btrfs: simplify kmalloc+copy_from_user to memdup_user
[deliverable/linux.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
c6adc9cc 21#include <linux/blkdev.h>
5dc562c5 22#include <linux/list_sort.h>
e02119d5
CM
23#include "ctree.h"
24#include "transaction.h"
25#include "disk-io.h"
26#include "locking.h"
27#include "print-tree.h"
f186373f 28#include "backref.h"
e02119d5 29#include "compat.h"
b2950863 30#include "tree-log.h"
f186373f 31#include "hash.h"
e02119d5
CM
32
33/* magic values for the inode_only field in btrfs_log_inode:
34 *
35 * LOG_INODE_ALL means to log everything
36 * LOG_INODE_EXISTS means to log just enough to recreate the inode
37 * during log replay
38 */
39#define LOG_INODE_ALL 0
40#define LOG_INODE_EXISTS 1
41
12fcfd22
CM
42/*
43 * directory trouble cases
44 *
45 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
46 * log, we must force a full commit before doing an fsync of the directory
47 * where the unlink was done.
48 * ---> record transid of last unlink/rename per directory
49 *
50 * mkdir foo/some_dir
51 * normal commit
52 * rename foo/some_dir foo2/some_dir
53 * mkdir foo/some_dir
54 * fsync foo/some_dir/some_file
55 *
56 * The fsync above will unlink the original some_dir without recording
57 * it in its new location (foo2). After a crash, some_dir will be gone
58 * unless the fsync of some_file forces a full commit
59 *
60 * 2) we must log any new names for any file or dir that is in the fsync
61 * log. ---> check inode while renaming/linking.
62 *
63 * 2a) we must log any new names for any file or dir during rename
64 * when the directory they are being removed from was logged.
65 * ---> check inode and old parent dir during rename
66 *
67 * 2a is actually the more important variant. With the extra logging
68 * a crash might unlink the old name without recreating the new one
69 *
70 * 3) after a crash, we must go through any directories with a link count
71 * of zero and redo the rm -rf
72 *
73 * mkdir f1/foo
74 * normal commit
75 * rm -rf f1/foo
76 * fsync(f1)
77 *
78 * The directory f1 was fully removed from the FS, but fsync was never
79 * called on f1, only its parent dir. After a crash the rm -rf must
80 * be replayed. This must be able to recurse down the entire
81 * directory tree. The inode link count fixup code takes care of the
82 * ugly details.
83 */
84
e02119d5
CM
85/*
86 * stages for the tree walking. The first
87 * stage (0) is to only pin down the blocks we find
88 * the second stage (1) is to make sure that all the inodes
89 * we find in the log are created in the subvolume.
90 *
91 * The last stage is to deal with directories and links and extents
92 * and all the other fun semantics
93 */
94#define LOG_WALK_PIN_ONLY 0
95#define LOG_WALK_REPLAY_INODES 1
dd8e7217
JB
96#define LOG_WALK_REPLAY_DIR_INDEX 2
97#define LOG_WALK_REPLAY_ALL 3
e02119d5 98
12fcfd22 99static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
100 struct btrfs_root *root, struct inode *inode,
101 int inode_only);
ec051c0f
YZ
102static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root,
104 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
105static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_root *log,
108 struct btrfs_path *path,
109 u64 dirid, int del_all);
e02119d5
CM
110
111/*
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
114 *
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
118 *
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
124 *
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
128 *
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
132 */
133
e02119d5
CM
134/*
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
138 */
139static int start_log_trans(struct btrfs_trans_handle *trans,
140 struct btrfs_root *root)
141{
142 int ret;
4a500fd1 143 int err = 0;
7237f183
YZ
144
145 mutex_lock(&root->log_mutex);
146 if (root->log_root) {
ff782e0a
JB
147 if (!root->log_start_pid) {
148 root->log_start_pid = current->pid;
149 root->log_multiple_pids = false;
150 } else if (root->log_start_pid != current->pid) {
151 root->log_multiple_pids = true;
152 }
153
2ecb7923 154 atomic_inc(&root->log_batch);
7237f183
YZ
155 atomic_inc(&root->log_writers);
156 mutex_unlock(&root->log_mutex);
157 return 0;
158 }
ff782e0a
JB
159 root->log_multiple_pids = false;
160 root->log_start_pid = current->pid;
e02119d5
CM
161 mutex_lock(&root->fs_info->tree_log_mutex);
162 if (!root->fs_info->log_root_tree) {
163 ret = btrfs_init_log_root_tree(trans, root->fs_info);
4a500fd1
YZ
164 if (ret)
165 err = ret;
e02119d5 166 }
4a500fd1 167 if (err == 0 && !root->log_root) {
e02119d5 168 ret = btrfs_add_log_tree(trans, root);
4a500fd1
YZ
169 if (ret)
170 err = ret;
e02119d5 171 }
e02119d5 172 mutex_unlock(&root->fs_info->tree_log_mutex);
2ecb7923 173 atomic_inc(&root->log_batch);
7237f183
YZ
174 atomic_inc(&root->log_writers);
175 mutex_unlock(&root->log_mutex);
4a500fd1 176 return err;
e02119d5
CM
177}
178
179/*
180 * returns 0 if there was a log transaction running and we were able
181 * to join, or returns -ENOENT if there were not transactions
182 * in progress
183 */
184static int join_running_log_trans(struct btrfs_root *root)
185{
186 int ret = -ENOENT;
187
188 smp_mb();
189 if (!root->log_root)
190 return -ENOENT;
191
7237f183 192 mutex_lock(&root->log_mutex);
e02119d5
CM
193 if (root->log_root) {
194 ret = 0;
7237f183 195 atomic_inc(&root->log_writers);
e02119d5 196 }
7237f183 197 mutex_unlock(&root->log_mutex);
e02119d5
CM
198 return ret;
199}
200
12fcfd22
CM
201/*
202 * This either makes the current running log transaction wait
203 * until you call btrfs_end_log_trans() or it makes any future
204 * log transactions wait until you call btrfs_end_log_trans()
205 */
206int btrfs_pin_log_trans(struct btrfs_root *root)
207{
208 int ret = -ENOENT;
209
210 mutex_lock(&root->log_mutex);
211 atomic_inc(&root->log_writers);
212 mutex_unlock(&root->log_mutex);
213 return ret;
214}
215
e02119d5
CM
216/*
217 * indicate we're done making changes to the log tree
218 * and wake up anyone waiting to do a sync
219 */
143bede5 220void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 221{
7237f183
YZ
222 if (atomic_dec_and_test(&root->log_writers)) {
223 smp_mb();
224 if (waitqueue_active(&root->log_writer_wait))
225 wake_up(&root->log_writer_wait);
226 }
e02119d5
CM
227}
228
229
230/*
231 * the walk control struct is used to pass state down the chain when
232 * processing the log tree. The stage field tells us which part
233 * of the log tree processing we are currently doing. The others
234 * are state fields used for that specific part
235 */
236struct walk_control {
237 /* should we free the extent on disk when done? This is used
238 * at transaction commit time while freeing a log tree
239 */
240 int free;
241
242 /* should we write out the extent buffer? This is used
243 * while flushing the log tree to disk during a sync
244 */
245 int write;
246
247 /* should we wait for the extent buffer io to finish? Also used
248 * while flushing the log tree to disk for a sync
249 */
250 int wait;
251
252 /* pin only walk, we record which extents on disk belong to the
253 * log trees
254 */
255 int pin;
256
257 /* what stage of the replay code we're currently in */
258 int stage;
259
260 /* the root we are currently replaying */
261 struct btrfs_root *replay_dest;
262
263 /* the trans handle for the current replay */
264 struct btrfs_trans_handle *trans;
265
266 /* the function that gets used to process blocks we find in the
267 * tree. Note the extent_buffer might not be up to date when it is
268 * passed in, and it must be checked or read if you need the data
269 * inside it
270 */
271 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
272 struct walk_control *wc, u64 gen);
273};
274
275/*
276 * process_func used to pin down extents, write them or wait on them
277 */
278static int process_one_buffer(struct btrfs_root *log,
279 struct extent_buffer *eb,
280 struct walk_control *wc, u64 gen)
281{
b50c6e25
JB
282 int ret = 0;
283
8c2a1a30
JB
284 /*
285 * If this fs is mixed then we need to be able to process the leaves to
286 * pin down any logged extents, so we have to read the block.
287 */
288 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
289 ret = btrfs_read_buffer(eb, gen);
290 if (ret)
291 return ret;
292 }
293
04018de5 294 if (wc->pin)
b50c6e25
JB
295 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
296 eb->start, eb->len);
e02119d5 297
b50c6e25 298 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30
JB
299 if (wc->pin && btrfs_header_level(eb) == 0)
300 ret = btrfs_exclude_logged_extents(log, eb);
e02119d5
CM
301 if (wc->write)
302 btrfs_write_tree_block(eb);
303 if (wc->wait)
304 btrfs_wait_tree_block_writeback(eb);
305 }
b50c6e25 306 return ret;
e02119d5
CM
307}
308
309/*
310 * Item overwrite used by replay and tree logging. eb, slot and key all refer
311 * to the src data we are copying out.
312 *
313 * root is the tree we are copying into, and path is a scratch
314 * path for use in this function (it should be released on entry and
315 * will be released on exit).
316 *
317 * If the key is already in the destination tree the existing item is
318 * overwritten. If the existing item isn't big enough, it is extended.
319 * If it is too large, it is truncated.
320 *
321 * If the key isn't in the destination yet, a new item is inserted.
322 */
323static noinline int overwrite_item(struct btrfs_trans_handle *trans,
324 struct btrfs_root *root,
325 struct btrfs_path *path,
326 struct extent_buffer *eb, int slot,
327 struct btrfs_key *key)
328{
329 int ret;
330 u32 item_size;
331 u64 saved_i_size = 0;
332 int save_old_i_size = 0;
333 unsigned long src_ptr;
334 unsigned long dst_ptr;
335 int overwrite_root = 0;
4bc4bee4 336 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
337
338 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
339 overwrite_root = 1;
340
341 item_size = btrfs_item_size_nr(eb, slot);
342 src_ptr = btrfs_item_ptr_offset(eb, slot);
343
344 /* look for the key in the destination tree */
345 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
346 if (ret < 0)
347 return ret;
348
e02119d5
CM
349 if (ret == 0) {
350 char *src_copy;
351 char *dst_copy;
352 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
353 path->slots[0]);
354 if (dst_size != item_size)
355 goto insert;
356
357 if (item_size == 0) {
b3b4aa74 358 btrfs_release_path(path);
e02119d5
CM
359 return 0;
360 }
361 dst_copy = kmalloc(item_size, GFP_NOFS);
362 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 363 if (!dst_copy || !src_copy) {
b3b4aa74 364 btrfs_release_path(path);
2a29edc6 365 kfree(dst_copy);
366 kfree(src_copy);
367 return -ENOMEM;
368 }
e02119d5
CM
369
370 read_extent_buffer(eb, src_copy, src_ptr, item_size);
371
372 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
373 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
374 item_size);
375 ret = memcmp(dst_copy, src_copy, item_size);
376
377 kfree(dst_copy);
378 kfree(src_copy);
379 /*
380 * they have the same contents, just return, this saves
381 * us from cowing blocks in the destination tree and doing
382 * extra writes that may not have been done by a previous
383 * sync
384 */
385 if (ret == 0) {
b3b4aa74 386 btrfs_release_path(path);
e02119d5
CM
387 return 0;
388 }
389
4bc4bee4
JB
390 /*
391 * We need to load the old nbytes into the inode so when we
392 * replay the extents we've logged we get the right nbytes.
