Merge remote-tracking branches 'regulator/topic/load', 'regulator/topic/max77802...
[deliverable/linux.git] / fs / btrfs / send.c
CommitLineData
31db9f7c
AB
1/*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/bsearch.h>
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/sort.h>
23#include <linux/mount.h>
24#include <linux/xattr.h>
25#include <linux/posix_acl_xattr.h>
26#include <linux/radix-tree.h>
a1857ebe 27#include <linux/vmalloc.h>
ed84885d 28#include <linux/string.h>
31db9f7c
AB
29
30#include "send.h"
31#include "backref.h"
0b947aff 32#include "hash.h"
31db9f7c
AB
33#include "locking.h"
34#include "disk-io.h"
35#include "btrfs_inode.h"
36#include "transaction.h"
37
38static int g_verbose = 0;
39
40#define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41
42/*
43 * A fs_path is a helper to dynamically build path names with unknown size.
44 * It reallocates the internal buffer on demand.
45 * It allows fast adding of path elements on the right side (normal path) and
46 * fast adding to the left side (reversed path). A reversed path can also be
47 * unreversed if needed.
48 */
49struct fs_path {
50 union {
51 struct {
52 char *start;
53 char *end;
31db9f7c
AB
54
55 char *buf;
1f5a7ff9
DS
56 unsigned short buf_len:15;
57 unsigned short reversed:1;
31db9f7c
AB
58 char inline_buf[];
59 };
ace01050
DS
60 /*
61 * Average path length does not exceed 200 bytes, we'll have
62 * better packing in the slab and higher chance to satisfy
63 * a allocation later during send.
64 */
65 char pad[256];
31db9f7c
AB
66 };
67};
68#define FS_PATH_INLINE_SIZE \
69 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
70
71
72/* reused for each extent */
73struct clone_root {
74 struct btrfs_root *root;
75 u64 ino;
76 u64 offset;
77
78 u64 found_refs;
79};
80
81#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
82#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
83
84struct send_ctx {
85 struct file *send_filp;
86 loff_t send_off;
87 char *send_buf;
88 u32 send_size;
89 u32 send_max_size;
90 u64 total_send_size;
91 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
cb95e7bf 92 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
31db9f7c 93
31db9f7c
AB
94 struct btrfs_root *send_root;
95 struct btrfs_root *parent_root;
96 struct clone_root *clone_roots;
97 int clone_roots_cnt;
98
99 /* current state of the compare_tree call */
100 struct btrfs_path *left_path;
101 struct btrfs_path *right_path;
102 struct btrfs_key *cmp_key;
103
104 /*
105 * infos of the currently processed inode. In case of deleted inodes,
106 * these are the values from the deleted inode.
107 */
108 u64 cur_ino;
109 u64 cur_inode_gen;
110 int cur_inode_new;
111 int cur_inode_new_gen;
112 int cur_inode_deleted;
31db9f7c
AB
113 u64 cur_inode_size;
114 u64 cur_inode_mode;
644d1940 115 u64 cur_inode_rdev;
16e7549f 116 u64 cur_inode_last_extent;
31db9f7c
AB
117
118 u64 send_progress;
119
120 struct list_head new_refs;
121 struct list_head deleted_refs;
122
123 struct radix_tree_root name_cache;
124 struct list_head name_cache_list;
125 int name_cache_size;
126
2131bcd3
LB
127 struct file_ra_state ra;
128
31db9f7c 129 char *read_buf;
9f03740a
FDBM
130
131 /*
132 * We process inodes by their increasing order, so if before an
133 * incremental send we reverse the parent/child relationship of
134 * directories such that a directory with a lower inode number was
135 * the parent of a directory with a higher inode number, and the one
136 * becoming the new parent got renamed too, we can't rename/move the
137 * directory with lower inode number when we finish processing it - we
138 * must process the directory with higher inode number first, then
139 * rename/move it and then rename/move the directory with lower inode
140 * number. Example follows.
141 *
142 * Tree state when the first send was performed:
143 *
144 * .
145 * |-- a (ino 257)
146 * |-- b (ino 258)
147 * |
148 * |
149 * |-- c (ino 259)
150 * | |-- d (ino 260)
151 * |
152 * |-- c2 (ino 261)
153 *
154 * Tree state when the second (incremental) send is performed:
155 *
156 * .
157 * |-- a (ino 257)
158 * |-- b (ino 258)
159 * |-- c2 (ino 261)
160 * |-- d2 (ino 260)
161 * |-- cc (ino 259)
162 *
163 * The sequence of steps that lead to the second state was:
164 *
165 * mv /a/b/c/d /a/b/c2/d2
166 * mv /a/b/c /a/b/c2/d2/cc
167 *
168 * "c" has lower inode number, but we can't move it (2nd mv operation)
169 * before we move "d", which has higher inode number.
170 *
171 * So we just memorize which move/rename operations must be performed
172 * later when their respective parent is processed and moved/renamed.
173 */
174
175 /* Indexed by parent directory inode number. */
176 struct rb_root pending_dir_moves;
177
178 /*
179 * Reverse index, indexed by the inode number of a directory that
180 * is waiting for the move/rename of its immediate parent before its
181 * own move/rename can be performed.
182 */
183 struct rb_root waiting_dir_moves;
9dc44214
FM
184
185 /*
186 * A directory that is going to be rm'ed might have a child directory
187 * which is in the pending directory moves index above. In this case,
188 * the directory can only be removed after the move/rename of its child
189 * is performed. Example:
190 *
191 * Parent snapshot:
192 *
193 * . (ino 256)
194 * |-- a/ (ino 257)
195 * |-- b/ (ino 258)
196 * |-- c/ (ino 259)
197 * | |-- x/ (ino 260)
198 * |
199 * |-- y/ (ino 261)
200 *
201 * Send snapshot:
202 *
203 * . (ino 256)
204 * |-- a/ (ino 257)
205 * |-- b/ (ino 258)
206 * |-- YY/ (ino 261)
207 * |-- x/ (ino 260)
208 *
209 * Sequence of steps that lead to the send snapshot:
210 * rm -f /a/b/c/foo.txt
211 * mv /a/b/y /a/b/YY
212 * mv /a/b/c/x /a/b/YY
213 * rmdir /a/b/c
214 *
215 * When the child is processed, its move/rename is delayed until its
216 * parent is processed (as explained above), but all other operations
217 * like update utimes, chown, chgrp, etc, are performed and the paths
218 * that it uses for those operations must use the orphanized name of
219 * its parent (the directory we're going to rm later), so we need to
220 * memorize that name.
221 *
222 * Indexed by the inode number of the directory to be deleted.
223 */
224 struct rb_root orphan_dirs;
9f03740a
FDBM
225};
226
227struct pending_dir_move {
228 struct rb_node node;
229 struct list_head list;
230 u64 parent_ino;
231 u64 ino;
232 u64 gen;
84471e24 233 bool is_orphan;
9f03740a
FDBM
234 struct list_head update_refs;
235};
236
237struct waiting_dir_move {
238 struct rb_node node;
239 u64 ino;
9dc44214
FM
240 /*
241 * There might be some directory that could not be removed because it
242 * was waiting for this directory inode to be moved first. Therefore
243 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
244 */
245 u64 rmdir_ino;
8b191a68 246 bool orphanized;
9dc44214
FM
247};
248
249struct orphan_dir_info {
250 struct rb_node node;
251 u64 ino;
252 u64 gen;
31db9f7c
AB
253};
254
255struct name_cache_entry {
256 struct list_head list;
7e0926fe
AB
257 /*
258 * radix_tree has only 32bit entries but we need to handle 64bit inums.
259 * We use the lower 32bit of the 64bit inum to store it in the tree. If
260 * more then one inum would fall into the same entry, we use radix_list
261 * to store the additional entries. radix_list is also used to store
262 * entries where two entries have the same inum but different
263 * generations.
264 */
265 struct list_head radix_list;
31db9f7c
AB
266 u64 ino;
267 u64 gen;
268 u64 parent_ino;
269 u64 parent_gen;
270 int ret;
271 int need_later_update;
272 int name_len;
273 char name[];
274};
275
9f03740a
FDBM
276static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
277
9dc44214
FM
278static struct waiting_dir_move *
279get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
280
281static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
282
16e7549f
JB
283static int need_send_hole(struct send_ctx *sctx)
284{
285 return (sctx->parent_root && !sctx->cur_inode_new &&
286 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
287 S_ISREG(sctx->cur_inode_mode));
288}
289
31db9f7c
AB
290static void fs_path_reset(struct fs_path *p)
291{
292 if (p->reversed) {
293 p->start = p->buf + p->buf_len - 1;
294 p->end = p->start;
295 *p->start = 0;
296 } else {
297 p->start = p->buf;
298 p->end = p->start;
299 *p->start = 0;
300 }
301}
302
924794c9 303static struct fs_path *fs_path_alloc(void)
31db9f7c
AB
304{
305 struct fs_path *p;
306
307 p = kmalloc(sizeof(*p), GFP_NOFS);
308 if (!p)
309 return NULL;
310 p->reversed = 0;
31db9f7c
AB
311 p->buf = p->inline_buf;
312 p->buf_len = FS_PATH_INLINE_SIZE;
313 fs_path_reset(p);
314 return p;
315}
316
924794c9 317static struct fs_path *fs_path_alloc_reversed(void)
31db9f7c
AB
318{
319 struct fs_path *p;
320
924794c9 321 p = fs_path_alloc();
31db9f7c
AB
322 if (!p)
323 return NULL;
324 p->reversed = 1;
325 fs_path_reset(p);
326 return p;
327}
328
924794c9 329static void fs_path_free(struct fs_path *p)
31db9f7c
AB
330{
331 if (!p)
332 return;
ace01050
DS
333 if (p->buf != p->inline_buf)
334 kfree(p->buf);
31db9f7c
AB
335 kfree(p);
336}
337
338static int fs_path_len(struct fs_path *p)
339{
340 return p->end - p->start;
341}
342
343static int fs_path_ensure_buf(struct fs_path *p, int len)
344{
345 char *tmp_buf;
346 int path_len;
347 int old_buf_len;
348
349 len++;
350
351 if (p->buf_len >= len)
352 return 0;
353
cfd4a535
CM
354 if (len > PATH_MAX) {
355 WARN_ON(1);
356 return -ENOMEM;
357 }
358
1b2782c8
DS
359 path_len = p->end - p->start;
360 old_buf_len = p->buf_len;
361
ace01050
DS
362 /*
363 * First time the inline_buf does not suffice
364 */
01a9a8a9 365 if (p->buf == p->inline_buf) {
9c9ca00b 366 tmp_buf = kmalloc(len, GFP_NOFS);
01a9a8a9
FM
367 if (tmp_buf)
368 memcpy(tmp_buf, p->buf, old_buf_len);
369 } else {
9c9ca00b 370 tmp_buf = krealloc(p->buf, len, GFP_NOFS);
01a9a8a9 371 }
9c9ca00b
DS
372 if (!tmp_buf)
373 return -ENOMEM;
374 p->buf = tmp_buf;
375 /*
376 * The real size of the buffer is bigger, this will let the fast path
377 * happen most of the time
378 */
379 p->buf_len = ksize(p->buf);
ace01050 380
31db9f7c
AB
381 if (p->reversed) {
382 tmp_buf = p->buf + old_buf_len - path_len - 1;
383 p->end = p->buf + p->buf_len - 1;
384 p->start = p->end - path_len;
385 memmove(p->start, tmp_buf, path_len + 1);
386 } else {
387 p->start = p->buf;
388 p->end = p->start + path_len;
389 }
390 return 0;
391}
392
b23ab57d
DS
393static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
394 char **prepared)
31db9f7c
AB
395{
396 int ret;
397 int new_len;
398
399 new_len = p->end - p->start + name_len;
400 if (p->start != p->end)
401 new_len++;
402 ret = fs_path_ensure_buf(p, new_len);
403 if (ret < 0)
404 goto out;
405
406 if (p->reversed) {
407 if (p->start != p->end)
408 *--p->start = '/';
409 p->start -= name_len;
b23ab57d 410 *prepared = p->start;
31db9f7c
AB
411 } else {
412 if (p->start != p->end)
413 *p->end++ = '/';
b23ab57d 414 *prepared = p->end;
31db9f7c
AB
415 p->end += name_len;
416 *p->end = 0;
417 }
418
419out:
420 return ret;
421}
422
423static int fs_path_add(struct fs_path *p, const char *name, int name_len)
424{
425 int ret;
b23ab57d 426 char *prepared;
31db9f7c 427
b23ab57d 428 ret = fs_path_prepare_for_add(p, name_len, &prepared);
31db9f7c
AB
429 if (ret < 0)
430 goto out;
b23ab57d 431 memcpy(prepared, name, name_len);
31db9f7c
AB
432
433out:
434 return ret;
435}
436
437static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
438{
439 int ret;
b23ab57d 440 char *prepared;
31db9f7c 441
b23ab57d 442 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
31db9f7c
AB
443 if (ret < 0)
444 goto out;
b23ab57d 445 memcpy(prepared, p2->start, p2->end - p2->start);
31db9f7c
AB
446
447out:
448 return ret;
449}
450
451static int fs_path_add_from_extent_buffer(struct fs_path *p,
452 struct extent_buffer *eb,
453 unsigned long off, int len)
454{
455 int ret;
b23ab57d 456 char *prepared;
31db9f7c 457
b23ab57d 458 ret = fs_path_prepare_for_add(p, len, &prepared);
31db9f7c
AB
459 if (ret < 0)
460 goto out;
461
b23ab57d 462 read_extent_buffer(eb, prepared, off, len);
31db9f7c
AB
463
464out:
465 return ret;
466}
467
31db9f7c
AB
468static int fs_path_copy(struct fs_path *p, struct fs_path *from)
469{
470 int ret;
471
472 p->reversed = from->reversed;
473 fs_path_reset(p);
474
475 ret = fs_path_add_path(p, from);
476
477 return ret;
478}
479
480
481static void fs_path_unreverse(struct fs_path *p)
482{
483 char *tmp;
484 int len;
485
486 if (!p->reversed)
487 return;
488
489 tmp = p->start;
490 len = p->end - p->start;
491 p->start = p->buf;
492 p->end = p->start + len;
493 memmove(p->start, tmp, len + 1);
494 p->reversed = 0;
495}
496
497static struct btrfs_path *alloc_path_for_send(void)
498{
499 struct btrfs_path *path;
500
501 path = btrfs_alloc_path();
502 if (!path)
503 return NULL;
504 path->search_commit_root = 1;
505 path->skip_locking = 1;
3f8a18cc 506 path->need_commit_sem = 1;
31db9f7c
AB
507 return path;
508}
509
48a3b636 510static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
31db9f7c
AB
511{
512 int ret;
513 mm_segment_t old_fs;
514 u32 pos = 0;
515
516 old_fs = get_fs();
517 set_fs(KERNEL_DS);
518
519 while (pos < len) {
d447d0da
FF
520 ret = vfs_write(filp, (__force const char __user *)buf + pos,
521 len - pos, off);
31db9f7c
AB
522 /* TODO handle that correctly */
523 /*if (ret == -ERESTARTSYS) {
524 continue;
525 }*/
526 if (ret < 0)
527 goto out;
528 if (ret == 0) {
529 ret = -EIO;
530 goto out;
531 }
532 pos += ret;
533 }
534
535 ret = 0;
536
537out:
538 set_fs(old_fs);
539 return ret;
540}
541
542static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
543{
544 struct btrfs_tlv_header *hdr;
545 int total_len = sizeof(*hdr) + len;
546 int left = sctx->send_max_size - sctx->send_size;
547
548 if (unlikely(left < total_len))
549 return -EOVERFLOW;
550
551 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
552 hdr->tlv_type = cpu_to_le16(attr);
553 hdr->tlv_len = cpu_to_le16(len);
554 memcpy(hdr + 1, data, len);
555 sctx->send_size += total_len;
556
557 return 0;
558}
559
95bc79d5
DS
560#define TLV_PUT_DEFINE_INT(bits) \
561 static int tlv_put_u##bits(struct send_ctx *sctx, \
562 u##bits attr, u##bits value) \
563 { \
564 __le##bits __tmp = cpu_to_le##bits(value); \
565 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
566 }
31db9f7c 567
95bc79d5 568TLV_PUT_DEFINE_INT(64)
31db9f7c
AB
569
570static int tlv_put_string(struct send_ctx *sctx, u16 attr,
571 const char *str, int len)
572{
573 if (len == -1)
574 len = strlen(str);
575 return tlv_put(sctx, attr, str, len);
576}
577
578static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
579 const u8 *uuid)
580{
581 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
582}
583
31db9f7c
AB
584static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
585 struct extent_buffer *eb,
586 struct btrfs_timespec *ts)
587{
588 struct btrfs_timespec bts;
589 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
590 return tlv_put(sctx, attr, &bts, sizeof(bts));
591}
592
593
594#define TLV_PUT(sctx, attrtype, attrlen, data) \
595 do { \
596 ret = tlv_put(sctx, attrtype, attrlen, data); \
597 if (ret < 0) \
598 goto tlv_put_failure; \
599 } while (0)
600
601#define TLV_PUT_INT(sctx, attrtype, bits, value) \
602 do { \
603 ret = tlv_put_u##bits(sctx, attrtype, value); \
604 if (ret < 0) \
605 goto tlv_put_failure; \
606 } while (0)
607
608#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
609#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
610#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
611#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
612#define TLV_PUT_STRING(sctx, attrtype, str, len) \
613 do { \
614 ret = tlv_put_string(sctx, attrtype, str, len); \
615 if (ret < 0) \
616 goto tlv_put_failure; \
617 } while (0)
618#define TLV_PUT_PATH(sctx, attrtype, p) \
619 do { \
620 ret = tlv_put_string(sctx, attrtype, p->start, \
621 p->end - p->start); \
622 if (ret < 0) \
623 goto tlv_put_failure; \
624 } while(0)
625#define TLV_PUT_UUID(sctx, attrtype, uuid) \
626 do { \
627 ret = tlv_put_uuid(sctx, attrtype, uuid); \
628 if (ret < 0) \
629 goto tlv_put_failure; \
630 } while (0)
31db9f7c
AB
631#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
632 do { \
633 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
634 if (ret < 0) \
635 goto tlv_put_failure; \
636 } while (0)
637
638static int send_header(struct send_ctx *sctx)
639{
640 struct btrfs_stream_header hdr;
641
642 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
643 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
644
1bcea355
AJ
645 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
646 &sctx->send_off);
31db9f7c
AB
647}
648
649/*
650 * For each command/item we want to send to userspace, we call this function.
651 */
652static int begin_cmd(struct send_ctx *sctx, int cmd)
653{
654 struct btrfs_cmd_header *hdr;
655
fae7f21c 656 if (WARN_ON(!sctx->send_buf))
31db9f7c 657 return -EINVAL;
31db9f7c
AB
658
659 BUG_ON(sctx->send_size);
660
661 sctx->send_size += sizeof(*hdr);
662 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
663 hdr->cmd = cpu_to_le16(cmd);
664
665 return 0;
666}
667
668static int send_cmd(struct send_ctx *sctx)
669{
670 int ret;
671 struct btrfs_cmd_header *hdr;
672 u32 crc;
673
674 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
675 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
676 hdr->crc = 0;
677
0b947aff 678 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
31db9f7c
AB
679 hdr->crc = cpu_to_le32(crc);
680
1bcea355
AJ
681 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
682 &sctx->send_off);
31db9f7c
AB
683
684 sctx->total_send_size += sctx->send_size;
685 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
686 sctx->send_size = 0;
687
688 return ret;
689}
690
691/*
692 * Sends a move instruction to user space
693 */
694static int send_rename(struct send_ctx *sctx,
695 struct fs_path *from, struct fs_path *to)
696{
697 int ret;
698
699verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
700
701 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
702 if (ret < 0)
703 goto out;
704
705 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
706 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
707
708 ret = send_cmd(sctx);
709
710tlv_put_failure:
711out:
712 return ret;
713}
714
715/*
716 * Sends a link instruction to user space
717 */
718static int send_link(struct send_ctx *sctx,
719 struct fs_path *path, struct fs_path *lnk)
720{
721 int ret;
722
723verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
724
725 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
726 if (ret < 0)
727 goto out;
728
729 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
730 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
731
732 ret = send_cmd(sctx);
733
734tlv_put_failure:
735out:
736 return ret;
737}
738
739/*
740 * Sends an unlink instruction to user space
741 */
742static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
743{
744 int ret;
745
746verbose_printk("btrfs: send_unlink %s\n", path->start);
747
748 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
749 if (ret < 0)
750 goto out;
751
752 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
753
754 ret = send_cmd(sctx);
755
756tlv_put_failure:
757out:
758 return ret;
759}
760
761/*
762 * Sends a rmdir instruction to user space
763 */
764static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
765{
766 int ret;
767
768verbose_printk("btrfs: send_rmdir %s\n", path->start);
769
770 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
771 if (ret < 0)
772 goto out;
773
774 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
775
776 ret = send_cmd(sctx);
777
778tlv_put_failure:
779out:
780 return ret;
781}
782
783/*
784 * Helper function to retrieve some fields from an inode item.
785 */
3f8a18cc
JB
786static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
787 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
788 u64 *gid, u64 *rdev)
31db9f7c
AB
789{
790 int ret;
791 struct btrfs_inode_item *ii;
792 struct btrfs_key key;
31db9f7c
AB
793
794 key.objectid = ino;
795 key.type = BTRFS_INODE_ITEM_KEY;
796 key.offset = 0;
797 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
31db9f7c 798 if (ret) {
3f8a18cc
JB
799 if (ret > 0)
800 ret = -ENOENT;
801 return ret;
31db9f7c
AB
802 }
803
804 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
805 struct btrfs_inode_item);
806 if (size)
807 *size = btrfs_inode_size(path->nodes[0], ii);
808 if (gen)
809 *gen = btrfs_inode_generation(path->nodes[0], ii);
810 if (mode)
811 *mode = btrfs_inode_mode(path->nodes[0], ii);
812 if (uid)
813 *uid = btrfs_inode_uid(path->nodes[0], ii);
814 if (gid)
815 *gid = btrfs_inode_gid(path->nodes[0], ii);
85a7b33b
AB
816 if (rdev)
817 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
31db9f7c 818
3f8a18cc
JB
819 return ret;
820}
821
822static int get_inode_info(struct btrfs_root *root,
823 u64 ino, u64 *size, u64 *gen,
824 u64 *mode, u64 *uid, u64 *gid,
825 u64 *rdev)
826{
827 struct btrfs_path *path;
828 int ret;
829
830 path = alloc_path_for_send();
831 if (!path)
832 return -ENOMEM;
833 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
834 rdev);
31db9f7c
AB
835 btrfs_free_path(path);
836 return ret;
837}
838
839typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
840 struct fs_path *p,
841 void *ctx);
842
843/*
96b5bd77
JS
844 * Helper function to iterate the entries in ONE btrfs_inode_ref or
845 * btrfs_inode_extref.
31db9f7c
AB
846 * The iterate callback may return a non zero value to stop iteration. This can
847 * be a negative value for error codes or 1 to simply stop it.
848 *
96b5bd77 849 * path must point to the INODE_REF or INODE_EXTREF when called.
