Btrfs: allow compressed extents to be merged during defragment
[deliverable/linux.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
c6adc9cc 21#include <linux/blkdev.h>
5dc562c5 22#include <linux/list_sort.h>
e02119d5
CM
23#include "ctree.h"
24#include "transaction.h"
25#include "disk-io.h"
26#include "locking.h"
27#include "print-tree.h"
f186373f 28#include "backref.h"
e02119d5 29#include "compat.h"
b2950863 30#include "tree-log.h"
f186373f 31#include "hash.h"
e02119d5
CM
32
33/* magic values for the inode_only field in btrfs_log_inode:
34 *
35 * LOG_INODE_ALL means to log everything
36 * LOG_INODE_EXISTS means to log just enough to recreate the inode
37 * during log replay
38 */
39#define LOG_INODE_ALL 0
40#define LOG_INODE_EXISTS 1
41
12fcfd22
CM
42/*
43 * directory trouble cases
44 *
45 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
46 * log, we must force a full commit before doing an fsync of the directory
47 * where the unlink was done.
48 * ---> record transid of last unlink/rename per directory
49 *
50 * mkdir foo/some_dir
51 * normal commit
52 * rename foo/some_dir foo2/some_dir
53 * mkdir foo/some_dir
54 * fsync foo/some_dir/some_file
55 *
56 * The fsync above will unlink the original some_dir without recording
57 * it in its new location (foo2). After a crash, some_dir will be gone
58 * unless the fsync of some_file forces a full commit
59 *
60 * 2) we must log any new names for any file or dir that is in the fsync
61 * log. ---> check inode while renaming/linking.
62 *
63 * 2a) we must log any new names for any file or dir during rename
64 * when the directory they are being removed from was logged.
65 * ---> check inode and old parent dir during rename
66 *
67 * 2a is actually the more important variant. With the extra logging
68 * a crash might unlink the old name without recreating the new one
69 *
70 * 3) after a crash, we must go through any directories with a link count
71 * of zero and redo the rm -rf
72 *
73 * mkdir f1/foo
74 * normal commit
75 * rm -rf f1/foo
76 * fsync(f1)
77 *
78 * The directory f1 was fully removed from the FS, but fsync was never
79 * called on f1, only its parent dir. After a crash the rm -rf must
80 * be replayed. This must be able to recurse down the entire
81 * directory tree. The inode link count fixup code takes care of the
82 * ugly details.
83 */
84
e02119d5
CM
85/*
86 * stages for the tree walking. The first
87 * stage (0) is to only pin down the blocks we find
88 * the second stage (1) is to make sure that all the inodes
89 * we find in the log are created in the subvolume.
90 *
91 * The last stage is to deal with directories and links and extents
92 * and all the other fun semantics
93 */
94#define LOG_WALK_PIN_ONLY 0
95#define LOG_WALK_REPLAY_INODES 1
96#define LOG_WALK_REPLAY_ALL 2
97
12fcfd22 98static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
99 struct btrfs_root *root, struct inode *inode,
100 int inode_only);
ec051c0f
YZ
101static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 struct btrfs_root *root,
103 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
104static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 struct btrfs_root *root,
106 struct btrfs_root *log,
107 struct btrfs_path *path,
108 u64 dirid, int del_all);
e02119d5
CM
109
110/*
111 * tree logging is a special write ahead log used to make sure that
112 * fsyncs and O_SYNCs can happen without doing full tree commits.
113 *
114 * Full tree commits are expensive because they require commonly
115 * modified blocks to be recowed, creating many dirty pages in the
116 * extent tree an 4x-6x higher write load than ext3.
117 *
118 * Instead of doing a tree commit on every fsync, we use the
119 * key ranges and transaction ids to find items for a given file or directory
120 * that have changed in this transaction. Those items are copied into
121 * a special tree (one per subvolume root), that tree is written to disk
122 * and then the fsync is considered complete.
123 *
124 * After a crash, items are copied out of the log-tree back into the
125 * subvolume tree. Any file data extents found are recorded in the extent
126 * allocation tree, and the log-tree freed.
127 *
128 * The log tree is read three times, once to pin down all the extents it is
129 * using in ram and once, once to create all the inodes logged in the tree
130 * and once to do all the other items.
131 */
132
e02119d5
CM
133/*
134 * start a sub transaction and setup the log tree
135 * this increments the log tree writer count to make the people
136 * syncing the tree wait for us to finish
137 */
138static int start_log_trans(struct btrfs_trans_handle *trans,
139 struct btrfs_root *root)
140{
141 int ret;
4a500fd1 142 int err = 0;
7237f183
YZ
143
144 mutex_lock(&root->log_mutex);
145 if (root->log_root) {
ff782e0a
JB
146 if (!root->log_start_pid) {
147 root->log_start_pid = current->pid;
148 root->log_multiple_pids = false;
149 } else if (root->log_start_pid != current->pid) {
150 root->log_multiple_pids = true;
151 }
152
2ecb7923 153 atomic_inc(&root->log_batch);
7237f183
YZ
154 atomic_inc(&root->log_writers);
155 mutex_unlock(&root->log_mutex);
156 return 0;
157 }
ff782e0a
JB
158 root->log_multiple_pids = false;
159 root->log_start_pid = current->pid;
e02119d5
CM
160 mutex_lock(&root->fs_info->tree_log_mutex);
161 if (!root->fs_info->log_root_tree) {
162 ret = btrfs_init_log_root_tree(trans, root->fs_info);
4a500fd1
YZ
163 if (ret)
164 err = ret;
e02119d5 165 }
4a500fd1 166 if (err == 0 && !root->log_root) {
e02119d5 167 ret = btrfs_add_log_tree(trans, root);
4a500fd1
YZ
168 if (ret)
169 err = ret;
e02119d5 170 }
e02119d5 171 mutex_unlock(&root->fs_info->tree_log_mutex);
2ecb7923 172 atomic_inc(&root->log_batch);
7237f183
YZ
173 atomic_inc(&root->log_writers);
174 mutex_unlock(&root->log_mutex);
4a500fd1 175 return err;
e02119d5
CM
176}
177
178/*
179 * returns 0 if there was a log transaction running and we were able
180 * to join, or returns -ENOENT if there were not transactions
181 * in progress
182 */
183static int join_running_log_trans(struct btrfs_root *root)
184{
185 int ret = -ENOENT;
186
187 smp_mb();
188 if (!root->log_root)
189 return -ENOENT;
190
7237f183 191 mutex_lock(&root->log_mutex);
e02119d5
CM
192 if (root->log_root) {
193 ret = 0;
7237f183 194 atomic_inc(&root->log_writers);
e02119d5 195 }
7237f183 196 mutex_unlock(&root->log_mutex);
e02119d5
CM
197 return ret;
198}
199
12fcfd22
CM
200/*
201 * This either makes the current running log transaction wait
202 * until you call btrfs_end_log_trans() or it makes any future
203 * log transactions wait until you call btrfs_end_log_trans()
204 */
205int btrfs_pin_log_trans(struct btrfs_root *root)
206{
207 int ret = -ENOENT;
208
209 mutex_lock(&root->log_mutex);
210 atomic_inc(&root->log_writers);
211 mutex_unlock(&root->log_mutex);
212 return ret;
213}
214
e02119d5
CM
215/*
216 * indicate we're done making changes to the log tree
217 * and wake up anyone waiting to do a sync
218 */
143bede5 219void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 220{
7237f183
YZ
221 if (atomic_dec_and_test(&root->log_writers)) {
222 smp_mb();
223 if (waitqueue_active(&root->log_writer_wait))
224 wake_up(&root->log_writer_wait);
225 }
e02119d5
CM
226}
227
228
229/*
230 * the walk control struct is used to pass state down the chain when
231 * processing the log tree. The stage field tells us which part
232 * of the log tree processing we are currently doing. The others
233 * are state fields used for that specific part
234 */
235struct walk_control {
236 /* should we free the extent on disk when done? This is used
237 * at transaction commit time while freeing a log tree
238 */
239 int free;
240
241 /* should we write out the extent buffer? This is used
242 * while flushing the log tree to disk during a sync
243 */
244 int write;
245
246 /* should we wait for the extent buffer io to finish? Also used
247 * while flushing the log tree to disk for a sync
248 */
249 int wait;
250
251 /* pin only walk, we record which extents on disk belong to the
252 * log trees
253 */
254 int pin;
255
256 /* what stage of the replay code we're currently in */
257 int stage;
258
259 /* the root we are currently replaying */
260 struct btrfs_root *replay_dest;
261
262 /* the trans handle for the current replay */
263 struct btrfs_trans_handle *trans;
264
265 /* the function that gets used to process blocks we find in the
266 * tree. Note the extent_buffer might not be up to date when it is
267 * passed in, and it must be checked or read if you need the data
268 * inside it
269 */
270 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
271 struct walk_control *wc, u64 gen);
272};
273
274/*
275 * process_func used to pin down extents, write them or wait on them
276 */
277static int process_one_buffer(struct btrfs_root *log,
278 struct extent_buffer *eb,
279 struct walk_control *wc, u64 gen)
280{
b50c6e25
JB
281 int ret = 0;
282
8c2a1a30
JB
283 /*
284 * If this fs is mixed then we need to be able to process the leaves to
285 * pin down any logged extents, so we have to read the block.
286 */
287 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
288 ret = btrfs_read_buffer(eb, gen);
289 if (ret)
290 return ret;
291 }
292
04018de5 293 if (wc->pin)
b50c6e25
JB
294 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
295 eb->start, eb->len);
e02119d5 296
b50c6e25 297 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30
JB
298 if (wc->pin && btrfs_header_level(eb) == 0)
299 ret = btrfs_exclude_logged_extents(log, eb);
e02119d5
CM
300 if (wc->write)
301 btrfs_write_tree_block(eb);
302 if (wc->wait)
303 btrfs_wait_tree_block_writeback(eb);
304 }
b50c6e25 305 return ret;
e02119d5
CM
306}
307
308/*
309 * Item overwrite used by replay and tree logging. eb, slot and key all refer
310 * to the src data we are copying out.
311 *
312 * root is the tree we are copying into, and path is a scratch
313 * path for use in this function (it should be released on entry and
314 * will be released on exit).
315 *
316 * If the key is already in the destination tree the existing item is
317 * overwritten. If the existing item isn't big enough, it is extended.
318 * If it is too large, it is truncated.
319 *
320 * If the key isn't in the destination yet, a new item is inserted.
321 */
322static noinline int overwrite_item(struct btrfs_trans_handle *trans,
323 struct btrfs_root *root,
324 struct btrfs_path *path,
325 struct extent_buffer *eb, int slot,
326 struct btrfs_key *key)
327{
328 int ret;
329 u32 item_size;
330 u64 saved_i_size = 0;
331 int save_old_i_size = 0;
332 unsigned long src_ptr;
333 unsigned long dst_ptr;
334 int overwrite_root = 0;
4bc4bee4 335 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
336
337 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
338 overwrite_root = 1;
339
340 item_size = btrfs_item_size_nr(eb, slot);
341 src_ptr = btrfs_item_ptr_offset(eb, slot);
342
343 /* look for the key in the destination tree */
344 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
345 if (ret < 0)
346 return ret;
347
e02119d5
CM
348 if (ret == 0) {
349 char *src_copy;
350 char *dst_copy;
351 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
352 path->slots[0]);
353 if (dst_size != item_size)
354 goto insert;
355
356 if (item_size == 0) {
b3b4aa74 357 btrfs_release_path(path);
e02119d5
CM
358 return 0;
359 }
360 dst_copy = kmalloc(item_size, GFP_NOFS);
361 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 362 if (!dst_copy || !src_copy) {
b3b4aa74 363 btrfs_release_path(path);
2a29edc6 364 kfree(dst_copy);
365 kfree(src_copy);
366 return -ENOMEM;
367 }
e02119d5
CM
368
369 read_extent_buffer(eb, src_copy, src_ptr, item_size);
370
371 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
372 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
373 item_size);
374 ret = memcmp(dst_copy, src_copy, item_size);
375
376 kfree(dst_copy);
377 kfree(src_copy);
378 /*
379 * they have the same contents, just return, this saves
380 * us from cowing blocks in the destination tree and doing
381 * extra writes that may not have been done by a previous
382 * sync
383 */
384 if (ret == 0) {
b3b4aa74 385 btrfs_release_path(path);
e02119d5
CM
386 return 0;
387 }
388
4bc4bee4
JB
389 /*
390 * We need to load the old nbytes into the inode so when we
391 * replay the extents we've logged we get the right nbytes.
392 */
393 if (inode_item) {
394 struct btrfs_inode_item *item;
395 u64 nbytes;
396
397 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
398 struct btrfs_inode_item);
399 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
400 item = btrfs_item_ptr(eb, slot,
401 struct btrfs_inode_item);
402 btrfs_set_inode_nbytes(eb, item, nbytes);
403 }
404 } else if (inode_item) {
405 struct btrfs_inode_item *item;
406
407 /*
408 * New inode, set nbytes to 0 so that the nbytes comes out
409 * properly when we replay the extents.
410 */
411 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
412 btrfs_set_inode_nbytes(eb, item, 0);
e02119d5
CM
413 }
414insert:
b3b4aa74 415 btrfs_release_path(path);
e02119d5
CM
416 /* try to insert the key into the destination tree */
417 ret = btrfs_insert_empty_item(trans, root, path,
418 key, item_size);
419
420 /* make sure any existing item is the correct size */
421 if (ret == -EEXIST) {
422 u32 found_size;
423 found_size = btrfs_item_size_nr(path->nodes[0],
424 path->slots[0]);
143bede5 425 if (found_size > item_size)
afe5fea7 426 btrfs_truncate_item(root, path, item_size, 1);
143bede5 427 else if (found_size < item_size)
4b90c680 428 btrfs_extend_item(root, path,
143bede5 429 item_size - found_size);
e02119d5 430 } else if (ret) {
4a500fd1 431 return ret;
e02119d5
CM
432 }
433 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
434 path->slots[0]);
435
436 /* don't overwrite an existing inode if the generation number
437 * was logged as zero. This is done when the tree logging code
438 * is just logging an inode to make sure it exists after recovery.
439 *
440 * Also, don't overwrite i_size on directories during replay.
441 * log replay inserts and removes directory items based on the
442 * state of the tree found in the subvolume, and i_size is modified
443 * as it goes
444 */
445 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
446 struct btrfs_inode_item *src_item;
447 struct btrfs_inode_item *dst_item;
448
449 src_item = (struct btrfs_inode_item *)src_ptr;
450 dst_item = (struct btrfs_inode_item *)dst_ptr;
451
452 if (btrfs_inode_generation(eb, src_item) == 0)
453 goto no_copy;
454
455 if (overwrite_root &&
456 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
457 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
458 save_old_i_size = 1;
459 saved_i_size = btrfs_inode_size(path->nodes[0],
460 dst_item);
461 }
462 }
463
464 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
465 src_ptr, item_size);
466
467 if (save_old_i_size) {
468 struct btrfs_inode_item *dst_item;
469 dst_item = (struct btrfs_inode_item *)dst_ptr;
470 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
471 }
472
473 /* make sure the generation is filled in */
474 if (key->type == BTRFS_INODE_ITEM_KEY) {
475 struct btrfs_inode_item *dst_item;
476 dst_item = (struct btrfs_inode_item *)dst_ptr;
477 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
478 btrfs_set_inode_generation(path->nodes[0], dst_item,
479 trans->transid);
480 }
481 }
482no_copy:
483 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 484 btrfs_release_path(path);
e02119d5
CM
485 return 0;
486}
487
488/*
489 * simple helper to read an inode off the disk from a given root
490 * This can only be called for subvolume roots and not for the log
491 */
492static noinline struct inode *read_one_inode(struct btrfs_root *root,
493 u64 objectid)
494{
5d4f98a2 495 struct btrfs_key key;
e02119d5 496 struct inode *inode;
e02119d5 497
5d4f98a2
YZ
498 key.objectid = objectid;
499 key.type = BTRFS_INODE_ITEM_KEY;
500 key.offset = 0;
73f73415 501 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
502 if (IS_ERR(inode)) {
503 inode = NULL;
504 } else if (is_bad_inode(inode)) {
e02119d5
CM
505 iput(inode);
506 inode = NULL;
507 }
508 return inode;
509}
510
511/* replays a single extent in 'eb' at 'slot' with 'key' into the
512 * subvolume 'root'. path is released on entry and should be released
513 * on exit.
514 *
515 * extents in the log tree have not been allocated out of the extent
516 * tree yet. So, this completes the allocation, taking a reference
517 * as required if the extent already exists or creating a new extent
518 * if it isn't in the extent allocation tree yet.
519 *
520 * The extent is inserted into the file, dropping any existing extents
521 * from the file that overlap the new one.
522 */
523static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
524 struct btrfs_root *root,
525 struct btrfs_path *path,
526 struct extent_buffer *eb, int slot,
527 struct btrfs_key *key)
528{
529 int found_type;
e02119d5 530 u64 extent_end;
e02119d5 531 u64 start = key->offset;
4bc4bee4 532 u64 nbytes = 0;
e02119d5
CM
533 struct btrfs_file_extent_item *item;
534 struct inode *inode = NULL;
535 unsigned long size;
536 int ret = 0;
537
538 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
539 found_type = btrfs_file_extent_type(eb, item);
540
d899e052 541 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
542 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
543 nbytes = btrfs_file_extent_num_bytes(eb, item);
544 extent_end = start + nbytes;
545
546 /*
547 * We don't add to the inodes nbytes if we are prealloc or a
548 * hole.