393 */
394 if (inode_item) {
395 struct btrfs_inode_item *item;
396 u64 nbytes;
d555438b 397 u32 mode;
4bc4bee4
JB
398
399 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
400 struct btrfs_inode_item);
401 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
402 item = btrfs_item_ptr(eb, slot,
403 struct btrfs_inode_item);
404 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
405
406 /*
407 * If this is a directory we need to reset the i_size to
408 * 0 so that we can set it up properly when replaying
409 * the rest of the items in this log.
410 */
411 mode = btrfs_inode_mode(eb, item);
412 if (S_ISDIR(mode))
413 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
414 }
415 } else if (inode_item) {
416 struct btrfs_inode_item *item;
d555438b 417 u32 mode;
4bc4bee4
JB
418
419 /*
420 * New inode, set nbytes to 0 so that the nbytes comes out
421 * properly when we replay the extents.
422 */
423 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
424 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
425
426 /*
427 * If this is a directory we need to reset the i_size to 0 so
428 * that we can set it up properly when replaying the rest of
429 * the items in this log.
430 */
431 mode = btrfs_inode_mode(eb, item);
432 if (S_ISDIR(mode))
433 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
434 }
435insert:
b3b4aa74 436 btrfs_release_path(path);
e02119d5
CM
437 /* try to insert the key into the destination tree */
438 ret = btrfs_insert_empty_item(trans, root, path,
439 key, item_size);
440
441 /* make sure any existing item is the correct size */
442 if (ret == -EEXIST) {
443 u32 found_size;
444 found_size = btrfs_item_size_nr(path->nodes[0],
445 path->slots[0]);
143bede5 446 if (found_size > item_size)
afe5fea7 447 btrfs_truncate_item(root, path, item_size, 1);
143bede5 448 else if (found_size < item_size)
4b90c680 449 btrfs_extend_item(root, path,
143bede5 450 item_size - found_size);
e02119d5 451 } else if (ret) {
4a500fd1 452 return ret;
e02119d5
CM
453 }
454 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
455 path->slots[0]);
456
457 /* don't overwrite an existing inode if the generation number
458 * was logged as zero. This is done when the tree logging code
459 * is just logging an inode to make sure it exists after recovery.
460 *
461 * Also, don't overwrite i_size on directories during replay.
462 * log replay inserts and removes directory items based on the
463 * state of the tree found in the subvolume, and i_size is modified
464 * as it goes
465 */
466 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
467 struct btrfs_inode_item *src_item;
468 struct btrfs_inode_item *dst_item;
469
470 src_item = (struct btrfs_inode_item *)src_ptr;
471 dst_item = (struct btrfs_inode_item *)dst_ptr;
472
473 if (btrfs_inode_generation(eb, src_item) == 0)
474 goto no_copy;
475
476 if (overwrite_root &&
477 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
478 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
479 save_old_i_size = 1;
480 saved_i_size = btrfs_inode_size(path->nodes[0],
481 dst_item);
482 }
483 }
484
485 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
486 src_ptr, item_size);
487
488 if (save_old_i_size) {
489 struct btrfs_inode_item *dst_item;
490 dst_item = (struct btrfs_inode_item *)dst_ptr;
491 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
492 }
493
494 /* make sure the generation is filled in */
495 if (key->type == BTRFS_INODE_ITEM_KEY) {
496 struct btrfs_inode_item *dst_item;
497 dst_item = (struct btrfs_inode_item *)dst_ptr;
498 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
499 btrfs_set_inode_generation(path->nodes[0], dst_item,
500 trans->transid);
501 }
502 }
503no_copy:
504 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 505 btrfs_release_path(path);
e02119d5
CM
506 return 0;
507}
508
509/*
510 * simple helper to read an inode off the disk from a given root
511 * This can only be called for subvolume roots and not for the log
512 */
513static noinline struct inode *read_one_inode(struct btrfs_root *root,
514 u64 objectid)
515{
5d4f98a2 516 struct btrfs_key key;
e02119d5 517 struct inode *inode;
e02119d5 518
5d4f98a2
YZ
519 key.objectid = objectid;
520 key.type = BTRFS_INODE_ITEM_KEY;
521 key.offset = 0;
73f73415 522 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
523 if (IS_ERR(inode)) {
524 inode = NULL;
525 } else if (is_bad_inode(inode)) {
e02119d5
CM
526 iput(inode);
527 inode = NULL;
528 }
529 return inode;
530}
531
532/* replays a single extent in 'eb' at 'slot' with 'key' into the
533 * subvolume 'root'. path is released on entry and should be released
534 * on exit.
535 *
536 * extents in the log tree have not been allocated out of the extent
537 * tree yet. So, this completes the allocation, taking a reference
538 * as required if the extent already exists or creating a new extent
539 * if it isn't in the extent allocation tree yet.
540 *
541 * The extent is inserted into the file, dropping any existing extents
542 * from the file that overlap the new one.
543 */
544static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
545 struct btrfs_root *root,
546 struct btrfs_path *path,
547 struct extent_buffer *eb, int slot,
548 struct btrfs_key *key)
549{
550 int found_type;
e02119d5 551 u64 extent_end;
e02119d5 552 u64 start = key->offset;
4bc4bee4 553 u64 nbytes = 0;
e02119d5
CM
554 struct btrfs_file_extent_item *item;
555 struct inode *inode = NULL;
556 unsigned long size;
557 int ret = 0;
558
559 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
560 found_type = btrfs_file_extent_type(eb, item);
561
d899e052 562 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
563 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
564 nbytes = btrfs_file_extent_num_bytes(eb, item);
565 extent_end = start + nbytes;
566
567 /*
568 * We don't add to the inodes nbytes if we are prealloc or a
569 * hole.
570 */
571 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
572 nbytes = 0;
573 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818 574 size = btrfs_file_extent_inline_len(eb, item);
4bc4bee4 575 nbytes = btrfs_file_extent_ram_bytes(eb, item);
fda2832f 576 extent_end = ALIGN(start + size, root->sectorsize);
e02119d5
CM
577 } else {
578 ret = 0;
579 goto out;
580 }
581
582 inode = read_one_inode(root, key->objectid);
583 if (!inode) {
584 ret = -EIO;
585 goto out;
586 }
587
588 /*
589 * first check to see if we already have this extent in the
590 * file. This must be done before the btrfs_drop_extents run
591 * so we don't try to drop this extent.
592 */
33345d01 593 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
e02119d5
CM
594 start, 0);
595
d899e052
YZ
596 if (ret == 0 &&
597 (found_type == BTRFS_FILE_EXTENT_REG ||
598 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
599 struct btrfs_file_extent_item cmp1;
600 struct btrfs_file_extent_item cmp2;
601 struct btrfs_file_extent_item *existing;
602 struct extent_buffer *leaf;
603
604 leaf = path->nodes[0];
605 existing = btrfs_item_ptr(leaf, path->slots[0],
606 struct btrfs_file_extent_item);
607
608 read_extent_buffer(eb, &cmp1, (unsigned long)item,
609 sizeof(cmp1));
610 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
611 sizeof(cmp2));
612
613 /*
614 * we already have a pointer to this exact extent,
615 * we don't have to do anything
616 */
617 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 618 btrfs_release_path(path);
e02119d5
CM
619 goto out;
620 }
621 }
b3b4aa74 622 btrfs_release_path(path);
e02119d5
CM
623
624 /* drop any overlapping extents */
2671485d 625 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
626 if (ret)
627 goto out;
e02119d5 628
07d400a6
YZ
629 if (found_type == BTRFS_FILE_EXTENT_REG ||
630 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 631 u64 offset;
07d400a6
YZ
632 unsigned long dest_offset;
633 struct btrfs_key ins;
634
635 ret = btrfs_insert_empty_item(trans, root, path, key,
636 sizeof(*item));
3650860b
JB
637 if (ret)
638 goto out;
07d400a6
YZ
639 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
640 path->slots[0]);
641 copy_extent_buffer(path->nodes[0], eb, dest_offset,
642 (unsigned long)item, sizeof(*item));
643
644 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
645 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
646 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 647 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6
YZ
648
649 if (ins.objectid > 0) {
650 u64 csum_start;
651 u64 csum_end;
652 LIST_HEAD(ordered_sums);
653 /*
654 * is this extent already allocated in the extent
655 * allocation tree? If so, just add a reference
656 */
657 ret = btrfs_lookup_extent(root, ins.objectid,
658 ins.offset);
659 if (ret == 0) {
660 ret = btrfs_inc_extent_ref(trans, root,
661 ins.objectid, ins.offset,
5d4f98a2 662 0, root->root_key.objectid,
66d7e7f0 663 key->objectid, offset, 0);
b50c6e25
JB
664 if (ret)
665 goto out;
07d400a6
YZ
666 } else {
667 /*
668 * insert the extent pointer in the extent
669 * allocation tree
670 */
5d4f98a2
YZ
671 ret = btrfs_alloc_logged_file_extent(trans,
672 root, root->root_key.objectid,
673 key->objectid, offset, &ins);
b50c6e25
JB
674 if (ret)
675 goto out;
07d400a6 676 }
b3b4aa74 677 btrfs_release_path(path);
07d400a6
YZ
678
679 if (btrfs_file_extent_compression(eb, item)) {
680 csum_start = ins.objectid;
681 csum_end = csum_start + ins.offset;
682 } else {
683 csum_start = ins.objectid +
684 btrfs_file_extent_offset(eb, item);
685 csum_end = csum_start +
686 btrfs_file_extent_num_bytes(eb, item);
687 }
688
689 ret = btrfs_lookup_csums_range(root->log_root,
690 csum_start, csum_end - 1,
a2de733c 691 &ordered_sums, 0);
3650860b
JB
692 if (ret)
693 goto out;
07d400a6
YZ
694 while (!list_empty(&ordered_sums)) {
695 struct btrfs_ordered_sum *sums;
696 sums = list_entry(ordered_sums.next,
697 struct btrfs_ordered_sum,
698 list);
3650860b
JB
699 if (!ret)
700 ret = btrfs_csum_file_blocks(trans,
07d400a6
YZ
701 root->fs_info->csum_root,
702 sums);
07d400a6
YZ
703 list_del(&sums->list);
704 kfree(sums);
705 }
3650860b
JB
706 if (ret)
707 goto out;
07d400a6 708 } else {
b3b4aa74 709 btrfs_release_path(path);
07d400a6
YZ
710 }
711 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
712 /* inline extents are easy, we just overwrite them */
713 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
714 if (ret)
715 goto out;
07d400a6 716 }
e02119d5 717
4bc4bee4 718 inode_add_bytes(inode, nbytes);
b9959295 719 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
720out:
721 if (inode)
722 iput(inode);
723 return ret;
724}
725
726/*
727 * when cleaning up conflicts between the directory names in the
728 * subvolume, directory names in the log and directory names in the
729 * inode back references, we may have to unlink inodes from directories.
