Btrfs: don't break in the final loop of find_extent_clone
[deliverable/linux.git] / fs / btrfs / send.c
CommitLineData
31db9f7c
AB
1/*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/bsearch.h>
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/sort.h>
23#include <linux/mount.h>
24#include <linux/xattr.h>
25#include <linux/posix_acl_xattr.h>
26#include <linux/radix-tree.h>
27#include <linux/crc32c.h>
a1857ebe 28#include <linux/vmalloc.h>
31db9f7c
AB
29
30#include "send.h"
31#include "backref.h"
32#include "locking.h"
33#include "disk-io.h"
34#include "btrfs_inode.h"
35#include "transaction.h"
36
37static int g_verbose = 0;
38
39#define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
40
41/*
42 * A fs_path is a helper to dynamically build path names with unknown size.
43 * It reallocates the internal buffer on demand.
44 * It allows fast adding of path elements on the right side (normal path) and
45 * fast adding to the left side (reversed path). A reversed path can also be
46 * unreversed if needed.
47 */
48struct fs_path {
49 union {
50 struct {
51 char *start;
52 char *end;
53 char *prepared;
54
55 char *buf;
56 int buf_len;
57 int reversed:1;
58 int virtual_mem:1;
59 char inline_buf[];
60 };
61 char pad[PAGE_SIZE];
62 };
63};
64#define FS_PATH_INLINE_SIZE \
65 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
66
67
68/* reused for each extent */
69struct clone_root {
70 struct btrfs_root *root;
71 u64 ino;
72 u64 offset;
73
74 u64 found_refs;
75};
76
77#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
78#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
79
80struct send_ctx {
81 struct file *send_filp;
82 loff_t send_off;
83 char *send_buf;
84 u32 send_size;
85 u32 send_max_size;
86 u64 total_send_size;
87 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
88
89 struct vfsmount *mnt;
90
91 struct btrfs_root *send_root;
92 struct btrfs_root *parent_root;
93 struct clone_root *clone_roots;
94 int clone_roots_cnt;
95
96 /* current state of the compare_tree call */
97 struct btrfs_path *left_path;
98 struct btrfs_path *right_path;
99 struct btrfs_key *cmp_key;
100
101 /*
102 * infos of the currently processed inode. In case of deleted inodes,
103 * these are the values from the deleted inode.
104 */
105 u64 cur_ino;
106 u64 cur_inode_gen;
107 int cur_inode_new;
108 int cur_inode_new_gen;
109 int cur_inode_deleted;
31db9f7c
AB
110 u64 cur_inode_size;
111 u64 cur_inode_mode;
112
113 u64 send_progress;
114
115 struct list_head new_refs;
116 struct list_head deleted_refs;
117
118 struct radix_tree_root name_cache;
119 struct list_head name_cache_list;
120 int name_cache_size;
121
122 struct file *cur_inode_filp;
123 char *read_buf;
124};
125
126struct name_cache_entry {
127 struct list_head list;
31db9f7c
AB
128 u64 ino;
129 u64 gen;
130 u64 parent_ino;
131 u64 parent_gen;
132 int ret;
133 int need_later_update;
134 int name_len;
135 char name[];
136};
137
138static void fs_path_reset(struct fs_path *p)
139{
140 if (p->reversed) {
141 p->start = p->buf + p->buf_len - 1;
142 p->end = p->start;
143 *p->start = 0;
144 } else {
145 p->start = p->buf;
146 p->end = p->start;
147 *p->start = 0;
148 }
149}
150
151static struct fs_path *fs_path_alloc(struct send_ctx *sctx)
152{
153 struct fs_path *p;
154
155 p = kmalloc(sizeof(*p), GFP_NOFS);
156 if (!p)
157 return NULL;
158 p->reversed = 0;
159 p->virtual_mem = 0;
160 p->buf = p->inline_buf;
161 p->buf_len = FS_PATH_INLINE_SIZE;
162 fs_path_reset(p);
163 return p;
164}
165
166static struct fs_path *fs_path_alloc_reversed(struct send_ctx *sctx)
167{
168 struct fs_path *p;
169
170 p = fs_path_alloc(sctx);
171 if (!p)
172 return NULL;
173 p->reversed = 1;
174 fs_path_reset(p);
175 return p;
176}
177
178static void fs_path_free(struct send_ctx *sctx, struct fs_path *p)
179{
180 if (!p)
181 return;
182 if (p->buf != p->inline_buf) {
183 if (p->virtual_mem)
184 vfree(p->buf);
185 else
186 kfree(p->buf);
187 }
188 kfree(p);
189}
190
191static int fs_path_len(struct fs_path *p)
192{
193 return p->end - p->start;
194}
195
196static int fs_path_ensure_buf(struct fs_path *p, int len)
197{
198 char *tmp_buf;
199 int path_len;
200 int old_buf_len;
201
202 len++;
203
204 if (p->buf_len >= len)
205 return 0;
206
207 path_len = p->end - p->start;
208 old_buf_len = p->buf_len;
209 len = PAGE_ALIGN(len);
210
211 if (p->buf == p->inline_buf) {
212 tmp_buf = kmalloc(len, GFP_NOFS);
213 if (!tmp_buf) {
214 tmp_buf = vmalloc(len);
215 if (!tmp_buf)
216 return -ENOMEM;
217 p->virtual_mem = 1;
218 }
219 memcpy(tmp_buf, p->buf, p->buf_len);
220 p->buf = tmp_buf;
221 p->buf_len = len;
222 } else {
223 if (p->virtual_mem) {
224 tmp_buf = vmalloc(len);
225 if (!tmp_buf)
226 return -ENOMEM;
227 memcpy(tmp_buf, p->buf, p->buf_len);
228 vfree(p->buf);
229 } else {
230 tmp_buf = krealloc(p->buf, len, GFP_NOFS);
231 if (!tmp_buf) {
232 tmp_buf = vmalloc(len);
233 if (!tmp_buf)
234 return -ENOMEM;
235 memcpy(tmp_buf, p->buf, p->buf_len);
236 kfree(p->buf);
237 p->virtual_mem = 1;
238 }
239 }
240 p->buf = tmp_buf;
241 p->buf_len = len;
242 }
243 if (p->reversed) {
244 tmp_buf = p->buf + old_buf_len - path_len - 1;
245 p->end = p->buf + p->buf_len - 1;
246 p->start = p->end - path_len;
247 memmove(p->start, tmp_buf, path_len + 1);
248 } else {
249 p->start = p->buf;
250 p->end = p->start + path_len;
251 }
252 return 0;
253}
254
255static int fs_path_prepare_for_add(struct fs_path *p, int name_len)
256{
257 int ret;
258 int new_len;
259
260 new_len = p->end - p->start + name_len;
261 if (p->start != p->end)
262 new_len++;
263 ret = fs_path_ensure_buf(p, new_len);
264 if (ret < 0)
265 goto out;
266
267 if (p->reversed) {
268 if (p->start != p->end)
269 *--p->start = '/';
270 p->start -= name_len;
271 p->prepared = p->start;
272 } else {
273 if (p->start != p->end)
274 *p->end++ = '/';
275 p->prepared = p->end;
276 p->end += name_len;
277 *p->end = 0;
278 }
279
280out:
281 return ret;
282}
283
284static int fs_path_add(struct fs_path *p, const char *name, int name_len)
285{
286 int ret;
287
288 ret = fs_path_prepare_for_add(p, name_len);
289 if (ret < 0)
290 goto out;
291 memcpy(p->prepared, name, name_len);
292 p->prepared = NULL;
293
294out:
295 return ret;
296}
297
298static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
299{
300 int ret;
301
302 ret = fs_path_prepare_for_add(p, p2->end - p2->start);
303 if (ret < 0)
304 goto out;
305 memcpy(p->prepared, p2->start, p2->end - p2->start);
306 p->prepared = NULL;
307
308out:
309 return ret;
310}
311
312static int fs_path_add_from_extent_buffer(struct fs_path *p,
313 struct extent_buffer *eb,
314 unsigned long off, int len)
315{
316 int ret;
317
318 ret = fs_path_prepare_for_add(p, len);
319 if (ret < 0)
320 goto out;
321
322 read_extent_buffer(eb, p->prepared, off, len);
323 p->prepared = NULL;
324
325out:
326 return ret;
327}
328
9ea3ef51 329#if 0
31db9f7c
AB
330static void fs_path_remove(struct fs_path *p)
331{
332 BUG_ON(p->reversed);
333 while (p->start != p->end && *p->end != '/')
334 p->end--;
335 *p->end = 0;
336}
9ea3ef51 337#endif
31db9f7c
AB
338
339static int fs_path_copy(struct fs_path *p, struct fs_path *from)
340{
341 int ret;
342
343 p->reversed = from->reversed;
344 fs_path_reset(p);
345
346 ret = fs_path_add_path(p, from);
347
348 return ret;
349}
350
351
352static void fs_path_unreverse(struct fs_path *p)
353{
354 char *tmp;
355 int len;
356
357 if (!p->reversed)
358 return;
359
360 tmp = p->start;
361 len = p->end - p->start;
362 p->start = p->buf;
363 p->end = p->start + len;
364 memmove(p->start, tmp, len + 1);
365 p->reversed = 0;
366}
367
368static struct btrfs_path *alloc_path_for_send(void)
369{
370 struct btrfs_path *path;
371
372 path = btrfs_alloc_path();
373 if (!path)
374 return NULL;
375 path->search_commit_root = 1;
376 path->skip_locking = 1;
377 return path;
378}
379
380static int write_buf(struct send_ctx *sctx, const void *buf, u32 len)
381{
382 int ret;
383 mm_segment_t old_fs;
384 u32 pos = 0;
385
386 old_fs = get_fs();
387 set_fs(KERNEL_DS);
388
389 while (pos < len) {
390 ret = vfs_write(sctx->send_filp, (char *)buf + pos, len - pos,
391 &sctx->send_off);
392 /* TODO handle that correctly */
393 /*if (ret == -ERESTARTSYS) {
394 continue;
395 }*/
396 if (ret < 0)
397 goto out;
398 if (ret == 0) {
399 ret = -EIO;
400 goto out;
401 }
402 pos += ret;
403 }
404
405 ret = 0;
406
407out:
408 set_fs(old_fs);
409 return ret;
410}
411
412static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
413{
414 struct btrfs_tlv_header *hdr;
415 int total_len = sizeof(*hdr) + len;
416 int left = sctx->send_max_size - sctx->send_size;
417
418 if (unlikely(left < total_len))
419 return -EOVERFLOW;
420
421 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
422 hdr->tlv_type = cpu_to_le16(attr);
423 hdr->tlv_len = cpu_to_le16(len);
424 memcpy(hdr + 1, data, len);
425 sctx->send_size += total_len;
426
427 return 0;
428}
429
430#if 0
431static int tlv_put_u8(struct send_ctx *sctx, u16 attr, u8 value)
432{
433 return tlv_put(sctx, attr, &value, sizeof(value));
434}
435
436static int tlv_put_u16(struct send_ctx *sctx, u16 attr, u16 value)
437{
438 __le16 tmp = cpu_to_le16(value);
439 return tlv_put(sctx, attr, &tmp, sizeof(tmp));
440}
441
442static int tlv_put_u32(struct send_ctx *sctx, u16 attr, u32 value)
443{
444 __le32 tmp = cpu_to_le32(value);
445 return tlv_put(sctx, attr, &tmp, sizeof(tmp));
446}
447#endif
448
449static int tlv_put_u64(struct send_ctx *sctx, u16 attr, u64 value)
450{
451 __le64 tmp = cpu_to_le64(value);
452 return tlv_put(sctx, attr, &tmp, sizeof(tmp));
453}
454
455static int tlv_put_string(struct send_ctx *sctx, u16 attr,
456 const char *str, int len)
457{
458 if (len == -1)
459 len = strlen(str);
460 return tlv_put(sctx, attr, str, len);
461}
462
463static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
464 const u8 *uuid)
465{
466 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
467}
468
469#if 0
470static int tlv_put_timespec(struct send_ctx *sctx, u16 attr,
471 struct timespec *ts)
472{
473 struct btrfs_timespec bts;
474 bts.sec = cpu_to_le64(ts->tv_sec);
475 bts.nsec = cpu_to_le32(ts->tv_nsec);
476 return tlv_put(sctx, attr, &bts, sizeof(bts));
477}
478#endif
479
480static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
481 struct extent_buffer *eb,
482 struct btrfs_timespec *ts)
483{
484 struct btrfs_timespec bts;
485 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
486 return tlv_put(sctx, attr, &bts, sizeof(bts));
487}
488
489
490#define TLV_PUT(sctx, attrtype, attrlen, data) \
491 do { \
492 ret = tlv_put(sctx, attrtype, attrlen, data); \
493 if (ret < 0) \
494 goto tlv_put_failure; \
495 } while (0)
496
497#define TLV_PUT_INT(sctx, attrtype, bits, value) \
498 do { \
499 ret = tlv_put_u##bits(sctx, attrtype, value); \
500 if (ret < 0) \
501 goto tlv_put_failure; \
502 } while (0)
503
504#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
505#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
506#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
507#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
508#define TLV_PUT_STRING(sctx, attrtype, str, len) \
509 do { \
510 ret = tlv_put_string(sctx, attrtype, str, len); \
511 if (ret < 0) \
512 goto tlv_put_failure; \
513 } while (0)
514#define TLV_PUT_PATH(sctx, attrtype, p) \
515 do { \
516 ret = tlv_put_string(sctx, attrtype, p->start, \
517 p->end - p->start); \
518 if (ret < 0) \
519 goto tlv_put_failure; \
520 } while(0)
521#define TLV_PUT_UUID(sctx, attrtype, uuid) \
522 do { \
523 ret = tlv_put_uuid(sctx, attrtype, uuid); \
524 if (ret < 0) \
525 goto tlv_put_failure; \
526 } while (0)
527#define TLV_PUT_TIMESPEC(sctx, attrtype, ts) \
528 do { \
529 ret = tlv_put_timespec(sctx, attrtype, ts); \
530 if (ret < 0) \
531 goto tlv_put_failure; \
532 } while (0)
533#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
534 do { \
535 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
536 if (ret < 0) \
537 goto tlv_put_failure; \
538 } while (0)
539
540static int send_header(struct send_ctx *sctx)
541{
542 struct btrfs_stream_header hdr;
543
544 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
545 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
546
547 return write_buf(sctx, &hdr, sizeof(hdr));
548}
549
550/*
551 * For each command/item we want to send to userspace, we call this function.
552 */
553static int begin_cmd(struct send_ctx *sctx, int cmd)
554{
555 struct btrfs_cmd_header *hdr;
556
557 if (!sctx->send_buf) {
558 WARN_ON(1);
559 return -EINVAL;
560 }
561
562 BUG_ON(sctx->send_size);
563
564 sctx->send_size += sizeof(*hdr);
565 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
566 hdr->cmd = cpu_to_le16(cmd);
567
568 return 0;
569}
570
571static int send_cmd(struct send_ctx *sctx)
572{
573 int ret;
574 struct btrfs_cmd_header *hdr;
575 u32 crc;
576
577 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
578 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
579 hdr->crc = 0;
580
581 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
582 hdr->crc = cpu_to_le32(crc);
583
584 ret = write_buf(sctx, sctx->send_buf, sctx->send_size);
585
586 sctx->total_send_size += sctx->send_size;
587 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
588 sctx->send_size = 0;
589
590 return ret;
591}
592
593/*
594 * Sends a move instruction to user space
595 */
596static int send_rename(struct send_ctx *sctx,
597 struct fs_path *from, struct fs_path *to)
598{
599 int ret;
600
601verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
602
603 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
604 if (ret < 0)
605 goto out;
606
607 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
608 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
609
610 ret = send_cmd(sctx);
611
612tlv_put_failure:
613out:
614 return ret;
615}
616
617/*
618 * Sends a link instruction to user space
619 */
620static int send_link(struct send_ctx *sctx,
621 struct fs_path *path, struct fs_path *lnk)
622{
623 int ret;
624
625verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
626
627 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
628 if (ret < 0)
629 goto out;
630
631 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
632 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
633
634 ret = send_cmd(sctx);
635
636tlv_put_failure:
637out:
638 return ret;
639}
640
641/*
642 * Sends an unlink instruction to user space
643 */
644static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
645{
646 int ret;
647
648verbose_printk("btrfs: send_unlink %s\n", path->start);
649
650 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
651 if (ret < 0)
652 goto out;
653
654 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
655
656 ret = send_cmd(sctx);
657
658tlv_put_failure:
659out:
660 return ret;
661}
662
663/*
664 * Sends a rmdir instruction to user space
665 */
666static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
667{
668 int ret;
669
670verbose_printk("btrfs: send_rmdir %s\n", path->start);
671
672 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
673 if (ret < 0)
674 goto out;
675
676 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
677
678 ret = send_cmd(sctx);
679
680tlv_put_failure:
681out:
682 return ret;
683}
684
685/*
686 * Helper function to retrieve some fields from an inode item.
