(sctx, ino, gen, p);
2303 if (ret < 0)
2304 goto out;
2305 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2306 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2307
2308 ret = send_cmd(sctx);
2309
2310tlv_put_failure:
2311out:
924794c9 2312 fs_path_free(p);
31db9f7c
AB
2313 return ret;
2314}
2315
2316static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2317{
2318 int ret = 0;
2319 struct fs_path *p;
2320
2321verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2322
924794c9 2323 p = fs_path_alloc();
31db9f7c
AB
2324 if (!p)
2325 return -ENOMEM;
2326
2327 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2328 if (ret < 0)
2329 goto out;
2330
2331 ret = get_cur_path(sctx, ino, gen, p);
2332 if (ret < 0)
2333 goto out;
2334 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2335 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2336 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2337
2338 ret = send_cmd(sctx);
2339
2340tlv_put_failure:
2341out:
924794c9 2342 fs_path_free(p);
31db9f7c
AB
2343 return ret;
2344}
2345
2346static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2347{
2348 int ret = 0;
2349 struct fs_path *p = NULL;
2350 struct btrfs_inode_item *ii;
2351 struct btrfs_path *path = NULL;
2352 struct extent_buffer *eb;
2353 struct btrfs_key key;
2354 int slot;
2355
2356verbose_printk("btrfs: send_utimes %llu\n", ino);
2357
924794c9 2358 p = fs_path_alloc();
31db9f7c
AB
2359 if (!p)
2360 return -ENOMEM;
2361
2362 path = alloc_path_for_send();
2363 if (!path) {
2364 ret = -ENOMEM;
2365 goto out;
2366 }
2367
2368 key.objectid = ino;
2369 key.type = BTRFS_INODE_ITEM_KEY;
2370 key.offset = 0;
2371 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2372 if (ret < 0)
2373 goto out;
2374
2375 eb = path->nodes[0];
2376 slot = path->slots[0];
2377 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2378
2379 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2380 if (ret < 0)
2381 goto out;
2382
2383 ret = get_cur_path(sctx, ino, gen, p);
2384 if (ret < 0)
2385 goto out;
2386 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2387 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb,
2388 btrfs_inode_atime(ii));
2389 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb,
2390 btrfs_inode_mtime(ii));
2391 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb,
2392 btrfs_inode_ctime(ii));
766702ef 2393 /* TODO Add otime support when the otime patches get into upstream */
31db9f7c
AB
2394
2395 ret = send_cmd(sctx);
2396
2397tlv_put_failure:
2398out:
924794c9 2399 fs_path_free(p);
31db9f7c
AB
2400 btrfs_free_path(path);
2401 return ret;
2402}
2403
2404/*
2405 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2406 * a valid path yet because we did not process the refs yet. So, the inode
2407 * is created as orphan.
2408 */
1f4692da 2409static int send_create_inode(struct send_ctx *sctx, u64 ino)
31db9f7c
AB
2410{
2411 int ret = 0;
31db9f7c 2412 struct fs_path *p;
31db9f7c 2413 int cmd;
1f4692da 2414 u64 gen;
31db9f7c 2415 u64 mode;
1f4692da 2416 u64 rdev;
31db9f7c 2417
1f4692da 2418verbose_printk("btrfs: send_create_inode %llu\n", ino);
31db9f7c 2419
924794c9 2420 p = fs_path_alloc();
31db9f7c
AB
2421 if (!p)
2422 return -ENOMEM;
2423
1f4692da
AB
2424 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, NULL,
2425 NULL, &rdev);
2426 if (ret < 0)
2427 goto out;
31db9f7c 2428
e938c8ad 2429 if (S_ISREG(mode)) {
31db9f7c 2430 cmd = BTRFS_SEND_C_MKFILE;
e938c8ad 2431 } else if (S_ISDIR(mode)) {
31db9f7c 2432 cmd = BTRFS_SEND_C_MKDIR;
e938c8ad 2433 } else if (S_ISLNK(mode)) {
31db9f7c 2434 cmd = BTRFS_SEND_C_SYMLINK;
e938c8ad 2435 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
31db9f7c 2436 cmd = BTRFS_SEND_C_MKNOD;
e938c8ad 2437 } else if (S_ISFIFO(mode)) {
31db9f7c 2438 cmd = BTRFS_SEND_C_MKFIFO;
e938c8ad 2439 } else if (S_ISSOCK(mode)) {
31db9f7c 2440 cmd = BTRFS_SEND_C_MKSOCK;
e938c8ad 2441 } else {
31db9f7c
AB
2442 printk(KERN_WARNING "btrfs: unexpected inode type %o",
2443 (int)(mode & S_IFMT));
2444 ret = -ENOTSUPP;
2445 goto out;
2446 }
2447
2448 ret = begin_cmd(sctx, cmd);
2449 if (ret < 0)
2450 goto out;
2451
1f4692da 2452 ret = gen_unique_name(sctx, ino, gen, p);
31db9f7c
AB
2453 if (ret < 0)
2454 goto out;
2455
2456 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
1f4692da 2457 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
31db9f7c
AB
2458
2459 if (S_ISLNK(mode)) {
2460 fs_path_reset(p);
924794c9 2461 ret = read_symlink(sctx->send_root, ino, p);
31db9f7c
AB
2462 if (ret < 0)
2463 goto out;
2464 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2465 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2466 S_ISFIFO(mode) || S_ISSOCK(mode)) {
d79e5043
AJ
2467 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2468 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
31db9f7c
AB
2469 }
2470
2471 ret = send_cmd(sctx);
2472 if (ret < 0)
2473 goto out;
2474
2475
2476tlv_put_failure:
2477out:
924794c9 2478 fs_path_free(p);
31db9f7c
AB
2479 return ret;
2480}
2481
1f4692da
AB
2482/*
2483 * We need some special handling for inodes that get processed before the parent
2484 * directory got created. See process_recorded_refs for details.
2485 * This function does the check if we already created the dir out of order.
2486 */
2487static int did_create_dir(struct send_ctx *sctx, u64 dir)
2488{
2489 int ret = 0;
2490 struct btrfs_path *path = NULL;
2491 struct btrfs_key key;
2492 struct btrfs_key found_key;
2493 struct btrfs_key di_key;
2494 struct extent_buffer *eb;
2495 struct btrfs_dir_item *di;
2496 int slot;
2497
2498 path = alloc_path_for_send();
2499 if (!path) {
2500 ret = -ENOMEM;
2501 goto out;
2502 }
2503
2504 key.objectid = dir;
2505 key.type = BTRFS_DIR_INDEX_KEY;
2506 key.offset = 0;
2507 while (1) {
2508 ret = btrfs_search_slot_for_read(sctx->send_root, &key, path,
2509 1, 0);
2510 if (ret < 0)
2511 goto out;
2512 if (!ret) {
2513 eb = path->nodes[0];
2514 slot = path->slots[0];
2515 btrfs_item_key_to_cpu(eb, &found_key, slot);
2516 }
2517 if (ret || found_key.objectid != key.objectid ||
2518 found_key.type != key.type) {
2519 ret = 0;
2520 goto out;
2521 }
2522
2523 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2524 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2525
a0525414
JB
2526 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2527 di_key.objectid < sctx->send_progress) {
1f4692da
AB
2528 ret = 1;
2529 goto out;
2530 }
2531
2532 key.offset = found_key.offset + 1;
2533 btrfs_release_path(path);
2534 }
2535
2536out:
2537 btrfs_free_path(path);
2538 return ret;
2539}
2540
2541/*
2542 * Only creates the inode if it is:
2543 * 1. Not a directory
2544 * 2. Or a directory which was not created already due to out of order
2545 * directories. See did_create_dir and process_recorded_refs for details.
2546 */
2547static int send_create_inode_if_needed(struct send_ctx *sctx)
2548{
2549 int ret;
2550
2551 if (S_ISDIR(sctx->cur_inode_mode)) {
2552 ret = did_create_dir(sctx, sctx->cur_ino);
2553 if (ret < 0)
2554 goto out;
2555 if (ret) {
2556 ret = 0;
2557 goto out;
2558 }
2559 }
2560
2561 ret = send_create_inode(sctx, sctx->cur_ino);
2562 if (ret < 0)
2563 goto out;
2564
2565out:
2566 return ret;
2567}
2568
31db9f7c
AB
2569struct recorded_ref {
2570 struct list_head list;
2571 char *dir_path;
2572 char *name;
2573 struct fs_path *full_path;
2574 u64 dir;
2575 u64 dir_gen;
2576 int dir_path_len;
2577 int name_len;
2578};
2579
2580/*
2581 * We need to process new refs before deleted refs, but compare_tree gives us
2582 * everything mixed. So we first record all refs and later process them.
2583 * This function is a helper to record one ref.
2584 */
2585static int record_ref(struct list_head *head, u64 dir,
2586 u64 dir_gen, struct fs_path *path)
2587{
2588 struct recorded_ref *ref;
31db9f7c
AB
2589
2590 ref = kmalloc(sizeof(*ref), GFP_NOFS);
2591 if (!ref)
2592 return -ENOMEM;
2593
2594 ref->dir = dir;
2595 ref->dir_gen = dir_gen;
2596 ref->full_path = path;
2597
ed84885d
AS
2598 ref->name = (char *)kbasename(ref->full_path->start);
2599 ref->name_len = ref->full_path->end - ref->name;
2600 ref->dir_path = ref->full_path->start;
2601 if (ref->name == ref->full_path->start)
31db9f7c 2602 ref->dir_path_len = 0;
ed84885d 2603 else
31db9f7c
AB
2604 ref->dir_path_len = ref->full_path->end -
2605 ref->full_path->start - 1 - ref->name_len;
31db9f7c
AB
2606
2607 list_add_tail(&ref->list, head);
2608 return 0;
2609}
2610
ba5e8f2e
JB
2611static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2612{
2613 struct recorded_ref *new;
2614
2615 new = kmalloc(sizeof(*ref), GFP_NOFS);
2616 if (!new)
2617 return -ENOMEM;
2618
2619 new->dir = ref->dir;
2620 new->dir_gen = ref->dir_gen;
2621 new->full_path = NULL;
2622 INIT_LIST_HEAD(&new->list);
2623 list_add_tail(&new->list, list);
2624 return 0;
2625}
2626
924794c9 2627static void __free_recorded_refs(struct list_head *head)
31db9f7c
AB
2628{
2629 struct recorded_ref *cur;
31db9f7c 2630
e938c8ad
AB
2631 while (!list_empty(head)) {
2632 cur = list_entry(head->next, struct recorded_ref, list);
924794c9 2633 fs_path_free(cur->full_path);
e938c8ad 2634 list_del(&cur->list);
31db9f7c
AB
2635 kfree(cur);
2636 }
31db9f7c
AB
2637}
2638
2639static void free_recorded_refs(struct send_ctx *sctx)
2640{
924794c9
TI
2641 __free_recorded_refs(&sctx->new_refs);
2642 __free_recorded_refs(&sctx->deleted_refs);
31db9f7c
AB
2643}
2644
2645/*
766702ef 2646 * Renames/moves a file/dir to its orphan name. Used when the first
31db9f7c
AB
2647 * ref of an unprocessed inode gets overwritten and for all non empty
2648 * directories.
2649 */
2650static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2651 struct fs_path *path)
2652{
2653 int ret;
2654 struct fs_path *orphan;
2655
924794c9 2656 orphan = fs_path_alloc();
31db9f7c
AB
2657 if (!orphan)
2658 return -ENOMEM;
2659
2660 ret = gen_unique_name(sctx, ino, gen, orphan);
2661 if (ret < 0)
2662 goto out;
2663
2664 ret = send_rename(sctx, path, orphan);
2665
2666out:
924794c9 2667 fs_path_free(orphan);
31db9f7c
AB
2668 return ret;
2669}
2670
2671/*
2672 * Returns 1 if a directory can be removed at this point in time.
2673 * We check this by iterating all dir items and checking if the inode behind
2674 * the dir item was already processed.
2675 */
2676static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 send_progress)
2677{
2678 int ret = 0;
2679 struct btrfs_root *root = sctx->parent_root;
2680 struct btrfs_path *path;
2681 struct btrfs_key key;
2682 struct btrfs_key found_key;
2683 struct btrfs_key loc;
2684 struct btrfs_dir_item *di;
2685
6d85ed05
AB
2686 /*
2687 * Don't try to rmdir the top/root subvolume dir.