730 *
731 * This is a helper function to do the unlink of a specific directory
732 * item
733 */
734static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
735 struct btrfs_root *root,
736 struct btrfs_path *path,
737 struct inode *dir,
738 struct btrfs_dir_item *di)
739{
740 struct inode *inode;
741 char *name;
742 int name_len;
743 struct extent_buffer *leaf;
744 struct btrfs_key location;
745 int ret;
746
747 leaf = path->nodes[0];
748
749 btrfs_dir_item_key_to_cpu(leaf, di, &location);
750 name_len = btrfs_dir_name_len(leaf, di);
751 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 752 if (!name)
753 return -ENOMEM;
754
e02119d5 755 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 756 btrfs_release_path(path);
e02119d5
CM
757
758 inode = read_one_inode(root, location.objectid);
c00e9493 759 if (!inode) {
3650860b
JB
760 ret = -EIO;
761 goto out;
c00e9493 762 }
e02119d5 763
ec051c0f 764 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
765 if (ret)
766 goto out;
12fcfd22 767
e02119d5 768 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3650860b
JB
769 if (ret)
770 goto out;
ada9af21
FDBM
771 else
772 ret = btrfs_run_delayed_items(trans, root);
3650860b 773out:
e02119d5 774 kfree(name);
e02119d5
CM
775 iput(inode);
776 return ret;
777}
778
779/*
780 * helper function to see if a given name and sequence number found
781 * in an inode back reference are already in a directory and correctly
782 * point to this inode
783 */
784static noinline int inode_in_dir(struct btrfs_root *root,
785 struct btrfs_path *path,
786 u64 dirid, u64 objectid, u64 index,
787 const char *name, int name_len)
788{
789 struct btrfs_dir_item *di;
790 struct btrfs_key location;
791 int match = 0;
792
793 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
794 index, name, name_len, 0);
795 if (di && !IS_ERR(di)) {
796 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
797 if (location.objectid != objectid)
798 goto out;
799 } else
800 goto out;
b3b4aa74 801 btrfs_release_path(path);
e02119d5
CM
802
803 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
804 if (di && !IS_ERR(di)) {
805 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
806 if (location.objectid != objectid)
807 goto out;
808 } else
809 goto out;
810 match = 1;
811out:
b3b4aa74 812 btrfs_release_path(path);
e02119d5
CM
813 return match;
814}
815
816/*
817 * helper function to check a log tree for a named back reference in
818 * an inode. This is used to decide if a back reference that is
819 * found in the subvolume conflicts with what we find in the log.
820 *
821 * inode backreferences may have multiple refs in a single item,
822 * during replay we process one reference at a time, and we don't
823 * want to delete valid links to a file from the subvolume if that
824 * link is also in the log.
825 */
826static noinline int backref_in_log(struct btrfs_root *log,
827 struct btrfs_key *key,
f186373f 828 u64 ref_objectid,
e02119d5
CM
829 char *name, int namelen)
830{
831 struct btrfs_path *path;
832 struct btrfs_inode_ref *ref;
833 unsigned long ptr;
834 unsigned long ptr_end;
835 unsigned long name_ptr;
836 int found_name_len;
837 int item_size;
838 int ret;
839 int match = 0;
840
841 path = btrfs_alloc_path();
2a29edc6 842 if (!path)
843 return -ENOMEM;
844
e02119d5
CM
845 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
846 if (ret != 0)
847 goto out;
848
e02119d5 849 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
850
851 if (key->type == BTRFS_INODE_EXTREF_KEY) {
852 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
853 name, namelen, NULL))
854 match = 1;
855
856 goto out;
857 }
858
859 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
860 ptr_end = ptr + item_size;
861 while (ptr < ptr_end) {
862 ref = (struct btrfs_inode_ref *)ptr;
863 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
864 if (found_name_len == namelen) {
865 name_ptr = (unsigned long)(ref + 1);
866 ret = memcmp_extent_buffer(path->nodes[0], name,
867 name_ptr, namelen);
868 if (ret == 0) {
869 match = 1;
870 goto out;
871 }
872 }
873 ptr = (unsigned long)(ref + 1) + found_name_len;
874 }
875out:
876 btrfs_free_path(path);
877 return match;
878}
879
5a1d7843 880static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 881 struct btrfs_root *root,
e02119d5 882 struct btrfs_path *path,
5a1d7843
JS
883 struct btrfs_root *log_root,
884 struct inode *dir, struct inode *inode,
5a1d7843 885 struct extent_buffer *eb,
f186373f
MF
886 u64 inode_objectid, u64 parent_objectid,
887 u64 ref_index, char *name, int namelen,
888 int *search_done)
e02119d5 889{
34f3e4f2 890 int ret;
f186373f
MF
891 char *victim_name;
892 int victim_name_len;
893 struct extent_buffer *leaf;
5a1d7843 894 struct btrfs_dir_item *di;
f186373f
MF
895 struct btrfs_key search_key;
896 struct btrfs_inode_extref *extref;
c622ae60 897
f186373f
MF
898again:
899 /* Search old style refs */
900 search_key.objectid = inode_objectid;
901 search_key.type = BTRFS_INODE_REF_KEY;
902 search_key.offset = parent_objectid;
903 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 904 if (ret == 0) {
e02119d5
CM
905 struct btrfs_inode_ref *victim_ref;
906 unsigned long ptr;
907 unsigned long ptr_end;
f186373f
MF
908
909 leaf = path->nodes[0];
e02119d5
CM
910
911 /* are we trying to overwrite a back ref for the root directory
912 * if so, just jump out, we're done
913 */
f186373f 914 if (search_key.objectid == search_key.offset)
5a1d7843 915 return 1;
e02119d5
CM
916
917 /* check all the names in this back reference to see
918 * if they are in the log. if so, we allow them to stay
919 * otherwise they must be unlinked as a conflict
920 */
921 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
922 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 923 while (ptr < ptr_end) {
e02119d5
CM
924 victim_ref = (struct btrfs_inode_ref *)ptr;
925 victim_name_len = btrfs_inode_ref_name_len(leaf,
926 victim_ref);
927 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
928 if (!victim_name)
929 return -ENOMEM;
e02119d5
CM
930
931 read_extent_buffer(leaf, victim_name,
932 (unsigned long)(victim_ref + 1),
933 victim_name_len);
934
f186373f
MF
935 if (!backref_in_log(log_root, &search_key,
936 parent_objectid,
937 victim_name,
e02119d5
CM
938 victim_name_len)) {
939 btrfs_inc_nlink(inode);
b3b4aa74 940 btrfs_release_path(path);
12fcfd22 941
e02119d5
CM
942 ret = btrfs_unlink_inode(trans, root, dir,
943 inode, victim_name,
944 victim_name_len);
f186373f 945 kfree(victim_name);
3650860b
JB
946 if (ret)
947 return ret;
ada9af21
FDBM
948 ret = btrfs_run_delayed_items(trans, root);
949 if (ret)
950 return ret;
f186373f
MF
951 *search_done = 1;
952 goto again;
e02119d5
CM
953 }
954 kfree(victim_name);
f186373f 955
e02119d5
CM
956 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
957 }
e02119d5 958
c622ae60 959 /*
960 * NOTE: we have searched root tree and checked the
961 * coresponding ref, it does not need to check again.
962 */
5a1d7843 963 *search_done = 1;
e02119d5 964 }
b3b4aa74 965 btrfs_release_path(path);
e02119d5 966
f186373f
MF
967 /* Same search but for extended refs */
968 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
969 inode_objectid, parent_objectid, 0,
970 0);
971 if (!IS_ERR_OR_NULL(extref)) {
972 u32 item_size;
973 u32 cur_offset = 0;
974 unsigned long base;
975 struct inode *victim_parent;
976
977 leaf = path->nodes[0];
978
979 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
980 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
981
982 while (cur_offset < item_size) {
983 extref = (struct btrfs_inode_extref *)base + cur_offset;
984
985 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
986
987 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
988 goto next;
989
990 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
991 if (!victim_name)
992 return -ENOMEM;
f186373f
MF
993 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
994 victim_name_len);
995
996 search_key.objectid = inode_objectid;
997 search_key.type = BTRFS_INODE_EXTREF_KEY;
998 search_key.offset = btrfs_extref_hash(parent_objectid,
999 victim_name,
1000 victim_name_len);
1001 ret = 0;
1002 if (!backref_in_log(log_root, &search_key,
1003 parent_objectid, victim_name,
1004 victim_name_len)) {
1005 ret = -ENOENT;
1006 victim_parent = read_one_inode(root,
1007 parent_objectid);
1008 if (victim_parent) {
1009 btrfs_inc_nlink(inode);
1010 btrfs_release_path(path);
1011
1012 ret = btrfs_unlink_inode(trans, root,
1013 victim_parent,
1014 inode,
1015 victim_name,
1016 victim_name_len);
ada9af21
FDBM
1017 if (!ret)
1018 ret = btrfs_run_delayed_items(
1019 trans, root);
f186373f 1020 }
f186373f
MF
1021 iput(victim_parent);
1022 kfree(victim_name);
3650860b
JB
1023 if (ret)
1024 return ret;
f186373f
MF
1025 *search_done = 1;
1026 goto again;
1027 }
1028 kfree(victim_name);
3650860b
JB
1029 if (ret)
1030 return ret;
f186373f
MF
1031next:
1032 cur_offset += victim_name_len + sizeof(*extref);
1033 }
1034 *search_done = 1;
1035 }
1036 btrfs_release_path(path);
1037
34f3e4f2 1038 /* look for a conflicting sequence number */
1039 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1040 ref_index, name, namelen, 0);
34f3e4f2 1041 if (di && !IS_ERR(di)) {
1042 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1043 if (ret)
1044 return ret;
34f3e4f2 1045 }
1046 btrfs_release_path(path);
1047
1048 /* look for a conflicing name */
1049 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1050 name, namelen, 0);
1051 if (di && !IS_ERR(di)) {
1052 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1053 if (ret)
1054 return ret;
34f3e4f2 1055 }
1056 btrfs_release_path(path);
1057
5a1d7843
JS
1058 return 0;
1059}
e02119d5 1060
f186373f
MF
1061static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1062 u32 *namelen, char **name, u64 *index,
1063 u64 *parent_objectid)
1064{
1065 struct btrfs_inode_extref *extref;
1066
1067 extref = (struct btrfs_inode_extref *)ref_ptr;
1068
1069 *namelen = btrfs_inode_extref_name_len(eb, extref);
1070 *name = kmalloc(*namelen, GFP_NOFS);
1071 if (*name == NULL)
1072 return -ENOMEM;
1073
1074 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1075 *namelen);
1076
1077 *index = btrfs_inode_extref_index(eb, extref);
1078 if (parent_objectid)
1079 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1080
1081 return 0;
1082}
1083
1084static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1085 u32 *namelen, char **name, u64 *index)
1086{
1087 struct btrfs_inode_ref *ref;
1088
1089 ref = (struct btrfs_inode_ref *)ref_ptr;
1090
1091 *namelen = btrfs_inode_ref_name_len(eb, ref);
1092 *name = kmalloc(*namelen, GFP_NOFS);
1093 if (*name == NULL)
1094 return -ENOMEM;
1095
1096 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1097
1098 *index = btrfs_inode_ref_index(eb, ref);
1099
1100 return 0;
1101}
1102
5a1d7843
JS
1103/*
1104 * replay one inode back reference item found in the log tree.
1105 * eb, slot and key refer to the buffer and key found in the log tree.
1106 * root is the destination we are replaying into, and path is for temp
1107 * use by this function. (it should be released on return).
1108 */
1109static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1110 struct btrfs_root *root,
1111 struct btrfs_root *log,
1112 struct btrfs_path *path,
1113 struct extent_buffer *eb, int slot,
1114 struct btrfs_key *key)
1115{
03b2f08b
GB
1116 struct inode *dir = NULL;
1117 struct inode *inode = NULL;
5a1d7843
JS
1118 unsigned long ref_ptr;
1119 unsigned long ref_end;
03b2f08b 1120 char *name = NULL;
5a1d7843
JS
1121 int namelen;
1122 int ret;
1123 int search_done = 0;
f186373f
MF
1124 int log_ref_ver = 0;
1125 u64 parent_objectid;
1126 u64 inode_objectid;
f46dbe3d 1127 u64 ref_index = 0;
f186373f
MF
1128 int ref_struct_size;
1129
1130 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1131 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1132
1133 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1134 struct btrfs_inode_extref *r;
1135
1136 ref_struct_size = sizeof(struct btrfs_inode_extref);
1137 log_ref_ver = 1;
1138 r = (struct btrfs_inode_extref *)ref_ptr;
1139 parent_objectid = btrfs_inode_extref_parent(eb, r);
1140 } else {
1141 ref_struct_size = sizeof(struct btrfs_inode_ref);
1142 parent_objectid = key->offset;
1143 }
1144 inode_objectid = key->objectid;
e02119d5 1145
5a1d7843
JS
1146 /*
1147 * it is possible that we didn't log all the parent directories
1148 * for a given inode. If we don't find the dir, just don't
1149 * copy the back ref in. The link count fixup code will take
1150 * care of the rest
1151 */
f186373f 1152 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1153 if (!dir) {
1154 ret = -ENOENT;
1155 goto out;
1156 }
5a1d7843 1157
f186373f 1158 inode = read_one_inode(root, inode_objectid);
5a1d7843 1159 if (!inode) {
03b2f08b
GB
1160 ret = -EIO;
1161 goto out;
5a1d7843
JS
1162 }
1163
5a1d7843 1164 while (ref_ptr < ref_end) {
f186373f
MF
1165 if (log_ref_ver) {
1166 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1167 &ref_index, &parent_objectid);
1168 /*
1169 * parent object can change from one array
1170 * item to another.
