Btrfs: Fix misuse of chunk mutex
[deliverable/linux.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
c6adc9cc 21#include <linux/blkdev.h>
5dc562c5 22#include <linux/list_sort.h>
995946dd 23#include "tree-log.h"
e02119d5
CM
24#include "disk-io.h"
25#include "locking.h"
26#include "print-tree.h"
f186373f 27#include "backref.h"
f186373f 28#include "hash.h"
e02119d5
CM
29
30/* magic values for the inode_only field in btrfs_log_inode:
31 *
32 * LOG_INODE_ALL means to log everything
33 * LOG_INODE_EXISTS means to log just enough to recreate the inode
34 * during log replay
35 */
36#define LOG_INODE_ALL 0
37#define LOG_INODE_EXISTS 1
38
12fcfd22
CM
39/*
40 * directory trouble cases
41 *
42 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
43 * log, we must force a full commit before doing an fsync of the directory
44 * where the unlink was done.
45 * ---> record transid of last unlink/rename per directory
46 *
47 * mkdir foo/some_dir
48 * normal commit
49 * rename foo/some_dir foo2/some_dir
50 * mkdir foo/some_dir
51 * fsync foo/some_dir/some_file
52 *
53 * The fsync above will unlink the original some_dir without recording
54 * it in its new location (foo2). After a crash, some_dir will be gone
55 * unless the fsync of some_file forces a full commit
56 *
57 * 2) we must log any new names for any file or dir that is in the fsync
58 * log. ---> check inode while renaming/linking.
59 *
60 * 2a) we must log any new names for any file or dir during rename
61 * when the directory they are being removed from was logged.
62 * ---> check inode and old parent dir during rename
63 *
64 * 2a is actually the more important variant. With the extra logging
65 * a crash might unlink the old name without recreating the new one
66 *
67 * 3) after a crash, we must go through any directories with a link count
68 * of zero and redo the rm -rf
69 *
70 * mkdir f1/foo
71 * normal commit
72 * rm -rf f1/foo
73 * fsync(f1)
74 *
75 * The directory f1 was fully removed from the FS, but fsync was never
76 * called on f1, only its parent dir. After a crash the rm -rf must
77 * be replayed. This must be able to recurse down the entire
78 * directory tree. The inode link count fixup code takes care of the
79 * ugly details.
80 */
81
e02119d5
CM
82/*
83 * stages for the tree walking. The first
84 * stage (0) is to only pin down the blocks we find
85 * the second stage (1) is to make sure that all the inodes
86 * we find in the log are created in the subvolume.
87 *
88 * The last stage is to deal with directories and links and extents
89 * and all the other fun semantics
90 */
91#define LOG_WALK_PIN_ONLY 0
92#define LOG_WALK_REPLAY_INODES 1
dd8e7217
JB
93#define LOG_WALK_REPLAY_DIR_INDEX 2
94#define LOG_WALK_REPLAY_ALL 3
e02119d5 95
12fcfd22 96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
49dae1bc
FM
97 struct btrfs_root *root, struct inode *inode,
98 int inode_only,
99 const loff_t start,
100 const loff_t end);
ec051c0f
YZ
101static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 struct btrfs_root *root,
103 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
104static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 struct btrfs_root *root,
106 struct btrfs_root *log,
107 struct btrfs_path *path,
108 u64 dirid, int del_all);
e02119d5
CM
109
110/*
111 * tree logging is a special write ahead log used to make sure that
112 * fsyncs and O_SYNCs can happen without doing full tree commits.
113 *
114 * Full tree commits are expensive because they require commonly
115 * modified blocks to be recowed, creating many dirty pages in the
116 * extent tree an 4x-6x higher write load than ext3.
117 *
118 * Instead of doing a tree commit on every fsync, we use the
119 * key ranges and transaction ids to find items for a given file or directory
120 * that have changed in this transaction. Those items are copied into
121 * a special tree (one per subvolume root), that tree is written to disk
122 * and then the fsync is considered complete.
123 *
124 * After a crash, items are copied out of the log-tree back into the
125 * subvolume tree. Any file data extents found are recorded in the extent
126 * allocation tree, and the log-tree freed.
127 *
128 * The log tree is read three times, once to pin down all the extents it is
129 * using in ram and once, once to create all the inodes logged in the tree
130 * and once to do all the other items.
131 */
132
e02119d5
CM
133/*
134 * start a sub transaction and setup the log tree
135 * this increments the log tree writer count to make the people
136 * syncing the tree wait for us to finish
137 */
138static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
139 struct btrfs_root *root,
140 struct btrfs_log_ctx *ctx)
e02119d5 141{
8b050d35 142 int index;
e02119d5 143 int ret;
7237f183
YZ
144
145 mutex_lock(&root->log_mutex);
146 if (root->log_root) {
995946dd 147 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
50471a38
MX
148 ret = -EAGAIN;
149 goto out;
150 }
ff782e0a
JB
151 if (!root->log_start_pid) {
152 root->log_start_pid = current->pid;
27cdeb70 153 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 154 } else if (root->log_start_pid != current->pid) {
27cdeb70 155 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a
JB
156 }
157
2ecb7923 158 atomic_inc(&root->log_batch);
7237f183 159 atomic_inc(&root->log_writers);
8b050d35
MX
160 if (ctx) {
161 index = root->log_transid % 2;
162 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 163 ctx->log_transid = root->log_transid;
8b050d35 164 }
7237f183
YZ
165 mutex_unlock(&root->log_mutex);
166 return 0;
167 }
e87ac136
MX
168
169 ret = 0;
e02119d5 170 mutex_lock(&root->fs_info->tree_log_mutex);
e87ac136 171 if (!root->fs_info->log_root_tree)
e02119d5 172 ret = btrfs_init_log_root_tree(trans, root->fs_info);
e87ac136
MX
173 mutex_unlock(&root->fs_info->tree_log_mutex);
174 if (ret)
175 goto out;
176
177 if (!root->log_root) {
e02119d5 178 ret = btrfs_add_log_tree(trans, root);
4a500fd1 179 if (ret)
e87ac136 180 goto out;
e02119d5 181 }
27cdeb70 182 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
e87ac136 183 root->log_start_pid = current->pid;
2ecb7923 184 atomic_inc(&root->log_batch);
7237f183 185 atomic_inc(&root->log_writers);
8b050d35
MX
186 if (ctx) {
187 index = root->log_transid % 2;
188 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 189 ctx->log_transid = root->log_transid;
8b050d35 190 }
e87ac136 191out:
7237f183 192 mutex_unlock(&root->log_mutex);
e87ac136 193 return ret;
e02119d5
CM
194}
195
196/*
197 * returns 0 if there was a log transaction running and we were able
198 * to join, or returns -ENOENT if there were not transactions
199 * in progress
200 */
201static int join_running_log_trans(struct btrfs_root *root)
202{
203 int ret = -ENOENT;
204
205 smp_mb();
206 if (!root->log_root)
207 return -ENOENT;
208
7237f183 209 mutex_lock(&root->log_mutex);
e02119d5
CM
210 if (root->log_root) {
211 ret = 0;
7237f183 212 atomic_inc(&root->log_writers);
e02119d5 213 }
7237f183 214 mutex_unlock(&root->log_mutex);
e02119d5
CM
215 return ret;
216}
217
12fcfd22
CM
218/*
219 * This either makes the current running log transaction wait
220 * until you call btrfs_end_log_trans() or it makes any future
221 * log transactions wait until you call btrfs_end_log_trans()
222 */
223int btrfs_pin_log_trans(struct btrfs_root *root)
224{
225 int ret = -ENOENT;
226
227 mutex_lock(&root->log_mutex);
228 atomic_inc(&root->log_writers);
229 mutex_unlock(&root->log_mutex);
230 return ret;
231}
232
e02119d5
CM
233/*
234 * indicate we're done making changes to the log tree
235 * and wake up anyone waiting to do a sync
236 */
143bede5 237void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 238{
7237f183
YZ
239 if (atomic_dec_and_test(&root->log_writers)) {
240 smp_mb();
241 if (waitqueue_active(&root->log_writer_wait))
242 wake_up(&root->log_writer_wait);
243 }
e02119d5
CM
244}
245
246
247/*
248 * the walk control struct is used to pass state down the chain when
249 * processing the log tree. The stage field tells us which part
250 * of the log tree processing we are currently doing. The others
251 * are state fields used for that specific part
252 */
253struct walk_control {
254 /* should we free the extent on disk when done? This is used
255 * at transaction commit time while freeing a log tree
256 */
257 int free;
258
259 /* should we write out the extent buffer? This is used
260 * while flushing the log tree to disk during a sync
261 */
262 int write;
263
264 /* should we wait for the extent buffer io to finish? Also used
265 * while flushing the log tree to disk for a sync
266 */
267 int wait;
268
269 /* pin only walk, we record which extents on disk belong to the
270 * log trees
271 */
272 int pin;
273
274 /* what stage of the replay code we're currently in */
275 int stage;
276
277 /* the root we are currently replaying */
278 struct btrfs_root *replay_dest;
279
280 /* the trans handle for the current replay */
281 struct btrfs_trans_handle *trans;
282
283 /* the function that gets used to process blocks we find in the
284 * tree. Note the extent_buffer might not be up to date when it is
285 * passed in, and it must be checked or read if you need the data
286 * inside it
287 */
288 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
289 struct walk_control *wc, u64 gen);
290};
291
292/*
293 * process_func used to pin down extents, write them or wait on them
294 */
295static int process_one_buffer(struct btrfs_root *log,
296 struct extent_buffer *eb,
297 struct walk_control *wc, u64 gen)
298{
b50c6e25
JB
299 int ret = 0;
300
8c2a1a30
JB
301 /*
302 * If this fs is mixed then we need to be able to process the leaves to
303 * pin down any logged extents, so we have to read the block.
304 */
305 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
306 ret = btrfs_read_buffer(eb, gen);
307 if (ret)
308 return ret;
309 }
310
04018de5 311 if (wc->pin)
b50c6e25
JB
312 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
313 eb->start, eb->len);
e02119d5 314
b50c6e25 315 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30
JB
316 if (wc->pin && btrfs_header_level(eb) == 0)
317 ret = btrfs_exclude_logged_extents(log, eb);
e02119d5
CM
318 if (wc->write)
319 btrfs_write_tree_block(eb);
320 if (wc->wait)
321 btrfs_wait_tree_block_writeback(eb);
322 }
b50c6e25 323 return ret;
e02119d5
CM
324}
325
326/*
327 * Item overwrite used by replay and tree logging. eb, slot and key all refer
328 * to the src data we are copying out.
329 *
330 * root is the tree we are copying into, and path is a scratch
331 * path for use in this function (it should be released on entry and
332 * will be released on exit).
333 *
334 * If the key is already in the destination tree the existing item is
335 * overwritten. If the existing item isn't big enough, it is extended.
336 * If it is too large, it is truncated.
337 *
338 * If the key isn't in the destination yet, a new item is inserted.
339 */
340static noinline int overwrite_item(struct btrfs_trans_handle *trans,
341 struct btrfs_root *root,
342 struct btrfs_path *path,
343 struct extent_buffer *eb, int slot,
344 struct btrfs_key *key)
345{
346 int ret;
347 u32 item_size;
348 u64 saved_i_size = 0;
349 int save_old_i_size = 0;
350 unsigned long src_ptr;
351 unsigned long dst_ptr;
352 int overwrite_root = 0;
4bc4bee4 353 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
354
355 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
356 overwrite_root = 1;
357
358 item_size = btrfs_item_size_nr(eb, slot);
359 src_ptr = btrfs_item_ptr_offset(eb, slot);
360
361 /* look for the key in the destination tree */
362 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
363 if (ret < 0)
364 return ret;
365
e02119d5
CM
366 if (ret == 0) {
367 char *src_copy;
368 char *dst_copy;
369 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
370 path->slots[0]);
371 if (dst_size != item_size)
372 goto insert;
373
374 if (item_size == 0) {
b3b4aa74 375 btrfs_release_path(path);
e02119d5
CM
376 return 0;
377 }
378 dst_copy = kmalloc(item_size, GFP_NOFS);
379 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 380 if (!dst_copy || !src_copy) {
b3b4aa74 381 btrfs_release_path(path);
2a29edc6 382 kfree(dst_copy);
383 kfree(src_copy);
384 return -ENOMEM;
385 }
e02119d5
CM
386
387 read_extent_buffer(eb, src_copy, src_ptr, item_size);
388
389 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
390 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
391 item_size);
392 ret = memcmp(dst_copy, src_copy, item_size);
393
394 kfree(dst_copy);
395 kfree(src_copy);
396 /*
397 * they have the same contents, just return, this saves
398 * us from cowing blocks in the destination tree and doing
399 * extra writes that may not have been done by a previous
400 * sync
401 */
402 if (ret == 0) {
b3b4aa74 403 btrfs_release_path(path);
e02119d5
CM
404 return 0;
405 }
406
4bc4bee4
JB
407 /*
408 * We need to load the old nbytes into the inode so when we
409 * replay the extents we've logged we get the right nbytes.
410 */
411 if (inode_item) {
412 struct btrfs_inode_item *item;
413 u64 nbytes;
d555438b 414 u32 mode;
4bc4bee4
JB
415
416 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
417 struct btrfs_inode_item);
418 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
419 item = btrfs_item_ptr(eb, slot,
420 struct btrfs_inode_item);
421 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
422
423 /*
424 * If this is a directory we need to reset the i_size to
425 * 0 so that we can set it up properly when replaying
426 * the rest of the items in this log.
427 */
428 mode = btrfs_inode_mode(eb, item);
429 if (S_ISDIR(mode))
430 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
431 }
432 } else if (inode_item) {
433 struct btrfs_inode_item *item;
d555438b 434 u32 mode;
4bc4bee4
JB
435
436 /*
437 * New inode, set nbytes to 0 so that the nbytes comes out
438 * properly when we replay the extents.
439 */
440 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
441 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
442
443 /*
444 * If this is a directory we need to reset the i_size to 0 so
445 * that we can set it up properly when replaying the rest of
446 * the items in this log.
447 */
448 mode = btrfs_inode_mode(eb, item);
449 if (S_ISDIR(mode))
450 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
451 }
452insert:
b3b4aa74 453 btrfs_release_path(path);
e02119d5
CM
454 /* try to insert the key into the destination tree */
455 ret = btrfs_insert_empty_item(trans, root, path,
456 key, item_size);
457
458 /* make sure any existing item is the correct size */
459 if (ret == -EEXIST) {
460 u32 found_size;
461 found_size = btrfs_item_size_nr(path->nodes[0],
462 path->slots[0]);
143bede5 463 if (found_size > item_size)
afe5fea7 464 btrfs_truncate_item(root, path, item_size, 1);
143bede5 465 else if (found_size < item_size)
4b90c680 466 btrfs_extend_item(root, path,
143bede5 467 item_size - found_size);
e02119d5 468 } else if (ret) {
4a500fd1 469 return ret;
e02119d5
CM
470 }
471 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
472 path->slots[0]);
473
474 /* don't overwrite an existing inode if the generation number
475 * was logged as zero. This is done when the tree logging code
476 * is just logging an inode to make sure it exists after recovery.
477 *
478 * Also, don't overwrite i_size on directories during replay.
479 * log replay inserts and removes directory items based on the
480 * state of the tree found in the subvolume, and i_size is modified
481 * as it goes
482 */
483 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
484 struct btrfs_inode_item *src_item;
485 struct btrfs_inode_item *dst_item;
486
487 src_item = (struct btrfs_inode_item *)src_ptr;
488 dst_item = (struct btrfs_inode_item *)dst_ptr;
489
490 if (btrfs_inode_generation(eb, src_item) == 0)
491 goto no_copy;
492
493 if (overwrite_root &&
494 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
495 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
496 save_old_i_size = 1;
497 saved_i_size = btrfs_inode_size(path->nodes[0],
498 dst_item);
499 }
500 }
501
502 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
503 src_ptr, item_size);
504
505 if (save_old_i_size) {
506 struct btrfs_inode_item *dst_item;
507 dst_item = (struct btrfs_inode_item *)dst_ptr;
508 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
509 }
510
511 /* make sure the generation is filled in */
512 if (key->type == BTRFS_INODE_ITEM_KEY) {
513 struct btrfs_inode_item *dst_item;
514 dst_item = (struct btrfs_inode_item *)dst_ptr;
515 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
516 btrfs_set_inode_generation(path->nodes[0], dst_item,
517 trans->transid);
518 }
519 }
520no_copy:
521 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 522 btrfs_release_path(path);
e02119d5
CM
523 return 0;
524}
525
526/*
527 * simple helper to read an inode off the disk from a given root
528 * This can only be called for subvolume roots and not for the log
529 */
530static noinline struct inode *read_one_inode(struct btrfs_root *root,
531 u64 objectid)
532{
5d4f98a2 533 struct btrfs_key key;
e02119d5 534 struct inode *inode;
e02119d5 535
5d4f98a2
YZ
536 key.objectid = objectid;
537 key.type = BTRFS_INODE_ITEM_KEY;
538 key.offset = 0;
73f73415 539 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
540 if (IS_ERR(inode)) {
541 inode = NULL;
542 } else if (is_bad_inode(inode)) {
e02119d5
CM
543 iput(inode);
544 inode = NULL;
545 }
546 return inode;
547}
548
549/* replays a single extent in 'eb' at 'slot' with 'key' into the
550 * subvolume 'root'. path is released on entry and should be released
551 * on exit.
552 *
553 * extents in the log tree have not been allocated out of the extent
554 * tree yet. So, this completes the allocation, taking a reference
555 * as required if the extent already exists or creating a new extent
556 * if it isn't in the extent allocation tree yet.
557 *
558 * The extent is inserted into the file, dropping any existing extents
559 * from the file that overlap the new one.
560 */
561static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
562 struct btrfs_root *root,
563 struct btrfs_path *path,
564 struct extent_buffer *eb, int slot,
565 struct btrfs_key *key)
566{
567 int found_type;
e02119d5 568 u64 extent_end;
e02119d5 569 u64 start = key->offset;
4bc4bee4 570 u64 nbytes = 0;
e02119d5
CM
571 struct btrfs_file_extent_item *item;
572 struct inode *inode = NULL;
573 unsigned long size;
574 int ret = 0;
575
576 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
577 found_type = btrfs_file_extent_type(eb, item);
578
d899e052 579 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
580 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
581 nbytes = btrfs_file_extent_num_bytes(eb, item);
582 extent_end = start + nbytes;
583
584 /*
585 * We don't add to the inodes nbytes if we are prealloc or a
586 * hole.
587 */
588 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
589 nbytes = 0;
590 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 591 size = btrfs_file_extent_inline_len(eb, slot, item);
4bc4bee4 592 nbytes = btrfs_file_extent_ram_bytes(eb, item);
fda2832f 593 extent_end = ALIGN(start + size, root->sectorsize);
e02119d5
CM
594 } else {
595 ret = 0;
596 goto out;
597 }
598
599 inode = read_one_inode(root, key->objectid);
600 if (!inode) {
601 ret = -EIO;
602 goto out;
603 }
604
605 /*
606 * first check to see if we already have this extent in the
607 * file. This must be done before the btrfs_drop_extents run
608 * so we don't try to drop this extent.