2688 */
2689 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2690 return 0;
2691
31db9f7c
AB
2692 path = alloc_path_for_send();
2693 if (!path)
2694 return -ENOMEM;
2695
2696 key.objectid = dir;
2697 key.type = BTRFS_DIR_INDEX_KEY;
2698 key.offset = 0;
2699
2700 while (1) {
2701 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2702 if (ret < 0)
2703 goto out;
2704 if (!ret) {
2705 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2706 path->slots[0]);
2707 }
2708 if (ret || found_key.objectid != key.objectid ||
2709 found_key.type != key.type) {
2710 break;
2711 }
2712
2713 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2714 struct btrfs_dir_item);
2715 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2716
2717 if (loc.objectid > send_progress) {
2718 ret = 0;
2719 goto out;
2720 }
2721
2722 btrfs_release_path(path);
2723 key.offset = found_key.offset + 1;
2724 }
2725
2726 ret = 1;
2727
2728out:
2729 btrfs_free_path(path);
2730 return ret;
2731}
2732
9f03740a
FDBM
2733static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2734{
2735 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2736 struct waiting_dir_move *entry;
2737
2738 while (n) {
2739 entry = rb_entry(n, struct waiting_dir_move, node);
2740 if (ino < entry->ino)
2741 n = n->rb_left;
2742 else if (ino > entry->ino)
2743 n = n->rb_right;
2744 else
2745 return 1;
2746 }
2747 return 0;
2748}
2749
2750static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2751{
2752 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2753 struct rb_node *parent = NULL;
2754 struct waiting_dir_move *entry, *dm;
2755
2756 dm = kmalloc(sizeof(*dm), GFP_NOFS);
2757 if (!dm)
2758 return -ENOMEM;
2759 dm->ino = ino;
2760
2761 while (*p) {
2762 parent = *p;
2763 entry = rb_entry(parent, struct waiting_dir_move, node);
2764 if (ino < entry->ino) {
2765 p = &(*p)->rb_left;
2766 } else if (ino > entry->ino) {
2767 p = &(*p)->rb_right;
2768 } else {
2769 kfree(dm);
2770 return -EEXIST;
2771 }
2772 }
2773
2774 rb_link_node(&dm->node, parent, p);
2775 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2776 return 0;
2777}
2778
9f03740a
FDBM
2779static int del_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2780{
2781 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2782 struct waiting_dir_move *entry;
2783
2784 while (n) {
2785 entry = rb_entry(n, struct waiting_dir_move, node);
2786 if (ino < entry->ino) {
2787 n = n->rb_left;
2788 } else if (ino > entry->ino) {
2789 n = n->rb_right;
2790 } else {
2791 rb_erase(&entry->node, &sctx->waiting_dir_moves);
2792 kfree(entry);
2793 return 0;
2794 }
2795 }
2796 return -ENOENT;
2797}
2798
9f03740a
FDBM
2799static int add_pending_dir_move(struct send_ctx *sctx, u64 parent_ino)
2800{
2801 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
2802 struct rb_node *parent = NULL;
2803 struct pending_dir_move *entry, *pm;
2804 struct recorded_ref *cur;
2805 int exists = 0;
2806 int ret;
2807
2808 pm = kmalloc(sizeof(*pm), GFP_NOFS);
2809 if (!pm)
2810 return -ENOMEM;
2811 pm->parent_ino = parent_ino;
2812 pm->ino = sctx->cur_ino;
2813 pm->gen = sctx->cur_inode_gen;
2814 INIT_LIST_HEAD(&pm->list);
2815 INIT_LIST_HEAD(&pm->update_refs);
2816 RB_CLEAR_NODE(&pm->node);
2817
2818 while (*p) {
2819 parent = *p;
2820 entry = rb_entry(parent, struct pending_dir_move, node);
2821 if (parent_ino < entry->parent_ino) {
2822 p = &(*p)->rb_left;
2823 } else if (parent_ino > entry->parent_ino) {
2824 p = &(*p)->rb_right;
2825 } else {
2826 exists = 1;
2827 break;
2828 }
2829 }
2830
2831 list_for_each_entry(cur, &sctx->deleted_refs, list) {
2832 ret = dup_ref(cur, &pm->update_refs);
2833 if (ret < 0)
2834 goto out;
2835 }
2836 list_for_each_entry(cur, &sctx->new_refs, list) {
2837 ret = dup_ref(cur, &pm->update_refs);
2838 if (ret < 0)
2839 goto out;
2840 }
2841
2842 ret = add_waiting_dir_move(sctx, pm->ino);
2843 if (ret)
2844 goto out;
2845
2846 if (exists) {
2847 list_add_tail(&pm->list, &entry->list);
2848 } else {
2849 rb_link_node(&pm->node, parent, p);
2850 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
2851 }
2852 ret = 0;
2853out:
2854 if (ret) {
2855 __free_recorded_refs(&pm->update_refs);
2856 kfree(pm);
2857 }
2858 return ret;
2859}
2860
2861static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
2862 u64 parent_ino)
2863{
2864 struct rb_node *n = sctx->pending_dir_moves.rb_node;
2865 struct pending_dir_move *entry;
2866
2867 while (n) {
2868 entry = rb_entry(n, struct pending_dir_move, node);
2869 if (parent_ino < entry->parent_ino)
2870 n = n->rb_left;
2871 else if (parent_ino > entry->parent_ino)
2872 n = n->rb_right;
2873 else
2874 return entry;
2875 }
2876 return NULL;
2877}
2878
2879static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
2880{
2881 struct fs_path *from_path = NULL;
2882 struct fs_path *to_path = NULL;
2883 u64 orig_progress = sctx->send_progress;
2884 struct recorded_ref *cur;
2885 int ret;
2886
2887 from_path = fs_path_alloc();
2888 if (!from_path)
2889 return -ENOMEM;
2890
2891 sctx->send_progress = pm->ino;
2892 ret = get_cur_path(sctx, pm->ino, pm->gen, from_path);
2893 if (ret < 0)
2894 goto out;
2895
2896 to_path = fs_path_alloc();
2897 if (!to_path) {
2898 ret = -ENOMEM;
2899 goto out;
2900 }
2901
2902 sctx->send_progress = sctx->cur_ino + 1;
6cc98d90
JB
2903 ret = del_waiting_dir_move(sctx, pm->ino);
2904 ASSERT(ret == 0);
2905
9f03740a
FDBM
2906 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
2907 if (ret < 0)
2908 goto out;
2909
2910 ret = send_rename(sctx, from_path, to_path);
2911 if (ret < 0)
2912 goto out;
2913
2914 ret = send_utimes(sctx, pm->ino, pm->gen);
2915 if (ret < 0)
2916 goto out;
2917
2918 /*
2919 * After rename/move, need to update the utimes of both new parent(s)
2920 * and old parent(s).
2921 */
2922 list_for_each_entry(cur, &pm->update_refs, list) {
2923 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
2924 if (ret < 0)
2925 goto out;
2926 }
2927
2928out:
2929 fs_path_free(from_path);
2930 fs_path_free(to_path);
2931 sctx->send_progress = orig_progress;
2932
2933 return ret;
2934}
2935
2936static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
2937{
2938 if (!list_empty(&m->list))
2939 list_del(&m->list);
2940 if (!RB_EMPTY_NODE(&m->node))
2941 rb_erase(&m->node, &sctx->pending_dir_moves);
2942 __free_recorded_refs(&m->update_refs);
2943 kfree(m);
2944}
2945
2946static void tail_append_pending_moves(struct pending_dir_move *moves,
2947 struct list_head *stack)
2948{
2949 if (list_empty(&moves->list)) {
2950 list_add_tail(&moves->list, stack);
2951 } else {
2952 LIST_HEAD(list);
2953 list_splice_init(&moves->list, &list);
2954 list_add_tail(&moves->list, stack);
2955 list_splice_tail(&list, stack);
2956 }
2957}
2958
2959static int apply_children_dir_moves(struct send_ctx *sctx)
2960{
2961 struct pending_dir_move *pm;
2962 struct list_head stack;
2963 u64 parent_ino = sctx->cur_ino;
2964 int ret = 0;
2965
2966 pm = get_pending_dir_moves(sctx, parent_ino);
2967 if (!pm)
2968 return 0;
2969
2970 INIT_LIST_HEAD(&stack);
2971 tail_append_pending_moves(pm, &stack);
2972
2973 while (!list_empty(&stack)) {
2974 pm = list_first_entry(&stack, struct pending_dir_move, list);
2975 parent_ino = pm->ino;
2976 ret = apply_dir_move(sctx, pm);
2977 free_pending_move(sctx, pm);
2978 if (ret)
2979 goto out;
2980 pm = get_pending_dir_moves(sctx, parent_ino);
2981 if (pm)
2982 tail_append_pending_moves(pm, &stack);
2983 }
2984 return 0;
2985
2986out:
2987 while (!list_empty(&stack)) {
2988 pm = list_first_entry(&stack, struct pending_dir_move, list);
2989 free_pending_move(sctx, pm);
2990 }
2991 return ret;
2992}
2993
2994static int wait_for_parent_move(struct send_ctx *sctx,
2995 struct recorded_ref *parent_ref)
2996{
2997 int ret;
2998 u64 ino = parent_ref->dir;
2999 u64 parent_ino_before, parent_ino_after;
3000 u64 new_gen, old_gen;
3001 struct fs_path *path_before = NULL;
3002 struct fs_path *path_after = NULL;
3003 int len1, len2;
3004
3005 if (parent_ref->dir <= sctx->cur_ino)
3006 return 0;
3007
3008 if (is_waiting_for_move(sctx, ino))
3009 return 1;
3010
3011 ret = get_inode_info(sctx->parent_root, ino, NULL, &old_gen,
3012 NULL, NULL, NULL, NULL);
3013 if (ret == -ENOENT)
3014 return 0;
3015 else if (ret < 0)
3016 return ret;
3017
3018 ret = get_inode_info(sctx->send_root, ino, NULL, &new_gen,
3019 NULL, NULL, NULL, NULL);
3020 if (ret < 0)
3021 return ret;
3022
3023 if (new_gen != old_gen)
3024 return 0;
3025
3026 path_before = fs_path_alloc();
3027 if (!path_before)
3028 return -ENOMEM;
3029
3030 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3031 NULL, path_before);
3032 if (ret == -ENOENT) {
3033 ret = 0;
3034 goto out;
3035 } else if (ret < 0) {
3036 goto out;
3037 }
3038
3039 path_after = fs_path_alloc();
3040 if (!path_after) {
3041 ret = -ENOMEM;
3042 goto out;
3043 }
3044
3045 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3046 NULL, path_after);
3047 if (ret == -ENOENT) {
3048 ret = 0;
3049 goto out;
3050 } else if (ret < 0) {
3051 goto out;
3052 }
3053
3054 len1 = fs_path_len(path_before);
3055 len2 = fs_path_len(path_after);
3056 if ((parent_ino_before != parent_ino_after) && (len1 != len2 ||
3057 memcmp(path_before->start, path_after->start, len1))) {
3058 ret = 1;
3059 goto out;
3060 }
3061 ret = 0;
3062
3063out:
3064 fs_path_free(path_before);
3065 fs_path_free(path_after);
3066
3067 return ret;
3068}
3069
31db9f7c
AB
3070/*
3071 * This does all the move/link/unlink/rmdir magic.
3072 */
9f03740a 3073static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
31db9f7c
AB
3074{
3075 int ret = 0;
3076 struct recorded_ref *cur;
1f4692da 3077 struct recorded_ref *cur2;
ba5e8f2e 3078 struct list_head check_dirs;
31db9f7c 3079 struct fs_path *valid_path = NULL;
b24baf69 3080 u64 ow_inode = 0;
31db9f7c
AB
3081 u64 ow_gen;
3082 int did_overwrite = 0;
3083 int is_orphan = 0;
3084
3085verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3086
6d85ed05
AB
3087 /*
3088 * This should never happen as the root dir always has the same ref
3089 * which is always '..'
3090 */
3091 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
ba5e8f2e 3092 INIT_LIST_HEAD(&check_dirs);
6d85ed05 3093
924794c9 3094 valid_path = fs_path_alloc();
31db9f7c
AB
3095 if (!valid_path) {
3096 ret = -ENOMEM;
3097 goto out;
3098 }
3099
31db9f7c
AB
3100 /*
3101 * First, check if the first ref of the current inode was overwritten
3102 * before. If yes, we know that the current inode was already orphanized
3103 * and thus use the orphan name. If not, we can use get_cur_path to
3104 * get the path of the first ref as it would like while receiving at
3105 * this point in time.
3106 * New inodes are always orphan at the beginning, so force to use the
3107 * orphan name in this case.
3108 * The first ref is stored in valid_path and will be updated if it
3109 * gets moved around.
3110 */
3111 if (!sctx->cur_inode_new) {
3112 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3113 sctx->cur_inode_gen);
3114 if (ret < 0)
3115 goto out;
3116 if (ret)
3117 did_overwrite = 1;
3118 }
3119 if (sctx->cur_inode_new || did_overwrite) {
3120 ret = gen_unique_name(sctx, sctx->cur_ino,
3121 sctx->cur_inode_gen, valid_path);
3122 if (ret < 0)
3123 goto out;
3124 is_orphan = 1;
3125 } else {
3126 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3127 valid_path);
3128 if (ret < 0)
3129 goto out;
3130 }
3131
3132 list_for_each_entry(cur, &sctx->new_refs, list) {
1f4692da
AB
3133 /*
3134 * We may have refs where the parent directory does not exist
3135 * yet. This happens if the parent directories inum is higher
3136 * the the current inum. To handle this case, we create the
3137 * parent directory out of order. But we need to check if this
3138 * did already happen before due to other refs in the same dir.