1171 */
1172 if (!dir)
1173 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1174 if (!dir) {
1175 ret = -ENOENT;
1176 goto out;
1177 }
f186373f
MF
1178 } else {
1179 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1180 &ref_index);
1181 }
1182 if (ret)
03b2f08b 1183 goto out;
5a1d7843
JS
1184
1185 /* if we already have a perfect match, we're done */
1186 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
f186373f 1187 ref_index, name, namelen)) {
5a1d7843
JS
1188 /*
1189 * look for a conflicting back reference in the
1190 * metadata. if we find one we have to unlink that name
1191 * of the file before we add our new link. Later on, we
1192 * overwrite any existing back reference, and we don't
1193 * want to create dangling pointers in the directory.
1194 */
1195
1196 if (!search_done) {
1197 ret = __add_inode_ref(trans, root, path, log,
f186373f
MF
1198 dir, inode, eb,
1199 inode_objectid,
1200 parent_objectid,
1201 ref_index, name, namelen,
5a1d7843 1202 &search_done);
03b2f08b
GB
1203 if (ret) {
1204 if (ret == 1)
1205 ret = 0;
3650860b
JB
1206 goto out;
1207 }
5a1d7843
JS
1208 }
1209
1210 /* insert our name */
1211 ret = btrfs_add_link(trans, dir, inode, name, namelen,
f186373f 1212 0, ref_index);
3650860b
JB
1213 if (ret)
1214 goto out;
5a1d7843
JS
1215
1216 btrfs_update_inode(trans, root, inode);
1217 }
1218
f186373f 1219 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1220 kfree(name);
03b2f08b 1221 name = NULL;
f186373f
MF
1222 if (log_ref_ver) {
1223 iput(dir);
1224 dir = NULL;
1225 }
5a1d7843 1226 }
e02119d5
CM
1227
1228 /* finally write the back reference in the inode */
1229 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1230out:
b3b4aa74 1231 btrfs_release_path(path);
03b2f08b 1232 kfree(name);
e02119d5
CM
1233 iput(dir);
1234 iput(inode);
3650860b 1235 return ret;
e02119d5
CM
1236}
1237
c71bf099
YZ
1238static int insert_orphan_item(struct btrfs_trans_handle *trans,
1239 struct btrfs_root *root, u64 offset)
1240{
1241 int ret;
1242 ret = btrfs_find_orphan_item(root, offset);
1243 if (ret > 0)
1244 ret = btrfs_insert_orphan_item(trans, root, offset);
1245 return ret;
1246}
1247
f186373f
MF
1248static int count_inode_extrefs(struct btrfs_root *root,
1249 struct inode *inode, struct btrfs_path *path)
1250{
1251 int ret = 0;
1252 int name_len;
1253 unsigned int nlink = 0;
1254 u32 item_size;
1255 u32 cur_offset = 0;
1256 u64 inode_objectid = btrfs_ino(inode);
1257 u64 offset = 0;
1258 unsigned long ptr;
1259 struct btrfs_inode_extref *extref;
1260 struct extent_buffer *leaf;
1261
1262 while (1) {
1263 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1264 &extref, &offset);
1265 if (ret)
1266 break;
c71bf099 1267
f186373f
MF
1268 leaf = path->nodes[0];
1269 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1270 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1271
1272 while (cur_offset < item_size) {
1273 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1274 name_len = btrfs_inode_extref_name_len(leaf, extref);
1275
1276 nlink++;
1277
1278 cur_offset += name_len + sizeof(*extref);
1279 }
1280
1281 offset++;
1282 btrfs_release_path(path);
1283 }
1284 btrfs_release_path(path);
1285
1286 if (ret < 0)
1287 return ret;
1288 return nlink;
1289}
1290
1291static int count_inode_refs(struct btrfs_root *root,
1292 struct inode *inode, struct btrfs_path *path)
e02119d5 1293{
e02119d5
CM
1294 int ret;
1295 struct btrfs_key key;
f186373f 1296 unsigned int nlink = 0;
e02119d5
CM
1297 unsigned long ptr;
1298 unsigned long ptr_end;
1299 int name_len;
33345d01 1300 u64 ino = btrfs_ino(inode);
e02119d5 1301
33345d01 1302 key.objectid = ino;
e02119d5
CM
1303 key.type = BTRFS_INODE_REF_KEY;
1304 key.offset = (u64)-1;
1305
d397712b 1306 while (1) {
e02119d5
CM
1307 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1308 if (ret < 0)
1309 break;
1310 if (ret > 0) {
1311 if (path->slots[0] == 0)
1312 break;
1313 path->slots[0]--;
1314 }
1315 btrfs_item_key_to_cpu(path->nodes[0], &key,
1316 path->slots[0]);
33345d01 1317 if (key.objectid != ino ||
e02119d5
CM
1318 key.type != BTRFS_INODE_REF_KEY)
1319 break;
1320 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1321 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1322 path->slots[0]);
d397712b 1323 while (ptr < ptr_end) {
e02119d5
CM
1324 struct btrfs_inode_ref *ref;
1325
1326 ref = (struct btrfs_inode_ref *)ptr;
1327 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1328 ref);
1329 ptr = (unsigned long)(ref + 1) + name_len;
1330 nlink++;
1331 }
1332
1333 if (key.offset == 0)
1334 break;
1335 key.offset--;
b3b4aa74 1336 btrfs_release_path(path);
e02119d5 1337 }
b3b4aa74 1338 btrfs_release_path(path);
f186373f
MF
1339
1340 return nlink;
1341}
1342
1343/*
1344 * There are a few corners where the link count of the file can't
1345 * be properly maintained during replay. So, instead of adding
1346 * lots of complexity to the log code, we just scan the backrefs
1347 * for any file that has been through replay.
1348 *
1349 * The scan will update the link count on the inode to reflect the
1350 * number of back refs found. If it goes down to zero, the iput
1351 * will free the inode.
1352 */
1353static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1354 struct btrfs_root *root,
1355 struct inode *inode)
1356{
1357 struct btrfs_path *path;
1358 int ret;
1359 u64 nlink = 0;
1360 u64 ino = btrfs_ino(inode);
1361
1362 path = btrfs_alloc_path();
1363 if (!path)
1364 return -ENOMEM;
1365
1366 ret = count_inode_refs(root, inode, path);
1367 if (ret < 0)
1368 goto out;
1369
1370 nlink = ret;
1371
1372 ret = count_inode_extrefs(root, inode, path);
1373 if (ret == -ENOENT)
1374 ret = 0;
1375
1376 if (ret < 0)
1377 goto out;
1378
1379 nlink += ret;
1380
1381 ret = 0;
1382
e02119d5 1383 if (nlink != inode->i_nlink) {
bfe86848 1384 set_nlink(inode, nlink);
e02119d5
CM
1385 btrfs_update_inode(trans, root, inode);
1386 }
8d5bf1cb 1387 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1388
c71bf099
YZ
1389 if (inode->i_nlink == 0) {
1390 if (S_ISDIR(inode->i_mode)) {
1391 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1392 ino, 1);
3650860b
JB
1393 if (ret)
1394 goto out;
c71bf099 1395 }
33345d01 1396 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1397 }
12fcfd22 1398
f186373f
MF
1399out:
1400 btrfs_free_path(path);
1401 return ret;
e02119d5
CM
1402}
1403
1404static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1405 struct btrfs_root *root,
1406 struct btrfs_path *path)
1407{
1408 int ret;
1409 struct btrfs_key key;
1410 struct inode *inode;
1411
1412 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1413 key.type = BTRFS_ORPHAN_ITEM_KEY;
1414 key.offset = (u64)-1;
d397712b 1415 while (1) {
e02119d5
CM
1416 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1417 if (ret < 0)
1418 break;
1419
1420 if (ret == 1) {
1421 if (path->slots[0] == 0)
1422 break;
1423 path->slots[0]--;
1424 }
1425
1426 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1427 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1428 key.type != BTRFS_ORPHAN_ITEM_KEY)
1429 break;
1430
1431 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1432 if (ret)
1433 goto out;
e02119d5 1434
b3b4aa74 1435 btrfs_release_path(path);
e02119d5 1436 inode = read_one_inode(root, key.offset);
c00e9493
TI
1437 if (!inode)
1438 return -EIO;
e02119d5
CM
1439
1440 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1441 iput(inode);
3650860b
JB
1442 if (ret)
1443 goto out;
e02119d5 1444
12fcfd22
CM
1445 /*
1446 * fixup on a directory may create new entries,
1447 * make sure we always look for the highset possible
1448 * offset
1449 */
1450 key.offset = (u64)-1;
e02119d5 1451 }
65a246c5
TI
1452 ret = 0;
1453out:
b3b4aa74 1454 btrfs_release_path(path);
65a246c5 1455 return ret;
e02119d5
CM
1456}
1457
1458
1459/*
1460 * record a given inode in the fixup dir so we can check its link
1461 * count when replay is done. The link count is incremented here
1462 * so the inode won't go away until we check it
1463 */
1464static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1465 struct btrfs_root *root,
1466 struct btrfs_path *path,
1467 u64 objectid)
1468{
1469 struct btrfs_key key;
1470 int ret = 0;
1471 struct inode *inode;
1472
1473 inode = read_one_inode(root, objectid);
c00e9493
TI
1474 if (!inode)
1475 return -EIO;
e02119d5
CM
1476
1477 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1478 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1479 key.offset = objectid;
1480
1481 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1482
b3b4aa74 1483 btrfs_release_path(path);
e02119d5 1484 if (ret == 0) {
9bf7a489
JB
1485 if (!inode->i_nlink)
1486 set_nlink(inode, 1);
1487 else
1488 btrfs_inc_nlink(inode);
b9959295 1489 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1490 } else if (ret == -EEXIST) {
1491 ret = 0;
1492 } else {
3650860b 1493 BUG(); /* Logic Error */
e02119d5
CM
1494 }
1495 iput(inode);
1496
1497 return ret;
1498}
1499
1500/*
1501 * when replaying the log for a directory, we only insert names
1502 * for inodes that actually exist. This means an fsync on a directory
1503 * does not implicitly fsync all the new files in it
1504 */
1505static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1506 struct btrfs_root *root,
1507 struct btrfs_path *path,
1508 u64 dirid, u64 index,
1509 char *name, int name_len, u8 type,
1510 struct btrfs_key *location)
1511{
1512 struct inode *inode;
1513 struct inode *dir;
1514 int ret;
1515
1516 inode = read_one_inode(root, location->objectid);
1517 if (!inode)
1518 return -ENOENT;
1519
1520 dir = read_one_inode(root, dirid);
1521 if (!dir) {
1522 iput(inode);
1523 return -EIO;
1524 }
d555438b 1525
e02119d5
CM
1526 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1527
1528 /* FIXME, put inode into FIXUP list */
1529
1530 iput(inode);
1531 iput(dir);
1532 return ret;
1533}
1534
1535/*
1536 * take a single entry in a log directory item and replay it into
1537 * the subvolume.
1538 *
1539 * if a conflicting item exists in the subdirectory already,
1540 * the inode it points to is unlinked and put into the link count
1541 * fix up tree.