687 */
688static int get_inode_info(struct btrfs_root *root,
689 u64 ino, u64 *size, u64 *gen,
85a7b33b
AB
690 u64 *mode, u64 *uid, u64 *gid,
691 u64 *rdev)
31db9f7c
AB
692{
693 int ret;
694 struct btrfs_inode_item *ii;
695 struct btrfs_key key;
696 struct btrfs_path *path;
697
698 path = alloc_path_for_send();
699 if (!path)
700 return -ENOMEM;
701
702 key.objectid = ino;
703 key.type = BTRFS_INODE_ITEM_KEY;
704 key.offset = 0;
705 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
706 if (ret < 0)
707 goto out;
708 if (ret) {
709 ret = -ENOENT;
710 goto out;
711 }
712
713 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
714 struct btrfs_inode_item);
715 if (size)
716 *size = btrfs_inode_size(path->nodes[0], ii);
717 if (gen)
718 *gen = btrfs_inode_generation(path->nodes[0], ii);
719 if (mode)
720 *mode = btrfs_inode_mode(path->nodes[0], ii);
721 if (uid)
722 *uid = btrfs_inode_uid(path->nodes[0], ii);
723 if (gid)
724 *gid = btrfs_inode_gid(path->nodes[0], ii);
85a7b33b
AB
725 if (rdev)
726 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
31db9f7c
AB
727
728out:
729 btrfs_free_path(path);
730 return ret;
731}
732
733typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
734 struct fs_path *p,
735 void *ctx);
736
737/*
738 * Helper function to iterate the entries in ONE btrfs_inode_ref.
739 * The iterate callback may return a non zero value to stop iteration. This can
740 * be a negative value for error codes or 1 to simply stop it.
741 *
742 * path must point to the INODE_REF when called.
743 */
744static int iterate_inode_ref(struct send_ctx *sctx,
745 struct btrfs_root *root, struct btrfs_path *path,
746 struct btrfs_key *found_key, int resolve,
747 iterate_inode_ref_t iterate, void *ctx)
748{
749 struct extent_buffer *eb;
750 struct btrfs_item *item;
751 struct btrfs_inode_ref *iref;
752 struct btrfs_path *tmp_path;
753 struct fs_path *p;
754 u32 cur;
755 u32 len;
756 u32 total;
757 int slot;
758 u32 name_len;
759 char *start;
760 int ret = 0;
761 int num;
762 int index;
763
764 p = fs_path_alloc_reversed(sctx);
765 if (!p)
766 return -ENOMEM;
767
768 tmp_path = alloc_path_for_send();
769 if (!tmp_path) {
770 fs_path_free(sctx, p);
771 return -ENOMEM;
772 }
773
774 eb = path->nodes[0];
775 slot = path->slots[0];
776 item = btrfs_item_nr(eb, slot);
777 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
778 cur = 0;
779 len = 0;
780 total = btrfs_item_size(eb, item);
781
782 num = 0;
783 while (cur < total) {
784 fs_path_reset(p);
785
786 name_len = btrfs_inode_ref_name_len(eb, iref);
787 index = btrfs_inode_ref_index(eb, iref);
788 if (resolve) {
789 start = btrfs_iref_to_path(root, tmp_path, iref, eb,
790 found_key->offset, p->buf,
791 p->buf_len);
792 if (IS_ERR(start)) {
793 ret = PTR_ERR(start);
794 goto out;
795 }
796 if (start < p->buf) {
797 /* overflow , try again with larger buffer */
798 ret = fs_path_ensure_buf(p,
799 p->buf_len + p->buf - start);
800 if (ret < 0)
801 goto out;
802 start = btrfs_iref_to_path(root, tmp_path, iref,
803 eb, found_key->offset, p->buf,
804 p->buf_len);
805 if (IS_ERR(start)) {
806 ret = PTR_ERR(start);
807 goto out;
808 }
809 BUG_ON(start < p->buf);
810 }
811 p->start = start;
812 } else {
813 ret = fs_path_add_from_extent_buffer(p, eb,
814 (unsigned long)(iref + 1), name_len);
815 if (ret < 0)
816 goto out;
817 }
818
819
820 len = sizeof(*iref) + name_len;
821 iref = (struct btrfs_inode_ref *)((char *)iref + len);
822 cur += len;
823
824 ret = iterate(num, found_key->offset, index, p, ctx);
825 if (ret)
826 goto out;
827
828 num++;
829 }
830
831out:
832 btrfs_free_path(tmp_path);
833 fs_path_free(sctx, p);
834 return ret;
835}
836
837typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
838 const char *name, int name_len,
839 const char *data, int data_len,
840 u8 type, void *ctx);
841
842/*
843 * Helper function to iterate the entries in ONE btrfs_dir_item.
844 * The iterate callback may return a non zero value to stop iteration. This can
845 * be a negative value for error codes or 1 to simply stop it.
846 *
847 * path must point to the dir item when called.
848 */
849static int iterate_dir_item(struct send_ctx *sctx,
850 struct btrfs_root *root, struct btrfs_path *path,
851 struct btrfs_key *found_key,
852 iterate_dir_item_t iterate, void *ctx)
853{
854 int ret = 0;
855 struct extent_buffer *eb;
856 struct btrfs_item *item;
857 struct btrfs_dir_item *di;
858 struct btrfs_path *tmp_path = NULL;
859 struct btrfs_key di_key;
860 char *buf = NULL;
861 char *buf2 = NULL;
862 int buf_len;
863 int buf_virtual = 0;
864 u32 name_len;
865 u32 data_len;
866 u32 cur;
867 u32 len;
868 u32 total;
869 int slot;
870 int num;
871 u8 type;
872
873 buf_len = PAGE_SIZE;
874 buf = kmalloc(buf_len, GFP_NOFS);
875 if (!buf) {
876 ret = -ENOMEM;
877 goto out;
878 }
879
880 tmp_path = alloc_path_for_send();
881 if (!tmp_path) {
882 ret = -ENOMEM;
883 goto out;
884 }
885
886 eb = path->nodes[0];
887 slot = path->slots[0];
888 item = btrfs_item_nr(eb, slot);
889 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
890 cur = 0;
891 len = 0;
892 total = btrfs_item_size(eb, item);
893
894 num = 0;
895 while (cur < total) {
896 name_len = btrfs_dir_name_len(eb, di);
897 data_len = btrfs_dir_data_len(eb, di);
898 type = btrfs_dir_type(eb, di);
899 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
900
901 if (name_len + data_len > buf_len) {
902 buf_len = PAGE_ALIGN(name_len + data_len);
903 if (buf_virtual) {
904 buf2 = vmalloc(buf_len);
905 if (!buf2) {
906 ret = -ENOMEM;
907 goto out;
908 }
909 vfree(buf);
910 } else {
911 buf2 = krealloc(buf, buf_len, GFP_NOFS);
912 if (!buf2) {
913 buf2 = vmalloc(buf_len);
914 if (!buf2) {
915 ret = -ENOMEM;
916 goto out;
917 }
918 kfree(buf);
919 buf_virtual = 1;
920 }
921 }
922
923 buf = buf2;
924 buf2 = NULL;
925 }
926
927 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
928 name_len + data_len);
929
930 len = sizeof(*di) + name_len + data_len;
931 di = (struct btrfs_dir_item *)((char *)di + len);
932 cur += len;
933
934 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
935 data_len, type, ctx);
936 if (ret < 0)
937 goto out;
938 if (ret) {
939 ret = 0;
940 goto out;
941 }
942
943 num++;
944 }
945
946out:
947 btrfs_free_path(tmp_path);
948 if (buf_virtual)
949 vfree(buf);
950 else
951 kfree(buf);
952 return ret;
953}
954
955static int __copy_first_ref(int num, u64 dir, int index,
956 struct fs_path *p, void *ctx)
957{
958 int ret;
959 struct fs_path *pt = ctx;
960
961 ret = fs_path_copy(pt, p);
962 if (ret < 0)
963 return ret;
964
965 /* we want the first only */
966 return 1;
967}
968
969/*
970 * Retrieve the first path of an inode. If an inode has more then one
971 * ref/hardlink, this is ignored.
972 */
973static int get_inode_path(struct send_ctx *sctx, struct btrfs_root *root,
974 u64 ino, struct fs_path *path)
975{
976 int ret;
977 struct btrfs_key key, found_key;
978 struct btrfs_path *p;
979
980 p = alloc_path_for_send();
981 if (!p)
982 return -ENOMEM;
983
984 fs_path_reset(path);
985
986 key.objectid = ino;
987 key.type = BTRFS_INODE_REF_KEY;
988 key.offset = 0;
989
990 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
991 if (ret < 0)
992 goto out;
993 if (ret) {
994 ret = 1;
995 goto out;
996 }
997 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
998 if (found_key.objectid != ino ||
999 found_key.type != BTRFS_INODE_REF_KEY) {
1000 ret = -ENOENT;
1001 goto out;
1002 }
1003
1004 ret = iterate_inode_ref(sctx, root, p, &found_key, 1,
1005 __copy_first_ref, path);
1006 if (ret < 0)
1007 goto out;
1008 ret = 0;
1009
1010out:
1011 btrfs_free_path(p);
1012 return ret;
1013}
1014
1015struct backref_ctx {
1016 struct send_ctx *sctx;
1017
1018 /* number of total found references */
1019 u64 found;
1020
1021 /*
1022 * used for clones found in send_root. clones found behind cur_objectid
1023 * and cur_offset are not considered as allowed clones.
1024 */
1025 u64 cur_objectid;
1026 u64 cur_offset;
1027
1028 /* may be truncated in case it's the last extent in a file */
1029 u64 extent_len;
1030
1031 /* Just to check for bugs in backref resolving */
ee849c04 1032 int found_itself;
31db9f7c
AB
1033};
1034
1035static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1036{
1037 u64 root = (u64)key;
1038 struct clone_root *cr = (struct clone_root *)elt;
1039
1040 if (root < cr->root->objectid)
1041 return -1;
1042 if (root > cr->root->objectid)
1043 return 1;
1044 return 0;
1045}
1046
1047static int __clone_root_cmp_sort(const void *e1, const void *e2)
1048{
1049 struct clone_root *cr1 = (struct clone_root *)e1;
1050 struct clone_root *cr2 = (struct clone_root *)e2;
1051
1052 if (cr1->root->objectid < cr2->root->objectid)
1053 return -1;
1054 if (cr1->root->objectid > cr2->root->objectid)
1055 return 1;
1056 return 0;
1057}
1058
1059/*
1060 * Called for every backref that is found for the current extent.
1061 */
1062static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1063{
1064 struct backref_ctx *bctx = ctx_;
1065 struct clone_root *found;
1066 int ret;
1067 u64 i_size;
1068
1069 /* First check if the root is in the list of accepted clone sources */
1070 found = bsearch((void *)root, bctx->sctx->clone_roots,
1071 bctx->sctx->clone_roots_cnt,
1072 sizeof(struct clone_root),
1073 __clone_root_cmp_bsearch);
1074 if (!found)
1075 return 0;
1076
1077 if (found->root == bctx->sctx->send_root &&
1078 ino == bctx->cur_objectid &&
1079 offset == bctx->cur_offset) {
ee849c04 1080 bctx->found_itself = 1;
31db9f7c
AB
1081 }
1082
1083 /*
1084 * There are inodes that have extents that lie behind it's i_size. Don't
1085 * accept clones from these extents.
1086 */
85a7b33b
AB
1087 ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL,
1088 NULL);
31db9f7c
AB
1089 if (ret < 0)
1090 return ret;
1091
1092 if (offset + bctx->extent_len > i_size)
1093 return 0;
1094
1095 /*
1096 * Make sure we don't consider clones from send_root that are
1097 * behind the current inode/offset.
1098 */
1099 if (found->root == bctx->sctx->send_root) {
1100 /*
1101 * TODO for the moment we don't accept clones from the inode
1102 * that is currently send. We may change this when
1103 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1104 * file.
1105 */
1106 if (ino >= bctx->cur_objectid)
1107 return 0;
1108 /*if (ino > ctx->cur_objectid)
1109 return 0;
1110 if (offset + ctx->extent_len > ctx->cur_offset)
1111 return 0;*/
31db9f7c
AB
1112 }
1113
1114 bctx->found++;
1115 found->found_refs++;
1116 if (ino < found->ino) {
1117 found->ino = ino;
1118 found->offset = offset;
1119 } else if (found->ino == ino) {
1120 /*
1121 * same extent found more then once in the same file.
1122 */
1123 if (found->offset > offset + bctx->extent_len)
1124 found->offset = offset;
1125 }
1126
1127 return 0;
1128}
1129
1130/*
1131 * path must point to the extent item when called.
1132 */
1133static int find_extent_clone(struct send_ctx *sctx,
1134 struct btrfs_path *path,
1135 u64 ino, u64 data_offset,
1136 u64 ino_size,
1137 struct clone_root **found)
1138{
1139 int ret;
1140 int extent_type;
1141 u64 logical;
1142 u64 num_bytes;
1143 u64 extent_item_pos;
1144 struct btrfs_file_extent_item *fi;
1145 struct extent_buffer *eb = path->nodes[0];
35075bb0 1146 struct backref_ctx *backref_ctx = NULL;
31db9f7c
AB
1147 struct clone_root *cur_clone_root;
1148 struct btrfs_key found_key;
1149 struct btrfs_path *tmp_path;
1150 u32 i;
1151
1152 tmp_path = alloc_path_for_send();
1153 if (!tmp_path)
1154 return -ENOMEM;
1155
35075bb0
AB
1156 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1157 if (!backref_ctx) {
1158 ret = -ENOMEM;
1159 goto out;
1160 }
1161
31db9f7c
AB
1162 if (data_offset >= ino_size) {
1163 /*
1164 * There may be extents that lie behind the file's size.
1165 * I at least had this in combination with snapshotting while
1166 * writing large files.
1167 */
1168 ret = 0;
1169 goto out;
1170 }
1171
1172 fi = btrfs_item_ptr(eb, path->slots[0],
1173 struct btrfs_file_extent_item);
1174 extent_type = btrfs_file_extent_type(eb, fi);
1175 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1176 ret = -ENOENT;
1177 goto out;
1178 }
1179
1180 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1181 logical = btrfs_file_extent_disk_bytenr(eb, fi);
1182 if (logical == 0) {
1183 ret = -ENOENT;
1184 goto out;
1185 }
1186 logical += btrfs_file_extent_offset(eb, fi);
1187
1188 ret = extent_from_logical(sctx->send_root->fs_info,
1189 logical, tmp_path, &found_key);
1190 btrfs_release_path(tmp_path);
1191
1192 if (ret < 0)
1193 goto out;
1194 if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1195 ret = -EIO;
1196 goto out;
1197 }
1198
1199 /*
1200 * Setup the clone roots.
1201 */
1202 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1203 cur_clone_root = sctx->clone_roots + i;
1204 cur_clone_root->ino = (u64)-1;
1205 cur_clone_root->offset = 0;
1206 cur_clone_root->found_refs = 0;
1207 }
1208
35075bb0
AB
1209 backref_ctx->sctx = sctx;
1210 backref_ctx->found = 0;
1211 backref_ctx->cur_objectid = ino;
1212 backref_ctx->cur_offset = data_offset;
1213 backref_ctx->found_itself = 0;
1214 backref_ctx->extent_len = num_bytes;
31db9f7c
AB
1215
1216 /*
1217 * The last extent of a file may be too large due to page alignment.