3139 */
3140 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3141 if (ret < 0)
3142 goto out;
3143 if (ret == inode_state_will_create) {
3144 ret = 0;
3145 /*
3146 * First check if any of the current inodes refs did
3147 * already create the dir.
3148 */
3149 list_for_each_entry(cur2, &sctx->new_refs, list) {
3150 if (cur == cur2)
3151 break;
3152 if (cur2->dir == cur->dir) {
3153 ret = 1;
3154 break;
3155 }
3156 }
3157
3158 /*
3159 * If that did not happen, check if a previous inode
3160 * did already create the dir.
3161 */
3162 if (!ret)
3163 ret = did_create_dir(sctx, cur->dir);
3164 if (ret < 0)
3165 goto out;
3166 if (!ret) {
3167 ret = send_create_inode(sctx, cur->dir);
3168 if (ret < 0)
3169 goto out;
3170 }
3171 }
3172
31db9f7c
AB
3173 /*
3174 * Check if this new ref would overwrite the first ref of
3175 * another unprocessed inode. If yes, orphanize the
3176 * overwritten inode. If we find an overwritten ref that is
3177 * not the first ref, simply unlink it.
3178 */
3179 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3180 cur->name, cur->name_len,
3181 &ow_inode, &ow_gen);
3182 if (ret < 0)
3183 goto out;
3184 if (ret) {
924794c9
TI
3185 ret = is_first_ref(sctx->parent_root,
3186 ow_inode, cur->dir, cur->name,
3187 cur->name_len);
31db9f7c
AB
3188 if (ret < 0)
3189 goto out;
3190 if (ret) {
3191 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3192 cur->full_path);
3193 if (ret < 0)
3194 goto out;
3195 } else {
3196 ret = send_unlink(sctx, cur->full_path);
3197 if (ret < 0)
3198 goto out;
3199 }
3200 }
3201
3202 /*
3203 * link/move the ref to the new place. If we have an orphan
3204 * inode, move it and update valid_path. If not, link or move
3205 * it depending on the inode mode.
3206 */
1f4692da 3207 if (is_orphan) {
31db9f7c
AB
3208 ret = send_rename(sctx, valid_path, cur->full_path);
3209 if (ret < 0)
3210 goto out;
3211 is_orphan = 0;
3212 ret = fs_path_copy(valid_path, cur->full_path);
3213 if (ret < 0)
3214 goto out;
3215 } else {
3216 if (S_ISDIR(sctx->cur_inode_mode)) {
3217 /*
3218 * Dirs can't be linked, so move it. For moved
3219 * dirs, we always have one new and one deleted
3220 * ref. The deleted ref is ignored later.
3221 */
d86477b3
FDBM
3222 ret = wait_for_parent_move(sctx, cur);
3223 if (ret < 0)
3224 goto out;
3225 if (ret) {
9f03740a
FDBM
3226 ret = add_pending_dir_move(sctx,
3227 cur->dir);
3228 *pending_move = 1;
3229 } else {
3230 ret = send_rename(sctx, valid_path,
3231 cur->full_path);
3232 if (!ret)
3233 ret = fs_path_copy(valid_path,
3234 cur->full_path);
3235 }
31db9f7c
AB
3236 if (ret < 0)
3237 goto out;
3238 } else {
3239 ret = send_link(sctx, cur->full_path,
3240 valid_path);
3241 if (ret < 0)
3242 goto out;
3243 }
3244 }
ba5e8f2e 3245 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3246 if (ret < 0)
3247 goto out;
3248 }
3249
3250 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3251 /*
3252 * Check if we can already rmdir the directory. If not,
3253 * orphanize it. For every dir item inside that gets deleted
3254 * later, we do this check again and rmdir it then if possible.
3255 * See the use of check_dirs for more details.
3256 */
3257 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_ino);
3258 if (ret < 0)
3259 goto out;
3260 if (ret) {
3261 ret = send_rmdir(sctx, valid_path);
3262 if (ret < 0)
3263 goto out;
3264 } else if (!is_orphan) {
3265 ret = orphanize_inode(sctx, sctx->cur_ino,
3266 sctx->cur_inode_gen, valid_path);
3267 if (ret < 0)
3268 goto out;
3269 is_orphan = 1;
3270 }
3271
3272 list_for_each_entry(cur, &sctx->deleted_refs, list) {
ba5e8f2e 3273 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3274 if (ret < 0)
3275 goto out;
3276 }
ccf1626b
AB
3277 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3278 !list_empty(&sctx->deleted_refs)) {
3279 /*
3280 * We have a moved dir. Add the old parent to check_dirs
3281 */
3282 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3283 list);
ba5e8f2e 3284 ret = dup_ref(cur, &check_dirs);
ccf1626b
AB
3285 if (ret < 0)
3286 goto out;
31db9f7c
AB
3287 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3288 /*
3289 * We have a non dir inode. Go through all deleted refs and
3290 * unlink them if they were not already overwritten by other
3291 * inodes.
3292 */
3293 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3294 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3295 sctx->cur_ino, sctx->cur_inode_gen,
3296 cur->name, cur->name_len);
3297 if (ret < 0)
3298 goto out;
3299 if (!ret) {
1f4692da
AB
3300 ret = send_unlink(sctx, cur->full_path);
3301 if (ret < 0)
3302 goto out;
31db9f7c 3303 }
ba5e8f2e 3304 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3305 if (ret < 0)
3306 goto out;
3307 }
31db9f7c
AB
3308 /*
3309 * If the inode is still orphan, unlink the orphan. This may
3310 * happen when a previous inode did overwrite the first ref
3311 * of this inode and no new refs were added for the current
766702ef
AB
3312 * inode. Unlinking does not mean that the inode is deleted in
3313 * all cases. There may still be links to this inode in other
3314 * places.
31db9f7c 3315 */
1f4692da 3316 if (is_orphan) {
31db9f7c
AB
3317 ret = send_unlink(sctx, valid_path);
3318 if (ret < 0)
3319 goto out;
3320 }
3321 }
3322
3323 /*
3324 * We did collect all parent dirs where cur_inode was once located. We
3325 * now go through all these dirs and check if they are pending for
3326 * deletion and if it's finally possible to perform the rmdir now.
3327 * We also update the inode stats of the parent dirs here.
3328 */
ba5e8f2e 3329 list_for_each_entry(cur, &check_dirs, list) {
766702ef
AB
3330 /*
3331 * In case we had refs into dirs that were not processed yet,
3332 * we don't need to do the utime and rmdir logic for these dirs.
3333 * The dir will be processed later.
3334 */
ba5e8f2e 3335 if (cur->dir > sctx->cur_ino)
31db9f7c
AB
3336 continue;
3337
ba5e8f2e 3338 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
3339 if (ret < 0)
3340 goto out;
3341
3342 if (ret == inode_state_did_create ||
3343 ret == inode_state_no_change) {
3344 /* TODO delayed utimes */
ba5e8f2e 3345 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
3346 if (ret < 0)
3347 goto out;
3348 } else if (ret == inode_state_did_delete) {
ba5e8f2e 3349 ret = can_rmdir(sctx, cur->dir, sctx->cur_ino);
31db9f7c
AB
3350 if (ret < 0)
3351 goto out;
3352 if (ret) {
ba5e8f2e
JB
3353 ret = get_cur_path(sctx, cur->dir,
3354 cur->dir_gen, valid_path);
31db9f7c
AB
3355 if (ret < 0)
3356 goto out;
3357 ret = send_rmdir(sctx, valid_path);
3358 if (ret < 0)
3359 goto out;
3360 }
3361 }
3362 }
3363
31db9f7c
AB
3364 ret = 0;
3365
3366out:
ba5e8f2e 3367 __free_recorded_refs(&check_dirs);
31db9f7c 3368 free_recorded_refs(sctx);
924794c9 3369 fs_path_free(valid_path);
31db9f7c
AB
3370 return ret;
3371}
3372
3373static int __record_new_ref(int num, u64 dir, int index,
3374 struct fs_path *name,
3375 void *ctx)
3376{
3377 int ret = 0;
3378 struct send_ctx *sctx = ctx;
3379 struct fs_path *p;
3380 u64 gen;
3381
924794c9 3382 p = fs_path_alloc();
31db9f7c
AB
3383 if (!p)
3384 return -ENOMEM;
3385
3386 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, NULL,
85a7b33b 3387 NULL, NULL);
31db9f7c
AB
3388 if (ret < 0)
3389 goto out;
3390
31db9f7c
AB
3391 ret = get_cur_path(sctx, dir, gen, p);
3392 if (ret < 0)
3393 goto out;
3394 ret = fs_path_add_path(p, name);
3395 if (ret < 0)
3396 goto out;
3397
3398 ret = record_ref(&sctx->new_refs, dir, gen, p);
3399
3400out:
3401 if (ret)
924794c9 3402 fs_path_free(p);
31db9f7c
AB
3403 return ret;
3404}
3405
3406static int __record_deleted_ref(int num, u64 dir, int index,
3407 struct fs_path *name,
3408 void *ctx)
3409{
3410 int ret = 0;
3411 struct send_ctx *sctx = ctx;
3412 struct fs_path *p;
3413 u64 gen;
3414
924794c9 3415 p = fs_path_alloc();
31db9f7c
AB
3416 if (!p)
3417 return -ENOMEM;
3418
3419 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, NULL,
85a7b33b 3420 NULL, NULL);
31db9f7c
AB
3421 if (ret < 0)
3422 goto out;
3423
3424 ret = get_cur_path(sctx, dir, gen, p);
3425 if (ret < 0)
3426 goto out;
3427 ret = fs_path_add_path(p, name);
3428 if (ret < 0)
3429 goto out;
3430
3431 ret = record_ref(&sctx->deleted_refs, dir, gen, p);
3432
3433out:
3434 if (ret)
924794c9 3435 fs_path_free(p);
31db9f7c
AB
3436 return ret;
3437}
3438
3439static int record_new_ref(struct send_ctx *sctx)
3440{
3441 int ret;
3442
924794c9
TI
3443 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3444 sctx->cmp_key, 0, __record_new_ref, sctx);
31db9f7c
AB
3445 if (ret < 0)
3446 goto out;
3447 ret = 0;
3448
3449out:
3450 return ret;
3451}
3452
3453static int record_deleted_ref(struct send_ctx *sctx)
3454{
3455 int ret;
3456
924794c9
TI
3457 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3458 sctx->cmp_key, 0, __record_deleted_ref, sctx);
31db9f7c
AB
3459 if (ret < 0)
3460 goto out;
3461 ret = 0;
3462
3463out:
3464 return ret;
3465}
3466
3467struct find_ref_ctx {
3468 u64 dir;
ba5e8f2e
JB
3469 u64 dir_gen;
3470 struct btrfs_root *root;
31db9f7c
AB
3471 struct fs_path *name;
3472 int found_idx;
3473};
3474
3475static int __find_iref(int num, u64 dir, int index,
3476 struct fs_path *name,
3477 void *ctx_)
3478{
3479 struct find_ref_ctx *ctx = ctx_;
ba5e8f2e
JB
3480 u64 dir_gen;
3481 int ret;
31db9f7c
AB
3482
3483 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3484 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
ba5e8f2e
JB
3485 /*
3486 * To avoid doing extra lookups we'll only do this if everything
3487 * else matches.