1542 *
1543 * If a name from the log points to a file or directory that does
1544 * not exist in the FS, it is skipped. fsyncs on directories
1545 * do not force down inodes inside that directory, just changes to the
1546 * names or unlinks in a directory.
1547 */
1548static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1549 struct btrfs_root *root,
1550 struct btrfs_path *path,
1551 struct extent_buffer *eb,
1552 struct btrfs_dir_item *di,
1553 struct btrfs_key *key)
1554{
1555 char *name;
1556 int name_len;
1557 struct btrfs_dir_item *dst_di;
1558 struct btrfs_key found_key;
1559 struct btrfs_key log_key;
1560 struct inode *dir;
e02119d5 1561 u8 log_type;
4bef0848 1562 int exists;
3650860b 1563 int ret = 0;
d555438b 1564 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
e02119d5
CM
1565
1566 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1567 if (!dir)
1568 return -EIO;
e02119d5
CM
1569
1570 name_len = btrfs_dir_name_len(eb, di);
1571 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1572 if (!name) {
1573 ret = -ENOMEM;
1574 goto out;
1575 }
2a29edc6 1576
e02119d5
CM
1577 log_type = btrfs_dir_type(eb, di);
1578 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1579 name_len);
1580
1581 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1582 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1583 if (exists == 0)
1584 exists = 1;
1585 else
1586 exists = 0;
b3b4aa74 1587 btrfs_release_path(path);
4bef0848 1588
e02119d5
CM
1589 if (key->type == BTRFS_DIR_ITEM_KEY) {
1590 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1591 name, name_len, 1);
d397712b 1592 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1593 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1594 key->objectid,
1595 key->offset, name,
1596 name_len, 1);
1597 } else {
3650860b
JB
1598 /* Corruption */
1599 ret = -EINVAL;
1600 goto out;
e02119d5 1601 }
c704005d 1602 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1603 /* we need a sequence number to insert, so we only
1604 * do inserts for the BTRFS_DIR_INDEX_KEY types
1605 */
1606 if (key->type != BTRFS_DIR_INDEX_KEY)
1607 goto out;
1608 goto insert;
1609 }
1610
1611 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1612 /* the existing item matches the logged item */
1613 if (found_key.objectid == log_key.objectid &&
1614 found_key.type == log_key.type &&
1615 found_key.offset == log_key.offset &&
1616 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1617 goto out;
1618 }
1619
1620 /*
1621 * don't drop the conflicting directory entry if the inode
1622 * for the new entry doesn't exist
1623 */
4bef0848 1624 if (!exists)
e02119d5
CM
1625 goto out;
1626
e02119d5 1627 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
3650860b
JB
1628 if (ret)
1629 goto out;
e02119d5
CM
1630
1631 if (key->type == BTRFS_DIR_INDEX_KEY)
1632 goto insert;
1633out:
b3b4aa74 1634 btrfs_release_path(path);
d555438b
JB
1635 if (!ret && update_size) {
1636 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1637 ret = btrfs_update_inode(trans, root, dir);
1638 }
e02119d5
CM
1639 kfree(name);
1640 iput(dir);
3650860b 1641 return ret;
e02119d5
CM
1642
1643insert:
b3b4aa74 1644 btrfs_release_path(path);
e02119d5
CM
1645 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1646 name, name_len, log_type, &log_key);
3650860b
JB
1647 if (ret && ret != -ENOENT)
1648 goto out;
d555438b 1649 update_size = false;
3650860b 1650 ret = 0;
e02119d5
CM
1651 goto out;
1652}
1653
1654/*
1655 * find all the names in a directory item and reconcile them into
1656 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1657 * one name in a directory item, but the same code gets used for
1658 * both directory index types
1659 */
1660static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1661 struct btrfs_root *root,
1662 struct btrfs_path *path,
1663 struct extent_buffer *eb, int slot,
1664 struct btrfs_key *key)
1665{
1666 int ret;
1667 u32 item_size = btrfs_item_size_nr(eb, slot);
1668 struct btrfs_dir_item *di;
1669 int name_len;
1670 unsigned long ptr;
1671 unsigned long ptr_end;
1672
1673 ptr = btrfs_item_ptr_offset(eb, slot);
1674 ptr_end = ptr + item_size;
d397712b 1675 while (ptr < ptr_end) {
e02119d5 1676 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1677 if (verify_dir_item(root, eb, di))
1678 return -EIO;
e02119d5
CM
1679 name_len = btrfs_dir_name_len(eb, di);
1680 ret = replay_one_name(trans, root, path, eb, di, key);
3650860b
JB
1681 if (ret)
1682 return ret;
e02119d5
CM
1683 ptr = (unsigned long)(di + 1);
1684 ptr += name_len;
1685 }
1686 return 0;
1687}
1688
1689/*
1690 * directory replay has two parts. There are the standard directory
1691 * items in the log copied from the subvolume, and range items
1692 * created in the log while the subvolume was logged.
1693 *
1694 * The range items tell us which parts of the key space the log
1695 * is authoritative for. During replay, if a key in the subvolume
1696 * directory is in a logged range item, but not actually in the log
1697 * that means it was deleted from the directory before the fsync
1698 * and should be removed.
1699 */
1700static noinline int find_dir_range(struct btrfs_root *root,
1701 struct btrfs_path *path,
1702 u64 dirid, int key_type,
1703 u64 *start_ret, u64 *end_ret)
1704{
1705 struct btrfs_key key;
1706 u64 found_end;
1707 struct btrfs_dir_log_item *item;
1708 int ret;
1709 int nritems;
1710
1711 if (*start_ret == (u64)-1)
1712 return 1;
1713
1714 key.objectid = dirid;
1715 key.type = key_type;
1716 key.offset = *start_ret;
1717
1718 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1719 if (ret < 0)
1720 goto out;
1721 if (ret > 0) {
1722 if (path->slots[0] == 0)
1723 goto out;
1724 path->slots[0]--;
1725 }
1726 if (ret != 0)
1727 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1728
1729 if (key.type != key_type || key.objectid != dirid) {
1730 ret = 1;
1731 goto next;
1732 }
1733 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1734 struct btrfs_dir_log_item);
1735 found_end = btrfs_dir_log_end(path->nodes[0], item);
1736
1737 if (*start_ret >= key.offset && *start_ret <= found_end) {
1738 ret = 0;
1739 *start_ret = key.offset;
1740 *end_ret = found_end;
1741 goto out;
1742 }
1743 ret = 1;
1744next:
1745 /* check the next slot in the tree to see if it is a valid item */
1746 nritems = btrfs_header_nritems(path->nodes[0]);
1747 if (path->slots[0] >= nritems) {
1748 ret = btrfs_next_leaf(root, path);
1749 if (ret)
1750 goto out;
1751 } else {
1752 path->slots[0]++;
1753 }
1754
1755 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1756
1757 if (key.type != key_type || key.objectid != dirid) {
1758 ret = 1;
1759 goto out;
1760 }
1761 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1762 struct btrfs_dir_log_item);
1763 found_end = btrfs_dir_log_end(path->nodes[0], item);
1764 *start_ret = key.offset;
1765 *end_ret = found_end;
1766 ret = 0;
1767out:
b3b4aa74 1768 btrfs_release_path(path);
e02119d5
CM
1769 return ret;
1770}
1771
1772/*
1773 * this looks for a given directory item in the log. If the directory
1774 * item is not in the log, the item is removed and the inode it points
1775 * to is unlinked
1776 */
1777static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1778 struct btrfs_root *root,
1779 struct btrfs_root *log,
1780 struct btrfs_path *path,
1781 struct btrfs_path *log_path,
1782 struct inode *dir,
1783 struct btrfs_key *dir_key)
1784{
1785 int ret;
1786 struct extent_buffer *eb;
1787 int slot;
1788 u32 item_size;
1789 struct btrfs_dir_item *di;
1790 struct btrfs_dir_item *log_di;
1791 int name_len;
1792 unsigned long ptr;
1793 unsigned long ptr_end;
1794 char *name;
1795 struct inode *inode;
1796 struct btrfs_key location;
1797
1798again:
1799 eb = path->nodes[0];
1800 slot = path->slots[0];
1801 item_size = btrfs_item_size_nr(eb, slot);
1802 ptr = btrfs_item_ptr_offset(eb, slot);
1803 ptr_end = ptr + item_size;
d397712b 1804 while (ptr < ptr_end) {
e02119d5 1805 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1806 if (verify_dir_item(root, eb, di)) {
1807 ret = -EIO;
1808 goto out;
1809 }
1810
e02119d5
CM
1811 name_len = btrfs_dir_name_len(eb, di);
1812 name = kmalloc(name_len, GFP_NOFS);
1813 if (!name) {
1814 ret = -ENOMEM;
1815 goto out;
1816 }
1817 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1818 name_len);
1819 log_di = NULL;
12fcfd22 1820 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
1821 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1822 dir_key->objectid,
1823 name, name_len, 0);
12fcfd22 1824 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1825 log_di = btrfs_lookup_dir_index_item(trans, log,
1826 log_path,
1827 dir_key->objectid,
1828 dir_key->offset,
1829 name, name_len, 0);
1830 }
c704005d 1831 if (IS_ERR_OR_NULL(log_di)) {
e02119d5 1832 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
1833 btrfs_release_path(path);
1834 btrfs_release_path(log_path);
e02119d5 1835 inode = read_one_inode(root, location.objectid);
c00e9493
TI
1836 if (!inode) {
1837 kfree(name);
1838 return -EIO;
1839 }
e02119d5
CM
1840
1841 ret = link_to_fixup_dir(trans, root,
1842 path, location.objectid);
3650860b
JB
1843 if (ret) {
1844 kfree(name);
1845 iput(inode);
1846 goto out;
1847 }
1848
e02119d5
CM
1849 btrfs_inc_nlink(inode);
1850 ret = btrfs_unlink_inode(trans, root, dir, inode,
1851 name, name_len);
3650860b 1852 if (!ret)
ada9af21 1853 ret = btrfs_run_delayed_items(trans, root);
e02119d5
CM
1854 kfree(name);
1855 iput(inode);
3650860b
JB
1856 if (ret)
1857 goto out;
e02119d5
CM
1858
1859 /* there might still be more names under this key
1860 * check and repeat if required
1861 */
1862 ret = btrfs_search_slot(NULL, root, dir_key, path,
1863 0, 0);
1864 if (ret == 0)
1865 goto again;
1866 ret = 0;
1867 goto out;
1868 }
b3b4aa74 1869 btrfs_release_path(log_path);
e02119d5
CM
1870 kfree(name);
1871
1872 ptr = (unsigned long)(di + 1);
1873 ptr += name_len;
1874 }
1875 ret = 0;
1876out:
b3b4aa74
DS
1877 btrfs_release_path(path);
1878 btrfs_release_path(log_path);
e02119d5
CM
1879 return ret;
1880}
1881
1882/*
1883 * deletion replay happens before we copy any new directory items
1884 * out of the log or out of backreferences from inodes. It
1885 * scans the log to find ranges of keys that log is authoritative for,
1886 * and then scans the directory to find items in those ranges that are
1887 * not present in the log.
1888 *
1889 * Anything we don't find in the log is unlinked and removed from the
1890 * directory.