1218 * We need to adjust extent_len in this case so that the checks in
1219 * __iterate_backrefs work.
1220 */
1221 if (data_offset + num_bytes >= ino_size)
35075bb0 1222 backref_ctx->extent_len = ino_size - data_offset;
31db9f7c
AB
1223
1224 /*
1225 * Now collect all backrefs.
1226 */
1227 extent_item_pos = logical - found_key.objectid;
1228 ret = iterate_extent_inodes(sctx->send_root->fs_info,
1229 found_key.objectid, extent_item_pos, 1,
35075bb0 1230 __iterate_backrefs, backref_ctx);
31db9f7c
AB
1231 if (ret < 0)
1232 goto out;
1233
35075bb0 1234 if (!backref_ctx->found_itself) {
31db9f7c
AB
1235 /* found a bug in backref code? */
1236 ret = -EIO;
1237 printk(KERN_ERR "btrfs: ERROR did not find backref in "
1238 "send_root. inode=%llu, offset=%llu, "
1239 "logical=%llu\n",
1240 ino, data_offset, logical);
1241 goto out;
1242 }
1243
1244verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1245 "ino=%llu, "
1246 "num_bytes=%llu, logical=%llu\n",
1247 data_offset, ino, num_bytes, logical);
1248
35075bb0 1249 if (!backref_ctx->found)
31db9f7c
AB
1250 verbose_printk("btrfs: no clones found\n");
1251
1252 cur_clone_root = NULL;
1253 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1254 if (sctx->clone_roots[i].found_refs) {
1255 if (!cur_clone_root)
1256 cur_clone_root = sctx->clone_roots + i;
1257 else if (sctx->clone_roots[i].root == sctx->send_root)
1258 /* prefer clones from send_root over others */
1259 cur_clone_root = sctx->clone_roots + i;
31db9f7c
AB
1260 }
1261
1262 }
1263
1264 if (cur_clone_root) {
1265 *found = cur_clone_root;
1266 ret = 0;
1267 } else {
1268 ret = -ENOENT;
1269 }
1270
1271out:
1272 btrfs_free_path(tmp_path);
35075bb0 1273 kfree(backref_ctx);
31db9f7c
AB
1274 return ret;
1275}
1276
1277static int read_symlink(struct send_ctx *sctx,
1278 struct btrfs_root *root,
1279 u64 ino,
1280 struct fs_path *dest)
1281{
1282 int ret;
1283 struct btrfs_path *path;
1284 struct btrfs_key key;
1285 struct btrfs_file_extent_item *ei;
1286 u8 type;
1287 u8 compression;
1288 unsigned long off;
1289 int len;
1290
1291 path = alloc_path_for_send();
1292 if (!path)
1293 return -ENOMEM;
1294
1295 key.objectid = ino;
1296 key.type = BTRFS_EXTENT_DATA_KEY;
1297 key.offset = 0;
1298 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1299 if (ret < 0)
1300 goto out;
1301 BUG_ON(ret);
1302
1303 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1304 struct btrfs_file_extent_item);
1305 type = btrfs_file_extent_type(path->nodes[0], ei);
1306 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1307 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1308 BUG_ON(compression);
1309
1310 off = btrfs_file_extent_inline_start(ei);
1311 len = btrfs_file_extent_inline_len(path->nodes[0], ei);
1312
1313 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1314 if (ret < 0)
1315 goto out;
1316
1317out:
1318 btrfs_free_path(path);
1319 return ret;
1320}
1321
1322/*
1323 * Helper function to generate a file name that is unique in the root of
1324 * send_root and parent_root. This is used to generate names for orphan inodes.
1325 */
1326static int gen_unique_name(struct send_ctx *sctx,
1327 u64 ino, u64 gen,
1328 struct fs_path *dest)
1329{
1330 int ret = 0;
1331 struct btrfs_path *path;
1332 struct btrfs_dir_item *di;
1333 char tmp[64];
1334 int len;
1335 u64 idx = 0;
1336
1337 path = alloc_path_for_send();
1338 if (!path)
1339 return -ENOMEM;
1340
1341 while (1) {
1342 len = snprintf(tmp, sizeof(tmp) - 1, "o%llu-%llu-%llu",
1343 ino, gen, idx);
1344 if (len >= sizeof(tmp)) {
1345 /* should really not happen */
1346 ret = -EOVERFLOW;
1347 goto out;
1348 }
1349
1350 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1351 path, BTRFS_FIRST_FREE_OBJECTID,
1352 tmp, strlen(tmp), 0);
1353 btrfs_release_path(path);
1354 if (IS_ERR(di)) {
1355 ret = PTR_ERR(di);
1356 goto out;
1357 }
1358 if (di) {
1359 /* not unique, try again */
1360 idx++;
1361 continue;
1362 }
1363
1364 if (!sctx->parent_root) {
1365 /* unique */
1366 ret = 0;
1367 break;
1368 }
1369
1370 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1371 path, BTRFS_FIRST_FREE_OBJECTID,
1372 tmp, strlen(tmp), 0);
1373 btrfs_release_path(path);
1374 if (IS_ERR(di)) {
1375 ret = PTR_ERR(di);
1376 goto out;
1377 }
1378 if (di) {
1379 /* not unique, try again */
1380 idx++;
1381 continue;
1382 }
1383 /* unique */
1384 break;
1385 }
1386
1387 ret = fs_path_add(dest, tmp, strlen(tmp));
1388
1389out:
1390 btrfs_free_path(path);
1391 return ret;
1392}
1393
1394enum inode_state {
1395 inode_state_no_change,
1396 inode_state_will_create,
1397 inode_state_did_create,
1398 inode_state_will_delete,
1399 inode_state_did_delete,
1400};
1401
1402static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1403{
1404 int ret;
1405 int left_ret;
1406 int right_ret;
1407 u64 left_gen;
1408 u64 right_gen;
1409
1410 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
85a7b33b 1411 NULL, NULL);
31db9f7c
AB
1412 if (ret < 0 && ret != -ENOENT)
1413 goto out;
1414 left_ret = ret;
1415
1416 if (!sctx->parent_root) {
1417 right_ret = -ENOENT;
1418 } else {
1419 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
85a7b33b 1420 NULL, NULL, NULL, NULL);
31db9f7c
AB
1421 if (ret < 0 && ret != -ENOENT)
1422 goto out;
1423 right_ret = ret;
1424 }
1425
1426 if (!left_ret && !right_ret) {
1427 if (left_gen == gen && right_gen == gen)
1428 ret = inode_state_no_change;
1429 else if (left_gen == gen) {
1430 if (ino < sctx->send_progress)
1431 ret = inode_state_did_create;
1432 else
1433 ret = inode_state_will_create;
1434 } else if (right_gen == gen) {
1435 if (ino < sctx->send_progress)
1436 ret = inode_state_did_delete;
1437 else
1438 ret = inode_state_will_delete;
1439 } else {
1440 ret = -ENOENT;
1441 }
1442 } else if (!left_ret) {
1443 if (left_gen == gen) {
1444 if (ino < sctx->send_progress)
1445 ret = inode_state_did_create;
1446 else
1447 ret = inode_state_will_create;
1448 } else {
1449 ret = -ENOENT;
1450 }
1451 } else if (!right_ret) {
1452 if (right_gen == gen) {
1453 if (ino < sctx->send_progress)
1454 ret = inode_state_did_delete;
1455 else
1456 ret = inode_state_will_delete;
1457 } else {
1458 ret = -ENOENT;
1459 }
1460 } else {
1461 ret = -ENOENT;
1462 }
1463
1464out:
1465 return ret;
1466}
1467
1468static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1469{
1470 int ret;
1471
1472 ret = get_cur_inode_state(sctx, ino, gen);
1473 if (ret < 0)
1474 goto out;
1475
1476 if (ret == inode_state_no_change ||
1477 ret == inode_state_did_create ||
1478 ret == inode_state_will_delete)
1479 ret = 1;
1480 else
1481 ret = 0;
1482
1483out:
1484 return ret;
1485}
1486
1487/*
1488 * Helper function to lookup a dir item in a dir.
1489 */
1490static int lookup_dir_item_inode(struct btrfs_root *root,
1491 u64 dir, const char *name, int name_len,
1492 u64 *found_inode,
1493 u8 *found_type)
1494{
1495 int ret = 0;
1496 struct btrfs_dir_item *di;
1497 struct btrfs_key key;
1498 struct btrfs_path *path;
1499
1500 path = alloc_path_for_send();
1501 if (!path)
1502 return -ENOMEM;
1503
1504 di = btrfs_lookup_dir_item(NULL, root, path,
1505 dir, name, name_len, 0);
1506 if (!di) {
1507 ret = -ENOENT;
1508 goto out;
1509 }
1510 if (IS_ERR(di)) {
1511 ret = PTR_ERR(di);
1512 goto out;
1513 }
1514 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1515 *found_inode = key.objectid;
1516 *found_type = btrfs_dir_type(path->nodes[0], di);
1517
1518out:
1519 btrfs_free_path(path);
1520 return ret;
1521}
1522
1523static int get_first_ref(struct send_ctx *sctx,
1524 struct btrfs_root *root, u64 ino,
1525 u64 *dir, u64 *dir_gen, struct fs_path *name)
1526{
1527 int ret;
1528 struct btrfs_key key;
1529 struct btrfs_key found_key;
1530 struct btrfs_path *path;
1531 struct btrfs_inode_ref *iref;
1532 int len;
1533
1534 path = alloc_path_for_send();
1535 if (!path)
1536 return -ENOMEM;
1537
1538 key.objectid = ino;
1539 key.type = BTRFS_INODE_REF_KEY;
1540 key.offset = 0;
1541
1542 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1543 if (ret < 0)
1544 goto out;
1545 if (!ret)
1546 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1547 path->slots[0]);
1548 if (ret || found_key.objectid != key.objectid ||
1549 found_key.type != key.type) {
1550 ret = -ENOENT;
1551 goto out;
1552 }
1553
1554 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1555 struct btrfs_inode_ref);
1556 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1557 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1558 (unsigned long)(iref + 1), len);
1559 if (ret < 0)
1560 goto out;
1561 btrfs_release_path(path);
1562
1563 ret = get_inode_info(root, found_key.offset, NULL, dir_gen, NULL, NULL,
85a7b33b 1564 NULL, NULL);
31db9f7c
AB
1565 if (ret < 0)
1566 goto out;
1567
1568 *dir = found_key.offset;
1569
1570out:
1571 btrfs_free_path(path);
1572 return ret;
1573}
1574
1575static int is_first_ref(struct send_ctx *sctx,
1576 struct btrfs_root *root,
1577 u64 ino, u64 dir,
1578 const char *name, int name_len)
1579{
1580 int ret;
1581 struct fs_path *tmp_name;
1582 u64 tmp_dir;
1583 u64 tmp_dir_gen;
1584
1585 tmp_name = fs_path_alloc(sctx);
1586 if (!tmp_name)
1587 return -ENOMEM;
1588
1589 ret = get_first_ref(sctx, root, ino, &tmp_dir, &tmp_dir_gen, tmp_name);
1590 if (ret < 0)
1591 goto out;
1592
b9291aff 1593 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
31db9f7c
AB
1594 ret = 0;
1595 goto out;
1596 }
1597
1598 ret = memcmp(tmp_name->start, name, name_len);
1599 if (ret)
1600 ret = 0;
1601 else
1602 ret = 1;
1603
1604out:
1605 fs_path_free(sctx, tmp_name);
1606 return ret;
1607}
1608
1609static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1610 const char *name, int name_len,
1611 u64 *who_ino, u64 *who_gen)
1612{
1613 int ret = 0;
1614 u64 other_inode = 0;
1615 u8 other_type = 0;
1616
1617 if (!sctx->parent_root)
1618 goto out;
1619
1620 ret = is_inode_existent(sctx, dir, dir_gen);
1621 if (ret <= 0)
1622 goto out;
1623
1624 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1625 &other_inode, &other_type);
1626 if (ret < 0 && ret != -ENOENT)
1627 goto out;
1628 if (ret) {
1629 ret = 0;
1630 goto out;
1631 }
1632
1633 if (other_inode > sctx->send_progress) {
1634 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
85a7b33b 1635 who_gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
1636 if (ret < 0)
1637 goto out;
1638
1639 ret = 1;
1640 *who_ino = other_inode;
1641 } else {
1642 ret = 0;
1643 }
1644
1645out:
1646 return ret;
1647}
1648
1649static int did_overwrite_ref(struct send_ctx *sctx,
1650 u64 dir, u64 dir_gen,
1651 u64 ino, u64 ino_gen,
1652 const char *name, int name_len)
1653{
1654 int ret = 0;
1655 u64 gen;
1656 u64 ow_inode;
1657 u8 other_type;
1658
1659 if (!sctx->parent_root)
1660 goto out;
1661
1662 ret = is_inode_existent(sctx, dir, dir_gen);
1663 if (ret <= 0)
1664 goto out;
1665
1666 /* check if the ref was overwritten by another ref */
1667 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1668 &ow_inode, &other_type);
1669 if (ret < 0 && ret != -ENOENT)
1670 goto out;
1671 if (ret) {
1672 /* was never and will never be overwritten */
1673 ret = 0;
1674 goto out;
1675 }
1676
1677 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
85a7b33b 1678 NULL, NULL);
31db9f7c
AB
1679 if (ret < 0)
1680 goto out;
1681
1682 if (ow_inode == ino && gen == ino_gen) {
1683 ret = 0;
1684 goto out;
1685 }
1686
1687 /* we know that it is or will be overwritten. check this now */
1688 if (ow_inode < sctx->send_progress)
1689 ret = 1;
1690 else
1691 ret = 0;
1692
1693out:
1694 return ret;
1695}
1696
1697static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1698{
1699 int ret = 0;
1700 struct fs_path *name = NULL;
1701 u64 dir;
1702 u64 dir_gen;
1703
1704 if (!sctx->parent_root)
1705 goto out;
1706
1707 name = fs_path_alloc(sctx);
1708 if (!name)
1709 return -ENOMEM;
1710
1711 ret = get_first_ref(sctx, sctx->parent_root, ino, &dir, &dir_gen, name);
1712 if (ret < 0)
1713 goto out;
1714
1715 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1716 name->start, fs_path_len(name));
1717 if (ret < 0)
1718 goto out;
1719
1720out:
1721 fs_path_free(sctx, name);
1722 return ret;
1723}
1724
1725static int name_cache_insert(struct send_ctx *sctx,
1726 struct name_cache_entry *nce)
1727{
1728 int ret = 0;
1729 struct name_cache_entry **ncea;
1730
1731 ncea = radix_tree_lookup(&sctx->name_cache, nce->ino);
1732 if (ncea) {
1733 if (!ncea[0])
1734 ncea[0] = nce;
1735 else if (!ncea[1])
1736 ncea[1] = nce;
1737 else
1738 BUG();
1739 } else {
1740 ncea = kmalloc(sizeof(void *) * 2, GFP_NOFS);
1741 if (!ncea)
1742 return -ENOMEM;
1743
1744 ncea[0] = nce;
1745 ncea[1] = NULL;
1746 ret = radix_tree_insert(&sctx->name_cache, nce->ino, ncea);
1747 if (ret < 0)
1748 return ret;
1749 }
1750 list_add_tail(&nce->list, &sctx->name_cache_list);
1751 sctx->name_cache_size++;
1752
1753 return ret;
1754}
1755
1756static void name_cache_delete(struct send_ctx *sctx,
1757 struct name_cache_entry *nce)
1758{
1759 struct name_cache_entry **ncea;
1760
1761 ncea = radix_tree_lookup(&sctx->name_cache, nce->ino);
1762 BUG_ON(!ncea);
1763
1764 if (ncea[0] == nce)
1765 ncea[0] = NULL;
1766 else if (ncea[1] == nce)
1767 ncea[1] = NULL;
1768 else
1769 BUG();
1770
1771 if (!ncea[0] && !ncea[1]) {
1772 radix_tree_delete(&sctx->name_cache, nce->ino);
1773 kfree(ncea);
1774 }
1775
1776 list_del(&nce->list);
1777
1778 sctx->name_cache_size--;
1779}
1780
1781static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
1782 u64 ino, u64 gen)
1783{
1784 struct name_cache_entry **ncea;
1785
1786 ncea = radix_tree_lookup(&sctx->name_cache, ino);
1787 if (!ncea)
1788 return NULL;
1789
1790 if (ncea[0] && ncea[0]->gen == gen)
1791 return ncea[0];
1792 else if (ncea[1] && ncea[1]->gen == gen)
1793 return ncea[1];
1794 return NULL;
1795}
1796
1797static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
1798{
1799 list_del(&nce->list);
1800 list_add_tail(&nce->list, &sctx->name_cache_list);
1801}
1802
1803static void name_cache_clean_unused(struct send_ctx *sctx)
1804{
1805 struct name_cache_entry *nce;
1806
1807 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
1808 return;
1809
1810 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
1811 nce = list_entry(sctx->name_cache_list.next,
1812 struct name_cache_entry, list);
1813 name_cache_delete(sctx, nce);
1814 kfree(nce);
1815 }
1816}
1817
1818static void name_cache_free(struct send_ctx *sctx)
1819{
1820 struct name_cache_entry *nce;
1821 struct name_cache_entry *tmp;
1822
1823 list_for_each_entry_safe(nce, tmp, &sctx->name_cache_list, list) {
1824 name_cache_delete(sctx, nce);
1825 }
1826}
1827
1828static int __get_cur_name_and_parent(struct send_ctx *sctx,
1829 u64 ino, u64 gen,
1830 u64 *parent_ino,
1831 u64 *parent_gen,
1832 struct fs_path *dest)
1833{
1834 int ret;
1835 int nce_ret;
1836 struct btrfs_path *path = NULL;
1837 struct name_cache_entry *nce = NULL;
1838
1839 nce = name_cache_search(sctx, ino, gen);
1840 if (nce) {
1841 if (ino < sctx->send_progress && nce->need_later_update) {
1842 name_cache_delete(sctx, nce);
1843 kfree(nce);
1844 nce = NULL;
1845 } else {
1846 name_cache_used(sctx, nce);
1847 *parent_ino = nce->parent_ino;
1848 *parent_gen = nce->parent_gen;
1849 ret = fs_path_add(dest, nce->name, nce->name_len);
1850 if (ret < 0)
1851 goto out;
1852 ret = nce->ret;
1853 goto out;
1854 }
1855 }
1856
1857 path = alloc_path_for_send();
1858 if (!path)
1859 return -ENOMEM;
1860
1861 ret = is_inode_existent(sctx, ino, gen);
1862 if (ret < 0)
1863 goto out;
1864
1865 if (!ret) {
1866 ret = gen_unique_name(sctx, ino, gen, dest);
1867 if (ret < 0)
1868 goto out;
1869 ret = 1;
1870 goto out_cache;
1871 }
1872
1873 if (ino < sctx->send_progress)
1874 ret = get_first_ref(sctx, sctx->send_root, ino,
1875 parent_ino, parent_gen, dest);
1876 else
1877 ret = get_first_ref(sctx, sctx->parent_root, ino,
1878 parent_ino, parent_gen, dest);
1879 if (ret < 0)
1880 goto out;
1881
1882 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
1883 dest->start, dest->end - dest->start);
1884 if (ret < 0)
1885 goto out;
1886 if (ret) {
1887 fs_path_reset(dest);
1888 ret = gen_unique_name(sctx, ino, gen, dest);
1889 if (ret < 0)
1890 goto out;
1891 ret = 1;
1892 }
1893
1894out_cache:
1895 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
1896 if (!nce) {
1897 ret = -ENOMEM;
1898 goto out;
1899 }
1900
1901 nce->ino = ino;
1902 nce->gen = gen;
1903 nce->parent_ino = *parent_ino;
1904 nce->parent_gen = *parent_gen;
1905 nce->name_len = fs_path_len(dest);
1906 nce->ret = ret;
1907 strcpy(nce->name, dest->start);
31db9f7c
AB
1908
1909 if (ino < sctx->send_progress)
1910 nce->need_later_update = 0;
1911 else
1912 nce->need_later_update = 1;
1913
1914 nce_ret = name_cache_insert(sctx, nce);
1915 if (nce_ret < 0)
1916 ret = nce_ret;
1917 name_cache_clean_unused(sctx);
1918
1919out:
1920 btrfs_free_path(path);
1921 return ret;
1922}
1923
1924/*
1925 * Magic happens here. This function returns the first ref to an inode as it
1926 * would look like while receiving the stream at this point in time.