31db9f7c 850 */
924794c9 851static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
852 struct btrfs_key *found_key, int resolve,
853 iterate_inode_ref_t iterate, void *ctx)
854{
96b5bd77 855 struct extent_buffer *eb = path->nodes[0];
31db9f7c
AB
856 struct btrfs_item *item;
857 struct btrfs_inode_ref *iref;
96b5bd77 858 struct btrfs_inode_extref *extref;
31db9f7c
AB
859 struct btrfs_path *tmp_path;
860 struct fs_path *p;
96b5bd77 861 u32 cur = 0;
31db9f7c 862 u32 total;
96b5bd77 863 int slot = path->slots[0];
31db9f7c
AB
864 u32 name_len;
865 char *start;
866 int ret = 0;
96b5bd77 867 int num = 0;
31db9f7c 868 int index;
96b5bd77
JS
869 u64 dir;
870 unsigned long name_off;
871 unsigned long elem_size;
872 unsigned long ptr;
31db9f7c 873
924794c9 874 p = fs_path_alloc_reversed();
31db9f7c
AB
875 if (!p)
876 return -ENOMEM;
877
878 tmp_path = alloc_path_for_send();
879 if (!tmp_path) {
924794c9 880 fs_path_free(p);
31db9f7c
AB
881 return -ENOMEM;
882 }
883
31db9f7c 884
96b5bd77
JS
885 if (found_key->type == BTRFS_INODE_REF_KEY) {
886 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
887 struct btrfs_inode_ref);
dd3cc16b 888 item = btrfs_item_nr(slot);
96b5bd77
JS
889 total = btrfs_item_size(eb, item);
890 elem_size = sizeof(*iref);
891 } else {
892 ptr = btrfs_item_ptr_offset(eb, slot);
893 total = btrfs_item_size_nr(eb, slot);
894 elem_size = sizeof(*extref);
895 }
896
31db9f7c
AB
897 while (cur < total) {
898 fs_path_reset(p);
899
96b5bd77
JS
900 if (found_key->type == BTRFS_INODE_REF_KEY) {
901 iref = (struct btrfs_inode_ref *)(ptr + cur);
902 name_len = btrfs_inode_ref_name_len(eb, iref);
903 name_off = (unsigned long)(iref + 1);
904 index = btrfs_inode_ref_index(eb, iref);
905 dir = found_key->offset;
906 } else {
907 extref = (struct btrfs_inode_extref *)(ptr + cur);
908 name_len = btrfs_inode_extref_name_len(eb, extref);
909 name_off = (unsigned long)&extref->name;
910 index = btrfs_inode_extref_index(eb, extref);
911 dir = btrfs_inode_extref_parent(eb, extref);
912 }
913
31db9f7c 914 if (resolve) {
96b5bd77
JS
915 start = btrfs_ref_to_path(root, tmp_path, name_len,
916 name_off, eb, dir,
917 p->buf, p->buf_len);
31db9f7c
AB
918 if (IS_ERR(start)) {
919 ret = PTR_ERR(start);
920 goto out;
921 }
922 if (start < p->buf) {
923 /* overflow , try again with larger buffer */
924 ret = fs_path_ensure_buf(p,
925 p->buf_len + p->buf - start);
926 if (ret < 0)
927 goto out;
96b5bd77
JS
928 start = btrfs_ref_to_path(root, tmp_path,
929 name_len, name_off,
930 eb, dir,
931 p->buf, p->buf_len);
31db9f7c
AB
932 if (IS_ERR(start)) {
933 ret = PTR_ERR(start);
934 goto out;
935 }
936 BUG_ON(start < p->buf);
937 }
938 p->start = start;
939 } else {
96b5bd77
JS
940 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
941 name_len);
31db9f7c
AB
942 if (ret < 0)
943 goto out;
944 }
945
96b5bd77
JS
946 cur += elem_size + name_len;
947 ret = iterate(num, dir, index, p, ctx);
31db9f7c
AB
948 if (ret)
949 goto out;
31db9f7c
AB
950 num++;
951 }
952
953out:
954 btrfs_free_path(tmp_path);
924794c9 955 fs_path_free(p);
31db9f7c
AB
956 return ret;
957}
958
959typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
960 const char *name, int name_len,
961 const char *data, int data_len,
962 u8 type, void *ctx);
963
964/*
965 * Helper function to iterate the entries in ONE btrfs_dir_item.
966 * The iterate callback may return a non zero value to stop iteration. This can
967 * be a negative value for error codes or 1 to simply stop it.
968 *
969 * path must point to the dir item when called.
970 */
924794c9 971static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
972 struct btrfs_key *found_key,
973 iterate_dir_item_t iterate, void *ctx)
974{
975 int ret = 0;
976 struct extent_buffer *eb;
977 struct btrfs_item *item;
978 struct btrfs_dir_item *di;
31db9f7c
AB
979 struct btrfs_key di_key;
980 char *buf = NULL;
7e3ae33e 981 int buf_len;
31db9f7c
AB
982 u32 name_len;
983 u32 data_len;
984 u32 cur;
985 u32 len;
986 u32 total;
987 int slot;
988 int num;
989 u8 type;
990
4395e0c4
FM
991 /*
992 * Start with a small buffer (1 page). If later we end up needing more
993 * space, which can happen for xattrs on a fs with a leaf size greater
994 * then the page size, attempt to increase the buffer. Typically xattr
995 * values are small.
996 */
997 buf_len = PATH_MAX;
31db9f7c
AB
998 buf = kmalloc(buf_len, GFP_NOFS);
999 if (!buf) {
1000 ret = -ENOMEM;
1001 goto out;
1002 }
1003
31db9f7c
AB
1004 eb = path->nodes[0];
1005 slot = path->slots[0];
dd3cc16b 1006 item = btrfs_item_nr(slot);
31db9f7c
AB
1007 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1008 cur = 0;
1009 len = 0;
1010 total = btrfs_item_size(eb, item);
1011
1012 num = 0;
1013 while (cur < total) {
1014 name_len = btrfs_dir_name_len(eb, di);
1015 data_len = btrfs_dir_data_len(eb, di);
1016 type = btrfs_dir_type(eb, di);
1017 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1018
7e3ae33e
FM
1019 if (type == BTRFS_FT_XATTR) {
1020 if (name_len > XATTR_NAME_MAX) {
1021 ret = -ENAMETOOLONG;
1022 goto out;
1023 }
4395e0c4 1024 if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
7e3ae33e
FM
1025 ret = -E2BIG;
1026 goto out;
1027 }
1028 } else {
1029 /*
1030 * Path too long
1031 */
4395e0c4 1032 if (name_len + data_len > PATH_MAX) {
7e3ae33e
FM
1033 ret = -ENAMETOOLONG;
1034 goto out;
1035 }
31db9f7c
AB
1036 }
1037
4395e0c4
FM
1038 if (name_len + data_len > buf_len) {
1039 buf_len = name_len + data_len;
1040 if (is_vmalloc_addr(buf)) {
1041 vfree(buf);
1042 buf = NULL;
1043 } else {
1044 char *tmp = krealloc(buf, buf_len,
1045 GFP_NOFS | __GFP_NOWARN);
1046
1047 if (!tmp)
1048 kfree(buf);
1049 buf = tmp;
1050 }
1051 if (!buf) {
1052 buf = vmalloc(buf_len);
1053 if (!buf) {
1054 ret = -ENOMEM;
1055 goto out;
1056 }
1057 }
1058 }
1059
31db9f7c
AB
1060 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1061 name_len + data_len);
1062
1063 len = sizeof(*di) + name_len + data_len;
1064 di = (struct btrfs_dir_item *)((char *)di + len);
1065 cur += len;
1066
1067 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1068 data_len, type, ctx);
1069 if (ret < 0)
1070 goto out;
1071 if (ret) {
1072 ret = 0;
1073 goto out;
1074 }
1075
1076 num++;
1077 }
1078
1079out:
4395e0c4 1080 kvfree(buf);
31db9f7c
AB
1081 return ret;
1082}
1083
1084static int __copy_first_ref(int num, u64 dir, int index,
1085 struct fs_path *p, void *ctx)
1086{
1087 int ret;
1088 struct fs_path *pt = ctx;
1089
1090 ret = fs_path_copy(pt, p);
1091 if (ret < 0)
1092 return ret;
1093
1094 /* we want the first only */
1095 return 1;
1096}
1097
1098/*
1099 * Retrieve the first path of an inode. If an inode has more then one
1100 * ref/hardlink, this is ignored.
1101 */
924794c9 1102static int get_inode_path(struct btrfs_root *root,
31db9f7c
AB
1103 u64 ino, struct fs_path *path)
1104{
1105 int ret;
1106 struct btrfs_key key, found_key;
1107 struct btrfs_path *p;
1108
1109 p = alloc_path_for_send();
1110 if (!p)
1111 return -ENOMEM;
1112
1113 fs_path_reset(path);
1114
1115 key.objectid = ino;
1116 key.type = BTRFS_INODE_REF_KEY;
1117 key.offset = 0;
1118
1119 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1120 if (ret < 0)
1121 goto out;
1122 if (ret) {
1123 ret = 1;
1124 goto out;
1125 }
1126 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1127 if (found_key.objectid != ino ||
96b5bd77
JS
1128 (found_key.type != BTRFS_INODE_REF_KEY &&
1129 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1130 ret = -ENOENT;
1131 goto out;
1132 }
1133
924794c9
TI
1134 ret = iterate_inode_ref(root, p, &found_key, 1,
1135 __copy_first_ref, path);
31db9f7c
AB
1136 if (ret < 0)
1137 goto out;
1138 ret = 0;
1139
1140out:
1141 btrfs_free_path(p);
1142 return ret;
1143}
1144
1145struct backref_ctx {
1146 struct send_ctx *sctx;
1147
3f8a18cc 1148 struct btrfs_path *path;
31db9f7c
AB
1149 /* number of total found references */
1150 u64 found;
1151
1152 /*
1153 * used for clones found in send_root. clones found behind cur_objectid
1154 * and cur_offset are not considered as allowed clones.
1155 */
1156 u64 cur_objectid;
1157 u64 cur_offset;
1158
1159 /* may be truncated in case it's the last extent in a file */
1160 u64 extent_len;
1161
619d8c4e
FM
1162 /* data offset in the file extent item */
1163 u64 data_offset;
1164
31db9f7c 1165 /* Just to check for bugs in backref resolving */
ee849c04 1166 int found_itself;
31db9f7c
AB
1167};
1168
1169static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1170{
995e01b7 1171 u64 root = (u64)(uintptr_t)key;
31db9f7c
AB
1172 struct clone_root *cr = (struct clone_root *)elt;
1173
1174 if (root < cr->root->objectid)
1175 return -1;
1176 if (root > cr->root->objectid)
1177 return 1;
1178 return 0;
1179}
1180
1181static int __clone_root_cmp_sort(const void *e1, const void *e2)
1182{
1183 struct clone_root *cr1 = (struct clone_root *)e1;
1184 struct clone_root *cr2 = (struct clone_root *)e2;
1185
1186 if (cr1->root->objectid < cr2->root->objectid)
1187 return -1;
1188 if (cr1->root->objectid > cr2->root->objectid)
1189 return 1;
1190 return 0;
1191}
1192
1193/*
1194 * Called for every backref that is found for the current extent.
766702ef 1195 * Results are collected in sctx->clone_roots->ino/offset/found_refs
31db9f7c
AB
1196 */
1197static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1198{
1199 struct backref_ctx *bctx = ctx_;
1200 struct clone_root *found;
1201 int ret;
1202 u64 i_size;
1203
1204 /* First check if the root is in the list of accepted clone sources */
995e01b7 1205 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
31db9f7c
AB
1206 bctx->sctx->clone_roots_cnt,
1207 sizeof(struct clone_root),
1208 __clone_root_cmp_bsearch);
1209 if (!found)
1210 return 0;
1211
1212 if (found->root == bctx->sctx->send_root &&
1213 ino == bctx->cur_objectid &&
1214 offset == bctx->cur_offset) {
ee849c04 1215 bctx->found_itself = 1;
31db9f7c
AB
1216 }
1217
1218 /*
766702ef 1219 * There are inodes that have extents that lie behind its i_size. Don't
31db9f7c
AB
1220 * accept clones from these extents.
1221 */
3f8a18cc
JB
1222 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1223 NULL, NULL, NULL);
1224 btrfs_release_path(bctx->path);
31db9f7c
AB
1225 if (ret < 0)
1226 return ret;
1227
619d8c4e 1228 if (offset + bctx->data_offset + bctx->extent_len > i_size)
31db9f7c
AB
1229 return 0;
1230
1231 /*
1232 * Make sure we don't consider clones from send_root that are
1233 * behind the current inode/offset.
1234 */
1235 if (found->root == bctx->sctx->send_root) {
1236 /*
1237 * TODO for the moment we don't accept clones from the inode
1238 * that is currently send. We may change this when
1239 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1240 * file.
1241 */
1242 if (ino >= bctx->cur_objectid)
1243 return 0;
e938c8ad
AB
1244#if 0
1245 if (ino > bctx->cur_objectid)
1246 return 0;
1247 if (offset + bctx->extent_len > bctx->cur_offset)
31db9f7c 1248 return 0;
e938c8ad 1249#endif
31db9f7c
AB
1250 }
1251
1252 bctx->found++;
1253 found->found_refs++;
1254 if (ino < found->ino) {
1255 found->ino = ino;
1256 found->offset = offset;
1257 } else if (found->ino == ino) {
1258 /*
1259 * same extent found more then once in the same file.
1260 */
1261 if (found->offset > offset + bctx->extent_len)
1262 found->offset = offset;
1263 }
1264
1265 return 0;
1266}
1267
1268/*
766702ef
AB
1269 * Given an inode, offset and extent item, it finds a good clone for a clone
1270 * instruction. Returns -ENOENT when none could be found. The function makes
1271 * sure that the returned clone is usable at the point where sending is at the
1272 * moment. This means, that no clones are accepted which lie behind the current
1273 * inode+offset.
1274 *
31db9f7c
AB
1275 * path must point to the extent item when called.
1276 */
1277static int find_extent_clone(struct send_ctx *sctx,
1278 struct btrfs_path *path,
1279 u64 ino, u64 data_offset,
1280 u64 ino_size,
1281 struct clone_root **found)
1282{
1283 int ret;
1284 int extent_type;
1285 u64 logical;
74dd17fb 1286 u64 disk_byte;
31db9f7c
AB
1287 u64 num_bytes;
1288 u64 extent_item_pos;
69917e43 1289 u64 flags = 0;
31db9f7c
AB
1290 struct btrfs_file_extent_item *fi;
1291 struct extent_buffer *eb = path->nodes[0];
35075bb0 1292 struct backref_ctx *backref_ctx = NULL;
31db9f7c
AB
1293 struct clone_root *cur_clone_root;
1294 struct btrfs_key found_key;
1295 struct btrfs_path *tmp_path;
74dd17fb 1296 int compressed;
31db9f7c
AB
1297 u32 i;
1298
1299 tmp_path = alloc_path_for_send();
1300 if (!tmp_path)
1301 return -ENOMEM;
1302
3f8a18cc
JB
1303 /* We only use this path under the commit sem */
1304 tmp_path->need_commit_sem = 0;
1305
35075bb0
AB
1306 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1307 if (!backref_ctx) {
1308 ret = -ENOMEM;
1309 goto out;
1310 }
1311
3f8a18cc
JB
1312 backref_ctx->path = tmp_path;
1313
31db9f7c
AB
1314 if (data_offset >= ino_size) {
1315 /*
1316 * There may be extents that lie behind the file's size.
1317 * I at least had this in combination with snapshotting while
1318 * writing large files.
1319 */
1320 ret = 0;
1321 goto out;
1322 }
1323
1324 fi = btrfs_item_ptr(eb, path->slots[0],
1325 struct btrfs_file_extent_item);
1326 extent_type = btrfs_file_extent_type(eb, fi);
1327 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1328 ret = -ENOENT;
1329 goto out;
1330 }
74dd17fb 1331 compressed = btrfs_file_extent_compression(eb, fi);
31db9f7c
AB
1332
1333 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
74dd17fb
CM
1334 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1335 if (disk_byte == 0) {
31db9f7c
AB
1336 ret = -ENOENT;
1337 goto out;
1338 }
74dd17fb 1339 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
31db9f7c 1340
9e351cc8 1341 down_read(&sctx->send_root->fs_info->commit_root_sem);
69917e43
LB
1342 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1343 &found_key, &flags);
9e351cc8 1344 up_read(&sctx->send_root->fs_info->commit_root_sem);
31db9f7c
AB
1345 btrfs_release_path(tmp_path);
1346
1347 if (ret < 0)
1348 goto out;
69917e43 1349 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
31db9f7c
AB
1350 ret = -EIO;
1351 goto out;
1352 }
1353
1354 /*
1355 * Setup the clone roots.
1356 */
1357 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1358 cur_clone_root = sctx->clone_roots + i;
1359 cur_clone_root->ino = (u64)-1;
1360 cur_clone_root->offset = 0;
1361 cur_clone_root->found_refs = 0;
1362 }
1363
35075bb0
AB
1364 backref_ctx->sctx = sctx;
1365 backref_ctx->found = 0;
1366 backref_ctx->cur_objectid = ino;
1367 backref_ctx->cur_offset = data_offset;
1368 backref_ctx->found_itself = 0;
1369 backref_ctx->extent_len = num_bytes;
619d8c4e
FM
1370 /*
1371 * For non-compressed extents iterate_extent_inodes() gives us extent
1372 * offsets that already take into account the data offset, but not for
1373 * compressed extents, since the offset is logical and not relative to
1374 * the physical extent locations. We must take this into account to
1375 * avoid sending clone offsets that go beyond the source file's size,
1376 * which would result in the clone ioctl failing with -EINVAL on the
1377 * receiving end.
1378 */
1379 if (compressed == BTRFS_COMPRESS_NONE)
1380 backref_ctx->data_offset = 0;
1381 else
1382 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
31db9f7c
AB
1383
1384 /*
1385 * The last extent of a file may be too large due to page alignment.
1386 * We need to adjust extent_len in this case so that the checks in
1387 * __iterate_backrefs work.
1388 */
1389 if (data_offset + num_bytes >= ino_size)
35075bb0 1390 backref_ctx->extent_len = ino_size - data_offset;
31db9f7c
AB
1391
1392 /*
1393 * Now collect all backrefs.
1394 */
74dd17fb
CM
1395 if (compressed == BTRFS_COMPRESS_NONE)
1396 extent_item_pos = logical - found_key.objectid;
1397 else
1398 extent_item_pos = 0;
31db9f7c
AB
1399 ret = iterate_extent_inodes(sctx->send_root->fs_info,
1400 found_key.objectid, extent_item_pos, 1,
35075bb0 1401 __iterate_backrefs, backref_ctx);
74dd17fb 1402
31db9f7c
AB
1403 if (ret < 0)
1404 goto out;
1405
35075bb0 1406 if (!backref_ctx->found_itself) {
31db9f7c
AB
1407 /* found a bug in backref code? */
1408 ret = -EIO;
efe120a0 1409 btrfs_err(sctx->send_root->fs_info, "did not find backref in "
31db9f7c 1410 "send_root. inode=%llu, offset=%llu, "
351fd353 1411 "disk_byte=%llu found extent=%llu",
74dd17fb 1412 ino, data_offset, disk_byte, found_key.objectid);
31db9f7c
AB
1413 goto out;
1414 }
1415
1416verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1417 "ino=%llu, "
1418 "num_bytes=%llu, logical=%llu\n",
1419 data_offset, ino, num_bytes, logical);
1420
35075bb0 1421 if (!backref_ctx->found)
31db9f7c
AB
1422 verbose_printk("btrfs: no clones found\n");
1423
1424 cur_clone_root = NULL;
1425 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1426 if (sctx->clone_roots[i].found_refs) {
1427 if (!cur_clone_root)
1428 cur_clone_root = sctx->clone_roots + i;
1429 else if (sctx->clone_roots[i].root == sctx->send_root)
1430 /* prefer clones from send_root over others */
1431 cur_clone_root = sctx->clone_roots + i;
31db9f7c
AB
1432 }
1433
1434 }
1435
1436 if (cur_clone_root) {
93de4ba8
FDBM
1437 if (compressed != BTRFS_COMPRESS_NONE) {
1438 /*
1439 * Offsets given by iterate_extent_inodes() are relative
1440 * to the start of the extent, we need to add logical
1441 * offset from the file extent item.
1442 * (See why at backref.c:check_extent_in_eb())
1443 */
1444 cur_clone_root->offset += btrfs_file_extent_offset(eb,
1445 fi);
1446 }
31db9f7c
AB
1447 *found = cur_clone_root;
1448 ret = 0;
1449 } else {
1450 ret = -ENOENT;
1451 }
1452
1453out:
1454 btrfs_free_path(tmp_path);
35075bb0 1455 kfree(backref_ctx);
31db9f7c
AB
1456 return ret;
1457}
1458
924794c9 1459static int read_symlink(struct btrfs_root *root,
31db9f7c
AB
1460 u64 ino,
1461 struct fs_path *dest)
1462{
1463 int ret;
1464 struct btrfs_path *path;
1465 struct btrfs_key key;
1466 struct btrfs_file_extent_item *ei;
1467 u8 type;
1468 u8 compression;
1469 unsigned long off;
1470 int len;
1471
1472 path = alloc_path_for_send();
1473 if (!path)
1474 return -ENOMEM;
1475
1476 key.objectid = ino;
1477 key.type = BTRFS_EXTENT_DATA_KEY;
1478 key.offset = 0;
1479 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1480 if (ret < 0)
1481 goto out;
1482 BUG_ON(ret);
1483
1484 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1485 struct btrfs_file_extent_item);
1486 type = btrfs_file_extent_type(path->nodes[0], ei);
1487 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1488 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1489 BUG_ON(compression);
1490
1491 off = btrfs_file_extent_inline_start(ei);
514ac8ad 1492 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
31db9f7c
AB
1493
1494 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
31db9f7c
AB
1495
1496out:
1497 btrfs_free_path(path);
1498 return ret;
1499}
1500
1501/*
1502 * Helper function to generate a file name that is unique in the root of
1503 * send_root and parent_root. This is used to generate names for orphan inodes.
1504 */
1505static int gen_unique_name(struct send_ctx *sctx,
1506 u64 ino, u64 gen,
1507 struct fs_path *dest)
1508{
1509 int ret = 0;
1510 struct btrfs_path *path;
1511 struct btrfs_dir_item *di;
1512 char tmp[64];
1513 int len;
1514 u64 idx = 0;
1515
1516 path = alloc_path_for_send();
1517 if (!path)
1518 return -ENOMEM;
1519
1520 while (1) {
f74b86d8 1521 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
31db9f7c 1522 ino, gen, idx);
64792f25 1523 ASSERT(len < sizeof(tmp));
31db9f7c
AB
1524
1525 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1526 path, BTRFS_FIRST_FREE_OBJECTID,
1527 tmp, strlen(tmp), 0);
1528 btrfs_release_path(path);
1529 if (IS_ERR(di)) {
1530 ret = PTR_ERR(di);
1531 goto out;
1532 }
1533 if (di) {
1534 /* not unique, try again */
1535 idx++;
1536 continue;
1537 }
1538
1539 if (!sctx->parent_root) {
1540 /* unique */
1541 ret = 0;
1542 break;
1543 }
1544
1545 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1546 path, BTRFS_FIRST_FREE_OBJECTID,
1547 tmp, strlen(tmp), 0);
1548 btrfs_release_path(path);
1549 if (IS_ERR(di)) {
1550 ret = PTR_ERR(di);
1551 goto out;
1552 }
1553 if (di) {
1554 /* not unique, try again */
1555 idx++;
1556 continue;
1557 }
1558 /* unique */
1559 break;
1560 }
1561
1562 ret = fs_path_add(dest, tmp, strlen(tmp));
1563
1564out:
1565 btrfs_free_path(path);
1566 return ret;
1567}
1568
1569enum inode_state {
1570 inode_state_no_change,
1571 inode_state_will_create,
1572 inode_state_did_create,
1573 inode_state_will_delete,
1574 inode_state_did_delete,
1575};
1576
1577static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1578{
1579 int ret;
1580 int left_ret;
1581 int right_ret;
1582 u64 left_gen;
1583 u64 right_gen;
1584
1585 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
85a7b33b 1586 NULL, NULL);
31db9f7c
AB
1587 if (ret < 0 && ret != -ENOENT)
1588 goto out;
1589 left_ret = ret;
1590
1591 if (!sctx->parent_root) {
1592 right_ret = -ENOENT;
1593 } else {
1594 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
85a7b33b 1595 NULL, NULL, NULL, NULL);
31db9f7c
AB
1596 if (ret < 0 && ret != -ENOENT)
1597 goto out;
1598 right_ret = ret;
1599 }
1600
1601 if (!left_ret && !right_ret) {
e938c8ad 1602 if (left_gen == gen && right_gen == gen) {
31db9f7c 1603 ret = inode_state_no_change;
e938c8ad 1604 } else if (left_gen == gen) {
31db9f7c
AB
1605 if (ino < sctx->send_progress)
1606 ret = inode_state_did_create;
1607 else
1608 ret = inode_state_will_create;
1609 } else if (right_gen == gen) {
1610 if (ino < sctx->send_progress)
1611 ret = inode_state_did_delete;
1612 else
1613 ret = inode_state_will_delete;
1614 } else {
1615 ret = -ENOENT;
1616 }
1617 } else if (!left_ret) {
1618 if (left_gen == gen) {
1619 if (ino < sctx->send_progress)
1620 ret = inode_state_did_create;
1621 else
1622 ret = inode_state_will_create;
1623 } else {
1624 ret = -ENOENT;
1625 }
1626 } else if (!right_ret) {
1627 if (right_gen == gen) {
1628 if (ino < sctx->send_progress)
1629 ret = inode_state_did_delete;
1630 else
1631 ret = inode_state_will_delete;
1632 } else {
1633 ret = -ENOENT;
1634 }
1635 } else {
1636 ret = -ENOENT;
1637 }
1638
1639out:
1640 return ret;
1641}
1642
1643static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1644{
1645 int ret;
1646
1647 ret = get_cur_inode_state(sctx, ino, gen);
1648 if (ret < 0)
1649 goto out;
1650
1651 if (ret == inode_state_no_change ||
1652 ret == inode_state_did_create ||
1653 ret == inode_state_will_delete)
1654 ret = 1;
1655 else
1656 ret = 0;
1657
1658out:
1659 return ret;
1660}
1661
1662/*
1663 * Helper function to lookup a dir item in a dir.