3488 */
3489 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3490 NULL, NULL, NULL);
3491 if (ret)
3492 return ret;
3493 if (dir_gen != ctx->dir_gen)
3494 return 0;
31db9f7c
AB
3495 ctx->found_idx = num;
3496 return 1;
3497 }
3498 return 0;
3499}
3500
924794c9 3501static int find_iref(struct btrfs_root *root,
31db9f7c
AB
3502 struct btrfs_path *path,
3503 struct btrfs_key *key,
ba5e8f2e 3504 u64 dir, u64 dir_gen, struct fs_path *name)
31db9f7c
AB
3505{
3506 int ret;
3507 struct find_ref_ctx ctx;
3508
3509 ctx.dir = dir;
3510 ctx.name = name;
ba5e8f2e 3511 ctx.dir_gen = dir_gen;
31db9f7c 3512 ctx.found_idx = -1;
ba5e8f2e 3513 ctx.root = root;
31db9f7c 3514
924794c9 3515 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
31db9f7c
AB
3516 if (ret < 0)
3517 return ret;
3518
3519 if (ctx.found_idx == -1)
3520 return -ENOENT;
3521
3522 return ctx.found_idx;
3523}
3524
3525static int __record_changed_new_ref(int num, u64 dir, int index,
3526 struct fs_path *name,
3527 void *ctx)
3528{
ba5e8f2e 3529 u64 dir_gen;
31db9f7c
AB
3530 int ret;
3531 struct send_ctx *sctx = ctx;
3532
ba5e8f2e
JB
3533 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3534 NULL, NULL, NULL);
3535 if (ret)
3536 return ret;
3537
924794c9 3538 ret = find_iref(sctx->parent_root, sctx->right_path,
ba5e8f2e 3539 sctx->cmp_key, dir, dir_gen, name);
31db9f7c
AB
3540 if (ret == -ENOENT)
3541 ret = __record_new_ref(num, dir, index, name, sctx);
3542 else if (ret > 0)
3543 ret = 0;
3544
3545 return ret;
3546}
3547
3548static int __record_changed_deleted_ref(int num, u64 dir, int index,
3549 struct fs_path *name,
3550 void *ctx)
3551{
ba5e8f2e 3552 u64 dir_gen;
31db9f7c
AB
3553 int ret;
3554 struct send_ctx *sctx = ctx;
3555
ba5e8f2e
JB
3556 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
3557 NULL, NULL, NULL);
3558 if (ret)
3559 return ret;
3560
924794c9 3561 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
ba5e8f2e 3562 dir, dir_gen, name);
31db9f7c
AB
3563 if (ret == -ENOENT)
3564 ret = __record_deleted_ref(num, dir, index, name, sctx);
3565 else if (ret > 0)
3566 ret = 0;
3567
3568 return ret;
3569}
3570
3571static int record_changed_ref(struct send_ctx *sctx)
3572{
3573 int ret = 0;
3574
924794c9 3575 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
31db9f7c
AB
3576 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3577 if (ret < 0)
3578 goto out;
924794c9 3579 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
31db9f7c
AB
3580 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3581 if (ret < 0)
3582 goto out;
3583 ret = 0;
3584
3585out:
3586 return ret;
3587}
3588
3589/*
3590 * Record and process all refs at once. Needed when an inode changes the
3591 * generation number, which means that it was deleted and recreated.
3592 */
3593static int process_all_refs(struct send_ctx *sctx,
3594 enum btrfs_compare_tree_result cmd)
3595{
3596 int ret;
3597 struct btrfs_root *root;
3598 struct btrfs_path *path;
3599 struct btrfs_key key;
3600 struct btrfs_key found_key;
3601 struct extent_buffer *eb;
3602 int slot;
3603 iterate_inode_ref_t cb;
9f03740a 3604 int pending_move = 0;
31db9f7c
AB
3605
3606 path = alloc_path_for_send();
3607 if (!path)
3608 return -ENOMEM;
3609
3610 if (cmd == BTRFS_COMPARE_TREE_NEW) {
3611 root = sctx->send_root;
3612 cb = __record_new_ref;
3613 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3614 root = sctx->parent_root;
3615 cb = __record_deleted_ref;
3616 } else {
3617 BUG();
3618 }
3619
3620 key.objectid = sctx->cmp_key->objectid;
3621 key.type = BTRFS_INODE_REF_KEY;
3622 key.offset = 0;
3623 while (1) {
3624 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
e938c8ad 3625 if (ret < 0)
31db9f7c 3626 goto out;
e938c8ad 3627 if (ret)
31db9f7c 3628 break;
31db9f7c
AB
3629
3630 eb = path->nodes[0];
3631 slot = path->slots[0];
3632 btrfs_item_key_to_cpu(eb, &found_key, slot);
3633
3634 if (found_key.objectid != key.objectid ||
96b5bd77
JS
3635 (found_key.type != BTRFS_INODE_REF_KEY &&
3636 found_key.type != BTRFS_INODE_EXTREF_KEY))
31db9f7c 3637 break;
31db9f7c 3638
924794c9 3639 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
31db9f7c
AB
3640 btrfs_release_path(path);
3641 if (ret < 0)
3642 goto out;
3643
3644 key.offset = found_key.offset + 1;
3645 }
e938c8ad 3646 btrfs_release_path(path);
31db9f7c 3647
9f03740a
FDBM
3648 ret = process_recorded_refs(sctx, &pending_move);
3649 /* Only applicable to an incremental send. */
3650 ASSERT(pending_move == 0);
31db9f7c
AB
3651
3652out:
3653 btrfs_free_path(path);
3654 return ret;
3655}
3656
3657static int send_set_xattr(struct send_ctx *sctx,
3658 struct fs_path *path,
3659 const char *name, int name_len,
3660 const char *data, int data_len)
3661{
3662 int ret = 0;
3663
3664 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3665 if (ret < 0)
3666 goto out;
3667
3668 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3669 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3670 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3671
3672 ret = send_cmd(sctx);
3673
3674tlv_put_failure:
3675out:
3676 return ret;
3677}
3678
3679static int send_remove_xattr(struct send_ctx *sctx,
3680 struct fs_path *path,
3681 const char *name, int name_len)
3682{
3683 int ret = 0;
3684
3685 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3686 if (ret < 0)
3687 goto out;
3688
3689 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3690 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3691
3692 ret = send_cmd(sctx);
3693
3694tlv_put_failure:
3695out:
3696 return ret;
3697}
3698
3699static int __process_new_xattr(int num, struct btrfs_key *di_key,
3700 const char *name, int name_len,
3701 const char *data, int data_len,
3702 u8 type, void *ctx)
3703{
3704 int ret;
3705 struct send_ctx *sctx = ctx;
3706 struct fs_path *p;
3707 posix_acl_xattr_header dummy_acl;
3708
924794c9 3709 p = fs_path_alloc();
31db9f7c
AB
3710 if (!p)
3711 return -ENOMEM;
3712
3713 /*
3714 * This hack is needed because empty acl's are stored as zero byte
3715 * data in xattrs. Problem with that is, that receiving these zero byte
3716 * acl's will fail later. To fix this, we send a dummy acl list that
3717 * only contains the version number and no entries.
3718 */
3719 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
3720 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
3721 if (data_len == 0) {
3722 dummy_acl.a_version =
3723 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
3724 data = (char *)&dummy_acl;
3725 data_len = sizeof(dummy_acl);
3726 }
3727 }
3728
3729 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3730 if (ret < 0)
3731 goto out;
3732
3733 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
3734
3735out:
924794c9 3736 fs_path_free(p);
31db9f7c
AB
3737 return ret;
3738}
3739
3740static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
3741 const char *name, int name_len,
3742 const char *data, int data_len,
3743 u8 type, void *ctx)
3744{
3745 int ret;
3746 struct send_ctx *sctx = ctx;
3747 struct fs_path *p;
3748
924794c9 3749 p = fs_path_alloc();
31db9f7c
AB
3750 if (!p)
3751 return -ENOMEM;
3752
3753 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3754 if (ret < 0)
3755 goto out;
3756
3757 ret = send_remove_xattr(sctx, p, name, name_len);
3758
3759out:
924794c9 3760 fs_path_free(p);
31db9f7c
AB
3761 return ret;
3762}
3763
3764static int process_new_xattr(struct send_ctx *sctx)
3765{
3766 int ret = 0;
3767
924794c9
TI
3768 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
3769 sctx->cmp_key, __process_new_xattr, sctx);
31db9f7c
AB
3770
3771 return ret;
3772}
3773
3774static int process_deleted_xattr(struct send_ctx *sctx)
3775{
3776 int ret;
3777
924794c9
TI
3778 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
3779 sctx->cmp_key, __process_deleted_xattr, sctx);
31db9f7c
AB
3780
3781 return ret;
3782}
3783
3784struct find_xattr_ctx {
3785 const char *name;
3786 int name_len;
3787 int found_idx;
3788 char *found_data;
3789 int found_data_len;
3790};
3791
3792static int __find_xattr(int num, struct btrfs_key *di_key,
3793 const char *name, int name_len,
3794 const char *data, int data_len,
3795 u8 type, void *vctx)
3796{
3797 struct find_xattr_ctx *ctx = vctx;
3798
3799 if (name_len == ctx->name_len &&
3800 strncmp(name, ctx->name, name_len) == 0) {
3801 ctx->found_idx = num;
3802 ctx->found_data_len = data_len;
a5959bc0 3803 ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
31db9f7c
AB
3804 if (!ctx->found_data)
3805 return -ENOMEM;
31db9f7c
AB
3806 return 1;
3807 }
3808 return 0;
3809}
3810
924794c9 3811static int find_xattr(struct btrfs_root *root,
31db9f7c
AB
3812 struct btrfs_path *path,
3813 struct btrfs_key *key,
3814 const char *name, int name_len,
3815 char **data, int *data_len)
3816{
3817 int ret;
3818 struct find_xattr_ctx ctx;
3819
3820 ctx.name = name;
3821 ctx.name_len = name_len;
3822 ctx.found_idx = -1;
3823 ctx.found_data = NULL;
3824 ctx.found_data_len = 0;
3825
924794c9 3826 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
31db9f7c
AB
3827 if (ret < 0)
3828 return ret;
3829
3830 if (ctx.found_idx == -1)
3831 return -ENOENT;
3832 if (data) {
3833 *data = ctx.found_data;
3834 *data_len = ctx.found_data_len;
3835 } else {
3836 kfree(ctx.found_data);
3837 }
3838 return ctx.found_idx;
3839}
3840
3841
3842static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
3843 const char *name, int name_len,
3844 const char *data, int data_len,
3845 u8 type, void *ctx)
3846{
3847 int ret;
3848 struct send_ctx *sctx = ctx;
3849 char *found_data = NULL;
3850 int found_data_len = 0;
31db9f7c 3851
924794c9
TI
3852 ret = find_xattr(sctx->parent_root, sctx->right_path,
3853 sctx->cmp_key, name, name_len, &found_data,
3854 &found_data_len);
31db9f7c
AB
3855 if (ret == -ENOENT) {
3856 ret = __process_new_xattr(num, di_key, name, name_len, data,
3857 data_len, type, ctx);
3858 } else if (ret >= 0) {
3859 if (data_len != found_data_len ||
3860 memcmp(data, found_data, data_len)) {
3861 ret = __process_new_xattr(num, di_key, name, name_len,
3862 data, data_len, type, ctx);
3863 } else {
3864 ret = 0;
3865 }
3866 }
3867
3868 kfree(found_data);
31db9f7c
AB
3869 return ret;
3870}
3871
3872static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
3873 const char *name, int name_len,
3874 const char *data, int data_len,
3875 u8 type, void *ctx)
3876{
3877 int ret;
3878 struct send_ctx *sctx = ctx;
3879
924794c9
TI
3880 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
3881 name, name_len, NULL, NULL);
31db9f7c
AB
3882 if (ret == -ENOENT)
3883 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
3884 data_len, type, ctx);
3885 else if (ret >= 0)
3886 ret = 0;
3887
3888 return ret;
3889}
3890
3891static int process_changed_xattr(struct send_ctx *sctx)
3892{
3893 int ret = 0;
3894
924794c9 3895 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
31db9f7c
AB
3896 sctx->cmp_key, __process_changed_new_xattr, sctx);
3897 if (ret < 0)
3898 goto out;
924794c9 3899 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
31db9f7c
AB
3900 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
3901
3902out:
3903 return ret;
3904}
3905
3906static int process_all_new_xattrs(struct send_ctx *sctx)
3907{
3908 int ret;
3909 struct btrfs_root *root;
3910 struct btrfs_path *path;
3911 struct btrfs_key key;
3912 struct btrfs_key found_key;
3913 struct extent_buffer *eb;
3914 int slot;
3915
3916 path = alloc_path_for_send();
3917 if (!path)
3918 return -ENOMEM;
3919
3920 root = sctx->send_root;
3921
3922 key.objectid = sctx->cmp_key->objectid;
3923 key.type = BTRFS_XATTR_ITEM_KEY;
3924 key.offset = 0;
3925 while (1) {
3926 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3927 if (ret < 0)
3928 goto out;
3929 if (ret) {
3930 ret = 0;
3931 goto out;
3932 }
3933
3934 eb = path->nodes[0];
3935 slot = path->slots[0];
3936 btrfs_item_key_to_cpu(eb, &found_key, slot);
3937
3938 if (found_key.objectid != key.objectid ||
3939 found_key.type != key.type) {
3940 ret = 0;
3941 goto out;
3942 }
3943
924794c9
TI
3944 ret = iterate_dir_item(root, path, &found_key,
3945 __process_new_xattr, sctx);
31db9f7c
AB
3946 if (ret < 0)
3947 goto out;
3948
3949 btrfs_release_path(path);
3950 key.offset = found_key.offset + 1;
3951 }
3952
3953out:
3954 btrfs_free_path(path);
3955 return ret;
3956}
3957
ed259095
JB
3958static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
3959{
3960 struct btrfs_root *root = sctx->send_root;
3961 struct btrfs_fs_info *fs_info = root->fs_info;
3962 struct inode *inode;
3963 struct page *page;
3964 char *addr;
3965 struct btrfs_key key;
3966 pgoff_t index = offset >> PAGE_CACHE_SHIFT;
3967 pgoff_t last_index;
3968 unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
3969 ssize_t ret = 0;
3970
3971 key.objectid = sctx->cur_ino;
3972 key.type = BTRFS_INODE_ITEM_KEY;
3973 key.offset = 0;
3974
3975 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3976 if (IS_ERR(inode))
3977 return PTR_ERR(inode);
3978
3979 if (offset + len > i_size_read(inode)) {
3980 if (offset > i_size_read(inode))
3981 len = 0;
3982 else
3983 len = offset - i_size_read(inode);
3984 }
3985 if (len == 0)
3986 goto out;
3987
3988 last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
3989 while (index <= last_index) {
3990 unsigned cur_len = min_t(unsigned, len,
3991 PAGE_CACHE_SIZE - pg_offset);
3992 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3993 if (!page) {
3994 ret = -ENOMEM;
3995 break;
3996 }
3997
3998 if (!PageUptodate(page)) {
3999 btrfs_readpage(NULL, page);
4000 lock_page(page);
4001 if (!PageUptodate(page)) {
4002 unlock_page(page);
4003 page_cache_release(page);
4004 ret = -EIO;
4005 break;
4006 }
4007 }
4008
4009 addr = kmap(page);
4010 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4011 kunmap(page);
4012 unlock_page(page);
4013 page_cache_release(page);
4014 index++;
4015 pg_offset = 0;
4016 len -= cur_len;
4017 ret += cur_len;
4018 }
4019out:
4020 iput(inode);
4021 return ret;
4022}
4023
31db9f7c
AB
4024/*
4025 * Read some bytes from the current inode/file and send a write command to
4026 * user space.