1927 * We walk the path up to the root. For every inode in between, we check if it
1928 * was already processed/sent. If yes, we continue with the parent as found
1929 * in send_root. If not, we continue with the parent as found in parent_root.
1930 * If we encounter an inode that was deleted at this point in time, we use the
1931 * inodes "orphan" name instead of the real name and stop. Same with new inodes
1932 * that were not created yet and overwritten inodes/refs.
1933 *
1934 * When do we have have orphan inodes:
1935 * 1. When an inode is freshly created and thus no valid refs are available yet
1936 * 2. When a directory lost all it's refs (deleted) but still has dir items
1937 * inside which were not processed yet (pending for move/delete). If anyone
1938 * tried to get the path to the dir items, it would get a path inside that
1939 * orphan directory.
1940 * 3. When an inode is moved around or gets new links, it may overwrite the ref
1941 * of an unprocessed inode. If in that case the first ref would be
1942 * overwritten, the overwritten inode gets "orphanized". Later when we
1943 * process this overwritten inode, it is restored at a new place by moving
1944 * the orphan inode.
1945 *
1946 * sctx->send_progress tells this function at which point in time receiving
1947 * would be.
1948 */
1949static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
1950 struct fs_path *dest)
1951{
1952 int ret = 0;
1953 struct fs_path *name = NULL;
1954 u64 parent_inode = 0;
1955 u64 parent_gen = 0;
1956 int stop = 0;
1957
1958 name = fs_path_alloc(sctx);
1959 if (!name) {
1960 ret = -ENOMEM;
1961 goto out;
1962 }
1963
1964 dest->reversed = 1;
1965 fs_path_reset(dest);
1966
1967 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
1968 fs_path_reset(name);
1969
1970 ret = __get_cur_name_and_parent(sctx, ino, gen,
1971 &parent_inode, &parent_gen, name);
1972 if (ret < 0)
1973 goto out;
1974 if (ret)
1975 stop = 1;
1976
1977 ret = fs_path_add_path(dest, name);
1978 if (ret < 0)
1979 goto out;
1980
1981 ino = parent_inode;
1982 gen = parent_gen;
1983 }
1984
1985out:
1986 fs_path_free(sctx, name);
1987 if (!ret)
1988 fs_path_unreverse(dest);
1989 return ret;
1990}
1991
1992/*
1993 * Called for regular files when sending extents data. Opens a struct file
1994 * to read from the file.
1995 */
1996static int open_cur_inode_file(struct send_ctx *sctx)
1997{
1998 int ret = 0;
1999 struct btrfs_key key;
e2aed8df 2000 struct path path;
31db9f7c
AB
2001 struct inode *inode;
2002 struct dentry *dentry;
2003 struct file *filp;
2004 int new = 0;
2005
2006 if (sctx->cur_inode_filp)
2007 goto out;
2008
2009 key.objectid = sctx->cur_ino;
2010 key.type = BTRFS_INODE_ITEM_KEY;
2011 key.offset = 0;
2012
2013 inode = btrfs_iget(sctx->send_root->fs_info->sb, &key, sctx->send_root,
2014 &new);
2015 if (IS_ERR(inode)) {
2016 ret = PTR_ERR(inode);
2017 goto out;
2018 }
2019
2020 dentry = d_obtain_alias(inode);
2021 inode = NULL;
2022 if (IS_ERR(dentry)) {
2023 ret = PTR_ERR(dentry);
2024 goto out;
2025 }
2026
e2aed8df
LT
2027 path.mnt = sctx->mnt;
2028 path.dentry = dentry;
2029 filp = dentry_open(&path, O_RDONLY | O_LARGEFILE, current_cred());
2030 dput(dentry);
31db9f7c 2031 dentry = NULL;
31db9f7c
AB
2032 if (IS_ERR(filp)) {
2033 ret = PTR_ERR(filp);
2034 goto out;
2035 }
2036 sctx->cur_inode_filp = filp;
2037
2038out:
2039 /*
2040 * no xxxput required here as every vfs op
2041 * does it by itself on failure
2042 */
2043 return ret;
2044}
2045
2046/*
2047 * Closes the struct file that was created in open_cur_inode_file
2048 */
2049static int close_cur_inode_file(struct send_ctx *sctx)
2050{
2051 int ret = 0;
2052
2053 if (!sctx->cur_inode_filp)
2054 goto out;
2055
2056 ret = filp_close(sctx->cur_inode_filp, NULL);
2057 sctx->cur_inode_filp = NULL;
2058
2059out:
2060 return ret;
2061}
2062
2063/*
2064 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2065 */
2066static int send_subvol_begin(struct send_ctx *sctx)
2067{
2068 int ret;
2069 struct btrfs_root *send_root = sctx->send_root;
2070 struct btrfs_root *parent_root = sctx->parent_root;
2071 struct btrfs_path *path;
2072 struct btrfs_key key;
2073 struct btrfs_root_ref *ref;
2074 struct extent_buffer *leaf;
2075 char *name = NULL;
2076 int namelen;
2077
2078 path = alloc_path_for_send();
2079 if (!path)
2080 return -ENOMEM;
2081
2082 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2083 if (!name) {
2084 btrfs_free_path(path);
2085 return -ENOMEM;
2086 }
2087
2088 key.objectid = send_root->objectid;
2089 key.type = BTRFS_ROOT_BACKREF_KEY;
2090 key.offset = 0;
2091
2092 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2093 &key, path, 1, 0);
2094 if (ret < 0)
2095 goto out;
2096 if (ret) {
2097 ret = -ENOENT;
2098 goto out;
2099 }
2100
2101 leaf = path->nodes[0];
2102 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2103 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2104 key.objectid != send_root->objectid) {
2105 ret = -ENOENT;
2106 goto out;
2107 }
2108 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2109 namelen = btrfs_root_ref_name_len(leaf, ref);
2110 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2111 btrfs_release_path(path);
2112
2113 if (ret < 0)
2114 goto out;
2115
2116 if (parent_root) {
2117 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2118 if (ret < 0)
2119 goto out;
2120 } else {
2121 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2122 if (ret < 0)
2123 goto out;
2124 }
2125
2126 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2127 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2128 sctx->send_root->root_item.uuid);
2129 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2130 sctx->send_root->root_item.ctransid);
2131 if (parent_root) {
2132 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2133 sctx->parent_root->root_item.uuid);
2134 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2135 sctx->parent_root->root_item.ctransid);
2136 }
2137
2138 ret = send_cmd(sctx);
2139
2140tlv_put_failure:
2141out:
2142 btrfs_free_path(path);
2143 kfree(name);
2144 return ret;
2145}
2146
2147static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2148{
2149 int ret = 0;
2150 struct fs_path *p;
2151
2152verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2153
2154 p = fs_path_alloc(sctx);
2155 if (!p)
2156 return -ENOMEM;
2157
2158 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2159 if (ret < 0)
2160 goto out;
2161
2162 ret = get_cur_path(sctx, ino, gen, p);
2163 if (ret < 0)
2164 goto out;
2165 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2166 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2167
2168 ret = send_cmd(sctx);
2169
2170tlv_put_failure:
2171out:
2172 fs_path_free(sctx, p);
2173 return ret;
2174}
2175
2176static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2177{
2178 int ret = 0;
2179 struct fs_path *p;
2180
2181verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2182
2183 p = fs_path_alloc(sctx);
2184 if (!p)
2185 return -ENOMEM;
2186
2187 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2188 if (ret < 0)
2189 goto out;
2190
2191 ret = get_cur_path(sctx, ino, gen, p);
2192 if (ret < 0)
2193 goto out;
2194 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2195 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2196
2197 ret = send_cmd(sctx);
2198
2199tlv_put_failure:
2200out:
2201 fs_path_free(sctx, p);
2202 return ret;
2203}
2204
2205static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2206{
2207 int ret = 0;
2208 struct fs_path *p;
2209
2210verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2211
2212 p = fs_path_alloc(sctx);
2213 if (!p)
2214 return -ENOMEM;
2215
2216 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2217 if (ret < 0)
2218 goto out;
2219
2220 ret = get_cur_path(sctx, ino, gen, p);
2221 if (ret < 0)
2222 goto out;
2223 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2224 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2225 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2226
2227 ret = send_cmd(sctx);
2228
2229tlv_put_failure:
2230out:
2231 fs_path_free(sctx, p);
2232 return ret;
2233}
2234
2235static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2236{
2237 int ret = 0;
2238 struct fs_path *p = NULL;
2239 struct btrfs_inode_item *ii;
2240 struct btrfs_path *path = NULL;
2241 struct extent_buffer *eb;
2242 struct btrfs_key key;
2243 int slot;
2244
2245verbose_printk("btrfs: send_utimes %llu\n", ino);
2246
2247 p = fs_path_alloc(sctx);
2248 if (!p)
2249 return -ENOMEM;
2250
2251 path = alloc_path_for_send();
2252 if (!path) {
2253 ret = -ENOMEM;
2254 goto out;
2255 }
2256
2257 key.objectid = ino;
2258 key.type = BTRFS_INODE_ITEM_KEY;
2259 key.offset = 0;
2260 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2261 if (ret < 0)
2262 goto out;
2263
2264 eb = path->nodes[0];
2265 slot = path->slots[0];
2266 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2267
2268 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2269 if (ret < 0)
2270 goto out;
2271
2272 ret = get_cur_path(sctx, ino, gen, p);
2273 if (ret < 0)
2274 goto out;
2275 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2276 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb,
2277 btrfs_inode_atime(ii));
2278 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb,
2279 btrfs_inode_mtime(ii));
2280 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb,
2281 btrfs_inode_ctime(ii));
2282 /* TODO otime? */
2283
2284 ret = send_cmd(sctx);
2285
2286tlv_put_failure:
2287out:
2288 fs_path_free(sctx, p);
2289 btrfs_free_path(path);
2290 return ret;
2291}
2292
2293/*
2294 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2295 * a valid path yet because we did not process the refs yet. So, the inode
2296 * is created as orphan.
2297 */
1f4692da 2298static int send_create_inode(struct send_ctx *sctx, u64 ino)
31db9f7c
AB
2299{
2300 int ret = 0;
31db9f7c 2301 struct fs_path *p;
31db9f7c 2302 int cmd;
1f4692da 2303 u64 gen;
31db9f7c 2304 u64 mode;
1f4692da 2305 u64 rdev;
31db9f7c 2306
1f4692da 2307verbose_printk("btrfs: send_create_inode %llu\n", ino);
31db9f7c
AB
2308
2309 p = fs_path_alloc(sctx);
2310 if (!p)
2311 return -ENOMEM;
2312
1f4692da
AB
2313 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, NULL,
2314 NULL, &rdev);
2315 if (ret < 0)
2316 goto out;
31db9f7c
AB
2317
2318 if (S_ISREG(mode))
2319 cmd = BTRFS_SEND_C_MKFILE;
2320 else if (S_ISDIR(mode))
2321 cmd = BTRFS_SEND_C_MKDIR;
2322 else if (S_ISLNK(mode))
2323 cmd = BTRFS_SEND_C_SYMLINK;
2324 else if (S_ISCHR(mode) || S_ISBLK(mode))
2325 cmd = BTRFS_SEND_C_MKNOD;
2326 else if (S_ISFIFO(mode))
2327 cmd = BTRFS_SEND_C_MKFIFO;
2328 else if (S_ISSOCK(mode))
2329 cmd = BTRFS_SEND_C_MKSOCK;
2330 else {
2331 printk(KERN_WARNING "btrfs: unexpected inode type %o",
2332 (int)(mode & S_IFMT));
2333 ret = -ENOTSUPP;
2334 goto out;
2335 }
2336
2337 ret = begin_cmd(sctx, cmd);
2338 if (ret < 0)
2339 goto out;
2340
1f4692da 2341 ret = gen_unique_name(sctx, ino, gen, p);
31db9f7c
AB
2342 if (ret < 0)
2343 goto out;
2344
2345 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
1f4692da 2346 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
31db9f7c
AB
2347
2348 if (S_ISLNK(mode)) {
2349 fs_path_reset(p);
1f4692da 2350 ret = read_symlink(sctx, sctx->send_root, ino, p);
31db9f7c
AB
2351 if (ret < 0)
2352 goto out;
2353 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2354 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2355 S_ISFIFO(mode) || S_ISSOCK(mode)) {
1f4692da 2356 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, rdev);
31db9f7c
AB
2357 }
2358
2359 ret = send_cmd(sctx);
2360 if (ret < 0)
2361 goto out;
2362
2363
2364tlv_put_failure:
2365out:
2366 fs_path_free(sctx, p);
2367 return ret;
2368}
2369
1f4692da
AB
2370/*
2371 * We need some special handling for inodes that get processed before the parent
2372 * directory got created. See process_recorded_refs for details.