1664 */
1665static int lookup_dir_item_inode(struct btrfs_root *root,
1666 u64 dir, const char *name, int name_len,
1667 u64 *found_inode,
1668 u8 *found_type)
1669{
1670 int ret = 0;
1671 struct btrfs_dir_item *di;
1672 struct btrfs_key key;
1673 struct btrfs_path *path;
1674
1675 path = alloc_path_for_send();
1676 if (!path)
1677 return -ENOMEM;
1678
1679 di = btrfs_lookup_dir_item(NULL, root, path,
1680 dir, name, name_len, 0);
1681 if (!di) {
1682 ret = -ENOENT;
1683 goto out;
1684 }
1685 if (IS_ERR(di)) {
1686 ret = PTR_ERR(di);
1687 goto out;
1688 }
1689 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1af56070
FM
1690 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1691 ret = -ENOENT;
1692 goto out;
1693 }
31db9f7c
AB
1694 *found_inode = key.objectid;
1695 *found_type = btrfs_dir_type(path->nodes[0], di);
1696
1697out:
1698 btrfs_free_path(path);
1699 return ret;
1700}
1701
766702ef
AB
1702/*
1703 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1704 * generation of the parent dir and the name of the dir entry.
1705 */
924794c9 1706static int get_first_ref(struct btrfs_root *root, u64 ino,
31db9f7c
AB
1707 u64 *dir, u64 *dir_gen, struct fs_path *name)
1708{
1709 int ret;
1710 struct btrfs_key key;
1711 struct btrfs_key found_key;
1712 struct btrfs_path *path;
31db9f7c 1713 int len;
96b5bd77 1714 u64 parent_dir;
31db9f7c
AB
1715
1716 path = alloc_path_for_send();
1717 if (!path)
1718 return -ENOMEM;
1719
1720 key.objectid = ino;
1721 key.type = BTRFS_INODE_REF_KEY;
1722 key.offset = 0;
1723
1724 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1725 if (ret < 0)
1726 goto out;
1727 if (!ret)
1728 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1729 path->slots[0]);
96b5bd77
JS
1730 if (ret || found_key.objectid != ino ||
1731 (found_key.type != BTRFS_INODE_REF_KEY &&
1732 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1733 ret = -ENOENT;
1734 goto out;
1735 }
1736
51a60253 1737 if (found_key.type == BTRFS_INODE_REF_KEY) {
96b5bd77
JS
1738 struct btrfs_inode_ref *iref;
1739 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1740 struct btrfs_inode_ref);
1741 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1742 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1743 (unsigned long)(iref + 1),
1744 len);
1745 parent_dir = found_key.offset;
1746 } else {
1747 struct btrfs_inode_extref *extref;
1748 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1749 struct btrfs_inode_extref);
1750 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1751 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1752 (unsigned long)&extref->name, len);
1753 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1754 }
31db9f7c
AB
1755 if (ret < 0)
1756 goto out;
1757 btrfs_release_path(path);
1758
b46ab97b
FM
1759 if (dir_gen) {
1760 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1761 NULL, NULL, NULL);
1762 if (ret < 0)
1763 goto out;
1764 }
31db9f7c 1765
96b5bd77 1766 *dir = parent_dir;
31db9f7c
AB
1767
1768out:
1769 btrfs_free_path(path);
1770 return ret;
1771}
1772
924794c9 1773static int is_first_ref(struct btrfs_root *root,
31db9f7c
AB
1774 u64 ino, u64 dir,
1775 const char *name, int name_len)
1776{
1777 int ret;
1778 struct fs_path *tmp_name;
1779 u64 tmp_dir;
31db9f7c 1780
924794c9 1781 tmp_name = fs_path_alloc();
31db9f7c
AB
1782 if (!tmp_name)
1783 return -ENOMEM;
1784
b46ab97b 1785 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
31db9f7c
AB
1786 if (ret < 0)
1787 goto out;
1788
b9291aff 1789 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
31db9f7c
AB
1790 ret = 0;
1791 goto out;
1792 }
1793
e938c8ad 1794 ret = !memcmp(tmp_name->start, name, name_len);
31db9f7c
AB
1795
1796out:
924794c9 1797 fs_path_free(tmp_name);
31db9f7c
AB
1798 return ret;
1799}
1800
766702ef
AB
1801/*
1802 * Used by process_recorded_refs to determine if a new ref would overwrite an
1803 * already existing ref. In case it detects an overwrite, it returns the
1804 * inode/gen in who_ino/who_gen.
1805 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1806 * to make sure later references to the overwritten inode are possible.
1807 * Orphanizing is however only required for the first ref of an inode.
1808 * process_recorded_refs does an additional is_first_ref check to see if
1809 * orphanizing is really required.
1810 */
31db9f7c
AB
1811static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1812 const char *name, int name_len,
1813 u64 *who_ino, u64 *who_gen)
1814{
1815 int ret = 0;
ebdad913 1816 u64 gen;
31db9f7c
AB
1817 u64 other_inode = 0;
1818 u8 other_type = 0;
1819
1820 if (!sctx->parent_root)
1821 goto out;
1822
1823 ret = is_inode_existent(sctx, dir, dir_gen);
1824 if (ret <= 0)
1825 goto out;
1826
ebdad913
JB
1827 /*
1828 * If we have a parent root we need to verify that the parent dir was
1829 * not delted and then re-created, if it was then we have no overwrite
1830 * and we can just unlink this entry.
1831 */
1832 if (sctx->parent_root) {
1833 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1834 NULL, NULL, NULL);
1835 if (ret < 0 && ret != -ENOENT)
1836 goto out;
1837 if (ret) {
1838 ret = 0;
1839 goto out;
1840 }
1841 if (gen != dir_gen)
1842 goto out;
1843 }
1844
31db9f7c
AB
1845 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1846 &other_inode, &other_type);
1847 if (ret < 0 && ret != -ENOENT)
1848 goto out;
1849 if (ret) {
1850 ret = 0;
1851 goto out;
1852 }
1853
766702ef
AB
1854 /*
1855 * Check if the overwritten ref was already processed. If yes, the ref
1856 * was already unlinked/moved, so we can safely assume that we will not
1857 * overwrite anything at this point in time.
1858 */
31db9f7c
AB
1859 if (other_inode > sctx->send_progress) {
1860 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
85a7b33b 1861 who_gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
1862 if (ret < 0)
1863 goto out;
1864
1865 ret = 1;
1866 *who_ino = other_inode;
1867 } else {
1868 ret = 0;
1869 }
1870
1871out:
1872 return ret;
1873}
1874
766702ef
AB
1875/*
1876 * Checks if the ref was overwritten by an already processed inode. This is
1877 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1878 * thus the orphan name needs be used.
1879 * process_recorded_refs also uses it to avoid unlinking of refs that were
1880 * overwritten.
1881 */
31db9f7c
AB
1882static int did_overwrite_ref(struct send_ctx *sctx,
1883 u64 dir, u64 dir_gen,
1884 u64 ino, u64 ino_gen,
1885 const char *name, int name_len)
1886{
1887 int ret = 0;
1888 u64 gen;
1889 u64 ow_inode;
1890 u8 other_type;
1891
1892 if (!sctx->parent_root)
1893 goto out;
1894
1895 ret = is_inode_existent(sctx, dir, dir_gen);
1896 if (ret <= 0)
1897 goto out;
1898
1899 /* check if the ref was overwritten by another ref */
1900 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1901 &ow_inode, &other_type);
1902 if (ret < 0 && ret != -ENOENT)
1903 goto out;
1904 if (ret) {
1905 /* was never and will never be overwritten */
1906 ret = 0;
1907 goto out;
1908 }
1909
1910 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
85a7b33b 1911 NULL, NULL);
31db9f7c
AB
1912 if (ret < 0)
1913 goto out;
1914
1915 if (ow_inode == ino && gen == ino_gen) {
1916 ret = 0;
1917 goto out;
1918 }
1919
8b191a68
FM
1920 /*
1921 * We know that it is or will be overwritten. Check this now.
1922 * The current inode being processed might have been the one that caused
b786f16a
FM
1923 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1924 * the current inode being processed.
8b191a68 1925 */
b786f16a
FM
1926 if ((ow_inode < sctx->send_progress) ||
1927 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1928 gen == sctx->cur_inode_gen))
31db9f7c
AB
1929 ret = 1;
1930 else
1931 ret = 0;
1932
1933out:
1934 return ret;
1935}
1936
766702ef
AB
1937/*
1938 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1939 * that got overwritten. This is used by process_recorded_refs to determine
1940 * if it has to use the path as returned by get_cur_path or the orphan name.
1941 */
31db9f7c
AB
1942static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1943{
1944 int ret = 0;
1945 struct fs_path *name = NULL;
1946 u64 dir;
1947 u64 dir_gen;
1948
1949 if (!sctx->parent_root)
1950 goto out;
1951
924794c9 1952 name = fs_path_alloc();
31db9f7c
AB
1953 if (!name)
1954 return -ENOMEM;
1955
924794c9 1956 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
31db9f7c
AB
1957 if (ret < 0)
1958 goto out;
1959
1960 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1961 name->start, fs_path_len(name));
31db9f7c
AB
1962
1963out:
924794c9 1964 fs_path_free(name);
31db9f7c
AB
1965 return ret;
1966}
1967
766702ef
AB
1968/*
1969 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1970 * so we need to do some special handling in case we have clashes. This function
1971 * takes care of this with the help of name_cache_entry::radix_list.
5dc67d0b 1972 * In case of error, nce is kfreed.
766702ef 1973 */
31db9f7c
AB
1974static int name_cache_insert(struct send_ctx *sctx,
1975 struct name_cache_entry *nce)
1976{
1977 int ret = 0;
7e0926fe
AB
1978 struct list_head *nce_head;
1979
1980 nce_head = radix_tree_lookup(&sctx->name_cache,
1981 (unsigned long)nce->ino);
1982 if (!nce_head) {
1983 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
cfa7a9cc
TI
1984 if (!nce_head) {
1985 kfree(nce);
31db9f7c 1986 return -ENOMEM;
cfa7a9cc 1987 }
7e0926fe 1988 INIT_LIST_HEAD(nce_head);
31db9f7c 1989
7e0926fe 1990 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
5dc67d0b
AB
1991 if (ret < 0) {
1992 kfree(nce_head);
1993 kfree(nce);
31db9f7c 1994 return ret;
5dc67d0b 1995 }
31db9f7c 1996 }
7e0926fe 1997 list_add_tail(&nce->radix_list, nce_head);
31db9f7c
AB
1998 list_add_tail(&nce->list, &sctx->name_cache_list);
1999 sctx->name_cache_size++;
2000
2001 return ret;
2002}
2003
2004static void name_cache_delete(struct send_ctx *sctx,
2005 struct name_cache_entry *nce)
2006{
7e0926fe 2007 struct list_head *nce_head;
31db9f7c 2008
7e0926fe
AB
2009 nce_head = radix_tree_lookup(&sctx->name_cache,
2010 (unsigned long)nce->ino);
57fb8910
DS
2011 if (!nce_head) {
2012 btrfs_err(sctx->send_root->fs_info,
2013 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2014 nce->ino, sctx->name_cache_size);
2015 }
31db9f7c 2016
7e0926fe 2017 list_del(&nce->radix_list);
31db9f7c 2018 list_del(&nce->list);
31db9f7c 2019 sctx->name_cache_size--;
7e0926fe 2020
57fb8910
DS
2021 /*
2022 * We may not get to the final release of nce_head if the lookup fails
2023 */
2024 if (nce_head && list_empty(nce_head)) {
7e0926fe
AB
2025 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2026 kfree(nce_head);
2027 }
31db9f7c
AB
2028}
2029
2030static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2031 u64 ino, u64 gen)
2032{
7e0926fe
AB
2033 struct list_head *nce_head;
2034 struct name_cache_entry *cur;
31db9f7c 2035
7e0926fe
AB
2036 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2037 if (!nce_head)
31db9f7c
AB
2038 return NULL;
2039
7e0926fe
AB
2040 list_for_each_entry(cur, nce_head, radix_list) {
2041 if (cur->ino == ino && cur->gen == gen)
2042 return cur;
2043 }
31db9f7c
AB
2044 return NULL;
2045}
2046
766702ef
AB
2047/*
2048 * Removes the entry from the list and adds it back to the end. This marks the
2049 * entry as recently used so that name_cache_clean_unused does not remove it.
2050 */
31db9f7c
AB
2051static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2052{
2053 list_del(&nce->list);
2054 list_add_tail(&nce->list, &sctx->name_cache_list);
2055}
2056
766702ef
AB
2057/*
2058 * Remove some entries from the beginning of name_cache_list.
2059 */
31db9f7c
AB
2060static void name_cache_clean_unused(struct send_ctx *sctx)
2061{
2062 struct name_cache_entry *nce;
2063
2064 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2065 return;
2066
2067 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2068 nce = list_entry(sctx->name_cache_list.next,
2069 struct name_cache_entry, list);
2070 name_cache_delete(sctx, nce);
2071 kfree(nce);
2072 }
2073}
2074
2075static void name_cache_free(struct send_ctx *sctx)
2076{
2077 struct name_cache_entry *nce;
31db9f7c 2078
e938c8ad
AB
2079 while (!list_empty(&sctx->name_cache_list)) {
2080 nce = list_entry(sctx->name_cache_list.next,
2081 struct name_cache_entry, list);
31db9f7c 2082 name_cache_delete(sctx, nce);
17589bd9 2083 kfree(nce);
31db9f7c
AB
2084 }
2085}
2086
766702ef
AB
2087/*
2088 * Used by get_cur_path for each ref up to the root.
2089 * Returns 0 if it succeeded.
2090 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2091 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2092 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2093 * Returns <0 in case of error.
2094 */
31db9f7c
AB
2095static int __get_cur_name_and_parent(struct send_ctx *sctx,
2096 u64 ino, u64 gen,
2097 u64 *parent_ino,
2098 u64 *parent_gen,
2099 struct fs_path *dest)
2100{
2101 int ret;
2102 int nce_ret;
31db9f7c
AB
2103 struct name_cache_entry *nce = NULL;
2104
766702ef
AB
2105 /*
2106 * First check if we already did a call to this function with the same
2107 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2108 * return the cached result.
2109 */
31db9f7c
AB
2110 nce = name_cache_search(sctx, ino, gen);
2111 if (nce) {
2112 if (ino < sctx->send_progress && nce->need_later_update) {
2113 name_cache_delete(sctx, nce);
2114 kfree(nce);
2115 nce = NULL;
2116 } else {
2117 name_cache_used(sctx, nce);
2118 *parent_ino = nce->parent_ino;
2119 *parent_gen = nce->parent_gen;
2120 ret = fs_path_add(dest, nce->name, nce->name_len);
2121 if (ret < 0)
2122 goto out;
2123 ret = nce->ret;
2124 goto out;
2125 }
2126 }
2127
766702ef
AB
2128 /*
2129 * If the inode is not existent yet, add the orphan name and return 1.
2130 * This should only happen for the parent dir that we determine in
2131 * __record_new_ref
2132 */
31db9f7c
AB
2133 ret = is_inode_existent(sctx, ino, gen);
2134 if (ret < 0)
2135 goto out;
2136
2137 if (!ret) {
2138 ret = gen_unique_name(sctx, ino, gen, dest);
2139 if (ret < 0)
2140 goto out;
2141 ret = 1;
2142 goto out_cache;
2143 }
2144
766702ef
AB
2145 /*
2146 * Depending on whether the inode was already processed or not, use
2147 * send_root or parent_root for ref lookup.
2148 */
bf0d1f44 2149 if (ino < sctx->send_progress)
924794c9
TI
2150 ret = get_first_ref(sctx->send_root, ino,
2151 parent_ino, parent_gen, dest);
31db9f7c 2152 else
924794c9
TI
2153 ret = get_first_ref(sctx->parent_root, ino,
2154 parent_ino, parent_gen, dest);
31db9f7c
AB
2155 if (ret < 0)
2156 goto out;
2157
766702ef
AB
2158 /*
2159 * Check if the ref was overwritten by an inode's ref that was processed
2160 * earlier. If yes, treat as orphan and return 1.
2161 */
31db9f7c
AB
2162 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2163 dest->start, dest->end - dest->start);
2164 if (ret < 0)
2165 goto out;
2166 if (ret) {
2167 fs_path_reset(dest);
2168 ret = gen_unique_name(sctx, ino, gen, dest);
2169 if (ret < 0)
2170 goto out;
2171 ret = 1;
2172 }
2173
2174out_cache:
766702ef
AB
2175 /*
2176 * Store the result of the lookup in the name cache.
2177 */
31db9f7c
AB
2178 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2179 if (!nce) {
2180 ret = -ENOMEM;
2181 goto out;
2182 }
2183
2184 nce->ino = ino;
2185 nce->gen = gen;
2186 nce->parent_ino = *parent_ino;
2187 nce->parent_gen = *parent_gen;
2188 nce->name_len = fs_path_len(dest);
2189 nce->ret = ret;
2190 strcpy(nce->name, dest->start);
31db9f7c
AB
2191
2192 if (ino < sctx->send_progress)
2193 nce->need_later_update = 0;
2194 else
2195 nce->need_later_update = 1;
2196
2197 nce_ret = name_cache_insert(sctx, nce);
2198 if (nce_ret < 0)
2199 ret = nce_ret;
2200 name_cache_clean_unused(sctx);
2201
2202out:
31db9f7c
AB
2203 return ret;
2204}
2205
2206/*
2207 * Magic happens here. This function returns the first ref to an inode as it
2208 * would look like while receiving the stream at this point in time.
2209 * We walk the path up to the root. For every inode in between, we check if it
2210 * was already processed/sent. If yes, we continue with the parent as found
2211 * in send_root. If not, we continue with the parent as found in parent_root.
2212 * If we encounter an inode that was deleted at this point in time, we use the
2213 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2214 * that were not created yet and overwritten inodes/refs.
2215 *
2216 * When do we have have orphan inodes:
2217 * 1. When an inode is freshly created and thus no valid refs are available yet
2218 * 2. When a directory lost all it's refs (deleted) but still has dir items
2219 * inside which were not processed yet (pending for move/delete). If anyone
2220 * tried to get the path to the dir items, it would get a path inside that
2221 * orphan directory.
2222 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2223 * of an unprocessed inode. If in that case the first ref would be
2224 * overwritten, the overwritten inode gets "orphanized". Later when we
2225 * process this overwritten inode, it is restored at a new place by moving
2226 * the orphan inode.
2227 *
2228 * sctx->send_progress tells this function at which point in time receiving
2229 * would be.