549 */
550 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
551 nbytes = 0;
552 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818 553 size = btrfs_file_extent_inline_len(eb, item);
4bc4bee4 554 nbytes = btrfs_file_extent_ram_bytes(eb, item);
fda2832f 555 extent_end = ALIGN(start + size, root->sectorsize);
e02119d5
CM
556 } else {
557 ret = 0;
558 goto out;
559 }
560
561 inode = read_one_inode(root, key->objectid);
562 if (!inode) {
563 ret = -EIO;
564 goto out;
565 }
566
567 /*
568 * first check to see if we already have this extent in the
569 * file. This must be done before the btrfs_drop_extents run
570 * so we don't try to drop this extent.
571 */
33345d01 572 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
e02119d5
CM
573 start, 0);
574
d899e052
YZ
575 if (ret == 0 &&
576 (found_type == BTRFS_FILE_EXTENT_REG ||
577 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
578 struct btrfs_file_extent_item cmp1;
579 struct btrfs_file_extent_item cmp2;
580 struct btrfs_file_extent_item *existing;
581 struct extent_buffer *leaf;
582
583 leaf = path->nodes[0];
584 existing = btrfs_item_ptr(leaf, path->slots[0],
585 struct btrfs_file_extent_item);
586
587 read_extent_buffer(eb, &cmp1, (unsigned long)item,
588 sizeof(cmp1));
589 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
590 sizeof(cmp2));
591
592 /*
593 * we already have a pointer to this exact extent,
594 * we don't have to do anything
595 */
596 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 597 btrfs_release_path(path);
e02119d5
CM
598 goto out;
599 }
600 }
b3b4aa74 601 btrfs_release_path(path);
e02119d5
CM
602
603 /* drop any overlapping extents */
2671485d 604 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
605 if (ret)
606 goto out;
e02119d5 607
07d400a6
YZ
608 if (found_type == BTRFS_FILE_EXTENT_REG ||
609 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 610 u64 offset;
07d400a6
YZ
611 unsigned long dest_offset;
612 struct btrfs_key ins;
613
614 ret = btrfs_insert_empty_item(trans, root, path, key,
615 sizeof(*item));
3650860b
JB
616 if (ret)
617 goto out;
07d400a6
YZ
618 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
619 path->slots[0]);
620 copy_extent_buffer(path->nodes[0], eb, dest_offset,
621 (unsigned long)item, sizeof(*item));
622
623 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
624 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
625 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 626 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6
YZ
627
628 if (ins.objectid > 0) {
629 u64 csum_start;
630 u64 csum_end;
631 LIST_HEAD(ordered_sums);
632 /*
633 * is this extent already allocated in the extent
634 * allocation tree? If so, just add a reference
635 */
636 ret = btrfs_lookup_extent(root, ins.objectid,
637 ins.offset);
638 if (ret == 0) {
639 ret = btrfs_inc_extent_ref(trans, root,
640 ins.objectid, ins.offset,
5d4f98a2 641 0, root->root_key.objectid,
66d7e7f0 642 key->objectid, offset, 0);
b50c6e25
JB
643 if (ret)
644 goto out;
07d400a6
YZ
645 } else {
646 /*
647 * insert the extent pointer in the extent
648 * allocation tree
649 */
5d4f98a2
YZ
650 ret = btrfs_alloc_logged_file_extent(trans,
651 root, root->root_key.objectid,
652 key->objectid, offset, &ins);
b50c6e25
JB
653 if (ret)
654 goto out;
07d400a6 655 }
b3b4aa74 656 btrfs_release_path(path);
07d400a6
YZ
657
658 if (btrfs_file_extent_compression(eb, item)) {
659 csum_start = ins.objectid;
660 csum_end = csum_start + ins.offset;
661 } else {
662 csum_start = ins.objectid +
663 btrfs_file_extent_offset(eb, item);
664 csum_end = csum_start +
665 btrfs_file_extent_num_bytes(eb, item);
666 }
667
668 ret = btrfs_lookup_csums_range(root->log_root,
669 csum_start, csum_end - 1,
a2de733c 670 &ordered_sums, 0);
3650860b
JB
671 if (ret)
672 goto out;
07d400a6
YZ
673 while (!list_empty(&ordered_sums)) {
674 struct btrfs_ordered_sum *sums;
675 sums = list_entry(ordered_sums.next,
676 struct btrfs_ordered_sum,
677 list);
3650860b
JB
678 if (!ret)
679 ret = btrfs_csum_file_blocks(trans,
07d400a6
YZ
680 root->fs_info->csum_root,
681 sums);
07d400a6
YZ
682 list_del(&sums->list);
683 kfree(sums);
684 }
3650860b
JB
685 if (ret)
686 goto out;
07d400a6 687 } else {
b3b4aa74 688 btrfs_release_path(path);
07d400a6
YZ
689 }
690 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
691 /* inline extents are easy, we just overwrite them */
692 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
693 if (ret)
694 goto out;
07d400a6 695 }
e02119d5 696
4bc4bee4 697 inode_add_bytes(inode, nbytes);
b9959295 698 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
699out:
700 if (inode)
701 iput(inode);
702 return ret;
703}
704
705/*
706 * when cleaning up conflicts between the directory names in the
707 * subvolume, directory names in the log and directory names in the
708 * inode back references, we may have to unlink inodes from directories.
709 *
710 * This is a helper function to do the unlink of a specific directory
711 * item
712 */
713static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
714 struct btrfs_root *root,
715 struct btrfs_path *path,
716 struct inode *dir,
717 struct btrfs_dir_item *di)
718{
719 struct inode *inode;
720 char *name;
721 int name_len;
722 struct extent_buffer *leaf;
723 struct btrfs_key location;
724 int ret;
725
726 leaf = path->nodes[0];
727
728 btrfs_dir_item_key_to_cpu(leaf, di, &location);
729 name_len = btrfs_dir_name_len(leaf, di);
730 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 731 if (!name)
732 return -ENOMEM;
733
e02119d5 734 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 735 btrfs_release_path(path);
e02119d5
CM
736
737 inode = read_one_inode(root, location.objectid);
c00e9493 738 if (!inode) {
3650860b
JB
739 ret = -EIO;
740 goto out;
c00e9493 741 }
e02119d5 742
ec051c0f 743 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
744 if (ret)
745 goto out;
12fcfd22 746
e02119d5 747 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3650860b
JB
748 if (ret)
749 goto out;
750 btrfs_run_delayed_items(trans, root);
751out:
e02119d5 752 kfree(name);
e02119d5
CM
753 iput(inode);
754 return ret;
755}
756
757/*
758 * helper function to see if a given name and sequence number found
759 * in an inode back reference are already in a directory and correctly
760 * point to this inode
761 */
762static noinline int inode_in_dir(struct btrfs_root *root,
763 struct btrfs_path *path,
764 u64 dirid, u64 objectid, u64 index,
765 const char *name, int name_len)
766{
767 struct btrfs_dir_item *di;
768 struct btrfs_key location;
769 int match = 0;
770
771 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
772 index, name, name_len, 0);
773 if (di && !IS_ERR(di)) {
774 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
775 if (location.objectid != objectid)
776 goto out;
777 } else
778 goto out;
b3b4aa74 779 btrfs_release_path(path);
e02119d5
CM
780
781 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
782 if (di && !IS_ERR(di)) {
783 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
784 if (location.objectid != objectid)
785 goto out;
786 } else
787 goto out;
788 match = 1;
789out:
b3b4aa74 790 btrfs_release_path(path);
e02119d5
CM
791 return match;
792}
793
794/*
795 * helper function to check a log tree for a named back reference in
796 * an inode. This is used to decide if a back reference that is
797 * found in the subvolume conflicts with what we find in the log.
798 *
799 * inode backreferences may have multiple refs in a single item,
800 * during replay we process one reference at a time, and we don't
801 * want to delete valid links to a file from the subvolume if that
802 * link is also in the log.
803 */
804static noinline int backref_in_log(struct btrfs_root *log,
805 struct btrfs_key *key,
f186373f 806 u64 ref_objectid,
e02119d5
CM
807 char *name, int namelen)
808{
809 struct btrfs_path *path;
810 struct btrfs_inode_ref *ref;
811 unsigned long ptr;
812 unsigned long ptr_end;
813 unsigned long name_ptr;
814 int found_name_len;
815 int item_size;
816 int ret;
817 int match = 0;
818
819 path = btrfs_alloc_path();
2a29edc6 820 if (!path)
821 return -ENOMEM;
822
e02119d5
CM
823 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
824 if (ret != 0)
825 goto out;
826
e02119d5 827 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
828
829 if (key->type == BTRFS_INODE_EXTREF_KEY) {
830 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
831 name, namelen, NULL))
832 match = 1;
833
834 goto out;
835 }
836
837 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
838 ptr_end = ptr + item_size;
839 while (ptr < ptr_end) {
840 ref = (struct btrfs_inode_ref *)ptr;
841 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
842 if (found_name_len == namelen) {
843 name_ptr = (unsigned long)(ref + 1);
844 ret = memcmp_extent_buffer(path->nodes[0], name,
845 name_ptr, namelen);
846 if (ret == 0) {
847 match = 1;
848 goto out;
849 }
850 }
851 ptr = (unsigned long)(ref + 1) + found_name_len;
852 }
853out:
854 btrfs_free_path(path);
855 return match;
856}
857
5a1d7843 858static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 859 struct btrfs_root *root,
e02119d5 860 struct btrfs_path *path,
5a1d7843
JS
861 struct btrfs_root *log_root,
862 struct inode *dir, struct inode *inode,
5a1d7843 863 struct extent_buffer *eb,
f186373f
MF
864 u64 inode_objectid, u64 parent_objectid,
865 u64 ref_index, char *name, int namelen,
866 int *search_done)
e02119d5 867{
34f3e4f2 868 int ret;
f186373f
MF
869 char *victim_name;
870 int victim_name_len;
871 struct extent_buffer *leaf;
5a1d7843 872 struct btrfs_dir_item *di;
f186373f
MF
873 struct btrfs_key search_key;
874 struct btrfs_inode_extref *extref;
c622ae60 875
f186373f
MF
876again:
877 /* Search old style refs */
878 search_key.objectid = inode_objectid;
879 search_key.type = BTRFS_INODE_REF_KEY;
880 search_key.offset = parent_objectid;
881 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 882 if (ret == 0) {
e02119d5
CM
883 struct btrfs_inode_ref *victim_ref;
884 unsigned long ptr;
885 unsigned long ptr_end;
f186373f
MF
886
887 leaf = path->nodes[0];
e02119d5
CM
888
889 /* are we trying to overwrite a back ref for the root directory
890 * if so, just jump out, we're done
891 */
f186373f 892 if (search_key.objectid == search_key.offset)
5a1d7843 893 return 1;
e02119d5
CM
894
895 /* check all the names in this back reference to see
896 * if they are in the log. if so, we allow them to stay
897 * otherwise they must be unlinked as a conflict
898 */
899 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
900 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 901 while (ptr < ptr_end) {
e02119d5
CM
902 victim_ref = (struct btrfs_inode_ref *)ptr;
903 victim_name_len = btrfs_inode_ref_name_len(leaf,
904 victim_ref);
905 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
906 if (!victim_name)
907 return -ENOMEM;
e02119d5
CM
908
909 read_extent_buffer(leaf, victim_name,
910 (unsigned long)(victim_ref + 1),
911 victim_name_len);
912
f186373f
MF
913 if (!backref_in_log(log_root, &search_key,
914 parent_objectid,
915 victim_name,
e02119d5
CM
916 victim_name_len)) {
917 btrfs_inc_nlink(inode);
b3b4aa74 918 btrfs_release_path(path);
12fcfd22 919
e02119d5
CM
920 ret = btrfs_unlink_inode(trans, root, dir,
921 inode, victim_name,
922 victim_name_len);
f186373f 923 kfree(victim_name);
3650860b
JB
924 if (ret)
925 return ret;
926 btrfs_run_delayed_items(trans, root);
f186373f
MF
927 *search_done = 1;
928 goto again;
e02119d5
CM
929 }
930 kfree(victim_name);
f186373f 931
e02119d5
CM
932 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
933 }
e02119d5 934
c622ae60 935 /*
936 * NOTE: we have searched root tree and checked the
937 * coresponding ref, it does not need to check again.
938 */
5a1d7843 939 *search_done = 1;
e02119d5 940 }
b3b4aa74 941 btrfs_release_path(path);
e02119d5 942
f186373f
MF
943 /* Same search but for extended refs */
944 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
945 inode_objectid, parent_objectid, 0,
946 0);
947 if (!IS_ERR_OR_NULL(extref)) {
948 u32 item_size;
949 u32 cur_offset = 0;
950 unsigned long base;
951 struct inode *victim_parent;
952
953 leaf = path->nodes[0];
954
955 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
956 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
957
958 while (cur_offset < item_size) {
959 extref = (struct btrfs_inode_extref *)base + cur_offset;
960
961 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
962
963 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
964 goto next;
965
966 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
967 if (!victim_name)
968 return -ENOMEM;
f186373f
MF
969 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
970 victim_name_len);
971
972 search_key.objectid = inode_objectid;
973 search_key.type = BTRFS_INODE_EXTREF_KEY;
974 search_key.offset = btrfs_extref_hash(parent_objectid,
975 victim_name,
976 victim_name_len);
977 ret = 0;
978 if (!backref_in_log(log_root, &search_key,
979 parent_objectid, victim_name,
980 victim_name_len)) {
981 ret = -ENOENT;
982 victim_parent = read_one_inode(root,
983 parent_objectid);
984 if (victim_parent) {
985 btrfs_inc_nlink(inode);
986 btrfs_release_path(path);
987
988 ret = btrfs_unlink_inode(trans, root,
989 victim_parent,
990 inode,
991 victim_name,
992 victim_name_len);
993 btrfs_run_delayed_items(trans, root);
994 }
f186373f
MF
995 iput(victim_parent);
996 kfree(victim_name);
3650860b
JB
997 if (ret)
998 return ret;
f186373f
MF
999 *search_done = 1;
1000 goto again;
1001 }
1002 kfree(victim_name);
3650860b
JB
1003 if (ret)
1004 return ret;
f186373f
MF
1005next:
1006 cur_offset += victim_name_len + sizeof(*extref);
1007 }
1008 *search_done = 1;
1009 }
1010 btrfs_release_path(path);
1011
34f3e4f2 1012 /* look for a conflicting sequence number */
1013 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1014 ref_index, name, namelen, 0);
34f3e4f2 1015 if (di && !IS_ERR(di)) {
1016 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1017 if (ret)
1018 return ret;
34f3e4f2 1019 }
1020 btrfs_release_path(path);
1021
1022 /* look for a conflicing name */
1023 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1024 name, namelen, 0);
1025 if (di && !IS_ERR(di)) {
1026 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1027 if (ret)
1028 return ret;
34f3e4f2 1029 }
1030 btrfs_release_path(path);
1031
5a1d7843
JS
1032 return 0;
1033}
e02119d5 1034
f186373f
MF
1035static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1036 u32 *namelen, char **name, u64 *index,
1037 u64 *parent_objectid)
1038{
1039 struct btrfs_inode_extref *extref;
1040
1041 extref = (struct btrfs_inode_extref *)ref_ptr;
1042
1043 *namelen = btrfs_inode_extref_name_len(eb, extref);
1044 *name = kmalloc(*namelen, GFP_NOFS);
1045 if (*name == NULL)
1046 return -ENOMEM;
1047
1048 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1049 *namelen);
1050
1051 *index = btrfs_inode_extref_index(eb, extref);
1052 if (parent_objectid)
1053 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1054
1055 return 0;
1056}
1057
1058static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1059 u32 *namelen, char **name, u64 *index)
1060{
1061 struct btrfs_inode_ref *ref;
1062
1063 ref = (struct btrfs_inode_ref *)ref_ptr;
1064
1065 *namelen = btrfs_inode_ref_name_len(eb, ref);
1066 *name = kmalloc(*namelen, GFP_NOFS);
1067 if (*name == NULL)
1068 return -ENOMEM;
1069
1070 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1071
1072 *index = btrfs_inode_ref_index(eb, ref);
1073
1074 return 0;
1075}
1076
5a1d7843
JS
1077/*
1078 * replay one inode back reference item found in the log tree.
1079 * eb, slot and key refer to the buffer and key found in the log tree.
1080 * root is the destination we are replaying into, and path is for temp
1081 * use by this function. (it should be released on return).