609 */
33345d01 610 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
e02119d5
CM
611 start, 0);
612
d899e052
YZ
613 if (ret == 0 &&
614 (found_type == BTRFS_FILE_EXTENT_REG ||
615 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
616 struct btrfs_file_extent_item cmp1;
617 struct btrfs_file_extent_item cmp2;
618 struct btrfs_file_extent_item *existing;
619 struct extent_buffer *leaf;
620
621 leaf = path->nodes[0];
622 existing = btrfs_item_ptr(leaf, path->slots[0],
623 struct btrfs_file_extent_item);
624
625 read_extent_buffer(eb, &cmp1, (unsigned long)item,
626 sizeof(cmp1));
627 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
628 sizeof(cmp2));
629
630 /*
631 * we already have a pointer to this exact extent,
632 * we don't have to do anything
633 */
634 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 635 btrfs_release_path(path);
e02119d5
CM
636 goto out;
637 }
638 }
b3b4aa74 639 btrfs_release_path(path);
e02119d5
CM
640
641 /* drop any overlapping extents */
2671485d 642 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
643 if (ret)
644 goto out;
e02119d5 645
07d400a6
YZ
646 if (found_type == BTRFS_FILE_EXTENT_REG ||
647 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 648 u64 offset;
07d400a6
YZ
649 unsigned long dest_offset;
650 struct btrfs_key ins;
651
652 ret = btrfs_insert_empty_item(trans, root, path, key,
653 sizeof(*item));
3650860b
JB
654 if (ret)
655 goto out;
07d400a6
YZ
656 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
657 path->slots[0]);
658 copy_extent_buffer(path->nodes[0], eb, dest_offset,
659 (unsigned long)item, sizeof(*item));
660
661 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
662 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
663 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 664 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6
YZ
665
666 if (ins.objectid > 0) {
667 u64 csum_start;
668 u64 csum_end;
669 LIST_HEAD(ordered_sums);
670 /*
671 * is this extent already allocated in the extent
672 * allocation tree? If so, just add a reference
673 */
674 ret = btrfs_lookup_extent(root, ins.objectid,
675 ins.offset);
676 if (ret == 0) {
677 ret = btrfs_inc_extent_ref(trans, root,
678 ins.objectid, ins.offset,
5d4f98a2 679 0, root->root_key.objectid,
66d7e7f0 680 key->objectid, offset, 0);
b50c6e25
JB
681 if (ret)
682 goto out;
07d400a6
YZ
683 } else {
684 /*
685 * insert the extent pointer in the extent
686 * allocation tree
687 */
5d4f98a2
YZ
688 ret = btrfs_alloc_logged_file_extent(trans,
689 root, root->root_key.objectid,
690 key->objectid, offset, &ins);
b50c6e25
JB
691 if (ret)
692 goto out;
07d400a6 693 }
b3b4aa74 694 btrfs_release_path(path);
07d400a6
YZ
695
696 if (btrfs_file_extent_compression(eb, item)) {
697 csum_start = ins.objectid;
698 csum_end = csum_start + ins.offset;
699 } else {
700 csum_start = ins.objectid +
701 btrfs_file_extent_offset(eb, item);
702 csum_end = csum_start +
703 btrfs_file_extent_num_bytes(eb, item);
704 }
705
706 ret = btrfs_lookup_csums_range(root->log_root,
707 csum_start, csum_end - 1,
a2de733c 708 &ordered_sums, 0);
3650860b
JB
709 if (ret)
710 goto out;
07d400a6
YZ
711 while (!list_empty(&ordered_sums)) {
712 struct btrfs_ordered_sum *sums;
713 sums = list_entry(ordered_sums.next,
714 struct btrfs_ordered_sum,
715 list);
3650860b
JB
716 if (!ret)
717 ret = btrfs_csum_file_blocks(trans,
07d400a6
YZ
718 root->fs_info->csum_root,
719 sums);
07d400a6
YZ
720 list_del(&sums->list);
721 kfree(sums);
722 }
3650860b
JB
723 if (ret)
724 goto out;
07d400a6 725 } else {
b3b4aa74 726 btrfs_release_path(path);
07d400a6
YZ
727 }
728 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
729 /* inline extents are easy, we just overwrite them */
730 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
731 if (ret)
732 goto out;
07d400a6 733 }
e02119d5 734
4bc4bee4 735 inode_add_bytes(inode, nbytes);
b9959295 736 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
737out:
738 if (inode)
739 iput(inode);
740 return ret;
741}
742
743/*
744 * when cleaning up conflicts between the directory names in the
745 * subvolume, directory names in the log and directory names in the
746 * inode back references, we may have to unlink inodes from directories.
747 *
748 * This is a helper function to do the unlink of a specific directory
749 * item
750 */
751static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
752 struct btrfs_root *root,
753 struct btrfs_path *path,
754 struct inode *dir,
755 struct btrfs_dir_item *di)
756{
757 struct inode *inode;
758 char *name;
759 int name_len;
760 struct extent_buffer *leaf;
761 struct btrfs_key location;
762 int ret;
763
764 leaf = path->nodes[0];
765
766 btrfs_dir_item_key_to_cpu(leaf, di, &location);
767 name_len = btrfs_dir_name_len(leaf, di);
768 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 769 if (!name)
770 return -ENOMEM;
771
e02119d5 772 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 773 btrfs_release_path(path);
e02119d5
CM
774
775 inode = read_one_inode(root, location.objectid);
c00e9493 776 if (!inode) {
3650860b
JB
777 ret = -EIO;
778 goto out;
c00e9493 779 }
e02119d5 780
ec051c0f 781 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
782 if (ret)
783 goto out;
12fcfd22 784
e02119d5 785 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3650860b
JB
786 if (ret)
787 goto out;
ada9af21
FDBM
788 else
789 ret = btrfs_run_delayed_items(trans, root);
3650860b 790out:
e02119d5 791 kfree(name);
e02119d5
CM
792 iput(inode);
793 return ret;
794}
795
796/*
797 * helper function to see if a given name and sequence number found
798 * in an inode back reference are already in a directory and correctly
799 * point to this inode
800 */
801static noinline int inode_in_dir(struct btrfs_root *root,
802 struct btrfs_path *path,
803 u64 dirid, u64 objectid, u64 index,
804 const char *name, int name_len)
805{
806 struct btrfs_dir_item *di;
807 struct btrfs_key location;
808 int match = 0;
809
810 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
811 index, name, name_len, 0);
812 if (di && !IS_ERR(di)) {
813 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
814 if (location.objectid != objectid)
815 goto out;
816 } else
817 goto out;
b3b4aa74 818 btrfs_release_path(path);
e02119d5
CM
819
820 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
821 if (di && !IS_ERR(di)) {
822 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
823 if (location.objectid != objectid)
824 goto out;
825 } else
826 goto out;
827 match = 1;
828out:
b3b4aa74 829 btrfs_release_path(path);
e02119d5
CM
830 return match;
831}
832
833/*
834 * helper function to check a log tree for a named back reference in
835 * an inode. This is used to decide if a back reference that is
836 * found in the subvolume conflicts with what we find in the log.
837 *
838 * inode backreferences may have multiple refs in a single item,
839 * during replay we process one reference at a time, and we don't
840 * want to delete valid links to a file from the subvolume if that
841 * link is also in the log.
842 */
843static noinline int backref_in_log(struct btrfs_root *log,
844 struct btrfs_key *key,
f186373f 845 u64 ref_objectid,
e02119d5
CM
846 char *name, int namelen)
847{
848 struct btrfs_path *path;
849 struct btrfs_inode_ref *ref;
850 unsigned long ptr;
851 unsigned long ptr_end;
852 unsigned long name_ptr;
853 int found_name_len;
854 int item_size;
855 int ret;
856 int match = 0;
857
858 path = btrfs_alloc_path();
2a29edc6 859 if (!path)
860 return -ENOMEM;
861
e02119d5
CM
862 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
863 if (ret != 0)
864 goto out;
865
e02119d5 866 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
867
868 if (key->type == BTRFS_INODE_EXTREF_KEY) {
869 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
870 name, namelen, NULL))
871 match = 1;
872
873 goto out;
874 }
875
876 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
877 ptr_end = ptr + item_size;
878 while (ptr < ptr_end) {
879 ref = (struct btrfs_inode_ref *)ptr;
880 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
881 if (found_name_len == namelen) {
882 name_ptr = (unsigned long)(ref + 1);
883 ret = memcmp_extent_buffer(path->nodes[0], name,
884 name_ptr, namelen);
885 if (ret == 0) {
886 match = 1;
887 goto out;
888 }
889 }
890 ptr = (unsigned long)(ref + 1) + found_name_len;
891 }
892out:
893 btrfs_free_path(path);
894 return match;
895}
896
5a1d7843 897static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 898 struct btrfs_root *root,
e02119d5 899 struct btrfs_path *path,
5a1d7843
JS
900 struct btrfs_root *log_root,
901 struct inode *dir, struct inode *inode,
5a1d7843 902 struct extent_buffer *eb,
f186373f
MF
903 u64 inode_objectid, u64 parent_objectid,
904 u64 ref_index, char *name, int namelen,
905 int *search_done)
e02119d5 906{
34f3e4f2 907 int ret;
f186373f
MF
908 char *victim_name;
909 int victim_name_len;
910 struct extent_buffer *leaf;
5a1d7843 911 struct btrfs_dir_item *di;
f186373f
MF
912 struct btrfs_key search_key;
913 struct btrfs_inode_extref *extref;
c622ae60 914
f186373f
MF
915again:
916 /* Search old style refs */
917 search_key.objectid = inode_objectid;
918 search_key.type = BTRFS_INODE_REF_KEY;
919 search_key.offset = parent_objectid;
920 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 921 if (ret == 0) {
e02119d5
CM
922 struct btrfs_inode_ref *victim_ref;
923 unsigned long ptr;
924 unsigned long ptr_end;
f186373f
MF
925
926 leaf = path->nodes[0];
e02119d5
CM
927
928 /* are we trying to overwrite a back ref for the root directory
929 * if so, just jump out, we're done
930 */
f186373f 931 if (search_key.objectid == search_key.offset)
5a1d7843 932 return 1;
e02119d5
CM
933
934 /* check all the names in this back reference to see
935 * if they are in the log. if so, we allow them to stay
936 * otherwise they must be unlinked as a conflict
937 */
938 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
939 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 940 while (ptr < ptr_end) {
e02119d5
CM
941 victim_ref = (struct btrfs_inode_ref *)ptr;
942 victim_name_len = btrfs_inode_ref_name_len(leaf,
943 victim_ref);
944 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
945 if (!victim_name)
946 return -ENOMEM;
e02119d5
CM
947
948 read_extent_buffer(leaf, victim_name,
949 (unsigned long)(victim_ref + 1),
950 victim_name_len);
951
f186373f
MF
952 if (!backref_in_log(log_root, &search_key,
953 parent_objectid,
954 victim_name,
e02119d5 955 victim_name_len)) {
8b558c5f 956 inc_nlink(inode);
b3b4aa74 957 btrfs_release_path(path);
12fcfd22 958
e02119d5
CM
959 ret = btrfs_unlink_inode(trans, root, dir,
960 inode, victim_name,
961 victim_name_len);
f186373f 962 kfree(victim_name);
3650860b
JB
963 if (ret)
964 return ret;
ada9af21
FDBM
965 ret = btrfs_run_delayed_items(trans, root);
966 if (ret)
967 return ret;
f186373f
MF
968 *search_done = 1;
969 goto again;
e02119d5
CM
970 }
971 kfree(victim_name);
f186373f 972
e02119d5
CM
973 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
974 }
e02119d5 975
c622ae60 976 /*
977 * NOTE: we have searched root tree and checked the
978 * coresponding ref, it does not need to check again.
979 */
5a1d7843 980 *search_done = 1;
e02119d5 981 }
b3b4aa74 982 btrfs_release_path(path);
e02119d5 983
f186373f
MF
984 /* Same search but for extended refs */
985 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
986 inode_objectid, parent_objectid, 0,
987 0);
988 if (!IS_ERR_OR_NULL(extref)) {
989 u32 item_size;
990 u32 cur_offset = 0;
991 unsigned long base;
992 struct inode *victim_parent;
993
994 leaf = path->nodes[0];
995
996 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
997 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
998
999 while (cur_offset < item_size) {
1000 extref = (struct btrfs_inode_extref *)base + cur_offset;
1001
1002 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1003
1004 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1005 goto next;
1006
1007 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1008 if (!victim_name)
1009 return -ENOMEM;
f186373f
MF
1010 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1011 victim_name_len);
1012
1013 search_key.objectid = inode_objectid;
1014 search_key.type = BTRFS_INODE_EXTREF_KEY;
1015 search_key.offset = btrfs_extref_hash(parent_objectid,
1016 victim_name,
1017 victim_name_len);
1018 ret = 0;
1019 if (!backref_in_log(log_root, &search_key,
1020 parent_objectid, victim_name,
1021 victim_name_len)) {
1022 ret = -ENOENT;
1023 victim_parent = read_one_inode(root,
1024 parent_objectid);
1025 if (victim_parent) {
8b558c5f 1026 inc_nlink(inode);
f186373f
MF
1027 btrfs_release_path(path);
1028
1029 ret = btrfs_unlink_inode(trans, root,
1030 victim_parent,
1031 inode,
1032 victim_name,
1033 victim_name_len);
ada9af21
FDBM
1034 if (!ret)
1035 ret = btrfs_run_delayed_items(
1036 trans, root);
f186373f 1037 }
f186373f
MF
1038 iput(victim_parent);
1039 kfree(victim_name);
3650860b
JB
1040 if (ret)
1041 return ret;
f186373f
MF
1042 *search_done = 1;
1043 goto again;
1044 }
1045 kfree(victim_name);
3650860b
JB
1046 if (ret)
1047 return ret;
f186373f
MF
1048next:
1049 cur_offset += victim_name_len + sizeof(*extref);
1050 }
1051 *search_done = 1;
1052 }
1053 btrfs_release_path(path);
1054
34f3e4f2 1055 /* look for a conflicting sequence number */
1056 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1057 ref_index, name, namelen, 0);
34f3e4f2 1058 if (di && !IS_ERR(di)) {
1059 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1060 if (ret)
1061 return ret;
34f3e4f2 1062 }
1063 btrfs_release_path(path);
1064
1065 /* look for a conflicing name */
1066 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1067 name, namelen, 0);
1068 if (di && !IS_ERR(di)) {
1069 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1070 if (ret)
1071 return ret;
34f3e4f2 1072 }
1073 btrfs_release_path(path);
1074
5a1d7843
JS
1075 return 0;
1076}
e02119d5 1077
f186373f
MF
1078static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1079 u32 *namelen, char **name, u64 *index,
1080 u64 *parent_objectid)
1081{
1082 struct btrfs_inode_extref *extref;
1083
1084 extref = (struct btrfs_inode_extref *)ref_ptr;
1085
1086 *namelen = btrfs_inode_extref_name_len(eb, extref);
1087 *name = kmalloc(*namelen, GFP_NOFS);
1088 if (*name == NULL)
1089 return -ENOMEM;
1090
1091 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1092 *namelen);
1093
1094 *index = btrfs_inode_extref_index(eb, extref);
1095 if (parent_objectid)
1096 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1097
1098 return 0;
1099}
1100
1101static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1102 u32 *namelen, char **name, u64 *index)
1103{
1104 struct btrfs_inode_ref *ref;
1105
1106 ref = (struct btrfs_inode_ref *)ref_ptr;
1107
1108 *namelen = btrfs_inode_ref_name_len(eb, ref);
1109 *name = kmalloc(*namelen, GFP_NOFS);
1110 if (*name == NULL)
1111 return -ENOMEM;
1112
1113 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1114
1115 *index = btrfs_inode_ref_index(eb, ref);
1116
1117 return 0;
1118}
1119
5a1d7843
JS
1120/*
1121 * replay one inode back reference item found in the log tree.
1122 * eb, slot and key refer to the buffer and key found in the log tree.
1123 * root is the destination we are replaying into, and path is for temp
1124 * use by this function. (it should be released on return).
1125 */
1126static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1127 struct btrfs_root *root,
1128 struct btrfs_root *log,
1129 struct btrfs_path *path,
1130 struct extent_buffer *eb, int slot,
1131 struct btrfs_key *key)
1132{
03b2f08b
GB
1133 struct inode *dir = NULL;
1134 struct inode *inode = NULL;
5a1d7843
JS
1135 unsigned long ref_ptr;
1136 unsigned long ref_end;
03b2f08b 1137 char *name = NULL;
5a1d7843
JS
1138 int namelen;
1139 int ret;
1140 int search_done = 0;
f186373f
MF
1141 int log_ref_ver = 0;
1142 u64 parent_objectid;
1143 u64 inode_objectid;
f46dbe3d 1144 u64 ref_index = 0;
f186373f
MF
1145 int ref_struct_size;
1146
1147 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1148 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1149
1150 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1151 struct btrfs_inode_extref *r;
1152
1153 ref_struct_size = sizeof(struct btrfs_inode_extref);
1154 log_ref_ver = 1;
1155 r = (struct btrfs_inode_extref *)ref_ptr;
1156 parent_objectid = btrfs_inode_extref_parent(eb, r);
1157 } else {
1158 ref_struct_size = sizeof(struct btrfs_inode_ref);
1159 parent_objectid = key->offset;
1160 }
1161 inode_objectid = key->objectid;
e02119d5 1162
5a1d7843
JS
1163 /*
1164 * it is possible that we didn't log all the parent directories
1165 * for a given inode. If we don't find the dir, just don't
1166 * copy the back ref in. The link count fixup code will take
1167 * care of the rest
1168 */
f186373f 1169 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1170 if (!dir) {
1171 ret = -ENOENT;
1172 goto out;
1173 }
5a1d7843 1174
f186373f 1175 inode = read_one_inode(root, inode_objectid);
5a1d7843 1176 if (!inode) {
03b2f08b
GB
1177 ret = -EIO;
1178 goto out;
5a1d7843
JS
1179 }
1180
5a1d7843 1181 while (ref_ptr < ref_end) {
f186373f
MF
1182 if (log_ref_ver) {
1183 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1184 &ref_index, &parent_objectid);
1185 /*
1186 * parent object can change from one array
1187 * item to another.
1188 */
1189 if (!dir)
1190 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1191 if (!dir) {
1192 ret = -ENOENT;
1193 goto out;
1194 }
f186373f
MF
1195 } else {
1196 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1197 &ref_index);
1198 }
1199 if (ret)
03b2f08b 1200 goto out;
5a1d7843
JS
1201
1202 /* if we already have a perfect match, we're done */
1203 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
f186373f 1204 ref_index, name, namelen)) {
5a1d7843
JS
1205 /*
1206 * look for a conflicting back reference in the
1207 * metadata. if we find one we have to unlink that name
1208 * of the file before we add our new link. Later on, we
1209 * overwrite any existing back reference, and we don't
1210 * want to create dangling pointers in the directory.