4027 */
4028static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4029{
4030 int ret = 0;
4031 struct fs_path *p;
ed259095 4032 ssize_t num_read = 0;
31db9f7c 4033
924794c9 4034 p = fs_path_alloc();
31db9f7c
AB
4035 if (!p)
4036 return -ENOMEM;
4037
31db9f7c
AB
4038verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4039
ed259095
JB
4040 num_read = fill_read_buf(sctx, offset, len);
4041 if (num_read <= 0) {
4042 if (num_read < 0)
4043 ret = num_read;
31db9f7c 4044 goto out;
ed259095 4045 }
31db9f7c
AB
4046
4047 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4048 if (ret < 0)
4049 goto out;
4050
4051 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4052 if (ret < 0)
4053 goto out;
4054
4055 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4056 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
e938c8ad 4057 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
31db9f7c
AB
4058
4059 ret = send_cmd(sctx);
4060
4061tlv_put_failure:
4062out:
924794c9 4063 fs_path_free(p);
31db9f7c
AB
4064 if (ret < 0)
4065 return ret;
e938c8ad 4066 return num_read;
31db9f7c
AB
4067}
4068
4069/*
4070 * Send a clone command to user space.
4071 */
4072static int send_clone(struct send_ctx *sctx,
4073 u64 offset, u32 len,
4074 struct clone_root *clone_root)
4075{
4076 int ret = 0;
31db9f7c
AB
4077 struct fs_path *p;
4078 u64 gen;
4079
4080verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4081 "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4082 clone_root->root->objectid, clone_root->ino,
4083 clone_root->offset);
4084
924794c9 4085 p = fs_path_alloc();
31db9f7c
AB
4086 if (!p)
4087 return -ENOMEM;
4088
4089 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4090 if (ret < 0)
4091 goto out;
4092
4093 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4094 if (ret < 0)
4095 goto out;
4096
4097 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4098 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4099 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4100
e938c8ad 4101 if (clone_root->root == sctx->send_root) {
31db9f7c 4102 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
85a7b33b 4103 &gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
4104 if (ret < 0)
4105 goto out;
4106 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4107 } else {
924794c9 4108 ret = get_inode_path(clone_root->root, clone_root->ino, p);
31db9f7c
AB
4109 }
4110 if (ret < 0)
4111 goto out;
4112
4113 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
e938c8ad 4114 clone_root->root->root_item.uuid);
31db9f7c 4115 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5a0f4e2c 4116 le64_to_cpu(clone_root->root->root_item.ctransid));
31db9f7c
AB
4117 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4118 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4119 clone_root->offset);
4120
4121 ret = send_cmd(sctx);
4122
4123tlv_put_failure:
4124out:
924794c9 4125 fs_path_free(p);
31db9f7c
AB
4126 return ret;
4127}
4128
cb95e7bf
MF
4129/*
4130 * Send an update extent command to user space.
4131 */
4132static int send_update_extent(struct send_ctx *sctx,
4133 u64 offset, u32 len)
4134{
4135 int ret = 0;
4136 struct fs_path *p;
4137
924794c9 4138 p = fs_path_alloc();
cb95e7bf
MF
4139 if (!p)
4140 return -ENOMEM;
4141
4142 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4143 if (ret < 0)
4144 goto out;
4145
4146 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4147 if (ret < 0)
4148 goto out;
4149
4150 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4151 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4152 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4153
4154 ret = send_cmd(sctx);
4155
4156tlv_put_failure:
4157out:
924794c9 4158 fs_path_free(p);
cb95e7bf
MF
4159 return ret;
4160}
4161
16e7549f
JB
4162static int send_hole(struct send_ctx *sctx, u64 end)
4163{
4164 struct fs_path *p = NULL;
4165 u64 offset = sctx->cur_inode_last_extent;
4166 u64 len;
4167 int ret = 0;
4168
4169 p = fs_path_alloc();
4170 if (!p)
4171 return -ENOMEM;
4172 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4173 while (offset < end) {
4174 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4175
4176 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4177 if (ret < 0)
4178 break;
4179 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4180 if (ret < 0)
4181 break;
4182 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4183 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4184 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4185 ret = send_cmd(sctx);
4186 if (ret < 0)
4187 break;
4188 offset += len;
4189 }
4190tlv_put_failure:
4191 fs_path_free(p);
4192 return ret;
4193}
4194
31db9f7c
AB
4195static int send_write_or_clone(struct send_ctx *sctx,
4196 struct btrfs_path *path,
4197 struct btrfs_key *key,
4198 struct clone_root *clone_root)
4199{
4200 int ret = 0;
4201 struct btrfs_file_extent_item *ei;
4202 u64 offset = key->offset;
4203 u64 pos = 0;
4204 u64 len;
4205 u32 l;
4206 u8 type;
28e5dd8f 4207 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
31db9f7c
AB
4208
4209 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4210 struct btrfs_file_extent_item);
4211 type = btrfs_file_extent_type(path->nodes[0], ei);
74dd17fb 4212 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
4213 len = btrfs_file_extent_inline_len(path->nodes[0],
4214 path->slots[0], ei);
74dd17fb
CM
4215 /*
4216 * it is possible the inline item won't cover the whole page,
4217 * but there may be items after this page. Make
4218 * sure to send the whole thing
4219 */
4220 len = PAGE_CACHE_ALIGN(len);
4221 } else {
31db9f7c 4222 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
74dd17fb 4223 }
31db9f7c
AB
4224
4225 if (offset + len > sctx->cur_inode_size)
4226 len = sctx->cur_inode_size - offset;
4227 if (len == 0) {
4228 ret = 0;
4229 goto out;
4230 }
4231
28e5dd8f 4232 if (clone_root && IS_ALIGNED(offset + len, bs)) {
cb95e7bf
MF
4233 ret = send_clone(sctx, offset, len, clone_root);
4234 } else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
4235 ret = send_update_extent(sctx, offset, len);
4236 } else {
31db9f7c
AB
4237 while (pos < len) {
4238 l = len - pos;
4239 if (l > BTRFS_SEND_READ_SIZE)
4240 l = BTRFS_SEND_READ_SIZE;
4241 ret = send_write(sctx, pos + offset, l);
4242 if (ret < 0)
4243 goto out;
4244 if (!ret)
4245 break;
4246 pos += ret;
4247 }
4248 ret = 0;
31db9f7c 4249 }
31db9f7c
AB
4250out:
4251 return ret;
4252}
4253
4254static int is_extent_unchanged(struct send_ctx *sctx,
4255 struct btrfs_path *left_path,
4256 struct btrfs_key *ekey)
4257{
4258 int ret = 0;
4259 struct btrfs_key key;
4260 struct btrfs_path *path = NULL;
4261 struct extent_buffer *eb;
4262 int slot;
4263 struct btrfs_key found_key;
4264 struct btrfs_file_extent_item *ei;
4265 u64 left_disknr;
4266 u64 right_disknr;
4267 u64 left_offset;
4268 u64 right_offset;
4269 u64 left_offset_fixed;
4270 u64 left_len;
4271 u64 right_len;
74dd17fb
CM
4272 u64 left_gen;
4273 u64 right_gen;
31db9f7c
AB
4274 u8 left_type;
4275 u8 right_type;
4276
4277 path = alloc_path_for_send();
4278 if (!path)
4279 return -ENOMEM;
4280
4281 eb = left_path->nodes[0];
4282 slot = left_path->slots[0];
31db9f7c
AB
4283 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4284 left_type = btrfs_file_extent_type(eb, ei);
31db9f7c
AB
4285
4286 if (left_type != BTRFS_FILE_EXTENT_REG) {
4287 ret = 0;
4288 goto out;
4289 }
74dd17fb
CM
4290 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4291 left_len = btrfs_file_extent_num_bytes(eb, ei);
4292 left_offset = btrfs_file_extent_offset(eb, ei);
4293 left_gen = btrfs_file_extent_generation(eb, ei);
31db9f7c
AB
4294
4295 /*
4296 * Following comments will refer to these graphics. L is the left
4297 * extents which we are checking at the moment. 1-8 are the right
4298 * extents that we iterate.
4299 *
4300 * |-----L-----|
4301 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4302 *
4303 * |-----L-----|
4304 * |--1--|-2b-|...(same as above)
4305 *
4306 * Alternative situation. Happens on files where extents got split.
4307 * |-----L-----|
4308 * |-----------7-----------|-6-|
4309 *
4310 * Alternative situation. Happens on files which got larger.
4311 * |-----L-----|
4312 * |-8-|
4313 * Nothing follows after 8.
4314 */
4315
4316 key.objectid = ekey->objectid;
4317 key.type = BTRFS_EXTENT_DATA_KEY;
4318 key.offset = ekey->offset;
4319 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4320 if (ret < 0)
4321 goto out;
4322 if (ret) {
4323 ret = 0;
4324 goto out;
4325 }
4326
4327 /*
4328 * Handle special case where the right side has no extents at all.
4329 */
4330 eb = path->nodes[0];
4331 slot = path->slots[0];
4332 btrfs_item_key_to_cpu(eb, &found_key, slot);
4333 if (found_key.objectid != key.objectid ||
4334 found_key.type != key.type) {
57cfd462
JB
4335 /* If we're a hole then just pretend nothing changed */
4336 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
4337 goto out;
4338 }
4339
4340 /*
4341 * We're now on 2a, 2b or 7.
4342 */
4343 key = found_key;
4344 while (key.offset < ekey->offset + left_len) {
4345 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4346 right_type = btrfs_file_extent_type(eb, ei);
31db9f7c
AB
4347 if (right_type != BTRFS_FILE_EXTENT_REG) {
4348 ret = 0;
4349 goto out;
4350 }
4351
007d31f7
JB
4352 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4353 right_len = btrfs_file_extent_num_bytes(eb, ei);
4354 right_offset = btrfs_file_extent_offset(eb, ei);
4355 right_gen = btrfs_file_extent_generation(eb, ei);
4356
31db9f7c
AB
4357 /*
4358 * Are we at extent 8? If yes, we know the extent is changed.
4359 * This may only happen on the first iteration.
4360 */
d8347fa4 4361 if (found_key.offset + right_len <= ekey->offset) {
57cfd462
JB
4362 /* If we're a hole just pretend nothing changed */
4363 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
4364 goto out;
4365 }
4366
4367 left_offset_fixed = left_offset;
4368 if (key.offset < ekey->offset) {
4369 /* Fix the right offset for 2a and 7. */
4370 right_offset += ekey->offset - key.offset;
4371 } else {
4372 /* Fix the left offset for all behind 2a and 2b */
4373 left_offset_fixed += key.offset - ekey->offset;
4374 }
4375
4376 /*
4377 * Check if we have the same extent.
4378 */
3954096d 4379 if (left_disknr != right_disknr ||
74dd17fb
CM
4380 left_offset_fixed != right_offset ||
4381 left_gen != right_gen) {
31db9f7c
AB
4382 ret = 0;
4383 goto out;
4384 }
4385
4386 /*
4387 * Go to the next extent.