1082 */
1083static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1084 struct btrfs_root *root,
1085 struct btrfs_root *log,
1086 struct btrfs_path *path,
1087 struct extent_buffer *eb, int slot,
1088 struct btrfs_key *key)
1089{
5a1d7843
JS
1090 struct inode *dir;
1091 struct inode *inode;
1092 unsigned long ref_ptr;
1093 unsigned long ref_end;
1094 char *name;
1095 int namelen;
1096 int ret;
1097 int search_done = 0;
f186373f
MF
1098 int log_ref_ver = 0;
1099 u64 parent_objectid;
1100 u64 inode_objectid;
f46dbe3d 1101 u64 ref_index = 0;
f186373f
MF
1102 int ref_struct_size;
1103
1104 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1105 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1106
1107 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1108 struct btrfs_inode_extref *r;
1109
1110 ref_struct_size = sizeof(struct btrfs_inode_extref);
1111 log_ref_ver = 1;
1112 r = (struct btrfs_inode_extref *)ref_ptr;
1113 parent_objectid = btrfs_inode_extref_parent(eb, r);
1114 } else {
1115 ref_struct_size = sizeof(struct btrfs_inode_ref);
1116 parent_objectid = key->offset;
1117 }
1118 inode_objectid = key->objectid;
e02119d5 1119
5a1d7843
JS
1120 /*
1121 * it is possible that we didn't log all the parent directories
1122 * for a given inode. If we don't find the dir, just don't
1123 * copy the back ref in. The link count fixup code will take
1124 * care of the rest
1125 */
f186373f 1126 dir = read_one_inode(root, parent_objectid);
5a1d7843
JS
1127 if (!dir)
1128 return -ENOENT;
1129
f186373f 1130 inode = read_one_inode(root, inode_objectid);
5a1d7843
JS
1131 if (!inode) {
1132 iput(dir);
1133 return -EIO;
1134 }
1135
5a1d7843 1136 while (ref_ptr < ref_end) {
f186373f
MF
1137 if (log_ref_ver) {
1138 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1139 &ref_index, &parent_objectid);
1140 /*
1141 * parent object can change from one array
1142 * item to another.
1143 */
1144 if (!dir)
1145 dir = read_one_inode(root, parent_objectid);
1146 if (!dir)
1147 return -ENOENT;
1148 } else {
1149 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1150 &ref_index);
1151 }
1152 if (ret)
1153 return ret;
5a1d7843
JS
1154
1155 /* if we already have a perfect match, we're done */
1156 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
f186373f 1157 ref_index, name, namelen)) {
5a1d7843
JS
1158 /*
1159 * look for a conflicting back reference in the
1160 * metadata. if we find one we have to unlink that name
1161 * of the file before we add our new link. Later on, we
1162 * overwrite any existing back reference, and we don't
1163 * want to create dangling pointers in the directory.
1164 */
1165
1166 if (!search_done) {
1167 ret = __add_inode_ref(trans, root, path, log,
f186373f
MF
1168 dir, inode, eb,
1169 inode_objectid,
1170 parent_objectid,
1171 ref_index, name, namelen,
5a1d7843 1172 &search_done);
3650860b
JB
1173 if (ret == 1) {
1174 ret = 0;
1175 goto out;
1176 }
1177 if (ret)
5a1d7843 1178 goto out;
5a1d7843
JS
1179 }
1180
1181 /* insert our name */
1182 ret = btrfs_add_link(trans, dir, inode, name, namelen,
f186373f 1183 0, ref_index);
3650860b
JB
1184 if (ret)
1185 goto out;
5a1d7843
JS
1186
1187 btrfs_update_inode(trans, root, inode);
1188 }
1189
f186373f 1190 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1191 kfree(name);
f186373f
MF
1192 if (log_ref_ver) {
1193 iput(dir);
1194 dir = NULL;
1195 }
5a1d7843 1196 }
e02119d5
CM
1197
1198 /* finally write the back reference in the inode */
1199 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1200out:
b3b4aa74 1201 btrfs_release_path(path);
e02119d5
CM
1202 iput(dir);
1203 iput(inode);
3650860b 1204 return ret;
e02119d5
CM
1205}
1206
c71bf099
YZ
1207static int insert_orphan_item(struct btrfs_trans_handle *trans,
1208 struct btrfs_root *root, u64 offset)
1209{
1210 int ret;
1211 ret = btrfs_find_orphan_item(root, offset);
1212 if (ret > 0)
1213 ret = btrfs_insert_orphan_item(trans, root, offset);
1214 return ret;
1215}
1216
f186373f
MF
1217static int count_inode_extrefs(struct btrfs_root *root,
1218 struct inode *inode, struct btrfs_path *path)
1219{
1220 int ret = 0;
1221 int name_len;
1222 unsigned int nlink = 0;
1223 u32 item_size;
1224 u32 cur_offset = 0;
1225 u64 inode_objectid = btrfs_ino(inode);
1226 u64 offset = 0;
1227 unsigned long ptr;
1228 struct btrfs_inode_extref *extref;
1229 struct extent_buffer *leaf;
1230
1231 while (1) {
1232 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1233 &extref, &offset);
1234 if (ret)
1235 break;
c71bf099 1236
f186373f
MF
1237 leaf = path->nodes[0];
1238 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1239 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1240
1241 while (cur_offset < item_size) {
1242 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1243 name_len = btrfs_inode_extref_name_len(leaf, extref);
1244
1245 nlink++;
1246
1247 cur_offset += name_len + sizeof(*extref);
1248 }
1249
1250 offset++;
1251 btrfs_release_path(path);
1252 }
1253 btrfs_release_path(path);
1254
1255 if (ret < 0)
1256 return ret;
1257 return nlink;
1258}
1259
1260static int count_inode_refs(struct btrfs_root *root,
1261 struct inode *inode, struct btrfs_path *path)
e02119d5 1262{
e02119d5
CM
1263 int ret;
1264 struct btrfs_key key;
f186373f 1265 unsigned int nlink = 0;
e02119d5
CM
1266 unsigned long ptr;
1267 unsigned long ptr_end;
1268 int name_len;
33345d01 1269 u64 ino = btrfs_ino(inode);
e02119d5 1270
33345d01 1271 key.objectid = ino;
e02119d5
CM
1272 key.type = BTRFS_INODE_REF_KEY;
1273 key.offset = (u64)-1;
1274
d397712b 1275 while (1) {
e02119d5
CM
1276 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1277 if (ret < 0)
1278 break;
1279 if (ret > 0) {
1280 if (path->slots[0] == 0)
1281 break;
1282 path->slots[0]--;
1283 }
1284 btrfs_item_key_to_cpu(path->nodes[0], &key,
1285 path->slots[0]);
33345d01 1286 if (key.objectid != ino ||
e02119d5
CM
1287 key.type != BTRFS_INODE_REF_KEY)
1288 break;
1289 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1290 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1291 path->slots[0]);
d397712b 1292 while (ptr < ptr_end) {
e02119d5
CM
1293 struct btrfs_inode_ref *ref;
1294
1295 ref = (struct btrfs_inode_ref *)ptr;
1296 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1297 ref);
1298 ptr = (unsigned long)(ref + 1) + name_len;
1299 nlink++;
1300 }
1301
1302 if (key.offset == 0)
1303 break;
1304 key.offset--;
b3b4aa74 1305 btrfs_release_path(path);
e02119d5 1306 }
b3b4aa74 1307 btrfs_release_path(path);
f186373f
MF
1308
1309 return nlink;
1310}
1311
1312/*
1313 * There are a few corners where the link count of the file can't
1314 * be properly maintained during replay. So, instead of adding
1315 * lots of complexity to the log code, we just scan the backrefs
1316 * for any file that has been through replay.
1317 *
1318 * The scan will update the link count on the inode to reflect the
1319 * number of back refs found. If it goes down to zero, the iput
1320 * will free the inode.
1321 */
1322static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1323 struct btrfs_root *root,
1324 struct inode *inode)
1325{
1326 struct btrfs_path *path;
1327 int ret;
1328 u64 nlink = 0;
1329 u64 ino = btrfs_ino(inode);
1330
1331 path = btrfs_alloc_path();
1332 if (!path)
1333 return -ENOMEM;
1334
1335 ret = count_inode_refs(root, inode, path);
1336 if (ret < 0)
1337 goto out;
1338
1339 nlink = ret;
1340
1341 ret = count_inode_extrefs(root, inode, path);
1342 if (ret == -ENOENT)
1343 ret = 0;
1344
1345 if (ret < 0)
1346 goto out;
1347
1348 nlink += ret;
1349
1350 ret = 0;
1351
e02119d5 1352 if (nlink != inode->i_nlink) {
bfe86848 1353 set_nlink(inode, nlink);
e02119d5
CM
1354 btrfs_update_inode(trans, root, inode);
1355 }
8d5bf1cb 1356 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1357
c71bf099
YZ
1358 if (inode->i_nlink == 0) {
1359 if (S_ISDIR(inode->i_mode)) {
1360 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1361 ino, 1);
3650860b
JB
1362 if (ret)
1363 goto out;
c71bf099 1364 }
33345d01 1365 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1366 }
12fcfd22 1367
f186373f
MF
1368out:
1369 btrfs_free_path(path);
1370 return ret;
e02119d5
CM
1371}
1372
1373static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1374 struct btrfs_root *root,
1375 struct btrfs_path *path)
1376{
1377 int ret;
1378 struct btrfs_key key;
1379 struct inode *inode;
1380
1381 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1382 key.type = BTRFS_ORPHAN_ITEM_KEY;
1383 key.offset = (u64)-1;
d397712b 1384 while (1) {
e02119d5
CM
1385 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1386 if (ret < 0)
1387 break;
1388
1389 if (ret == 1) {
1390 if (path->slots[0] == 0)
1391 break;
1392 path->slots[0]--;
1393 }
1394
1395 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1396 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1397 key.type != BTRFS_ORPHAN_ITEM_KEY)
1398 break;
1399
1400 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1401 if (ret)
1402 goto out;
e02119d5 1403
b3b4aa74 1404 btrfs_release_path(path);
e02119d5 1405 inode = read_one_inode(root, key.offset);
c00e9493
TI
1406 if (!inode)
1407 return -EIO;
e02119d5
CM
1408
1409 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1410 iput(inode);
3650860b
JB
1411 if (ret)
1412 goto out;
e02119d5 1413
12fcfd22
CM
1414 /*
1415 * fixup on a directory may create new entries,
1416 * make sure we always look for the highset possible
1417 * offset
1418 */
1419 key.offset = (u64)-1;
e02119d5 1420 }
65a246c5
TI
1421 ret = 0;
1422out:
b3b4aa74 1423 btrfs_release_path(path);
65a246c5 1424 return ret;
e02119d5
CM
1425}
1426
1427
1428/*
1429 * record a given inode in the fixup dir so we can check its link
1430 * count when replay is done. The link count is incremented here
1431 * so the inode won't go away until we check it
1432 */
1433static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1434 struct btrfs_root *root,
1435 struct btrfs_path *path,
1436 u64 objectid)
1437{
1438 struct btrfs_key key;
1439 int ret = 0;
1440 struct inode *inode;
1441
1442 inode = read_one_inode(root, objectid);
c00e9493
TI
1443 if (!inode)
1444 return -EIO;
e02119d5
CM
1445
1446 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1447 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1448 key.offset = objectid;
1449
1450 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1451
b3b4aa74 1452 btrfs_release_path(path);
e02119d5 1453 if (ret == 0) {
9bf7a489
JB
1454 if (!inode->i_nlink)
1455 set_nlink(inode, 1);
1456 else
1457 btrfs_inc_nlink(inode);
b9959295 1458 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1459 } else if (ret == -EEXIST) {
1460 ret = 0;
1461 } else {
3650860b 1462 BUG(); /* Logic Error */
e02119d5
CM
1463 }
1464 iput(inode);
1465
1466 return ret;
1467}
1468
1469/*
1470 * when replaying the log for a directory, we only insert names
1471 * for inodes that actually exist. This means an fsync on a directory
1472 * does not implicitly fsync all the new files in it
1473 */
1474static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1475 struct btrfs_root *root,
1476 struct btrfs_path *path,
1477 u64 dirid, u64 index,
1478 char *name, int name_len, u8 type,
1479 struct btrfs_key *location)
1480{
1481 struct inode *inode;
1482 struct inode *dir;
1483 int ret;
1484
1485 inode = read_one_inode(root, location->objectid);
1486 if (!inode)
1487 return -ENOENT;
1488
1489 dir = read_one_inode(root, dirid);
1490 if (!dir) {
1491 iput(inode);
1492 return -EIO;
1493 }
1494 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1495
1496 /* FIXME, put inode into FIXUP list */
1497
1498 iput(inode);
1499 iput(dir);
1500 return ret;
1501}
1502
1503/*
1504 * take a single entry in a log directory item and replay it into
1505 * the subvolume.
1506 *
1507 * if a conflicting item exists in the subdirectory already,
1508 * the inode it points to is unlinked and put into the link count
1509 * fix up tree.
1510 *
1511 * If a name from the log points to a file or directory that does
1512 * not exist in the FS, it is skipped. fsyncs on directories
1513 * do not force down inodes inside that directory, just changes to the
1514 * names or unlinks in a directory.
1515 */
1516static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1517 struct btrfs_root *root,
1518 struct btrfs_path *path,
1519 struct extent_buffer *eb,
1520 struct btrfs_dir_item *di,
1521 struct btrfs_key *key)
1522{
1523 char *name;
1524 int name_len;
1525 struct btrfs_dir_item *dst_di;
1526 struct btrfs_key found_key;
1527 struct btrfs_key log_key;
1528 struct inode *dir;
e02119d5 1529 u8 log_type;
4bef0848 1530 int exists;
3650860b 1531 int ret = 0;
e02119d5
CM
1532
1533 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1534 if (!dir)
1535 return -EIO;
e02119d5
CM
1536
1537 name_len = btrfs_dir_name_len(eb, di);
1538 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 1539 if (!name)
1540 return -ENOMEM;
1541
e02119d5
CM
1542 log_type = btrfs_dir_type(eb, di);
1543 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1544 name_len);
1545
1546 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1547 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1548 if (exists == 0)
1549 exists = 1;
1550 else
1551 exists = 0;
b3b4aa74 1552 btrfs_release_path(path);
4bef0848 1553
e02119d5
CM
1554 if (key->type == BTRFS_DIR_ITEM_KEY) {
1555 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1556 name, name_len, 1);
d397712b 1557 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1558 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1559 key->objectid,
1560 key->offset, name,
1561 name_len, 1);
1562 } else {
3650860b
JB
1563 /* Corruption */
1564 ret = -EINVAL;
1565 goto out;
e02119d5 1566 }
c704005d 1567 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1568 /* we need a sequence number to insert, so we only
1569 * do inserts for the BTRFS_DIR_INDEX_KEY types
1570 */
1571 if (key->type != BTRFS_DIR_INDEX_KEY)
1572 goto out;
1573 goto insert;
1574 }
1575
1576 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1577 /* the existing item matches the logged item */
1578 if (found_key.objectid == log_key.objectid &&
1579 found_key.type == log_key.type &&
1580 found_key.offset == log_key.offset &&
1581 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1582 goto out;
1583 }
1584
1585 /*
1586 * don't drop the conflicting directory entry if the inode
1587 * for the new entry doesn't exist
1588 */
4bef0848 1589 if (!exists)
e02119d5
CM
1590 goto out;
1591
e02119d5 1592 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
3650860b
JB
1593 if (ret)
1594 goto out;
e02119d5
CM
1595
1596 if (key->type == BTRFS_DIR_INDEX_KEY)
1597 goto insert;
1598out:
b3b4aa74 1599 btrfs_release_path(path);
e02119d5
CM
1600 kfree(name);
1601 iput(dir);
3650860b 1602 return ret;
e02119d5
CM
1603
1604insert:
b3b4aa74 1605 btrfs_release_path(path);
e02119d5
CM
1606 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1607 name, name_len, log_type, &log_key);
3650860b
JB
1608 if (ret && ret != -ENOENT)
1609 goto out;
1610 ret = 0;
e02119d5
CM
1611 goto out;
1612}
1613
1614/*
1615 * find all the names in a directory item and reconcile them into
1616 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1617 * one name in a directory item, but the same code gets used for
1618 * both directory index types
1619 */
1620static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1621 struct btrfs_root *root,
1622 struct btrfs_path *path,
1623 struct extent_buffer *eb, int slot,
1624 struct btrfs_key *key)
1625{
1626 int ret;
1627 u32 item_size = btrfs_item_size_nr(eb, slot);
1628 struct btrfs_dir_item *di;
1629 int name_len;
1630 unsigned long ptr;
1631 unsigned long ptr_end;
1632
1633 ptr = btrfs_item_ptr_offset(eb, slot);
1634 ptr_end = ptr + item_size;
d397712b 1635 while (ptr < ptr_end) {
e02119d5 1636 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1637 if (verify_dir_item(root, eb, di))
1638 return -EIO;
e02119d5
CM
1639 name_len = btrfs_dir_name_len(eb, di);
1640 ret = replay_one_name(trans, root, path, eb, di, key);
3650860b
JB
1641 if (ret)
1642 return ret;
e02119d5
CM
1643 ptr = (unsigned long)(di + 1);
1644 ptr += name_len;
1645 }
1646 return 0;
1647}
1648
1649/*
1650 * directory replay has two parts. There are the standard directory
1651 * items in the log copied from the subvolume, and range items
1652 * created in the log while the subvolume was logged.
1653 *
1654 * The range items tell us which parts of the key space the log
1655 * is authoritative for. During replay, if a key in the subvolume
1656 * directory is in a logged range item, but not actually in the log
1657 * that means it was deleted from the directory before the fsync
1658 * and should be removed.