1211 */
1212
1213 if (!search_done) {
1214 ret = __add_inode_ref(trans, root, path, log,
f186373f
MF
1215 dir, inode, eb,
1216 inode_objectid,
1217 parent_objectid,
1218 ref_index, name, namelen,
5a1d7843 1219 &search_done);
03b2f08b
GB
1220 if (ret) {
1221 if (ret == 1)
1222 ret = 0;
3650860b
JB
1223 goto out;
1224 }
5a1d7843
JS
1225 }
1226
1227 /* insert our name */
1228 ret = btrfs_add_link(trans, dir, inode, name, namelen,
f186373f 1229 0, ref_index);
3650860b
JB
1230 if (ret)
1231 goto out;
5a1d7843
JS
1232
1233 btrfs_update_inode(trans, root, inode);
1234 }
1235
f186373f 1236 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1237 kfree(name);
03b2f08b 1238 name = NULL;
f186373f
MF
1239 if (log_ref_ver) {
1240 iput(dir);
1241 dir = NULL;
1242 }
5a1d7843 1243 }
e02119d5
CM
1244
1245 /* finally write the back reference in the inode */
1246 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1247out:
b3b4aa74 1248 btrfs_release_path(path);
03b2f08b 1249 kfree(name);
e02119d5
CM
1250 iput(dir);
1251 iput(inode);
3650860b 1252 return ret;
e02119d5
CM
1253}
1254
c71bf099
YZ
1255static int insert_orphan_item(struct btrfs_trans_handle *trans,
1256 struct btrfs_root *root, u64 offset)
1257{
1258 int ret;
3f870c28
KN
1259 ret = btrfs_find_item(root, NULL, BTRFS_ORPHAN_OBJECTID,
1260 offset, BTRFS_ORPHAN_ITEM_KEY, NULL);
c71bf099
YZ
1261 if (ret > 0)
1262 ret = btrfs_insert_orphan_item(trans, root, offset);
1263 return ret;
1264}
1265
f186373f
MF
1266static int count_inode_extrefs(struct btrfs_root *root,
1267 struct inode *inode, struct btrfs_path *path)
1268{
1269 int ret = 0;
1270 int name_len;
1271 unsigned int nlink = 0;
1272 u32 item_size;
1273 u32 cur_offset = 0;
1274 u64 inode_objectid = btrfs_ino(inode);
1275 u64 offset = 0;
1276 unsigned long ptr;
1277 struct btrfs_inode_extref *extref;
1278 struct extent_buffer *leaf;
1279
1280 while (1) {
1281 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1282 &extref, &offset);
1283 if (ret)
1284 break;
c71bf099 1285
f186373f
MF
1286 leaf = path->nodes[0];
1287 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1288 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1289
1290 while (cur_offset < item_size) {
1291 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1292 name_len = btrfs_inode_extref_name_len(leaf, extref);
1293
1294 nlink++;
1295
1296 cur_offset += name_len + sizeof(*extref);
1297 }
1298
1299 offset++;
1300 btrfs_release_path(path);
1301 }
1302 btrfs_release_path(path);
1303
1304 if (ret < 0)
1305 return ret;
1306 return nlink;
1307}
1308
1309static int count_inode_refs(struct btrfs_root *root,
1310 struct inode *inode, struct btrfs_path *path)
e02119d5 1311{
e02119d5
CM
1312 int ret;
1313 struct btrfs_key key;
f186373f 1314 unsigned int nlink = 0;
e02119d5
CM
1315 unsigned long ptr;
1316 unsigned long ptr_end;
1317 int name_len;
33345d01 1318 u64 ino = btrfs_ino(inode);
e02119d5 1319
33345d01 1320 key.objectid = ino;
e02119d5
CM
1321 key.type = BTRFS_INODE_REF_KEY;
1322 key.offset = (u64)-1;
1323
d397712b 1324 while (1) {
e02119d5
CM
1325 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1326 if (ret < 0)
1327 break;
1328 if (ret > 0) {
1329 if (path->slots[0] == 0)
1330 break;
1331 path->slots[0]--;
1332 }
e93ae26f 1333process_slot:
e02119d5
CM
1334 btrfs_item_key_to_cpu(path->nodes[0], &key,
1335 path->slots[0]);
33345d01 1336 if (key.objectid != ino ||
e02119d5
CM
1337 key.type != BTRFS_INODE_REF_KEY)
1338 break;
1339 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1340 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1341 path->slots[0]);
d397712b 1342 while (ptr < ptr_end) {
e02119d5
CM
1343 struct btrfs_inode_ref *ref;
1344
1345 ref = (struct btrfs_inode_ref *)ptr;
1346 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1347 ref);
1348 ptr = (unsigned long)(ref + 1) + name_len;
1349 nlink++;
1350 }
1351
1352 if (key.offset == 0)
1353 break;
e93ae26f
FDBM
1354 if (path->slots[0] > 0) {
1355 path->slots[0]--;
1356 goto process_slot;
1357 }
e02119d5 1358 key.offset--;
b3b4aa74 1359 btrfs_release_path(path);
e02119d5 1360 }
b3b4aa74 1361 btrfs_release_path(path);
f186373f
MF
1362
1363 return nlink;
1364}
1365
1366/*
1367 * There are a few corners where the link count of the file can't
1368 * be properly maintained during replay. So, instead of adding
1369 * lots of complexity to the log code, we just scan the backrefs
1370 * for any file that has been through replay.
1371 *
1372 * The scan will update the link count on the inode to reflect the
1373 * number of back refs found. If it goes down to zero, the iput
1374 * will free the inode.
1375 */
1376static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1377 struct btrfs_root *root,
1378 struct inode *inode)
1379{
1380 struct btrfs_path *path;
1381 int ret;
1382 u64 nlink = 0;
1383 u64 ino = btrfs_ino(inode);
1384
1385 path = btrfs_alloc_path();
1386 if (!path)
1387 return -ENOMEM;
1388
1389 ret = count_inode_refs(root, inode, path);
1390 if (ret < 0)
1391 goto out;
1392
1393 nlink = ret;
1394
1395 ret = count_inode_extrefs(root, inode, path);
1396 if (ret == -ENOENT)
1397 ret = 0;
1398
1399 if (ret < 0)
1400 goto out;
1401
1402 nlink += ret;
1403
1404 ret = 0;
1405
e02119d5 1406 if (nlink != inode->i_nlink) {
bfe86848 1407 set_nlink(inode, nlink);
e02119d5
CM
1408 btrfs_update_inode(trans, root, inode);
1409 }
8d5bf1cb 1410 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1411
c71bf099
YZ
1412 if (inode->i_nlink == 0) {
1413 if (S_ISDIR(inode->i_mode)) {
1414 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1415 ino, 1);
3650860b
JB
1416 if (ret)
1417 goto out;
c71bf099 1418 }
33345d01 1419 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1420 }
12fcfd22 1421
f186373f
MF
1422out:
1423 btrfs_free_path(path);
1424 return ret;
e02119d5
CM
1425}
1426
1427static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1428 struct btrfs_root *root,
1429 struct btrfs_path *path)
1430{
1431 int ret;
1432 struct btrfs_key key;
1433 struct inode *inode;
1434
1435 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1436 key.type = BTRFS_ORPHAN_ITEM_KEY;
1437 key.offset = (u64)-1;
d397712b 1438 while (1) {
e02119d5
CM
1439 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1440 if (ret < 0)
1441 break;
1442
1443 if (ret == 1) {
1444 if (path->slots[0] == 0)
1445 break;
1446 path->slots[0]--;
1447 }
1448
1449 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1450 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1451 key.type != BTRFS_ORPHAN_ITEM_KEY)
1452 break;
1453
1454 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1455 if (ret)
1456 goto out;
e02119d5 1457
b3b4aa74 1458 btrfs_release_path(path);
e02119d5 1459 inode = read_one_inode(root, key.offset);
c00e9493
TI
1460 if (!inode)
1461 return -EIO;
e02119d5
CM
1462
1463 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1464 iput(inode);
3650860b
JB
1465 if (ret)
1466 goto out;
e02119d5 1467
12fcfd22
CM
1468 /*
1469 * fixup on a directory may create new entries,
1470 * make sure we always look for the highset possible
1471 * offset
1472 */
1473 key.offset = (u64)-1;
e02119d5 1474 }
65a246c5
TI
1475 ret = 0;
1476out:
b3b4aa74 1477 btrfs_release_path(path);
65a246c5 1478 return ret;
e02119d5
CM
1479}
1480
1481
1482/*
1483 * record a given inode in the fixup dir so we can check its link
1484 * count when replay is done. The link count is incremented here
1485 * so the inode won't go away until we check it
1486 */
1487static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1488 struct btrfs_root *root,
1489 struct btrfs_path *path,
1490 u64 objectid)
1491{
1492 struct btrfs_key key;
1493 int ret = 0;
1494 struct inode *inode;
1495
1496 inode = read_one_inode(root, objectid);
c00e9493
TI
1497 if (!inode)
1498 return -EIO;
e02119d5
CM
1499
1500 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1501 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1502 key.offset = objectid;
1503
1504 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1505
b3b4aa74 1506 btrfs_release_path(path);
e02119d5 1507 if (ret == 0) {
9bf7a489
JB
1508 if (!inode->i_nlink)
1509 set_nlink(inode, 1);
1510 else
8b558c5f 1511 inc_nlink(inode);
b9959295 1512 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1513 } else if (ret == -EEXIST) {
1514 ret = 0;
1515 } else {
3650860b 1516 BUG(); /* Logic Error */
e02119d5
CM
1517 }
1518 iput(inode);
1519
1520 return ret;
1521}
1522
1523/*
1524 * when replaying the log for a directory, we only insert names
1525 * for inodes that actually exist. This means an fsync on a directory
1526 * does not implicitly fsync all the new files in it
1527 */
1528static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1529 struct btrfs_root *root,
1530 struct btrfs_path *path,
1531 u64 dirid, u64 index,
1532 char *name, int name_len, u8 type,
1533 struct btrfs_key *location)
1534{
1535 struct inode *inode;
1536 struct inode *dir;
1537 int ret;
1538
1539 inode = read_one_inode(root, location->objectid);
1540 if (!inode)
1541 return -ENOENT;
1542
1543 dir = read_one_inode(root, dirid);
1544 if (!dir) {
1545 iput(inode);
1546 return -EIO;
1547 }
d555438b 1548
e02119d5
CM
1549 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1550
1551 /* FIXME, put inode into FIXUP list */
1552
1553 iput(inode);
1554 iput(dir);
1555 return ret;
1556}
1557
1558/*
1559 * take a single entry in a log directory item and replay it into
1560 * the subvolume.
1561 *
1562 * if a conflicting item exists in the subdirectory already,
1563 * the inode it points to is unlinked and put into the link count
1564 * fix up tree.
1565 *
1566 * If a name from the log points to a file or directory that does
1567 * not exist in the FS, it is skipped. fsyncs on directories
1568 * do not force down inodes inside that directory, just changes to the
1569 * names or unlinks in a directory.
1570 */
1571static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1572 struct btrfs_root *root,
1573 struct btrfs_path *path,
1574 struct extent_buffer *eb,
1575 struct btrfs_dir_item *di,
1576 struct btrfs_key *key)
1577{
1578 char *name;
1579 int name_len;
1580 struct btrfs_dir_item *dst_di;
1581 struct btrfs_key found_key;
1582 struct btrfs_key log_key;
1583 struct inode *dir;
e02119d5 1584 u8 log_type;
4bef0848 1585 int exists;
3650860b 1586 int ret = 0;
d555438b 1587 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
e02119d5
CM
1588
1589 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1590 if (!dir)
1591 return -EIO;
e02119d5
CM
1592
1593 name_len = btrfs_dir_name_len(eb, di);
1594 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1595 if (!name) {
1596 ret = -ENOMEM;
1597 goto out;
1598 }
2a29edc6 1599
e02119d5
CM
1600 log_type = btrfs_dir_type(eb, di);
1601 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1602 name_len);
1603
1604 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1605 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1606 if (exists == 0)
1607 exists = 1;
1608 else
1609 exists = 0;
b3b4aa74 1610 btrfs_release_path(path);
4bef0848 1611
e02119d5
CM
1612 if (key->type == BTRFS_DIR_ITEM_KEY) {
1613 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1614 name, name_len, 1);
d397712b 1615 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1616 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1617 key->objectid,
1618 key->offset, name,
1619 name_len, 1);
1620 } else {
3650860b
JB
1621 /* Corruption */
1622 ret = -EINVAL;
1623 goto out;
e02119d5 1624 }
c704005d 1625 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1626 /* we need a sequence number to insert, so we only
1627 * do inserts for the BTRFS_DIR_INDEX_KEY types
1628 */
1629 if (key->type != BTRFS_DIR_INDEX_KEY)
1630 goto out;
1631 goto insert;
1632 }
1633
1634 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1635 /* the existing item matches the logged item */
1636 if (found_key.objectid == log_key.objectid &&
1637 found_key.type == log_key.type &&
1638 found_key.offset == log_key.offset &&
1639 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1640 update_size = false;
e02119d5
CM
1641 goto out;
1642 }
1643
1644 /*
1645 * don't drop the conflicting directory entry if the inode
1646 * for the new entry doesn't exist
1647 */
4bef0848 1648 if (!exists)
e02119d5
CM
1649 goto out;
1650
e02119d5 1651 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
3650860b
JB
1652 if (ret)
1653 goto out;
e02119d5
CM
1654
1655 if (key->type == BTRFS_DIR_INDEX_KEY)
1656 goto insert;
1657out:
b3b4aa74 1658 btrfs_release_path(path);
d555438b
JB
1659 if (!ret && update_size) {
1660 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1661 ret = btrfs_update_inode(trans, root, dir);
1662 }
e02119d5
CM
1663 kfree(name);
1664 iput(dir);
3650860b 1665 return ret;
e02119d5
CM
1666
1667insert:
b3b4aa74 1668 btrfs_release_path(path);
e02119d5
CM
1669 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1670 name, name_len, log_type, &log_key);
3650860b
JB
1671 if (ret && ret != -ENOENT)
1672 goto out;
d555438b 1673 update_size = false;
3650860b 1674 ret = 0;
e02119d5
CM
1675 goto out;
1676}
1677
1678/*
1679 * find all the names in a directory item and reconcile them into
1680 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1681 * one name in a directory item, but the same code gets used for
1682 * both directory index types
1683 */
1684static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1685 struct btrfs_root *root,
1686 struct btrfs_path *path,
1687 struct extent_buffer *eb, int slot,
1688 struct btrfs_key *key)
1689{
1690 int ret;
1691 u32 item_size = btrfs_item_size_nr(eb, slot);
1692 struct btrfs_dir_item *di;
1693 int name_len;
1694 unsigned long ptr;
1695 unsigned long ptr_end;
1696
1697 ptr = btrfs_item_ptr_offset(eb, slot);
1698 ptr_end = ptr + item_size;
d397712b 1699 while (ptr < ptr_end) {
e02119d5 1700 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1701 if (verify_dir_item(root, eb, di))
1702 return -EIO;
e02119d5
CM
1703 name_len = btrfs_dir_name_len(eb, di);
1704 ret = replay_one_name(trans, root, path, eb, di, key);
3650860b
JB
1705 if (ret)
1706 return ret;
e02119d5
CM
1707 ptr = (unsigned long)(di + 1);
1708 ptr += name_len;
1709 }
1710 return 0;
1711}
1712
1713/*
1714 * directory replay has two parts. There are the standard directory
1715 * items in the log copied from the subvolume, and range items
1716 * created in the log while the subvolume was logged.
1717 *
1718 * The range items tell us which parts of the key space the log
1719 * is authoritative for. During replay, if a key in the subvolume
1720 * directory is in a logged range item, but not actually in the log
1721 * that means it was deleted from the directory before the fsync
1722 * and should be removed.
1723 */
1724static noinline int find_dir_range(struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 u64 dirid, int key_type,
1727 u64 *start_ret, u64 *end_ret)
1728{
1729 struct btrfs_key key;
1730 u64 found_end;
1731 struct btrfs_dir_log_item *item;
1732 int ret;
1733 int nritems;
1734
1735 if (*start_ret == (u64)-1)
1736 return 1;
1737
1738 key.objectid = dirid;
1739 key.type = key_type;
1740 key.offset = *start_ret;
1741
1742 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1743 if (ret < 0)
1744 goto out;
1745 if (ret > 0) {
1746 if (path->slots[0] == 0)
1747 goto out;
1748 path->slots[0]--;
1749 }
1750 if (ret != 0)
1751 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1752
1753 if (key.type != key_type || key.objectid != dirid) {
1754 ret = 1;
1755 goto next;
1756 }
1757 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1758 struct btrfs_dir_log_item);
1759 found_end = btrfs_dir_log_end(path->nodes[0], item);
1760
1761 if (*start_ret >= key.offset && *start_ret <= found_end) {
1762 ret = 0;
1763 *start_ret = key.offset;
1764 *end_ret = found_end;
1765 goto out;
1766 }
1767 ret = 1;
1768next:
1769 /* check the next slot in the tree to see if it is a valid item */
1770 nritems = btrfs_header_nritems(path->nodes[0]);
1771 if (path->slots[0] >= nritems) {
1772 ret = btrfs_next_leaf(root, path);
1773 if (ret)
1774 goto out;
1775 } else {
1776 path->slots[0]++;
1777 }
1778
1779 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1780
1781 if (key.type != key_type || key.objectid != dirid) {
1782 ret = 1;
1783 goto out;
1784 }
1785 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1786 struct btrfs_dir_log_item);
1787 found_end = btrfs_dir_log_end(path->nodes[0], item);
1788 *start_ret = key.offset;
1789 *end_ret = found_end;
1790 ret = 0;
1791out:
b3b4aa74 1792 btrfs_release_path(path);
e02119d5
CM
1793 return ret;
1794}
1795
1796/*
1797 * this looks for a given directory item in the log. If the directory
1798 * item is not in the log, the item is removed and the inode it points
1799 * to is unlinked
1800 */
1801static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1802 struct btrfs_root *root,
1803 struct btrfs_root *log,
1804 struct btrfs_path *path,
1805 struct btrfs_path *log_path,
1806 struct inode *dir,
1807 struct btrfs_key *dir_key)
1808{
1809 int ret;
1810 struct extent_buffer *eb;
1811 int slot;
1812 u32 item_size;
1813 struct btrfs_dir_item *di;
1814 struct btrfs_dir_item *log_di;
1815 int name_len;
1816 unsigned long ptr;
1817 unsigned long ptr_end;
1818 char *name;
1819 struct inode *inode;
1820 struct btrfs_key location;
1821
1822again:
1823 eb = path->nodes[0];
1824 slot = path->slots[0];
1825 item_size = btrfs_item_size_nr(eb, slot);
1826 ptr = btrfs_item_ptr_offset(eb, slot);
1827 ptr_end = ptr + item_size;
d397712b 1828 while (ptr < ptr_end) {
e02119d5 1829 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1830 if (verify_dir_item(root, eb, di)) {
1831 ret = -EIO;
1832 goto out;
1833 }
1834
e02119d5
CM
1835 name_len = btrfs_dir_name_len(eb, di);
1836 name = kmalloc(name_len, GFP_NOFS);
1837 if (!name) {
1838 ret = -ENOMEM;
1839 goto out;
1840 }
1841 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1842 name_len);
1843 log_di = NULL;
12fcfd22 1844 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
1845 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1846 dir_key->objectid,
1847 name, name_len, 0);
12fcfd22 1848 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1849 log_di = btrfs_lookup_dir_index_item(trans, log,
1850 log_path,
1851 dir_key->objectid,
1852 dir_key->offset,
1853 name, name_len, 0);
1854 }
269d040f 1855 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
e02119d5 1856 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
1857 btrfs_release_path(path);
1858 btrfs_release_path(log_path);
e02119d5 1859 inode = read_one_inode(root, location.objectid);
c00e9493
TI
1860 if (!inode) {
1861 kfree(name);
1862 return -EIO;
1863 }
e02119d5
CM
1864
1865 ret = link_to_fixup_dir(trans, root,
1866 path, location.objectid);
3650860b
JB
1867 if (ret) {
1868 kfree(name);
1869 iput(inode);
1870 goto out;
1871 }
1872
8b558c5f 1873 inc_nlink(inode);
e02119d5
CM
1874 ret = btrfs_unlink_inode(trans, root, dir, inode,
1875 name, name_len);
3650860b 1876 if (!ret)
ada9af21 1877 ret = btrfs_run_delayed_items(trans, root);
e02119d5
CM
1878 kfree(name);
1879 iput(inode);
3650860b
JB
1880 if (ret)
1881 goto out;
e02119d5
CM
1882
1883 /* there might still be more names under this key
1884 * check and repeat if required
1885 */
1886 ret = btrfs_search_slot(NULL, root, dir_key, path,
1887 0, 0);
1888 if (ret == 0)
1889 goto again;
1890 ret = 0;
1891 goto out;
269d040f
FDBM
1892 } else if (IS_ERR(log_di)) {
1893 kfree(name);
1894 return PTR_ERR(log_di);
e02119d5 1895 }
b3b4aa74 1896 btrfs_release_path(log_path);
e02119d5
CM
1897 kfree(name);
1898
1899 ptr = (unsigned long)(di + 1);
1900 ptr += name_len;
1901 }
1902 ret = 0;
1903out:
b3b4aa74
DS
1904 btrfs_release_path(path);
1905 btrfs_release_path(log_path);
e02119d5
CM
1906 return ret;
1907}
1908
1909/*
1910 * deletion replay happens before we copy any new directory items
1911 * out of the log or out of backreferences from inodes. It
1912 * scans the log to find ranges of keys that log is authoritative for,
1913 * and then scans the directory to find items in those ranges that are
1914 * not present in the log.