2230 */
2231static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2232 struct fs_path *dest)
2233{
2234 int ret = 0;
2235 struct fs_path *name = NULL;
2236 u64 parent_inode = 0;
2237 u64 parent_gen = 0;
2238 int stop = 0;
2239
924794c9 2240 name = fs_path_alloc();
31db9f7c
AB
2241 if (!name) {
2242 ret = -ENOMEM;
2243 goto out;
2244 }
2245
2246 dest->reversed = 1;
2247 fs_path_reset(dest);
2248
2249 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
8b191a68
FM
2250 struct waiting_dir_move *wdm;
2251
31db9f7c
AB
2252 fs_path_reset(name);
2253
9dc44214
FM
2254 if (is_waiting_for_rm(sctx, ino)) {
2255 ret = gen_unique_name(sctx, ino, gen, name);
2256 if (ret < 0)
2257 goto out;
2258 ret = fs_path_add_path(dest, name);
2259 break;
2260 }
2261
8b191a68
FM
2262 wdm = get_waiting_dir_move(sctx, ino);
2263 if (wdm && wdm->orphanized) {
2264 ret = gen_unique_name(sctx, ino, gen, name);
2265 stop = 1;
2266 } else if (wdm) {
bf0d1f44
FM
2267 ret = get_first_ref(sctx->parent_root, ino,
2268 &parent_inode, &parent_gen, name);
2269 } else {
2270 ret = __get_cur_name_and_parent(sctx, ino, gen,
2271 &parent_inode,
2272 &parent_gen, name);
2273 if (ret)
2274 stop = 1;
2275 }
2276
31db9f7c
AB
2277 if (ret < 0)
2278 goto out;
9f03740a 2279
31db9f7c
AB
2280 ret = fs_path_add_path(dest, name);
2281 if (ret < 0)
2282 goto out;
2283
2284 ino = parent_inode;
2285 gen = parent_gen;
2286 }
2287
2288out:
924794c9 2289 fs_path_free(name);
31db9f7c
AB
2290 if (!ret)
2291 fs_path_unreverse(dest);
2292 return ret;
2293}
2294
31db9f7c
AB
2295/*
2296 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2297 */
2298static int send_subvol_begin(struct send_ctx *sctx)
2299{
2300 int ret;
2301 struct btrfs_root *send_root = sctx->send_root;
2302 struct btrfs_root *parent_root = sctx->parent_root;
2303 struct btrfs_path *path;
2304 struct btrfs_key key;
2305 struct btrfs_root_ref *ref;
2306 struct extent_buffer *leaf;
2307 char *name = NULL;
2308 int namelen;
2309
ffcfaf81 2310 path = btrfs_alloc_path();
31db9f7c
AB
2311 if (!path)
2312 return -ENOMEM;
2313
2314 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2315 if (!name) {
2316 btrfs_free_path(path);
2317 return -ENOMEM;
2318 }
2319
2320 key.objectid = send_root->objectid;
2321 key.type = BTRFS_ROOT_BACKREF_KEY;
2322 key.offset = 0;
2323
2324 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2325 &key, path, 1, 0);
2326 if (ret < 0)
2327 goto out;
2328 if (ret) {
2329 ret = -ENOENT;
2330 goto out;
2331 }
2332
2333 leaf = path->nodes[0];
2334 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2335 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2336 key.objectid != send_root->objectid) {
2337 ret = -ENOENT;
2338 goto out;
2339 }
2340 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2341 namelen = btrfs_root_ref_name_len(leaf, ref);
2342 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2343 btrfs_release_path(path);
2344
31db9f7c
AB
2345 if (parent_root) {
2346 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2347 if (ret < 0)
2348 goto out;
2349 } else {
2350 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2351 if (ret < 0)
2352 goto out;
2353 }
2354
2355 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2356 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2357 sctx->send_root->root_item.uuid);
2358 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
5a0f4e2c 2359 le64_to_cpu(sctx->send_root->root_item.ctransid));
31db9f7c 2360 if (parent_root) {
37b8d27d
JB
2361 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2362 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2363 parent_root->root_item.received_uuid);
2364 else
2365 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2366 parent_root->root_item.uuid);
31db9f7c 2367 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5a0f4e2c 2368 le64_to_cpu(sctx->parent_root->root_item.ctransid));
31db9f7c
AB
2369 }
2370
2371 ret = send_cmd(sctx);
2372
2373tlv_put_failure:
2374out:
2375 btrfs_free_path(path);
2376 kfree(name);
2377 return ret;
2378}
2379
2380static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2381{
2382 int ret = 0;
2383 struct fs_path *p;
2384
2385verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2386
924794c9 2387 p = fs_path_alloc();
31db9f7c
AB
2388 if (!p)
2389 return -ENOMEM;
2390
2391 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2392 if (ret < 0)
2393 goto out;
2394
2395 ret = get_cur_path(sctx, ino, gen, p);
2396 if (ret < 0)
2397 goto out;
2398 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2399 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2400
2401 ret = send_cmd(sctx);
2402
2403tlv_put_failure:
2404out:
924794c9 2405 fs_path_free(p);
31db9f7c
AB
2406 return ret;
2407}
2408
2409static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2410{
2411 int ret = 0;
2412 struct fs_path *p;
2413
2414verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2415
924794c9 2416 p = fs_path_alloc();
31db9f7c
AB
2417 if (!p)
2418 return -ENOMEM;
2419
2420 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2421 if (ret < 0)
2422 goto out;
2423
2424 ret = get_cur_path(sctx, ino, gen, p);
2425 if (ret < 0)
2426 goto out;
2427 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2428 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2429
2430 ret = send_cmd(sctx);
2431
2432tlv_put_failure:
2433out:
924794c9 2434 fs_path_free(p);
31db9f7c
AB
2435 return ret;
2436}
2437
2438static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2439{
2440 int ret = 0;
2441 struct fs_path *p;
2442
2443verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2444
924794c9 2445 p = fs_path_alloc();
31db9f7c
AB
2446 if (!p)
2447 return -ENOMEM;
2448
2449 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2450 if (ret < 0)
2451 goto out;
2452
2453 ret = get_cur_path(sctx, ino, gen, p);
2454 if (ret < 0)
2455 goto out;
2456 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2457 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2458 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2459
2460 ret = send_cmd(sctx);
2461
2462tlv_put_failure:
2463out:
924794c9 2464 fs_path_free(p);
31db9f7c
AB
2465 return ret;
2466}
2467
2468static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2469{
2470 int ret = 0;
2471 struct fs_path *p = NULL;
2472 struct btrfs_inode_item *ii;
2473 struct btrfs_path *path = NULL;
2474 struct extent_buffer *eb;
2475 struct btrfs_key key;
2476 int slot;
2477
2478verbose_printk("btrfs: send_utimes %llu\n", ino);
2479
924794c9 2480 p = fs_path_alloc();
31db9f7c
AB
2481 if (!p)
2482 return -ENOMEM;
2483
2484 path = alloc_path_for_send();
2485 if (!path) {
2486 ret = -ENOMEM;
2487 goto out;
2488 }
2489
2490 key.objectid = ino;
2491 key.type = BTRFS_INODE_ITEM_KEY;
2492 key.offset = 0;
2493 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2494 if (ret < 0)
2495 goto out;
2496
2497 eb = path->nodes[0];
2498 slot = path->slots[0];
2499 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2500
2501 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2502 if (ret < 0)
2503 goto out;
2504
2505 ret = get_cur_path(sctx, ino, gen, p);
2506 if (ret < 0)
2507 goto out;
2508 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
a937b979
DS
2509 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2510 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2511 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
766702ef 2512 /* TODO Add otime support when the otime patches get into upstream */
31db9f7c
AB
2513
2514 ret = send_cmd(sctx);
2515
2516tlv_put_failure:
2517out:
924794c9 2518 fs_path_free(p);
31db9f7c
AB
2519 btrfs_free_path(path);
2520 return ret;
2521}
2522
2523/*
2524 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2525 * a valid path yet because we did not process the refs yet. So, the inode
2526 * is created as orphan.
2527 */
1f4692da 2528static int send_create_inode(struct send_ctx *sctx, u64 ino)
31db9f7c
AB
2529{
2530 int ret = 0;
31db9f7c 2531 struct fs_path *p;
31db9f7c 2532 int cmd;
1f4692da 2533 u64 gen;
31db9f7c 2534 u64 mode;
1f4692da 2535 u64 rdev;
31db9f7c 2536
1f4692da 2537verbose_printk("btrfs: send_create_inode %llu\n", ino);
31db9f7c 2538
924794c9 2539 p = fs_path_alloc();
31db9f7c
AB
2540 if (!p)
2541 return -ENOMEM;
2542
644d1940
LB
2543 if (ino != sctx->cur_ino) {
2544 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2545 NULL, NULL, &rdev);
2546 if (ret < 0)
2547 goto out;
2548 } else {
2549 gen = sctx->cur_inode_gen;
2550 mode = sctx->cur_inode_mode;
2551 rdev = sctx->cur_inode_rdev;
2552 }
31db9f7c 2553
e938c8ad 2554 if (S_ISREG(mode)) {
31db9f7c 2555 cmd = BTRFS_SEND_C_MKFILE;
e938c8ad 2556 } else if (S_ISDIR(mode)) {
31db9f7c 2557 cmd = BTRFS_SEND_C_MKDIR;
e938c8ad 2558 } else if (S_ISLNK(mode)) {
31db9f7c 2559 cmd = BTRFS_SEND_C_SYMLINK;
e938c8ad 2560 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
31db9f7c 2561 cmd = BTRFS_SEND_C_MKNOD;
e938c8ad 2562 } else if (S_ISFIFO(mode)) {
31db9f7c 2563 cmd = BTRFS_SEND_C_MKFIFO;
e938c8ad 2564 } else if (S_ISSOCK(mode)) {
31db9f7c 2565 cmd = BTRFS_SEND_C_MKSOCK;
e938c8ad 2566 } else {
31db9f7c
AB
2567 printk(KERN_WARNING "btrfs: unexpected inode type %o",
2568 (int)(mode & S_IFMT));
2569 ret = -ENOTSUPP;
2570 goto out;
2571 }
2572
2573 ret = begin_cmd(sctx, cmd);
2574 if (ret < 0)
2575 goto out;
2576
1f4692da 2577 ret = gen_unique_name(sctx, ino, gen, p);
31db9f7c
AB
2578 if (ret < 0)
2579 goto out;
2580
2581 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
1f4692da 2582 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
31db9f7c
AB
2583
2584 if (S_ISLNK(mode)) {
2585 fs_path_reset(p);
924794c9 2586 ret = read_symlink(sctx->send_root, ino, p);
31db9f7c
AB
2587 if (ret < 0)
2588 goto out;
2589 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2590 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2591 S_ISFIFO(mode) || S_ISSOCK(mode)) {
d79e5043
AJ
2592 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2593 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
31db9f7c
AB
2594 }
2595
2596 ret = send_cmd(sctx);
2597 if (ret < 0)
2598 goto out;
2599
2600
2601tlv_put_failure:
2602out:
924794c9 2603 fs_path_free(p);
31db9f7c
AB
2604 return ret;
2605}
2606
1f4692da
AB
2607/*
2608 * We need some special handling for inodes that get processed before the parent
2609 * directory got created. See process_recorded_refs for details.
2610 * This function does the check if we already created the dir out of order.
2611 */
2612static int did_create_dir(struct send_ctx *sctx, u64 dir)
2613{
2614 int ret = 0;
2615 struct btrfs_path *path = NULL;
2616 struct btrfs_key key;
2617 struct btrfs_key found_key;
2618 struct btrfs_key di_key;
2619 struct extent_buffer *eb;
2620 struct btrfs_dir_item *di;
2621 int slot;
2622
2623 path = alloc_path_for_send();
2624 if (!path) {
2625 ret = -ENOMEM;
2626 goto out;
2627 }
2628
2629 key.objectid = dir;
2630 key.type = BTRFS_DIR_INDEX_KEY;
2631 key.offset = 0;
dff6d0ad
FDBM
2632 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2633 if (ret < 0)
2634 goto out;
2635
1f4692da 2636 while (1) {
dff6d0ad
FDBM
2637 eb = path->nodes[0];
2638 slot = path->slots[0];
2639 if (slot >= btrfs_header_nritems(eb)) {
2640 ret = btrfs_next_leaf(sctx->send_root, path);
2641 if (ret < 0) {
2642 goto out;
2643 } else if (ret > 0) {
2644 ret = 0;
2645 break;
2646 }
2647 continue;
1f4692da 2648 }
dff6d0ad
FDBM
2649
2650 btrfs_item_key_to_cpu(eb, &found_key, slot);
2651 if (found_key.objectid != key.objectid ||
1f4692da
AB
2652 found_key.type != key.type) {
2653 ret = 0;
2654 goto out;
2655 }
2656
2657 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2658 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2659
a0525414
JB
2660 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2661 di_key.objectid < sctx->send_progress) {
1f4692da
AB
2662 ret = 1;
2663 goto out;
2664 }
2665
dff6d0ad 2666 path->slots[0]++;
1f4692da
AB
2667 }
2668
2669out:
2670 btrfs_free_path(path);
2671 return ret;
2672}
2673
2674/*
2675 * Only creates the inode if it is:
2676 * 1. Not a directory
2677 * 2. Or a directory which was not created already due to out of order
2678 * directories. See did_create_dir and process_recorded_refs for details.
2679 */
2680static int send_create_inode_if_needed(struct send_ctx *sctx)
2681{
2682 int ret;
2683
2684 if (S_ISDIR(sctx->cur_inode_mode)) {
2685 ret = did_create_dir(sctx, sctx->cur_ino);
2686 if (ret < 0)
2687 goto out;
2688 if (ret) {
2689 ret = 0;
2690 goto out;
2691 }
2692 }
2693
2694 ret = send_create_inode(sctx, sctx->cur_ino);
2695 if (ret < 0)
2696 goto out;
2697
2698out:
2699 return ret;
2700}
2701
31db9f7c
AB
2702struct recorded_ref {
2703 struct list_head list;
2704 char *dir_path;
2705 char *name;
2706 struct fs_path *full_path;
2707 u64 dir;
2708 u64 dir_gen;
2709 int dir_path_len;
2710 int name_len;
2711};
2712
2713/*
2714 * We need to process new refs before deleted refs, but compare_tree gives us
2715 * everything mixed. So we first record all refs and later process them.
2716 * This function is a helper to record one ref.
2717 */
a4d96d62 2718static int __record_ref(struct list_head *head, u64 dir,
31db9f7c
AB
2719 u64 dir_gen, struct fs_path *path)
2720{
2721 struct recorded_ref *ref;
31db9f7c
AB
2722
2723 ref = kmalloc(sizeof(*ref), GFP_NOFS);
2724 if (!ref)
2725 return -ENOMEM;
2726
2727 ref->dir = dir;
2728 ref->dir_gen = dir_gen;
2729 ref->full_path = path;
2730
ed84885d
AS
2731 ref->name = (char *)kbasename(ref->full_path->start);
2732 ref->name_len = ref->full_path->end - ref->name;
2733 ref->dir_path = ref->full_path->start;
2734 if (ref->name == ref->full_path->start)
31db9f7c 2735 ref->dir_path_len = 0;
ed84885d 2736 else
31db9f7c
AB
2737 ref->dir_path_len = ref->full_path->end -
2738 ref->full_path->start - 1 - ref->name_len;
31db9f7c
AB
2739
2740 list_add_tail(&ref->list, head);
2741 return 0;
2742}
2743
ba5e8f2e
JB
2744static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2745{
2746 struct recorded_ref *new;
2747
2748 new = kmalloc(sizeof(*ref), GFP_NOFS);
2749 if (!new)
2750 return -ENOMEM;
2751
2752 new->dir = ref->dir;
2753 new->dir_gen = ref->dir_gen;
2754 new->full_path = NULL;
2755 INIT_LIST_HEAD(&new->list);
2756 list_add_tail(&new->list, list);
2757 return 0;
2758}
2759
924794c9 2760static void __free_recorded_refs(struct list_head *head)
31db9f7c
AB
2761{
2762 struct recorded_ref *cur;
31db9f7c 2763
e938c8ad
AB
2764 while (!list_empty(head)) {
2765 cur = list_entry(head->next, struct recorded_ref, list);
924794c9 2766 fs_path_free(cur->full_path);
e938c8ad 2767 list_del(&cur->list);
31db9f7c
AB
2768 kfree(cur);
2769 }
31db9f7c
AB
2770}
2771
2772static void free_recorded_refs(struct send_ctx *sctx)
2773{
924794c9
TI
2774 __free_recorded_refs(&sctx->new_refs);
2775 __free_recorded_refs(&sctx->deleted_refs);
31db9f7c
AB
2776}
2777
2778/*
766702ef 2779 * Renames/moves a file/dir to its orphan name. Used when the first
31db9f7c
AB
2780 * ref of an unprocessed inode gets overwritten and for all non empty
2781 * directories.
2782 */
2783static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2784 struct fs_path *path)
2785{
2786 int ret;
2787 struct fs_path *orphan;
2788
924794c9 2789 orphan = fs_path_alloc();
31db9f7c
AB
2790 if (!orphan)
2791 return -ENOMEM;
2792
2793 ret = gen_unique_name(sctx, ino, gen, orphan);
2794 if (ret < 0)
2795 goto out;
2796
2797 ret = send_rename(sctx, path, orphan);
2798
2799out:
924794c9 2800 fs_path_free(orphan);
31db9f7c
AB
2801 return ret;
2802}
2803
9dc44214
FM
2804static struct orphan_dir_info *
2805add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2806{
2807 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2808 struct rb_node *parent = NULL;
2809 struct orphan_dir_info *entry, *odi;
2810
2811 odi = kmalloc(sizeof(*odi), GFP_NOFS);
2812 if (!odi)
2813 return ERR_PTR(-ENOMEM);
2814 odi->ino = dir_ino;
2815 odi->gen = 0;
2816
2817 while (*p) {
2818 parent = *p;
2819 entry = rb_entry(parent, struct orphan_dir_info, node);
2820 if (dir_ino < entry->ino) {
2821 p = &(*p)->rb_left;
2822 } else if (dir_ino > entry->ino) {
2823 p = &(*p)->rb_right;
2824 } else {
2825 kfree(odi);
2826 return entry;
2827 }
2828 }
2829
2830 rb_link_node(&odi->node, parent, p);
2831 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2832 return odi;
2833}
2834
2835static struct orphan_dir_info *
2836get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2837{
2838 struct rb_node *n = sctx->orphan_dirs.rb_node;
2839 struct orphan_dir_info *entry;
2840
2841 while (n) {
2842 entry = rb_entry(n, struct orphan_dir_info, node);
2843 if (dir_ino < entry->ino)
2844 n = n->rb_left;
2845 else if (dir_ino > entry->ino)
2846 n = n->rb_right;
2847 else
2848 return entry;
2849 }
2850 return NULL;
2851}
2852
2853static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2854{
2855 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2856
2857 return odi != NULL;
2858}
2859
2860static void free_orphan_dir_info(struct send_ctx *sctx,
2861 struct orphan_dir_info *odi)
2862{
2863 if (!odi)
2864 return;
2865 rb_erase(&odi->node, &sctx->orphan_dirs);
2866 kfree(odi);
2867}
2868
31db9f7c
AB
2869/*
2870 * Returns 1 if a directory can be removed at this point in time.
2871 * We check this by iterating all dir items and checking if the inode behind
2872 * the dir item was already processed.
2873 */
9dc44214
FM
2874static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2875 u64 send_progress)
31db9f7c
AB
2876{
2877 int ret = 0;
2878 struct btrfs_root *root = sctx->parent_root;
2879 struct btrfs_path *path;
2880 struct btrfs_key key;
2881 struct btrfs_key found_key;
2882 struct btrfs_key loc;
2883 struct btrfs_dir_item *di;
2884
6d85ed05
AB
2885 /*
2886 * Don't try to rmdir the top/root subvolume dir.
2887 */
2888 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2889 return 0;
2890
31db9f7c
AB
2891 path = alloc_path_for_send();
2892 if (!path)
2893 return -ENOMEM;
2894
2895 key.objectid = dir;
2896 key.type = BTRFS_DIR_INDEX_KEY;
2897 key.offset = 0;
dff6d0ad
FDBM
2898 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2899 if (ret < 0)
2900 goto out;
31db9f7c
AB
2901
2902 while (1) {
9dc44214
FM
2903 struct waiting_dir_move *dm;
2904
dff6d0ad
FDBM
2905 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2906 ret = btrfs_next_leaf(root, path);
2907 if (ret < 0)
2908 goto out;
2909 else if (ret > 0)
2910 break;
2911 continue;
31db9f7c 2912 }
dff6d0ad
FDBM
2913 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2914 path->slots[0]);
2915 if (found_key.objectid != key.objectid ||
2916 found_key.type != key.type)
31db9f7c 2917 break;
31db9f7c
AB
2918
2919 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2920 struct btrfs_dir_item);
2921 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2922
9dc44214
FM
2923 dm = get_waiting_dir_move(sctx, loc.objectid);
2924 if (dm) {
2925 struct orphan_dir_info *odi;
2926
2927 odi = add_orphan_dir_info(sctx, dir);
2928 if (IS_ERR(odi)) {
2929 ret = PTR_ERR(odi);
2930 goto out;
2931 }
2932 odi->gen = dir_gen;
2933 dm->rmdir_ino = dir;
2934 ret = 0;
2935 goto out;
2936 }
2937
31db9f7c
AB
2938 if (loc.objectid > send_progress) {
2939 ret = 0;
2940 goto out;
2941 }
2942
dff6d0ad 2943 path->slots[0]++;
31db9f7c
AB
2944 }
2945
2946 ret = 1;
2947
2948out:
2949 btrfs_free_path(path);
2950 return ret;
2951}
2952
9f03740a
FDBM
2953static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2954{
9dc44214 2955 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
9f03740a 2956
9dc44214 2957 return entry != NULL;
9f03740a
FDBM
2958}
2959
8b191a68 2960static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
9f03740a
FDBM
2961{
2962 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2963 struct rb_node *parent = NULL;
2964 struct waiting_dir_move *entry, *dm;
2965
2966 dm = kmalloc(sizeof(*dm), GFP_NOFS);
2967 if (!dm)
2968 return -ENOMEM;
2969 dm->ino = ino;
9dc44214 2970 dm->rmdir_ino = 0;
8b191a68 2971 dm->orphanized = orphanized;
9f03740a
FDBM
2972
2973 while (*p) {
2974 parent = *p;
2975 entry = rb_entry(parent, struct waiting_dir_move, node);
2976 if (ino < entry->ino) {
2977 p = &(*p)->rb_left;
2978 } else if (ino > entry->ino) {
2979 p = &(*p)->rb_right;
2980 } else {
2981 kfree(dm);
2982 return -EEXIST;
2983 }
2984 }
2985
2986 rb_link_node(&dm->node, parent, p);
2987 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2988 return 0;
2989}
2990
9dc44214
FM
2991static struct waiting_dir_move *
2992get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
9f03740a
FDBM
2993{
2994 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2995 struct waiting_dir_move *entry;
2996
2997 while (n) {
2998 entry = rb_entry(n, struct waiting_dir_move, node);
9dc44214 2999 if (ino < entry->ino)
9f03740a 3000 n = n->rb_left;
9dc44214 3001 else if (ino > entry->ino)
9f03740a 3002 n = n->rb_right;
9dc44214
FM
3003 else
3004 return entry;
9f03740a 3005 }
9dc44214
FM
3006 return NULL;
3007}
3008
3009static void free_waiting_dir_move(struct send_ctx *sctx,
3010 struct waiting_dir_move *dm)
3011{
3012 if (!dm)
3013 return;
3014 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3015 kfree(dm);
9f03740a
FDBM
3016}
3017
bfa7e1f8
FM
3018static int add_pending_dir_move(struct send_ctx *sctx,
3019 u64 ino,
3020 u64 ino_gen,
f959492f
FM
3021 u64 parent_ino,
3022 struct list_head *new_refs,
84471e24
FM
3023 struct list_head *deleted_refs,
3024 const bool is_orphan)
9f03740a
FDBM
3025{
3026 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3027 struct rb_node *parent = NULL;
73b802f4 3028 struct pending_dir_move *entry = NULL, *pm;
9f03740a
FDBM
3029 struct recorded_ref *cur;
3030 int exists = 0;
3031 int ret;
3032
3033 pm = kmalloc(sizeof(*pm), GFP_NOFS);
3034 if (!pm)
3035 return -ENOMEM;
3036 pm->parent_ino = parent_ino;
bfa7e1f8
FM
3037 pm->ino = ino;
3038 pm->gen = ino_gen;
84471e24 3039 pm->is_orphan = is_orphan;
9f03740a
FDBM
3040 INIT_LIST_HEAD(&pm->list);
3041 INIT_LIST_HEAD(&pm->update_refs);
3042 RB_CLEAR_NODE(&pm->node);
3043
3044 while (*p) {
3045 parent = *p;
3046 entry = rb_entry(parent, struct pending_dir_move, node);
3047 if (parent_ino < entry->parent_ino) {
3048 p = &(*p)->rb_left;
3049 } else if (parent_ino > entry->parent_ino) {
3050 p = &(*p)->rb_right;
3051 } else {
3052 exists = 1;
3053 break;
3054 }
3055 }
3056
f959492f 3057 list_for_each_entry(cur, deleted_refs, list) {
9f03740a
FDBM
3058 ret = dup_ref(cur, &pm->update_refs);
3059 if (ret < 0)
3060 goto out;
3061 }
f959492f 3062 list_for_each_entry(cur, new_refs, list) {
9f03740a
FDBM
3063 ret = dup_ref(cur, &pm->update_refs);
3064 if (ret < 0)
3065 goto out;
3066 }
3067
8b191a68 3068 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
9f03740a
FDBM
3069 if (ret)
3070 goto out;
3071
3072 if (exists) {
3073 list_add_tail(&pm->list, &entry->list);
3074 } else {
3075 rb_link_node(&pm->node, parent, p);
3076 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3077 }
3078 ret = 0;
3079out:
3080 if (ret) {
3081 __free_recorded_refs(&pm->update_refs);
3082 kfree(pm);
3083 }
3084 return ret;
3085}
3086
3087static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3088 u64 parent_ino)
3089{
3090 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3091 struct pending_dir_move *entry;
3092
3093 while (n) {
3094 entry = rb_entry(n, struct pending_dir_move, node);
3095 if (parent_ino < entry->parent_ino)
3096 n = n->rb_left;
3097 else if (parent_ino > entry->parent_ino)
3098 n = n->rb_right;
3099 else
3100 return entry;
3101 }
3102 return NULL;
3103}
3104
3105static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3106{
3107 struct fs_path *from_path = NULL;
3108 struct fs_path *to_path = NULL;
2b863a13 3109 struct fs_path *name = NULL;
9f03740a
FDBM
3110 u64 orig_progress = sctx->send_progress;
3111 struct recorded_ref *cur;
2b863a13 3112 u64 parent_ino, parent_gen;
9dc44214
FM
3113 struct waiting_dir_move *dm = NULL;
3114 u64 rmdir_ino = 0;
9f03740a
FDBM
3115 int ret;
3116
2b863a13 3117 name = fs_path_alloc();
9f03740a 3118 from_path = fs_path_alloc();
2b863a13
FM
3119 if (!name || !from_path) {
3120 ret = -ENOMEM;
3121 goto out;
3122 }
9f03740a 3123
9dc44214
FM
3124 dm = get_waiting_dir_move(sctx, pm->ino);
3125 ASSERT(dm);
3126 rmdir_ino = dm->rmdir_ino;
3127 free_waiting_dir_move(sctx, dm);
2b863a13 3128
84471e24
FM
3129 if (pm->is_orphan) {
3130 ret = gen_unique_name(sctx, pm->ino,
3131 pm->gen, from_path);
3132 } else {
3133 ret = get_first_ref(sctx->parent_root, pm->ino,
3134 &parent_ino, &parent_gen, name);
3135 if (ret < 0)
3136 goto out;
3137 ret = get_cur_path(sctx, parent_ino, parent_gen,
3138 from_path);
3139 if (ret < 0)
3140 goto out;
3141 ret = fs_path_add_path(from_path, name);
3142 }
c992ec94
FM
3143 if (ret < 0)
3144 goto out;
2b863a13 3145
f959492f 3146 sctx->send_progress = sctx->cur_ino + 1;
c992ec94
FM
3147 fs_path_reset(name);
3148 to_path = name;
2b863a13 3149 name = NULL;
9f03740a
FDBM
3150 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3151 if (ret < 0)
3152 goto out;
3153
3154 ret = send_rename(sctx, from_path, to_path);
3155 if (ret < 0)
3156 goto out;
3157
9dc44214
FM
3158 if (rmdir_ino) {
3159 struct orphan_dir_info *odi;
3160
3161 odi = get_orphan_dir_info(sctx, rmdir_ino);
3162 if (!odi) {
3163 /* already deleted */
3164 goto finish;
3165 }
3166 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3167 if (ret < 0)
3168 goto out;
3169 if (!ret)
3170 goto finish;
3171
3172 name = fs_path_alloc();
3173 if (!name) {
3174 ret = -ENOMEM;
3175 goto out;
3176 }
3177 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3178 if (ret < 0)
3179 goto out;
3180 ret = send_rmdir(sctx, name);
3181 if (ret < 0)
3182 goto out;
3183 free_orphan_dir_info(sctx, odi);
3184 }
3185
3186finish:
9f03740a
FDBM
3187 ret = send_utimes(sctx, pm->ino, pm->gen);
3188 if (ret < 0)
3189 goto out;
3190
3191 /*
3192 * After rename/move, need to update the utimes of both new parent(s)
3193 * and old parent(s).