1659 */
1660static noinline int find_dir_range(struct btrfs_root *root,
1661 struct btrfs_path *path,
1662 u64 dirid, int key_type,
1663 u64 *start_ret, u64 *end_ret)
1664{
1665 struct btrfs_key key;
1666 u64 found_end;
1667 struct btrfs_dir_log_item *item;
1668 int ret;
1669 int nritems;
1670
1671 if (*start_ret == (u64)-1)
1672 return 1;
1673
1674 key.objectid = dirid;
1675 key.type = key_type;
1676 key.offset = *start_ret;
1677
1678 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1679 if (ret < 0)
1680 goto out;
1681 if (ret > 0) {
1682 if (path->slots[0] == 0)
1683 goto out;
1684 path->slots[0]--;
1685 }
1686 if (ret != 0)
1687 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1688
1689 if (key.type != key_type || key.objectid != dirid) {
1690 ret = 1;
1691 goto next;
1692 }
1693 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1694 struct btrfs_dir_log_item);
1695 found_end = btrfs_dir_log_end(path->nodes[0], item);
1696
1697 if (*start_ret >= key.offset && *start_ret <= found_end) {
1698 ret = 0;
1699 *start_ret = key.offset;
1700 *end_ret = found_end;
1701 goto out;
1702 }
1703 ret = 1;
1704next:
1705 /* check the next slot in the tree to see if it is a valid item */
1706 nritems = btrfs_header_nritems(path->nodes[0]);
1707 if (path->slots[0] >= nritems) {
1708 ret = btrfs_next_leaf(root, path);
1709 if (ret)
1710 goto out;
1711 } else {
1712 path->slots[0]++;
1713 }
1714
1715 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1716
1717 if (key.type != key_type || key.objectid != dirid) {
1718 ret = 1;
1719 goto out;
1720 }
1721 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1722 struct btrfs_dir_log_item);
1723 found_end = btrfs_dir_log_end(path->nodes[0], item);
1724 *start_ret = key.offset;
1725 *end_ret = found_end;
1726 ret = 0;
1727out:
b3b4aa74 1728 btrfs_release_path(path);
e02119d5
CM
1729 return ret;
1730}
1731
1732/*
1733 * this looks for a given directory item in the log. If the directory
1734 * item is not in the log, the item is removed and the inode it points
1735 * to is unlinked
1736 */
1737static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1738 struct btrfs_root *root,
1739 struct btrfs_root *log,
1740 struct btrfs_path *path,
1741 struct btrfs_path *log_path,
1742 struct inode *dir,
1743 struct btrfs_key *dir_key)
1744{
1745 int ret;
1746 struct extent_buffer *eb;
1747 int slot;
1748 u32 item_size;
1749 struct btrfs_dir_item *di;
1750 struct btrfs_dir_item *log_di;
1751 int name_len;
1752 unsigned long ptr;
1753 unsigned long ptr_end;
1754 char *name;
1755 struct inode *inode;
1756 struct btrfs_key location;
1757
1758again:
1759 eb = path->nodes[0];
1760 slot = path->slots[0];
1761 item_size = btrfs_item_size_nr(eb, slot);
1762 ptr = btrfs_item_ptr_offset(eb, slot);
1763 ptr_end = ptr + item_size;
d397712b 1764 while (ptr < ptr_end) {
e02119d5 1765 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1766 if (verify_dir_item(root, eb, di)) {
1767 ret = -EIO;
1768 goto out;
1769 }
1770
e02119d5
CM
1771 name_len = btrfs_dir_name_len(eb, di);
1772 name = kmalloc(name_len, GFP_NOFS);
1773 if (!name) {
1774 ret = -ENOMEM;
1775 goto out;
1776 }
1777 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1778 name_len);
1779 log_di = NULL;
12fcfd22 1780 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
1781 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1782 dir_key->objectid,
1783 name, name_len, 0);
12fcfd22 1784 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1785 log_di = btrfs_lookup_dir_index_item(trans, log,
1786 log_path,
1787 dir_key->objectid,
1788 dir_key->offset,
1789 name, name_len, 0);
1790 }
c704005d 1791 if (IS_ERR_OR_NULL(log_di)) {
e02119d5 1792 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
1793 btrfs_release_path(path);
1794 btrfs_release_path(log_path);
e02119d5 1795 inode = read_one_inode(root, location.objectid);
c00e9493
TI
1796 if (!inode) {
1797 kfree(name);
1798 return -EIO;
1799 }
e02119d5
CM
1800
1801 ret = link_to_fixup_dir(trans, root,
1802 path, location.objectid);
3650860b
JB
1803 if (ret) {
1804 kfree(name);
1805 iput(inode);
1806 goto out;
1807 }
1808
e02119d5
CM
1809 btrfs_inc_nlink(inode);
1810 ret = btrfs_unlink_inode(trans, root, dir, inode,
1811 name, name_len);
3650860b
JB
1812 if (!ret)
1813 btrfs_run_delayed_items(trans, root);
e02119d5
CM
1814 kfree(name);
1815 iput(inode);
3650860b
JB
1816 if (ret)
1817 goto out;
e02119d5
CM
1818
1819 /* there might still be more names under this key
1820 * check and repeat if required
1821 */
1822 ret = btrfs_search_slot(NULL, root, dir_key, path,
1823 0, 0);
1824 if (ret == 0)
1825 goto again;
1826 ret = 0;
1827 goto out;
1828 }
b3b4aa74 1829 btrfs_release_path(log_path);
e02119d5
CM
1830 kfree(name);
1831
1832 ptr = (unsigned long)(di + 1);
1833 ptr += name_len;
1834 }
1835 ret = 0;
1836out:
b3b4aa74
DS
1837 btrfs_release_path(path);
1838 btrfs_release_path(log_path);
e02119d5
CM
1839 return ret;
1840}
1841
1842/*
1843 * deletion replay happens before we copy any new directory items
1844 * out of the log or out of backreferences from inodes. It
1845 * scans the log to find ranges of keys that log is authoritative for,
1846 * and then scans the directory to find items in those ranges that are
1847 * not present in the log.
1848 *
1849 * Anything we don't find in the log is unlinked and removed from the
1850 * directory.
1851 */
1852static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1853 struct btrfs_root *root,
1854 struct btrfs_root *log,
1855 struct btrfs_path *path,
12fcfd22 1856 u64 dirid, int del_all)
e02119d5
CM
1857{
1858 u64 range_start;
1859 u64 range_end;
1860 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1861 int ret = 0;
1862 struct btrfs_key dir_key;
1863 struct btrfs_key found_key;
1864 struct btrfs_path *log_path;
1865 struct inode *dir;
1866
1867 dir_key.objectid = dirid;
1868 dir_key.type = BTRFS_DIR_ITEM_KEY;
1869 log_path = btrfs_alloc_path();
1870 if (!log_path)
1871 return -ENOMEM;
1872
1873 dir = read_one_inode(root, dirid);
1874 /* it isn't an error if the inode isn't there, that can happen
1875 * because we replay the deletes before we copy in the inode item
1876 * from the log
1877 */
1878 if (!dir) {
1879 btrfs_free_path(log_path);
1880 return 0;
1881 }
1882again:
1883 range_start = 0;
1884 range_end = 0;
d397712b 1885 while (1) {
12fcfd22
CM
1886 if (del_all)
1887 range_end = (u64)-1;
1888 else {
1889 ret = find_dir_range(log, path, dirid, key_type,
1890 &range_start, &range_end);
1891 if (ret != 0)
1892 break;
1893 }
e02119d5
CM
1894
1895 dir_key.offset = range_start;
d397712b 1896 while (1) {
e02119d5
CM
1897 int nritems;
1898 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1899 0, 0);
1900 if (ret < 0)
1901 goto out;
1902
1903 nritems = btrfs_header_nritems(path->nodes[0]);
1904 if (path->slots[0] >= nritems) {
1905 ret = btrfs_next_leaf(root, path);
1906 if (ret)
1907 break;
1908 }
1909 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1910 path->slots[0]);
1911 if (found_key.objectid != dirid ||
1912 found_key.type != dir_key.type)
1913 goto next_type;
1914
1915 if (found_key.offset > range_end)
1916 break;
1917
1918 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
1919 log_path, dir,
1920 &found_key);
3650860b
JB
1921 if (ret)
1922 goto out;
e02119d5
CM
1923 if (found_key.offset == (u64)-1)
1924 break;
1925 dir_key.offset = found_key.offset + 1;
1926 }
b3b4aa74 1927 btrfs_release_path(path);
e02119d5
CM
1928 if (range_end == (u64)-1)
1929 break;
1930 range_start = range_end + 1;
1931 }
1932
1933next_type:
1934 ret = 0;
1935 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1936 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1937 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 1938 btrfs_release_path(path);
e02119d5
CM
1939 goto again;
1940 }
1941out:
b3b4aa74 1942 btrfs_release_path(path);
e02119d5
CM
1943 btrfs_free_path(log_path);
1944 iput(dir);
1945 return ret;
1946}
1947
1948/*
1949 * the process_func used to replay items from the log tree. This
1950 * gets called in two different stages. The first stage just looks
1951 * for inodes and makes sure they are all copied into the subvolume.
1952 *
1953 * The second stage copies all the other item types from the log into
1954 * the subvolume. The two stage approach is slower, but gets rid of
1955 * lots of complexity around inodes referencing other inodes that exist
1956 * only in the log (references come from either directory items or inode
1957 * back refs).
1958 */
1959static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1960 struct walk_control *wc, u64 gen)
1961{
1962 int nritems;
1963 struct btrfs_path *path;
1964 struct btrfs_root *root = wc->replay_dest;
1965 struct btrfs_key key;
e02119d5
CM
1966 int level;
1967 int i;
1968 int ret;
1969
018642a1
TI
1970 ret = btrfs_read_buffer(eb, gen);
1971 if (ret)
1972 return ret;
e02119d5
CM
1973
1974 level = btrfs_header_level(eb);
1975
1976 if (level != 0)
1977 return 0;
1978
1979 path = btrfs_alloc_path();
1e5063d0
MF
1980 if (!path)
1981 return -ENOMEM;
e02119d5
CM
1982
1983 nritems = btrfs_header_nritems(eb);
1984 for (i = 0; i < nritems; i++) {
1985 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
1986
1987 /* inode keys are done during the first stage */
1988 if (key.type == BTRFS_INODE_ITEM_KEY &&
1989 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
1990 struct btrfs_inode_item *inode_item;
1991 u32 mode;
1992
1993 inode_item = btrfs_item_ptr(eb, i,
1994 struct btrfs_inode_item);
1995 mode = btrfs_inode_mode(eb, inode_item);
1996 if (S_ISDIR(mode)) {
1997 ret = replay_dir_deletes(wc->trans,
12fcfd22 1998 root, log, path, key.objectid, 0);
b50c6e25
JB
1999 if (ret)
2000 break;
e02119d5
CM
2001 }
2002 ret = overwrite_item(wc->trans, root, path,
2003 eb, i, &key);
b50c6e25
JB
2004 if (ret)
2005 break;
e02119d5 2006
c71bf099
YZ
2007 /* for regular files, make sure corresponding
2008 * orhpan item exist. extents past the new EOF
2009 * will be truncated later by orphan cleanup.
e02119d5
CM
2010 */
2011 if (S_ISREG(mode)) {
c71bf099
YZ
2012 ret = insert_orphan_item(wc->trans, root,
2013 key.objectid);
b50c6e25
JB
2014 if (ret)
2015 break;
e02119d5 2016 }
c71bf099 2017
e02119d5
CM
2018 ret = link_to_fixup_dir(wc->trans, root,
2019 path, key.objectid);
b50c6e25
JB
2020 if (ret)
2021 break;
e02119d5
CM
2022 }
2023 if (wc->stage < LOG_WALK_REPLAY_ALL)
2024 continue;
2025
2026 /* these keys are simply copied */
2027 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2028 ret = overwrite_item(wc->trans, root, path,
2029 eb, i, &key);
b50c6e25
JB
2030 if (ret)
2031 break;
2da1c669
LB
2032 } else if (key.type == BTRFS_INODE_REF_KEY ||
2033 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2034 ret = add_inode_ref(wc->trans, root, log, path,
2035 eb, i, &key);
b50c6e25
JB
2036 if (ret && ret != -ENOENT)
2037 break;
2038 ret = 0;
e02119d5
CM
2039 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2040 ret = replay_one_extent(wc->trans, root, path,
2041 eb, i, &key);
b50c6e25
JB
2042 if (ret)
2043 break;
e02119d5
CM
2044 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
2045 key.type == BTRFS_DIR_INDEX_KEY) {
2046 ret = replay_one_dir_item(wc->trans, root, path,
2047 eb, i, &key);
b50c6e25
JB
2048 if (ret)
2049 break;
e02119d5
CM
2050 }
2051 }
2052 btrfs_free_path(path);
b50c6e25 2053 return ret;
e02119d5
CM
2054}
2055
d397712b 2056static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2057 struct btrfs_root *root,
2058 struct btrfs_path *path, int *level,
2059 struct walk_control *wc)
2060{
2061 u64 root_owner;
e02119d5
CM
2062 u64 bytenr;
2063 u64 ptr_gen;
2064 struct extent_buffer *next;
2065 struct extent_buffer *cur;
2066 struct extent_buffer *parent;
2067 u32 blocksize;
2068 int ret = 0;
2069
2070 WARN_ON(*level < 0);
2071 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2072
d397712b 2073 while (*level > 0) {
e02119d5
CM
2074 WARN_ON(*level < 0);
2075 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2076 cur = path->nodes[*level];
2077
2078 if (btrfs_header_level(cur) != *level)
2079 WARN_ON(1);
2080
2081 if (path->slots[*level] >=
2082 btrfs_header_nritems(cur))
2083 break;
2084
2085 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2086 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2087 blocksize = btrfs_level_size(root, *level - 1);
2088
2089 parent = path->nodes[*level];
2090 root_owner = btrfs_header_owner(parent);
e02119d5
CM
2091
2092 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2a29edc6 2093 if (!next)
2094 return -ENOMEM;
e02119d5 2095
e02119d5 2096 if (*level == 1) {
1e5063d0 2097 ret = wc->process_func(root, next, wc, ptr_gen);
b50c6e25
JB
2098 if (ret) {
2099 free_extent_buffer(next);
1e5063d0 2100 return ret;
b50c6e25 2101 }
4a500fd1 2102
e02119d5
CM
2103 path->slots[*level]++;
2104 if (wc->free) {
018642a1
TI
2105 ret = btrfs_read_buffer(next, ptr_gen);
2106 if (ret) {
2107 free_extent_buffer(next);
2108 return ret;
2109 }
e02119d5
CM
2110
2111 btrfs_tree_lock(next);
b4ce94de 2112 btrfs_set_lock_blocking(next);
bd681513 2113 clean_tree_block(trans, root, next);
e02119d5
CM
2114 btrfs_wait_tree_block_writeback(next);
2115 btrfs_tree_unlock(next);
2116
e02119d5
CM
2117 WARN_ON(root_owner !=
2118 BTRFS_TREE_LOG_OBJECTID);
e688b725 2119 ret = btrfs_free_and_pin_reserved_extent(root,
d00aff00 2120 bytenr, blocksize);
3650860b
JB
2121 if (ret) {
2122 free_extent_buffer(next);
2123 return ret;
2124 }
e02119d5
CM
2125 }
2126 free_extent_buffer(next);
2127 continue;
2128 }
018642a1
TI
2129 ret = btrfs_read_buffer(next, ptr_gen);
2130 if (ret) {
2131 free_extent_buffer(next);
2132 return ret;
2133 }
e02119d5
CM
2134
2135 WARN_ON(*level <= 0);
2136 if (path->nodes[*level-1])
2137 free_extent_buffer(path->nodes[*level-1]);
2138 path->nodes[*level-1] = next;
2139 *level = btrfs_header_level(next);
2140 path->slots[*level] = 0;
2141 cond_resched();
2142 }
2143 WARN_ON(*level < 0);
2144 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2145
4a500fd1 2146 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2147
2148 cond_resched();
2149 return 0;
2150}
2151
d397712b 2152static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2153 struct btrfs_root *root,
2154 struct btrfs_path *path, int *level,
2155 struct walk_control *wc)
2156{
2157 u64 root_owner;
e02119d5
CM
2158 int i;
2159 int slot;
2160 int ret;
2161
d397712b 2162 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2163 slot = path->slots[i];
4a500fd1 2164 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2165 path->slots[i]++;
2166 *level = i;
2167 WARN_ON(*level == 0);
2168 return 0;
2169 } else {
31840ae1
ZY
2170 struct extent_buffer *parent;
2171 if (path->nodes[*level] == root->node)
2172 parent = path->nodes[*level];
2173 else
2174 parent = path->nodes[*level + 1];
2175
2176 root_owner = btrfs_header_owner(parent);
1e5063d0 2177 ret = wc->process_func(root, path->nodes[*level], wc,
e02119d5 2178 btrfs_header_generation(path->nodes[*level]));
1e5063d0
MF
2179 if (ret)
2180 return ret;
2181
e02119d5
CM
2182 if (wc->free) {
2183 struct extent_buffer *next;
2184
2185 next = path->nodes[*level];
2186
2187 btrfs_tree_lock(next);
b4ce94de 2188 btrfs_set_lock_blocking(next);
bd681513 2189 clean_tree_block(trans, root, next);
e02119d5
CM
2190 btrfs_wait_tree_block_writeback(next);
2191 btrfs_tree_unlock(next);
2192
e02119d5 2193 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
e688b725 2194 ret = btrfs_free_and_pin_reserved_extent(root,
e02119d5 2195 path->nodes[*level]->start,
d00aff00 2196 path->nodes[*level]->len);
3650860b
JB
2197 if (ret)
2198 return ret;
e02119d5
CM
2199 }
2200 free_extent_buffer(path->nodes[*level]);
2201 path->nodes[*level] = NULL;
2202 *level = i + 1;
2203 }
2204 }
2205 return 1;
2206}
2207
2208/*
2209 * drop the reference count on the tree rooted at 'snap'. This traverses
2210 * the tree freeing any blocks that have a ref count of zero after being
2211 * decremented.