1915 *
1916 * Anything we don't find in the log is unlinked and removed from the
1917 * directory.
1918 */
1919static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1920 struct btrfs_root *root,
1921 struct btrfs_root *log,
1922 struct btrfs_path *path,
12fcfd22 1923 u64 dirid, int del_all)
e02119d5
CM
1924{
1925 u64 range_start;
1926 u64 range_end;
1927 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1928 int ret = 0;
1929 struct btrfs_key dir_key;
1930 struct btrfs_key found_key;
1931 struct btrfs_path *log_path;
1932 struct inode *dir;
1933
1934 dir_key.objectid = dirid;
1935 dir_key.type = BTRFS_DIR_ITEM_KEY;
1936 log_path = btrfs_alloc_path();
1937 if (!log_path)
1938 return -ENOMEM;
1939
1940 dir = read_one_inode(root, dirid);
1941 /* it isn't an error if the inode isn't there, that can happen
1942 * because we replay the deletes before we copy in the inode item
1943 * from the log
1944 */
1945 if (!dir) {
1946 btrfs_free_path(log_path);
1947 return 0;
1948 }
1949again:
1950 range_start = 0;
1951 range_end = 0;
d397712b 1952 while (1) {
12fcfd22
CM
1953 if (del_all)
1954 range_end = (u64)-1;
1955 else {
1956 ret = find_dir_range(log, path, dirid, key_type,
1957 &range_start, &range_end);
1958 if (ret != 0)
1959 break;
1960 }
e02119d5
CM
1961
1962 dir_key.offset = range_start;
d397712b 1963 while (1) {
e02119d5
CM
1964 int nritems;
1965 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1966 0, 0);
1967 if (ret < 0)
1968 goto out;
1969
1970 nritems = btrfs_header_nritems(path->nodes[0]);
1971 if (path->slots[0] >= nritems) {
1972 ret = btrfs_next_leaf(root, path);
1973 if (ret)
1974 break;
1975 }
1976 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1977 path->slots[0]);
1978 if (found_key.objectid != dirid ||
1979 found_key.type != dir_key.type)
1980 goto next_type;
1981
1982 if (found_key.offset > range_end)
1983 break;
1984
1985 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
1986 log_path, dir,
1987 &found_key);
3650860b
JB
1988 if (ret)
1989 goto out;
e02119d5
CM
1990 if (found_key.offset == (u64)-1)
1991 break;
1992 dir_key.offset = found_key.offset + 1;
1993 }
b3b4aa74 1994 btrfs_release_path(path);
e02119d5
CM
1995 if (range_end == (u64)-1)
1996 break;
1997 range_start = range_end + 1;
1998 }
1999
2000next_type:
2001 ret = 0;
2002 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2003 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2004 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2005 btrfs_release_path(path);
e02119d5
CM
2006 goto again;
2007 }
2008out:
b3b4aa74 2009 btrfs_release_path(path);
e02119d5
CM
2010 btrfs_free_path(log_path);
2011 iput(dir);
2012 return ret;
2013}
2014
2015/*
2016 * the process_func used to replay items from the log tree. This
2017 * gets called in two different stages. The first stage just looks
2018 * for inodes and makes sure they are all copied into the subvolume.
2019 *
2020 * The second stage copies all the other item types from the log into
2021 * the subvolume. The two stage approach is slower, but gets rid of
2022 * lots of complexity around inodes referencing other inodes that exist
2023 * only in the log (references come from either directory items or inode
2024 * back refs).
2025 */
2026static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2027 struct walk_control *wc, u64 gen)
2028{
2029 int nritems;
2030 struct btrfs_path *path;
2031 struct btrfs_root *root = wc->replay_dest;
2032 struct btrfs_key key;
e02119d5
CM
2033 int level;
2034 int i;
2035 int ret;
2036
018642a1
TI
2037 ret = btrfs_read_buffer(eb, gen);
2038 if (ret)
2039 return ret;
e02119d5
CM
2040
2041 level = btrfs_header_level(eb);
2042
2043 if (level != 0)
2044 return 0;
2045
2046 path = btrfs_alloc_path();
1e5063d0
MF
2047 if (!path)
2048 return -ENOMEM;
e02119d5
CM
2049
2050 nritems = btrfs_header_nritems(eb);
2051 for (i = 0; i < nritems; i++) {
2052 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2053
2054 /* inode keys are done during the first stage */
2055 if (key.type == BTRFS_INODE_ITEM_KEY &&
2056 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2057 struct btrfs_inode_item *inode_item;
2058 u32 mode;
2059
2060 inode_item = btrfs_item_ptr(eb, i,
2061 struct btrfs_inode_item);
2062 mode = btrfs_inode_mode(eb, inode_item);
2063 if (S_ISDIR(mode)) {
2064 ret = replay_dir_deletes(wc->trans,
12fcfd22 2065 root, log, path, key.objectid, 0);
b50c6e25
JB
2066 if (ret)
2067 break;
e02119d5
CM
2068 }
2069 ret = overwrite_item(wc->trans, root, path,
2070 eb, i, &key);
b50c6e25
JB
2071 if (ret)
2072 break;
e02119d5 2073
c71bf099
YZ
2074 /* for regular files, make sure corresponding
2075 * orhpan item exist. extents past the new EOF
2076 * will be truncated later by orphan cleanup.
e02119d5
CM
2077 */
2078 if (S_ISREG(mode)) {
c71bf099
YZ
2079 ret = insert_orphan_item(wc->trans, root,
2080 key.objectid);
b50c6e25
JB
2081 if (ret)
2082 break;
e02119d5 2083 }
c71bf099 2084
e02119d5
CM
2085 ret = link_to_fixup_dir(wc->trans, root,
2086 path, key.objectid);
b50c6e25
JB
2087 if (ret)
2088 break;
e02119d5 2089 }
dd8e7217
JB
2090
2091 if (key.type == BTRFS_DIR_INDEX_KEY &&
2092 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2093 ret = replay_one_dir_item(wc->trans, root, path,
2094 eb, i, &key);
2095 if (ret)
2096 break;
2097 }
2098
e02119d5
CM
2099 if (wc->stage < LOG_WALK_REPLAY_ALL)
2100 continue;
2101
2102 /* these keys are simply copied */
2103 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2104 ret = overwrite_item(wc->trans, root, path,
2105 eb, i, &key);
b50c6e25
JB
2106 if (ret)
2107 break;
2da1c669
LB
2108 } else if (key.type == BTRFS_INODE_REF_KEY ||
2109 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2110 ret = add_inode_ref(wc->trans, root, log, path,
2111 eb, i, &key);
b50c6e25
JB
2112 if (ret && ret != -ENOENT)
2113 break;
2114 ret = 0;
e02119d5
CM
2115 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2116 ret = replay_one_extent(wc->trans, root, path,
2117 eb, i, &key);
b50c6e25
JB
2118 if (ret)
2119 break;
dd8e7217 2120 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2121 ret = replay_one_dir_item(wc->trans, root, path,
2122 eb, i, &key);
b50c6e25
JB
2123 if (ret)
2124 break;
e02119d5
CM
2125 }
2126 }
2127 btrfs_free_path(path);
b50c6e25 2128 return ret;
e02119d5
CM
2129}
2130
d397712b 2131static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2132 struct btrfs_root *root,
2133 struct btrfs_path *path, int *level,
2134 struct walk_control *wc)
2135{
2136 u64 root_owner;
e02119d5
CM
2137 u64 bytenr;
2138 u64 ptr_gen;
2139 struct extent_buffer *next;
2140 struct extent_buffer *cur;
2141 struct extent_buffer *parent;
2142 u32 blocksize;
2143 int ret = 0;
2144
2145 WARN_ON(*level < 0);
2146 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2147
d397712b 2148 while (*level > 0) {
e02119d5
CM
2149 WARN_ON(*level < 0);
2150 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2151 cur = path->nodes[*level];
2152
fae7f21c 2153 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2154
2155 if (path->slots[*level] >=
2156 btrfs_header_nritems(cur))
2157 break;
2158
2159 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2160 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
707e8a07 2161 blocksize = root->nodesize;
e02119d5
CM
2162
2163 parent = path->nodes[*level];
2164 root_owner = btrfs_header_owner(parent);
e02119d5
CM
2165
2166 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2a29edc6 2167 if (!next)
2168 return -ENOMEM;
e02119d5 2169
e02119d5 2170 if (*level == 1) {
1e5063d0 2171 ret = wc->process_func(root, next, wc, ptr_gen);
b50c6e25
JB
2172 if (ret) {
2173 free_extent_buffer(next);
1e5063d0 2174 return ret;
b50c6e25 2175 }
4a500fd1 2176
e02119d5
CM
2177 path->slots[*level]++;
2178 if (wc->free) {
018642a1
TI
2179 ret = btrfs_read_buffer(next, ptr_gen);
2180 if (ret) {
2181 free_extent_buffer(next);
2182 return ret;
2183 }
e02119d5 2184
681ae509
JB
2185 if (trans) {
2186 btrfs_tree_lock(next);
2187 btrfs_set_lock_blocking(next);
2188 clean_tree_block(trans, root, next);
2189 btrfs_wait_tree_block_writeback(next);
2190 btrfs_tree_unlock(next);
2191 }
e02119d5 2192
e02119d5
CM
2193 WARN_ON(root_owner !=
2194 BTRFS_TREE_LOG_OBJECTID);
e688b725 2195 ret = btrfs_free_and_pin_reserved_extent(root,
d00aff00 2196 bytenr, blocksize);
3650860b
JB
2197 if (ret) {
2198 free_extent_buffer(next);
2199 return ret;
2200 }
e02119d5
CM
2201 }
2202 free_extent_buffer(next);
2203 continue;
2204 }
018642a1
TI
2205 ret = btrfs_read_buffer(next, ptr_gen);
2206 if (ret) {
2207 free_extent_buffer(next);
2208 return ret;
2209 }
e02119d5
CM
2210
2211 WARN_ON(*level <= 0);
2212 if (path->nodes[*level-1])
2213 free_extent_buffer(path->nodes[*level-1]);
2214 path->nodes[*level-1] = next;
2215 *level = btrfs_header_level(next);
2216 path->slots[*level] = 0;
2217 cond_resched();
2218 }
2219 WARN_ON(*level < 0);
2220 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2221
4a500fd1 2222 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2223
2224 cond_resched();
2225 return 0;
2226}
2227
d397712b 2228static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2229 struct btrfs_root *root,
2230 struct btrfs_path *path, int *level,
2231 struct walk_control *wc)
2232{
2233 u64 root_owner;
e02119d5
CM
2234 int i;
2235 int slot;
2236 int ret;
2237
d397712b 2238 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2239 slot = path->slots[i];
4a500fd1 2240 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2241 path->slots[i]++;
2242 *level = i;
2243 WARN_ON(*level == 0);
2244 return 0;
2245 } else {
31840ae1
ZY
2246 struct extent_buffer *parent;
2247 if (path->nodes[*level] == root->node)
2248 parent = path->nodes[*level];
2249 else
2250 parent = path->nodes[*level + 1];
2251
2252 root_owner = btrfs_header_owner(parent);
1e5063d0 2253 ret = wc->process_func(root, path->nodes[*level], wc,
e02119d5 2254 btrfs_header_generation(path->nodes[*level]));
1e5063d0
MF
2255 if (ret)
2256 return ret;
2257
e02119d5
CM
2258 if (wc->free) {
2259 struct extent_buffer *next;
2260
2261 next = path->nodes[*level];
2262
681ae509
JB
2263 if (trans) {
2264 btrfs_tree_lock(next);
2265 btrfs_set_lock_blocking(next);
2266 clean_tree_block(trans, root, next);
2267 btrfs_wait_tree_block_writeback(next);
2268 btrfs_tree_unlock(next);
2269 }
e02119d5 2270
e02119d5 2271 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
e688b725 2272 ret = btrfs_free_and_pin_reserved_extent(root,
e02119d5 2273 path->nodes[*level]->start,
d00aff00 2274 path->nodes[*level]->len);
3650860b
JB
2275 if (ret)
2276 return ret;
e02119d5
CM
2277 }
2278 free_extent_buffer(path->nodes[*level]);
2279 path->nodes[*level] = NULL;
2280 *level = i + 1;
2281 }
2282 }
2283 return 1;
2284}
2285
2286/*
2287 * drop the reference count on the tree rooted at 'snap'. This traverses
2288 * the tree freeing any blocks that have a ref count of zero after being
2289 * decremented.
2290 */
2291static int walk_log_tree(struct btrfs_trans_handle *trans,
2292 struct btrfs_root *log, struct walk_control *wc)
2293{
2294 int ret = 0;
2295 int wret;
2296 int level;
2297 struct btrfs_path *path;
e02119d5
CM
2298 int orig_level;
2299
2300 path = btrfs_alloc_path();
db5b493a
TI
2301 if (!path)
2302 return -ENOMEM;
e02119d5
CM
2303
2304 level = btrfs_header_level(log->node);
2305 orig_level = level;
2306 path->nodes[level] = log->node;
2307 extent_buffer_get(log->node);
2308 path->slots[level] = 0;
2309
d397712b 2310 while (1) {
e02119d5
CM
2311 wret = walk_down_log_tree(trans, log, path, &level, wc);
2312 if (wret > 0)
2313 break;
79787eaa 2314 if (wret < 0) {
e02119d5 2315 ret = wret;
79787eaa
JM
2316 goto out;
2317 }
e02119d5
CM
2318
2319 wret = walk_up_log_tree(trans, log, path, &level, wc);
2320 if (wret > 0)
2321 break;
79787eaa 2322 if (wret < 0) {
e02119d5 2323 ret = wret;
79787eaa
JM
2324 goto out;
2325 }
e02119d5
CM
2326 }
2327
2328 /* was the root node processed? if not, catch it here */
2329 if (path->nodes[orig_level]) {
79787eaa 2330 ret = wc->process_func(log, path->nodes[orig_level], wc,
e02119d5 2331 btrfs_header_generation(path->nodes[orig_level]));
79787eaa
JM
2332 if (ret)
2333 goto out;
e02119d5
CM
2334 if (wc->free) {
2335 struct extent_buffer *next;
2336
2337 next = path->nodes[orig_level];
2338
681ae509
JB
2339 if (trans) {
2340 btrfs_tree_lock(next);
2341 btrfs_set_lock_blocking(next);
2342 clean_tree_block(trans, log, next);
2343 btrfs_wait_tree_block_writeback(next);
2344 btrfs_tree_unlock(next);
2345 }
e02119d5 2346
e02119d5
CM
2347 WARN_ON(log->root_key.objectid !=
2348 BTRFS_TREE_LOG_OBJECTID);
e688b725 2349 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
d00aff00 2350 next->len);
3650860b
JB
2351 if (ret)
2352 goto out;
e02119d5
CM
2353 }
2354 }
2355
79787eaa 2356out:
e02119d5 2357 btrfs_free_path(path);
e02119d5
CM
2358 return ret;
2359}
2360
7237f183
YZ
2361/*
2362 * helper function to update the item for a given subvolumes log root
2363 * in the tree of log roots
2364 */
2365static int update_log_root(struct btrfs_trans_handle *trans,
2366 struct btrfs_root *log)
2367{
2368 int ret;
2369
2370 if (log->log_transid == 1) {
2371 /* insert root item on the first sync */
2372 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2373 &log->root_key, &log->root_item);
2374 } else {
2375 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2376 &log->root_key, &log->root_item);
2377 }
2378 return ret;
2379}
2380
8b050d35
MX
2381static void wait_log_commit(struct btrfs_trans_handle *trans,
2382 struct btrfs_root *root, int transid)
e02119d5
CM
2383{
2384 DEFINE_WAIT(wait);
7237f183 2385 int index = transid % 2;
e02119d5 2386
7237f183
YZ
2387 /*
2388 * we only allow two pending log transactions at a time,
2389 * so we know that if ours is more than 2 older than the
2390 * current transaction, we're done
2391 */
e02119d5 2392 do {
7237f183
YZ
2393 prepare_to_wait(&root->log_commit_wait[index],
2394 &wait, TASK_UNINTERRUPTIBLE);
2395 mutex_unlock(&root->log_mutex);
12fcfd22 2396
d1433deb 2397 if (root->log_transid_committed < transid &&
7237f183
YZ
2398 atomic_read(&root->log_commit[index]))
2399 schedule();
12fcfd22 2400
7237f183
YZ
2401 finish_wait(&root->log_commit_wait[index], &wait);
2402 mutex_lock(&root->log_mutex);
d1433deb 2403 } while (root->log_transid_committed < transid &&
7237f183 2404 atomic_read(&root->log_commit[index]));
7237f183
YZ
2405}
2406
143bede5
JM
2407static void wait_for_writer(struct btrfs_trans_handle *trans,
2408 struct btrfs_root *root)
7237f183
YZ
2409{
2410 DEFINE_WAIT(wait);
8b050d35
MX
2411
2412 while (atomic_read(&root->log_writers)) {
7237f183
YZ
2413 prepare_to_wait(&root->log_writer_wait,
2414 &wait, TASK_UNINTERRUPTIBLE);
2415 mutex_unlock(&root->log_mutex);
8b050d35 2416 if (atomic_read(&root->log_writers))
e02119d5 2417 schedule();
7237f183
YZ
2418 mutex_lock(&root->log_mutex);
2419 finish_wait(&root->log_writer_wait, &wait);
2420 }
e02119d5
CM
2421}
2422
8b050d35
MX
2423static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2424 struct btrfs_log_ctx *ctx)
2425{
2426 if (!ctx)
2427 return;
2428
2429 mutex_lock(&root->log_mutex);
2430 list_del_init(&ctx->list);
2431 mutex_unlock(&root->log_mutex);
2432}
2433
2434/*
2435 * Invoked in log mutex context, or be sure there is no other task which
2436 * can access the list.