3194 */
3195 list_for_each_entry(cur, &pm->update_refs, list) {
9dc44214
FM
3196 if (cur->dir == rmdir_ino)
3197 continue;
9f03740a
FDBM
3198 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3199 if (ret < 0)
3200 goto out;
3201 }
3202
3203out:
2b863a13 3204 fs_path_free(name);
9f03740a
FDBM
3205 fs_path_free(from_path);
3206 fs_path_free(to_path);
3207 sctx->send_progress = orig_progress;
3208
3209 return ret;
3210}
3211
3212static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3213{
3214 if (!list_empty(&m->list))
3215 list_del(&m->list);
3216 if (!RB_EMPTY_NODE(&m->node))
3217 rb_erase(&m->node, &sctx->pending_dir_moves);
3218 __free_recorded_refs(&m->update_refs);
3219 kfree(m);
3220}
3221
3222static void tail_append_pending_moves(struct pending_dir_move *moves,
3223 struct list_head *stack)
3224{
3225 if (list_empty(&moves->list)) {
3226 list_add_tail(&moves->list, stack);
3227 } else {
3228 LIST_HEAD(list);
3229 list_splice_init(&moves->list, &list);
3230 list_add_tail(&moves->list, stack);
3231 list_splice_tail(&list, stack);
3232 }
3233}
3234
3235static int apply_children_dir_moves(struct send_ctx *sctx)
3236{
3237 struct pending_dir_move *pm;
3238 struct list_head stack;
3239 u64 parent_ino = sctx->cur_ino;
3240 int ret = 0;
3241
3242 pm = get_pending_dir_moves(sctx, parent_ino);
3243 if (!pm)
3244 return 0;
3245
3246 INIT_LIST_HEAD(&stack);
3247 tail_append_pending_moves(pm, &stack);
3248
3249 while (!list_empty(&stack)) {
3250 pm = list_first_entry(&stack, struct pending_dir_move, list);
3251 parent_ino = pm->ino;
3252 ret = apply_dir_move(sctx, pm);
3253 free_pending_move(sctx, pm);
3254 if (ret)
3255 goto out;
3256 pm = get_pending_dir_moves(sctx, parent_ino);
3257 if (pm)
3258 tail_append_pending_moves(pm, &stack);
3259 }
3260 return 0;
3261
3262out:
3263 while (!list_empty(&stack)) {
3264 pm = list_first_entry(&stack, struct pending_dir_move, list);
3265 free_pending_move(sctx, pm);
3266 }
3267 return ret;
3268}
3269
84471e24
FM
3270/*
3271 * We might need to delay a directory rename even when no ancestor directory
3272 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3273 * renamed. This happens when we rename a directory to the old name (the name
3274 * in the parent root) of some other unrelated directory that got its rename
3275 * delayed due to some ancestor with higher number that got renamed.
3276 *
3277 * Example:
3278 *
3279 * Parent snapshot:
3280 * . (ino 256)
3281 * |---- a/ (ino 257)
3282 * | |---- file (ino 260)
3283 * |
3284 * |---- b/ (ino 258)
3285 * |---- c/ (ino 259)
3286 *
3287 * Send snapshot:
3288 * . (ino 256)
3289 * |---- a/ (ino 258)
3290 * |---- x/ (ino 259)
3291 * |---- y/ (ino 257)
3292 * |----- file (ino 260)
3293 *
3294 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3295 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3296 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3297 * must issue is:
3298 *
3299 * 1 - rename 259 from 'c' to 'x'
3300 * 2 - rename 257 from 'a' to 'x/y'
3301 * 3 - rename 258 from 'b' to 'a'
3302 *
3303 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3304 * be done right away and < 0 on error.
3305 */
3306static int wait_for_dest_dir_move(struct send_ctx *sctx,
3307 struct recorded_ref *parent_ref,
3308 const bool is_orphan)
3309{
3310 struct btrfs_path *path;
3311 struct btrfs_key key;
3312 struct btrfs_key di_key;
3313 struct btrfs_dir_item *di;
3314 u64 left_gen;
3315 u64 right_gen;
3316 int ret = 0;
3317
3318 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3319 return 0;
3320
3321 path = alloc_path_for_send();
3322 if (!path)
3323 return -ENOMEM;
3324
3325 key.objectid = parent_ref->dir;
3326 key.type = BTRFS_DIR_ITEM_KEY;
3327 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3328
3329 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3330 if (ret < 0) {
3331 goto out;
3332 } else if (ret > 0) {
3333 ret = 0;
3334 goto out;
3335 }
3336
3337 di = btrfs_match_dir_item_name(sctx->parent_root, path,
3338 parent_ref->name, parent_ref->name_len);
3339 if (!di) {
3340 ret = 0;
3341 goto out;
3342 }
3343 /*
3344 * di_key.objectid has the number of the inode that has a dentry in the
3345 * parent directory with the same name that sctx->cur_ino is being
3346 * renamed to. We need to check if that inode is in the send root as
3347 * well and if it is currently marked as an inode with a pending rename,
3348 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3349 * that it happens after that other inode is renamed.
3350 */
3351 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3352 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3353 ret = 0;
3354 goto out;
3355 }
3356
3357 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3358 &left_gen, NULL, NULL, NULL, NULL);
3359 if (ret < 0)
3360 goto out;
3361 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3362 &right_gen, NULL, NULL, NULL, NULL);
3363 if (ret < 0) {
3364 if (ret == -ENOENT)
3365 ret = 0;
3366 goto out;
3367 }
3368
3369 /* Different inode, no need to delay the rename of sctx->cur_ino */
3370 if (right_gen != left_gen) {
3371 ret = 0;
3372 goto out;
3373 }
3374
3375 if (is_waiting_for_move(sctx, di_key.objectid)) {
3376 ret = add_pending_dir_move(sctx,
3377 sctx->cur_ino,
3378 sctx->cur_inode_gen,
3379 di_key.objectid,
3380 &sctx->new_refs,
3381 &sctx->deleted_refs,
3382 is_orphan);
3383 if (!ret)
3384 ret = 1;
3385 }
3386out:
3387 btrfs_free_path(path);
3388 return ret;
3389}
3390
80aa6027
FM
3391/*
3392 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3393 * Return 1 if true, 0 if false and < 0 on error.
3394 */
3395static int is_ancestor(struct btrfs_root *root,
3396 const u64 ino1,
3397 const u64 ino1_gen,
3398 const u64 ino2,
3399 struct fs_path *fs_path)
3400{
3401 u64 ino = ino2;
3402
3403 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3404 int ret;
3405 u64 parent;
3406 u64 parent_gen;
3407
3408 fs_path_reset(fs_path);
3409 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3410 if (ret < 0) {
3411 if (ret == -ENOENT && ino == ino2)
3412 ret = 0;
3413 return ret;
3414 }
3415 if (parent == ino1)
3416 return parent_gen == ino1_gen ? 1 : 0;
3417 ino = parent;
3418 }
3419 return 0;
3420}
3421
9f03740a 3422static int wait_for_parent_move(struct send_ctx *sctx,
8b191a68
FM
3423 struct recorded_ref *parent_ref,
3424 const bool is_orphan)
9f03740a 3425{
f959492f 3426 int ret = 0;
9f03740a
FDBM
3427 u64 ino = parent_ref->dir;
3428 u64 parent_ino_before, parent_ino_after;
9f03740a
FDBM
3429 struct fs_path *path_before = NULL;
3430 struct fs_path *path_after = NULL;
3431 int len1, len2;
9f03740a
FDBM
3432
3433 path_after = fs_path_alloc();
f959492f
FM
3434 path_before = fs_path_alloc();
3435 if (!path_after || !path_before) {
9f03740a
FDBM
3436 ret = -ENOMEM;
3437 goto out;
3438 }
3439
bfa7e1f8 3440 /*
f959492f
FM
3441 * Our current directory inode may not yet be renamed/moved because some
3442 * ancestor (immediate or not) has to be renamed/moved first. So find if
3443 * such ancestor exists and make sure our own rename/move happens after
80aa6027
FM
3444 * that ancestor is processed to avoid path build infinite loops (done
3445 * at get_cur_path()).
bfa7e1f8 3446 */
f959492f
FM
3447 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3448 if (is_waiting_for_move(sctx, ino)) {
80aa6027
FM
3449 /*
3450 * If the current inode is an ancestor of ino in the
3451 * parent root, we need to delay the rename of the
3452 * current inode, otherwise don't delayed the rename
3453 * because we can end up with a circular dependency
3454 * of renames, resulting in some directories never
3455 * getting the respective rename operations issued in
3456 * the send stream or getting into infinite path build
3457 * loops.
3458 */
3459 ret = is_ancestor(sctx->parent_root,
3460 sctx->cur_ino, sctx->cur_inode_gen,
3461 ino, path_before);
f959492f
FM
3462 break;
3463 }
bfa7e1f8
FM
3464
3465 fs_path_reset(path_before);
3466 fs_path_reset(path_after);
3467
3468 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
f959492f 3469 NULL, path_after);
bfa7e1f8
FM
3470 if (ret < 0)
3471 goto out;
3472 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3473 NULL, path_before);
f959492f 3474 if (ret < 0 && ret != -ENOENT) {
bfa7e1f8 3475 goto out;
f959492f 3476 } else if (ret == -ENOENT) {
bf8e8ca6 3477 ret = 0;
f959492f 3478 break;
bfa7e1f8
FM
3479 }
3480
3481 len1 = fs_path_len(path_before);
3482 len2 = fs_path_len(path_after);
f959492f
FM
3483 if (ino > sctx->cur_ino &&
3484 (parent_ino_before != parent_ino_after || len1 != len2 ||
3485 memcmp(path_before->start, path_after->start, len1))) {
bfa7e1f8 3486 ret = 1;
f959492f 3487 break;
bfa7e1f8 3488 }
bfa7e1f8 3489 ino = parent_ino_after;
bfa7e1f8
FM
3490 }
3491
9f03740a
FDBM
3492out:
3493 fs_path_free(path_before);
3494 fs_path_free(path_after);
3495
f959492f
FM
3496 if (ret == 1) {
3497 ret = add_pending_dir_move(sctx,
3498 sctx->cur_ino,
3499 sctx->cur_inode_gen,
3500 ino,
3501 &sctx->new_refs,
84471e24 3502 &sctx->deleted_refs,
8b191a68 3503 is_orphan);
f959492f
FM
3504 if (!ret)
3505 ret = 1;
3506 }
3507
9f03740a
FDBM
3508 return ret;
3509}
3510
31db9f7c
AB
3511/*
3512 * This does all the move/link/unlink/rmdir magic.
3513 */
9f03740a 3514static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
31db9f7c
AB
3515{
3516 int ret = 0;
3517 struct recorded_ref *cur;
1f4692da 3518 struct recorded_ref *cur2;
ba5e8f2e 3519 struct list_head check_dirs;
31db9f7c 3520 struct fs_path *valid_path = NULL;
b24baf69 3521 u64 ow_inode = 0;
31db9f7c
AB
3522 u64 ow_gen;
3523 int did_overwrite = 0;
3524 int is_orphan = 0;
29d6d30f 3525 u64 last_dir_ino_rm = 0;
84471e24 3526 bool can_rename = true;
31db9f7c
AB
3527
3528verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3529
6d85ed05
AB
3530 /*
3531 * This should never happen as the root dir always has the same ref
3532 * which is always '..'
3533 */
3534 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
ba5e8f2e 3535 INIT_LIST_HEAD(&check_dirs);
6d85ed05 3536
924794c9 3537 valid_path = fs_path_alloc();
31db9f7c
AB
3538 if (!valid_path) {
3539 ret = -ENOMEM;
3540 goto out;
3541 }
3542
31db9f7c
AB
3543 /*
3544 * First, check if the first ref of the current inode was overwritten
3545 * before. If yes, we know that the current inode was already orphanized
3546 * and thus use the orphan name. If not, we can use get_cur_path to
3547 * get the path of the first ref as it would like while receiving at
3548 * this point in time.
3549 * New inodes are always orphan at the beginning, so force to use the
3550 * orphan name in this case.
3551 * The first ref is stored in valid_path and will be updated if it
3552 * gets moved around.
3553 */
3554 if (!sctx->cur_inode_new) {
3555 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3556 sctx->cur_inode_gen);
3557 if (ret < 0)
3558 goto out;
3559 if (ret)
3560 did_overwrite = 1;
3561 }
3562 if (sctx->cur_inode_new || did_overwrite) {
3563 ret = gen_unique_name(sctx, sctx->cur_ino,
3564 sctx->cur_inode_gen, valid_path);
3565 if (ret < 0)
3566 goto out;
3567 is_orphan = 1;
3568 } else {
3569 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3570 valid_path);
3571 if (ret < 0)
3572 goto out;
3573 }
3574
3575 list_for_each_entry(cur, &sctx->new_refs, list) {
1f4692da
AB
3576 /*
3577 * We may have refs where the parent directory does not exist
3578 * yet. This happens if the parent directories inum is higher
3579 * the the current inum. To handle this case, we create the
3580 * parent directory out of order. But we need to check if this
3581 * did already happen before due to other refs in the same dir.
3582 */
3583 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3584 if (ret < 0)
3585 goto out;
3586 if (ret == inode_state_will_create) {
3587 ret = 0;
3588 /*
3589 * First check if any of the current inodes refs did
3590 * already create the dir.
3591 */
3592 list_for_each_entry(cur2, &sctx->new_refs, list) {
3593 if (cur == cur2)
3594 break;
3595 if (cur2->dir == cur->dir) {
3596 ret = 1;
3597 break;
3598 }
3599 }
3600
3601 /*
3602 * If that did not happen, check if a previous inode
3603 * did already create the dir.
3604 */
3605 if (!ret)
3606 ret = did_create_dir(sctx, cur->dir);
3607 if (ret < 0)
3608 goto out;
3609 if (!ret) {
3610 ret = send_create_inode(sctx, cur->dir);
3611 if (ret < 0)
3612 goto out;
3613 }
3614 }
3615
31db9f7c
AB
3616 /*
3617 * Check if this new ref would overwrite the first ref of
3618 * another unprocessed inode. If yes, orphanize the
3619 * overwritten inode. If we find an overwritten ref that is
3620 * not the first ref, simply unlink it.
3621 */
3622 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3623 cur->name, cur->name_len,
3624 &ow_inode, &ow_gen);
3625 if (ret < 0)
3626 goto out;
3627 if (ret) {
924794c9
TI
3628 ret = is_first_ref(sctx->parent_root,
3629 ow_inode, cur->dir, cur->name,
3630 cur->name_len);
31db9f7c
AB
3631 if (ret < 0)
3632 goto out;
3633 if (ret) {
8996a48c
FM
3634 struct name_cache_entry *nce;
3635
31db9f7c
AB
3636 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3637 cur->full_path);
3638 if (ret < 0)
3639 goto out;
8996a48c
FM
3640 /*
3641 * Make sure we clear our orphanized inode's
3642 * name from the name cache. This is because the
3643 * inode ow_inode might be an ancestor of some
3644 * other inode that will be orphanized as well
3645 * later and has an inode number greater than
3646 * sctx->send_progress. We need to prevent
3647 * future name lookups from using the old name
3648 * and get instead the orphan name.
3649 */
3650 nce = name_cache_search(sctx, ow_inode, ow_gen);
3651 if (nce) {
3652 name_cache_delete(sctx, nce);
3653 kfree(nce);
3654 }
31db9f7c
AB
3655 } else {
3656 ret = send_unlink(sctx, cur->full_path);
3657 if (ret < 0)
3658 goto out;
3659 }
3660 }
3661
84471e24
FM
3662 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3663 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3664 if (ret < 0)
3665 goto out;
3666 if (ret == 1) {
3667 can_rename = false;
3668 *pending_move = 1;
3669 }
3670 }
3671
8b191a68
FM
3672 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3673 can_rename) {
3674 ret = wait_for_parent_move(sctx, cur, is_orphan);
3675 if (ret < 0)
3676 goto out;
3677 if (ret == 1) {
3678 can_rename = false;
3679 *pending_move = 1;
3680 }
3681 }
3682
31db9f7c
AB
3683 /*
3684 * link/move the ref to the new place. If we have an orphan
3685 * inode, move it and update valid_path. If not, link or move
3686 * it depending on the inode mode.
3687 */
84471e24 3688 if (is_orphan && can_rename) {
31db9f7c
AB
3689 ret = send_rename(sctx, valid_path, cur->full_path);
3690 if (ret < 0)
3691 goto out;
3692 is_orphan = 0;
3693 ret = fs_path_copy(valid_path, cur->full_path);
3694 if (ret < 0)
3695 goto out;
84471e24 3696 } else if (can_rename) {
31db9f7c
AB
3697 if (S_ISDIR(sctx->cur_inode_mode)) {
3698 /*
3699 * Dirs can't be linked, so move it. For moved
3700 * dirs, we always have one new and one deleted
3701 * ref. The deleted ref is ignored later.
3702 */
8b191a68
FM
3703 ret = send_rename(sctx, valid_path,
3704 cur->full_path);
3705 if (!ret)
3706 ret = fs_path_copy(valid_path,
3707 cur->full_path);
31db9f7c
AB
3708 if (ret < 0)
3709 goto out;
3710 } else {
3711 ret = send_link(sctx, cur->full_path,
3712 valid_path);
3713 if (ret < 0)
3714 goto out;
3715 }
3716 }
ba5e8f2e 3717 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3718 if (ret < 0)
3719 goto out;
3720 }
3721
3722 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3723 /*
3724 * Check if we can already rmdir the directory. If not,
3725 * orphanize it. For every dir item inside that gets deleted
3726 * later, we do this check again and rmdir it then if possible.
3727 * See the use of check_dirs for more details.
3728 */
9dc44214
FM
3729 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3730 sctx->cur_ino);
31db9f7c
AB
3731 if (ret < 0)
3732 goto out;
3733 if (ret) {
3734 ret = send_rmdir(sctx, valid_path);
3735 if (ret < 0)
3736 goto out;
3737 } else if (!is_orphan) {
3738 ret = orphanize_inode(sctx, sctx->cur_ino,
3739 sctx->cur_inode_gen, valid_path);
3740 if (ret < 0)
3741 goto out;
3742 is_orphan = 1;
3743 }
3744
3745 list_for_each_entry(cur, &sctx->deleted_refs, list) {
ba5e8f2e 3746 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3747 if (ret < 0)
3748 goto out;
3749 }
ccf1626b
AB
3750 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3751 !list_empty(&sctx->deleted_refs)) {
3752 /*
3753 * We have a moved dir. Add the old parent to check_dirs
3754 */
3755 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3756 list);
ba5e8f2e 3757 ret = dup_ref(cur, &check_dirs);
ccf1626b
AB
3758 if (ret < 0)
3759 goto out;
31db9f7c
AB
3760 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3761 /*
3762 * We have a non dir inode. Go through all deleted refs and
3763 * unlink them if they were not already overwritten by other
3764 * inodes.
3765 */
3766 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3767 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3768 sctx->cur_ino, sctx->cur_inode_gen,
3769 cur->name, cur->name_len);
3770 if (ret < 0)
3771 goto out;
3772 if (!ret) {
1f4692da
AB
3773 ret = send_unlink(sctx, cur->full_path);
3774 if (ret < 0)
3775 goto out;
31db9f7c 3776 }
ba5e8f2e 3777 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3778 if (ret < 0)
3779 goto out;
3780 }
31db9f7c
AB
3781 /*
3782 * If the inode is still orphan, unlink the orphan. This may
3783 * happen when a previous inode did overwrite the first ref
3784 * of this inode and no new refs were added for the current
766702ef
AB
3785 * inode. Unlinking does not mean that the inode is deleted in
3786 * all cases. There may still be links to this inode in other
3787 * places.
31db9f7c 3788 */
1f4692da 3789 if (is_orphan) {
31db9f7c
AB
3790 ret = send_unlink(sctx, valid_path);
3791 if (ret < 0)
3792 goto out;
3793 }
3794 }
3795
3796 /*
3797 * We did collect all parent dirs where cur_inode was once located. We
3798 * now go through all these dirs and check if they are pending for
3799 * deletion and if it's finally possible to perform the rmdir now.
3800 * We also update the inode stats of the parent dirs here.
3801 */
ba5e8f2e 3802 list_for_each_entry(cur, &check_dirs, list) {
766702ef
AB
3803 /*
3804 * In case we had refs into dirs that were not processed yet,
3805 * we don't need to do the utime and rmdir logic for these dirs.
3806 * The dir will be processed later.