2212 */
2213static int walk_log_tree(struct btrfs_trans_handle *trans,
2214 struct btrfs_root *log, struct walk_control *wc)
2215{
2216 int ret = 0;
2217 int wret;
2218 int level;
2219 struct btrfs_path *path;
e02119d5
CM
2220 int orig_level;
2221
2222 path = btrfs_alloc_path();
db5b493a
TI
2223 if (!path)
2224 return -ENOMEM;
e02119d5
CM
2225
2226 level = btrfs_header_level(log->node);
2227 orig_level = level;
2228 path->nodes[level] = log->node;
2229 extent_buffer_get(log->node);
2230 path->slots[level] = 0;
2231
d397712b 2232 while (1) {
e02119d5
CM
2233 wret = walk_down_log_tree(trans, log, path, &level, wc);
2234 if (wret > 0)
2235 break;
79787eaa 2236 if (wret < 0) {
e02119d5 2237 ret = wret;
79787eaa
JM
2238 goto out;
2239 }
e02119d5
CM
2240
2241 wret = walk_up_log_tree(trans, log, path, &level, wc);
2242 if (wret > 0)
2243 break;
79787eaa 2244 if (wret < 0) {
e02119d5 2245 ret = wret;
79787eaa
JM
2246 goto out;
2247 }
e02119d5
CM
2248 }
2249
2250 /* was the root node processed? if not, catch it here */
2251 if (path->nodes[orig_level]) {
79787eaa 2252 ret = wc->process_func(log, path->nodes[orig_level], wc,
e02119d5 2253 btrfs_header_generation(path->nodes[orig_level]));
79787eaa
JM
2254 if (ret)
2255 goto out;
e02119d5
CM
2256 if (wc->free) {
2257 struct extent_buffer *next;
2258
2259 next = path->nodes[orig_level];
2260
2261 btrfs_tree_lock(next);
b4ce94de 2262 btrfs_set_lock_blocking(next);
bd681513 2263 clean_tree_block(trans, log, next);
e02119d5
CM
2264 btrfs_wait_tree_block_writeback(next);
2265 btrfs_tree_unlock(next);
2266
e02119d5
CM
2267 WARN_ON(log->root_key.objectid !=
2268 BTRFS_TREE_LOG_OBJECTID);
e688b725 2269 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
d00aff00 2270 next->len);
3650860b
JB
2271 if (ret)
2272 goto out;
e02119d5
CM
2273 }
2274 }
2275
79787eaa 2276out:
e02119d5 2277 btrfs_free_path(path);
e02119d5
CM
2278 return ret;
2279}
2280
7237f183
YZ
2281/*
2282 * helper function to update the item for a given subvolumes log root
2283 * in the tree of log roots
2284 */
2285static int update_log_root(struct btrfs_trans_handle *trans,
2286 struct btrfs_root *log)
2287{
2288 int ret;
2289
2290 if (log->log_transid == 1) {
2291 /* insert root item on the first sync */
2292 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2293 &log->root_key, &log->root_item);
2294 } else {
2295 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2296 &log->root_key, &log->root_item);
2297 }
2298 return ret;
2299}
2300
12fcfd22
CM
2301static int wait_log_commit(struct btrfs_trans_handle *trans,
2302 struct btrfs_root *root, unsigned long transid)
e02119d5
CM
2303{
2304 DEFINE_WAIT(wait);
7237f183 2305 int index = transid % 2;
e02119d5 2306
7237f183
YZ
2307 /*
2308 * we only allow two pending log transactions at a time,
2309 * so we know that if ours is more than 2 older than the
2310 * current transaction, we're done
2311 */
e02119d5 2312 do {
7237f183
YZ
2313 prepare_to_wait(&root->log_commit_wait[index],
2314 &wait, TASK_UNINTERRUPTIBLE);
2315 mutex_unlock(&root->log_mutex);
12fcfd22
CM
2316
2317 if (root->fs_info->last_trans_log_full_commit !=
2318 trans->transid && root->log_transid < transid + 2 &&
7237f183
YZ
2319 atomic_read(&root->log_commit[index]))
2320 schedule();
12fcfd22 2321
7237f183
YZ
2322 finish_wait(&root->log_commit_wait[index], &wait);
2323 mutex_lock(&root->log_mutex);
6dd70ce4
JK
2324 } while (root->fs_info->last_trans_log_full_commit !=
2325 trans->transid && root->log_transid < transid + 2 &&
7237f183
YZ
2326 atomic_read(&root->log_commit[index]));
2327 return 0;
2328}
2329
143bede5
JM
2330static void wait_for_writer(struct btrfs_trans_handle *trans,
2331 struct btrfs_root *root)
7237f183
YZ
2332{
2333 DEFINE_WAIT(wait);
6dd70ce4
JK
2334 while (root->fs_info->last_trans_log_full_commit !=
2335 trans->transid && atomic_read(&root->log_writers)) {
7237f183
YZ
2336 prepare_to_wait(&root->log_writer_wait,
2337 &wait, TASK_UNINTERRUPTIBLE);
2338 mutex_unlock(&root->log_mutex);
12fcfd22
CM
2339 if (root->fs_info->last_trans_log_full_commit !=
2340 trans->transid && atomic_read(&root->log_writers))
e02119d5 2341 schedule();
7237f183
YZ
2342 mutex_lock(&root->log_mutex);
2343 finish_wait(&root->log_writer_wait, &wait);
2344 }
e02119d5
CM
2345}
2346
2347/*
2348 * btrfs_sync_log does sends a given tree log down to the disk and
2349 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2350 * you know that any inodes previously logged are safely on disk only
2351 * if it returns 0.
2352 *
2353 * Any other return value means you need to call btrfs_commit_transaction.
2354 * Some of the edge cases for fsyncing directories that have had unlinks
2355 * or renames done in the past mean that sometimes the only safe
2356 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2357 * that has happened.
e02119d5
CM
2358 */
2359int btrfs_sync_log(struct btrfs_trans_handle *trans,
2360 struct btrfs_root *root)
2361{
7237f183
YZ
2362 int index1;
2363 int index2;
8cef4e16 2364 int mark;
e02119d5 2365 int ret;
e02119d5 2366 struct btrfs_root *log = root->log_root;
7237f183 2367 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
8cef4e16 2368 unsigned long log_transid = 0;
c6adc9cc 2369 struct blk_plug plug;
e02119d5 2370
7237f183 2371 mutex_lock(&root->log_mutex);
2ab28f32 2372 log_transid = root->log_transid;
7237f183
YZ
2373 index1 = root->log_transid % 2;
2374 if (atomic_read(&root->log_commit[index1])) {
12fcfd22 2375 wait_log_commit(trans, root, root->log_transid);
7237f183
YZ
2376 mutex_unlock(&root->log_mutex);
2377 return 0;
e02119d5 2378 }
7237f183
YZ
2379 atomic_set(&root->log_commit[index1], 1);
2380
2381 /* wait for previous tree log sync to complete */
2382 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
12fcfd22 2383 wait_log_commit(trans, root, root->log_transid - 1);
86df7eb9 2384 while (1) {
2ecb7923 2385 int batch = atomic_read(&root->log_batch);
cd354ad6
CM
2386 /* when we're on an ssd, just kick the log commit out */
2387 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
86df7eb9
YZ
2388 mutex_unlock(&root->log_mutex);
2389 schedule_timeout_uninterruptible(1);
2390 mutex_lock(&root->log_mutex);
2391 }
12fcfd22 2392 wait_for_writer(trans, root);
2ecb7923 2393 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2394 break;
2395 }
e02119d5 2396
12fcfd22
CM
2397 /* bail out if we need to do a full commit */
2398 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2399 ret = -EAGAIN;
2ab28f32 2400 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2401 mutex_unlock(&root->log_mutex);
2402 goto out;
2403 }
2404
8cef4e16
YZ
2405 if (log_transid % 2 == 0)
2406 mark = EXTENT_DIRTY;
2407 else
2408 mark = EXTENT_NEW;
2409
690587d1
CM
2410 /* we start IO on all the marked extents here, but we don't actually
2411 * wait for them until later.
2412 */
c6adc9cc 2413 blk_start_plug(&plug);
8cef4e16 2414 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
79787eaa 2415 if (ret) {
c6adc9cc 2416 blk_finish_plug(&plug);
79787eaa 2417 btrfs_abort_transaction(trans, root, ret);
2ab28f32 2418 btrfs_free_logged_extents(log, log_transid);
79787eaa
JM
2419 mutex_unlock(&root->log_mutex);
2420 goto out;
2421 }
7237f183 2422
5d4f98a2 2423 btrfs_set_root_node(&log->root_item, log->node);
7237f183 2424
7237f183
YZ
2425 root->log_transid++;
2426 log->log_transid = root->log_transid;
ff782e0a 2427 root->log_start_pid = 0;
7237f183
YZ
2428 smp_mb();
2429 /*
8cef4e16
YZ
2430 * IO has been started, blocks of the log tree have WRITTEN flag set
2431 * in their headers. new modifications of the log will be written to
2432 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2433 */
2434 mutex_unlock(&root->log_mutex);
2435
2436 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 2437 atomic_inc(&log_root_tree->log_batch);
7237f183
YZ
2438 atomic_inc(&log_root_tree->log_writers);
2439 mutex_unlock(&log_root_tree->log_mutex);
2440
2441 ret = update_log_root(trans, log);
7237f183
YZ
2442
2443 mutex_lock(&log_root_tree->log_mutex);
2444 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2445 smp_mb();
2446 if (waitqueue_active(&log_root_tree->log_writer_wait))
2447 wake_up(&log_root_tree->log_writer_wait);
2448 }
2449
4a500fd1 2450 if (ret) {
c6adc9cc 2451 blk_finish_plug(&plug);
79787eaa
JM
2452 if (ret != -ENOSPC) {
2453 btrfs_abort_transaction(trans, root, ret);
2454 mutex_unlock(&log_root_tree->log_mutex);
2455 goto out;
2456 }
4a500fd1
YZ
2457 root->fs_info->last_trans_log_full_commit = trans->transid;
2458 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2459 btrfs_free_logged_extents(log, log_transid);
4a500fd1
YZ
2460 mutex_unlock(&log_root_tree->log_mutex);
2461 ret = -EAGAIN;
2462 goto out;
2463 }
2464
7237f183
YZ
2465 index2 = log_root_tree->log_transid % 2;
2466 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 2467 blk_finish_plug(&plug);
8cef4e16 2468 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
12fcfd22
CM
2469 wait_log_commit(trans, log_root_tree,
2470 log_root_tree->log_transid);
2ab28f32 2471 btrfs_free_logged_extents(log, log_transid);
7237f183 2472 mutex_unlock(&log_root_tree->log_mutex);
b31eabd8 2473 ret = 0;
7237f183
YZ
2474 goto out;
2475 }
2476 atomic_set(&log_root_tree->log_commit[index2], 1);
2477
12fcfd22
CM
2478 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2479 wait_log_commit(trans, log_root_tree,
2480 log_root_tree->log_transid - 1);
2481 }
2482
2483 wait_for_writer(trans, log_root_tree);
7237f183 2484
12fcfd22
CM
2485 /*
2486 * now that we've moved on to the tree of log tree roots,
2487 * check the full commit flag again
2488 */
2489 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
c6adc9cc 2490 blk_finish_plug(&plug);
8cef4e16 2491 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2492 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2493 mutex_unlock(&log_root_tree->log_mutex);
2494 ret = -EAGAIN;
2495 goto out_wake_log_root;
2496 }
7237f183 2497
c6adc9cc
MX
2498 ret = btrfs_write_marked_extents(log_root_tree,
2499 &log_root_tree->dirty_log_pages,
2500 EXTENT_DIRTY | EXTENT_NEW);
2501 blk_finish_plug(&plug);
79787eaa
JM
2502 if (ret) {
2503 btrfs_abort_transaction(trans, root, ret);
2ab28f32 2504 btrfs_free_logged_extents(log, log_transid);
79787eaa
JM
2505 mutex_unlock(&log_root_tree->log_mutex);
2506 goto out_wake_log_root;
2507 }
8cef4e16 2508 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
c6adc9cc
MX
2509 btrfs_wait_marked_extents(log_root_tree,
2510 &log_root_tree->dirty_log_pages,
2511 EXTENT_NEW | EXTENT_DIRTY);
2ab28f32 2512 btrfs_wait_logged_extents(log, log_transid);
e02119d5 2513
6c41761f 2514 btrfs_set_super_log_root(root->fs_info->super_for_commit,
7237f183 2515 log_root_tree->node->start);
6c41761f 2516 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
7237f183 2517 btrfs_header_level(log_root_tree->node));
e02119d5 2518
7237f183 2519 log_root_tree->log_transid++;
e02119d5 2520 smp_mb();
7237f183
YZ
2521
2522 mutex_unlock(&log_root_tree->log_mutex);
2523
2524 /*
2525 * nobody else is going to jump in and write the the ctree
2526 * super here because the log_commit atomic below is protecting
2527 * us. We must be called with a transaction handle pinning
2528 * the running transaction open, so a full commit can't hop
2529 * in and cause problems either.
2530 */
a2de733c 2531 btrfs_scrub_pause_super(root);
5af3e8cc 2532 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
a2de733c 2533 btrfs_scrub_continue_super(root);
5af3e8cc
SB
2534 if (ret) {
2535 btrfs_abort_transaction(trans, root, ret);
2536 goto out_wake_log_root;
2537 }
7237f183 2538
257c62e1
CM
2539 mutex_lock(&root->log_mutex);
2540 if (root->last_log_commit < log_transid)
2541 root->last_log_commit = log_transid;
2542 mutex_unlock(&root->log_mutex);
2543
12fcfd22 2544out_wake_log_root:
7237f183
YZ
2545 atomic_set(&log_root_tree->log_commit[index2], 0);
2546 smp_mb();
2547 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2548 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 2549out:
7237f183
YZ
2550 atomic_set(&root->log_commit[index1], 0);
2551 smp_mb();
2552 if (waitqueue_active(&root->log_commit_wait[index1]))
2553 wake_up(&root->log_commit_wait[index1]);
b31eabd8 2554 return ret;
e02119d5
CM
2555}
2556
4a500fd1
YZ
2557static void free_log_tree(struct btrfs_trans_handle *trans,
2558 struct btrfs_root *log)
e02119d5
CM
2559{
2560 int ret;
d0c803c4
CM
2561 u64 start;
2562 u64 end;
e02119d5
CM
2563 struct walk_control wc = {
2564 .free = 1,
2565 .process_func = process_one_buffer
2566 };
2567
3321719e
LB
2568 if (trans) {
2569 ret = walk_log_tree(trans, log, &wc);
3650860b
JB
2570
2571 /* I don't think this can happen but just in case */
2572 if (ret)
2573 btrfs_abort_transaction(trans, log, ret);
3321719e 2574 }
e02119d5 2575
d397712b 2576 while (1) {
d0c803c4 2577 ret = find_first_extent_bit(&log->dirty_log_pages,
e6138876
JB
2578 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2579 NULL);
d0c803c4
CM
2580 if (ret)
2581 break;
2582
8cef4e16
YZ
2583 clear_extent_bits(&log->dirty_log_pages, start, end,
2584 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
d0c803c4
CM
2585 }
2586
2ab28f32
JB
2587 /*
2588 * We may have short-circuited the log tree with the full commit logic
2589 * and left ordered extents on our list, so clear these out to keep us
2590 * from leaking inodes and memory.
2591 */
2592 btrfs_free_logged_extents(log, 0);
2593 btrfs_free_logged_extents(log, 1);
2594
7237f183
YZ
2595 free_extent_buffer(log->node);
2596 kfree(log);
4a500fd1
YZ
2597}
2598
2599/*
2600 * free all the extents used by the tree log. This should be called
2601 * at commit time of the full transaction
2602 */
2603int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2604{
2605 if (root->log_root) {
2606 free_log_tree(trans, root->log_root);
2607 root->log_root = NULL;
2608 }
2609 return 0;
2610}
2611
2612int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2613 struct btrfs_fs_info *fs_info)
2614{
2615 if (fs_info->log_root_tree) {
2616 free_log_tree(trans, fs_info->log_root_tree);
2617 fs_info->log_root_tree = NULL;
2618 }
e02119d5
CM
2619 return 0;
2620}
2621
e02119d5
CM
2622/*
2623 * If both a file and directory are logged, and unlinks or renames are
2624 * mixed in, we have a few interesting corners:
2625 *
2626 * create file X in dir Y
2627 * link file X to X.link in dir Y
2628 * fsync file X
2629 * unlink file X but leave X.link
2630 * fsync dir Y
2631 *
2632 * After a crash we would expect only X.link to exist. But file X
2633 * didn't get fsync'd again so the log has back refs for X and X.link.
2634 *
2635 * We solve this by removing directory entries and inode backrefs from the
2636 * log when a file that was logged in the current transaction is
2637 * unlinked. Any later fsync will include the updated log entries, and
2638 * we'll be able to reconstruct the proper directory items from backrefs.
2639 *
2640 * This optimizations allows us to avoid relogging the entire inode
2641 * or the entire directory.