2373 * This function does the check if we already created the dir out of order.
2374 */
2375static int did_create_dir(struct send_ctx *sctx, u64 dir)
2376{
2377 int ret = 0;
2378 struct btrfs_path *path = NULL;
2379 struct btrfs_key key;
2380 struct btrfs_key found_key;
2381 struct btrfs_key di_key;
2382 struct extent_buffer *eb;
2383 struct btrfs_dir_item *di;
2384 int slot;
2385
2386 path = alloc_path_for_send();
2387 if (!path) {
2388 ret = -ENOMEM;
2389 goto out;
2390 }
2391
2392 key.objectid = dir;
2393 key.type = BTRFS_DIR_INDEX_KEY;
2394 key.offset = 0;
2395 while (1) {
2396 ret = btrfs_search_slot_for_read(sctx->send_root, &key, path,
2397 1, 0);
2398 if (ret < 0)
2399 goto out;
2400 if (!ret) {
2401 eb = path->nodes[0];
2402 slot = path->slots[0];
2403 btrfs_item_key_to_cpu(eb, &found_key, slot);
2404 }
2405 if (ret || found_key.objectid != key.objectid ||
2406 found_key.type != key.type) {
2407 ret = 0;
2408 goto out;
2409 }
2410
2411 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2412 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2413
2414 if (di_key.objectid < sctx->send_progress) {
2415 ret = 1;
2416 goto out;
2417 }
2418
2419 key.offset = found_key.offset + 1;
2420 btrfs_release_path(path);
2421 }
2422
2423out:
2424 btrfs_free_path(path);
2425 return ret;
2426}
2427
2428/*
2429 * Only creates the inode if it is:
2430 * 1. Not a directory
2431 * 2. Or a directory which was not created already due to out of order
2432 * directories. See did_create_dir and process_recorded_refs for details.
2433 */
2434static int send_create_inode_if_needed(struct send_ctx *sctx)
2435{
2436 int ret;
2437
2438 if (S_ISDIR(sctx->cur_inode_mode)) {
2439 ret = did_create_dir(sctx, sctx->cur_ino);
2440 if (ret < 0)
2441 goto out;
2442 if (ret) {
2443 ret = 0;
2444 goto out;
2445 }
2446 }
2447
2448 ret = send_create_inode(sctx, sctx->cur_ino);
2449 if (ret < 0)
2450 goto out;
2451
2452out:
2453 return ret;
2454}
2455
31db9f7c
AB
2456struct recorded_ref {
2457 struct list_head list;
2458 char *dir_path;
2459 char *name;
2460 struct fs_path *full_path;
2461 u64 dir;
2462 u64 dir_gen;
2463 int dir_path_len;
2464 int name_len;
2465};
2466
2467/*
2468 * We need to process new refs before deleted refs, but compare_tree gives us
2469 * everything mixed. So we first record all refs and later process them.
2470 * This function is a helper to record one ref.
2471 */
2472static int record_ref(struct list_head *head, u64 dir,
2473 u64 dir_gen, struct fs_path *path)
2474{
2475 struct recorded_ref *ref;
2476 char *tmp;
2477
2478 ref = kmalloc(sizeof(*ref), GFP_NOFS);
2479 if (!ref)
2480 return -ENOMEM;
2481
2482 ref->dir = dir;
2483 ref->dir_gen = dir_gen;
2484 ref->full_path = path;
2485
2486 tmp = strrchr(ref->full_path->start, '/');
2487 if (!tmp) {
2488 ref->name_len = ref->full_path->end - ref->full_path->start;
2489 ref->name = ref->full_path->start;
2490 ref->dir_path_len = 0;
2491 ref->dir_path = ref->full_path->start;
2492 } else {
2493 tmp++;
2494 ref->name_len = ref->full_path->end - tmp;
2495 ref->name = tmp;
2496 ref->dir_path = ref->full_path->start;
2497 ref->dir_path_len = ref->full_path->end -
2498 ref->full_path->start - 1 - ref->name_len;
2499 }
2500
2501 list_add_tail(&ref->list, head);
2502 return 0;
2503}
2504
2505static void __free_recorded_refs(struct send_ctx *sctx, struct list_head *head)
2506{
2507 struct recorded_ref *cur;
2508 struct recorded_ref *tmp;
2509
2510 list_for_each_entry_safe(cur, tmp, head, list) {
2511 fs_path_free(sctx, cur->full_path);
2512 kfree(cur);
2513 }
2514 INIT_LIST_HEAD(head);
2515}
2516
2517static void free_recorded_refs(struct send_ctx *sctx)
2518{
2519 __free_recorded_refs(sctx, &sctx->new_refs);
2520 __free_recorded_refs(sctx, &sctx->deleted_refs);
2521}
2522
2523/*
2524 * Renames/moves a file/dir to it's orphan name. Used when the first
2525 * ref of an unprocessed inode gets overwritten and for all non empty
2526 * directories.
2527 */
2528static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2529 struct fs_path *path)
2530{
2531 int ret;
2532 struct fs_path *orphan;
2533
2534 orphan = fs_path_alloc(sctx);
2535 if (!orphan)
2536 return -ENOMEM;
2537
2538 ret = gen_unique_name(sctx, ino, gen, orphan);
2539 if (ret < 0)
2540 goto out;
2541
2542 ret = send_rename(sctx, path, orphan);
2543
2544out:
2545 fs_path_free(sctx, orphan);
2546 return ret;
2547}
2548
2549/*
2550 * Returns 1 if a directory can be removed at this point in time.
2551 * We check this by iterating all dir items and checking if the inode behind
2552 * the dir item was already processed.
2553 */
2554static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 send_progress)
2555{
2556 int ret = 0;
2557 struct btrfs_root *root = sctx->parent_root;
2558 struct btrfs_path *path;
2559 struct btrfs_key key;
2560 struct btrfs_key found_key;
2561 struct btrfs_key loc;
2562 struct btrfs_dir_item *di;
2563
2564 path = alloc_path_for_send();
2565 if (!path)
2566 return -ENOMEM;
2567
2568 key.objectid = dir;
2569 key.type = BTRFS_DIR_INDEX_KEY;
2570 key.offset = 0;
2571
2572 while (1) {
2573 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2574 if (ret < 0)
2575 goto out;
2576 if (!ret) {
2577 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2578 path->slots[0]);
2579 }
2580 if (ret || found_key.objectid != key.objectid ||
2581 found_key.type != key.type) {
2582 break;
2583 }
2584
2585 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2586 struct btrfs_dir_item);
2587 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2588
2589 if (loc.objectid > send_progress) {
2590 ret = 0;
2591 goto out;
2592 }
2593
2594 btrfs_release_path(path);
2595 key.offset = found_key.offset + 1;
2596 }
2597
2598 ret = 1;
2599
2600out:
2601 btrfs_free_path(path);
2602 return ret;
2603}
2604
31db9f7c
AB
2605/*
2606 * This does all the move/link/unlink/rmdir magic.
2607 */
2608static int process_recorded_refs(struct send_ctx *sctx)
2609{
2610 int ret = 0;
2611 struct recorded_ref *cur;
1f4692da 2612 struct recorded_ref *cur2;
31db9f7c
AB
2613 struct ulist *check_dirs = NULL;
2614 struct ulist_iterator uit;
2615 struct ulist_node *un;
2616 struct fs_path *valid_path = NULL;
b24baf69 2617 u64 ow_inode = 0;
31db9f7c
AB
2618 u64 ow_gen;
2619 int did_overwrite = 0;
2620 int is_orphan = 0;
2621
2622verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
2623
2624 valid_path = fs_path_alloc(sctx);
2625 if (!valid_path) {
2626 ret = -ENOMEM;
2627 goto out;
2628 }
2629
2630 check_dirs = ulist_alloc(GFP_NOFS);
2631 if (!check_dirs) {
2632 ret = -ENOMEM;
2633 goto out;
2634 }
2635
2636 /*
2637 * First, check if the first ref of the current inode was overwritten
2638 * before. If yes, we know that the current inode was already orphanized
2639 * and thus use the orphan name. If not, we can use get_cur_path to
2640 * get the path of the first ref as it would like while receiving at
2641 * this point in time.
2642 * New inodes are always orphan at the beginning, so force to use the
2643 * orphan name in this case.
2644 * The first ref is stored in valid_path and will be updated if it
2645 * gets moved around.
2646 */
2647 if (!sctx->cur_inode_new) {
2648 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
2649 sctx->cur_inode_gen);
2650 if (ret < 0)
2651 goto out;
2652 if (ret)
2653 did_overwrite = 1;
2654 }
2655 if (sctx->cur_inode_new || did_overwrite) {
2656 ret = gen_unique_name(sctx, sctx->cur_ino,
2657 sctx->cur_inode_gen, valid_path);
2658 if (ret < 0)
2659 goto out;
2660 is_orphan = 1;
2661 } else {
2662 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
2663 valid_path);
2664 if (ret < 0)
2665 goto out;
2666 }
2667
2668 list_for_each_entry(cur, &sctx->new_refs, list) {
1f4692da
AB
2669 /*
2670 * We may have refs where the parent directory does not exist
2671 * yet. This happens if the parent directories inum is higher
2672 * the the current inum. To handle this case, we create the
2673 * parent directory out of order. But we need to check if this
2674 * did already happen before due to other refs in the same dir.
2675 */
2676 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
2677 if (ret < 0)
2678 goto out;
2679 if (ret == inode_state_will_create) {
2680 ret = 0;
2681 /*
2682 * First check if any of the current inodes refs did
2683 * already create the dir.
2684 */
2685 list_for_each_entry(cur2, &sctx->new_refs, list) {
2686 if (cur == cur2)
2687 break;
2688 if (cur2->dir == cur->dir) {
2689 ret = 1;
2690 break;
2691 }
2692 }
2693
2694 /*
2695 * If that did not happen, check if a previous inode
2696 * did already create the dir.
2697 */
2698 if (!ret)
2699 ret = did_create_dir(sctx, cur->dir);
2700 if (ret < 0)
2701 goto out;
2702 if (!ret) {
2703 ret = send_create_inode(sctx, cur->dir);
2704 if (ret < 0)
2705 goto out;
2706 }
2707 }
2708
31db9f7c
AB
2709 /*
2710 * Check if this new ref would overwrite the first ref of
2711 * another unprocessed inode. If yes, orphanize the
2712 * overwritten inode. If we find an overwritten ref that is
2713 * not the first ref, simply unlink it.
2714 */
2715 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
2716 cur->name, cur->name_len,
2717 &ow_inode, &ow_gen);
2718 if (ret < 0)
2719 goto out;
2720 if (ret) {
2721 ret = is_first_ref(sctx, sctx->parent_root,
2722 ow_inode, cur->dir, cur->name,
2723 cur->name_len);
2724 if (ret < 0)
2725 goto out;
2726 if (ret) {
2727 ret = orphanize_inode(sctx, ow_inode, ow_gen,
2728 cur->full_path);
2729 if (ret < 0)
2730 goto out;
2731 } else {
2732 ret = send_unlink(sctx, cur->full_path);
2733 if (ret < 0)
2734 goto out;
2735 }
2736 }
2737
2738 /*
2739 * link/move the ref to the new place. If we have an orphan
2740 * inode, move it and update valid_path. If not, link or move
2741 * it depending on the inode mode.
2742 */
1f4692da 2743 if (is_orphan) {
31db9f7c
AB
2744 ret = send_rename(sctx, valid_path, cur->full_path);
2745 if (ret < 0)
2746 goto out;
2747 is_orphan = 0;
2748 ret = fs_path_copy(valid_path, cur->full_path);
2749 if (ret < 0)
2750 goto out;
2751 } else {
2752 if (S_ISDIR(sctx->cur_inode_mode)) {
2753 /*
2754 * Dirs can't be linked, so move it. For moved
2755 * dirs, we always have one new and one deleted
2756 * ref. The deleted ref is ignored later.
2757 */
2758 ret = send_rename(sctx, valid_path,
2759 cur->full_path);
2760 if (ret < 0)
2761 goto out;
2762 ret = fs_path_copy(valid_path, cur->full_path);
2763 if (ret < 0)
2764 goto out;
2765 } else {
2766 ret = send_link(sctx, cur->full_path,
2767 valid_path);
2768 if (ret < 0)
2769 goto out;
2770 }
2771 }
2772 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2773 GFP_NOFS);
2774 if (ret < 0)
2775 goto out;
2776 }
2777
2778 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
2779 /*
2780 * Check if we can already rmdir the directory. If not,
2781 * orphanize it. For every dir item inside that gets deleted
2782 * later, we do this check again and rmdir it then if possible.
2783 * See the use of check_dirs for more details.
2784 */
2785 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_ino);
2786 if (ret < 0)
2787 goto out;
2788 if (ret) {
2789 ret = send_rmdir(sctx, valid_path);
2790 if (ret < 0)
2791 goto out;
2792 } else if (!is_orphan) {
2793 ret = orphanize_inode(sctx, sctx->cur_ino,
2794 sctx->cur_inode_gen, valid_path);
2795 if (ret < 0)
2796 goto out;
2797 is_orphan = 1;
2798 }
2799
2800 list_for_each_entry(cur, &sctx->deleted_refs, list) {
2801 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2802 GFP_NOFS);
2803 if (ret < 0)
2804 goto out;
2805 }
ccf1626b
AB
2806 } else if (S_ISDIR(sctx->cur_inode_mode) &&
2807 !list_empty(&sctx->deleted_refs)) {
2808 /*
2809 * We have a moved dir. Add the old parent to check_dirs
2810 */
2811 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
2812 list);
2813 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2814 GFP_NOFS);
2815 if (ret < 0)
2816 goto out;
31db9f7c
AB
2817 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
2818 /*
2819 * We have a non dir inode. Go through all deleted refs and
2820 * unlink them if they were not already overwritten by other
2821 * inodes.
2822 */
2823 list_for_each_entry(cur, &sctx->deleted_refs, list) {
2824 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
2825 sctx->cur_ino, sctx->cur_inode_gen,
2826 cur->name, cur->name_len);
2827 if (ret < 0)
2828 goto out;
2829 if (!ret) {
1f4692da
AB
2830 ret = send_unlink(sctx, cur->full_path);
2831 if (ret < 0)
2832 goto out;
31db9f7c
AB
2833 }
2834 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2835 GFP_NOFS);
2836 if (ret < 0)
2837 goto out;
2838 }
2839
2840 /*
2841 * If the inode is still orphan, unlink the orphan. This may
2842 * happen when a previous inode did overwrite the first ref
2843 * of this inode and no new refs were added for the current
2844 * inode.