4388 */
4389 ret = btrfs_next_item(sctx->parent_root, path);
4390 if (ret < 0)
4391 goto out;
4392 if (!ret) {
4393 eb = path->nodes[0];
4394 slot = path->slots[0];
4395 btrfs_item_key_to_cpu(eb, &found_key, slot);
4396 }
4397 if (ret || found_key.objectid != key.objectid ||
4398 found_key.type != key.type) {
4399 key.offset += right_len;
4400 break;
adaa4b8e
JS
4401 }
4402 if (found_key.offset != key.offset + right_len) {
4403 ret = 0;
4404 goto out;
31db9f7c
AB
4405 }
4406 key = found_key;
4407 }
4408
4409 /*
4410 * We're now behind the left extent (treat as unchanged) or at the end
4411 * of the right side (treat as changed).
4412 */
4413 if (key.offset >= ekey->offset + left_len)
4414 ret = 1;
4415 else
4416 ret = 0;
4417
4418
4419out:
4420 btrfs_free_path(path);
4421 return ret;
4422}
4423
16e7549f
JB
4424static int get_last_extent(struct send_ctx *sctx, u64 offset)
4425{
4426 struct btrfs_path *path;
4427 struct btrfs_root *root = sctx->send_root;
4428 struct btrfs_file_extent_item *fi;
4429 struct btrfs_key key;
4430 u64 extent_end;
4431 u8 type;
4432 int ret;
4433
4434 path = alloc_path_for_send();
4435 if (!path)
4436 return -ENOMEM;
4437
4438 sctx->cur_inode_last_extent = 0;
4439
4440 key.objectid = sctx->cur_ino;
4441 key.type = BTRFS_EXTENT_DATA_KEY;
4442 key.offset = offset;
4443 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
4444 if (ret < 0)
4445 goto out;
4446 ret = 0;
4447 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4448 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
4449 goto out;
4450
4451 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4452 struct btrfs_file_extent_item);
4453 type = btrfs_file_extent_type(path->nodes[0], fi);
4454 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
4455 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4456 path->slots[0], fi);
16e7549f
JB
4457 extent_end = ALIGN(key.offset + size,
4458 sctx->send_root->sectorsize);
4459 } else {
4460 extent_end = key.offset +
4461 btrfs_file_extent_num_bytes(path->nodes[0], fi);
4462 }
4463 sctx->cur_inode_last_extent = extent_end;
4464out:
4465 btrfs_free_path(path);
4466 return ret;
4467}
4468
4469static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
4470 struct btrfs_key *key)
4471{
4472 struct btrfs_file_extent_item *fi;
4473 u64 extent_end;
4474 u8 type;
4475 int ret = 0;
4476
4477 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
4478 return 0;
4479
4480 if (sctx->cur_inode_last_extent == (u64)-1) {
4481 ret = get_last_extent(sctx, key->offset - 1);
4482 if (ret)
4483 return ret;
4484 }
4485
4486 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4487 struct btrfs_file_extent_item);
4488 type = btrfs_file_extent_type(path->nodes[0], fi);
4489 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
4490 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4491 path->slots[0], fi);
16e7549f
JB
4492 extent_end = ALIGN(key->offset + size,
4493 sctx->send_root->sectorsize);
4494 } else {
4495 extent_end = key->offset +
4496 btrfs_file_extent_num_bytes(path->nodes[0], fi);
4497 }
bf54f412
FDBM
4498
4499 if (path->slots[0] == 0 &&
4500 sctx->cur_inode_last_extent < key->offset) {
4501 /*
4502 * We might have skipped entire leafs that contained only
4503 * file extent items for our current inode. These leafs have
4504 * a generation number smaller (older) than the one in the
4505 * current leaf and the leaf our last extent came from, and
4506 * are located between these 2 leafs.
4507 */
4508 ret = get_last_extent(sctx, key->offset - 1);
4509 if (ret)
4510 return ret;
4511 }
4512
16e7549f
JB
4513 if (sctx->cur_inode_last_extent < key->offset)
4514 ret = send_hole(sctx, key->offset);
4515 sctx->cur_inode_last_extent = extent_end;
4516 return ret;
4517}
4518
31db9f7c
AB
4519static int process_extent(struct send_ctx *sctx,
4520 struct btrfs_path *path,
4521 struct btrfs_key *key)
4522{
31db9f7c 4523 struct clone_root *found_clone = NULL;
57cfd462 4524 int ret = 0;
31db9f7c
AB
4525
4526 if (S_ISLNK(sctx->cur_inode_mode))
4527 return 0;
4528
4529 if (sctx->parent_root && !sctx->cur_inode_new) {
4530 ret = is_extent_unchanged(sctx, path, key);
4531 if (ret < 0)
4532 goto out;
4533 if (ret) {
4534 ret = 0;
16e7549f 4535 goto out_hole;
31db9f7c 4536 }
57cfd462
JB
4537 } else {
4538 struct btrfs_file_extent_item *ei;
4539 u8 type;
4540
4541 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4542 struct btrfs_file_extent_item);
4543 type = btrfs_file_extent_type(path->nodes[0], ei);
4544 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
4545 type == BTRFS_FILE_EXTENT_REG) {
4546 /*
4547 * The send spec does not have a prealloc command yet,
4548 * so just leave a hole for prealloc'ed extents until
4549 * we have enough commands queued up to justify rev'ing
4550 * the send spec.
4551 */
4552 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
4553 ret = 0;
4554 goto out;
4555 }
4556
4557 /* Have a hole, just skip it. */
4558 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
4559 ret = 0;
4560 goto out;
4561 }
4562 }
31db9f7c
AB
4563 }
4564
4565 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
4566 sctx->cur_inode_size, &found_clone);
4567 if (ret != -ENOENT && ret < 0)
4568 goto out;
4569
4570 ret = send_write_or_clone(sctx, path, key, found_clone);
16e7549f
JB
4571 if (ret)
4572 goto out;
4573out_hole:
4574 ret = maybe_send_hole(sctx, path, key);
31db9f7c
AB
4575out:
4576 return ret;
4577}
4578
4579static int process_all_extents(struct send_ctx *sctx)
4580{
4581 int ret;
4582 struct btrfs_root *root;
4583 struct btrfs_path *path;
4584 struct btrfs_key key;
4585 struct btrfs_key found_key;
4586 struct extent_buffer *eb;
4587 int slot;
4588
4589 root = sctx->send_root;
4590 path = alloc_path_for_send();
4591 if (!path)
4592 return -ENOMEM;
4593
4594 key.objectid = sctx->cmp_key->objectid;
4595 key.type = BTRFS_EXTENT_DATA_KEY;
4596 key.offset = 0;
7fdd29d0
FDBM
4597 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4598 if (ret < 0)
4599 goto out;
31db9f7c 4600
7fdd29d0 4601 while (1) {
31db9f7c
AB
4602 eb = path->nodes[0];
4603 slot = path->slots[0];
7fdd29d0
FDBM
4604
4605 if (slot >= btrfs_header_nritems(eb)) {
4606 ret = btrfs_next_leaf(root, path);
4607 if (ret < 0) {
4608 goto out;
4609 } else if (ret > 0) {
4610 ret = 0;
4611 break;
4612 }
4613 continue;
4614 }
4615
31db9f7c
AB
4616 btrfs_item_key_to_cpu(eb, &found_key, slot);
4617
4618 if (found_key.objectid != key.objectid ||
4619 found_key.type != key.type) {
4620 ret = 0;
4621 goto out;
4622 }
4623
4624 ret = process_extent(sctx, path, &found_key);
4625 if (ret < 0)
4626 goto out;
4627
7fdd29d0 4628 path->slots[0]++;
31db9f7c
AB
4629 }
4630
4631out:
4632 btrfs_free_path(path);
4633 return ret;
4634}
4635
9f03740a
FDBM
4636static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
4637 int *pending_move,
4638 int *refs_processed)
31db9f7c
AB
4639{
4640 int ret = 0;
4641
4642 if (sctx->cur_ino == 0)
4643 goto out;
4644 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
96b5bd77 4645 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
31db9f7c
AB
4646 goto out;
4647 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
4648 goto out;
4649
9f03740a 4650 ret = process_recorded_refs(sctx, pending_move);
e479d9bb
AB
4651 if (ret < 0)
4652 goto out;
4653
9f03740a 4654 *refs_processed = 1;
31db9f7c
AB
4655out:
4656 return ret;
4657}
4658
4659static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
4660{
4661 int ret = 0;
4662 u64 left_mode;
4663 u64 left_uid;
4664 u64 left_gid;
4665 u64 right_mode;
4666 u64 right_uid;
4667 u64 right_gid;
4668 int need_chmod = 0;
4669 int need_chown = 0;
9f03740a
FDBM
4670 int pending_move = 0;
4671 int refs_processed = 0;
31db9f7c 4672
9f03740a
FDBM
4673 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
4674 &refs_processed);
31db9f7c
AB
4675 if (ret < 0)
4676 goto out;
4677
9f03740a
FDBM
4678 /*
4679 * We have processed the refs and thus need to advance send_progress.
4680 * Now, calls to get_cur_xxx will take the updated refs of the current
4681 * inode into account.
4682 *
4683 * On the other hand, if our current inode is a directory and couldn't
4684 * be moved/renamed because its parent was renamed/moved too and it has
4685 * a higher inode number, we can only move/rename our current inode
4686 * after we moved/renamed its parent. Therefore in this case operate on
4687 * the old path (pre move/rename) of our current inode, and the
4688 * move/rename will be performed later.
4689 */
4690 if (refs_processed && !pending_move)
4691 sctx->send_progress = sctx->cur_ino + 1;
4692
31db9f7c
AB
4693 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
4694 goto out;
4695 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
4696 goto out;
4697
4698 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
85a7b33b 4699 &left_mode, &left_uid, &left_gid, NULL);
31db9f7c
AB
4700 if (ret < 0)
4701 goto out;
4702
e2d044fe
AL
4703 if (!sctx->parent_root || sctx->cur_inode_new) {
4704 need_chown = 1;
4705 if (!S_ISLNK(sctx->cur_inode_mode))
31db9f7c 4706 need_chmod = 1;
e2d044fe
AL
4707 } else {
4708 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
4709 NULL, NULL, &right_mode, &right_uid,
4710 &right_gid, NULL);
4711 if (ret < 0)
4712 goto out;
31db9f7c 4713
e2d044fe
AL
4714 if (left_uid != right_uid || left_gid != right_gid)
4715 need_chown = 1;
4716 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
4717 need_chmod = 1;
31db9f7c
AB
4718 }
4719
4720 if (S_ISREG(sctx->cur_inode_mode)) {
16e7549f
JB
4721 if (need_send_hole(sctx)) {
4722 if (sctx->cur_inode_last_extent == (u64)-1) {
4723 ret = get_last_extent(sctx, (u64)-1);
4724 if (ret)
4725 goto out;
4726 }
4727 if (sctx->cur_inode_last_extent <
4728 sctx->cur_inode_size) {
4729 ret = send_hole(sctx, sctx->cur_inode_size);
4730 if (ret)
4731 goto out;
4732 }
4733 }
31db9f7c
AB
4734 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4735 sctx->cur_inode_size);
4736 if (ret < 0)
4737 goto out;
4738 }
4739
4740 if (need_chown) {
4741 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4742 left_uid, left_gid);
4743 if (ret < 0)
4744 goto out;
4745 }
4746 if (need_chmod) {
4747 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4748 left_mode);
4749 if (ret < 0)
4750 goto out;
4751 }
4752
4753 /*
9f03740a
FDBM
4754 * If other directory inodes depended on our current directory
4755 * inode's move/rename, now do their move/rename operations.
31db9f7c 4756 */
9f03740a
FDBM
4757 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
4758 ret = apply_children_dir_moves(sctx);
4759 if (ret)
4760 goto out;
4761 }
4762
4763 /*
4764 * Need to send that every time, no matter if it actually
4765 * changed between the two trees as we have done changes to
4766 * the inode before.
4767 */
4768 sctx->send_progress = sctx->cur_ino + 1;
31db9f7c
AB
4769 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4770 if (ret < 0)
4771 goto out;
4772
4773out:
4774 return ret;
4775}
4776
4777static int changed_inode(struct send_ctx *sctx,
4778 enum btrfs_compare_tree_result result)
4779{
4780 int ret = 0;
4781 struct btrfs_key *key = sctx->cmp_key;
4782 struct btrfs_inode_item *left_ii = NULL;
4783 struct btrfs_inode_item *right_ii = NULL;
4784 u64 left_gen = 0;
4785 u64 right_gen = 0;
4786
31db9f7c
AB
4787 sctx->cur_ino = key->objectid;
4788 sctx->cur_inode_new_gen = 0;
16e7549f 4789 sctx->cur_inode_last_extent = (u64)-1;
e479d9bb
AB
4790
4791 /*
4792 * Set send_progress to current inode. This will tell all get_cur_xxx
4793 * functions that the current inode's refs are not updated yet. Later,
4794 * when process_recorded_refs is finished, it is set to cur_ino + 1.