2642 */
2643int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2644 struct btrfs_root *root,
2645 const char *name, int name_len,
2646 struct inode *dir, u64 index)
2647{
2648 struct btrfs_root *log;
2649 struct btrfs_dir_item *di;
2650 struct btrfs_path *path;
2651 int ret;
4a500fd1 2652 int err = 0;
e02119d5 2653 int bytes_del = 0;
33345d01 2654 u64 dir_ino = btrfs_ino(dir);
e02119d5 2655
3a5f1d45
CM
2656 if (BTRFS_I(dir)->logged_trans < trans->transid)
2657 return 0;
2658
e02119d5
CM
2659 ret = join_running_log_trans(root);
2660 if (ret)
2661 return 0;
2662
2663 mutex_lock(&BTRFS_I(dir)->log_mutex);
2664
2665 log = root->log_root;
2666 path = btrfs_alloc_path();
a62f44a5
TI
2667 if (!path) {
2668 err = -ENOMEM;
2669 goto out_unlock;
2670 }
2a29edc6 2671
33345d01 2672 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 2673 name, name_len, -1);
4a500fd1
YZ
2674 if (IS_ERR(di)) {
2675 err = PTR_ERR(di);
2676 goto fail;
2677 }
2678 if (di) {
e02119d5
CM
2679 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2680 bytes_del += name_len;
3650860b
JB
2681 if (ret) {
2682 err = ret;
2683 goto fail;
2684 }
e02119d5 2685 }
b3b4aa74 2686 btrfs_release_path(path);
33345d01 2687 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 2688 index, name, name_len, -1);
4a500fd1
YZ
2689 if (IS_ERR(di)) {
2690 err = PTR_ERR(di);
2691 goto fail;
2692 }
2693 if (di) {
e02119d5
CM
2694 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2695 bytes_del += name_len;
3650860b
JB
2696 if (ret) {
2697 err = ret;
2698 goto fail;
2699 }
e02119d5
CM
2700 }
2701
2702 /* update the directory size in the log to reflect the names
2703 * we have removed
2704 */
2705 if (bytes_del) {
2706 struct btrfs_key key;
2707
33345d01 2708 key.objectid = dir_ino;
e02119d5
CM
2709 key.offset = 0;
2710 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 2711 btrfs_release_path(path);
e02119d5
CM
2712
2713 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
2714 if (ret < 0) {
2715 err = ret;
2716 goto fail;
2717 }
e02119d5
CM
2718 if (ret == 0) {
2719 struct btrfs_inode_item *item;
2720 u64 i_size;
2721
2722 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2723 struct btrfs_inode_item);
2724 i_size = btrfs_inode_size(path->nodes[0], item);
2725 if (i_size > bytes_del)
2726 i_size -= bytes_del;
2727 else
2728 i_size = 0;
2729 btrfs_set_inode_size(path->nodes[0], item, i_size);
2730 btrfs_mark_buffer_dirty(path->nodes[0]);
2731 } else
2732 ret = 0;
b3b4aa74 2733 btrfs_release_path(path);
e02119d5 2734 }
4a500fd1 2735fail:
e02119d5 2736 btrfs_free_path(path);
a62f44a5 2737out_unlock:
e02119d5 2738 mutex_unlock(&BTRFS_I(dir)->log_mutex);
4a500fd1
YZ
2739 if (ret == -ENOSPC) {
2740 root->fs_info->last_trans_log_full_commit = trans->transid;
2741 ret = 0;
79787eaa
JM
2742 } else if (ret < 0)
2743 btrfs_abort_transaction(trans, root, ret);
2744
12fcfd22 2745 btrfs_end_log_trans(root);
e02119d5 2746
411fc6bc 2747 return err;
e02119d5
CM
2748}
2749
2750/* see comments for btrfs_del_dir_entries_in_log */
2751int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2752 struct btrfs_root *root,
2753 const char *name, int name_len,
2754 struct inode *inode, u64 dirid)
2755{
2756 struct btrfs_root *log;
2757 u64 index;
2758 int ret;
2759
3a5f1d45
CM
2760 if (BTRFS_I(inode)->logged_trans < trans->transid)
2761 return 0;
2762
e02119d5
CM
2763 ret = join_running_log_trans(root);
2764 if (ret)
2765 return 0;
2766 log = root->log_root;
2767 mutex_lock(&BTRFS_I(inode)->log_mutex);
2768
33345d01 2769 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5
CM
2770 dirid, &index);
2771 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4a500fd1
YZ
2772 if (ret == -ENOSPC) {
2773 root->fs_info->last_trans_log_full_commit = trans->transid;
2774 ret = 0;
79787eaa
JM
2775 } else if (ret < 0 && ret != -ENOENT)
2776 btrfs_abort_transaction(trans, root, ret);
12fcfd22 2777 btrfs_end_log_trans(root);
e02119d5 2778
e02119d5
CM
2779 return ret;
2780}
2781
2782/*
2783 * creates a range item in the log for 'dirid'. first_offset and
2784 * last_offset tell us which parts of the key space the log should
2785 * be considered authoritative for.
2786 */
2787static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2788 struct btrfs_root *log,
2789 struct btrfs_path *path,
2790 int key_type, u64 dirid,
2791 u64 first_offset, u64 last_offset)
2792{
2793 int ret;
2794 struct btrfs_key key;
2795 struct btrfs_dir_log_item *item;
2796
2797 key.objectid = dirid;
2798 key.offset = first_offset;
2799 if (key_type == BTRFS_DIR_ITEM_KEY)
2800 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2801 else
2802 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2803 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
2804 if (ret)
2805 return ret;
e02119d5
CM
2806
2807 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2808 struct btrfs_dir_log_item);
2809 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2810 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 2811 btrfs_release_path(path);
e02119d5
CM
2812 return 0;
2813}
2814
2815/*
2816 * log all the items included in the current transaction for a given
2817 * directory. This also creates the range items in the log tree required
2818 * to replay anything deleted before the fsync
2819 */
2820static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2821 struct btrfs_root *root, struct inode *inode,
2822 struct btrfs_path *path,
2823 struct btrfs_path *dst_path, int key_type,
2824 u64 min_offset, u64 *last_offset_ret)
2825{
2826 struct btrfs_key min_key;
2827 struct btrfs_key max_key;
2828 struct btrfs_root *log = root->log_root;
2829 struct extent_buffer *src;
4a500fd1 2830 int err = 0;
e02119d5
CM
2831 int ret;
2832 int i;
2833 int nritems;
2834 u64 first_offset = min_offset;
2835 u64 last_offset = (u64)-1;
33345d01 2836 u64 ino = btrfs_ino(inode);
e02119d5
CM
2837
2838 log = root->log_root;
33345d01 2839 max_key.objectid = ino;
e02119d5
CM
2840 max_key.offset = (u64)-1;
2841 max_key.type = key_type;
2842
33345d01 2843 min_key.objectid = ino;
e02119d5
CM
2844 min_key.type = key_type;
2845 min_key.offset = min_offset;
2846
2847 path->keep_locks = 1;
2848
2849 ret = btrfs_search_forward(root, &min_key, &max_key,
de78b51a 2850 path, trans->transid);
e02119d5
CM
2851
2852 /*
2853 * we didn't find anything from this transaction, see if there
2854 * is anything at all
2855 */
33345d01
LZ
2856 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2857 min_key.objectid = ino;
e02119d5
CM
2858 min_key.type = key_type;
2859 min_key.offset = (u64)-1;
b3b4aa74 2860 btrfs_release_path(path);
e02119d5
CM
2861 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2862 if (ret < 0) {
b3b4aa74 2863 btrfs_release_path(path);
e02119d5
CM
2864 return ret;
2865 }
33345d01 2866 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
2867
2868 /* if ret == 0 there are items for this type,
2869 * create a range to tell us the last key of this type.
2870 * otherwise, there are no items in this directory after
2871 * *min_offset, and we create a range to indicate that.
2872 */
2873 if (ret == 0) {
2874 struct btrfs_key tmp;
2875 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2876 path->slots[0]);
d397712b 2877 if (key_type == tmp.type)
e02119d5 2878 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
2879 }
2880 goto done;
2881 }
2882
2883 /* go backward to find any previous key */
33345d01 2884 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
2885 if (ret == 0) {
2886 struct btrfs_key tmp;
2887 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2888 if (key_type == tmp.type) {
2889 first_offset = tmp.offset;
2890 ret = overwrite_item(trans, log, dst_path,
2891 path->nodes[0], path->slots[0],
2892 &tmp);
4a500fd1
YZ
2893 if (ret) {
2894 err = ret;
2895 goto done;
2896 }
e02119d5
CM
2897 }
2898 }
b3b4aa74 2899 btrfs_release_path(path);
e02119d5
CM
2900
2901 /* find the first key from this transaction again */
2902 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2903 if (ret != 0) {
2904 WARN_ON(1);
2905 goto done;
2906 }
2907
2908 /*
2909 * we have a block from this transaction, log every item in it
2910 * from our directory
2911 */
d397712b 2912 while (1) {
e02119d5
CM
2913 struct btrfs_key tmp;
2914 src = path->nodes[0];
2915 nritems = btrfs_header_nritems(src);
2916 for (i = path->slots[0]; i < nritems; i++) {
2917 btrfs_item_key_to_cpu(src, &min_key, i);
2918
33345d01 2919 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
2920 goto done;
2921 ret = overwrite_item(trans, log, dst_path, src, i,
2922 &min_key);
4a500fd1
YZ
2923 if (ret) {
2924 err = ret;
2925 goto done;
2926 }
e02119d5
CM
2927 }
2928 path->slots[0] = nritems;
2929
2930 /*
2931 * look ahead to the next item and see if it is also
2932 * from this directory and from this transaction
2933 */
2934 ret = btrfs_next_leaf(root, path);
2935 if (ret == 1) {
2936 last_offset = (u64)-1;
2937 goto done;
2938 }
2939 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 2940 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
2941 last_offset = (u64)-1;
2942 goto done;
2943 }
2944 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2945 ret = overwrite_item(trans, log, dst_path,
2946 path->nodes[0], path->slots[0],
2947 &tmp);
4a500fd1
YZ
2948 if (ret)
2949 err = ret;
2950 else
2951 last_offset = tmp.offset;
e02119d5
CM
2952 goto done;
2953 }
2954 }
2955done:
b3b4aa74
DS
2956 btrfs_release_path(path);
2957 btrfs_release_path(dst_path);
e02119d5 2958
4a500fd1
YZ
2959 if (err == 0) {
2960 *last_offset_ret = last_offset;
2961 /*
2962 * insert the log range keys to indicate where the log
2963 * is valid
2964 */
2965 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 2966 ino, first_offset, last_offset);
4a500fd1
YZ
2967 if (ret)
2968 err = ret;
2969 }
2970 return err;
e02119d5
CM
2971}
2972
2973/*
2974 * logging directories is very similar to logging inodes, We find all the items
2975 * from the current transaction and write them to the log.
2976 *
2977 * The recovery code scans the directory in the subvolume, and if it finds a
2978 * key in the range logged that is not present in the log tree, then it means
2979 * that dir entry was unlinked during the transaction.
2980 *
2981 * In order for that scan to work, we must include one key smaller than
2982 * the smallest logged by this transaction and one key larger than the largest
2983 * key logged by this transaction.
2984 */
2985static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2986 struct btrfs_root *root, struct inode *inode,
2987 struct btrfs_path *path,
2988 struct btrfs_path *dst_path)
2989{
2990 u64 min_key;
2991 u64 max_key;
2992 int ret;
2993 int key_type = BTRFS_DIR_ITEM_KEY;
2994
2995again:
2996 min_key = 0;
2997 max_key = 0;
d397712b 2998 while (1) {
e02119d5
CM
2999 ret = log_dir_items(trans, root, inode, path,
3000 dst_path, key_type, min_key,
3001 &max_key);
4a500fd1
YZ
3002 if (ret)
3003 return ret;
e02119d5
CM
3004 if (max_key == (u64)-1)
3005 break;
3006 min_key = max_key + 1;
3007 }
3008
3009 if (key_type == BTRFS_DIR_ITEM_KEY) {
3010 key_type = BTRFS_DIR_INDEX_KEY;
3011 goto again;
3012 }
3013 return 0;
3014}
3015
3016/*
3017 * a helper function to drop items from the log before we relog an
3018 * inode. max_key_type indicates the highest item type to remove.
3019 * This cannot be run for file data extents because it does not
3020 * free the extents they point to.
3021 */
3022static int drop_objectid_items(struct btrfs_trans_handle *trans,
3023 struct btrfs_root *log,
3024 struct btrfs_path *path,
3025 u64 objectid, int max_key_type)
3026{
3027 int ret;
3028 struct btrfs_key key;
3029 struct btrfs_key found_key;
18ec90d6 3030 int start_slot;
e02119d5
CM
3031
3032 key.objectid = objectid;
3033 key.type = max_key_type;
3034 key.offset = (u64)-1;
3035
d397712b 3036 while (1) {
e02119d5 3037 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3038 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3039 if (ret < 0)
e02119d5
CM
3040 break;
3041
3042 if (path->slots[0] == 0)
3043 break;
3044
3045 path->slots[0]--;
3046 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3047 path->slots[0]);
3048
3049 if (found_key.objectid != objectid)
3050 break;
3051
18ec90d6
JB
3052 found_key.offset = 0;
3053 found_key.type = 0;
3054 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3055 &start_slot);
3056
3057 ret = btrfs_del_items(trans, log, path, start_slot,
3058 path->slots[0] - start_slot + 1);
3059 /*
3060 * If start slot isn't 0 then we don't need to re-search, we've
3061 * found the last guy with the objectid in this tree.
3062 */
3063 if (ret || start_slot != 0)
65a246c5 3064 break;
b3b4aa74 3065 btrfs_release_path(path);
e02119d5 3066 }
b3b4aa74 3067 btrfs_release_path(path);
5bdbeb21
JB
3068 if (ret > 0)
3069 ret = 0;
4a500fd1 3070 return ret;
e02119d5
CM
3071}
3072
94edf4ae
JB
3073static void fill_inode_item(struct btrfs_trans_handle *trans,
3074 struct extent_buffer *leaf,
3075 struct btrfs_inode_item *item,
3076 struct inode *inode, int log_inode_only)
3077{
0b1c6cca
JB
3078 struct btrfs_map_token token;
3079
3080 btrfs_init_map_token(&token);
94edf4ae
JB
3081
3082 if (log_inode_only) {
3083 /* set the generation to zero so the recover code
3084 * can tell the difference between an logging
3085 * just to say 'this inode exists' and a logging
3086 * to say 'update this inode with these values'
3087 */
0b1c6cca
JB
3088 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3089 btrfs_set_token_inode_size(leaf, item, 0, &token);
94edf4ae 3090 } else {
0b1c6cca
JB
3091 btrfs_set_token_inode_generation(leaf, item,
3092 BTRFS_I(inode)->generation,
3093 &token);
3094 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3095 }
3096
3097 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3098 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3099 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3100 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3101
3102 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3103 inode->i_atime.tv_sec, &token);
3104 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3105 inode->i_atime.tv_nsec, &token);
3106
3107 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3108 inode->i_mtime.tv_sec, &token);
3109 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3110 inode->i_mtime.tv_nsec, &token);
3111
3112 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3113 inode->i_ctime.tv_sec, &token);
3114 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3115 inode->i_ctime.tv_nsec, &token);
3116
3117 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3118 &token);
3119
3120 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3121 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3122 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3123 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3124 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3125}
3126
a95249b3
JB
3127static int log_inode_item(struct btrfs_trans_handle *trans,
3128 struct btrfs_root *log, struct btrfs_path *path,
3129 struct inode *inode)
3130{
3131 struct btrfs_inode_item *inode_item;
3132 struct btrfs_key key;
3133 int ret;
3134
3135 memcpy(&key, &BTRFS_I(inode)->location, sizeof(key));
3136 ret = btrfs_insert_empty_item(trans, log, path, &key,
3137 sizeof(*inode_item));
3138 if (ret && ret != -EEXIST)
3139 return ret;
3140 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3141 struct btrfs_inode_item);
3142 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3143 btrfs_release_path(path);
3144 return 0;
3145}
3146
31ff1cd2 3147static noinline int copy_items(struct btrfs_trans_handle *trans,
d2794405 3148 struct inode *inode,
31ff1cd2
CM
3149 struct btrfs_path *dst_path,
3150 struct extent_buffer *src,
3151 int start_slot, int nr, int inode_only)
3152{
3153 unsigned long src_offset;
3154 unsigned long dst_offset;
d2794405 3155 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
31ff1cd2
CM
3156 struct btrfs_file_extent_item *extent;
3157 struct btrfs_inode_item *inode_item;
3158 int ret;
3159 struct btrfs_key *ins_keys;
3160 u32 *ins_sizes;
3161 char *ins_data;
3162 int i;
d20f7043 3163 struct list_head ordered_sums;
d2794405 3164 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
d20f7043
CM
3165
3166 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3167
3168 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3169 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3170 if (!ins_data)
3171 return -ENOMEM;
3172
31ff1cd2
CM
3173 ins_sizes = (u32 *)ins_data;
3174 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3175
3176 for (i = 0; i < nr; i++) {
3177 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3178 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3179 }
3180 ret = btrfs_insert_empty_items(trans, log, dst_path,
3181 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3182 if (ret) {
3183 kfree(ins_data);
3184 return ret;
3185 }
31ff1cd2 3186
5d4f98a2 3187 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3188 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3189 dst_path->slots[0]);
3190
3191 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3192
94edf4ae 3193 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3194 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3195 dst_path->slots[0],
3196 struct btrfs_inode_item);
94edf4ae
JB
3197 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3198 inode, inode_only == LOG_INODE_EXISTS);
3199 } else {
3200 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3201 src_offset, ins_sizes[i]);
31ff1cd2 3202 }
94edf4ae 3203
31ff1cd2
CM
3204 /* take a reference on file data extents so that truncates
3205 * or deletes of this inode don't have to relog the inode
3206 * again
3207 */
d2794405
LB
3208 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3209 !skip_csum) {
31ff1cd2
CM
3210 int found_type;
3211 extent = btrfs_item_ptr(src, start_slot + i,
3212 struct btrfs_file_extent_item);
3213
8e531cdf 3214 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3215 continue;
3216
31ff1cd2 3217 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 3218 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
3219 u64 ds, dl, cs, cl;
3220 ds = btrfs_file_extent_disk_bytenr(src,
3221 extent);
3222 /* ds == 0 is a hole */
3223 if (ds == 0)
3224 continue;
3225
3226 dl = btrfs_file_extent_disk_num_bytes(src,
3227 extent);
3228 cs = btrfs_file_extent_offset(src, extent);
3229 cl = btrfs_file_extent_num_bytes(src,
a419aef8 3230 extent);
580afd76
CM
3231 if (btrfs_file_extent_compression(src,
3232 extent)) {
3233 cs = 0;
3234 cl = dl;
3235 }
5d4f98a2
YZ
3236
3237 ret = btrfs_lookup_csums_range(
3238 log->fs_info->csum_root,
3239 ds + cs, ds + cs + cl - 1,
a2de733c 3240 &ordered_sums, 0);
3650860b
JB
3241 if (ret) {
3242 btrfs_release_path(dst_path);
3243 kfree(ins_data);
3244 return ret;
3245 }
31ff1cd2
CM
3246 }
3247 }
31ff1cd2
CM
3248 }
3249
3250 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 3251 btrfs_release_path(dst_path);
31ff1cd2 3252 kfree(ins_data);
d20f7043
CM
3253
3254 /*
3255 * we have to do this after the loop above to avoid changing the
3256 * log tree while trying to change the log tree.