31db9f7c 2845 */
1f4692da 2846 if (is_orphan) {
31db9f7c
AB
2847 ret = send_unlink(sctx, valid_path);
2848 if (ret < 0)
2849 goto out;
2850 }
2851 }
2852
2853 /*
2854 * We did collect all parent dirs where cur_inode was once located. We
2855 * now go through all these dirs and check if they are pending for
2856 * deletion and if it's finally possible to perform the rmdir now.
2857 * We also update the inode stats of the parent dirs here.
2858 */
2859 ULIST_ITER_INIT(&uit);
2860 while ((un = ulist_next(check_dirs, &uit))) {
2861 if (un->val > sctx->cur_ino)
2862 continue;
2863
2864 ret = get_cur_inode_state(sctx, un->val, un->aux);
2865 if (ret < 0)
2866 goto out;
2867
2868 if (ret == inode_state_did_create ||
2869 ret == inode_state_no_change) {
2870 /* TODO delayed utimes */
2871 ret = send_utimes(sctx, un->val, un->aux);
2872 if (ret < 0)
2873 goto out;
2874 } else if (ret == inode_state_did_delete) {
2875 ret = can_rmdir(sctx, un->val, sctx->cur_ino);
2876 if (ret < 0)
2877 goto out;
2878 if (ret) {
2879 ret = get_cur_path(sctx, un->val, un->aux,
2880 valid_path);
2881 if (ret < 0)
2882 goto out;
2883 ret = send_rmdir(sctx, valid_path);
2884 if (ret < 0)
2885 goto out;
2886 }
2887 }
2888 }
2889
2890 /*
2891 * Current inode is now at it's new position, so we must increase
2892 * send_progress
2893 */
2894 sctx->send_progress = sctx->cur_ino + 1;
2895
31db9f7c
AB
2896 ret = 0;
2897
2898out:
2899 free_recorded_refs(sctx);
2900 ulist_free(check_dirs);
2901 fs_path_free(sctx, valid_path);
2902 return ret;
2903}
2904
2905static int __record_new_ref(int num, u64 dir, int index,
2906 struct fs_path *name,
2907 void *ctx)
2908{
2909 int ret = 0;
2910 struct send_ctx *sctx = ctx;
2911 struct fs_path *p;
2912 u64 gen;
2913
2914 p = fs_path_alloc(sctx);
2915 if (!p)
2916 return -ENOMEM;
2917
2918 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, NULL,
85a7b33b 2919 NULL, NULL);
31db9f7c
AB
2920 if (ret < 0)
2921 goto out;
2922
31db9f7c
AB
2923 ret = get_cur_path(sctx, dir, gen, p);
2924 if (ret < 0)
2925 goto out;
2926 ret = fs_path_add_path(p, name);
2927 if (ret < 0)
2928 goto out;
2929
2930 ret = record_ref(&sctx->new_refs, dir, gen, p);
2931
2932out:
2933 if (ret)
2934 fs_path_free(sctx, p);
2935 return ret;
2936}
2937
2938static int __record_deleted_ref(int num, u64 dir, int index,
2939 struct fs_path *name,
2940 void *ctx)
2941{
2942 int ret = 0;
2943 struct send_ctx *sctx = ctx;
2944 struct fs_path *p;
2945 u64 gen;
2946
2947 p = fs_path_alloc(sctx);
2948 if (!p)
2949 return -ENOMEM;
2950
2951 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, NULL,
85a7b33b 2952 NULL, NULL);
31db9f7c
AB
2953 if (ret < 0)
2954 goto out;
2955
2956 ret = get_cur_path(sctx, dir, gen, p);
2957 if (ret < 0)
2958 goto out;
2959 ret = fs_path_add_path(p, name);
2960 if (ret < 0)
2961 goto out;
2962
2963 ret = record_ref(&sctx->deleted_refs, dir, gen, p);
2964
2965out:
2966 if (ret)
2967 fs_path_free(sctx, p);
2968 return ret;
2969}
2970
2971static int record_new_ref(struct send_ctx *sctx)
2972{
2973 int ret;
2974
2975 ret = iterate_inode_ref(sctx, sctx->send_root, sctx->left_path,
2976 sctx->cmp_key, 0, __record_new_ref, sctx);
2977 if (ret < 0)
2978 goto out;
2979 ret = 0;
2980
2981out:
2982 return ret;
2983}
2984
2985static int record_deleted_ref(struct send_ctx *sctx)
2986{
2987 int ret;
2988
2989 ret = iterate_inode_ref(sctx, sctx->parent_root, sctx->right_path,
2990 sctx->cmp_key, 0, __record_deleted_ref, sctx);
2991 if (ret < 0)
2992 goto out;
2993 ret = 0;
2994
2995out:
2996 return ret;
2997}
2998
2999struct find_ref_ctx {
3000 u64 dir;
3001 struct fs_path *name;
3002 int found_idx;
3003};
3004
3005static int __find_iref(int num, u64 dir, int index,
3006 struct fs_path *name,
3007 void *ctx_)
3008{
3009 struct find_ref_ctx *ctx = ctx_;
3010
3011 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3012 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3013 ctx->found_idx = num;
3014 return 1;
3015 }
3016 return 0;
3017}
3018
3019static int find_iref(struct send_ctx *sctx,
3020 struct btrfs_root *root,
3021 struct btrfs_path *path,
3022 struct btrfs_key *key,
3023 u64 dir, struct fs_path *name)
3024{
3025 int ret;
3026 struct find_ref_ctx ctx;
3027
3028 ctx.dir = dir;
3029 ctx.name = name;
3030 ctx.found_idx = -1;
3031
3032 ret = iterate_inode_ref(sctx, root, path, key, 0, __find_iref, &ctx);
3033 if (ret < 0)
3034 return ret;
3035
3036 if (ctx.found_idx == -1)
3037 return -ENOENT;
3038
3039 return ctx.found_idx;
3040}
3041
3042static int __record_changed_new_ref(int num, u64 dir, int index,
3043 struct fs_path *name,
3044 void *ctx)
3045{
3046 int ret;
3047 struct send_ctx *sctx = ctx;
3048
3049 ret = find_iref(sctx, sctx->parent_root, sctx->right_path,
3050 sctx->cmp_key, dir, name);
3051 if (ret == -ENOENT)
3052 ret = __record_new_ref(num, dir, index, name, sctx);
3053 else if (ret > 0)
3054 ret = 0;
3055
3056 return ret;
3057}
3058
3059static int __record_changed_deleted_ref(int num, u64 dir, int index,
3060 struct fs_path *name,
3061 void *ctx)
3062{
3063 int ret;
3064 struct send_ctx *sctx = ctx;
3065
3066 ret = find_iref(sctx, sctx->send_root, sctx->left_path, sctx->cmp_key,
3067 dir, name);
3068 if (ret == -ENOENT)
3069 ret = __record_deleted_ref(num, dir, index, name, sctx);
3070 else if (ret > 0)
3071 ret = 0;
3072
3073 return ret;
3074}
3075
3076static int record_changed_ref(struct send_ctx *sctx)
3077{
3078 int ret = 0;
3079
3080 ret = iterate_inode_ref(sctx, sctx->send_root, sctx->left_path,
3081 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3082 if (ret < 0)
3083 goto out;
3084 ret = iterate_inode_ref(sctx, sctx->parent_root, sctx->right_path,
3085 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3086 if (ret < 0)
3087 goto out;
3088 ret = 0;
3089
3090out:
3091 return ret;
3092}
3093
3094/*
3095 * Record and process all refs at once. Needed when an inode changes the
3096 * generation number, which means that it was deleted and recreated.
3097 */
3098static int process_all_refs(struct send_ctx *sctx,
3099 enum btrfs_compare_tree_result cmd)
3100{
3101 int ret;
3102 struct btrfs_root *root;
3103 struct btrfs_path *path;
3104 struct btrfs_key key;
3105 struct btrfs_key found_key;
3106 struct extent_buffer *eb;
3107 int slot;
3108 iterate_inode_ref_t cb;
3109
3110 path = alloc_path_for_send();
3111 if (!path)
3112 return -ENOMEM;
3113
3114 if (cmd == BTRFS_COMPARE_TREE_NEW) {
3115 root = sctx->send_root;
3116 cb = __record_new_ref;
3117 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3118 root = sctx->parent_root;
3119 cb = __record_deleted_ref;
3120 } else {
3121 BUG();
3122 }
3123
3124 key.objectid = sctx->cmp_key->objectid;
3125 key.type = BTRFS_INODE_REF_KEY;
3126 key.offset = 0;
3127 while (1) {
3128 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3129 if (ret < 0) {
3130 btrfs_release_path(path);
3131 goto out;
3132 }
3133 if (ret) {
3134 btrfs_release_path(path);
3135 break;
3136 }
3137
3138 eb = path->nodes[0];
3139 slot = path->slots[0];
3140 btrfs_item_key_to_cpu(eb, &found_key, slot);
3141
3142 if (found_key.objectid != key.objectid ||
3143 found_key.type != key.type) {
3144 btrfs_release_path(path);
3145 break;
3146 }
3147
3148 ret = iterate_inode_ref(sctx, sctx->parent_root, path,
3149 &found_key, 0, cb, sctx);
3150 btrfs_release_path(path);
3151 if (ret < 0)
3152 goto out;
3153
3154 key.offset = found_key.offset + 1;
3155 }
3156
3157 ret = process_recorded_refs(sctx);
3158
3159out:
3160 btrfs_free_path(path);
3161 return ret;
3162}
3163
3164static int send_set_xattr(struct send_ctx *sctx,
3165 struct fs_path *path,
3166 const char *name, int name_len,
3167 const char *data, int data_len)
3168{
3169 int ret = 0;
3170
3171 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3172 if (ret < 0)
3173 goto out;
3174
3175 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3176 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3177 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3178
3179 ret = send_cmd(sctx);
3180
3181tlv_put_failure:
3182out:
3183 return ret;
3184}
3185
3186static int send_remove_xattr(struct send_ctx *sctx,
3187 struct fs_path *path,
3188 const char *name, int name_len)
3189{
3190 int ret = 0;
3191
3192 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3193 if (ret < 0)
3194 goto out;
3195
3196 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3197 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3198
3199 ret = send_cmd(sctx);
3200
3201tlv_put_failure:
3202out:
3203 return ret;
3204}
3205
3206static int __process_new_xattr(int num, struct btrfs_key *di_key,
3207 const char *name, int name_len,
3208 const char *data, int data_len,
3209 u8 type, void *ctx)
3210{
3211 int ret;
3212 struct send_ctx *sctx = ctx;
3213 struct fs_path *p;
3214 posix_acl_xattr_header dummy_acl;
3215
3216 p = fs_path_alloc(sctx);
3217 if (!p)
3218 return -ENOMEM;
3219
3220 /*
3221 * This hack is needed because empty acl's are stored as zero byte
3222 * data in xattrs. Problem with that is, that receiving these zero byte
3223 * acl's will fail later. To fix this, we send a dummy acl list that
3224 * only contains the version number and no entries.
3225 */
3226 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
3227 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
3228 if (data_len == 0) {
3229 dummy_acl.a_version =
3230 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
3231 data = (char *)&dummy_acl;
3232 data_len = sizeof(dummy_acl);
3233 }
3234 }
3235
3236 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3237 if (ret < 0)
3238 goto out;
3239
3240 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
3241
3242out:
3243 fs_path_free(sctx, p);
3244 return ret;
3245}
3246
3247static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
3248 const char *name, int name_len,
3249 const char *data, int data_len,
3250 u8 type, void *ctx)
3251{
3252 int ret;
3253 struct send_ctx *sctx = ctx;
3254 struct fs_path *p;
3255
3256 p = fs_path_alloc(sctx);
3257 if (!p)
3258 return -ENOMEM;
3259
3260 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3261 if (ret < 0)
3262 goto out;
3263
3264 ret = send_remove_xattr(sctx, p, name, name_len);
3265
3266out:
3267 fs_path_free(sctx, p);
3268 return ret;
3269}
3270
3271static int process_new_xattr(struct send_ctx *sctx)
3272{
3273 int ret = 0;
3274
3275 ret = iterate_dir_item(sctx, sctx->send_root, sctx->left_path,
3276 sctx->cmp_key, __process_new_xattr, sctx);
3277
3278 return ret;
3279}
3280
3281static int process_deleted_xattr(struct send_ctx *sctx)
3282{
3283 int ret;
3284
3285 ret = iterate_dir_item(sctx, sctx->parent_root, sctx->right_path,
3286 sctx->cmp_key, __process_deleted_xattr, sctx);
3287
3288 return ret;
3289}
3290
3291struct find_xattr_ctx {
3292 const char *name;
3293 int name_len;
3294 int found_idx;
3295 char *found_data;
3296 int found_data_len;
3297};
3298
3299static int __find_xattr(int num, struct btrfs_key *di_key,
3300 const char *name, int name_len,
3301 const char *data, int data_len,
3302 u8 type, void *vctx)
3303{
3304 struct find_xattr_ctx *ctx = vctx;
3305
3306 if (name_len == ctx->name_len &&
3307 strncmp(name, ctx->name, name_len) == 0) {
3308 ctx->found_idx = num;
3309 ctx->found_data_len = data_len;
3310 ctx->found_data = kmalloc(data_len, GFP_NOFS);
3311 if (!ctx->found_data)
3312 return -ENOMEM;
3313 memcpy(ctx->found_data, data, data_len);
3314 return 1;
3315 }
3316 return 0;
3317}
3318
3319static int find_xattr(struct send_ctx *sctx,
3320 struct btrfs_root *root,
3321 struct btrfs_path *path,
3322 struct btrfs_key *key,
3323 const char *name, int name_len,
3324 char **data, int *data_len)
3325{
3326 int ret;
3327 struct find_xattr_ctx ctx;
3328
3329 ctx.name = name;
3330 ctx.name_len = name_len;
3331 ctx.found_idx = -1;
3332 ctx.found_data = NULL;
3333 ctx.found_data_len = 0;
3334
3335 ret = iterate_dir_item(sctx, root, path, key, __find_xattr, &ctx);
3336 if (ret < 0)
3337 return ret;
3338
3339 if (ctx.found_idx == -1)
3340 return -ENOENT;
3341 if (data) {
3342 *data = ctx.found_data;
3343 *data_len = ctx.found_data_len;
3344 } else {
3345 kfree(ctx.found_data);
3346 }
3347 return ctx.found_idx;
3348}
3349
3350
3351static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
3352 const char *name, int name_len,
3353 const char *data, int data_len,
3354 u8 type, void *ctx)
3355{
3356 int ret;
3357 struct send_ctx *sctx = ctx;
3358 char *found_data = NULL;
3359 int found_data_len = 0;
3360 struct fs_path *p = NULL;
3361
3362 ret = find_xattr(sctx, sctx->parent_root, sctx->right_path,
3363 sctx->cmp_key, name, name_len, &found_data,
3364 &found_data_len);
3365 if (ret == -ENOENT) {
3366 ret = __process_new_xattr(num, di_key, name, name_len, data,
3367 data_len, type, ctx);
3368 } else if (ret >= 0) {
3369 if (data_len != found_data_len ||
3370 memcmp(data, found_data, data_len)) {
3371 ret = __process_new_xattr(num, di_key, name, name_len,
3372 data, data_len, type, ctx);
3373 } else {
3374 ret = 0;
3375 }
3376 }
3377
3378 kfree(found_data);
3379 fs_path_free(sctx, p);
3380 return ret;
3381}
3382
3383static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
3384 const char *name, int name_len,
3385 const char *data, int data_len,
3386 u8 type, void *ctx)
3387{
3388 int ret;
3389 struct send_ctx *sctx = ctx;
3390
3391 ret = find_xattr(sctx, sctx->send_root, sctx->left_path, sctx->cmp_key,
3392 name, name_len, NULL, NULL);
3393 if (ret == -ENOENT)
3394 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
3395 data_len, type, ctx);
3396 else if (ret >= 0)
3397 ret = 0;
3398
3399 return ret;
3400}
3401
3402static int process_changed_xattr(struct send_ctx *sctx)
3403{
3404 int ret = 0;
3405
3406 ret = iterate_dir_item(sctx, sctx->send_root, sctx->left_path,
3407 sctx->cmp_key, __process_changed_new_xattr, sctx);
3408 if (ret < 0)
3409 goto out;
3410 ret = iterate_dir_item(sctx, sctx->parent_root, sctx->right_path,
3411 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
3412
3413out:
3414 return ret;
3415}
3416
3417static int process_all_new_xattrs(struct send_ctx *sctx)
3418{
3419 int ret;
3420 struct btrfs_root *root;
3421 struct btrfs_path *path;
3422 struct btrfs_key key;
3423 struct btrfs_key found_key;
3424 struct extent_buffer *eb;
3425 int slot;
3426
3427 path = alloc_path_for_send();
3428 if (!path)
3429 return -ENOMEM;
3430
3431 root = sctx->send_root;
3432
3433 key.objectid = sctx->cmp_key->objectid;
3434 key.type = BTRFS_XATTR_ITEM_KEY;
3435 key.offset = 0;
3436 while (1) {
3437 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3438 if (ret < 0)
3439 goto out;
3440 if (ret) {
3441 ret = 0;
3442 goto out;
3443 }
3444
3445 eb = path->nodes[0];
3446 slot = path->slots[0];
3447 btrfs_item_key_to_cpu(eb, &found_key, slot);
3448
3449 if (found_key.objectid != key.objectid ||
3450 found_key.type != key.type) {
3451 ret = 0;
3452 goto out;
3453 }
3454
3455 ret = iterate_dir_item(sctx, root, path, &found_key,
3456 __process_new_xattr, sctx);
3457 if (ret < 0)
3458 goto out;
3459
3460 btrfs_release_path(path);
3461 key.offset = found_key.offset + 1;
3462 }
3463
3464out:
3465 btrfs_free_path(path);
3466 return ret;
3467}
3468
3469/*
3470 * Read some bytes from the current inode/file and send a write command to
3471 * user space.