2437 */
2438static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2439 int index, int error)
2440{
2441 struct btrfs_log_ctx *ctx;
2442
2443 if (!error) {
2444 INIT_LIST_HEAD(&root->log_ctxs[index]);
2445 return;
2446 }
2447
2448 list_for_each_entry(ctx, &root->log_ctxs[index], list)
2449 ctx->log_ret = error;
2450
2451 INIT_LIST_HEAD(&root->log_ctxs[index]);
2452}
2453
e02119d5
CM
2454/*
2455 * btrfs_sync_log does sends a given tree log down to the disk and
2456 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2457 * you know that any inodes previously logged are safely on disk only
2458 * if it returns 0.
2459 *
2460 * Any other return value means you need to call btrfs_commit_transaction.
2461 * Some of the edge cases for fsyncing directories that have had unlinks
2462 * or renames done in the past mean that sometimes the only safe
2463 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2464 * that has happened.
e02119d5
CM
2465 */
2466int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 2467 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 2468{
7237f183
YZ
2469 int index1;
2470 int index2;
8cef4e16 2471 int mark;
e02119d5 2472 int ret;
e02119d5 2473 struct btrfs_root *log = root->log_root;
7237f183 2474 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
bb14a59b 2475 int log_transid = 0;
8b050d35 2476 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 2477 struct blk_plug plug;
e02119d5 2478
7237f183 2479 mutex_lock(&root->log_mutex);
d1433deb
MX
2480 log_transid = ctx->log_transid;
2481 if (root->log_transid_committed >= log_transid) {
2482 mutex_unlock(&root->log_mutex);
2483 return ctx->log_ret;
2484 }
2485
2486 index1 = log_transid % 2;
7237f183 2487 if (atomic_read(&root->log_commit[index1])) {
d1433deb 2488 wait_log_commit(trans, root, log_transid);
7237f183 2489 mutex_unlock(&root->log_mutex);
8b050d35 2490 return ctx->log_ret;
e02119d5 2491 }
d1433deb 2492 ASSERT(log_transid == root->log_transid);
7237f183
YZ
2493 atomic_set(&root->log_commit[index1], 1);
2494
2495 /* wait for previous tree log sync to complete */
2496 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
d1433deb 2497 wait_log_commit(trans, root, log_transid - 1);
48cab2e0 2498
86df7eb9 2499 while (1) {
2ecb7923 2500 int batch = atomic_read(&root->log_batch);
cd354ad6 2501 /* when we're on an ssd, just kick the log commit out */
27cdeb70
MX
2502 if (!btrfs_test_opt(root, SSD) &&
2503 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
2504 mutex_unlock(&root->log_mutex);
2505 schedule_timeout_uninterruptible(1);
2506 mutex_lock(&root->log_mutex);
2507 }
12fcfd22 2508 wait_for_writer(trans, root);
2ecb7923 2509 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2510 break;
2511 }
e02119d5 2512
12fcfd22 2513 /* bail out if we need to do a full commit */
995946dd 2514 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
12fcfd22 2515 ret = -EAGAIN;
2ab28f32 2516 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2517 mutex_unlock(&root->log_mutex);
2518 goto out;
2519 }
2520
8cef4e16
YZ
2521 if (log_transid % 2 == 0)
2522 mark = EXTENT_DIRTY;
2523 else
2524 mark = EXTENT_NEW;
2525
690587d1
CM
2526 /* we start IO on all the marked extents here, but we don't actually
2527 * wait for them until later.
2528 */
c6adc9cc 2529 blk_start_plug(&plug);
8cef4e16 2530 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
79787eaa 2531 if (ret) {
c6adc9cc 2532 blk_finish_plug(&plug);
79787eaa 2533 btrfs_abort_transaction(trans, root, ret);
2ab28f32 2534 btrfs_free_logged_extents(log, log_transid);
995946dd 2535 btrfs_set_log_full_commit(root->fs_info, trans);
79787eaa
JM
2536 mutex_unlock(&root->log_mutex);
2537 goto out;
2538 }
7237f183 2539
5d4f98a2 2540 btrfs_set_root_node(&log->root_item, log->node);
7237f183 2541
7237f183
YZ
2542 root->log_transid++;
2543 log->log_transid = root->log_transid;
ff782e0a 2544 root->log_start_pid = 0;
7237f183 2545 /*
8cef4e16
YZ
2546 * IO has been started, blocks of the log tree have WRITTEN flag set
2547 * in their headers. new modifications of the log will be written to
2548 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2549 */
2550 mutex_unlock(&root->log_mutex);
2551
d1433deb
MX
2552 btrfs_init_log_ctx(&root_log_ctx);
2553
7237f183 2554 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 2555 atomic_inc(&log_root_tree->log_batch);
7237f183 2556 atomic_inc(&log_root_tree->log_writers);
d1433deb
MX
2557
2558 index2 = log_root_tree->log_transid % 2;
2559 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2560 root_log_ctx.log_transid = log_root_tree->log_transid;
2561
7237f183
YZ
2562 mutex_unlock(&log_root_tree->log_mutex);
2563
2564 ret = update_log_root(trans, log);
7237f183
YZ
2565
2566 mutex_lock(&log_root_tree->log_mutex);
2567 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2568 smp_mb();
2569 if (waitqueue_active(&log_root_tree->log_writer_wait))
2570 wake_up(&log_root_tree->log_writer_wait);
2571 }
2572
4a500fd1 2573 if (ret) {
d1433deb
MX
2574 if (!list_empty(&root_log_ctx.list))
2575 list_del_init(&root_log_ctx.list);
2576
c6adc9cc 2577 blk_finish_plug(&plug);
995946dd
MX
2578 btrfs_set_log_full_commit(root->fs_info, trans);
2579
79787eaa
JM
2580 if (ret != -ENOSPC) {
2581 btrfs_abort_transaction(trans, root, ret);
2582 mutex_unlock(&log_root_tree->log_mutex);
2583 goto out;
2584 }
4a500fd1 2585 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2586 btrfs_free_logged_extents(log, log_transid);
4a500fd1
YZ
2587 mutex_unlock(&log_root_tree->log_mutex);
2588 ret = -EAGAIN;
2589 goto out;
2590 }
2591
d1433deb
MX
2592 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2593 mutex_unlock(&log_root_tree->log_mutex);
2594 ret = root_log_ctx.log_ret;
2595 goto out;
2596 }
8b050d35 2597
d1433deb 2598 index2 = root_log_ctx.log_transid % 2;
7237f183 2599 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 2600 blk_finish_plug(&plug);
8cef4e16 2601 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
8b050d35 2602 wait_log_commit(trans, log_root_tree,
d1433deb 2603 root_log_ctx.log_transid);
2ab28f32 2604 btrfs_free_logged_extents(log, log_transid);
7237f183 2605 mutex_unlock(&log_root_tree->log_mutex);
8b050d35 2606 ret = root_log_ctx.log_ret;
7237f183
YZ
2607 goto out;
2608 }
d1433deb 2609 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
2610 atomic_set(&log_root_tree->log_commit[index2], 1);
2611
12fcfd22
CM
2612 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2613 wait_log_commit(trans, log_root_tree,
d1433deb 2614 root_log_ctx.log_transid - 1);
12fcfd22
CM
2615 }
2616
2617 wait_for_writer(trans, log_root_tree);
7237f183 2618
12fcfd22
CM
2619 /*
2620 * now that we've moved on to the tree of log tree roots,
2621 * check the full commit flag again
2622 */
995946dd 2623 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
c6adc9cc 2624 blk_finish_plug(&plug);
8cef4e16 2625 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2626 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2627 mutex_unlock(&log_root_tree->log_mutex);
2628 ret = -EAGAIN;
2629 goto out_wake_log_root;
2630 }
7237f183 2631
c6adc9cc
MX
2632 ret = btrfs_write_marked_extents(log_root_tree,
2633 &log_root_tree->dirty_log_pages,
2634 EXTENT_DIRTY | EXTENT_NEW);
2635 blk_finish_plug(&plug);
79787eaa 2636 if (ret) {
995946dd 2637 btrfs_set_log_full_commit(root->fs_info, trans);
79787eaa 2638 btrfs_abort_transaction(trans, root, ret);
2ab28f32 2639 btrfs_free_logged_extents(log, log_transid);
79787eaa
JM
2640 mutex_unlock(&log_root_tree->log_mutex);
2641 goto out_wake_log_root;
2642 }
8cef4e16 2643 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
c6adc9cc
MX
2644 btrfs_wait_marked_extents(log_root_tree,
2645 &log_root_tree->dirty_log_pages,
2646 EXTENT_NEW | EXTENT_DIRTY);
2ab28f32 2647 btrfs_wait_logged_extents(log, log_transid);
e02119d5 2648
6c41761f 2649 btrfs_set_super_log_root(root->fs_info->super_for_commit,
7237f183 2650 log_root_tree->node->start);
6c41761f 2651 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
7237f183 2652 btrfs_header_level(log_root_tree->node));
e02119d5 2653
7237f183 2654 log_root_tree->log_transid++;
7237f183
YZ
2655 mutex_unlock(&log_root_tree->log_mutex);
2656
2657 /*
2658 * nobody else is going to jump in and write the the ctree
2659 * super here because the log_commit atomic below is protecting
2660 * us. We must be called with a transaction handle pinning
2661 * the running transaction open, so a full commit can't hop
2662 * in and cause problems either.
2663 */
5af3e8cc 2664 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
5af3e8cc 2665 if (ret) {
995946dd 2666 btrfs_set_log_full_commit(root->fs_info, trans);
5af3e8cc
SB
2667 btrfs_abort_transaction(trans, root, ret);
2668 goto out_wake_log_root;
2669 }
7237f183 2670
257c62e1
CM
2671 mutex_lock(&root->log_mutex);
2672 if (root->last_log_commit < log_transid)
2673 root->last_log_commit = log_transid;
2674 mutex_unlock(&root->log_mutex);
2675
12fcfd22 2676out_wake_log_root:
8b050d35
MX
2677 /*
2678 * We needn't get log_mutex here because we are sure all
2679 * the other tasks are blocked.
2680 */
2681 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2682
d1433deb
MX
2683 mutex_lock(&log_root_tree->log_mutex);
2684 log_root_tree->log_transid_committed++;
7237f183 2685 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
2686 mutex_unlock(&log_root_tree->log_mutex);
2687
7237f183
YZ
2688 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2689 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 2690out:
8b050d35
MX
2691 /* See above. */
2692 btrfs_remove_all_log_ctxs(root, index1, ret);
2693
d1433deb
MX
2694 mutex_lock(&root->log_mutex);
2695 root->log_transid_committed++;
7237f183 2696 atomic_set(&root->log_commit[index1], 0);
d1433deb 2697 mutex_unlock(&root->log_mutex);
8b050d35 2698
7237f183
YZ
2699 if (waitqueue_active(&root->log_commit_wait[index1]))
2700 wake_up(&root->log_commit_wait[index1]);
b31eabd8 2701 return ret;
e02119d5
CM
2702}
2703
4a500fd1
YZ
2704static void free_log_tree(struct btrfs_trans_handle *trans,
2705 struct btrfs_root *log)
e02119d5
CM
2706{
2707 int ret;
d0c803c4
CM
2708 u64 start;
2709 u64 end;
e02119d5
CM
2710 struct walk_control wc = {
2711 .free = 1,
2712 .process_func = process_one_buffer
2713 };
2714
681ae509
JB
2715 ret = walk_log_tree(trans, log, &wc);
2716 /* I don't think this can happen but just in case */
2717 if (ret)
2718 btrfs_abort_transaction(trans, log, ret);
e02119d5 2719
d397712b 2720 while (1) {
d0c803c4 2721 ret = find_first_extent_bit(&log->dirty_log_pages,
e6138876
JB
2722 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2723 NULL);
d0c803c4
CM
2724 if (ret)
2725 break;
2726
8cef4e16
YZ
2727 clear_extent_bits(&log->dirty_log_pages, start, end,
2728 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
d0c803c4
CM
2729 }
2730
2ab28f32
JB
2731 /*
2732 * We may have short-circuited the log tree with the full commit logic
2733 * and left ordered extents on our list, so clear these out to keep us
2734 * from leaking inodes and memory.
2735 */
2736 btrfs_free_logged_extents(log, 0);
2737 btrfs_free_logged_extents(log, 1);
2738
7237f183
YZ
2739 free_extent_buffer(log->node);
2740 kfree(log);
4a500fd1
YZ
2741}
2742
2743/*
2744 * free all the extents used by the tree log. This should be called
2745 * at commit time of the full transaction
2746 */
2747int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2748{
2749 if (root->log_root) {
2750 free_log_tree(trans, root->log_root);
2751 root->log_root = NULL;
2752 }
2753 return 0;
2754}
2755
2756int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2757 struct btrfs_fs_info *fs_info)
2758{
2759 if (fs_info->log_root_tree) {
2760 free_log_tree(trans, fs_info->log_root_tree);
2761 fs_info->log_root_tree = NULL;
2762 }
e02119d5
CM
2763 return 0;
2764}
2765
e02119d5
CM
2766/*
2767 * If both a file and directory are logged, and unlinks or renames are
2768 * mixed in, we have a few interesting corners:
2769 *
2770 * create file X in dir Y
2771 * link file X to X.link in dir Y
2772 * fsync file X
2773 * unlink file X but leave X.link
2774 * fsync dir Y
2775 *
2776 * After a crash we would expect only X.link to exist. But file X
2777 * didn't get fsync'd again so the log has back refs for X and X.link.
2778 *
2779 * We solve this by removing directory entries and inode backrefs from the
2780 * log when a file that was logged in the current transaction is
2781 * unlinked. Any later fsync will include the updated log entries, and
2782 * we'll be able to reconstruct the proper directory items from backrefs.
2783 *
2784 * This optimizations allows us to avoid relogging the entire inode
2785 * or the entire directory.
2786 */
2787int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2788 struct btrfs_root *root,
2789 const char *name, int name_len,
2790 struct inode *dir, u64 index)
2791{
2792 struct btrfs_root *log;
2793 struct btrfs_dir_item *di;
2794 struct btrfs_path *path;
2795 int ret;
4a500fd1 2796 int err = 0;
e02119d5 2797 int bytes_del = 0;
33345d01 2798 u64 dir_ino = btrfs_ino(dir);
e02119d5 2799
3a5f1d45
CM
2800 if (BTRFS_I(dir)->logged_trans < trans->transid)
2801 return 0;
2802
e02119d5
CM
2803 ret = join_running_log_trans(root);
2804 if (ret)
2805 return 0;
2806
2807 mutex_lock(&BTRFS_I(dir)->log_mutex);
2808
2809 log = root->log_root;
2810 path = btrfs_alloc_path();
a62f44a5
TI
2811 if (!path) {
2812 err = -ENOMEM;
2813 goto out_unlock;
2814 }
2a29edc6 2815
33345d01 2816 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 2817 name, name_len, -1);
4a500fd1
YZ
2818 if (IS_ERR(di)) {
2819 err = PTR_ERR(di);
2820 goto fail;
2821 }
2822 if (di) {
e02119d5
CM
2823 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2824 bytes_del += name_len;
3650860b
JB
2825 if (ret) {
2826 err = ret;
2827 goto fail;
2828 }
e02119d5 2829 }
b3b4aa74 2830 btrfs_release_path(path);
33345d01 2831 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 2832 index, name, name_len, -1);
4a500fd1
YZ
2833 if (IS_ERR(di)) {
2834 err = PTR_ERR(di);
2835 goto fail;
2836 }
2837 if (di) {
e02119d5
CM
2838 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2839 bytes_del += name_len;
3650860b
JB
2840 if (ret) {
2841 err = ret;
2842 goto fail;
2843 }
e02119d5
CM
2844 }
2845
2846 /* update the directory size in the log to reflect the names
2847 * we have removed
2848 */
2849 if (bytes_del) {
2850 struct btrfs_key key;
2851
33345d01 2852 key.objectid = dir_ino;
e02119d5
CM
2853 key.offset = 0;
2854 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 2855 btrfs_release_path(path);
e02119d5
CM
2856
2857 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
2858 if (ret < 0) {
2859 err = ret;
2860 goto fail;
2861 }
e02119d5
CM
2862 if (ret == 0) {
2863 struct btrfs_inode_item *item;
2864 u64 i_size;
2865
2866 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2867 struct btrfs_inode_item);
2868 i_size = btrfs_inode_size(path->nodes[0], item);
2869 if (i_size > bytes_del)
2870 i_size -= bytes_del;
2871 else
2872 i_size = 0;
2873 btrfs_set_inode_size(path->nodes[0], item, i_size);
2874 btrfs_mark_buffer_dirty(path->nodes[0]);
2875 } else
2876 ret = 0;
b3b4aa74 2877 btrfs_release_path(path);
e02119d5 2878 }
4a500fd1 2879fail:
e02119d5 2880 btrfs_free_path(path);
a62f44a5 2881out_unlock:
e02119d5 2882 mutex_unlock(&BTRFS_I(dir)->log_mutex);
4a500fd1 2883 if (ret == -ENOSPC) {
995946dd 2884 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1 2885 ret = 0;
79787eaa
JM
2886 } else if (ret < 0)
2887 btrfs_abort_transaction(trans, root, ret);
2888
12fcfd22 2889 btrfs_end_log_trans(root);
e02119d5 2890
411fc6bc 2891 return err;
e02119d5
CM
2892}
2893
2894/* see comments for btrfs_del_dir_entries_in_log */
2895int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2896 struct btrfs_root *root,
2897 const char *name, int name_len,
2898 struct inode *inode, u64 dirid)
2899{
2900 struct btrfs_root *log;
2901 u64 index;
2902 int ret;
2903
3a5f1d45
CM
2904 if (BTRFS_I(inode)->logged_trans < trans->transid)
2905 return 0;
2906
e02119d5
CM
2907 ret = join_running_log_trans(root);
2908 if (ret)
2909 return 0;
2910 log = root->log_root;
2911 mutex_lock(&BTRFS_I(inode)->log_mutex);
2912
33345d01 2913 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5
CM
2914 dirid, &index);
2915 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4a500fd1 2916 if (ret == -ENOSPC) {
995946dd 2917 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1 2918 ret = 0;
79787eaa
JM
2919 } else if (ret < 0 && ret != -ENOENT)
2920 btrfs_abort_transaction(trans, root, ret);
12fcfd22 2921 btrfs_end_log_trans(root);
e02119d5 2922
e02119d5
CM
2923 return ret;
2924}
2925
2926/*
2927 * creates a range item in the log for 'dirid'. first_offset and
2928 * last_offset tell us which parts of the key space the log should
2929 * be considered authoritative for.