3257 */
4a500fd1 3258 ret = 0;
d397712b 3259 while (!list_empty(&ordered_sums)) {
d20f7043
CM
3260 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3261 struct btrfs_ordered_sum,
3262 list);
4a500fd1
YZ
3263 if (!ret)
3264 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
3265 list_del(&sums->list);
3266 kfree(sums);
3267 }
4a500fd1 3268 return ret;
31ff1cd2
CM
3269}
3270
5dc562c5
JB
3271static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3272{
3273 struct extent_map *em1, *em2;
3274
3275 em1 = list_entry(a, struct extent_map, list);
3276 em2 = list_entry(b, struct extent_map, list);
3277
3278 if (em1->start < em2->start)
3279 return -1;
3280 else if (em1->start > em2->start)
3281 return 1;
3282 return 0;
3283}
3284
5dc562c5
JB
3285static int log_one_extent(struct btrfs_trans_handle *trans,
3286 struct inode *inode, struct btrfs_root *root,
70c8a91c 3287 struct extent_map *em, struct btrfs_path *path)
5dc562c5
JB
3288{
3289 struct btrfs_root *log = root->log_root;
70c8a91c
JB
3290 struct btrfs_file_extent_item *fi;
3291 struct extent_buffer *leaf;
2ab28f32 3292 struct btrfs_ordered_extent *ordered;
70c8a91c 3293 struct list_head ordered_sums;
0b1c6cca 3294 struct btrfs_map_token token;
5dc562c5 3295 struct btrfs_key key;
2ab28f32
JB
3296 u64 mod_start = em->mod_start;
3297 u64 mod_len = em->mod_len;
3298 u64 csum_offset;
3299 u64 csum_len;
70c8a91c
JB
3300 u64 extent_offset = em->start - em->orig_start;
3301 u64 block_len;
5dc562c5 3302 int ret;
2ab28f32 3303 int index = log->log_transid % 2;
70c8a91c 3304 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5dc562c5 3305
09a2a8f9
JB
3306 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3307 em->start + em->len, NULL, 0);
3308 if (ret)
3309 return ret;
3310
70c8a91c 3311 INIT_LIST_HEAD(&ordered_sums);
0b1c6cca 3312 btrfs_init_map_token(&token);
70c8a91c
JB
3313 key.objectid = btrfs_ino(inode);
3314 key.type = BTRFS_EXTENT_DATA_KEY;
3315 key.offset = em->start;
70c8a91c
JB
3316
3317 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*fi));
09a2a8f9 3318 if (ret)
70c8a91c 3319 return ret;
70c8a91c
JB
3320 leaf = path->nodes[0];
3321 fi = btrfs_item_ptr(leaf, path->slots[0],
3322 struct btrfs_file_extent_item);
124fe663 3323
0b1c6cca
JB
3324 btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3325 &token);
70c8a91c
JB
3326 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3327 skip_csum = true;
0b1c6cca
JB
3328 btrfs_set_token_file_extent_type(leaf, fi,
3329 BTRFS_FILE_EXTENT_PREALLOC,
3330 &token);
70c8a91c 3331 } else {
0b1c6cca
JB
3332 btrfs_set_token_file_extent_type(leaf, fi,
3333 BTRFS_FILE_EXTENT_REG,
3334 &token);
70c8a91c
JB
3335 if (em->block_start == 0)
3336 skip_csum = true;
3337 }
3338
3339 block_len = max(em->block_len, em->orig_block_len);
3340 if (em->compress_type != BTRFS_COMPRESS_NONE) {
0b1c6cca
JB
3341 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3342 em->block_start,
3343 &token);
3344 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3345 &token);
70c8a91c 3346 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
0b1c6cca
JB
3347 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3348 em->block_start -
3349 extent_offset, &token);
3350 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3351 &token);
70c8a91c 3352 } else {
0b1c6cca
JB
3353 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3354 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3355 &token);
3356 }
3357
3358 btrfs_set_token_file_extent_offset(leaf, fi,
3359 em->start - em->orig_start,
3360 &token);
3361 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
cc95bef6 3362 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
0b1c6cca
JB
3363 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3364 &token);
3365 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3366 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
70c8a91c 3367 btrfs_mark_buffer_dirty(leaf);
0aa4a17d 3368
70c8a91c 3369 btrfs_release_path(path);
70c8a91c
JB
3370 if (ret) {
3371 return ret;
3372 }
0aa4a17d 3373
70c8a91c
JB
3374 if (skip_csum)
3375 return 0;
5dc562c5 3376
192000dd
LB
3377 if (em->compress_type) {
3378 csum_offset = 0;
3379 csum_len = block_len;
3380 }
3381
2ab28f32
JB
3382 /*
3383 * First check and see if our csums are on our outstanding ordered
3384 * extents.
3385 */
3386again:
3387 spin_lock_irq(&log->log_extents_lock[index]);
3388 list_for_each_entry(ordered, &log->logged_list[index], log_list) {
3389 struct btrfs_ordered_sum *sum;
3390
3391 if (!mod_len)
3392 break;
3393
3394 if (ordered->inode != inode)
3395 continue;
3396
3397 if (ordered->file_offset + ordered->len <= mod_start ||
3398 mod_start + mod_len <= ordered->file_offset)
3399 continue;
3400
3401 /*
3402 * We are going to copy all the csums on this ordered extent, so
3403 * go ahead and adjust mod_start and mod_len in case this
3404 * ordered extent has already been logged.
3405 */
3406 if (ordered->file_offset > mod_start) {
3407 if (ordered->file_offset + ordered->len >=
3408 mod_start + mod_len)
3409 mod_len = ordered->file_offset - mod_start;
3410 /*
3411 * If we have this case
3412 *
3413 * |--------- logged extent ---------|
3414 * |----- ordered extent ----|
3415 *
3416 * Just don't mess with mod_start and mod_len, we'll
3417 * just end up logging more csums than we need and it
3418 * will be ok.
3419 */
3420 } else {
3421 if (ordered->file_offset + ordered->len <
3422 mod_start + mod_len) {
3423 mod_len = (mod_start + mod_len) -
3424 (ordered->file_offset + ordered->len);
3425 mod_start = ordered->file_offset +
3426 ordered->len;
3427 } else {
3428 mod_len = 0;
3429 }
3430 }
3431
3432 /*
3433 * To keep us from looping for the above case of an ordered
3434 * extent that falls inside of the logged extent.
3435 */
3436 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3437 &ordered->flags))
3438 continue;
3439 atomic_inc(&ordered->refs);
3440 spin_unlock_irq(&log->log_extents_lock[index]);
3441 /*
3442 * we've dropped the lock, we must either break or
3443 * start over after this.
3444 */
3445
3446 wait_event(ordered->wait, ordered->csum_bytes_left == 0);
3447
3448 list_for_each_entry(sum, &ordered->list, list) {
3449 ret = btrfs_csum_file_blocks(trans, log, sum);
3450 if (ret) {
3451 btrfs_put_ordered_extent(ordered);
3452 goto unlocked;
3453 }
3454 }
3455 btrfs_put_ordered_extent(ordered);
3456 goto again;
3457
3458 }
3459 spin_unlock_irq(&log->log_extents_lock[index]);
3460unlocked:
3461
3462 if (!mod_len || ret)
3463 return ret;
3464
3465 csum_offset = mod_start - em->start;
3466 csum_len = mod_len;
3467
70c8a91c
JB
3468 /* block start is already adjusted for the file extent offset. */
3469 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3470 em->block_start + csum_offset,
3471 em->block_start + csum_offset +
3472 csum_len - 1, &ordered_sums, 0);
3473 if (ret)
3474 return ret;
5dc562c5 3475
70c8a91c
JB
3476 while (!list_empty(&ordered_sums)) {
3477 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3478 struct btrfs_ordered_sum,
3479 list);
3480 if (!ret)
3481 ret = btrfs_csum_file_blocks(trans, log, sums);
3482 list_del(&sums->list);
3483 kfree(sums);
5dc562c5
JB
3484 }
3485
70c8a91c 3486 return ret;
5dc562c5
JB
3487}
3488
3489static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3490 struct btrfs_root *root,
3491 struct inode *inode,
70c8a91c 3492 struct btrfs_path *path)
5dc562c5 3493{
5dc562c5
JB
3494 struct extent_map *em, *n;
3495 struct list_head extents;
3496 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3497 u64 test_gen;
3498 int ret = 0;
2ab28f32 3499 int num = 0;
5dc562c5
JB
3500
3501 INIT_LIST_HEAD(&extents);
3502
5dc562c5
JB
3503 write_lock(&tree->lock);
3504 test_gen = root->fs_info->last_trans_committed;
3505
3506 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3507 list_del_init(&em->list);
2ab28f32
JB
3508
3509 /*
3510 * Just an arbitrary number, this can be really CPU intensive
3511 * once we start getting a lot of extents, and really once we
3512 * have a bunch of extents we just want to commit since it will
3513 * be faster.
3514 */
3515 if (++num > 32768) {
3516 list_del_init(&tree->modified_extents);
3517 ret = -EFBIG;
3518 goto process;
3519 }
3520
5dc562c5
JB
3521 if (em->generation <= test_gen)
3522 continue;
ff44c6e3
JB
3523 /* Need a ref to keep it from getting evicted from cache */
3524 atomic_inc(&em->refs);
3525 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 3526 list_add_tail(&em->list, &extents);
2ab28f32 3527 num++;
5dc562c5
JB
3528 }
3529
3530 list_sort(NULL, &extents, extent_cmp);
3531
2ab28f32 3532process:
5dc562c5
JB
3533 while (!list_empty(&extents)) {
3534 em = list_entry(extents.next, struct extent_map, list);
3535
3536 list_del_init(&em->list);
3537
3538 /*
3539 * If we had an error we just need to delete everybody from our
3540 * private list.
3541 */
ff44c6e3 3542 if (ret) {
201a9038 3543 clear_em_logging(tree, em);
ff44c6e3 3544 free_extent_map(em);
5dc562c5 3545 continue;
ff44c6e3
JB
3546 }
3547
3548 write_unlock(&tree->lock);
5dc562c5 3549
70c8a91c 3550 ret = log_one_extent(trans, inode, root, em, path);
ff44c6e3 3551 write_lock(&tree->lock);
201a9038
JB
3552 clear_em_logging(tree, em);
3553 free_extent_map(em);
5dc562c5 3554 }
ff44c6e3
JB
3555 WARN_ON(!list_empty(&extents));
3556 write_unlock(&tree->lock);
5dc562c5 3557
5dc562c5 3558 btrfs_release_path(path);
5dc562c5
JB
3559 return ret;
3560}
3561
e02119d5
CM
3562/* log a single inode in the tree log.
3563 * At least one parent directory for this inode must exist in the tree
3564 * or be logged already.
3565 *
3566 * Any items from this inode changed by the current transaction are copied
3567 * to the log tree. An extra reference is taken on any extents in this
3568 * file, allowing us to avoid a whole pile of corner cases around logging
3569 * blocks that have been removed from the tree.
3570 *
3571 * See LOG_INODE_ALL and related defines for a description of what inode_only
3572 * does.
3573 *
3574 * This handles both files and directories.
3575 */
12fcfd22 3576static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
3577 struct btrfs_root *root, struct inode *inode,
3578 int inode_only)
3579{
3580 struct btrfs_path *path;
3581 struct btrfs_path *dst_path;
3582 struct btrfs_key min_key;
3583 struct btrfs_key max_key;
3584 struct btrfs_root *log = root->log_root;
31ff1cd2 3585 struct extent_buffer *src = NULL;
4a500fd1 3586 int err = 0;
e02119d5 3587 int ret;
3a5f1d45 3588 int nritems;
31ff1cd2
CM
3589 int ins_start_slot = 0;
3590 int ins_nr;
5dc562c5 3591 bool fast_search = false;
33345d01 3592 u64 ino = btrfs_ino(inode);
e02119d5 3593
e02119d5 3594 path = btrfs_alloc_path();
5df67083
TI
3595 if (!path)
3596 return -ENOMEM;
e02119d5 3597 dst_path = btrfs_alloc_path();
5df67083
TI
3598 if (!dst_path) {
3599 btrfs_free_path(path);
3600 return -ENOMEM;
3601 }
e02119d5 3602
33345d01 3603 min_key.objectid = ino;
e02119d5
CM
3604 min_key.type = BTRFS_INODE_ITEM_KEY;
3605 min_key.offset = 0;
3606
33345d01 3607 max_key.objectid = ino;
12fcfd22 3608
12fcfd22 3609
5dc562c5 3610 /* today the code can only do partial logging of directories */
5269b67e
MX
3611 if (S_ISDIR(inode->i_mode) ||
3612 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3613 &BTRFS_I(inode)->runtime_flags) &&
3614 inode_only == LOG_INODE_EXISTS))
e02119d5
CM
3615 max_key.type = BTRFS_XATTR_ITEM_KEY;
3616 else
3617 max_key.type = (u8)-1;
3618 max_key.offset = (u64)-1;
3619
94edf4ae
JB
3620 /* Only run delayed items if we are a dir or a new file */
3621 if (S_ISDIR(inode->i_mode) ||
3622 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3623 ret = btrfs_commit_inode_delayed_items(trans, inode);
3624 if (ret) {
3625 btrfs_free_path(path);
3626 btrfs_free_path(dst_path);
3627 return ret;
3628 }
16cdcec7
MX
3629 }
3630
e02119d5
CM
3631 mutex_lock(&BTRFS_I(inode)->log_mutex);
3632
2ab28f32
JB
3633 btrfs_get_logged_extents(log, inode);
3634
e02119d5
CM
3635 /*
3636 * a brute force approach to making sure we get the most uptodate
3637 * copies of everything.