3807 */
ba5e8f2e 3808 if (cur->dir > sctx->cur_ino)
31db9f7c
AB
3809 continue;
3810
ba5e8f2e 3811 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
3812 if (ret < 0)
3813 goto out;
3814
3815 if (ret == inode_state_did_create ||
3816 ret == inode_state_no_change) {
3817 /* TODO delayed utimes */
ba5e8f2e 3818 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
3819 if (ret < 0)
3820 goto out;
29d6d30f
FM
3821 } else if (ret == inode_state_did_delete &&
3822 cur->dir != last_dir_ino_rm) {
9dc44214
FM
3823 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3824 sctx->cur_ino);
31db9f7c
AB
3825 if (ret < 0)
3826 goto out;
3827 if (ret) {
ba5e8f2e
JB
3828 ret = get_cur_path(sctx, cur->dir,
3829 cur->dir_gen, valid_path);
31db9f7c
AB
3830 if (ret < 0)
3831 goto out;
3832 ret = send_rmdir(sctx, valid_path);
3833 if (ret < 0)
3834 goto out;
29d6d30f 3835 last_dir_ino_rm = cur->dir;
31db9f7c
AB
3836 }
3837 }
3838 }
3839
31db9f7c
AB
3840 ret = 0;
3841
3842out:
ba5e8f2e 3843 __free_recorded_refs(&check_dirs);
31db9f7c 3844 free_recorded_refs(sctx);
924794c9 3845 fs_path_free(valid_path);
31db9f7c
AB
3846 return ret;
3847}
3848
a4d96d62
LB
3849static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3850 struct fs_path *name, void *ctx, struct list_head *refs)
31db9f7c
AB
3851{
3852 int ret = 0;
3853 struct send_ctx *sctx = ctx;
3854 struct fs_path *p;
3855 u64 gen;
3856
924794c9 3857 p = fs_path_alloc();
31db9f7c
AB
3858 if (!p)
3859 return -ENOMEM;
3860
a4d96d62 3861 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
85a7b33b 3862 NULL, NULL);
31db9f7c
AB
3863 if (ret < 0)
3864 goto out;
3865
31db9f7c
AB
3866 ret = get_cur_path(sctx, dir, gen, p);
3867 if (ret < 0)
3868 goto out;
3869 ret = fs_path_add_path(p, name);
3870 if (ret < 0)
3871 goto out;
3872
a4d96d62 3873 ret = __record_ref(refs, dir, gen, p);
31db9f7c
AB
3874
3875out:
3876 if (ret)
924794c9 3877 fs_path_free(p);
31db9f7c
AB
3878 return ret;
3879}
3880
a4d96d62
LB
3881static int __record_new_ref(int num, u64 dir, int index,
3882 struct fs_path *name,
3883 void *ctx)
3884{
3885 struct send_ctx *sctx = ctx;
3886 return record_ref(sctx->send_root, num, dir, index, name,
3887 ctx, &sctx->new_refs);
3888}
3889
3890
31db9f7c
AB
3891static int __record_deleted_ref(int num, u64 dir, int index,
3892 struct fs_path *name,
3893 void *ctx)
3894{
31db9f7c 3895 struct send_ctx *sctx = ctx;
a4d96d62
LB
3896 return record_ref(sctx->parent_root, num, dir, index, name,
3897 ctx, &sctx->deleted_refs);
31db9f7c
AB
3898}
3899
3900static int record_new_ref(struct send_ctx *sctx)
3901{
3902 int ret;
3903
924794c9
TI
3904 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3905 sctx->cmp_key, 0, __record_new_ref, sctx);
31db9f7c
AB
3906 if (ret < 0)
3907 goto out;
3908 ret = 0;
3909
3910out:
3911 return ret;
3912}
3913
3914static int record_deleted_ref(struct send_ctx *sctx)
3915{
3916 int ret;
3917
924794c9
TI
3918 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3919 sctx->cmp_key, 0, __record_deleted_ref, sctx);
31db9f7c
AB
3920 if (ret < 0)
3921 goto out;
3922 ret = 0;
3923
3924out:
3925 return ret;
3926}
3927
3928struct find_ref_ctx {
3929 u64 dir;
ba5e8f2e
JB
3930 u64 dir_gen;
3931 struct btrfs_root *root;
31db9f7c
AB
3932 struct fs_path *name;
3933 int found_idx;
3934};
3935
3936static int __find_iref(int num, u64 dir, int index,
3937 struct fs_path *name,
3938 void *ctx_)
3939{
3940 struct find_ref_ctx *ctx = ctx_;
ba5e8f2e
JB
3941 u64 dir_gen;
3942 int ret;
31db9f7c
AB
3943
3944 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3945 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
ba5e8f2e
JB
3946 /*
3947 * To avoid doing extra lookups we'll only do this if everything
3948 * else matches.
3949 */
3950 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3951 NULL, NULL, NULL);
3952 if (ret)
3953 return ret;
3954 if (dir_gen != ctx->dir_gen)
3955 return 0;
31db9f7c
AB
3956 ctx->found_idx = num;
3957 return 1;
3958 }
3959 return 0;
3960}
3961
924794c9 3962static int find_iref(struct btrfs_root *root,
31db9f7c
AB
3963 struct btrfs_path *path,
3964 struct btrfs_key *key,
ba5e8f2e 3965 u64 dir, u64 dir_gen, struct fs_path *name)
31db9f7c
AB
3966{
3967 int ret;
3968 struct find_ref_ctx ctx;
3969
3970 ctx.dir = dir;
3971 ctx.name = name;
ba5e8f2e 3972 ctx.dir_gen = dir_gen;
31db9f7c 3973 ctx.found_idx = -1;
ba5e8f2e 3974 ctx.root = root;
31db9f7c 3975
924794c9 3976 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
31db9f7c
AB
3977 if (ret < 0)
3978 return ret;
3979
3980 if (ctx.found_idx == -1)
3981 return -ENOENT;
3982
3983 return ctx.found_idx;
3984}
3985
3986static int __record_changed_new_ref(int num, u64 dir, int index,
3987 struct fs_path *name,
3988 void *ctx)
3989{
ba5e8f2e 3990 u64 dir_gen;
31db9f7c
AB
3991 int ret;
3992 struct send_ctx *sctx = ctx;
3993
ba5e8f2e
JB
3994 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3995 NULL, NULL, NULL);
3996 if (ret)
3997 return ret;
3998
924794c9 3999 ret = find_iref(sctx->parent_root, sctx->right_path,
ba5e8f2e 4000 sctx->cmp_key, dir, dir_gen, name);
31db9f7c
AB
4001 if (ret == -ENOENT)
4002 ret = __record_new_ref(num, dir, index, name, sctx);
4003 else if (ret > 0)
4004 ret = 0;
4005
4006 return ret;
4007}
4008
4009static int __record_changed_deleted_ref(int num, u64 dir, int index,
4010 struct fs_path *name,
4011 void *ctx)
4012{
ba5e8f2e 4013 u64 dir_gen;
31db9f7c
AB
4014 int ret;
4015 struct send_ctx *sctx = ctx;
4016
ba5e8f2e
JB
4017 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4018 NULL, NULL, NULL);
4019 if (ret)
4020 return ret;
4021
924794c9 4022 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
ba5e8f2e 4023 dir, dir_gen, name);
31db9f7c
AB
4024 if (ret == -ENOENT)
4025 ret = __record_deleted_ref(num, dir, index, name, sctx);
4026 else if (ret > 0)
4027 ret = 0;
4028
4029 return ret;
4030}
4031
4032static int record_changed_ref(struct send_ctx *sctx)
4033{
4034 int ret = 0;
4035
924794c9 4036 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
31db9f7c
AB
4037 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4038 if (ret < 0)
4039 goto out;
924794c9 4040 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
31db9f7c
AB
4041 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4042 if (ret < 0)
4043 goto out;
4044 ret = 0;
4045
4046out:
4047 return ret;
4048}
4049
4050/*
4051 * Record and process all refs at once. Needed when an inode changes the
4052 * generation number, which means that it was deleted and recreated.
4053 */
4054static int process_all_refs(struct send_ctx *sctx,
4055 enum btrfs_compare_tree_result cmd)
4056{
4057 int ret;
4058 struct btrfs_root *root;
4059 struct btrfs_path *path;
4060 struct btrfs_key key;
4061 struct btrfs_key found_key;
4062 struct extent_buffer *eb;
4063 int slot;
4064 iterate_inode_ref_t cb;
9f03740a 4065 int pending_move = 0;
31db9f7c
AB
4066
4067 path = alloc_path_for_send();
4068 if (!path)
4069 return -ENOMEM;
4070
4071 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4072 root = sctx->send_root;
4073 cb = __record_new_ref;
4074 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4075 root = sctx->parent_root;
4076 cb = __record_deleted_ref;
4077 } else {
4d1a63b2
DS
4078 btrfs_err(sctx->send_root->fs_info,
4079 "Wrong command %d in process_all_refs", cmd);
4080 ret = -EINVAL;
4081 goto out;
31db9f7c
AB
4082 }
4083
4084 key.objectid = sctx->cmp_key->objectid;
4085 key.type = BTRFS_INODE_REF_KEY;
4086 key.offset = 0;
dff6d0ad
FDBM
4087 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4088 if (ret < 0)
4089 goto out;
31db9f7c 4090
dff6d0ad 4091 while (1) {
31db9f7c
AB
4092 eb = path->nodes[0];
4093 slot = path->slots[0];
dff6d0ad
FDBM
4094 if (slot >= btrfs_header_nritems(eb)) {
4095 ret = btrfs_next_leaf(root, path);
4096 if (ret < 0)
4097 goto out;
4098 else if (ret > 0)
4099 break;
4100 continue;
4101 }
4102
31db9f7c
AB
4103 btrfs_item_key_to_cpu(eb, &found_key, slot);
4104
4105 if (found_key.objectid != key.objectid ||
96b5bd77
JS
4106 (found_key.type != BTRFS_INODE_REF_KEY &&
4107 found_key.type != BTRFS_INODE_EXTREF_KEY))
31db9f7c 4108 break;
31db9f7c 4109
924794c9 4110 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
31db9f7c
AB
4111 if (ret < 0)
4112 goto out;
4113
dff6d0ad 4114 path->slots[0]++;
31db9f7c 4115 }
e938c8ad 4116 btrfs_release_path(path);
31db9f7c 4117
9f03740a
FDBM
4118 ret = process_recorded_refs(sctx, &pending_move);
4119 /* Only applicable to an incremental send. */
4120 ASSERT(pending_move == 0);
31db9f7c
AB
4121
4122out:
4123 btrfs_free_path(path);
4124 return ret;
4125}
4126
4127static int send_set_xattr(struct send_ctx *sctx,
4128 struct fs_path *path,
4129 const char *name, int name_len,
4130 const char *data, int data_len)
4131{
4132 int ret = 0;
4133
4134 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4135 if (ret < 0)
4136 goto out;
4137
4138 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4139 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4140 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4141
4142 ret = send_cmd(sctx);
4143
4144tlv_put_failure:
4145out:
4146 return ret;
4147}
4148
4149static int send_remove_xattr(struct send_ctx *sctx,
4150 struct fs_path *path,
4151 const char *name, int name_len)
4152{
4153 int ret = 0;
4154
4155 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4156 if (ret < 0)
4157 goto out;
4158
4159 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4160 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4161
4162 ret = send_cmd(sctx);
4163
4164tlv_put_failure:
4165out:
4166 return ret;
4167}
4168
4169static int __process_new_xattr(int num, struct btrfs_key *di_key,
4170 const char *name, int name_len,
4171 const char *data, int data_len,
4172 u8 type, void *ctx)
4173{
4174 int ret;
4175 struct send_ctx *sctx = ctx;
4176 struct fs_path *p;
4177 posix_acl_xattr_header dummy_acl;
4178
924794c9 4179 p = fs_path_alloc();
31db9f7c
AB
4180 if (!p)
4181 return -ENOMEM;
4182
4183 /*
4184 * This hack is needed because empty acl's are stored as zero byte
4185 * data in xattrs. Problem with that is, that receiving these zero byte
4186 * acl's will fail later. To fix this, we send a dummy acl list that
4187 * only contains the version number and no entries.
4188 */
4189 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4190 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4191 if (data_len == 0) {
4192 dummy_acl.a_version =
4193 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4194 data = (char *)&dummy_acl;
4195 data_len = sizeof(dummy_acl);
4196 }
4197 }
4198
4199 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4200 if (ret < 0)
4201 goto out;
4202
4203 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4204
4205out:
924794c9 4206 fs_path_free(p);
31db9f7c
AB
4207 return ret;
4208}
4209
4210static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4211 const char *name, int name_len,
4212 const char *data, int data_len,
4213 u8 type, void *ctx)
4214{
4215 int ret;
4216 struct send_ctx *sctx = ctx;
4217 struct fs_path *p;
4218
924794c9 4219 p = fs_path_alloc();
31db9f7c
AB
4220 if (!p)
4221 return -ENOMEM;
4222
4223 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4224 if (ret < 0)
4225 goto out;
4226
4227 ret = send_remove_xattr(sctx, p, name, name_len);
4228
4229out:
924794c9 4230 fs_path_free(p);
31db9f7c
AB
4231 return ret;
4232}
4233
4234static int process_new_xattr(struct send_ctx *sctx)
4235{
4236 int ret = 0;
4237
924794c9
TI
4238 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4239 sctx->cmp_key, __process_new_xattr, sctx);
31db9f7c
AB
4240
4241 return ret;
4242}
4243
4244static int process_deleted_xattr(struct send_ctx *sctx)
4245{
4246 int ret;
4247
924794c9
TI
4248 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4249 sctx->cmp_key, __process_deleted_xattr, sctx);
31db9f7c
AB
4250
4251 return ret;
4252}
4253
4254struct find_xattr_ctx {
4255 const char *name;
4256 int name_len;
4257 int found_idx;
4258 char *found_data;
4259 int found_data_len;
4260};
4261
4262static int __find_xattr(int num, struct btrfs_key *di_key,
4263 const char *name, int name_len,
4264 const char *data, int data_len,
4265 u8 type, void *vctx)
4266{
4267 struct find_xattr_ctx *ctx = vctx;
4268
4269 if (name_len == ctx->name_len &&
4270 strncmp(name, ctx->name, name_len) == 0) {
4271 ctx->found_idx = num;
4272 ctx->found_data_len = data_len;
a5959bc0 4273 ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
31db9f7c
AB
4274 if (!ctx->found_data)
4275 return -ENOMEM;
31db9f7c
AB
4276 return 1;
4277 }
4278 return 0;
4279}
4280
924794c9 4281static int find_xattr(struct btrfs_root *root,
31db9f7c
AB
4282 struct btrfs_path *path,
4283 struct btrfs_key *key,
4284 const char *name, int name_len,
4285 char **data, int *data_len)
4286{
4287 int ret;
4288 struct find_xattr_ctx ctx;
4289
4290 ctx.name = name;
4291 ctx.name_len = name_len;
4292 ctx.found_idx = -1;
4293 ctx.found_data = NULL;
4294 ctx.found_data_len = 0;
4295
924794c9 4296 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
31db9f7c
AB
4297 if (ret < 0)
4298 return ret;
4299
4300 if (ctx.found_idx == -1)
4301 return -ENOENT;
4302 if (data) {
4303 *data = ctx.found_data;
4304 *data_len = ctx.found_data_len;
4305 } else {
4306 kfree(ctx.found_data);
4307 }
4308 return ctx.found_idx;
4309}
4310
4311
4312static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4313 const char *name, int name_len,
4314 const char *data, int data_len,
4315 u8 type, void *ctx)
4316{
4317 int ret;
4318 struct send_ctx *sctx = ctx;
4319 char *found_data = NULL;
4320 int found_data_len = 0;
31db9f7c 4321
924794c9
TI
4322 ret = find_xattr(sctx->parent_root, sctx->right_path,
4323 sctx->cmp_key, name, name_len, &found_data,
4324 &found_data_len);
31db9f7c
AB
4325 if (ret == -ENOENT) {
4326 ret = __process_new_xattr(num, di_key, name, name_len, data,
4327 data_len, type, ctx);
4328 } else if (ret >= 0) {
4329 if (data_len != found_data_len ||
4330 memcmp(data, found_data, data_len)) {
4331 ret = __process_new_xattr(num, di_key, name, name_len,
4332 data, data_len, type, ctx);
4333 } else {
4334 ret = 0;
4335 }
4336 }
4337
4338 kfree(found_data);
31db9f7c
AB
4339 return ret;
4340}
4341
4342static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4343 const char *name, int name_len,
4344 const char *data, int data_len,
4345 u8 type, void *ctx)
4346{
4347 int ret;
4348 struct send_ctx *sctx = ctx;
4349
924794c9
TI
4350 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4351 name, name_len, NULL, NULL);
31db9f7c
AB
4352 if (ret == -ENOENT)
4353 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4354 data_len, type, ctx);
4355 else if (ret >= 0)
4356 ret = 0;
4357
4358 return ret;
4359}
4360
4361static int process_changed_xattr(struct send_ctx *sctx)
4362{
4363 int ret = 0;
4364
924794c9 4365 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
31db9f7c
AB
4366 sctx->cmp_key, __process_changed_new_xattr, sctx);
4367 if (ret < 0)
4368 goto out;
924794c9 4369 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
31db9f7c
AB
4370 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4371
4372out:
4373 return ret;
4374}
4375
4376static int process_all_new_xattrs(struct send_ctx *sctx)
4377{
4378 int ret;
4379 struct btrfs_root *root;
4380 struct btrfs_path *path;
4381 struct btrfs_key key;
4382 struct btrfs_key found_key;
4383 struct extent_buffer *eb;
4384 int slot;
4385
4386 path = alloc_path_for_send();
4387 if (!path)
4388 return -ENOMEM;
4389
4390 root = sctx->send_root;
4391
4392 key.objectid = sctx->cmp_key->objectid;
4393 key.type = BTRFS_XATTR_ITEM_KEY;
4394 key.offset = 0;
dff6d0ad
FDBM
4395 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4396 if (ret < 0)
4397 goto out;
31db9f7c 4398
dff6d0ad 4399 while (1) {
31db9f7c
AB
4400 eb = path->nodes[0];
4401 slot = path->slots[0];
dff6d0ad
FDBM
4402 if (slot >= btrfs_header_nritems(eb)) {
4403 ret = btrfs_next_leaf(root, path);
4404 if (ret < 0) {
4405 goto out;
4406 } else if (ret > 0) {
4407 ret = 0;
4408 break;
4409 }
4410 continue;
4411 }
31db9f7c 4412
dff6d0ad 4413 btrfs_item_key_to_cpu(eb, &found_key, slot);
31db9f7c
AB
4414 if (found_key.objectid != key.objectid ||
4415 found_key.type != key.type) {
4416 ret = 0;
4417 goto out;
4418 }
4419
924794c9
TI
4420 ret = iterate_dir_item(root, path, &found_key,
4421 __process_new_xattr, sctx);
31db9f7c
AB
4422 if (ret < 0)
4423 goto out;
4424
dff6d0ad 4425 path->slots[0]++;
31db9f7c
AB
4426 }
4427
4428out:
4429 btrfs_free_path(path);
4430 return ret;
4431}
4432
ed259095
JB
4433static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4434{
4435 struct btrfs_root *root = sctx->send_root;
4436 struct btrfs_fs_info *fs_info = root->fs_info;
4437 struct inode *inode;
4438 struct page *page;
4439 char *addr;
4440 struct btrfs_key key;
4441 pgoff_t index = offset >> PAGE_CACHE_SHIFT;
4442 pgoff_t last_index;
4443 unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
4444 ssize_t ret = 0;
4445
4446 key.objectid = sctx->cur_ino;
4447 key.type = BTRFS_INODE_ITEM_KEY;
4448 key.offset = 0;
4449
4450 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4451 if (IS_ERR(inode))
4452 return PTR_ERR(inode);
4453
4454 if (offset + len > i_size_read(inode)) {
4455 if (offset > i_size_read(inode))
4456 len = 0;
4457 else
4458 len = offset - i_size_read(inode);
4459 }
4460 if (len == 0)
4461 goto out;
4462
4463 last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
2131bcd3
LB
4464
4465 /* initial readahead */
4466 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4467 file_ra_state_init(&sctx->ra, inode->i_mapping);
4468 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4469 last_index - index + 1);
4470
ed259095
JB
4471 while (index <= last_index) {
4472 unsigned cur_len = min_t(unsigned, len,
4473 PAGE_CACHE_SIZE - pg_offset);
4474 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4475 if (!page) {
4476 ret = -ENOMEM;
4477 break;
4478 }
4479
4480 if (!PageUptodate(page)) {
4481 btrfs_readpage(NULL, page);
4482 lock_page(page);
4483 if (!PageUptodate(page)) {
4484 unlock_page(page);
4485 page_cache_release(page);
4486 ret = -EIO;
4487 break;
4488 }
4489 }
4490
4491 addr = kmap(page);
4492 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4493 kunmap(page);
4494 unlock_page(page);
4495 page_cache_release(page);
4496 index++;
4497 pg_offset = 0;
4498 len -= cur_len;
4499 ret += cur_len;
4500 }
4501out:
4502 iput(inode);
4503 return ret;
4504}
4505
31db9f7c
AB
4506/*
4507 * Read some bytes from the current inode/file and send a write command to
4508 * user space.
4509 */
4510static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4511{
4512 int ret = 0;
4513 struct fs_path *p;
ed259095 4514 ssize_t num_read = 0;
31db9f7c 4515
924794c9 4516 p = fs_path_alloc();
31db9f7c
AB
4517 if (!p)
4518 return -ENOMEM;
4519
31db9f7c
AB
4520verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4521
ed259095
JB
4522 num_read = fill_read_buf(sctx, offset, len);
4523 if (num_read <= 0) {
4524 if (num_read < 0)
4525 ret = num_read;
31db9f7c 4526 goto out;
ed259095 4527 }
31db9f7c
AB
4528
4529 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4530 if (ret < 0)
4531 goto out;
4532
4533 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4534 if (ret < 0)
4535 goto out;
4536
4537 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4538 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
e938c8ad 4539 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
31db9f7c
AB
4540
4541 ret = send_cmd(sctx);
4542
4543tlv_put_failure:
4544out:
924794c9 4545 fs_path_free(p);
31db9f7c
AB
4546 if (ret < 0)
4547 return ret;
e938c8ad 4548 return num_read;
31db9f7c
AB
4549}
4550
4551/*
4552 * Send a clone command to user space.
4553 */
4554static int send_clone(struct send_ctx *sctx,
4555 u64 offset, u32 len,
4556 struct clone_root *clone_root)
4557{
4558 int ret = 0;
31db9f7c
AB
4559 struct fs_path *p;
4560 u64 gen;
4561
4562verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4563 "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4564 clone_root->root->objectid, clone_root->ino,
4565 clone_root->offset);
4566
924794c9 4567 p = fs_path_alloc();
31db9f7c
AB
4568 if (!p)
4569 return -ENOMEM;
4570
4571 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4572 if (ret < 0)
4573 goto out;
4574
4575 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4576 if (ret < 0)
4577 goto out;
4578
4579 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4580 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4581 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4582
e938c8ad 4583 if (clone_root->root == sctx->send_root) {
31db9f7c 4584 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
85a7b33b 4585 &gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
4586 if (ret < 0)
4587 goto out;
4588 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4589 } else {
924794c9 4590 ret = get_inode_path(clone_root->root, clone_root->ino, p);
31db9f7c
AB
4591 }
4592 if (ret < 0)
4593 goto out;
4594
37b8d27d
JB
4595 /*
4596 * If the parent we're using has a received_uuid set then use that as
4597 * our clone source as that is what we will look for when doing a
4598 * receive.
4599 *
4600 * This covers the case that we create a snapshot off of a received
4601 * subvolume and then use that as the parent and try to receive on a
4602 * different host.
4603 */
4604 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4605 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4606 clone_root->root->root_item.received_uuid);
4607 else
4608 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4609 clone_root->root->root_item.uuid);
31db9f7c 4610 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5a0f4e2c 4611 le64_to_cpu(clone_root->root->root_item.ctransid));
31db9f7c
AB
4612 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4613 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4614 clone_root->offset);
4615
4616 ret = send_cmd(sctx);
4617
4618tlv_put_failure:
4619out:
924794c9 4620 fs_path_free(p);
31db9f7c
AB
4621 return ret;
4622}
4623
cb95e7bf
MF
4624/*
4625 * Send an update extent command to user space.