2930 */
2931static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2932 struct btrfs_root *log,
2933 struct btrfs_path *path,
2934 int key_type, u64 dirid,
2935 u64 first_offset, u64 last_offset)
2936{
2937 int ret;
2938 struct btrfs_key key;
2939 struct btrfs_dir_log_item *item;
2940
2941 key.objectid = dirid;
2942 key.offset = first_offset;
2943 if (key_type == BTRFS_DIR_ITEM_KEY)
2944 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2945 else
2946 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2947 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
2948 if (ret)
2949 return ret;
e02119d5
CM
2950
2951 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2952 struct btrfs_dir_log_item);
2953 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2954 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 2955 btrfs_release_path(path);
e02119d5
CM
2956 return 0;
2957}
2958
2959/*
2960 * log all the items included in the current transaction for a given
2961 * directory. This also creates the range items in the log tree required
2962 * to replay anything deleted before the fsync
2963 */
2964static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2965 struct btrfs_root *root, struct inode *inode,
2966 struct btrfs_path *path,
2967 struct btrfs_path *dst_path, int key_type,
2968 u64 min_offset, u64 *last_offset_ret)
2969{
2970 struct btrfs_key min_key;
e02119d5
CM
2971 struct btrfs_root *log = root->log_root;
2972 struct extent_buffer *src;
4a500fd1 2973 int err = 0;
e02119d5
CM
2974 int ret;
2975 int i;
2976 int nritems;
2977 u64 first_offset = min_offset;
2978 u64 last_offset = (u64)-1;
33345d01 2979 u64 ino = btrfs_ino(inode);
e02119d5
CM
2980
2981 log = root->log_root;
e02119d5 2982
33345d01 2983 min_key.objectid = ino;
e02119d5
CM
2984 min_key.type = key_type;
2985 min_key.offset = min_offset;
2986
6174d3cb 2987 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
2988
2989 /*
2990 * we didn't find anything from this transaction, see if there
2991 * is anything at all
2992 */
33345d01
LZ
2993 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2994 min_key.objectid = ino;
e02119d5
CM
2995 min_key.type = key_type;
2996 min_key.offset = (u64)-1;
b3b4aa74 2997 btrfs_release_path(path);
e02119d5
CM
2998 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2999 if (ret < 0) {
b3b4aa74 3000 btrfs_release_path(path);
e02119d5
CM
3001 return ret;
3002 }
33345d01 3003 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3004
3005 /* if ret == 0 there are items for this type,
3006 * create a range to tell us the last key of this type.
3007 * otherwise, there are no items in this directory after
3008 * *min_offset, and we create a range to indicate that.
3009 */
3010 if (ret == 0) {
3011 struct btrfs_key tmp;
3012 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3013 path->slots[0]);
d397712b 3014 if (key_type == tmp.type)
e02119d5 3015 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3016 }
3017 goto done;
3018 }
3019
3020 /* go backward to find any previous key */
33345d01 3021 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3022 if (ret == 0) {
3023 struct btrfs_key tmp;
3024 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3025 if (key_type == tmp.type) {
3026 first_offset = tmp.offset;
3027 ret = overwrite_item(trans, log, dst_path,
3028 path->nodes[0], path->slots[0],
3029 &tmp);
4a500fd1
YZ
3030 if (ret) {
3031 err = ret;
3032 goto done;
3033 }
e02119d5
CM
3034 }
3035 }
b3b4aa74 3036 btrfs_release_path(path);
e02119d5
CM
3037
3038 /* find the first key from this transaction again */
3039 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
fae7f21c 3040 if (WARN_ON(ret != 0))
e02119d5 3041 goto done;
e02119d5
CM
3042
3043 /*
3044 * we have a block from this transaction, log every item in it
3045 * from our directory
3046 */
d397712b 3047 while (1) {
e02119d5
CM
3048 struct btrfs_key tmp;
3049 src = path->nodes[0];
3050 nritems = btrfs_header_nritems(src);
3051 for (i = path->slots[0]; i < nritems; i++) {
3052 btrfs_item_key_to_cpu(src, &min_key, i);
3053
33345d01 3054 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
3055 goto done;
3056 ret = overwrite_item(trans, log, dst_path, src, i,
3057 &min_key);
4a500fd1
YZ
3058 if (ret) {
3059 err = ret;
3060 goto done;
3061 }
e02119d5
CM
3062 }
3063 path->slots[0] = nritems;
3064
3065 /*
3066 * look ahead to the next item and see if it is also
3067 * from this directory and from this transaction
3068 */
3069 ret = btrfs_next_leaf(root, path);
3070 if (ret == 1) {
3071 last_offset = (u64)-1;
3072 goto done;
3073 }
3074 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3075 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3076 last_offset = (u64)-1;
3077 goto done;
3078 }
3079 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3080 ret = overwrite_item(trans, log, dst_path,
3081 path->nodes[0], path->slots[0],
3082 &tmp);
4a500fd1
YZ
3083 if (ret)
3084 err = ret;
3085 else
3086 last_offset = tmp.offset;
e02119d5
CM
3087 goto done;
3088 }
3089 }
3090done:
b3b4aa74
DS
3091 btrfs_release_path(path);
3092 btrfs_release_path(dst_path);
e02119d5 3093
4a500fd1
YZ
3094 if (err == 0) {
3095 *last_offset_ret = last_offset;
3096 /*
3097 * insert the log range keys to indicate where the log
3098 * is valid
3099 */
3100 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3101 ino, first_offset, last_offset);
4a500fd1
YZ
3102 if (ret)
3103 err = ret;
3104 }
3105 return err;
e02119d5
CM
3106}
3107
3108/*
3109 * logging directories is very similar to logging inodes, We find all the items
3110 * from the current transaction and write them to the log.
3111 *
3112 * The recovery code scans the directory in the subvolume, and if it finds a
3113 * key in the range logged that is not present in the log tree, then it means
3114 * that dir entry was unlinked during the transaction.
3115 *
3116 * In order for that scan to work, we must include one key smaller than
3117 * the smallest logged by this transaction and one key larger than the largest
3118 * key logged by this transaction.
3119 */
3120static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3121 struct btrfs_root *root, struct inode *inode,
3122 struct btrfs_path *path,
3123 struct btrfs_path *dst_path)
3124{
3125 u64 min_key;
3126 u64 max_key;
3127 int ret;
3128 int key_type = BTRFS_DIR_ITEM_KEY;
3129
3130again:
3131 min_key = 0;
3132 max_key = 0;
d397712b 3133 while (1) {
e02119d5
CM
3134 ret = log_dir_items(trans, root, inode, path,
3135 dst_path, key_type, min_key,
3136 &max_key);
4a500fd1
YZ
3137 if (ret)
3138 return ret;
e02119d5
CM
3139 if (max_key == (u64)-1)
3140 break;
3141 min_key = max_key + 1;
3142 }
3143
3144 if (key_type == BTRFS_DIR_ITEM_KEY) {
3145 key_type = BTRFS_DIR_INDEX_KEY;
3146 goto again;
3147 }
3148 return 0;
3149}
3150
3151/*
3152 * a helper function to drop items from the log before we relog an
3153 * inode. max_key_type indicates the highest item type to remove.
3154 * This cannot be run for file data extents because it does not
3155 * free the extents they point to.
3156 */
3157static int drop_objectid_items(struct btrfs_trans_handle *trans,
3158 struct btrfs_root *log,
3159 struct btrfs_path *path,
3160 u64 objectid, int max_key_type)
3161{
3162 int ret;
3163 struct btrfs_key key;
3164 struct btrfs_key found_key;
18ec90d6 3165 int start_slot;
e02119d5
CM
3166
3167 key.objectid = objectid;
3168 key.type = max_key_type;
3169 key.offset = (u64)-1;
3170
d397712b 3171 while (1) {
e02119d5 3172 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3173 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3174 if (ret < 0)
e02119d5
CM
3175 break;
3176
3177 if (path->slots[0] == 0)
3178 break;
3179
3180 path->slots[0]--;
3181 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3182 path->slots[0]);
3183
3184 if (found_key.objectid != objectid)
3185 break;
3186
18ec90d6
JB
3187 found_key.offset = 0;
3188 found_key.type = 0;
3189 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3190 &start_slot);
3191
3192 ret = btrfs_del_items(trans, log, path, start_slot,
3193 path->slots[0] - start_slot + 1);
3194 /*
3195 * If start slot isn't 0 then we don't need to re-search, we've
3196 * found the last guy with the objectid in this tree.
3197 */
3198 if (ret || start_slot != 0)
65a246c5 3199 break;
b3b4aa74 3200 btrfs_release_path(path);
e02119d5 3201 }
b3b4aa74 3202 btrfs_release_path(path);
5bdbeb21
JB
3203 if (ret > 0)
3204 ret = 0;
4a500fd1 3205 return ret;
e02119d5
CM
3206}
3207
94edf4ae
JB
3208static void fill_inode_item(struct btrfs_trans_handle *trans,
3209 struct extent_buffer *leaf,
3210 struct btrfs_inode_item *item,
3211 struct inode *inode, int log_inode_only)
3212{
0b1c6cca
JB
3213 struct btrfs_map_token token;
3214
3215 btrfs_init_map_token(&token);
94edf4ae
JB
3216
3217 if (log_inode_only) {
3218 /* set the generation to zero so the recover code
3219 * can tell the difference between an logging
3220 * just to say 'this inode exists' and a logging
3221 * to say 'update this inode with these values'
3222 */
0b1c6cca
JB
3223 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3224 btrfs_set_token_inode_size(leaf, item, 0, &token);
94edf4ae 3225 } else {
0b1c6cca
JB
3226 btrfs_set_token_inode_generation(leaf, item,
3227 BTRFS_I(inode)->generation,
3228 &token);
3229 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3230 }
3231
3232 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3233 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3234 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3235 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3236
3237 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3238 inode->i_atime.tv_sec, &token);
3239 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3240 inode->i_atime.tv_nsec, &token);
3241
3242 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3243 inode->i_mtime.tv_sec, &token);
3244 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3245 inode->i_mtime.tv_nsec, &token);
3246
3247 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3248 inode->i_ctime.tv_sec, &token);
3249 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3250 inode->i_ctime.tv_nsec, &token);
3251
3252 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3253 &token);
3254
3255 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3256 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3257 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3258 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3259 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3260}
3261
a95249b3
JB
3262static int log_inode_item(struct btrfs_trans_handle *trans,
3263 struct btrfs_root *log, struct btrfs_path *path,
3264 struct inode *inode)
3265{
3266 struct btrfs_inode_item *inode_item;
a95249b3
JB
3267 int ret;
3268
efd0c405
FDBM
3269 ret = btrfs_insert_empty_item(trans, log, path,
3270 &BTRFS_I(inode)->location,
a95249b3
JB
3271 sizeof(*inode_item));
3272 if (ret && ret != -EEXIST)
3273 return ret;
3274 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3275 struct btrfs_inode_item);
3276 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3277 btrfs_release_path(path);
3278 return 0;
3279}
3280
31ff1cd2 3281static noinline int copy_items(struct btrfs_trans_handle *trans,
d2794405 3282 struct inode *inode,
31ff1cd2 3283 struct btrfs_path *dst_path,
16e7549f 3284 struct btrfs_path *src_path, u64 *last_extent,
31ff1cd2
CM
3285 int start_slot, int nr, int inode_only)
3286{
3287 unsigned long src_offset;
3288 unsigned long dst_offset;
d2794405 3289 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
31ff1cd2
CM
3290 struct btrfs_file_extent_item *extent;
3291 struct btrfs_inode_item *inode_item;
16e7549f
JB
3292 struct extent_buffer *src = src_path->nodes[0];
3293 struct btrfs_key first_key, last_key, key;
31ff1cd2
CM
3294 int ret;
3295 struct btrfs_key *ins_keys;
3296 u32 *ins_sizes;
3297 char *ins_data;
3298 int i;
d20f7043 3299 struct list_head ordered_sums;
d2794405 3300 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
16e7549f 3301 bool has_extents = false;
74121f7c 3302 bool need_find_last_extent = true;
16e7549f 3303 bool done = false;
d20f7043
CM
3304
3305 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3306
3307 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3308 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3309 if (!ins_data)
3310 return -ENOMEM;
3311
16e7549f
JB
3312 first_key.objectid = (u64)-1;
3313
31ff1cd2
CM
3314 ins_sizes = (u32 *)ins_data;
3315 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3316
3317 for (i = 0; i < nr; i++) {
3318 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3319 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3320 }
3321 ret = btrfs_insert_empty_items(trans, log, dst_path,
3322 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3323 if (ret) {
3324 kfree(ins_data);
3325 return ret;
3326 }
31ff1cd2 3327
5d4f98a2 3328 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3329 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3330 dst_path->slots[0]);
3331
3332 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3333
16e7549f
JB
3334 if ((i == (nr - 1)))
3335 last_key = ins_keys[i];
3336
94edf4ae 3337 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3338 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3339 dst_path->slots[0],
3340 struct btrfs_inode_item);
94edf4ae
JB
3341 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3342 inode, inode_only == LOG_INODE_EXISTS);
3343 } else {
3344 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3345 src_offset, ins_sizes[i]);
31ff1cd2 3346 }
94edf4ae 3347
16e7549f
JB
3348 /*
3349 * We set need_find_last_extent here in case we know we were
3350 * processing other items and then walk into the first extent in
3351 * the inode. If we don't hit an extent then nothing changes,
3352 * we'll do the last search the next time around.
3353 */
3354 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3355 has_extents = true;
74121f7c 3356 if (first_key.objectid == (u64)-1)
16e7549f
JB
3357 first_key = ins_keys[i];
3358 } else {
3359 need_find_last_extent = false;
3360 }
3361
31ff1cd2
CM
3362 /* take a reference on file data extents so that truncates
3363 * or deletes of this inode don't have to relog the inode
3364 * again
3365 */
962a298f 3366 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 3367 !skip_csum) {
31ff1cd2
CM
3368 int found_type;
3369 extent = btrfs_item_ptr(src, start_slot + i,
3370 struct btrfs_file_extent_item);
3371
8e531cdf 3372 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3373 continue;
3374
31ff1cd2 3375 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 3376 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
3377 u64 ds, dl, cs, cl;
3378 ds = btrfs_file_extent_disk_bytenr(src,
3379 extent);
3380 /* ds == 0 is a hole */
3381 if (ds == 0)
3382 continue;
3383
3384 dl = btrfs_file_extent_disk_num_bytes(src,
3385 extent);
3386 cs = btrfs_file_extent_offset(src, extent);
3387 cl = btrfs_file_extent_num_bytes(src,
a419aef8 3388 extent);
580afd76
CM
3389 if (btrfs_file_extent_compression(src,
3390 extent)) {
3391 cs = 0;
3392 cl = dl;
3393 }
5d4f98a2
YZ
3394
3395 ret = btrfs_lookup_csums_range(
3396 log->fs_info->csum_root,
3397 ds + cs, ds + cs + cl - 1,
a2de733c 3398 &ordered_sums, 0);
3650860b
JB
3399 if (ret) {
3400 btrfs_release_path(dst_path);
3401 kfree(ins_data);
3402 return ret;
3403 }
31ff1cd2
CM
3404 }
3405 }
31ff1cd2
CM
3406 }
3407
3408 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 3409 btrfs_release_path(dst_path);
31ff1cd2 3410 kfree(ins_data);
d20f7043
CM
3411
3412 /*
3413 * we have to do this after the loop above to avoid changing the
3414 * log tree while trying to change the log tree.
3415 */
4a500fd1 3416 ret = 0;
d397712b 3417 while (!list_empty(&ordered_sums)) {
d20f7043
CM
3418 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3419 struct btrfs_ordered_sum,
3420 list);
4a500fd1
YZ
3421 if (!ret)
3422 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
3423 list_del(&sums->list);
3424 kfree(sums);
3425 }
16e7549f
JB
3426
3427 if (!has_extents)
3428 return ret;
3429
74121f7c
FM
3430 if (need_find_last_extent && *last_extent == first_key.offset) {
3431 /*
3432 * We don't have any leafs between our current one and the one
3433 * we processed before that can have file extent items for our
3434 * inode (and have a generation number smaller than our current
3435 * transaction id).
3436 */
3437 need_find_last_extent = false;
3438 }
3439
16e7549f
JB
3440 /*
3441 * Because we use btrfs_search_forward we could skip leaves that were
3442 * not modified and then assume *last_extent is valid when it really
3443 * isn't. So back up to the previous leaf and read the end of the last
3444 * extent before we go and fill in holes.
3445 */
3446 if (need_find_last_extent) {
3447 u64 len;
3448
3449 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3450 if (ret < 0)
3451 return ret;
3452 if (ret)
3453 goto fill_holes;
3454 if (src_path->slots[0])
3455 src_path->slots[0]--;
3456 src = src_path->nodes[0];
3457 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3458 if (key.objectid != btrfs_ino(inode) ||
3459 key.type != BTRFS_EXTENT_DATA_KEY)
3460 goto fill_holes;
3461 extent = btrfs_item_ptr(src, src_path->slots[0],
3462 struct btrfs_file_extent_item);
3463 if (btrfs_file_extent_type(src, extent) ==
3464 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
3465 len = btrfs_file_extent_inline_len(src,
3466 src_path->slots[0],
3467 extent);
16e7549f
JB
3468 *last_extent = ALIGN(key.offset + len,
3469 log->sectorsize);
3470 } else {
3471 len = btrfs_file_extent_num_bytes(src, extent);
3472 *last_extent = key.offset + len;
3473 }
3474 }
3475fill_holes:
3476 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3477 * things could have happened
3478 *
3479 * 1) A merge could have happened, so we could currently be on a leaf
3480 * that holds what we were copying in the first place.
3481 * 2) A split could have happened, and now not all of the items we want
3482 * are on the same leaf.
3483 *
3484 * So we need to adjust how we search for holes, we need to drop the
3485 * path and re-search for the first extent key we found, and then walk
3486 * forward until we hit the last one we copied.