3472 */
3473static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
3474{
3475 int ret = 0;
3476 struct fs_path *p;
3477 loff_t pos = offset;
b24baf69 3478 int readed = 0;
31db9f7c
AB
3479 mm_segment_t old_fs;
3480
3481 p = fs_path_alloc(sctx);
3482 if (!p)
3483 return -ENOMEM;
3484
3485 /*
3486 * vfs normally only accepts user space buffers for security reasons.
3487 * we only read from the file and also only provide the read_buf buffer
3488 * to vfs. As this buffer does not come from a user space call, it's
3489 * ok to temporary allow kernel space buffers.
3490 */
3491 old_fs = get_fs();
3492 set_fs(KERNEL_DS);
3493
3494verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
3495
3496 ret = open_cur_inode_file(sctx);
3497 if (ret < 0)
3498 goto out;
3499
3500 ret = vfs_read(sctx->cur_inode_filp, sctx->read_buf, len, &pos);
3501 if (ret < 0)
3502 goto out;
3503 readed = ret;
3504 if (!readed)
3505 goto out;
3506
3507 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
3508 if (ret < 0)
3509 goto out;
3510
3511 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3512 if (ret < 0)
3513 goto out;
3514
3515 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3516 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
3517 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, readed);
3518
3519 ret = send_cmd(sctx);
3520
3521tlv_put_failure:
3522out:
3523 fs_path_free(sctx, p);
3524 set_fs(old_fs);
3525 if (ret < 0)
3526 return ret;
3527 return readed;
3528}
3529
3530/*
3531 * Send a clone command to user space.
3532 */
3533static int send_clone(struct send_ctx *sctx,
3534 u64 offset, u32 len,
3535 struct clone_root *clone_root)
3536{
3537 int ret = 0;
3538 struct btrfs_root *clone_root2 = clone_root->root;
3539 struct fs_path *p;
3540 u64 gen;
3541
3542verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
3543 "clone_inode=%llu, clone_offset=%llu\n", offset, len,
3544 clone_root->root->objectid, clone_root->ino,
3545 clone_root->offset);
3546
3547 p = fs_path_alloc(sctx);
3548 if (!p)
3549 return -ENOMEM;
3550
3551 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
3552 if (ret < 0)
3553 goto out;
3554
3555 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3556 if (ret < 0)
3557 goto out;
3558
3559 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
3560 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
3561 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3562
3563 if (clone_root2 == sctx->send_root) {
3564 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
85a7b33b 3565 &gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
3566 if (ret < 0)
3567 goto out;
3568 ret = get_cur_path(sctx, clone_root->ino, gen, p);
3569 } else {
3570 ret = get_inode_path(sctx, clone_root2, clone_root->ino, p);
3571 }
3572 if (ret < 0)
3573 goto out;
3574
3575 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
3576 clone_root2->root_item.uuid);
3577 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
3578 clone_root2->root_item.ctransid);
3579 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
3580 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
3581 clone_root->offset);
3582
3583 ret = send_cmd(sctx);
3584
3585tlv_put_failure:
3586out:
3587 fs_path_free(sctx, p);
3588 return ret;
3589}
3590
3591static int send_write_or_clone(struct send_ctx *sctx,
3592 struct btrfs_path *path,
3593 struct btrfs_key *key,
3594 struct clone_root *clone_root)
3595{
3596 int ret = 0;
3597 struct btrfs_file_extent_item *ei;
3598 u64 offset = key->offset;
3599 u64 pos = 0;
3600 u64 len;
3601 u32 l;
3602 u8 type;
3603
3604 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3605 struct btrfs_file_extent_item);
3606 type = btrfs_file_extent_type(path->nodes[0], ei);
3607 if (type == BTRFS_FILE_EXTENT_INLINE)
3608 len = btrfs_file_extent_inline_len(path->nodes[0], ei);
3609 else
3610 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3611
3612 if (offset + len > sctx->cur_inode_size)
3613 len = sctx->cur_inode_size - offset;
3614 if (len == 0) {
3615 ret = 0;
3616 goto out;
3617 }
3618
3619 if (!clone_root) {
3620 while (pos < len) {
3621 l = len - pos;
3622 if (l > BTRFS_SEND_READ_SIZE)
3623 l = BTRFS_SEND_READ_SIZE;
3624 ret = send_write(sctx, pos + offset, l);
3625 if (ret < 0)
3626 goto out;
3627 if (!ret)
3628 break;
3629 pos += ret;
3630 }
3631 ret = 0;
3632 } else {
3633 ret = send_clone(sctx, offset, len, clone_root);
3634 }
3635
3636out:
3637 return ret;
3638}
3639
3640static int is_extent_unchanged(struct send_ctx *sctx,
3641 struct btrfs_path *left_path,
3642 struct btrfs_key *ekey)
3643{
3644 int ret = 0;
3645 struct btrfs_key key;
3646 struct btrfs_path *path = NULL;
3647 struct extent_buffer *eb;
3648 int slot;
3649 struct btrfs_key found_key;
3650 struct btrfs_file_extent_item *ei;
3651 u64 left_disknr;
3652 u64 right_disknr;
3653 u64 left_offset;
3654 u64 right_offset;
3655 u64 left_offset_fixed;
3656 u64 left_len;
3657 u64 right_len;
3658 u8 left_type;
3659 u8 right_type;
3660
3661 path = alloc_path_for_send();
3662 if (!path)
3663 return -ENOMEM;
3664
3665 eb = left_path->nodes[0];
3666 slot = left_path->slots[0];
3667
3668 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
3669 left_type = btrfs_file_extent_type(eb, ei);
3670 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
3671 left_len = btrfs_file_extent_num_bytes(eb, ei);
3672 left_offset = btrfs_file_extent_offset(eb, ei);
3673
3674 if (left_type != BTRFS_FILE_EXTENT_REG) {
3675 ret = 0;
3676 goto out;
3677 }
3678
3679 /*
3680 * Following comments will refer to these graphics. L is the left
3681 * extents which we are checking at the moment. 1-8 are the right
3682 * extents that we iterate.
3683 *
3684 * |-----L-----|
3685 * |-1-|-2a-|-3-|-4-|-5-|-6-|
3686 *
3687 * |-----L-----|
3688 * |--1--|-2b-|...(same as above)
3689 *
3690 * Alternative situation. Happens on files where extents got split.
3691 * |-----L-----|
3692 * |-----------7-----------|-6-|
3693 *
3694 * Alternative situation. Happens on files which got larger.
3695 * |-----L-----|
3696 * |-8-|
3697 * Nothing follows after 8.
3698 */
3699
3700 key.objectid = ekey->objectid;
3701 key.type = BTRFS_EXTENT_DATA_KEY;
3702 key.offset = ekey->offset;
3703 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
3704 if (ret < 0)
3705 goto out;
3706 if (ret) {
3707 ret = 0;
3708 goto out;
3709 }
3710
3711 /*
3712 * Handle special case where the right side has no extents at all.
3713 */
3714 eb = path->nodes[0];
3715 slot = path->slots[0];
3716 btrfs_item_key_to_cpu(eb, &found_key, slot);
3717 if (found_key.objectid != key.objectid ||
3718 found_key.type != key.type) {
3719 ret = 0;
3720 goto out;
3721 }
3722
3723 /*
3724 * We're now on 2a, 2b or 7.
3725 */
3726 key = found_key;
3727 while (key.offset < ekey->offset + left_len) {
3728 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
3729 right_type = btrfs_file_extent_type(eb, ei);
3730 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
3731 right_len = btrfs_file_extent_num_bytes(eb, ei);
3732 right_offset = btrfs_file_extent_offset(eb, ei);
3733
3734 if (right_type != BTRFS_FILE_EXTENT_REG) {
3735 ret = 0;
3736 goto out;
3737 }
3738
3739 /*
3740 * Are we at extent 8? If yes, we know the extent is changed.
3741 * This may only happen on the first iteration.
3742 */
3743 if (found_key.offset + right_len < ekey->offset) {
3744 ret = 0;
3745 goto out;
3746 }
3747
3748 left_offset_fixed = left_offset;
3749 if (key.offset < ekey->offset) {
3750 /* Fix the right offset for 2a and 7. */
3751 right_offset += ekey->offset - key.offset;
3752 } else {
3753 /* Fix the left offset for all behind 2a and 2b */
3754 left_offset_fixed += key.offset - ekey->offset;
3755 }
3756
3757 /*
3758 * Check if we have the same extent.
3759 */
3760 if (left_disknr + left_offset_fixed !=
3761 right_disknr + right_offset) {
3762 ret = 0;
3763 goto out;
3764 }
3765
3766 /*
3767 * Go to the next extent.
3768 */
3769 ret = btrfs_next_item(sctx->parent_root, path);
3770 if (ret < 0)
3771 goto out;
3772 if (!ret) {
3773 eb = path->nodes[0];
3774 slot = path->slots[0];
3775 btrfs_item_key_to_cpu(eb, &found_key, slot);
3776 }
3777 if (ret || found_key.objectid != key.objectid ||
3778 found_key.type != key.type) {
3779 key.offset += right_len;
3780 break;
3781 } else {
3782 if (found_key.offset != key.offset + right_len) {
3783 /* Should really not happen */
3784 ret = -EIO;
3785 goto out;
3786 }
3787 }
3788 key = found_key;
3789 }
3790
3791 /*
3792 * We're now behind the left extent (treat as unchanged) or at the end
3793 * of the right side (treat as changed).
3794 */
3795 if (key.offset >= ekey->offset + left_len)
3796 ret = 1;
3797 else
3798 ret = 0;
3799
3800
3801out:
3802 btrfs_free_path(path);
3803 return ret;
3804}
3805
3806static int process_extent(struct send_ctx *sctx,
3807 struct btrfs_path *path,
3808 struct btrfs_key *key)
3809{
3810 int ret = 0;
3811 struct clone_root *found_clone = NULL;
3812
3813 if (S_ISLNK(sctx->cur_inode_mode))
3814 return 0;
3815
3816 if (sctx->parent_root && !sctx->cur_inode_new) {
3817 ret = is_extent_unchanged(sctx, path, key);
3818 if (ret < 0)
3819 goto out;
3820 if (ret) {
3821 ret = 0;
3822 goto out;
3823 }
3824 }
3825
3826 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
3827 sctx->cur_inode_size, &found_clone);
3828 if (ret != -ENOENT && ret < 0)
3829 goto out;
3830
3831 ret = send_write_or_clone(sctx, path, key, found_clone);
3832
3833out:
3834 return ret;
3835}
3836
3837static int process_all_extents(struct send_ctx *sctx)
3838{
3839 int ret;
3840 struct btrfs_root *root;
3841 struct btrfs_path *path;
3842 struct btrfs_key key;
3843 struct btrfs_key found_key;
3844 struct extent_buffer *eb;
3845 int slot;
3846
3847 root = sctx->send_root;
3848 path = alloc_path_for_send();
3849 if (!path)
3850 return -ENOMEM;
3851
3852 key.objectid = sctx->cmp_key->objectid;
3853 key.type = BTRFS_EXTENT_DATA_KEY;
3854 key.offset = 0;
3855 while (1) {
3856 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3857 if (ret < 0)
3858 goto out;
3859 if (ret) {
3860 ret = 0;
3861 goto out;
3862 }
3863
3864 eb = path->nodes[0];
3865 slot = path->slots[0];
3866 btrfs_item_key_to_cpu(eb, &found_key, slot);
3867
3868 if (found_key.objectid != key.objectid ||
3869 found_key.type != key.type) {
3870 ret = 0;
3871 goto out;
3872 }
3873
3874 ret = process_extent(sctx, path, &found_key);
3875 if (ret < 0)
3876 goto out;
3877
3878 btrfs_release_path(path);
3879 key.offset = found_key.offset + 1;
3880 }
3881
3882out:
3883 btrfs_free_path(path);
3884 return ret;
3885}
3886
3887static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end)
3888{
3889 int ret = 0;
3890
3891 if (sctx->cur_ino == 0)
3892 goto out;
3893 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
3894 sctx->cmp_key->type <= BTRFS_INODE_REF_KEY)
3895 goto out;
3896 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
3897 goto out;
3898
3899 ret = process_recorded_refs(sctx);
3900
3901out:
3902 return ret;
3903}
3904
3905static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
3906{
3907 int ret = 0;
3908 u64 left_mode;
3909 u64 left_uid;
3910 u64 left_gid;
3911 u64 right_mode;
3912 u64 right_uid;
3913 u64 right_gid;
3914 int need_chmod = 0;
3915 int need_chown = 0;
3916
3917 ret = process_recorded_refs_if_needed(sctx, at_end);
3918 if (ret < 0)
3919 goto out;
3920
3921 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
3922 goto out;
3923 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
3924 goto out;
3925
3926 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
85a7b33b 3927 &left_mode, &left_uid, &left_gid, NULL);
31db9f7c
AB
3928 if (ret < 0)
3929 goto out;
3930
3931 if (!S_ISLNK(sctx->cur_inode_mode)) {
3932 if (!sctx->parent_root || sctx->cur_inode_new) {
3933 need_chmod = 1;
3934 need_chown = 1;
3935 } else {
3936 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
3937 NULL, NULL, &right_mode, &right_uid,
85a7b33b 3938 &right_gid, NULL);
31db9f7c
AB
3939 if (ret < 0)
3940 goto out;
3941
3942 if (left_uid != right_uid || left_gid != right_gid)
3943 need_chown = 1;
3944 if (left_mode != right_mode)
3945 need_chmod = 1;
3946 }
3947 }
3948
3949 if (S_ISREG(sctx->cur_inode_mode)) {
3950 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3951 sctx->cur_inode_size);
3952 if (ret < 0)
3953 goto out;
3954 }
3955
3956 if (need_chown) {
3957 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3958 left_uid, left_gid);
3959 if (ret < 0)
3960 goto out;
3961 }
3962 if (need_chmod) {
3963 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3964 left_mode);
3965 if (ret < 0)
3966 goto out;
3967 }
3968
3969 /*
3970 * Need to send that every time, no matter if it actually changed
3971 * between the two trees as we have done changes to the inode before.