4795 */
31db9f7c
AB
4796 sctx->send_progress = sctx->cur_ino;
4797
4798 if (result == BTRFS_COMPARE_TREE_NEW ||
4799 result == BTRFS_COMPARE_TREE_CHANGED) {
4800 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
4801 sctx->left_path->slots[0],
4802 struct btrfs_inode_item);
4803 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
4804 left_ii);
4805 } else {
4806 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4807 sctx->right_path->slots[0],
4808 struct btrfs_inode_item);
4809 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4810 right_ii);
4811 }
4812 if (result == BTRFS_COMPARE_TREE_CHANGED) {
4813 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4814 sctx->right_path->slots[0],
4815 struct btrfs_inode_item);
4816
4817 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4818 right_ii);
6d85ed05
AB
4819
4820 /*
4821 * The cur_ino = root dir case is special here. We can't treat
4822 * the inode as deleted+reused because it would generate a
4823 * stream that tries to delete/mkdir the root dir.
4824 */
4825 if (left_gen != right_gen &&
4826 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
31db9f7c
AB
4827 sctx->cur_inode_new_gen = 1;
4828 }
4829
4830 if (result == BTRFS_COMPARE_TREE_NEW) {
4831 sctx->cur_inode_gen = left_gen;
4832 sctx->cur_inode_new = 1;
4833 sctx->cur_inode_deleted = 0;
4834 sctx->cur_inode_size = btrfs_inode_size(
4835 sctx->left_path->nodes[0], left_ii);
4836 sctx->cur_inode_mode = btrfs_inode_mode(
4837 sctx->left_path->nodes[0], left_ii);
4838 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
1f4692da 4839 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
4840 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
4841 sctx->cur_inode_gen = right_gen;
4842 sctx->cur_inode_new = 0;
4843 sctx->cur_inode_deleted = 1;
4844 sctx->cur_inode_size = btrfs_inode_size(
4845 sctx->right_path->nodes[0], right_ii);
4846 sctx->cur_inode_mode = btrfs_inode_mode(
4847 sctx->right_path->nodes[0], right_ii);
4848 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
766702ef
AB
4849 /*
4850 * We need to do some special handling in case the inode was
4851 * reported as changed with a changed generation number. This
4852 * means that the original inode was deleted and new inode
4853 * reused the same inum. So we have to treat the old inode as
4854 * deleted and the new one as new.
4855 */
31db9f7c 4856 if (sctx->cur_inode_new_gen) {
766702ef
AB
4857 /*
4858 * First, process the inode as if it was deleted.
4859 */
31db9f7c
AB
4860 sctx->cur_inode_gen = right_gen;
4861 sctx->cur_inode_new = 0;
4862 sctx->cur_inode_deleted = 1;
4863 sctx->cur_inode_size = btrfs_inode_size(
4864 sctx->right_path->nodes[0], right_ii);
4865 sctx->cur_inode_mode = btrfs_inode_mode(
4866 sctx->right_path->nodes[0], right_ii);
4867 ret = process_all_refs(sctx,
4868 BTRFS_COMPARE_TREE_DELETED);
4869 if (ret < 0)
4870 goto out;
4871
766702ef
AB
4872 /*
4873 * Now process the inode as if it was new.
4874 */
31db9f7c
AB
4875 sctx->cur_inode_gen = left_gen;
4876 sctx->cur_inode_new = 1;
4877 sctx->cur_inode_deleted = 0;
4878 sctx->cur_inode_size = btrfs_inode_size(
4879 sctx->left_path->nodes[0], left_ii);
4880 sctx->cur_inode_mode = btrfs_inode_mode(
4881 sctx->left_path->nodes[0], left_ii);
1f4692da 4882 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
4883 if (ret < 0)
4884 goto out;
4885
4886 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
4887 if (ret < 0)
4888 goto out;
e479d9bb
AB
4889 /*
4890 * Advance send_progress now as we did not get into
4891 * process_recorded_refs_if_needed in the new_gen case.
4892 */
4893 sctx->send_progress = sctx->cur_ino + 1;
766702ef
AB
4894
4895 /*
4896 * Now process all extents and xattrs of the inode as if
4897 * they were all new.
4898 */
31db9f7c
AB
4899 ret = process_all_extents(sctx);
4900 if (ret < 0)
4901 goto out;
4902 ret = process_all_new_xattrs(sctx);
4903 if (ret < 0)
4904 goto out;
4905 } else {
4906 sctx->cur_inode_gen = left_gen;
4907 sctx->cur_inode_new = 0;
4908 sctx->cur_inode_new_gen = 0;
4909 sctx->cur_inode_deleted = 0;
4910 sctx->cur_inode_size = btrfs_inode_size(
4911 sctx->left_path->nodes[0], left_ii);
4912 sctx->cur_inode_mode = btrfs_inode_mode(
4913 sctx->left_path->nodes[0], left_ii);
4914 }
4915 }
4916
4917out:
4918 return ret;
4919}
4920
766702ef
AB
4921/*
4922 * We have to process new refs before deleted refs, but compare_trees gives us
4923 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
4924 * first and later process them in process_recorded_refs.
4925 * For the cur_inode_new_gen case, we skip recording completely because
4926 * changed_inode did already initiate processing of refs. The reason for this is
4927 * that in this case, compare_tree actually compares the refs of 2 different
4928 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
4929 * refs of the right tree as deleted and all refs of the left tree as new.
4930 */
31db9f7c
AB
4931static int changed_ref(struct send_ctx *sctx,
4932 enum btrfs_compare_tree_result result)
4933{
4934 int ret = 0;
4935
4936 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4937
4938 if (!sctx->cur_inode_new_gen &&
4939 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
4940 if (result == BTRFS_COMPARE_TREE_NEW)
4941 ret = record_new_ref(sctx);
4942 else if (result == BTRFS_COMPARE_TREE_DELETED)
4943 ret = record_deleted_ref(sctx);
4944 else if (result == BTRFS_COMPARE_TREE_CHANGED)
4945 ret = record_changed_ref(sctx);
4946 }
4947
4948 return ret;
4949}
4950
766702ef
AB
4951/*
4952 * Process new/deleted/changed xattrs. We skip processing in the
4953 * cur_inode_new_gen case because changed_inode did already initiate processing
4954 * of xattrs. The reason is the same as in changed_ref
4955 */
31db9f7c
AB
4956static int changed_xattr(struct send_ctx *sctx,
4957 enum btrfs_compare_tree_result result)
4958{
4959 int ret = 0;
4960
4961 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4962
4963 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4964 if (result == BTRFS_COMPARE_TREE_NEW)
4965 ret = process_new_xattr(sctx);
4966 else if (result == BTRFS_COMPARE_TREE_DELETED)
4967 ret = process_deleted_xattr(sctx);
4968 else if (result == BTRFS_COMPARE_TREE_CHANGED)
4969 ret = process_changed_xattr(sctx);
4970 }
4971
4972 return ret;
4973}
4974
766702ef
AB
4975/*
4976 * Process new/deleted/changed extents. We skip processing in the
4977 * cur_inode_new_gen case because changed_inode did already initiate processing
4978 * of extents. The reason is the same as in changed_ref
4979 */
31db9f7c
AB
4980static int changed_extent(struct send_ctx *sctx,
4981 enum btrfs_compare_tree_result result)
4982{
4983 int ret = 0;
4984
4985 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4986
4987 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4988 if (result != BTRFS_COMPARE_TREE_DELETED)
4989 ret = process_extent(sctx, sctx->left_path,
4990 sctx->cmp_key);
4991 }
4992
4993 return ret;
4994}
4995
ba5e8f2e
JB
4996static int dir_changed(struct send_ctx *sctx, u64 dir)
4997{
4998 u64 orig_gen, new_gen;
4999 int ret;
5000
5001 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5002 NULL, NULL);
5003 if (ret)
5004 return ret;
5005
5006 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5007 NULL, NULL, NULL);
5008 if (ret)
5009 return ret;
5010
5011 return (orig_gen != new_gen) ? 1 : 0;
5012}
5013
5014static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5015 struct btrfs_key *key)
5016{
5017 struct btrfs_inode_extref *extref;
5018 struct extent_buffer *leaf;
5019 u64 dirid = 0, last_dirid = 0;
5020 unsigned long ptr;
5021 u32 item_size;
5022 u32 cur_offset = 0;
5023 int ref_name_len;
5024 int ret = 0;
5025
5026 /* Easy case, just check this one dirid */
5027 if (key->type == BTRFS_INODE_REF_KEY) {
5028 dirid = key->offset;
5029
5030 ret = dir_changed(sctx, dirid);
5031 goto out;
5032 }
5033
5034 leaf = path->nodes[0];
5035 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5036 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5037 while (cur_offset < item_size) {
5038 extref = (struct btrfs_inode_extref *)(ptr +
5039 cur_offset);
5040 dirid = btrfs_inode_extref_parent(leaf, extref);
5041 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5042 cur_offset += ref_name_len + sizeof(*extref);
5043 if (dirid == last_dirid)
5044 continue;
5045 ret = dir_changed(sctx, dirid);
5046 if (ret)
5047 break;
5048 last_dirid = dirid;
5049 }
5050out:
5051 return ret;
5052}
5053
766702ef
AB
5054/*
5055 * Updates compare related fields in sctx and simply forwards to the actual
5056 * changed_xxx functions.
5057 */
31db9f7c
AB
5058static int changed_cb(struct btrfs_root *left_root,
5059 struct btrfs_root *right_root,
5060 struct btrfs_path *left_path,
5061 struct btrfs_path *right_path,
5062 struct btrfs_key *key,
5063 enum btrfs_compare_tree_result result,
5064 void *ctx)
5065{
5066 int ret = 0;
5067 struct send_ctx *sctx = ctx;
5068
ba5e8f2e 5069 if (result == BTRFS_COMPARE_TREE_SAME) {
16e7549f
JB
5070 if (key->type == BTRFS_INODE_REF_KEY ||
5071 key->type == BTRFS_INODE_EXTREF_KEY) {
5072 ret = compare_refs(sctx, left_path, key);
5073 if (!ret)
5074 return 0;
5075 if (ret < 0)
5076 return ret;
5077 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5078 return maybe_send_hole(sctx, left_path, key);
5079 } else {
ba5e8f2e 5080 return 0;
16e7549f 5081 }
ba5e8f2e
JB
5082 result = BTRFS_COMPARE_TREE_CHANGED;
5083 ret = 0;
5084 }
5085
31db9f7c
AB
5086 sctx->left_path = left_path;
5087 sctx->right_path = right_path;
5088 sctx->cmp_key = key;
5089
5090 ret = finish_inode_if_needed(sctx, 0);
5091 if (ret < 0)
5092 goto out;
5093
2981e225
AB
5094 /* Ignore non-FS objects */
5095 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5096 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5097 goto out;
5098
31db9f7c
AB
5099 if (key->type == BTRFS_INODE_ITEM_KEY)
5100 ret = changed_inode(sctx, result);
96b5bd77
JS
5101 else if (key->type == BTRFS_INODE_REF_KEY ||
5102 key->type == BTRFS_INODE_EXTREF_KEY)
31db9f7c
AB
5103 ret = changed_ref(sctx, result);
5104 else if (key->type == BTRFS_XATTR_ITEM_KEY)
5105 ret = changed_xattr(sctx, result);
5106 else if (key->type == BTRFS_EXTENT_DATA_KEY)
5107 ret = changed_extent(sctx, result);
5108
5109out:
5110 return ret;
5111}
5112
5113static int full_send_tree(struct send_ctx *sctx)
5114{
5115 int ret;
31db9f7c
AB
5116 struct btrfs_root *send_root = sctx->send_root;
5117 struct btrfs_key key;
5118 struct btrfs_key found_key;
5119 struct btrfs_path *path;
5120 struct extent_buffer *eb;
5121 int slot;
5122 u64 start_ctransid;
5123 u64 ctransid;
5124
5125 path = alloc_path_for_send();
5126 if (!path)
5127 return -ENOMEM;
5128
5f3ab90a 5129 spin_lock(&send_root->root_item_lock);
31db9f7c 5130 start_ctransid = btrfs_root_ctransid(&send_root->root_item);
5f3ab90a 5131 spin_unlock(&send_root->root_item_lock);
31db9f7c
AB
5132
5133 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5134 key.type = BTRFS_INODE_ITEM_KEY;
5135 key.offset = 0;
5136
31db9f7c 5137 /*
766702ef
AB
5138 * Make sure the tree has not changed after re-joining. We detect this
5139 * by comparing start_ctransid and ctransid. They should always match.