1891 */
1892static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1893 struct btrfs_root *root,
1894 struct btrfs_root *log,
1895 struct btrfs_path *path,
12fcfd22 1896 u64 dirid, int del_all)
e02119d5
CM
1897{
1898 u64 range_start;
1899 u64 range_end;
1900 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1901 int ret = 0;
1902 struct btrfs_key dir_key;
1903 struct btrfs_key found_key;
1904 struct btrfs_path *log_path;
1905 struct inode *dir;
1906
1907 dir_key.objectid = dirid;
1908 dir_key.type = BTRFS_DIR_ITEM_KEY;
1909 log_path = btrfs_alloc_path();
1910 if (!log_path)
1911 return -ENOMEM;
1912
1913 dir = read_one_inode(root, dirid);
1914 /* it isn't an error if the inode isn't there, that can happen
1915 * because we replay the deletes before we copy in the inode item
1916 * from the log
1917 */
1918 if (!dir) {
1919 btrfs_free_path(log_path);
1920 return 0;
1921 }
1922again:
1923 range_start = 0;
1924 range_end = 0;
d397712b 1925 while (1) {
12fcfd22
CM
1926 if (del_all)
1927 range_end = (u64)-1;
1928 else {
1929 ret = find_dir_range(log, path, dirid, key_type,
1930 &range_start, &range_end);
1931 if (ret != 0)
1932 break;
1933 }
e02119d5
CM
1934
1935 dir_key.offset = range_start;
d397712b 1936 while (1) {
e02119d5
CM
1937 int nritems;
1938 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1939 0, 0);
1940 if (ret < 0)
1941 goto out;
1942
1943 nritems = btrfs_header_nritems(path->nodes[0]);
1944 if (path->slots[0] >= nritems) {
1945 ret = btrfs_next_leaf(root, path);
1946 if (ret)
1947 break;
1948 }
1949 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1950 path->slots[0]);
1951 if (found_key.objectid != dirid ||
1952 found_key.type != dir_key.type)
1953 goto next_type;
1954
1955 if (found_key.offset > range_end)
1956 break;
1957
1958 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
1959 log_path, dir,
1960 &found_key);
3650860b
JB
1961 if (ret)
1962 goto out;
e02119d5
CM
1963 if (found_key.offset == (u64)-1)
1964 break;
1965 dir_key.offset = found_key.offset + 1;
1966 }
b3b4aa74 1967 btrfs_release_path(path);
e02119d5
CM
1968 if (range_end == (u64)-1)
1969 break;
1970 range_start = range_end + 1;
1971 }
1972
1973next_type:
1974 ret = 0;
1975 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1976 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1977 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 1978 btrfs_release_path(path);
e02119d5
CM
1979 goto again;
1980 }
1981out:
b3b4aa74 1982 btrfs_release_path(path);
e02119d5
CM
1983 btrfs_free_path(log_path);
1984 iput(dir);
1985 return ret;
1986}
1987
1988/*
1989 * the process_func used to replay items from the log tree. This
1990 * gets called in two different stages. The first stage just looks
1991 * for inodes and makes sure they are all copied into the subvolume.
1992 *
1993 * The second stage copies all the other item types from the log into
1994 * the subvolume. The two stage approach is slower, but gets rid of
1995 * lots of complexity around inodes referencing other inodes that exist
1996 * only in the log (references come from either directory items or inode
1997 * back refs).
1998 */
1999static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2000 struct walk_control *wc, u64 gen)
2001{
2002 int nritems;
2003 struct btrfs_path *path;
2004 struct btrfs_root *root = wc->replay_dest;
2005 struct btrfs_key key;
e02119d5
CM
2006 int level;
2007 int i;
2008 int ret;
2009
018642a1
TI
2010 ret = btrfs_read_buffer(eb, gen);
2011 if (ret)
2012 return ret;
e02119d5
CM
2013
2014 level = btrfs_header_level(eb);
2015
2016 if (level != 0)
2017 return 0;
2018
2019 path = btrfs_alloc_path();
1e5063d0
MF
2020 if (!path)
2021 return -ENOMEM;
e02119d5
CM
2022
2023 nritems = btrfs_header_nritems(eb);
2024 for (i = 0; i < nritems; i++) {
2025 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2026
2027 /* inode keys are done during the first stage */
2028 if (key.type == BTRFS_INODE_ITEM_KEY &&
2029 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2030 struct btrfs_inode_item *inode_item;
2031 u32 mode;
2032
2033 inode_item = btrfs_item_ptr(eb, i,
2034 struct btrfs_inode_item);
2035 mode = btrfs_inode_mode(eb, inode_item);
2036 if (S_ISDIR(mode)) {
2037 ret = replay_dir_deletes(wc->trans,
12fcfd22 2038 root, log, path, key.objectid, 0);
b50c6e25
JB
2039 if (ret)
2040 break;
e02119d5
CM
2041 }
2042 ret = overwrite_item(wc->trans, root, path,
2043 eb, i, &key);
b50c6e25
JB
2044 if (ret)
2045 break;
e02119d5 2046
c71bf099
YZ
2047 /* for regular files, make sure corresponding
2048 * orhpan item exist. extents past the new EOF
2049 * will be truncated later by orphan cleanup.
e02119d5
CM
2050 */
2051 if (S_ISREG(mode)) {
c71bf099
YZ
2052 ret = insert_orphan_item(wc->trans, root,
2053 key.objectid);
b50c6e25
JB
2054 if (ret)
2055 break;
e02119d5 2056 }
c71bf099 2057
e02119d5
CM
2058 ret = link_to_fixup_dir(wc->trans, root,
2059 path, key.objectid);
b50c6e25
JB
2060 if (ret)
2061 break;
e02119d5 2062 }
dd8e7217
JB
2063
2064 if (key.type == BTRFS_DIR_INDEX_KEY &&
2065 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2066 ret = replay_one_dir_item(wc->trans, root, path,
2067 eb, i, &key);
2068 if (ret)
2069 break;
2070 }
2071
e02119d5
CM
2072 if (wc->stage < LOG_WALK_REPLAY_ALL)
2073 continue;
2074
2075 /* these keys are simply copied */
2076 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2077 ret = overwrite_item(wc->trans, root, path,
2078 eb, i, &key);
b50c6e25
JB
2079 if (ret)
2080 break;
2da1c669
LB
2081 } else if (key.type == BTRFS_INODE_REF_KEY ||
2082 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2083 ret = add_inode_ref(wc->trans, root, log, path,
2084 eb, i, &key);
b50c6e25
JB
2085 if (ret && ret != -ENOENT)
2086 break;
2087 ret = 0;
e02119d5
CM
2088 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2089 ret = replay_one_extent(wc->trans, root, path,
2090 eb, i, &key);
b50c6e25
JB
2091 if (ret)
2092 break;
dd8e7217 2093 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2094 ret = replay_one_dir_item(wc->trans, root, path,
2095 eb, i, &key);
b50c6e25
JB
2096 if (ret)
2097 break;
e02119d5
CM
2098 }
2099 }
2100 btrfs_free_path(path);
b50c6e25 2101 return ret;
e02119d5
CM
2102}
2103
d397712b 2104static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2105 struct btrfs_root *root,
2106 struct btrfs_path *path, int *level,
2107 struct walk_control *wc)
2108{
2109 u64 root_owner;
e02119d5
CM
2110 u64 bytenr;
2111 u64 ptr_gen;
2112 struct extent_buffer *next;
2113 struct extent_buffer *cur;
2114 struct extent_buffer *parent;
2115 u32 blocksize;
2116 int ret = 0;
2117
2118 WARN_ON(*level < 0);
2119 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2120
d397712b 2121 while (*level > 0) {
e02119d5
CM
2122 WARN_ON(*level < 0);
2123 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2124 cur = path->nodes[*level];
2125
2126 if (btrfs_header_level(cur) != *level)
2127 WARN_ON(1);
2128
2129 if (path->slots[*level] >=
2130 btrfs_header_nritems(cur))
2131 break;
2132
2133 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2134 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2135 blocksize = btrfs_level_size(root, *level - 1);
2136
2137 parent = path->nodes[*level];
2138 root_owner = btrfs_header_owner(parent);
e02119d5
CM
2139
2140 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2a29edc6 2141 if (!next)
2142 return -ENOMEM;
e02119d5 2143
e02119d5 2144 if (*level == 1) {
1e5063d0 2145 ret = wc->process_func(root, next, wc, ptr_gen);
b50c6e25
JB
2146 if (ret) {
2147 free_extent_buffer(next);
1e5063d0 2148 return ret;
b50c6e25 2149 }
4a500fd1 2150
e02119d5
CM
2151 path->slots[*level]++;
2152 if (wc->free) {
018642a1
TI
2153 ret = btrfs_read_buffer(next, ptr_gen);
2154 if (ret) {
2155 free_extent_buffer(next);
2156 return ret;
2157 }
e02119d5 2158
681ae509
JB
2159 if (trans) {
2160 btrfs_tree_lock(next);
2161 btrfs_set_lock_blocking(next);
2162 clean_tree_block(trans, root, next);
2163 btrfs_wait_tree_block_writeback(next);
2164 btrfs_tree_unlock(next);
2165 }
e02119d5 2166
e02119d5
CM
2167 WARN_ON(root_owner !=
2168 BTRFS_TREE_LOG_OBJECTID);
e688b725 2169 ret = btrfs_free_and_pin_reserved_extent(root,
d00aff00 2170 bytenr, blocksize);
3650860b
JB
2171 if (ret) {
2172 free_extent_buffer(next);
2173 return ret;
2174 }
e02119d5
CM
2175 }
2176 free_extent_buffer(next);
2177 continue;
2178 }
018642a1
TI
2179 ret = btrfs_read_buffer(next, ptr_gen);
2180 if (ret) {
2181 free_extent_buffer(next);
2182 return ret;
2183 }
e02119d5
CM
2184
2185 WARN_ON(*level <= 0);
2186 if (path->nodes[*level-1])
2187 free_extent_buffer(path->nodes[*level-1]);
2188 path->nodes[*level-1] = next;
2189 *level = btrfs_header_level(next);
2190 path->slots[*level] = 0;
2191 cond_resched();
2192 }
2193 WARN_ON(*level < 0);
2194 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2195
4a500fd1 2196 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2197
2198 cond_resched();
2199 return 0;
2200}
2201
d397712b 2202static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2203 struct btrfs_root *root,
2204 struct btrfs_path *path, int *level,
2205 struct walk_control *wc)
2206{
2207 u64 root_owner;
e02119d5
CM
2208 int i;
2209 int slot;
2210 int ret;
2211
d397712b 2212 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2213 slot = path->slots[i];
4a500fd1 2214 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2215 path->slots[i]++;
2216 *level = i;
2217 WARN_ON(*level == 0);
2218 return 0;
2219 } else {
31840ae1
ZY
2220 struct extent_buffer *parent;
2221 if (path->nodes[*level] == root->node)
2222 parent = path->nodes[*level];
2223 else
2224 parent = path->nodes[*level + 1];
2225
2226 root_owner = btrfs_header_owner(parent);
1e5063d0 2227 ret = wc->process_func(root, path->nodes[*level], wc,
e02119d5 2228 btrfs_header_generation(path->nodes[*level]));
1e5063d0
MF
2229 if (ret)
2230 return ret;
2231
e02119d5
CM
2232 if (wc->free) {
2233 struct extent_buffer *next;
2234
2235 next = path->nodes[*level];
2236
681ae509
JB
2237 if (trans) {
2238 btrfs_tree_lock(next);
2239 btrfs_set_lock_blocking(next);
2240 clean_tree_block(trans, root, next);
2241 btrfs_wait_tree_block_writeback(next);
2242 btrfs_tree_unlock(next);
2243 }
e02119d5 2244
e02119d5 2245 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
e688b725 2246 ret = btrfs_free_and_pin_reserved_extent(root,
e02119d5 2247 path->nodes[*level]->start,
d00aff00 2248 path->nodes[*level]->len);
3650860b
JB
2249 if (ret)
2250 return ret;
e02119d5
CM
2251 }
2252 free_extent_buffer(path->nodes[*level]);
2253 path->nodes[*level] = NULL;
2254 *level = i + 1;
2255 }
2256 }
2257 return 1;
2258}
2259
2260/*
2261 * drop the reference count on the tree rooted at 'snap'. This traverses
2262 * the tree freeing any blocks that have a ref count of zero after being
2263 * decremented.