3638 */
3639 if (S_ISDIR(inode->i_mode)) {
3640 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3641
3642 if (inode_only == LOG_INODE_EXISTS)
3643 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 3644 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 3645 } else {
5dc562c5
JB
3646 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3647 &BTRFS_I(inode)->runtime_flags)) {
e9976151
JB
3648 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3649 &BTRFS_I(inode)->runtime_flags);
5dc562c5
JB
3650 ret = btrfs_truncate_inode_items(trans, log,
3651 inode, 0, 0);
a95249b3
JB
3652 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3653 &BTRFS_I(inode)->runtime_flags)) {
183f37fa
LB
3654 if (inode_only == LOG_INODE_ALL)
3655 fast_search = true;
a95249b3 3656 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 3657 ret = drop_objectid_items(trans, log, path, ino,
e9976151 3658 max_key.type);
a95249b3
JB
3659 } else {
3660 if (inode_only == LOG_INODE_ALL)
3661 fast_search = true;
3662 ret = log_inode_item(trans, log, dst_path, inode);
3663 if (ret) {
3664 err = ret;
3665 goto out_unlock;
3666 }
3667 goto log_extents;
5dc562c5 3668 }
a95249b3 3669
e02119d5 3670 }
4a500fd1
YZ
3671 if (ret) {
3672 err = ret;
3673 goto out_unlock;
3674 }
e02119d5
CM
3675 path->keep_locks = 1;
3676
d397712b 3677 while (1) {
31ff1cd2 3678 ins_nr = 0;
e02119d5 3679 ret = btrfs_search_forward(root, &min_key, &max_key,
de78b51a 3680 path, trans->transid);
e02119d5
CM
3681 if (ret != 0)
3682 break;
3a5f1d45 3683again:
31ff1cd2 3684 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 3685 if (min_key.objectid != ino)
e02119d5
CM
3686 break;
3687 if (min_key.type > max_key.type)
3688 break;
31ff1cd2 3689
e02119d5 3690 src = path->nodes[0];
31ff1cd2
CM
3691 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3692 ins_nr++;
3693 goto next_slot;
3694 } else if (!ins_nr) {
3695 ins_start_slot = path->slots[0];
3696 ins_nr = 1;
3697 goto next_slot;
e02119d5
CM
3698 }
3699
d2794405 3700 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
31ff1cd2 3701 ins_nr, inode_only);
4a500fd1
YZ
3702 if (ret) {
3703 err = ret;
3704 goto out_unlock;
3705 }
31ff1cd2
CM
3706 ins_nr = 1;
3707 ins_start_slot = path->slots[0];
3708next_slot:
e02119d5 3709
3a5f1d45
CM
3710 nritems = btrfs_header_nritems(path->nodes[0]);
3711 path->slots[0]++;
3712 if (path->slots[0] < nritems) {
3713 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3714 path->slots[0]);
3715 goto again;
3716 }
31ff1cd2 3717 if (ins_nr) {
d2794405 3718 ret = copy_items(trans, inode, dst_path, src,
31ff1cd2
CM
3719 ins_start_slot,
3720 ins_nr, inode_only);
4a500fd1
YZ
3721 if (ret) {
3722 err = ret;
3723 goto out_unlock;
3724 }
31ff1cd2
CM
3725 ins_nr = 0;
3726 }
b3b4aa74 3727 btrfs_release_path(path);
3a5f1d45 3728
e02119d5
CM
3729 if (min_key.offset < (u64)-1)
3730 min_key.offset++;
3731 else if (min_key.type < (u8)-1)
3732 min_key.type++;
3733 else if (min_key.objectid < (u64)-1)
3734 min_key.objectid++;
3735 else
3736 break;
3737 }
31ff1cd2 3738 if (ins_nr) {
d2794405 3739 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
31ff1cd2 3740 ins_nr, inode_only);
4a500fd1
YZ
3741 if (ret) {
3742 err = ret;
3743 goto out_unlock;
3744 }
31ff1cd2
CM
3745 ins_nr = 0;
3746 }
5dc562c5 3747
a95249b3 3748log_extents:
f3b15ccd
JB
3749 btrfs_release_path(path);
3750 btrfs_release_path(dst_path);
5dc562c5 3751 if (fast_search) {
70c8a91c 3752 ret = btrfs_log_changed_extents(trans, root, inode, dst_path);
5dc562c5
JB
3753 if (ret) {
3754 err = ret;
3755 goto out_unlock;
3756 }
06d3d22b
LB
3757 } else {
3758 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3759 struct extent_map *em, *n;
3760
bbe14267 3761 write_lock(&tree->lock);
06d3d22b
LB
3762 list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3763 list_del_init(&em->list);
bbe14267 3764 write_unlock(&tree->lock);
5dc562c5
JB
3765 }
3766
9623f9a3 3767 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
e02119d5 3768 ret = log_directory_changes(trans, root, inode, path, dst_path);
4a500fd1
YZ
3769 if (ret) {
3770 err = ret;
3771 goto out_unlock;
3772 }
e02119d5 3773 }
3a5f1d45 3774 BTRFS_I(inode)->logged_trans = trans->transid;
46d8bc34 3775 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4a500fd1 3776out_unlock:
2ab28f32
JB
3777 if (err)
3778 btrfs_free_logged_extents(log, log->log_transid);
e02119d5
CM
3779 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3780
3781 btrfs_free_path(path);
3782 btrfs_free_path(dst_path);
4a500fd1 3783 return err;
e02119d5
CM
3784}
3785
12fcfd22
CM
3786/*
3787 * follow the dentry parent pointers up the chain and see if any
3788 * of the directories in it require a full commit before they can
3789 * be logged. Returns zero if nothing special needs to be done or 1 if
3790 * a full commit is required.
3791 */
3792static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
3793 struct inode *inode,
3794 struct dentry *parent,
3795 struct super_block *sb,
3796 u64 last_committed)
e02119d5 3797{
12fcfd22
CM
3798 int ret = 0;
3799 struct btrfs_root *root;
6a912213 3800 struct dentry *old_parent = NULL;
e02119d5 3801
af4176b4
CM
3802 /*
3803 * for regular files, if its inode is already on disk, we don't
3804 * have to worry about the parents at all. This is because
3805 * we can use the last_unlink_trans field to record renames
3806 * and other fun in this file.
3807 */
3808 if (S_ISREG(inode->i_mode) &&
3809 BTRFS_I(inode)->generation <= last_committed &&
3810 BTRFS_I(inode)->last_unlink_trans <= last_committed)
3811 goto out;
3812
12fcfd22
CM
3813 if (!S_ISDIR(inode->i_mode)) {
3814 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3815 goto out;
3816 inode = parent->d_inode;
3817 }
3818
3819 while (1) {
3820 BTRFS_I(inode)->logged_trans = trans->transid;
3821 smp_mb();
3822
3823 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3824 root = BTRFS_I(inode)->root;
3825
3826 /*
3827 * make sure any commits to the log are forced
3828 * to be full commits
3829 */
3830 root->fs_info->last_trans_log_full_commit =
3831 trans->transid;
3832 ret = 1;
3833 break;
3834 }
3835
3836 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3837 break;
3838
76dda93c 3839 if (IS_ROOT(parent))
12fcfd22
CM
3840 break;
3841
6a912213
JB
3842 parent = dget_parent(parent);
3843 dput(old_parent);
3844 old_parent = parent;
12fcfd22
CM
3845 inode = parent->d_inode;
3846
3847 }
6a912213 3848 dput(old_parent);
12fcfd22 3849out:
e02119d5
CM
3850 return ret;
3851}
3852
3853/*
3854 * helper function around btrfs_log_inode to make sure newly created
3855 * parent directories also end up in the log. A minimal inode and backref
3856 * only logging is done of any parent directories that are older than
3857 * the last committed transaction
3858 */
48a3b636
ES
3859static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3860 struct btrfs_root *root, struct inode *inode,
3861 struct dentry *parent, int exists_only)
e02119d5 3862{
12fcfd22 3863 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
e02119d5 3864 struct super_block *sb;
6a912213 3865 struct dentry *old_parent = NULL;
12fcfd22
CM
3866 int ret = 0;
3867 u64 last_committed = root->fs_info->last_trans_committed;
3868
3869 sb = inode->i_sb;
3870
3a5e1404
SW
3871 if (btrfs_test_opt(root, NOTREELOG)) {
3872 ret = 1;
3873 goto end_no_trans;
3874 }
3875
12fcfd22
CM
3876 if (root->fs_info->last_trans_log_full_commit >
3877 root->fs_info->last_trans_committed) {
3878 ret = 1;
3879 goto end_no_trans;
3880 }
3881
76dda93c
YZ
3882 if (root != BTRFS_I(inode)->root ||
3883 btrfs_root_refs(&root->root_item) == 0) {
3884 ret = 1;
3885 goto end_no_trans;
3886 }
3887
12fcfd22
CM
3888 ret = check_parent_dirs_for_sync(trans, inode, parent,
3889 sb, last_committed);
3890 if (ret)
3891 goto end_no_trans;
e02119d5 3892
22ee6985 3893 if (btrfs_inode_in_log(inode, trans->transid)) {
257c62e1
CM
3894 ret = BTRFS_NO_LOG_SYNC;
3895 goto end_no_trans;
3896 }
3897
4a500fd1
YZ
3898 ret = start_log_trans(trans, root);
3899 if (ret)
3900 goto end_trans;
e02119d5 3901
12fcfd22 3902 ret = btrfs_log_inode(trans, root, inode, inode_only);
4a500fd1
YZ
3903 if (ret)
3904 goto end_trans;
12fcfd22 3905
af4176b4
CM
3906 /*
3907 * for regular files, if its inode is already on disk, we don't
3908 * have to worry about the parents at all. This is because
3909 * we can use the last_unlink_trans field to record renames
3910 * and other fun in this file.
3911 */
3912 if (S_ISREG(inode->i_mode) &&
3913 BTRFS_I(inode)->generation <= last_committed &&
4a500fd1
YZ
3914 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3915 ret = 0;
3916 goto end_trans;
3917 }
af4176b4
CM
3918
3919 inode_only = LOG_INODE_EXISTS;
12fcfd22
CM
3920 while (1) {
3921 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
e02119d5
CM
3922 break;
3923
12fcfd22 3924 inode = parent->d_inode;
76dda93c
YZ
3925 if (root != BTRFS_I(inode)->root)
3926 break;
3927
12fcfd22
CM
3928 if (BTRFS_I(inode)->generation >
3929 root->fs_info->last_trans_committed) {
3930 ret = btrfs_log_inode(trans, root, inode, inode_only);
4a500fd1
YZ
3931 if (ret)
3932 goto end_trans;
12fcfd22 3933 }
76dda93c 3934 if (IS_ROOT(parent))
e02119d5 3935 break;
12fcfd22 3936
6a912213
JB
3937 parent = dget_parent(parent);
3938 dput(old_parent);
3939 old_parent = parent;
e02119d5 3940 }
12fcfd22 3941 ret = 0;
4a500fd1 3942end_trans:
6a912213 3943 dput(old_parent);
4a500fd1 3944 if (ret < 0) {
4a500fd1
YZ
3945 root->fs_info->last_trans_log_full_commit = trans->transid;
3946 ret = 1;
3947 }
12fcfd22
CM
3948 btrfs_end_log_trans(root);
3949end_no_trans:
3950 return ret;
e02119d5
CM
3951}
3952
3953/*
3954 * it is not safe to log dentry if the chunk root has added new
3955 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3956 * If this returns 1, you must commit the transaction to safely get your
3957 * data on disk.
3958 */
3959int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3960 struct btrfs_root *root, struct dentry *dentry)
3961{
6a912213
JB
3962 struct dentry *parent = dget_parent(dentry);
3963 int ret;
3964
3965 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3966 dput(parent);
3967
3968 return ret;
e02119d5
CM
3969}
3970
3971/*
3972 * should be called during mount to recover any replay any log trees
3973 * from the FS
3974 */
3975int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3976{
3977 int ret;
3978 struct btrfs_path *path;
3979 struct btrfs_trans_handle *trans;
3980 struct btrfs_key key;
3981 struct btrfs_key found_key;
3982 struct btrfs_key tmp_key;
3983 struct btrfs_root *log;
3984 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3985 struct walk_control wc = {
3986 .process_func = process_one_buffer,
3987 .stage = 0,
3988 };
3989
e02119d5 3990 path = btrfs_alloc_path();
db5b493a
TI
3991 if (!path)
3992 return -ENOMEM;
3993
3994 fs_info->log_root_recovering = 1;
e02119d5 3995
4a500fd1 3996 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
3997 if (IS_ERR(trans)) {
3998 ret = PTR_ERR(trans);
3999 goto error;
4000 }
e02119d5
CM
4001
4002 wc.trans = trans;
4003 wc.pin = 1;
4004
db5b493a 4005 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa
JM
4006 if (ret) {
4007 btrfs_error(fs_info, ret, "Failed to pin buffers while "
4008 "recovering log root tree.");
4009 goto error;
4010 }
e02119d5
CM
4011
4012again:
4013 key.objectid = BTRFS_TREE_LOG_OBJECTID;
4014 key.offset = (u64)-1;
4015 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4016
d397712b 4017 while (1) {
e02119d5 4018 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
4019
4020 if (ret < 0) {
4021 btrfs_error(fs_info, ret,
4022 "Couldn't find tree log root.");
4023 goto error;
4024 }
e02119d5
CM
4025 if (ret > 0) {
4026 if (path->slots[0] == 0)
4027 break;
4028 path->slots[0]--;
4029 }
4030 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4031 path->slots[0]);
b3b4aa74 4032 btrfs_release_path(path);
e02119d5
CM
4033 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4034 break;
4035
cb517eab 4036 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
4037 if (IS_ERR(log)) {
4038 ret = PTR_ERR(log);
4039 btrfs_error(fs_info, ret,
4040 "Couldn't read tree log root.");
4041 goto error;
4042 }
e02119d5
CM
4043
4044 tmp_key.objectid = found_key.offset;
4045 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4046 tmp_key.offset = (u64)-1;
4047
4048 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
4049 if (IS_ERR(wc.replay_dest)) {
4050 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
4051 free_extent_buffer(log->node);
4052 free_extent_buffer(log->commit_root);
4053 kfree(log);
79787eaa
JM
4054 btrfs_error(fs_info, ret, "Couldn't read target root "
4055 "for tree log recovery.");
4056 goto error;
4057 }
e02119d5 4058
07d400a6 4059 wc.replay_dest->log_root = log;
5d4f98a2 4060 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 4061 ret = walk_log_tree(trans, log, &wc);
e02119d5 4062
b50c6e25 4063 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
4064 ret = fixup_inode_link_counts(trans, wc.replay_dest,
4065 path);
e02119d5
CM
4066 }
4067
4068 key.offset = found_key.offset - 1;
07d400a6 4069 wc.replay_dest->log_root = NULL;
e02119d5 4070 free_extent_buffer(log->node);
b263c2c8 4071 free_extent_buffer(log->commit_root);
e02119d5
CM
4072 kfree(log);
4073
b50c6e25
JB
4074 if (ret)
4075 goto error;
4076
e02119d5
CM
4077 if (found_key.offset == 0)
4078 break;
4079 }
b3b4aa74 4080 btrfs_release_path(path);
e02119d5
CM
4081
4082 /* step one is to pin it all, step two is to replay just inodes */
4083 if (wc.pin) {
4084 wc.pin = 0;
4085 wc.process_func = replay_one_buffer;
4086 wc.stage = LOG_WALK_REPLAY_INODES;
4087 goto again;
4088 }
4089 /* step three is to replay everything */
4090 if (wc.stage < LOG_WALK_REPLAY_ALL) {
4091 wc.stage++;
4092 goto again;
4093 }
4094
4095 btrfs_free_path(path);
4096
abefa55a
JB
4097 /* step 4: commit the transaction, which also unpins the blocks */
4098 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4099 if (ret)
4100 return ret;
4101
e02119d5
CM
4102 free_extent_buffer(log_root_tree->node);
4103 log_root_tree->log_root = NULL;
4104 fs_info->log_root_recovering = 0;
e02119d5 4105 kfree(log_root_tree);
79787eaa 4106
abefa55a 4107 return 0;
79787eaa 4108error:
b50c6e25
JB
4109 if (wc.trans)
4110 btrfs_end_transaction(wc.trans, fs_info->tree_root);
79787eaa
JM
4111 btrfs_free_path(path);
4112 return ret;
e02119d5 4113}
12fcfd22
CM
4114
4115/*
4116 * there are some corner cases where we want to force a full
4117 * commit instead of allowing a directory to be logged.
4118 *
4119 * They revolve around files there were unlinked from the directory, and
4120 * this function updates the parent directory so that a full commit is
4121 * properly done if it is fsync'd later after the unlinks are done.
4122 */
4123void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4124 struct inode *dir, struct inode *inode,
4125 int for_rename)
4126{
af4176b4
CM
4127 /*
4128 * when we're logging a file, if it hasn't been renamed
4129 * or unlinked, and its inode is fully committed on disk,
4130 * we don't have to worry about walking up the directory chain
4131 * to log its parents.
4132 *
4133 * So, we use the last_unlink_trans field to put this transid
4134 * into the file. When the file is logged we check it and
4135 * don't log the parents if the file is fully on disk.
4136 */
4137 if (S_ISREG(inode->i_mode))
4138 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4139
12fcfd22
CM
4140 /*
4141 * if this directory was already logged any new
4142 * names for this file/dir will get recorded
4143 */
4144 smp_mb();
4145 if (BTRFS_I(dir)->logged_trans == trans->transid)
4146 return;
4147
4148 /*
4149 * if the inode we're about to unlink was logged,
4150 * the log will be properly updated for any new names
4151 */
4152 if (BTRFS_I(inode)->logged_trans == trans->transid)
4153 return;
4154
4155 /*
4156 * when renaming files across directories, if the directory
4157 * there we're unlinking from gets fsync'd later on, there's
4158 * no way to find the destination directory later and fsync it
4159 * properly. So, we have to be conservative and force commits
4160 * so the new name gets discovered.
4161 */
4162 if (for_rename)
4163 goto record;
4164
4165 /* we can safely do the unlink without any special recording */
4166 return;
4167
4168record:
4169 BTRFS_I(dir)->last_unlink_trans = trans->transid;
4170}
4171
4172/*
4173 * Call this after adding a new name for a file and it will properly
4174 * update the log to reflect the new name.
4175 *
4176 * It will return zero if all goes well, and it will return 1 if a
4177 * full transaction commit is required.
4178 */
4179int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4180 struct inode *inode, struct inode *old_dir,
4181 struct dentry *parent)
4182{
4183 struct btrfs_root * root = BTRFS_I(inode)->root;
4184
af4176b4
CM
4185 /*
4186 * this will force the logging code to walk the dentry chain
4187 * up for the file
4188 */
4189 if (S_ISREG(inode->i_mode))
4190 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4191
12fcfd22
CM
4192 /*
4193 * if this inode hasn't been logged and directory we're renaming it
4194 * from hasn't been logged, we don't need to log it
4195 */
4196 if (BTRFS_I(inode)->logged_trans <=
4197 root->fs_info->last_trans_committed &&
4198 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4199 root->fs_info->last_trans_committed))
4200 return 0;
4201
4202 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
4203}
4204
This page took 0.691208 seconds and 5 git commands to generate.