3487 */
3488 if (need_find_last_extent) {
3489 /* btrfs_prev_leaf could return 1 without releasing the path */
3490 btrfs_release_path(src_path);
3491 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3492 src_path, 0, 0);
3493 if (ret < 0)
3494 return ret;
3495 ASSERT(ret == 0);
3496 src = src_path->nodes[0];
3497 i = src_path->slots[0];
3498 } else {
3499 i = start_slot;
3500 }
3501
3502 /*
3503 * Ok so here we need to go through and fill in any holes we may have
3504 * to make sure that holes are punched for those areas in case they had
3505 * extents previously.
3506 */
3507 while (!done) {
3508 u64 offset, len;
3509 u64 extent_end;
3510
3511 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3512 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3513 if (ret < 0)
3514 return ret;
3515 ASSERT(ret == 0);
3516 src = src_path->nodes[0];
3517 i = 0;
3518 }
3519
3520 btrfs_item_key_to_cpu(src, &key, i);
3521 if (!btrfs_comp_cpu_keys(&key, &last_key))
3522 done = true;
3523 if (key.objectid != btrfs_ino(inode) ||
3524 key.type != BTRFS_EXTENT_DATA_KEY) {
3525 i++;
3526 continue;
3527 }
3528 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3529 if (btrfs_file_extent_type(src, extent) ==
3530 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 3531 len = btrfs_file_extent_inline_len(src, i, extent);
16e7549f
JB
3532 extent_end = ALIGN(key.offset + len, log->sectorsize);
3533 } else {
3534 len = btrfs_file_extent_num_bytes(src, extent);
3535 extent_end = key.offset + len;
3536 }
3537 i++;
3538
3539 if (*last_extent == key.offset) {
3540 *last_extent = extent_end;
3541 continue;
3542 }
3543 offset = *last_extent;
3544 len = key.offset - *last_extent;
3545 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3546 offset, 0, 0, len, 0, len, 0,
3547 0, 0);
3548 if (ret)
3549 break;
74121f7c 3550 *last_extent = extent_end;
16e7549f
JB
3551 }
3552 /*
3553 * Need to let the callers know we dropped the path so they should
3554 * re-search.
3555 */
3556 if (!ret && need_find_last_extent)
3557 ret = 1;
4a500fd1 3558 return ret;
31ff1cd2
CM
3559}
3560
5dc562c5
JB
3561static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3562{
3563 struct extent_map *em1, *em2;
3564
3565 em1 = list_entry(a, struct extent_map, list);
3566 em2 = list_entry(b, struct extent_map, list);
3567
3568 if (em1->start < em2->start)
3569 return -1;
3570 else if (em1->start > em2->start)
3571 return 1;
3572 return 0;
3573}
3574
5dc562c5
JB
3575static int log_one_extent(struct btrfs_trans_handle *trans,
3576 struct inode *inode, struct btrfs_root *root,
827463c4
MX
3577 struct extent_map *em, struct btrfs_path *path,
3578 struct list_head *logged_list)
5dc562c5
JB
3579{
3580 struct btrfs_root *log = root->log_root;
70c8a91c
JB
3581 struct btrfs_file_extent_item *fi;
3582 struct extent_buffer *leaf;
2ab28f32 3583 struct btrfs_ordered_extent *ordered;
70c8a91c 3584 struct list_head ordered_sums;
0b1c6cca 3585 struct btrfs_map_token token;
5dc562c5 3586 struct btrfs_key key;
2ab28f32
JB
3587 u64 mod_start = em->mod_start;
3588 u64 mod_len = em->mod_len;
3589 u64 csum_offset;
3590 u64 csum_len;
70c8a91c
JB
3591 u64 extent_offset = em->start - em->orig_start;
3592 u64 block_len;
5dc562c5 3593 int ret;
70c8a91c 3594 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1acae57b 3595 int extent_inserted = 0;
09a2a8f9 3596
70c8a91c 3597 INIT_LIST_HEAD(&ordered_sums);
0b1c6cca 3598 btrfs_init_map_token(&token);
70c8a91c 3599
1acae57b
FDBM
3600 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3601 em->start + em->len, NULL, 0, 1,
3602 sizeof(*fi), &extent_inserted);
09a2a8f9 3603 if (ret)
70c8a91c 3604 return ret;
1acae57b
FDBM
3605
3606 if (!extent_inserted) {
3607 key.objectid = btrfs_ino(inode);
3608 key.type = BTRFS_EXTENT_DATA_KEY;
3609 key.offset = em->start;
3610
3611 ret = btrfs_insert_empty_item(trans, log, path, &key,
3612 sizeof(*fi));
3613 if (ret)
3614 return ret;
3615 }
70c8a91c
JB
3616 leaf = path->nodes[0];
3617 fi = btrfs_item_ptr(leaf, path->slots[0],
3618 struct btrfs_file_extent_item);
124fe663 3619
0b1c6cca
JB
3620 btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3621 &token);
70c8a91c
JB
3622 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3623 skip_csum = true;
0b1c6cca
JB
3624 btrfs_set_token_file_extent_type(leaf, fi,
3625 BTRFS_FILE_EXTENT_PREALLOC,
3626 &token);
70c8a91c 3627 } else {
0b1c6cca
JB
3628 btrfs_set_token_file_extent_type(leaf, fi,
3629 BTRFS_FILE_EXTENT_REG,
3630 &token);
ed9e8af8 3631 if (em->block_start == EXTENT_MAP_HOLE)
70c8a91c
JB
3632 skip_csum = true;
3633 }
3634
3635 block_len = max(em->block_len, em->orig_block_len);
3636 if (em->compress_type != BTRFS_COMPRESS_NONE) {
0b1c6cca
JB
3637 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3638 em->block_start,
3639 &token);
3640 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3641 &token);
70c8a91c 3642 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
0b1c6cca
JB
3643 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3644 em->block_start -
3645 extent_offset, &token);
3646 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3647 &token);
70c8a91c 3648 } else {
0b1c6cca
JB
3649 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3650 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3651 &token);
3652 }
3653
3654 btrfs_set_token_file_extent_offset(leaf, fi,
3655 em->start - em->orig_start,
3656 &token);
3657 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
cc95bef6 3658 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
0b1c6cca
JB
3659 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3660 &token);
3661 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3662 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
70c8a91c 3663 btrfs_mark_buffer_dirty(leaf);
0aa4a17d 3664
70c8a91c 3665 btrfs_release_path(path);
70c8a91c
JB
3666 if (ret) {
3667 return ret;
3668 }
0aa4a17d 3669
70c8a91c
JB
3670 if (skip_csum)
3671 return 0;
5dc562c5 3672
2ab28f32
JB
3673 /*
3674 * First check and see if our csums are on our outstanding ordered
3675 * extents.
3676 */
827463c4 3677 list_for_each_entry(ordered, logged_list, log_list) {
2ab28f32
JB
3678 struct btrfs_ordered_sum *sum;
3679
3680 if (!mod_len)
3681 break;
3682
2ab28f32
JB
3683 if (ordered->file_offset + ordered->len <= mod_start ||
3684 mod_start + mod_len <= ordered->file_offset)
3685 continue;
3686
3687 /*
3688 * We are going to copy all the csums on this ordered extent, so
3689 * go ahead and adjust mod_start and mod_len in case this
3690 * ordered extent has already been logged.
3691 */
3692 if (ordered->file_offset > mod_start) {
3693 if (ordered->file_offset + ordered->len >=
3694 mod_start + mod_len)
3695 mod_len = ordered->file_offset - mod_start;
3696 /*
3697 * If we have this case
3698 *
3699 * |--------- logged extent ---------|
3700 * |----- ordered extent ----|
3701 *
3702 * Just don't mess with mod_start and mod_len, we'll
3703 * just end up logging more csums than we need and it
3704 * will be ok.
3705 */
3706 } else {
3707 if (ordered->file_offset + ordered->len <
3708 mod_start + mod_len) {
3709 mod_len = (mod_start + mod_len) -
3710 (ordered->file_offset + ordered->len);
3711 mod_start = ordered->file_offset +
3712 ordered->len;
3713 } else {
3714 mod_len = 0;
3715 }
3716 }
3717
3718 /*
3719 * To keep us from looping for the above case of an ordered
3720 * extent that falls inside of the logged extent.
3721 */
3722 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3723 &ordered->flags))
3724 continue;
2ab28f32 3725
23c671a5
MX
3726 if (ordered->csum_bytes_left) {
3727 btrfs_start_ordered_extent(inode, ordered, 0);
3728 wait_event(ordered->wait,
3729 ordered->csum_bytes_left == 0);
3730 }
2ab28f32
JB
3731
3732 list_for_each_entry(sum, &ordered->list, list) {
3733 ret = btrfs_csum_file_blocks(trans, log, sum);
827463c4 3734 if (ret)
2ab28f32 3735 goto unlocked;
2ab28f32 3736 }
2ab28f32
JB
3737
3738 }
2ab28f32
JB
3739unlocked:
3740
3741 if (!mod_len || ret)
3742 return ret;
3743
488111aa
FDBM
3744 if (em->compress_type) {
3745 csum_offset = 0;
3746 csum_len = block_len;
3747 } else {
3748 csum_offset = mod_start - em->start;
3749 csum_len = mod_len;
3750 }
2ab28f32 3751
70c8a91c
JB
3752 /* block start is already adjusted for the file extent offset. */
3753 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3754 em->block_start + csum_offset,
3755 em->block_start + csum_offset +
3756 csum_len - 1, &ordered_sums, 0);
3757 if (ret)
3758 return ret;
5dc562c5 3759
70c8a91c
JB
3760 while (!list_empty(&ordered_sums)) {
3761 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3762 struct btrfs_ordered_sum,
3763 list);
3764 if (!ret)
3765 ret = btrfs_csum_file_blocks(trans, log, sums);
3766 list_del(&sums->list);
3767 kfree(sums);
5dc562c5
JB
3768 }
3769
70c8a91c 3770 return ret;
5dc562c5
JB
3771}
3772
3773static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3774 struct btrfs_root *root,
3775 struct inode *inode,
827463c4
MX
3776 struct btrfs_path *path,
3777 struct list_head *logged_list)
5dc562c5 3778{
5dc562c5
JB
3779 struct extent_map *em, *n;
3780 struct list_head extents;
3781 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3782 u64 test_gen;
3783 int ret = 0;
2ab28f32 3784 int num = 0;
5dc562c5
JB
3785
3786 INIT_LIST_HEAD(&extents);
3787
5dc562c5
JB
3788 write_lock(&tree->lock);
3789 test_gen = root->fs_info->last_trans_committed;
3790
3791 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3792 list_del_init(&em->list);
2ab28f32
JB
3793
3794 /*
3795 * Just an arbitrary number, this can be really CPU intensive
3796 * once we start getting a lot of extents, and really once we
3797 * have a bunch of extents we just want to commit since it will
3798 * be faster.
3799 */
3800 if (++num > 32768) {
3801 list_del_init(&tree->modified_extents);
3802 ret = -EFBIG;
3803 goto process;
3804 }
3805
5dc562c5
JB
3806 if (em->generation <= test_gen)
3807 continue;
ff44c6e3
JB
3808 /* Need a ref to keep it from getting evicted from cache */
3809 atomic_inc(&em->refs);
3810 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 3811 list_add_tail(&em->list, &extents);
2ab28f32 3812 num++;
5dc562c5
JB
3813 }
3814
3815 list_sort(NULL, &extents, extent_cmp);
3816
2ab28f32 3817process:
5dc562c5
JB
3818 while (!list_empty(&extents)) {
3819 em = list_entry(extents.next, struct extent_map, list);
3820
3821 list_del_init(&em->list);
3822
3823 /*
3824 * If we had an error we just need to delete everybody from our
3825 * private list.
3826 */
ff44c6e3 3827 if (ret) {
201a9038 3828 clear_em_logging(tree, em);
ff44c6e3 3829 free_extent_map(em);
5dc562c5 3830 continue;
ff44c6e3
JB
3831 }
3832
3833 write_unlock(&tree->lock);
5dc562c5 3834
827463c4 3835 ret = log_one_extent(trans, inode, root, em, path, logged_list);
ff44c6e3 3836 write_lock(&tree->lock);
201a9038
JB
3837 clear_em_logging(tree, em);
3838 free_extent_map(em);
5dc562c5 3839 }
ff44c6e3
JB
3840 WARN_ON(!list_empty(&extents));
3841 write_unlock(&tree->lock);
5dc562c5 3842
5dc562c5 3843 btrfs_release_path(path);
5dc562c5
JB
3844 return ret;
3845}
3846
e02119d5
CM
3847/* log a single inode in the tree log.
3848 * At least one parent directory for this inode must exist in the tree
3849 * or be logged already.
3850 *
3851 * Any items from this inode changed by the current transaction are copied
3852 * to the log tree. An extra reference is taken on any extents in this
3853 * file, allowing us to avoid a whole pile of corner cases around logging
3854 * blocks that have been removed from the tree.
3855 *
3856 * See LOG_INODE_ALL and related defines for a description of what inode_only
3857 * does.
3858 *
3859 * This handles both files and directories.
3860 */
12fcfd22 3861static int btrfs_log_inode(struct btrfs_trans_handle *trans,
49dae1bc
FM
3862 struct btrfs_root *root, struct inode *inode,
3863 int inode_only,
3864 const loff_t start,
3865 const loff_t end)
e02119d5
CM
3866{
3867 struct btrfs_path *path;
3868 struct btrfs_path *dst_path;
3869 struct btrfs_key min_key;
3870 struct btrfs_key max_key;
3871 struct btrfs_root *log = root->log_root;
31ff1cd2 3872 struct extent_buffer *src = NULL;
827463c4 3873 LIST_HEAD(logged_list);
16e7549f 3874 u64 last_extent = 0;
4a500fd1 3875 int err = 0;
e02119d5 3876 int ret;
3a5f1d45 3877 int nritems;
31ff1cd2
CM
3878 int ins_start_slot = 0;
3879 int ins_nr;
5dc562c5 3880 bool fast_search = false;
33345d01 3881 u64 ino = btrfs_ino(inode);
49dae1bc 3882 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
e02119d5 3883
e02119d5 3884 path = btrfs_alloc_path();
5df67083
TI
3885 if (!path)
3886 return -ENOMEM;
e02119d5 3887 dst_path = btrfs_alloc_path();
5df67083
TI
3888 if (!dst_path) {
3889 btrfs_free_path(path);
3890 return -ENOMEM;
3891 }
e02119d5 3892
33345d01 3893 min_key.objectid = ino;
e02119d5
CM
3894 min_key.type = BTRFS_INODE_ITEM_KEY;
3895 min_key.offset = 0;
3896
33345d01 3897 max_key.objectid = ino;
12fcfd22 3898
12fcfd22 3899
5dc562c5 3900 /* today the code can only do partial logging of directories */
5269b67e
MX
3901 if (S_ISDIR(inode->i_mode) ||
3902 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3903 &BTRFS_I(inode)->runtime_flags) &&
3904 inode_only == LOG_INODE_EXISTS))
e02119d5
CM
3905 max_key.type = BTRFS_XATTR_ITEM_KEY;
3906 else
3907 max_key.type = (u8)-1;
3908 max_key.offset = (u64)-1;
3909
94edf4ae
JB
3910 /* Only run delayed items if we are a dir or a new file */
3911 if (S_ISDIR(inode->i_mode) ||
3912 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3913 ret = btrfs_commit_inode_delayed_items(trans, inode);
3914 if (ret) {
3915 btrfs_free_path(path);
3916 btrfs_free_path(dst_path);
3917 return ret;
3918 }
16cdcec7
MX
3919 }
3920
e02119d5
CM
3921 mutex_lock(&BTRFS_I(inode)->log_mutex);
3922
827463c4 3923 btrfs_get_logged_extents(inode, &logged_list);
2ab28f32 3924
e02119d5
CM
3925 /*
3926 * a brute force approach to making sure we get the most uptodate
3927 * copies of everything.
3928 */
3929 if (S_ISDIR(inode->i_mode)) {
3930 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3931
3932 if (inode_only == LOG_INODE_EXISTS)
3933 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 3934 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 3935 } else {
5dc562c5
JB
3936 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3937 &BTRFS_I(inode)->runtime_flags)) {
e9976151
JB
3938 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3939 &BTRFS_I(inode)->runtime_flags);
5dc562c5
JB
3940 ret = btrfs_truncate_inode_items(trans, log,
3941 inode, 0, 0);
a95249b3 3942 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6cfab851
JB
3943 &BTRFS_I(inode)->runtime_flags) ||
3944 inode_only == LOG_INODE_EXISTS) {
183f37fa
LB
3945 if (inode_only == LOG_INODE_ALL)
3946 fast_search = true;
a95249b3 3947 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 3948 ret = drop_objectid_items(trans, log, path, ino,
e9976151 3949 max_key.type);
a95249b3
JB
3950 } else {
3951 if (inode_only == LOG_INODE_ALL)
3952 fast_search = true;
3953 ret = log_inode_item(trans, log, dst_path, inode);
3954 if (ret) {
3955 err = ret;
3956 goto out_unlock;
3957 }
3958 goto log_extents;
5dc562c5 3959 }
a95249b3 3960
e02119d5 3961 }
4a500fd1
YZ
3962 if (ret) {
3963 err = ret;
3964 goto out_unlock;
3965 }
e02119d5 3966
d397712b 3967 while (1) {
31ff1cd2 3968 ins_nr = 0;
6174d3cb 3969 ret = btrfs_search_forward(root, &min_key,
de78b51a 3970 path, trans->transid);
e02119d5
CM
3971 if (ret != 0)
3972 break;
3a5f1d45 3973again:
31ff1cd2 3974 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 3975 if (min_key.objectid != ino)
e02119d5
CM
3976 break;
3977 if (min_key.type > max_key.type)
3978 break;
31ff1cd2 3979
e02119d5 3980 src = path->nodes[0];
31ff1cd2
CM
3981 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3982 ins_nr++;
3983 goto next_slot;
3984 } else if (!ins_nr) {
3985 ins_start_slot = path->slots[0];
3986 ins_nr = 1;
3987 goto next_slot;
e02119d5
CM
3988 }
3989
16e7549f
JB
3990 ret = copy_items(trans, inode, dst_path, path, &last_extent,
3991 ins_start_slot, ins_nr, inode_only);
3992 if (ret < 0) {
4a500fd1
YZ
3993 err = ret;
3994 goto out_unlock;
16e7549f
JB
3995 } if (ret) {
3996 ins_nr = 0;
3997 btrfs_release_path(path);
3998 continue;
4a500fd1 3999 }
31ff1cd2
CM
4000 ins_nr = 1;
4001 ins_start_slot = path->slots[0];
4002next_slot:
e02119d5 4003
3a5f1d45
CM
4004 nritems = btrfs_header_nritems(path->nodes[0]);
4005 path->slots[0]++;
4006 if (path->slots[0] < nritems) {
4007 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4008 path->slots[0]);
4009 goto again;
4010 }
31ff1cd2 4011 if (ins_nr) {
16e7549f
JB
4012 ret = copy_items(trans, inode, dst_path, path,
4013 &last_extent, ins_start_slot,
31ff1cd2 4014 ins_nr, inode_only);
16e7549f 4015 if (ret < 0) {
4a500fd1
YZ
4016 err = ret;
4017 goto out_unlock;
4018 }
16e7549f 4019 ret = 0;
31ff1cd2
CM
4020 ins_nr = 0;
4021 }
b3b4aa74 4022 btrfs_release_path(path);
3a5f1d45 4023
3d41d702 4024 if (min_key.offset < (u64)-1) {
e02119d5 4025 min_key.offset++;
3d41d702 4026 } else if (min_key.type < max_key.type) {
e02119d5 4027 min_key.type++;
3d41d702
FDBM
4028 min_key.offset = 0;
4029 } else {
e02119d5 4030 break;
3d41d702 4031 }
e02119d5 4032 }
31ff1cd2 4033 if (ins_nr) {
16e7549f
JB
4034 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4035 ins_start_slot, ins_nr, inode_only);
4036 if (ret < 0) {
4a500fd1
YZ
4037 err = ret;
4038 goto out_unlock;
4039 }
16e7549f 4040 ret = 0;
31ff1cd2
CM
4041 ins_nr = 0;
4042 }
5dc562c5 4043
a95249b3 4044log_extents:
f3b15ccd
JB
4045 btrfs_release_path(path);
4046 btrfs_release_path(dst_path);
5dc562c5 4047 if (fast_search) {
827463c4
MX
4048 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4049 &logged_list);
5dc562c5
JB
4050 if (ret) {
4051 err = ret;
4052 goto out_unlock;
4053 }
d006a048 4054 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
4055 struct extent_map *em, *n;
4056
49dae1bc
FM
4057 write_lock(&em_tree->lock);
4058 /*
4059 * We can't just remove every em if we're called for a ranged
4060 * fsync - that is, one that doesn't cover the whole possible
4061 * file range (0 to LLONG_MAX). This is because we can have
4062 * em's that fall outside the range we're logging and therefore
4063 * their ordered operations haven't completed yet
4064 * (btrfs_finish_ordered_io() not invoked yet). This means we
4065 * didn't get their respective file extent item in the fs/subvol
4066 * tree yet, and need to let the next fast fsync (one which
4067 * consults the list of modified extent maps) find the em so
4068 * that it logs a matching file extent item and waits for the
4069 * respective ordered operation to complete (if it's still
4070 * running).