3972 */
3973 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
3974 if (ret < 0)
3975 goto out;
3976
3977out:
3978 return ret;
3979}
3980
3981static int changed_inode(struct send_ctx *sctx,
3982 enum btrfs_compare_tree_result result)
3983{
3984 int ret = 0;
3985 struct btrfs_key *key = sctx->cmp_key;
3986 struct btrfs_inode_item *left_ii = NULL;
3987 struct btrfs_inode_item *right_ii = NULL;
3988 u64 left_gen = 0;
3989 u64 right_gen = 0;
3990
3991 ret = close_cur_inode_file(sctx);
3992 if (ret < 0)
3993 goto out;
3994
3995 sctx->cur_ino = key->objectid;
3996 sctx->cur_inode_new_gen = 0;
31db9f7c
AB
3997 sctx->send_progress = sctx->cur_ino;
3998
3999 if (result == BTRFS_COMPARE_TREE_NEW ||
4000 result == BTRFS_COMPARE_TREE_CHANGED) {
4001 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
4002 sctx->left_path->slots[0],
4003 struct btrfs_inode_item);
4004 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
4005 left_ii);
4006 } else {
4007 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4008 sctx->right_path->slots[0],
4009 struct btrfs_inode_item);
4010 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4011 right_ii);
4012 }
4013 if (result == BTRFS_COMPARE_TREE_CHANGED) {
4014 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4015 sctx->right_path->slots[0],
4016 struct btrfs_inode_item);
4017
4018 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4019 right_ii);
4020 if (left_gen != right_gen)
4021 sctx->cur_inode_new_gen = 1;
4022 }
4023
4024 if (result == BTRFS_COMPARE_TREE_NEW) {
4025 sctx->cur_inode_gen = left_gen;
4026 sctx->cur_inode_new = 1;
4027 sctx->cur_inode_deleted = 0;
4028 sctx->cur_inode_size = btrfs_inode_size(
4029 sctx->left_path->nodes[0], left_ii);
4030 sctx->cur_inode_mode = btrfs_inode_mode(
4031 sctx->left_path->nodes[0], left_ii);
4032 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
1f4692da 4033 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
4034 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
4035 sctx->cur_inode_gen = right_gen;
4036 sctx->cur_inode_new = 0;
4037 sctx->cur_inode_deleted = 1;
4038 sctx->cur_inode_size = btrfs_inode_size(
4039 sctx->right_path->nodes[0], right_ii);
4040 sctx->cur_inode_mode = btrfs_inode_mode(
4041 sctx->right_path->nodes[0], right_ii);
4042 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
4043 if (sctx->cur_inode_new_gen) {
4044 sctx->cur_inode_gen = right_gen;
4045 sctx->cur_inode_new = 0;
4046 sctx->cur_inode_deleted = 1;
4047 sctx->cur_inode_size = btrfs_inode_size(
4048 sctx->right_path->nodes[0], right_ii);
4049 sctx->cur_inode_mode = btrfs_inode_mode(
4050 sctx->right_path->nodes[0], right_ii);
4051 ret = process_all_refs(sctx,
4052 BTRFS_COMPARE_TREE_DELETED);
4053 if (ret < 0)
4054 goto out;
4055
4056 sctx->cur_inode_gen = left_gen;
4057 sctx->cur_inode_new = 1;
4058 sctx->cur_inode_deleted = 0;
4059 sctx->cur_inode_size = btrfs_inode_size(
4060 sctx->left_path->nodes[0], left_ii);
4061 sctx->cur_inode_mode = btrfs_inode_mode(
4062 sctx->left_path->nodes[0], left_ii);
1f4692da 4063 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
4064 if (ret < 0)
4065 goto out;
4066
4067 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
4068 if (ret < 0)
4069 goto out;
4070 ret = process_all_extents(sctx);
4071 if (ret < 0)
4072 goto out;
4073 ret = process_all_new_xattrs(sctx);
4074 if (ret < 0)
4075 goto out;
4076 } else {
4077 sctx->cur_inode_gen = left_gen;
4078 sctx->cur_inode_new = 0;
4079 sctx->cur_inode_new_gen = 0;
4080 sctx->cur_inode_deleted = 0;
4081 sctx->cur_inode_size = btrfs_inode_size(
4082 sctx->left_path->nodes[0], left_ii);
4083 sctx->cur_inode_mode = btrfs_inode_mode(
4084 sctx->left_path->nodes[0], left_ii);
4085 }
4086 }
4087
4088out:
4089 return ret;
4090}
4091
4092static int changed_ref(struct send_ctx *sctx,
4093 enum btrfs_compare_tree_result result)
4094{
4095 int ret = 0;
4096
4097 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4098
4099 if (!sctx->cur_inode_new_gen &&
4100 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
4101 if (result == BTRFS_COMPARE_TREE_NEW)
4102 ret = record_new_ref(sctx);
4103 else if (result == BTRFS_COMPARE_TREE_DELETED)
4104 ret = record_deleted_ref(sctx);
4105 else if (result == BTRFS_COMPARE_TREE_CHANGED)
4106 ret = record_changed_ref(sctx);
4107 }
4108
4109 return ret;
4110}
4111
4112static int changed_xattr(struct send_ctx *sctx,
4113 enum btrfs_compare_tree_result result)
4114{
4115 int ret = 0;
4116
4117 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4118
4119 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4120 if (result == BTRFS_COMPARE_TREE_NEW)
4121 ret = process_new_xattr(sctx);
4122 else if (result == BTRFS_COMPARE_TREE_DELETED)
4123 ret = process_deleted_xattr(sctx);
4124 else if (result == BTRFS_COMPARE_TREE_CHANGED)
4125 ret = process_changed_xattr(sctx);
4126 }
4127
4128 return ret;
4129}
4130
4131static int changed_extent(struct send_ctx *sctx,
4132 enum btrfs_compare_tree_result result)
4133{
4134 int ret = 0;
4135
4136 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4137
4138 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4139 if (result != BTRFS_COMPARE_TREE_DELETED)
4140 ret = process_extent(sctx, sctx->left_path,
4141 sctx->cmp_key);
4142 }
4143
4144 return ret;
4145}
4146
4147
4148static int changed_cb(struct btrfs_root *left_root,
4149 struct btrfs_root *right_root,
4150 struct btrfs_path *left_path,
4151 struct btrfs_path *right_path,
4152 struct btrfs_key *key,
4153 enum btrfs_compare_tree_result result,
4154 void *ctx)
4155{
4156 int ret = 0;
4157 struct send_ctx *sctx = ctx;
4158
4159 sctx->left_path = left_path;
4160 sctx->right_path = right_path;
4161 sctx->cmp_key = key;
4162
4163 ret = finish_inode_if_needed(sctx, 0);
4164 if (ret < 0)
4165 goto out;
4166
4167 if (key->type == BTRFS_INODE_ITEM_KEY)
4168 ret = changed_inode(sctx, result);
4169 else if (key->type == BTRFS_INODE_REF_KEY)
4170 ret = changed_ref(sctx, result);
4171 else if (key->type == BTRFS_XATTR_ITEM_KEY)
4172 ret = changed_xattr(sctx, result);
4173 else if (key->type == BTRFS_EXTENT_DATA_KEY)
4174 ret = changed_extent(sctx, result);
4175
4176out:
4177 return ret;
4178}
4179
4180static int full_send_tree(struct send_ctx *sctx)
4181{
4182 int ret;
4183 struct btrfs_trans_handle *trans = NULL;
4184 struct btrfs_root *send_root = sctx->send_root;
4185 struct btrfs_key key;
4186 struct btrfs_key found_key;
4187 struct btrfs_path *path;
4188 struct extent_buffer *eb;
4189 int slot;
4190 u64 start_ctransid;
4191 u64 ctransid;
4192
4193 path = alloc_path_for_send();
4194 if (!path)
4195 return -ENOMEM;
4196
4197 spin_lock(&send_root->root_times_lock);
4198 start_ctransid = btrfs_root_ctransid(&send_root->root_item);
4199 spin_unlock(&send_root->root_times_lock);
4200
4201 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
4202 key.type = BTRFS_INODE_ITEM_KEY;
4203 key.offset = 0;
4204
4205join_trans:
4206 /*
4207 * We need to make sure the transaction does not get committed
4208 * while we do anything on commit roots. Join a transaction to prevent
4209 * this.
4210 */
4211 trans = btrfs_join_transaction(send_root);
4212 if (IS_ERR(trans)) {
4213 ret = PTR_ERR(trans);
4214 trans = NULL;
4215 goto out;
4216 }
4217
4218 /*
4219 * Make sure the tree has not changed
4220 */
4221 spin_lock(&send_root->root_times_lock);
4222 ctransid = btrfs_root_ctransid(&send_root->root_item);
4223 spin_unlock(&send_root->root_times_lock);
4224
4225 if (ctransid != start_ctransid) {
4226 WARN(1, KERN_WARNING "btrfs: the root that you're trying to "
4227 "send was modified in between. This is "
4228 "probably a bug.\n");
4229 ret = -EIO;
4230 goto out;
4231 }
4232
4233 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
4234 if (ret < 0)
4235 goto out;
4236 if (ret)
4237 goto out_finish;
4238
4239 while (1) {
4240 /*
4241 * When someone want to commit while we iterate, end the
4242 * joined transaction and rejoin.
4243 */
4244 if (btrfs_should_end_transaction(trans, send_root)) {
4245 ret = btrfs_end_transaction(trans, send_root);
4246 trans = NULL;
4247 if (ret < 0)
4248 goto out;
4249 btrfs_release_path(path);
4250 goto join_trans;
4251 }
4252
4253 eb = path->nodes[0];
4254 slot = path->slots[0];
4255 btrfs_item_key_to_cpu(eb, &found_key, slot);
4256
4257 ret = changed_cb(send_root, NULL, path, NULL,
4258 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
4259 if (ret < 0)
4260 goto out;
4261
4262 key.objectid = found_key.objectid;
4263 key.type = found_key.type;
4264 key.offset = found_key.offset + 1;
4265
4266 ret = btrfs_next_item(send_root, path);
4267 if (ret < 0)
4268 goto out;
4269 if (ret) {
4270 ret = 0;
4271 break;
4272 }
4273 }
4274
4275out_finish:
4276 ret = finish_inode_if_needed(sctx, 1);
4277
4278out:
4279 btrfs_free_path(path);
4280 if (trans) {
4281 if (!ret)
4282 ret = btrfs_end_transaction(trans, send_root);
4283 else
4284 btrfs_end_transaction(trans, send_root);
4285 }
4286 return ret;
4287}
4288
4289static int send_subvol(struct send_ctx *sctx)
4290{
4291 int ret;
4292
4293 ret = send_header(sctx);
4294 if (ret < 0)
4295 goto out;
4296
4297 ret = send_subvol_begin(sctx);
4298 if (ret < 0)
4299 goto out;
4300
4301 if (sctx->parent_root) {
4302 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
4303 changed_cb, sctx);
4304 if (ret < 0)
4305 goto out;
4306 ret = finish_inode_if_needed(sctx, 1);
4307 if (ret < 0)
4308 goto out;
4309 } else {
4310 ret = full_send_tree(sctx);
4311 if (ret < 0)
4312 goto out;
4313 }
4314
4315out:
4316 if (!ret)
4317 ret = close_cur_inode_file(sctx);
4318 else
4319 close_cur_inode_file(sctx);
4320
4321 free_recorded_refs(sctx);
4322 return ret;
4323}
4324
4325long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
4326{
4327 int ret = 0;
4328 struct btrfs_root *send_root;
4329 struct btrfs_root *clone_root;
4330 struct btrfs_fs_info *fs_info;
4331 struct btrfs_ioctl_send_args *arg = NULL;
4332 struct btrfs_key key;
4333 struct file *filp = NULL;
4334 struct send_ctx *sctx = NULL;
4335 u32 i;
4336 u64 *clone_sources_tmp = NULL;
4337
4338 if (!capable(CAP_SYS_ADMIN))
4339 return -EPERM;
4340
4341 send_root = BTRFS_I(fdentry(mnt_file)->d_inode)->root;
4342 fs_info = send_root->fs_info;
4343
4344 arg = memdup_user(arg_, sizeof(*arg));
4345 if (IS_ERR(arg)) {
4346 ret = PTR_ERR(arg);
4347 arg = NULL;
4348 goto out;
4349 }
4350
4351 if (!access_ok(VERIFY_READ, arg->clone_sources,
4352 sizeof(*arg->clone_sources *
4353 arg->clone_sources_count))) {
4354 ret = -EFAULT;
4355 goto out;
4356 }
4357
4358 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
4359 if (!sctx) {
4360 ret = -ENOMEM;
4361 goto out;
4362 }
4363
4364 INIT_LIST_HEAD(&sctx->new_refs);
4365 INIT_LIST_HEAD(&sctx->deleted_refs);
4366 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
4367 INIT_LIST_HEAD(&sctx->name_cache_list);
4368
4369 sctx->send_filp = fget(arg->send_fd);
4370 if (IS_ERR(sctx->send_filp)) {
4371 ret = PTR_ERR(sctx->send_filp);
4372 goto out;
4373 }
4374
4375 sctx->mnt = mnt_file->f_path.mnt;
4376
4377 sctx->send_root = send_root;
4378 sctx->clone_roots_cnt = arg->clone_sources_count;
4379
4380 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
4381 sctx->send_buf = vmalloc(sctx->send_max_size);
4382 if (!sctx->send_buf) {
4383 ret = -ENOMEM;
4384 goto out;
4385 }
4386
4387 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
4388 if (!sctx->read_buf) {
4389 ret = -ENOMEM;
4390 goto out;
4391 }
4392
4393 sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
4394 (arg->clone_sources_count + 1));
4395 if (!sctx->clone_roots) {
4396 ret = -ENOMEM;
4397 goto out;
4398 }
4399
4400 if (arg->clone_sources_count) {
4401 clone_sources_tmp = vmalloc(arg->clone_sources_count *
4402 sizeof(*arg->clone_sources));
4403 if (!clone_sources_tmp) {
4404 ret = -ENOMEM;
4405 goto out;
4406 }
4407
4408 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
4409 arg->clone_sources_count *
4410 sizeof(*arg->clone_sources));
4411 if (ret) {
4412 ret = -EFAULT;
4413 goto out;
4414 }
4415
4416 for (i = 0; i < arg->clone_sources_count; i++) {
4417 key.objectid = clone_sources_tmp[i];
4418 key.type = BTRFS_ROOT_ITEM_KEY;
4419 key.offset = (u64)-1;
4420 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
4421 if (!clone_root) {
4422 ret = -EINVAL;
4423 goto out;
4424 }
4425 if (IS_ERR(clone_root)) {
4426 ret = PTR_ERR(clone_root);
4427 goto out;
4428 }
4429 sctx->clone_roots[i].root = clone_root;
4430 }
4431 vfree(clone_sources_tmp);
4432 clone_sources_tmp = NULL;
4433 }
4434
4435 if (arg->parent_root) {
4436 key.objectid = arg->parent_root;
4437 key.type = BTRFS_ROOT_ITEM_KEY;
4438 key.offset = (u64)-1;
4439 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
4440 if (!sctx->parent_root) {
4441 ret = -EINVAL;
4442 goto out;
4443 }
4444 }
4445
4446 /*
4447 * Clones from send_root are allowed, but only if the clone source
4448 * is behind the current send position. This is checked while searching
4449 * for possible clone sources.
4450 */
4451 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
4452
4453 /* We do a bsearch later */
4454 sort(sctx->clone_roots, sctx->clone_roots_cnt,
4455 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
4456 NULL);
4457
4458 ret = send_subvol(sctx);
4459 if (ret < 0)
4460 goto out;
4461
4462 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
4463 if (ret < 0)
4464 goto out;
4465 ret = send_cmd(sctx);
4466 if (ret < 0)
4467 goto out;
4468
4469out:
4470 if (filp)
4471 fput(filp);
4472 kfree(arg);
4473 vfree(clone_sources_tmp);
4474
4475 if (sctx) {
4476 if (sctx->send_filp)
4477 fput(sctx->send_filp);
4478
4479 vfree(sctx->clone_roots);
4480 vfree(sctx->send_buf);
4481 vfree(sctx->read_buf);
4482
4483 name_cache_free(sctx);
4484
4485 kfree(sctx);
4486 }
4487
4488 return ret;
4489}
This page took 0.20226 seconds and 5 git commands to generate.