31db9f7c 5140 */
5f3ab90a 5141 spin_lock(&send_root->root_item_lock);
31db9f7c 5142 ctransid = btrfs_root_ctransid(&send_root->root_item);
5f3ab90a 5143 spin_unlock(&send_root->root_item_lock);
31db9f7c
AB
5144
5145 if (ctransid != start_ctransid) {
efe120a0 5146 WARN(1, KERN_WARNING "BTRFS: the root that you're trying to "
31db9f7c
AB
5147 "send was modified in between. This is "
5148 "probably a bug.\n");
5149 ret = -EIO;
5150 goto out;
5151 }
5152
5153 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5154 if (ret < 0)
5155 goto out;
5156 if (ret)
5157 goto out_finish;
5158
5159 while (1) {
31db9f7c
AB
5160 eb = path->nodes[0];
5161 slot = path->slots[0];
5162 btrfs_item_key_to_cpu(eb, &found_key, slot);
5163
5164 ret = changed_cb(send_root, NULL, path, NULL,
5165 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5166 if (ret < 0)
5167 goto out;
5168
5169 key.objectid = found_key.objectid;
5170 key.type = found_key.type;
5171 key.offset = found_key.offset + 1;
5172
5173 ret = btrfs_next_item(send_root, path);
5174 if (ret < 0)
5175 goto out;
5176 if (ret) {
5177 ret = 0;
5178 break;
5179 }
5180 }
5181
5182out_finish:
5183 ret = finish_inode_if_needed(sctx, 1);
5184
5185out:
5186 btrfs_free_path(path);
31db9f7c
AB
5187 return ret;
5188}
5189
5190static int send_subvol(struct send_ctx *sctx)
5191{
5192 int ret;
5193
c2c71324
SB
5194 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5195 ret = send_header(sctx);
5196 if (ret < 0)
5197 goto out;
5198 }
31db9f7c
AB
5199
5200 ret = send_subvol_begin(sctx);
5201 if (ret < 0)
5202 goto out;
5203
5204 if (sctx->parent_root) {
5205 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5206 changed_cb, sctx);
5207 if (ret < 0)
5208 goto out;
5209 ret = finish_inode_if_needed(sctx, 1);
5210 if (ret < 0)
5211 goto out;
5212 } else {
5213 ret = full_send_tree(sctx);
5214 if (ret < 0)
5215 goto out;
5216 }
5217
5218out:
31db9f7c
AB
5219 free_recorded_refs(sctx);
5220 return ret;
5221}
5222
66ef7d65
DS
5223static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5224{
5225 spin_lock(&root->root_item_lock);
5226 root->send_in_progress--;
5227 /*
5228 * Not much left to do, we don't know why it's unbalanced and
5229 * can't blindly reset it to 0.
5230 */
5231 if (root->send_in_progress < 0)
5232 btrfs_err(root->fs_info,
5233 "send_in_progres unbalanced %d root %llu\n",
5234 root->send_in_progress, root->root_key.objectid);
5235 spin_unlock(&root->root_item_lock);
5236}
5237
31db9f7c
AB
5238long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5239{
5240 int ret = 0;
5241 struct btrfs_root *send_root;
5242 struct btrfs_root *clone_root;
5243 struct btrfs_fs_info *fs_info;
5244 struct btrfs_ioctl_send_args *arg = NULL;
5245 struct btrfs_key key;
31db9f7c
AB
5246 struct send_ctx *sctx = NULL;
5247 u32 i;
5248 u64 *clone_sources_tmp = NULL;
2c686537 5249 int clone_sources_to_rollback = 0;
896c14f9 5250 int sort_clone_roots = 0;
18f687d5 5251 int index;
31db9f7c
AB
5252
5253 if (!capable(CAP_SYS_ADMIN))
5254 return -EPERM;
5255
496ad9aa 5256 send_root = BTRFS_I(file_inode(mnt_file))->root;
31db9f7c
AB
5257 fs_info = send_root->fs_info;
5258
2c686537
DS
5259 /*
5260 * The subvolume must remain read-only during send, protect against
5261 * making it RW.
5262 */
5263 spin_lock(&send_root->root_item_lock);
5264 send_root->send_in_progress++;
5265 spin_unlock(&send_root->root_item_lock);
5266
139f807a
JB
5267 /*
5268 * This is done when we lookup the root, it should already be complete
5269 * by the time we get here.
5270 */
5271 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5272
2c686537
DS
5273 /*
5274 * Userspace tools do the checks and warn the user if it's
5275 * not RO.
5276 */
5277 if (!btrfs_root_readonly(send_root)) {
5278 ret = -EPERM;
5279 goto out;
5280 }
5281
31db9f7c
AB
5282 arg = memdup_user(arg_, sizeof(*arg));
5283 if (IS_ERR(arg)) {
5284 ret = PTR_ERR(arg);
5285 arg = NULL;
5286 goto out;
5287 }
5288
5289 if (!access_ok(VERIFY_READ, arg->clone_sources,
700ff4f0
DC
5290 sizeof(*arg->clone_sources) *
5291 arg->clone_sources_count)) {
31db9f7c
AB
5292 ret = -EFAULT;
5293 goto out;
5294 }
5295
c2c71324 5296 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
cb95e7bf
MF
5297 ret = -EINVAL;
5298 goto out;
5299 }
5300
31db9f7c
AB
5301 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5302 if (!sctx) {
5303 ret = -ENOMEM;
5304 goto out;
5305 }
5306
5307 INIT_LIST_HEAD(&sctx->new_refs);
5308 INIT_LIST_HEAD(&sctx->deleted_refs);
5309 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5310 INIT_LIST_HEAD(&sctx->name_cache_list);
5311
cb95e7bf
MF
5312 sctx->flags = arg->flags;
5313
31db9f7c 5314 sctx->send_filp = fget(arg->send_fd);
ecc7ada7
TI
5315 if (!sctx->send_filp) {
5316 ret = -EBADF;
31db9f7c
AB
5317 goto out;
5318 }
5319
31db9f7c
AB
5320 sctx->send_root = send_root;
5321 sctx->clone_roots_cnt = arg->clone_sources_count;
5322
5323 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
5324 sctx->send_buf = vmalloc(sctx->send_max_size);
5325 if (!sctx->send_buf) {
5326 ret = -ENOMEM;
5327 goto out;
5328 }
5329
5330 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
5331 if (!sctx->read_buf) {
5332 ret = -ENOMEM;
5333 goto out;
5334 }
5335
9f03740a
FDBM
5336 sctx->pending_dir_moves = RB_ROOT;
5337 sctx->waiting_dir_moves = RB_ROOT;
5338
31db9f7c
AB
5339 sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
5340 (arg->clone_sources_count + 1));
5341 if (!sctx->clone_roots) {
5342 ret = -ENOMEM;
5343 goto out;
5344 }
5345
5346 if (arg->clone_sources_count) {
5347 clone_sources_tmp = vmalloc(arg->clone_sources_count *
5348 sizeof(*arg->clone_sources));
5349 if (!clone_sources_tmp) {
5350 ret = -ENOMEM;
5351 goto out;
5352 }
5353
5354 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
5355 arg->clone_sources_count *
5356 sizeof(*arg->clone_sources));
5357 if (ret) {
5358 ret = -EFAULT;
5359 goto out;
5360 }
5361
5362 for (i = 0; i < arg->clone_sources_count; i++) {
5363 key.objectid = clone_sources_tmp[i];
5364 key.type = BTRFS_ROOT_ITEM_KEY;
5365 key.offset = (u64)-1;
18f687d5
WS
5366
5367 index = srcu_read_lock(&fs_info->subvol_srcu);
5368
31db9f7c 5369 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
31db9f7c 5370 if (IS_ERR(clone_root)) {
18f687d5 5371 srcu_read_unlock(&fs_info->subvol_srcu, index);
31db9f7c
AB
5372 ret = PTR_ERR(clone_root);
5373 goto out;
5374 }
2c686537
DS
5375 clone_sources_to_rollback = i + 1;
5376 spin_lock(&clone_root->root_item_lock);
5377 clone_root->send_in_progress++;
5378 if (!btrfs_root_readonly(clone_root)) {
5379 spin_unlock(&clone_root->root_item_lock);
18f687d5 5380 srcu_read_unlock(&fs_info->subvol_srcu, index);
2c686537
DS
5381 ret = -EPERM;
5382 goto out;
5383 }
5384 spin_unlock(&clone_root->root_item_lock);
18f687d5
WS
5385 srcu_read_unlock(&fs_info->subvol_srcu, index);
5386
31db9f7c
AB
5387 sctx->clone_roots[i].root = clone_root;
5388 }
5389 vfree(clone_sources_tmp);
5390 clone_sources_tmp = NULL;
5391 }
5392
5393 if (arg->parent_root) {
5394 key.objectid = arg->parent_root;
5395 key.type = BTRFS_ROOT_ITEM_KEY;
5396 key.offset = (u64)-1;
18f687d5
WS
5397
5398 index = srcu_read_lock(&fs_info->subvol_srcu);
5399
31db9f7c 5400 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
b1b19596 5401 if (IS_ERR(sctx->parent_root)) {
18f687d5 5402 srcu_read_unlock(&fs_info->subvol_srcu, index);
b1b19596 5403 ret = PTR_ERR(sctx->parent_root);
31db9f7c
AB
5404 goto out;
5405 }
18f687d5 5406
2c686537
DS
5407 spin_lock(&sctx->parent_root->root_item_lock);
5408 sctx->parent_root->send_in_progress++;
5409 if (!btrfs_root_readonly(sctx->parent_root)) {
5410 spin_unlock(&sctx->parent_root->root_item_lock);
18f687d5 5411 srcu_read_unlock(&fs_info->subvol_srcu, index);
2c686537
DS
5412 ret = -EPERM;
5413 goto out;
5414 }
5415 spin_unlock(&sctx->parent_root->root_item_lock);
18f687d5
WS
5416
5417 srcu_read_unlock(&fs_info->subvol_srcu, index);
31db9f7c
AB
5418 }
5419
5420 /*
5421 * Clones from send_root are allowed, but only if the clone source
5422 * is behind the current send position. This is checked while searching
5423 * for possible clone sources.
5424 */
5425 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
5426
5427 /* We do a bsearch later */
5428 sort(sctx->clone_roots, sctx->clone_roots_cnt,
5429 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
5430 NULL);
896c14f9 5431 sort_clone_roots = 1;
31db9f7c
AB
5432
5433 ret = send_subvol(sctx);
5434 if (ret < 0)
5435 goto out;
5436
c2c71324
SB
5437 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
5438 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
5439 if (ret < 0)
5440 goto out;
5441 ret = send_cmd(sctx);
5442 if (ret < 0)
5443 goto out;
5444 }
31db9f7c
AB
5445
5446out:
9f03740a
FDBM
5447 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
5448 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
5449 struct rb_node *n;
5450 struct pending_dir_move *pm;
5451
5452 n = rb_first(&sctx->pending_dir_moves);
5453 pm = rb_entry(n, struct pending_dir_move, node);
5454 while (!list_empty(&pm->list)) {
5455 struct pending_dir_move *pm2;
5456
5457 pm2 = list_first_entry(&pm->list,
5458 struct pending_dir_move, list);
5459 free_pending_move(sctx, pm2);
5460 }
5461 free_pending_move(sctx, pm);
5462 }
5463
5464 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
5465 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
5466 struct rb_node *n;
5467 struct waiting_dir_move *dm;
5468
5469 n = rb_first(&sctx->waiting_dir_moves);
5470 dm = rb_entry(n, struct waiting_dir_move, node);
5471 rb_erase(&dm->node, &sctx->waiting_dir_moves);
5472 kfree(dm);
5473 }
5474
896c14f9
WS
5475 if (sort_clone_roots) {
5476 for (i = 0; i < sctx->clone_roots_cnt; i++)
5477 btrfs_root_dec_send_in_progress(
5478 sctx->clone_roots[i].root);
5479 } else {
5480 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
5481 btrfs_root_dec_send_in_progress(
5482 sctx->clone_roots[i].root);
5483
5484 btrfs_root_dec_send_in_progress(send_root);
5485 }
66ef7d65
DS
5486 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
5487 btrfs_root_dec_send_in_progress(sctx->parent_root);
2c686537 5488
31db9f7c
AB
5489 kfree(arg);
5490 vfree(clone_sources_tmp);
5491
5492 if (sctx) {
5493 if (sctx->send_filp)
5494 fput(sctx->send_filp);
5495
5496 vfree(sctx->clone_roots);
5497 vfree(sctx->send_buf);
5498 vfree(sctx->read_buf);
5499
5500 name_cache_free(sctx);
5501
5502 kfree(sctx);
5503 }
5504
5505 return ret;
5506}
This page took 0.422222 seconds and 5 git commands to generate.