4071 *
4072 * Removing every em outside the range we're logging would make
4073 * the next fast fsync not log their matching file extent items,
4074 * therefore making us lose data after a log replay.
4075 */
4076 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4077 list) {
4078 const u64 mod_end = em->mod_start + em->mod_len - 1;
4079
4080 if (em->mod_start >= start && mod_end <= end)
4081 list_del_init(&em->list);
4082 }
4083 write_unlock(&em_tree->lock);
5dc562c5
JB
4084 }
4085
9623f9a3 4086 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
e02119d5 4087 ret = log_directory_changes(trans, root, inode, path, dst_path);
4a500fd1
YZ
4088 if (ret) {
4089 err = ret;
4090 goto out_unlock;
4091 }
e02119d5 4092 }
49dae1bc
FM
4093
4094 write_lock(&em_tree->lock);
4095 /*
4096 * If we're doing a ranged fsync and there are still modified extents
4097 * in the list, we must run on the next fsync call as it might cover
4098 * those extents (a full fsync or an fsync for other range).
4099 */
4100 if (list_empty(&em_tree->modified_extents)) {
4101 BTRFS_I(inode)->logged_trans = trans->transid;
4102 BTRFS_I(inode)->last_log_commit =
4103 BTRFS_I(inode)->last_sub_trans;
4104 }
4105 write_unlock(&em_tree->lock);
4a500fd1 4106out_unlock:
827463c4
MX
4107 if (unlikely(err))
4108 btrfs_put_logged_extents(&logged_list);
4109 else
4110 btrfs_submit_logged_extents(&logged_list, log);
e02119d5
CM
4111 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4112
4113 btrfs_free_path(path);
4114 btrfs_free_path(dst_path);
4a500fd1 4115 return err;
e02119d5
CM
4116}
4117
12fcfd22
CM
4118/*
4119 * follow the dentry parent pointers up the chain and see if any
4120 * of the directories in it require a full commit before they can
4121 * be logged. Returns zero if nothing special needs to be done or 1 if
4122 * a full commit is required.
4123 */
4124static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4125 struct inode *inode,
4126 struct dentry *parent,
4127 struct super_block *sb,
4128 u64 last_committed)
e02119d5 4129{
12fcfd22
CM
4130 int ret = 0;
4131 struct btrfs_root *root;
6a912213 4132 struct dentry *old_parent = NULL;
de2b530b 4133 struct inode *orig_inode = inode;
e02119d5 4134
af4176b4
CM
4135 /*
4136 * for regular files, if its inode is already on disk, we don't
4137 * have to worry about the parents at all. This is because
4138 * we can use the last_unlink_trans field to record renames
4139 * and other fun in this file.
4140 */
4141 if (S_ISREG(inode->i_mode) &&
4142 BTRFS_I(inode)->generation <= last_committed &&
4143 BTRFS_I(inode)->last_unlink_trans <= last_committed)
4144 goto out;
4145
12fcfd22
CM
4146 if (!S_ISDIR(inode->i_mode)) {
4147 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4148 goto out;
4149 inode = parent->d_inode;
4150 }
4151
4152 while (1) {
de2b530b
JB
4153 /*
4154 * If we are logging a directory then we start with our inode,
4155 * not our parents inode, so we need to skipp setting the
4156 * logged_trans so that further down in the log code we don't
4157 * think this inode has already been logged.
4158 */
4159 if (inode != orig_inode)
4160 BTRFS_I(inode)->logged_trans = trans->transid;
12fcfd22
CM
4161 smp_mb();
4162
4163 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4164 root = BTRFS_I(inode)->root;
4165
4166 /*
4167 * make sure any commits to the log are forced
4168 * to be full commits
4169 */
995946dd 4170 btrfs_set_log_full_commit(root->fs_info, trans);
12fcfd22
CM
4171 ret = 1;
4172 break;
4173 }
4174
4175 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4176 break;
4177
76dda93c 4178 if (IS_ROOT(parent))
12fcfd22
CM
4179 break;
4180
6a912213
JB
4181 parent = dget_parent(parent);
4182 dput(old_parent);
4183 old_parent = parent;
12fcfd22
CM
4184 inode = parent->d_inode;
4185
4186 }
6a912213 4187 dput(old_parent);
12fcfd22 4188out:
e02119d5
CM
4189 return ret;
4190}
4191
4192/*
4193 * helper function around btrfs_log_inode to make sure newly created
4194 * parent directories also end up in the log. A minimal inode and backref
4195 * only logging is done of any parent directories that are older than
4196 * the last committed transaction
4197 */
48a3b636
ES
4198static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4199 struct btrfs_root *root, struct inode *inode,
49dae1bc
FM
4200 struct dentry *parent,
4201 const loff_t start,
4202 const loff_t end,
4203 int exists_only,
8b050d35 4204 struct btrfs_log_ctx *ctx)
e02119d5 4205{
12fcfd22 4206 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
e02119d5 4207 struct super_block *sb;
6a912213 4208 struct dentry *old_parent = NULL;
12fcfd22
CM
4209 int ret = 0;
4210 u64 last_committed = root->fs_info->last_trans_committed;
4211
4212 sb = inode->i_sb;
4213
3a5e1404
SW
4214 if (btrfs_test_opt(root, NOTREELOG)) {
4215 ret = 1;
4216 goto end_no_trans;
4217 }
4218
995946dd
MX
4219 /*
4220 * The prev transaction commit doesn't complete, we need do
4221 * full commit by ourselves.
4222 */
12fcfd22
CM
4223 if (root->fs_info->last_trans_log_full_commit >
4224 root->fs_info->last_trans_committed) {
4225 ret = 1;
4226 goto end_no_trans;
4227 }
4228
76dda93c
YZ
4229 if (root != BTRFS_I(inode)->root ||
4230 btrfs_root_refs(&root->root_item) == 0) {
4231 ret = 1;
4232 goto end_no_trans;
4233 }
4234
12fcfd22
CM
4235 ret = check_parent_dirs_for_sync(trans, inode, parent,
4236 sb, last_committed);
4237 if (ret)
4238 goto end_no_trans;
e02119d5 4239
22ee6985 4240 if (btrfs_inode_in_log(inode, trans->transid)) {
257c62e1
CM
4241 ret = BTRFS_NO_LOG_SYNC;
4242 goto end_no_trans;
4243 }
4244
8b050d35 4245 ret = start_log_trans(trans, root, ctx);
4a500fd1 4246 if (ret)
e87ac136 4247 goto end_no_trans;
e02119d5 4248
49dae1bc 4249 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end);
4a500fd1
YZ
4250 if (ret)
4251 goto end_trans;
12fcfd22 4252
af4176b4
CM
4253 /*
4254 * for regular files, if its inode is already on disk, we don't
4255 * have to worry about the parents at all. This is because
4256 * we can use the last_unlink_trans field to record renames
4257 * and other fun in this file.
4258 */
4259 if (S_ISREG(inode->i_mode) &&
4260 BTRFS_I(inode)->generation <= last_committed &&
4a500fd1
YZ
4261 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4262 ret = 0;
4263 goto end_trans;
4264 }
af4176b4
CM
4265
4266 inode_only = LOG_INODE_EXISTS;
12fcfd22
CM
4267 while (1) {
4268 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
e02119d5
CM
4269 break;
4270
12fcfd22 4271 inode = parent->d_inode;
76dda93c
YZ
4272 if (root != BTRFS_I(inode)->root)
4273 break;
4274
12fcfd22
CM
4275 if (BTRFS_I(inode)->generation >
4276 root->fs_info->last_trans_committed) {
49dae1bc
FM
4277 ret = btrfs_log_inode(trans, root, inode, inode_only,
4278 0, LLONG_MAX);
4a500fd1
YZ
4279 if (ret)
4280 goto end_trans;
12fcfd22 4281 }
76dda93c 4282 if (IS_ROOT(parent))
e02119d5 4283 break;
12fcfd22 4284
6a912213
JB
4285 parent = dget_parent(parent);
4286 dput(old_parent);
4287 old_parent = parent;
e02119d5 4288 }
12fcfd22 4289 ret = 0;
4a500fd1 4290end_trans:
6a912213 4291 dput(old_parent);
4a500fd1 4292 if (ret < 0) {
995946dd 4293 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1
YZ
4294 ret = 1;
4295 }
8b050d35
MX
4296
4297 if (ret)
4298 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
4299 btrfs_end_log_trans(root);
4300end_no_trans:
4301 return ret;
e02119d5
CM
4302}
4303
4304/*
4305 * it is not safe to log dentry if the chunk root has added new
4306 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
4307 * If this returns 1, you must commit the transaction to safely get your
4308 * data on disk.
4309 */
4310int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
8b050d35 4311 struct btrfs_root *root, struct dentry *dentry,
49dae1bc
FM
4312 const loff_t start,
4313 const loff_t end,
8b050d35 4314 struct btrfs_log_ctx *ctx)
e02119d5 4315{
6a912213
JB
4316 struct dentry *parent = dget_parent(dentry);
4317 int ret;
4318
8b050d35 4319 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent,
49dae1bc 4320 start, end, 0, ctx);
6a912213
JB
4321 dput(parent);
4322
4323 return ret;
e02119d5
CM
4324}
4325
4326/*
4327 * should be called during mount to recover any replay any log trees
4328 * from the FS
4329 */
4330int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4331{
4332 int ret;
4333 struct btrfs_path *path;
4334 struct btrfs_trans_handle *trans;
4335 struct btrfs_key key;
4336 struct btrfs_key found_key;
4337 struct btrfs_key tmp_key;
4338 struct btrfs_root *log;
4339 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4340 struct walk_control wc = {
4341 .process_func = process_one_buffer,
4342 .stage = 0,
4343 };
4344
e02119d5 4345 path = btrfs_alloc_path();
db5b493a
TI
4346 if (!path)
4347 return -ENOMEM;
4348
4349 fs_info->log_root_recovering = 1;
e02119d5 4350
4a500fd1 4351 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
4352 if (IS_ERR(trans)) {
4353 ret = PTR_ERR(trans);
4354 goto error;
4355 }
e02119d5
CM
4356
4357 wc.trans = trans;
4358 wc.pin = 1;
4359
db5b493a 4360 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa
JM
4361 if (ret) {
4362 btrfs_error(fs_info, ret, "Failed to pin buffers while "
4363 "recovering log root tree.");
4364 goto error;
4365 }
e02119d5
CM
4366
4367again:
4368 key.objectid = BTRFS_TREE_LOG_OBJECTID;
4369 key.offset = (u64)-1;
962a298f 4370 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 4371
d397712b 4372 while (1) {
e02119d5 4373 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
4374
4375 if (ret < 0) {
4376 btrfs_error(fs_info, ret,
4377 "Couldn't find tree log root.");
4378 goto error;
4379 }
e02119d5
CM
4380 if (ret > 0) {
4381 if (path->slots[0] == 0)
4382 break;
4383 path->slots[0]--;
4384 }
4385 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4386 path->slots[0]);
b3b4aa74 4387 btrfs_release_path(path);
e02119d5
CM
4388 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4389 break;
4390
cb517eab 4391 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
4392 if (IS_ERR(log)) {
4393 ret = PTR_ERR(log);
4394 btrfs_error(fs_info, ret,
4395 "Couldn't read tree log root.");
4396 goto error;
4397 }
e02119d5
CM
4398
4399 tmp_key.objectid = found_key.offset;
4400 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4401 tmp_key.offset = (u64)-1;
4402
4403 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
4404 if (IS_ERR(wc.replay_dest)) {
4405 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
4406 free_extent_buffer(log->node);
4407 free_extent_buffer(log->commit_root);
4408 kfree(log);
79787eaa
JM
4409 btrfs_error(fs_info, ret, "Couldn't read target root "
4410 "for tree log recovery.");
4411 goto error;
4412 }
e02119d5 4413
07d400a6 4414 wc.replay_dest->log_root = log;
5d4f98a2 4415 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 4416 ret = walk_log_tree(trans, log, &wc);
e02119d5 4417
b50c6e25 4418 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
4419 ret = fixup_inode_link_counts(trans, wc.replay_dest,
4420 path);
e02119d5
CM
4421 }
4422
4423 key.offset = found_key.offset - 1;
07d400a6 4424 wc.replay_dest->log_root = NULL;
e02119d5 4425 free_extent_buffer(log->node);
b263c2c8 4426 free_extent_buffer(log->commit_root);
e02119d5
CM
4427 kfree(log);
4428
b50c6e25
JB
4429 if (ret)
4430 goto error;
4431
e02119d5
CM
4432 if (found_key.offset == 0)
4433 break;
4434 }
b3b4aa74 4435 btrfs_release_path(path);
e02119d5
CM
4436
4437 /* step one is to pin it all, step two is to replay just inodes */
4438 if (wc.pin) {
4439 wc.pin = 0;
4440 wc.process_func = replay_one_buffer;
4441 wc.stage = LOG_WALK_REPLAY_INODES;
4442 goto again;
4443 }
4444 /* step three is to replay everything */
4445 if (wc.stage < LOG_WALK_REPLAY_ALL) {
4446 wc.stage++;
4447 goto again;
4448 }
4449
4450 btrfs_free_path(path);
4451
abefa55a
JB
4452 /* step 4: commit the transaction, which also unpins the blocks */
4453 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4454 if (ret)
4455 return ret;
4456
e02119d5
CM
4457 free_extent_buffer(log_root_tree->node);
4458 log_root_tree->log_root = NULL;
4459 fs_info->log_root_recovering = 0;
e02119d5 4460 kfree(log_root_tree);
79787eaa 4461
abefa55a 4462 return 0;
79787eaa 4463error:
b50c6e25
JB
4464 if (wc.trans)
4465 btrfs_end_transaction(wc.trans, fs_info->tree_root);
79787eaa
JM
4466 btrfs_free_path(path);
4467 return ret;
e02119d5 4468}
12fcfd22
CM
4469
4470/*
4471 * there are some corner cases where we want to force a full
4472 * commit instead of allowing a directory to be logged.
4473 *
4474 * They revolve around files there were unlinked from the directory, and
4475 * this function updates the parent directory so that a full commit is
4476 * properly done if it is fsync'd later after the unlinks are done.
4477 */
4478void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4479 struct inode *dir, struct inode *inode,
4480 int for_rename)
4481{
af4176b4
CM
4482 /*
4483 * when we're logging a file, if it hasn't been renamed
4484 * or unlinked, and its inode is fully committed on disk,
4485 * we don't have to worry about walking up the directory chain
4486 * to log its parents.
4487 *
4488 * So, we use the last_unlink_trans field to put this transid
4489 * into the file. When the file is logged we check it and
4490 * don't log the parents if the file is fully on disk.
4491 */
4492 if (S_ISREG(inode->i_mode))
4493 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4494
12fcfd22
CM
4495 /*
4496 * if this directory was already logged any new
4497 * names for this file/dir will get recorded
4498 */
4499 smp_mb();
4500 if (BTRFS_I(dir)->logged_trans == trans->transid)
4501 return;
4502
4503 /*
4504 * if the inode we're about to unlink was logged,
4505 * the log will be properly updated for any new names
4506 */
4507 if (BTRFS_I(inode)->logged_trans == trans->transid)
4508 return;
4509
4510 /*
4511 * when renaming files across directories, if the directory
4512 * there we're unlinking from gets fsync'd later on, there's
4513 * no way to find the destination directory later and fsync it
4514 * properly. So, we have to be conservative and force commits
4515 * so the new name gets discovered.
4516 */
4517 if (for_rename)
4518 goto record;
4519
4520 /* we can safely do the unlink without any special recording */
4521 return;
4522
4523record:
4524 BTRFS_I(dir)->last_unlink_trans = trans->transid;
4525}
4526
4527/*
4528 * Call this after adding a new name for a file and it will properly
4529 * update the log to reflect the new name.
4530 *
4531 * It will return zero if all goes well, and it will return 1 if a
4532 * full transaction commit is required.
4533 */
4534int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4535 struct inode *inode, struct inode *old_dir,
4536 struct dentry *parent)
4537{
4538 struct btrfs_root * root = BTRFS_I(inode)->root;
4539
af4176b4
CM
4540 /*
4541 * this will force the logging code to walk the dentry chain
4542 * up for the file
4543 */
4544 if (S_ISREG(inode->i_mode))
4545 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4546
12fcfd22
CM
4547 /*
4548 * if this inode hasn't been logged and directory we're renaming it
4549 * from hasn't been logged, we don't need to log it
4550 */
4551 if (BTRFS_I(inode)->logged_trans <=
4552 root->fs_info->last_trans_committed &&
4553 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4554 root->fs_info->last_trans_committed))
4555 return 0;
4556
49dae1bc
FM
4557 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
4558 LLONG_MAX, 1, NULL);
12fcfd22
CM
4559}
4560
This page took 0.793204 seconds and 5 git commands to generate.