2264 */
2265static int walk_log_tree(struct btrfs_trans_handle *trans,
2266 struct btrfs_root *log, struct walk_control *wc)
2267{
2268 int ret = 0;
2269 int wret;
2270 int level;
2271 struct btrfs_path *path;
e02119d5
CM
2272 int orig_level;
2273
2274 path = btrfs_alloc_path();
db5b493a
TI
2275 if (!path)
2276 return -ENOMEM;
e02119d5
CM
2277
2278 level = btrfs_header_level(log->node);
2279 orig_level = level;
2280 path->nodes[level] = log->node;
2281 extent_buffer_get(log->node);
2282 path->slots[level] = 0;
2283
d397712b 2284 while (1) {
e02119d5
CM
2285 wret = walk_down_log_tree(trans, log, path, &level, wc);
2286 if (wret > 0)
2287 break;
79787eaa 2288 if (wret < 0) {
e02119d5 2289 ret = wret;
79787eaa
JM
2290 goto out;
2291 }
e02119d5
CM
2292
2293 wret = walk_up_log_tree(trans, log, path, &level, wc);
2294 if (wret > 0)
2295 break;
79787eaa 2296 if (wret < 0) {
e02119d5 2297 ret = wret;
79787eaa
JM
2298 goto out;
2299 }
e02119d5
CM
2300 }
2301
2302 /* was the root node processed? if not, catch it here */
2303 if (path->nodes[orig_level]) {
79787eaa 2304 ret = wc->process_func(log, path->nodes[orig_level], wc,
e02119d5 2305 btrfs_header_generation(path->nodes[orig_level]));
79787eaa
JM
2306 if (ret)
2307 goto out;
e02119d5
CM
2308 if (wc->free) {
2309 struct extent_buffer *next;
2310
2311 next = path->nodes[orig_level];
2312
681ae509
JB
2313 if (trans) {
2314 btrfs_tree_lock(next);
2315 btrfs_set_lock_blocking(next);
2316 clean_tree_block(trans, log, next);
2317 btrfs_wait_tree_block_writeback(next);
2318 btrfs_tree_unlock(next);
2319 }
e02119d5 2320
e02119d5
CM
2321 WARN_ON(log->root_key.objectid !=
2322 BTRFS_TREE_LOG_OBJECTID);
e688b725 2323 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
d00aff00 2324 next->len);
3650860b
JB
2325 if (ret)
2326 goto out;
e02119d5
CM
2327 }
2328 }
2329
79787eaa 2330out:
e02119d5 2331 btrfs_free_path(path);
e02119d5
CM
2332 return ret;
2333}
2334
7237f183
YZ
2335/*
2336 * helper function to update the item for a given subvolumes log root
2337 * in the tree of log roots
2338 */
2339static int update_log_root(struct btrfs_trans_handle *trans,
2340 struct btrfs_root *log)
2341{
2342 int ret;
2343
2344 if (log->log_transid == 1) {
2345 /* insert root item on the first sync */
2346 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2347 &log->root_key, &log->root_item);
2348 } else {
2349 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2350 &log->root_key, &log->root_item);
2351 }
2352 return ret;
2353}
2354
12fcfd22
CM
2355static int wait_log_commit(struct btrfs_trans_handle *trans,
2356 struct btrfs_root *root, unsigned long transid)
e02119d5
CM
2357{
2358 DEFINE_WAIT(wait);
7237f183 2359 int index = transid % 2;
e02119d5 2360
7237f183
YZ
2361 /*
2362 * we only allow two pending log transactions at a time,
2363 * so we know that if ours is more than 2 older than the
2364 * current transaction, we're done
2365 */
e02119d5 2366 do {
7237f183
YZ
2367 prepare_to_wait(&root->log_commit_wait[index],
2368 &wait, TASK_UNINTERRUPTIBLE);
2369 mutex_unlock(&root->log_mutex);
12fcfd22
CM
2370
2371 if (root->fs_info->last_trans_log_full_commit !=
2372 trans->transid && root->log_transid < transid + 2 &&
7237f183
YZ
2373 atomic_read(&root->log_commit[index]))
2374 schedule();
12fcfd22 2375
7237f183
YZ
2376 finish_wait(&root->log_commit_wait[index], &wait);
2377 mutex_lock(&root->log_mutex);
6dd70ce4
JK
2378 } while (root->fs_info->last_trans_log_full_commit !=
2379 trans->transid && root->log_transid < transid + 2 &&
7237f183
YZ
2380 atomic_read(&root->log_commit[index]));
2381 return 0;
2382}
2383
143bede5
JM
2384static void wait_for_writer(struct btrfs_trans_handle *trans,
2385 struct btrfs_root *root)
7237f183
YZ
2386{
2387 DEFINE_WAIT(wait);
6dd70ce4
JK
2388 while (root->fs_info->last_trans_log_full_commit !=
2389 trans->transid && atomic_read(&root->log_writers)) {
7237f183
YZ
2390 prepare_to_wait(&root->log_writer_wait,
2391 &wait, TASK_UNINTERRUPTIBLE);
2392 mutex_unlock(&root->log_mutex);
12fcfd22
CM
2393 if (root->fs_info->last_trans_log_full_commit !=
2394 trans->transid && atomic_read(&root->log_writers))
e02119d5 2395 schedule();
7237f183
YZ
2396 mutex_lock(&root->log_mutex);
2397 finish_wait(&root->log_writer_wait, &wait);
2398 }
e02119d5
CM
2399}
2400
2401/*
2402 * btrfs_sync_log does sends a given tree log down to the disk and
2403 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2404 * you know that any inodes previously logged are safely on disk only
2405 * if it returns 0.
2406 *
2407 * Any other return value means you need to call btrfs_commit_transaction.
2408 * Some of the edge cases for fsyncing directories that have had unlinks
2409 * or renames done in the past mean that sometimes the only safe
2410 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2411 * that has happened.
e02119d5
CM
2412 */
2413int btrfs_sync_log(struct btrfs_trans_handle *trans,
2414 struct btrfs_root *root)
2415{
7237f183
YZ
2416 int index1;
2417 int index2;
8cef4e16 2418 int mark;
e02119d5 2419 int ret;
e02119d5 2420 struct btrfs_root *log = root->log_root;
7237f183 2421 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
8cef4e16 2422 unsigned long log_transid = 0;
c6adc9cc 2423 struct blk_plug plug;
e02119d5 2424
7237f183 2425 mutex_lock(&root->log_mutex);
2ab28f32 2426 log_transid = root->log_transid;
7237f183
YZ
2427 index1 = root->log_transid % 2;
2428 if (atomic_read(&root->log_commit[index1])) {
12fcfd22 2429 wait_log_commit(trans, root, root->log_transid);
7237f183
YZ
2430 mutex_unlock(&root->log_mutex);
2431 return 0;
e02119d5 2432 }
7237f183
YZ
2433 atomic_set(&root->log_commit[index1], 1);
2434
2435 /* wait for previous tree log sync to complete */
2436 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
12fcfd22 2437 wait_log_commit(trans, root, root->log_transid - 1);
86df7eb9 2438 while (1) {
2ecb7923 2439 int batch = atomic_read(&root->log_batch);
cd354ad6
CM
2440 /* when we're on an ssd, just kick the log commit out */
2441 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
86df7eb9
YZ
2442 mutex_unlock(&root->log_mutex);
2443 schedule_timeout_uninterruptible(1);
2444 mutex_lock(&root->log_mutex);
2445 }
12fcfd22 2446 wait_for_writer(trans, root);
2ecb7923 2447 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2448 break;
2449 }
e02119d5 2450
12fcfd22
CM
2451 /* bail out if we need to do a full commit */
2452 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2453 ret = -EAGAIN;
2ab28f32 2454 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2455 mutex_unlock(&root->log_mutex);
2456 goto out;
2457 }
2458
8cef4e16
YZ
2459 if (log_transid % 2 == 0)
2460 mark = EXTENT_DIRTY;
2461 else
2462 mark = EXTENT_NEW;
2463
690587d1
CM
2464 /* we start IO on all the marked extents here, but we don't actually
2465 * wait for them until later.
2466 */
c6adc9cc 2467 blk_start_plug(&plug);
8cef4e16 2468 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
79787eaa 2469 if (ret) {
c6adc9cc 2470 blk_finish_plug(&plug);
79787eaa 2471 btrfs_abort_transaction(trans, root, ret);
2ab28f32 2472 btrfs_free_logged_extents(log, log_transid);
79787eaa
JM
2473 mutex_unlock(&root->log_mutex);
2474 goto out;
2475 }
7237f183 2476
5d4f98a2 2477 btrfs_set_root_node(&log->root_item, log->node);
7237f183 2478
7237f183
YZ
2479 root->log_transid++;
2480 log->log_transid = root->log_transid;
ff782e0a 2481 root->log_start_pid = 0;
7237f183
YZ
2482 smp_mb();
2483 /*
8cef4e16
YZ
2484 * IO has been started, blocks of the log tree have WRITTEN flag set
2485 * in their headers. new modifications of the log will be written to
2486 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2487 */
2488 mutex_unlock(&root->log_mutex);
2489
2490 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 2491 atomic_inc(&log_root_tree->log_batch);
7237f183
YZ
2492 atomic_inc(&log_root_tree->log_writers);
2493 mutex_unlock(&log_root_tree->log_mutex);
2494
2495 ret = update_log_root(trans, log);
7237f183
YZ
2496
2497 mutex_lock(&log_root_tree->log_mutex);
2498 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2499 smp_mb();
2500 if (waitqueue_active(&log_root_tree->log_writer_wait))
2501 wake_up(&log_root_tree->log_writer_wait);
2502 }
2503
4a500fd1 2504 if (ret) {
c6adc9cc 2505 blk_finish_plug(&plug);
79787eaa
JM
2506 if (ret != -ENOSPC) {
2507 btrfs_abort_transaction(trans, root, ret);
2508 mutex_unlock(&log_root_tree->log_mutex);
2509 goto out;
2510 }
4a500fd1
YZ
2511 root->fs_info->last_trans_log_full_commit = trans->transid;
2512 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2513 btrfs_free_logged_extents(log, log_transid);
4a500fd1
YZ
2514 mutex_unlock(&log_root_tree->log_mutex);
2515 ret = -EAGAIN;
2516 goto out;
2517 }
2518
7237f183
YZ
2519 index2 = log_root_tree->log_transid % 2;
2520 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 2521 blk_finish_plug(&plug);
8cef4e16 2522 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
12fcfd22
CM
2523 wait_log_commit(trans, log_root_tree,
2524 log_root_tree->log_transid);
2ab28f32 2525 btrfs_free_logged_extents(log, log_transid);
7237f183 2526 mutex_unlock(&log_root_tree->log_mutex);
b31eabd8 2527 ret = 0;
7237f183
YZ
2528 goto out;
2529 }
2530 atomic_set(&log_root_tree->log_commit[index2], 1);
2531
12fcfd22
CM
2532 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2533 wait_log_commit(trans, log_root_tree,
2534 log_root_tree->log_transid - 1);
2535 }
2536
2537 wait_for_writer(trans, log_root_tree);
7237f183 2538
12fcfd22
CM
2539 /*
2540 * now that we've moved on to the tree of log tree roots,
2541 * check the full commit flag again
2542 */
2543 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
c6adc9cc 2544 blk_finish_plug(&plug);
8cef4e16 2545 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2546 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2547 mutex_unlock(&log_root_tree->log_mutex);
2548 ret = -EAGAIN;
2549 goto out_wake_log_root;
2550 }
7237f183 2551
c6adc9cc
MX
2552 ret = btrfs_write_marked_extents(log_root_tree,
2553 &log_root_tree->dirty_log_pages,
2554 EXTENT_DIRTY | EXTENT_NEW);
2555 blk_finish_plug(&plug);
79787eaa
JM
2556 if (ret) {
2557 btrfs_abort_transaction(trans, root, ret);
2ab28f32 2558 btrfs_free_logged_extents(log, log_transid);
79787eaa
JM
2559 mutex_unlock(&log_root_tree->log_mutex);
2560 goto out_wake_log_root;
2561 }
8cef4e16 2562 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
c6adc9cc
MX
2563 btrfs_wait_marked_extents(log_root_tree,
2564 &log_root_tree->dirty_log_pages,
2565 EXTENT_NEW | EXTENT_DIRTY);
2ab28f32 2566 btrfs_wait_logged_extents(log, log_transid);
e02119d5 2567
6c41761f 2568 btrfs_set_super_log_root(root->fs_info->super_for_commit,
7237f183 2569 log_root_tree->node->start);
6c41761f 2570 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
7237f183 2571 btrfs_header_level(log_root_tree->node));
e02119d5 2572
7237f183 2573 log_root_tree->log_transid++;
e02119d5 2574 smp_mb();
7237f183
YZ
2575
2576 mutex_unlock(&log_root_tree->log_mutex);
2577
2578 /*
2579 * nobody else is going to jump in and write the the ctree
2580 * super here because the log_commit atomic below is protecting
2581 * us. We must be called with a transaction handle pinning
2582 * the running transaction open, so a full commit can't hop
2583 * in and cause problems either.