4626 */
4627static int send_update_extent(struct send_ctx *sctx,
4628 u64 offset, u32 len)
4629{
4630 int ret = 0;
4631 struct fs_path *p;
4632
924794c9 4633 p = fs_path_alloc();
cb95e7bf
MF
4634 if (!p)
4635 return -ENOMEM;
4636
4637 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4638 if (ret < 0)
4639 goto out;
4640
4641 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4642 if (ret < 0)
4643 goto out;
4644
4645 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4646 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4647 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4648
4649 ret = send_cmd(sctx);
4650
4651tlv_put_failure:
4652out:
924794c9 4653 fs_path_free(p);
cb95e7bf
MF
4654 return ret;
4655}
4656
16e7549f
JB
4657static int send_hole(struct send_ctx *sctx, u64 end)
4658{
4659 struct fs_path *p = NULL;
4660 u64 offset = sctx->cur_inode_last_extent;
4661 u64 len;
4662 int ret = 0;
4663
4664 p = fs_path_alloc();
4665 if (!p)
4666 return -ENOMEM;
c715e155
FM
4667 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4668 if (ret < 0)
4669 goto tlv_put_failure;
16e7549f
JB
4670 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4671 while (offset < end) {
4672 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4673
4674 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
16e7549f
JB
4675 if (ret < 0)
4676 break;
4677 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4678 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4679 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4680 ret = send_cmd(sctx);
4681 if (ret < 0)
4682 break;
4683 offset += len;
4684 }
4685tlv_put_failure:
4686 fs_path_free(p);
4687 return ret;
4688}
4689
31db9f7c
AB
4690static int send_write_or_clone(struct send_ctx *sctx,
4691 struct btrfs_path *path,
4692 struct btrfs_key *key,
4693 struct clone_root *clone_root)
4694{
4695 int ret = 0;
4696 struct btrfs_file_extent_item *ei;
4697 u64 offset = key->offset;
4698 u64 pos = 0;
4699 u64 len;
4700 u32 l;
4701 u8 type;
28e5dd8f 4702 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
31db9f7c
AB
4703
4704 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4705 struct btrfs_file_extent_item);
4706 type = btrfs_file_extent_type(path->nodes[0], ei);
74dd17fb 4707 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
4708 len = btrfs_file_extent_inline_len(path->nodes[0],
4709 path->slots[0], ei);
74dd17fb
CM
4710 /*
4711 * it is possible the inline item won't cover the whole page,
4712 * but there may be items after this page. Make
4713 * sure to send the whole thing
4714 */
4715 len = PAGE_CACHE_ALIGN(len);
4716 } else {
31db9f7c 4717 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
74dd17fb 4718 }
31db9f7c
AB
4719
4720 if (offset + len > sctx->cur_inode_size)
4721 len = sctx->cur_inode_size - offset;
4722 if (len == 0) {
4723 ret = 0;
4724 goto out;
4725 }
4726
28e5dd8f 4727 if (clone_root && IS_ALIGNED(offset + len, bs)) {
cb95e7bf
MF
4728 ret = send_clone(sctx, offset, len, clone_root);
4729 } else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
4730 ret = send_update_extent(sctx, offset, len);
4731 } else {
31db9f7c
AB
4732 while (pos < len) {
4733 l = len - pos;
4734 if (l > BTRFS_SEND_READ_SIZE)
4735 l = BTRFS_SEND_READ_SIZE;
4736 ret = send_write(sctx, pos + offset, l);
4737 if (ret < 0)
4738 goto out;
4739 if (!ret)
4740 break;
4741 pos += ret;
4742 }
4743 ret = 0;
31db9f7c 4744 }
31db9f7c
AB
4745out:
4746 return ret;
4747}
4748
4749static int is_extent_unchanged(struct send_ctx *sctx,
4750 struct btrfs_path *left_path,
4751 struct btrfs_key *ekey)
4752{
4753 int ret = 0;
4754 struct btrfs_key key;
4755 struct btrfs_path *path = NULL;
4756 struct extent_buffer *eb;
4757 int slot;
4758 struct btrfs_key found_key;
4759 struct btrfs_file_extent_item *ei;
4760 u64 left_disknr;
4761 u64 right_disknr;
4762 u64 left_offset;
4763 u64 right_offset;
4764 u64 left_offset_fixed;
4765 u64 left_len;
4766 u64 right_len;
74dd17fb
CM
4767 u64 left_gen;
4768 u64 right_gen;
31db9f7c
AB
4769 u8 left_type;
4770 u8 right_type;
4771
4772 path = alloc_path_for_send();
4773 if (!path)
4774 return -ENOMEM;
4775
4776 eb = left_path->nodes[0];
4777 slot = left_path->slots[0];
31db9f7c
AB
4778 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4779 left_type = btrfs_file_extent_type(eb, ei);
31db9f7c
AB
4780
4781 if (left_type != BTRFS_FILE_EXTENT_REG) {
4782 ret = 0;
4783 goto out;
4784 }
74dd17fb
CM
4785 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4786 left_len = btrfs_file_extent_num_bytes(eb, ei);
4787 left_offset = btrfs_file_extent_offset(eb, ei);
4788 left_gen = btrfs_file_extent_generation(eb, ei);
31db9f7c
AB
4789
4790 /*
4791 * Following comments will refer to these graphics. L is the left
4792 * extents which we are checking at the moment. 1-8 are the right
4793 * extents that we iterate.
4794 *
4795 * |-----L-----|
4796 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4797 *
4798 * |-----L-----|
4799 * |--1--|-2b-|...(same as above)
4800 *
4801 * Alternative situation. Happens on files where extents got split.
4802 * |-----L-----|
4803 * |-----------7-----------|-6-|
4804 *
4805 * Alternative situation. Happens on files which got larger.
4806 * |-----L-----|
4807 * |-8-|
4808 * Nothing follows after 8.
4809 */
4810
4811 key.objectid = ekey->objectid;
4812 key.type = BTRFS_EXTENT_DATA_KEY;
4813 key.offset = ekey->offset;
4814 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4815 if (ret < 0)
4816 goto out;
4817 if (ret) {
4818 ret = 0;
4819 goto out;
4820 }
4821
4822 /*
4823 * Handle special case where the right side has no extents at all.
4824 */
4825 eb = path->nodes[0];
4826 slot = path->slots[0];
4827 btrfs_item_key_to_cpu(eb, &found_key, slot);
4828 if (found_key.objectid != key.objectid ||
4829 found_key.type != key.type) {
57cfd462
JB
4830 /* If we're a hole then just pretend nothing changed */
4831 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
4832 goto out;
4833 }
4834
4835 /*
4836 * We're now on 2a, 2b or 7.
4837 */
4838 key = found_key;
4839 while (key.offset < ekey->offset + left_len) {
4840 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4841 right_type = btrfs_file_extent_type(eb, ei);
31db9f7c
AB
4842 if (right_type != BTRFS_FILE_EXTENT_REG) {
4843 ret = 0;
4844 goto out;
4845 }
4846
007d31f7
JB
4847 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4848 right_len = btrfs_file_extent_num_bytes(eb, ei);
4849 right_offset = btrfs_file_extent_offset(eb, ei);
4850 right_gen = btrfs_file_extent_generation(eb, ei);
4851
31db9f7c
AB
4852 /*
4853 * Are we at extent 8? If yes, we know the extent is changed.
4854 * This may only happen on the first iteration.
4855 */
d8347fa4 4856 if (found_key.offset + right_len <= ekey->offset) {
57cfd462
JB
4857 /* If we're a hole just pretend nothing changed */
4858 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
4859 goto out;
4860 }
4861
4862 left_offset_fixed = left_offset;
4863 if (key.offset < ekey->offset) {
4864 /* Fix the right offset for 2a and 7. */
4865 right_offset += ekey->offset - key.offset;
4866 } else {
4867 /* Fix the left offset for all behind 2a and 2b */
4868 left_offset_fixed += key.offset - ekey->offset;
4869 }
4870
4871 /*
4872 * Check if we have the same extent.
4873 */
3954096d 4874 if (left_disknr != right_disknr ||
74dd17fb
CM
4875 left_offset_fixed != right_offset ||
4876 left_gen != right_gen) {
31db9f7c
AB
4877 ret = 0;
4878 goto out;
4879 }
4880
4881 /*
4882 * Go to the next extent.
4883 */
4884 ret = btrfs_next_item(sctx->parent_root, path);
4885 if (ret < 0)
4886 goto out;
4887 if (!ret) {
4888 eb = path->nodes[0];
4889 slot = path->slots[0];
4890 btrfs_item_key_to_cpu(eb, &found_key, slot);
4891 }
4892 if (ret || found_key.objectid != key.objectid ||
4893 found_key.type != key.type) {
4894 key.offset += right_len;
4895 break;
adaa4b8e
JS
4896 }
4897 if (found_key.offset != key.offset + right_len) {
4898 ret = 0;
4899 goto out;
31db9f7c
AB
4900 }
4901 key = found_key;
4902 }
4903
4904 /*
4905 * We're now behind the left extent (treat as unchanged) or at the end
4906 * of the right side (treat as changed).
4907 */
4908 if (key.offset >= ekey->offset + left_len)
4909 ret = 1;
4910 else
4911 ret = 0;
4912
4913
4914out:
4915 btrfs_free_path(path);
4916 return ret;
4917}
4918
16e7549f
JB
4919static int get_last_extent(struct send_ctx *sctx, u64 offset)
4920{
4921 struct btrfs_path *path;
4922 struct btrfs_root *root = sctx->send_root;
4923 struct btrfs_file_extent_item *fi;
4924 struct btrfs_key key;
4925 u64 extent_end;
4926 u8 type;
4927 int ret;
4928
4929 path = alloc_path_for_send();
4930 if (!path)
4931 return -ENOMEM;
4932
4933 sctx->cur_inode_last_extent = 0;
4934
4935 key.objectid = sctx->cur_ino;
4936 key.type = BTRFS_EXTENT_DATA_KEY;
4937 key.offset = offset;
4938 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
4939 if (ret < 0)
4940 goto out;
4941 ret = 0;
4942 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4943 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
4944 goto out;
4945
4946 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4947 struct btrfs_file_extent_item);
4948 type = btrfs_file_extent_type(path->nodes[0], fi);
4949 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
4950 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4951 path->slots[0], fi);
16e7549f
JB
4952 extent_end = ALIGN(key.offset + size,
4953 sctx->send_root->sectorsize);
4954 } else {
4955 extent_end = key.offset +
4956 btrfs_file_extent_num_bytes(path->nodes[0], fi);
4957 }
4958 sctx->cur_inode_last_extent = extent_end;
4959out:
4960 btrfs_free_path(path);
4961 return ret;
4962}
4963
4964static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
4965 struct btrfs_key *key)
4966{
4967 struct btrfs_file_extent_item *fi;
4968 u64 extent_end;
4969 u8 type;
4970 int ret = 0;
4971
4972 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
4973 return 0;
4974
4975 if (sctx->cur_inode_last_extent == (u64)-1) {
4976 ret = get_last_extent(sctx, key->offset - 1);
4977 if (ret)
4978 return ret;
4979 }
4980
4981 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4982 struct btrfs_file_extent_item);
4983 type = btrfs_file_extent_type(path->nodes[0], fi);
4984 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
4985 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4986 path->slots[0], fi);
16e7549f
JB
4987 extent_end = ALIGN(key->offset + size,
4988 sctx->send_root->sectorsize);
4989 } else {
4990 extent_end = key->offset +
4991 btrfs_file_extent_num_bytes(path->nodes[0], fi);
4992 }
bf54f412
FDBM
4993
4994 if (path->slots[0] == 0 &&
4995 sctx->cur_inode_last_extent < key->offset) {
4996 /*
4997 * We might have skipped entire leafs that contained only
4998 * file extent items for our current inode. These leafs have
4999 * a generation number smaller (older) than the one in the
5000 * current leaf and the leaf our last extent came from, and
5001 * are located between these 2 leafs.
5002 */
5003 ret = get_last_extent(sctx, key->offset - 1);
5004 if (ret)
5005 return ret;
5006 }
5007
16e7549f
JB
5008 if (sctx->cur_inode_last_extent < key->offset)
5009 ret = send_hole(sctx, key->offset);
5010 sctx->cur_inode_last_extent = extent_end;
5011 return ret;
5012}
5013
31db9f7c
AB
5014static int process_extent(struct send_ctx *sctx,
5015 struct btrfs_path *path,
5016 struct btrfs_key *key)
5017{
31db9f7c 5018 struct clone_root *found_clone = NULL;
57cfd462 5019 int ret = 0;
31db9f7c
AB
5020
5021 if (S_ISLNK(sctx->cur_inode_mode))
5022 return 0;
5023
5024 if (sctx->parent_root && !sctx->cur_inode_new) {
5025 ret = is_extent_unchanged(sctx, path, key);
5026 if (ret < 0)
5027 goto out;
5028 if (ret) {
5029 ret = 0;
16e7549f 5030 goto out_hole;
31db9f7c 5031 }
57cfd462
JB
5032 } else {
5033 struct btrfs_file_extent_item *ei;
5034 u8 type;
5035
5036 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5037 struct btrfs_file_extent_item);
5038 type = btrfs_file_extent_type(path->nodes[0], ei);
5039 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5040 type == BTRFS_FILE_EXTENT_REG) {
5041 /*
5042 * The send spec does not have a prealloc command yet,
5043 * so just leave a hole for prealloc'ed extents until
5044 * we have enough commands queued up to justify rev'ing
5045 * the send spec.
5046 */
5047 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5048 ret = 0;
5049 goto out;
5050 }
5051
5052 /* Have a hole, just skip it. */
5053 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5054 ret = 0;
5055 goto out;
5056 }
5057 }
31db9f7c
AB
5058 }
5059
5060 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5061 sctx->cur_inode_size, &found_clone);
5062 if (ret != -ENOENT && ret < 0)
5063 goto out;
5064
5065 ret = send_write_or_clone(sctx, path, key, found_clone);
16e7549f
JB
5066 if (ret)
5067 goto out;
5068out_hole:
5069 ret = maybe_send_hole(sctx, path, key);
31db9f7c
AB
5070out:
5071 return ret;
5072}
5073
5074static int process_all_extents(struct send_ctx *sctx)
5075{
5076 int ret;
5077 struct btrfs_root *root;
5078 struct btrfs_path *path;
5079 struct btrfs_key key;
5080 struct btrfs_key found_key;
5081 struct extent_buffer *eb;
5082 int slot;
5083
5084 root = sctx->send_root;
5085 path = alloc_path_for_send();
5086 if (!path)
5087 return -ENOMEM;
5088
5089 key.objectid = sctx->cmp_key->objectid;
5090 key.type = BTRFS_EXTENT_DATA_KEY;
5091 key.offset = 0;
7fdd29d0
FDBM
5092 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5093 if (ret < 0)
5094 goto out;
31db9f7c 5095
7fdd29d0 5096 while (1) {
31db9f7c
AB
5097 eb = path->nodes[0];
5098 slot = path->slots[0];
7fdd29d0
FDBM
5099
5100 if (slot >= btrfs_header_nritems(eb)) {
5101 ret = btrfs_next_leaf(root, path);
5102 if (ret < 0) {
5103 goto out;
5104 } else if (ret > 0) {
5105 ret = 0;
5106 break;
5107 }
5108 continue;
5109 }
5110
31db9f7c
AB
5111 btrfs_item_key_to_cpu(eb, &found_key, slot);
5112
5113 if (found_key.objectid != key.objectid ||
5114 found_key.type != key.type) {
5115 ret = 0;
5116 goto out;
5117 }
5118
5119 ret = process_extent(sctx, path, &found_key);
5120 if (ret < 0)
5121 goto out;
5122
7fdd29d0 5123 path->slots[0]++;
31db9f7c
AB
5124 }
5125
5126out:
5127 btrfs_free_path(path);
5128 return ret;
5129}
5130
9f03740a
FDBM
5131static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5132 int *pending_move,
5133 int *refs_processed)
31db9f7c
AB
5134{
5135 int ret = 0;
5136
5137 if (sctx->cur_ino == 0)
5138 goto out;
5139 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
96b5bd77 5140 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
31db9f7c
AB
5141 goto out;
5142 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5143 goto out;
5144
9f03740a 5145 ret = process_recorded_refs(sctx, pending_move);
e479d9bb
AB
5146 if (ret < 0)
5147 goto out;
5148
9f03740a 5149 *refs_processed = 1;
31db9f7c
AB
5150out:
5151 return ret;
5152}
5153
5154static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5155{
5156 int ret = 0;
5157 u64 left_mode;
5158 u64 left_uid;
5159 u64 left_gid;
5160 u64 right_mode;
5161 u64 right_uid;
5162 u64 right_gid;
5163 int need_chmod = 0;
5164 int need_chown = 0;
9f03740a
FDBM
5165 int pending_move = 0;
5166 int refs_processed = 0;
31db9f7c 5167
9f03740a
FDBM
5168 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5169 &refs_processed);
31db9f7c
AB
5170 if (ret < 0)
5171 goto out;
5172
9f03740a
FDBM
5173 /*
5174 * We have processed the refs and thus need to advance send_progress.
5175 * Now, calls to get_cur_xxx will take the updated refs of the current
5176 * inode into account.
5177 *
5178 * On the other hand, if our current inode is a directory and couldn't
5179 * be moved/renamed because its parent was renamed/moved too and it has
5180 * a higher inode number, we can only move/rename our current inode
5181 * after we moved/renamed its parent. Therefore in this case operate on
5182 * the old path (pre move/rename) of our current inode, and the
5183 * move/rename will be performed later.
5184 */
5185 if (refs_processed && !pending_move)
5186 sctx->send_progress = sctx->cur_ino + 1;
5187
31db9f7c
AB
5188 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5189 goto out;
5190 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5191 goto out;
5192
5193 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
85a7b33b 5194 &left_mode, &left_uid, &left_gid, NULL);
31db9f7c
AB
5195 if (ret < 0)
5196 goto out;
5197
e2d044fe
AL
5198 if (!sctx->parent_root || sctx->cur_inode_new) {
5199 need_chown = 1;
5200 if (!S_ISLNK(sctx->cur_inode_mode))
31db9f7c 5201 need_chmod = 1;
e2d044fe
AL
5202 } else {
5203 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5204 NULL, NULL, &right_mode, &right_uid,
5205 &right_gid, NULL);
5206 if (ret < 0)
5207 goto out;
31db9f7c 5208
e2d044fe
AL
5209 if (left_uid != right_uid || left_gid != right_gid)
5210 need_chown = 1;
5211 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5212 need_chmod = 1;
31db9f7c
AB
5213 }
5214
5215 if (S_ISREG(sctx->cur_inode_mode)) {
16e7549f 5216 if (need_send_hole(sctx)) {
766b5e5a
FM
5217 if (sctx->cur_inode_last_extent == (u64)-1 ||
5218 sctx->cur_inode_last_extent <
5219 sctx->cur_inode_size) {
16e7549f
JB
5220 ret = get_last_extent(sctx, (u64)-1);
5221 if (ret)
5222 goto out;
5223 }
5224 if (sctx->cur_inode_last_extent <
5225 sctx->cur_inode_size) {
5226 ret = send_hole(sctx, sctx->cur_inode_size);
5227 if (ret)
5228 goto out;
5229 }
5230 }
31db9f7c
AB
5231 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5232 sctx->cur_inode_size);
5233 if (ret < 0)
5234 goto out;
5235 }
5236
5237 if (need_chown) {
5238 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5239 left_uid, left_gid);
5240 if (ret < 0)
5241 goto out;
5242 }
5243 if (need_chmod) {
5244 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5245 left_mode);
5246 if (ret < 0)
5247 goto out;
5248 }
5249
5250 /*
9f03740a
FDBM
5251 * If other directory inodes depended on our current directory
5252 * inode's move/rename, now do their move/rename operations.
31db9f7c 5253 */
9f03740a
FDBM
5254 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5255 ret = apply_children_dir_moves(sctx);
5256 if (ret)
5257 goto out;
fcbd2154
FM
5258 /*
5259 * Need to send that every time, no matter if it actually
5260 * changed between the two trees as we have done changes to
5261 * the inode before. If our inode is a directory and it's
5262 * waiting to be moved/renamed, we will send its utimes when
5263 * it's moved/renamed, therefore we don't need to do it here.
5264 */
5265 sctx->send_progress = sctx->cur_ino + 1;
5266 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5267 if (ret < 0)
5268 goto out;
9f03740a
FDBM
5269 }
5270
31db9f7c
AB
5271out:
5272 return ret;
5273}
5274
5275static int changed_inode(struct send_ctx *sctx,
5276 enum btrfs_compare_tree_result result)
5277{
5278 int ret = 0;
5279 struct btrfs_key *key = sctx->cmp_key;
5280 struct btrfs_inode_item *left_ii = NULL;
5281 struct btrfs_inode_item *right_ii = NULL;
5282 u64 left_gen = 0;
5283 u64 right_gen = 0;
5284
31db9f7c
AB
5285 sctx->cur_ino = key->objectid;
5286 sctx->cur_inode_new_gen = 0;
16e7549f 5287 sctx->cur_inode_last_extent = (u64)-1;
e479d9bb
AB
5288
5289 /*
5290 * Set send_progress to current inode. This will tell all get_cur_xxx
5291 * functions that the current inode's refs are not updated yet. Later,
5292 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5293 */
31db9f7c
AB
5294 sctx->send_progress = sctx->cur_ino;
5295
5296 if (result == BTRFS_COMPARE_TREE_NEW ||
5297 result == BTRFS_COMPARE_TREE_CHANGED) {
5298 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5299 sctx->left_path->slots[0],
5300 struct btrfs_inode_item);
5301 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5302 left_ii);
5303 } else {
5304 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5305 sctx->right_path->slots[0],
5306 struct btrfs_inode_item);
5307 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5308 right_ii);
5309 }
5310 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5311 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5312 sctx->right_path->slots[0],
5313 struct btrfs_inode_item);
5314
5315 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5316 right_ii);
6d85ed05
AB
5317
5318 /*
5319 * The cur_ino = root dir case is special here. We can't treat
5320 * the inode as deleted+reused because it would generate a
5321 * stream that tries to delete/mkdir the root dir.
5322 */
5323 if (left_gen != right_gen &&
5324 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
31db9f7c
AB
5325 sctx->cur_inode_new_gen = 1;
5326 }
5327
5328 if (result == BTRFS_COMPARE_TREE_NEW) {
5329 sctx->cur_inode_gen = left_gen;
5330 sctx->cur_inode_new = 1;
5331 sctx->cur_inode_deleted = 0;
5332 sctx->cur_inode_size = btrfs_inode_size(
5333 sctx->left_path->nodes[0], left_ii);
5334 sctx->cur_inode_mode = btrfs_inode_mode(
5335 sctx->left_path->nodes[0], left_ii);
644d1940
LB
5336 sctx->cur_inode_rdev = btrfs_inode_rdev(
5337 sctx->left_path->nodes[0], left_ii);
31db9f7c 5338 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
1f4692da 5339 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
5340 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5341 sctx->cur_inode_gen = right_gen;
5342 sctx->cur_inode_new = 0;
5343 sctx->cur_inode_deleted = 1;
5344 sctx->cur_inode_size = btrfs_inode_size(
5345 sctx->right_path->nodes[0], right_ii);
5346 sctx->cur_inode_mode = btrfs_inode_mode(
5347 sctx->right_path->nodes[0], right_ii);
5348 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
766702ef
AB
5349 /*
5350 * We need to do some special handling in case the inode was
5351 * reported as changed with a changed generation number. This
5352 * means that the original inode was deleted and new inode
5353 * reused the same inum. So we have to treat the old inode as
5354 * deleted and the new one as new.
5355 */
31db9f7c 5356 if (sctx->cur_inode_new_gen) {
766702ef
AB
5357 /*
5358 * First, process the inode as if it was deleted.
5359 */
31db9f7c
AB
5360 sctx->cur_inode_gen = right_gen;
5361 sctx->cur_inode_new = 0;
5362 sctx->cur_inode_deleted = 1;
5363 sctx->cur_inode_size = btrfs_inode_size(
5364 sctx->right_path->nodes[0], right_ii);
5365 sctx->cur_inode_mode = btrfs_inode_mode(
5366 sctx->right_path->nodes[0], right_ii);
5367 ret = process_all_refs(sctx,
5368 BTRFS_COMPARE_TREE_DELETED);
5369 if (ret < 0)
5370 goto out;
5371
766702ef
AB
5372 /*
5373 * Now process the inode as if it was new.
5374 */
31db9f7c
AB
5375 sctx->cur_inode_gen = left_gen;
5376 sctx->cur_inode_new = 1;
5377 sctx->cur_inode_deleted = 0;
5378 sctx->cur_inode_size = btrfs_inode_size(
5379 sctx->left_path->nodes[0], left_ii);
5380 sctx->cur_inode_mode = btrfs_inode_mode(
5381 sctx->left_path->nodes[0], left_ii);
644d1940
LB
5382 sctx->cur_inode_rdev = btrfs_inode_rdev(
5383 sctx->left_path->nodes[0], left_ii);
1f4692da 5384 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
5385 if (ret < 0)
5386 goto out;
5387
5388 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5389 if (ret < 0)
5390 goto out;
e479d9bb
AB
5391 /*
5392 * Advance send_progress now as we did not get into
5393 * process_recorded_refs_if_needed in the new_gen case.
5394 */
5395 sctx->send_progress = sctx->cur_ino + 1;
766702ef
AB
5396
5397 /*
5398 * Now process all extents and xattrs of the inode as if
5399 * they were all new.
5400 */
31db9f7c
AB
5401 ret = process_all_extents(sctx);
5402 if (ret < 0)
5403 goto out;
5404 ret = process_all_new_xattrs(sctx);
5405 if (ret < 0)
5406 goto out;
5407 } else {
5408 sctx->cur_inode_gen = left_gen;
5409 sctx->cur_inode_new = 0;
5410 sctx->cur_inode_new_gen = 0;
5411 sctx->cur_inode_deleted = 0;
5412 sctx->cur_inode_size = btrfs_inode_size(
5413 sctx->left_path->nodes[0], left_ii);
5414 sctx->cur_inode_mode = btrfs_inode_mode(
5415 sctx->left_path->nodes[0], left_ii);
5416 }
5417 }
5418
5419out:
5420 return ret;
5421}
5422
766702ef
AB
5423/*
5424 * We have to process new refs before deleted refs, but compare_trees gives us
5425 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5426 * first and later process them in process_recorded_refs.
5427 * For the cur_inode_new_gen case, we skip recording completely because
5428 * changed_inode did already initiate processing of refs. The reason for this is
5429 * that in this case, compare_tree actually compares the refs of 2 different
5430 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5431 * refs of the right tree as deleted and all refs of the left tree as new.
5432 */
31db9f7c
AB
5433static int changed_ref(struct send_ctx *sctx,
5434 enum btrfs_compare_tree_result result)
5435{
5436 int ret = 0;
5437
5438 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5439
5440 if (!sctx->cur_inode_new_gen &&
5441 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5442 if (result == BTRFS_COMPARE_TREE_NEW)
5443 ret = record_new_ref(sctx);
5444 else if (result == BTRFS_COMPARE_TREE_DELETED)
5445 ret = record_deleted_ref(sctx);
5446 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5447 ret = record_changed_ref(sctx);
5448 }
5449
5450 return ret;
5451}
5452
766702ef
AB
5453/*
5454 * Process new/deleted/changed xattrs. We skip processing in the
5455 * cur_inode_new_gen case because changed_inode did already initiate processing
5456 * of xattrs. The reason is the same as in changed_ref
5457 */
31db9f7c
AB
5458static int changed_xattr(struct send_ctx *sctx,
5459 enum btrfs_compare_tree_result result)
5460{
5461 int ret = 0;
5462
5463 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5464
5465 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5466 if (result == BTRFS_COMPARE_TREE_NEW)
5467 ret = process_new_xattr(sctx);
5468 else if (result == BTRFS_COMPARE_TREE_DELETED)
5469 ret = process_deleted_xattr(sctx);
5470 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5471 ret = process_changed_xattr(sctx);
5472 }
5473
5474 return ret;
5475}
5476
766702ef
AB
5477/*
5478 * Process new/deleted/changed extents. We skip processing in the
5479 * cur_inode_new_gen case because changed_inode did already initiate processing
5480 * of extents. The reason is the same as in changed_ref
5481 */
31db9f7c
AB
5482static int changed_extent(struct send_ctx *sctx,
5483 enum btrfs_compare_tree_result result)
5484{
5485 int ret = 0;
5486
5487 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5488
5489 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5490 if (result != BTRFS_COMPARE_TREE_DELETED)
5491 ret = process_extent(sctx, sctx->left_path,
5492 sctx->cmp_key);
5493 }
5494
5495 return ret;
5496}
5497
ba5e8f2e
JB
5498static int dir_changed(struct send_ctx *sctx, u64 dir)
5499{
5500 u64 orig_gen, new_gen;
5501 int ret;
5502
5503 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5504 NULL, NULL);
5505 if (ret)
5506 return ret;
5507
5508 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5509 NULL, NULL, NULL);
5510 if (ret)
5511 return ret;
5512
5513 return (orig_gen != new_gen) ? 1 : 0;
5514}
5515
5516static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5517 struct btrfs_key *key)
5518{
5519 struct btrfs_inode_extref *extref;
5520 struct extent_buffer *leaf;
5521 u64 dirid = 0, last_dirid = 0;
5522 unsigned long ptr;
5523 u32 item_size;
5524 u32 cur_offset = 0;
5525 int ref_name_len;
5526 int ret = 0;
5527
5528 /* Easy case, just check this one dirid */
5529 if (key->type == BTRFS_INODE_REF_KEY) {
5530 dirid = key->offset;
5531
5532 ret = dir_changed(sctx, dirid);
5533 goto out;
5534 }
5535
5536 leaf = path->nodes[0];
5537 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5538 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5539 while (cur_offset < item_size) {
5540 extref = (struct btrfs_inode_extref *)(ptr +
5541 cur_offset);
5542 dirid = btrfs_inode_extref_parent(leaf, extref);
5543 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5544 cur_offset += ref_name_len + sizeof(*extref);
5545 if (dirid == last_dirid)
5546 continue;
5547 ret = dir_changed(sctx, dirid);
5548 if (ret)
5549 break;
5550 last_dirid = dirid;
5551 }
5552out:
5553 return ret;
5554}
5555
766702ef
AB
5556/*
5557 * Updates compare related fields in sctx and simply forwards to the actual
5558 * changed_xxx functions.
5559 */
31db9f7c
AB
5560static int changed_cb(struct btrfs_root *left_root,
5561 struct btrfs_root *right_root,
5562 struct btrfs_path *left_path,
5563 struct btrfs_path *right_path,
5564 struct btrfs_key *key,
5565 enum btrfs_compare_tree_result result,
5566 void *ctx)
5567{
5568 int ret = 0;
5569 struct send_ctx *sctx = ctx;
5570
ba5e8f2e 5571 if (result == BTRFS_COMPARE_TREE_SAME) {
16e7549f
JB
5572 if (key->type == BTRFS_INODE_REF_KEY ||
5573 key->type == BTRFS_INODE_EXTREF_KEY) {
5574 ret = compare_refs(sctx, left_path, key);
5575 if (!ret)
5576 return 0;
5577 if (ret < 0)
5578 return ret;
5579 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5580 return maybe_send_hole(sctx, left_path, key);
5581 } else {
ba5e8f2e 5582 return 0;
16e7549f 5583 }
ba5e8f2e
JB
5584 result = BTRFS_COMPARE_TREE_CHANGED;
5585 ret = 0;
5586 }
5587
31db9f7c
AB
5588 sctx->left_path = left_path;
5589 sctx->right_path = right_path;
5590 sctx->cmp_key = key;
5591
5592 ret = finish_inode_if_needed(sctx, 0);
5593 if (ret < 0)
5594 goto out;
5595
2981e225
AB
5596 /* Ignore non-FS objects */
5597 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5598 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5599 goto out;
5600
31db9f7c
AB
5601 if (key->type == BTRFS_INODE_ITEM_KEY)
5602 ret = changed_inode(sctx, result);
96b5bd77
JS
5603 else if (key->type == BTRFS_INODE_REF_KEY ||
5604 key->type == BTRFS_INODE_EXTREF_KEY)
31db9f7c
AB
5605 ret = changed_ref(sctx, result);
5606 else if (key->type == BTRFS_XATTR_ITEM_KEY)
5607 ret = changed_xattr(sctx, result);
5608 else if (key->type == BTRFS_EXTENT_DATA_KEY)
5609 ret = changed_extent(sctx, result);
5610
5611out:
5612 return ret;
5613}
5614
5615static int full_send_tree(struct send_ctx *sctx)
5616{
5617 int ret;
31db9f7c
AB
5618 struct btrfs_root *send_root = sctx->send_root;
5619 struct btrfs_key key;
5620 struct btrfs_key found_key;
5621 struct btrfs_path *path;
5622 struct extent_buffer *eb;
5623 int slot;
31db9f7c
AB
5624
5625 path = alloc_path_for_send();
5626 if (!path)
5627 return -ENOMEM;
5628
31db9f7c
AB
5629 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5630 key.type = BTRFS_INODE_ITEM_KEY;
5631 key.offset = 0;
5632
31db9f7c
AB
5633 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5634 if (ret < 0)
5635 goto out;
5636 if (ret)
5637 goto out_finish;
5638
5639 while (1) {
31db9f7c
AB
5640 eb = path->nodes[0];
5641 slot = path->slots[0];
5642 btrfs_item_key_to_cpu(eb, &found_key, slot);
5643
5644 ret = changed_cb(send_root, NULL, path, NULL,
5645 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5646 if (ret < 0)
5647 goto out;
5648
5649 key.objectid = found_key.objectid;
5650 key.type = found_key.type;
5651 key.offset = found_key.offset + 1;
5652
5653 ret = btrfs_next_item(send_root, path);
5654 if (ret < 0)
5655 goto out;
5656 if (ret) {
5657 ret = 0;
5658 break;
5659 }
5660 }
5661
5662out_finish:
5663 ret = finish_inode_if_needed(sctx, 1);
5664
5665out:
5666 btrfs_free_path(path);
31db9f7c
AB
5667 return ret;
5668}
5669
5670static int send_subvol(struct send_ctx *sctx)
5671{
5672 int ret;
5673
c2c71324
SB
5674 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5675 ret = send_header(sctx);
5676 if (ret < 0)
5677 goto out;
5678 }
31db9f7c
AB
5679
5680 ret = send_subvol_begin(sctx);
5681 if (ret < 0)
5682 goto out;
5683
5684 if (sctx->parent_root) {
5685 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5686 changed_cb, sctx);
5687 if (ret < 0)
5688 goto out;
5689 ret = finish_inode_if_needed(sctx, 1);
5690 if (ret < 0)
5691 goto out;
5692 } else {
5693 ret = full_send_tree(sctx);
5694 if (ret < 0)
5695 goto out;
5696 }
5697
5698out:
31db9f7c
AB
5699 free_recorded_refs(sctx);
5700 return ret;
5701}
5702
e5fa8f86
FM
5703/*
5704 * If orphan cleanup did remove any orphans from a root, it means the tree
5705 * was modified and therefore the commit root is not the same as the current
5706 * root anymore. This is a problem, because send uses the commit root and
5707 * therefore can see inode items that don't exist in the current root anymore,
5708 * and for example make calls to btrfs_iget, which will do tree lookups based
5709 * on the current root and not on the commit root. Those lookups will fail,
5710 * returning a -ESTALE error, and making send fail with that error. So make
5711 * sure a send does not see any orphans we have just removed, and that it will
5712 * see the same inodes regardless of whether a transaction commit happened
5713 * before it started (meaning that the commit root will be the same as the
5714 * current root) or not.
5715 */
5716static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
5717{
5718 int i;
5719 struct btrfs_trans_handle *trans = NULL;
5720
5721again:
5722 if (sctx->parent_root &&
5723 sctx->parent_root->node != sctx->parent_root->commit_root)
5724 goto commit_trans;
5725
5726 for (i = 0; i < sctx->clone_roots_cnt; i++)
5727 if (sctx->clone_roots[i].root->node !=
5728 sctx->clone_roots[i].root->commit_root)
5729 goto commit_trans;
5730
5731 if (trans)
5732 return btrfs_end_transaction(trans, sctx->send_root);
5733
5734 return 0;
5735
5736commit_trans:
5737 /* Use any root, all fs roots will get their commit roots updated. */
5738 if (!trans) {
5739 trans = btrfs_join_transaction(sctx->send_root);
5740 if (IS_ERR(trans))
5741 return PTR_ERR(trans);
5742 goto again;
5743 }
5744
5745 return btrfs_commit_transaction(trans, sctx->send_root);
5746}
5747
66ef7d65
DS
5748static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5749{
5750 spin_lock(&root->root_item_lock);
5751 root->send_in_progress--;
5752 /*
5753 * Not much left to do, we don't know why it's unbalanced and
5754 * can't blindly reset it to 0.
5755 */
5756 if (root->send_in_progress < 0)
5757 btrfs_err(root->fs_info,
351fd353 5758 "send_in_progres unbalanced %d root %llu",
66ef7d65
DS
5759 root->send_in_progress, root->root_key.objectid);
5760 spin_unlock(&root->root_item_lock);
5761}
5762
31db9f7c
AB
5763long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5764{
5765 int ret = 0;
5766 struct btrfs_root *send_root;
5767 struct btrfs_root *clone_root;
5768 struct btrfs_fs_info *fs_info;
5769 struct btrfs_ioctl_send_args *arg = NULL;
5770 struct btrfs_key key;
31db9f7c
AB
5771 struct send_ctx *sctx = NULL;
5772 u32 i;
5773 u64 *clone_sources_tmp = NULL;
2c686537 5774 int clone_sources_to_rollback = 0;
896c14f9 5775 int sort_clone_roots = 0;
18f687d5 5776 int index;
31db9f7c
AB
5777
5778 if (!capable(CAP_SYS_ADMIN))
5779 return -EPERM;
5780
496ad9aa 5781 send_root = BTRFS_I(file_inode(mnt_file))->root;
31db9f7c
AB
5782 fs_info = send_root->fs_info;
5783
2c686537
DS
5784 /*
5785 * The subvolume must remain read-only during send, protect against
521e0546 5786 * making it RW. This also protects against deletion.
2c686537
DS
5787 */
5788 spin_lock(&send_root->root_item_lock);
5789 send_root->send_in_progress++;
5790 spin_unlock(&send_root->root_item_lock);
5791
139f807a
JB
5792 /*
5793 * This is done when we lookup the root, it should already be complete
5794 * by the time we get here.
5795 */
5796 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5797
2c686537
DS
5798 /*
5799 * Userspace tools do the checks and warn the user if it's
5800 * not RO.
5801 */
5802 if (!btrfs_root_readonly(send_root)) {
5803 ret = -EPERM;
5804 goto out;
5805 }
5806
31db9f7c
AB
5807 arg = memdup_user(arg_, sizeof(*arg));
5808 if (IS_ERR(arg)) {
5809 ret = PTR_ERR(arg);
5810 arg = NULL;
5811 goto out;
5812 }
5813
5814 if (!access_ok(VERIFY_READ, arg->clone_sources,
700ff4f0
DC
5815 sizeof(*arg->clone_sources) *
5816 arg->clone_sources_count)) {
31db9f7c
AB
5817 ret = -EFAULT;
5818 goto out;
5819 }
5820
c2c71324 5821 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
cb95e7bf
MF
5822 ret = -EINVAL;
5823 goto out;
5824 }
5825
31db9f7c
AB
5826 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5827 if (!sctx) {
5828 ret = -ENOMEM;
5829 goto out;
5830 }
5831
5832 INIT_LIST_HEAD(&sctx->new_refs);
5833 INIT_LIST_HEAD(&sctx->deleted_refs);
5834 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5835 INIT_LIST_HEAD(&sctx->name_cache_list);
5836
cb95e7bf
MF
5837 sctx->flags = arg->flags;
5838
31db9f7c 5839 sctx->send_filp = fget(arg->send_fd);
ecc7ada7
TI
5840 if (!sctx->send_filp) {
5841 ret = -EBADF;
31db9f7c
AB
5842 goto out;
5843 }
5844
31db9f7c 5845 sctx->send_root = send_root;
521e0546
DS
5846 /*
5847 * Unlikely but possible, if the subvolume is marked for deletion but
5848 * is slow to remove the directory entry, send can still be started
5849 */
5850 if (btrfs_root_dead(sctx->send_root)) {
5851 ret = -EPERM;
5852 goto out;
5853 }
5854
31db9f7c
AB
5855 sctx->clone_roots_cnt = arg->clone_sources_count;
5856
5857 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
5858 sctx->send_buf = vmalloc(sctx->send_max_size);
5859 if (!sctx->send_buf) {
5860 ret = -ENOMEM;
5861 goto out;
5862 }
5863
5864 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
5865 if (!sctx->read_buf) {
5866 ret = -ENOMEM;
5867 goto out;
5868 }
5869
9f03740a
FDBM
5870 sctx->pending_dir_moves = RB_ROOT;
5871 sctx->waiting_dir_moves = RB_ROOT;
9dc44214 5872 sctx->orphan_dirs = RB_ROOT;
9f03740a 5873
31db9f7c
AB
5874 sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
5875 (arg->clone_sources_count + 1));
5876 if (!sctx->clone_roots) {
5877 ret = -ENOMEM;
5878 goto out;
5879 }
5880
5881 if (arg->clone_sources_count) {
5882 clone_sources_tmp = vmalloc(arg->clone_sources_count *
5883 sizeof(*arg->clone_sources));
5884 if (!clone_sources_tmp) {
5885 ret = -ENOMEM;
5886 goto out;
5887 }
5888
5889 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
5890 arg->clone_sources_count *
5891 sizeof(*arg->clone_sources));
5892 if (ret) {
5893 ret = -EFAULT;
5894 goto out;
5895 }
5896
5897 for (i = 0; i < arg->clone_sources_count; i++) {
5898 key.objectid = clone_sources_tmp[i];
5899 key.type = BTRFS_ROOT_ITEM_KEY;
5900 key.offset = (u64)-1;
18f687d5
WS
5901
5902 index = srcu_read_lock(&fs_info->subvol_srcu);
5903
31db9f7c 5904 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
31db9f7c 5905 if (IS_ERR(clone_root)) {
18f687d5 5906 srcu_read_unlock(&fs_info->subvol_srcu, index);
31db9f7c
AB
5907 ret = PTR_ERR(clone_root);
5908 goto out;
5909 }
2c686537 5910 spin_lock(&clone_root->root_item_lock);
5cc2b17e
FM
5911 if (!btrfs_root_readonly(clone_root) ||
5912 btrfs_root_dead(clone_root)) {
2c686537 5913 spin_unlock(&clone_root->root_item_lock);
18f687d5 5914 srcu_read_unlock(&fs_info->subvol_srcu, index);
2c686537
DS
5915 ret = -EPERM;
5916 goto out;
5917 }
2f1f465a 5918 clone_root->send_in_progress++;
2c686537 5919 spin_unlock(&clone_root->root_item_lock);
18f687d5
WS
5920 srcu_read_unlock(&fs_info->subvol_srcu, index);
5921
31db9f7c 5922 sctx->clone_roots[i].root = clone_root;
2f1f465a 5923 clone_sources_to_rollback = i + 1;
31db9f7c
AB
5924 }
5925 vfree(clone_sources_tmp);
5926 clone_sources_tmp = NULL;
5927 }
5928
5929 if (arg->parent_root) {
5930 key.objectid = arg->parent_root;
5931 key.type = BTRFS_ROOT_ITEM_KEY;
5932 key.offset = (u64)-1;
18f687d5
WS
5933
5934 index = srcu_read_lock(&fs_info->subvol_srcu);
5935
31db9f7c 5936 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
b1b19596 5937 if (IS_ERR(sctx->parent_root)) {
18f687d5 5938 srcu_read_unlock(&fs_info->subvol_srcu, index);
b1b19596 5939 ret = PTR_ERR(sctx->parent_root);
31db9f7c
AB
5940 goto out;
5941 }
18f687d5 5942
2c686537
DS
5943 spin_lock(&sctx->parent_root->root_item_lock);
5944 sctx->parent_root->send_in_progress++;
521e0546
DS
5945 if (!btrfs_root_readonly(sctx->parent_root) ||
5946 btrfs_root_dead(sctx->parent_root)) {
2c686537 5947 spin_unlock(&sctx->parent_root->root_item_lock);
18f687d5 5948 srcu_read_unlock(&fs_info->subvol_srcu, index);
2c686537
DS
5949 ret = -EPERM;
5950 goto out;
5951 }
5952 spin_unlock(&sctx->parent_root->root_item_lock);
18f687d5
WS
5953
5954 srcu_read_unlock(&fs_info->subvol_srcu, index);
31db9f7c
AB
5955 }
5956
5957 /*
5958 * Clones from send_root are allowed, but only if the clone source
5959 * is behind the current send position. This is checked while searching
5960 * for possible clone sources.
5961 */
5962 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
5963
5964 /* We do a bsearch later */
5965 sort(sctx->clone_roots, sctx->clone_roots_cnt,
5966 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
5967 NULL);
896c14f9 5968 sort_clone_roots = 1;
31db9f7c 5969
e5fa8f86
FM
5970 ret = ensure_commit_roots_uptodate(sctx);
5971 if (ret)
5972 goto out;
5973
2755a0de 5974 current->journal_info = BTRFS_SEND_TRANS_STUB;
31db9f7c 5975 ret = send_subvol(sctx);
a26e8c9f 5976 current->journal_info = NULL;
31db9f7c
AB
5977 if (ret < 0)
5978 goto out;
5979
c2c71324
SB
5980 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
5981 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
5982 if (ret < 0)
5983 goto out;
5984 ret = send_cmd(sctx);
5985 if (ret < 0)
5986 goto out;
5987 }
31db9f7c
AB
5988
5989out:
9f03740a
FDBM
5990 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
5991 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
5992 struct rb_node *n;
5993 struct pending_dir_move *pm;
5994
5995 n = rb_first(&sctx->pending_dir_moves);
5996 pm = rb_entry(n, struct pending_dir_move, node);
5997 while (!list_empty(&pm->list)) {
5998 struct pending_dir_move *pm2;
5999
6000 pm2 = list_first_entry(&pm->list,
6001 struct pending_dir_move, list);
6002 free_pending_move(sctx, pm2);
6003 }
6004 free_pending_move(sctx, pm);
6005 }
6006
6007 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6008 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6009 struct rb_node *n;
6010 struct waiting_dir_move *dm;
6011
6012 n = rb_first(&sctx->waiting_dir_moves);
6013 dm = rb_entry(n, struct waiting_dir_move, node);
6014 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6015 kfree(dm);
6016 }
6017
9dc44214
FM
6018 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6019 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6020 struct rb_node *n;
6021 struct orphan_dir_info *odi;
6022
6023 n = rb_first(&sctx->orphan_dirs);
6024 odi = rb_entry(n, struct orphan_dir_info, node);
6025 free_orphan_dir_info(sctx, odi);
6026 }
6027
896c14f9
WS
6028 if (sort_clone_roots) {
6029 for (i = 0; i < sctx->clone_roots_cnt; i++)
6030 btrfs_root_dec_send_in_progress(
6031 sctx->clone_roots[i].root);
6032 } else {
6033 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6034 btrfs_root_dec_send_in_progress(
6035 sctx->clone_roots[i].root);
6036
6037 btrfs_root_dec_send_in_progress(send_root);
6038 }
66ef7d65
DS
6039 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6040 btrfs_root_dec_send_in_progress(sctx->parent_root);
2c686537 6041
31db9f7c
AB
6042 kfree(arg);
6043 vfree(clone_sources_tmp);
6044
6045 if (sctx) {
6046 if (sctx->send_filp)
6047 fput(sctx->send_filp);
6048
6049 vfree(sctx->clone_roots);
6050 vfree(sctx->send_buf);
6051 vfree(sctx->read_buf);
6052
6053 name_cache_free(sctx);
6054
6055 kfree(sctx);
6056 }
6057
6058 return ret;
6059}
This page took 0.677498 seconds and 5 git commands to generate.