2584 */
a2de733c 2585 btrfs_scrub_pause_super(root);
5af3e8cc 2586 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
a2de733c 2587 btrfs_scrub_continue_super(root);
5af3e8cc
SB
2588 if (ret) {
2589 btrfs_abort_transaction(trans, root, ret);
2590 goto out_wake_log_root;
2591 }
7237f183 2592
257c62e1
CM
2593 mutex_lock(&root->log_mutex);
2594 if (root->last_log_commit < log_transid)
2595 root->last_log_commit = log_transid;
2596 mutex_unlock(&root->log_mutex);
2597
12fcfd22 2598out_wake_log_root:
7237f183
YZ
2599 atomic_set(&log_root_tree->log_commit[index2], 0);
2600 smp_mb();
2601 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2602 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 2603out:
7237f183
YZ
2604 atomic_set(&root->log_commit[index1], 0);
2605 smp_mb();
2606 if (waitqueue_active(&root->log_commit_wait[index1]))
2607 wake_up(&root->log_commit_wait[index1]);
b31eabd8 2608 return ret;
e02119d5
CM
2609}
2610
4a500fd1
YZ
2611static void free_log_tree(struct btrfs_trans_handle *trans,
2612 struct btrfs_root *log)
e02119d5
CM
2613{
2614 int ret;
d0c803c4
CM
2615 u64 start;
2616 u64 end;
e02119d5
CM
2617 struct walk_control wc = {
2618 .free = 1,
2619 .process_func = process_one_buffer
2620 };
2621
681ae509
JB
2622 ret = walk_log_tree(trans, log, &wc);
2623 /* I don't think this can happen but just in case */
2624 if (ret)
2625 btrfs_abort_transaction(trans, log, ret);
e02119d5 2626
d397712b 2627 while (1) {
d0c803c4 2628 ret = find_first_extent_bit(&log->dirty_log_pages,
e6138876
JB
2629 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2630 NULL);
d0c803c4
CM
2631 if (ret)
2632 break;
2633
8cef4e16
YZ
2634 clear_extent_bits(&log->dirty_log_pages, start, end,
2635 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
d0c803c4
CM
2636 }
2637
2ab28f32
JB
2638 /*
2639 * We may have short-circuited the log tree with the full commit logic
2640 * and left ordered extents on our list, so clear these out to keep us
2641 * from leaking inodes and memory.
2642 */
2643 btrfs_free_logged_extents(log, 0);
2644 btrfs_free_logged_extents(log, 1);
2645
7237f183
YZ
2646 free_extent_buffer(log->node);
2647 kfree(log);
4a500fd1
YZ
2648}
2649
2650/*
2651 * free all the extents used by the tree log. This should be called
2652 * at commit time of the full transaction
2653 */
2654int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2655{
2656 if (root->log_root) {
2657 free_log_tree(trans, root->log_root);
2658 root->log_root = NULL;
2659 }
2660 return 0;
2661}
2662
2663int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2664 struct btrfs_fs_info *fs_info)
2665{
2666 if (fs_info->log_root_tree) {
2667 free_log_tree(trans, fs_info->log_root_tree);
2668 fs_info->log_root_tree = NULL;
2669 }
e02119d5
CM
2670 return 0;
2671}
2672
e02119d5
CM
2673/*
2674 * If both a file and directory are logged, and unlinks or renames are
2675 * mixed in, we have a few interesting corners:
2676 *
2677 * create file X in dir Y
2678 * link file X to X.link in dir Y
2679 * fsync file X
2680 * unlink file X but leave X.link
2681 * fsync dir Y
2682 *
2683 * After a crash we would expect only X.link to exist. But file X
2684 * didn't get fsync'd again so the log has back refs for X and X.link.
2685 *
2686 * We solve this by removing directory entries and inode backrefs from the
2687 * log when a file that was logged in the current transaction is
2688 * unlinked. Any later fsync will include the updated log entries, and
2689 * we'll be able to reconstruct the proper directory items from backrefs.
2690 *
2691 * This optimizations allows us to avoid relogging the entire inode
2692 * or the entire directory.
2693 */
2694int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2695 struct btrfs_root *root,
2696 const char *name, int name_len,
2697 struct inode *dir, u64 index)
2698{
2699 struct btrfs_root *log;
2700 struct btrfs_dir_item *di;
2701 struct btrfs_path *path;
2702 int ret;
4a500fd1 2703 int err = 0;
e02119d5 2704 int bytes_del = 0;
33345d01 2705 u64 dir_ino = btrfs_ino(dir);
e02119d5 2706
3a5f1d45
CM
2707 if (BTRFS_I(dir)->logged_trans < trans->transid)
2708 return 0;
2709
e02119d5
CM
2710 ret = join_running_log_trans(root);
2711 if (ret)
2712 return 0;
2713
2714 mutex_lock(&BTRFS_I(dir)->log_mutex);
2715
2716 log = root->log_root;
2717 path = btrfs_alloc_path();
a62f44a5
TI
2718 if (!path) {
2719 err = -ENOMEM;
2720 goto out_unlock;
2721 }
2a29edc6 2722
33345d01 2723 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 2724 name, name_len, -1);
4a500fd1
YZ
2725 if (IS_ERR(di)) {
2726 err = PTR_ERR(di);
2727 goto fail;
2728 }
2729 if (di) {
e02119d5
CM
2730 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2731 bytes_del += name_len;
3650860b
JB
2732 if (ret) {
2733 err = ret;
2734 goto fail;
2735 }
e02119d5 2736 }
b3b4aa74 2737 btrfs_release_path(path);
33345d01 2738 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 2739 index, name, name_len, -1);
4a500fd1
YZ
2740 if (IS_ERR(di)) {
2741 err = PTR_ERR(di);
2742 goto fail;
2743 }
2744 if (di) {
e02119d5
CM
2745 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2746 bytes_del += name_len;
3650860b
JB
2747 if (ret) {
2748 err = ret;
2749 goto fail;
2750 }
e02119d5
CM
2751 }
2752
2753 /* update the directory size in the log to reflect the names
2754 * we have removed
2755 */
2756 if (bytes_del) {
2757 struct btrfs_key key;
2758
33345d01 2759 key.objectid = dir_ino;
e02119d5
CM
2760 key.offset = 0;
2761 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 2762 btrfs_release_path(path);
e02119d5
CM
2763
2764 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
2765 if (ret < 0) {
2766 err = ret;
2767 goto fail;
2768 }
e02119d5
CM
2769 if (ret == 0) {
2770 struct btrfs_inode_item *item;
2771 u64 i_size;
2772
2773 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2774 struct btrfs_inode_item);
2775 i_size = btrfs_inode_size(path->nodes[0], item);
2776 if (i_size > bytes_del)
2777 i_size -= bytes_del;
2778 else
2779 i_size = 0;
2780 btrfs_set_inode_size(path->nodes[0], item, i_size);
2781 btrfs_mark_buffer_dirty(path->nodes[0]);
2782 } else
2783 ret = 0;
b3b4aa74 2784 btrfs_release_path(path);
e02119d5 2785 }
4a500fd1 2786fail:
e02119d5 2787 btrfs_free_path(path);
a62f44a5 2788out_unlock:
e02119d5 2789 mutex_unlock(&BTRFS_I(dir)->log_mutex);
4a500fd1
YZ
2790 if (ret == -ENOSPC) {
2791 root->fs_info->last_trans_log_full_commit = trans->transid;
2792 ret = 0;
79787eaa
JM
2793 } else if (ret < 0)
2794 btrfs_abort_transaction(trans, root, ret);
2795
12fcfd22 2796 btrfs_end_log_trans(root);
e02119d5 2797
411fc6bc 2798 return err;
e02119d5
CM
2799}
2800
2801/* see comments for btrfs_del_dir_entries_in_log */
2802int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2803 struct btrfs_root *root,
2804 const char *name, int name_len,
2805 struct inode *inode, u64 dirid)
2806{
2807 struct btrfs_root *log;
2808 u64 index;
2809 int ret;
2810
3a5f1d45
CM
2811 if (BTRFS_I(inode)->logged_trans < trans->transid)
2812 return 0;
2813
e02119d5
CM
2814 ret = join_running_log_trans(root);
2815 if (ret)
2816 return 0;
2817 log = root->log_root;
2818 mutex_lock(&BTRFS_I(inode)->log_mutex);
2819
33345d01 2820 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5
CM
2821 dirid, &index);
2822 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4a500fd1
YZ
2823 if (ret == -ENOSPC) {
2824 root->fs_info->last_trans_log_full_commit = trans->transid;
2825 ret = 0;
79787eaa
JM
2826 } else if (ret < 0 && ret != -ENOENT)
2827 btrfs_abort_transaction(trans, root, ret);
12fcfd22 2828 btrfs_end_log_trans(root);
e02119d5 2829
e02119d5
CM
2830 return ret;
2831}
2832
2833/*
2834 * creates a range item in the log for 'dirid'. first_offset and
2835 * last_offset tell us which parts of the key space the log should
2836 * be considered authoritative for.
2837 */
2838static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2839 struct btrfs_root *log,
2840 struct btrfs_path *path,
2841 int key_type, u64 dirid,
2842 u64 first_offset, u64 last_offset)
2843{
2844 int ret;
2845 struct btrfs_key key;
2846 struct btrfs_dir_log_item *item;
2847
2848 key.objectid = dirid;
2849 key.offset = first_offset;
2850 if (key_type == BTRFS_DIR_ITEM_KEY)
2851 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2852 else
2853 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2854 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
2855 if (ret)
2856 return ret;
e02119d5
CM
2857
2858 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2859 struct btrfs_dir_log_item);
2860 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2861 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 2862 btrfs_release_path(path);
e02119d5
CM
2863 return 0;
2864}
2865
2866/*
2867 * log all the items included in the current transaction for a given
2868 * directory. This also creates the range items in the log tree required
2869 * to replay anything deleted before the fsync
2870 */
2871static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2872 struct btrfs_root *root, struct inode *inode,
2873 struct btrfs_path *path,
2874 struct btrfs_path *dst_path, int key_type,
2875 u64 min_offset, u64 *last_offset_ret)
2876{
2877 struct btrfs_key min_key;
e02119d5
CM
2878 struct btrfs_root *log = root->log_root;
2879 struct extent_buffer *src;
4a500fd1 2880 int err = 0;
e02119d5
CM
2881 int ret;
2882 int i;
2883 int nritems;
2884 u64 first_offset = min_offset;
2885 u64 last_offset = (u64)-1;
33345d01 2886 u64 ino = btrfs_ino(inode);
e02119d5
CM
2887
2888 log = root->log_root;
e02119d5 2889
33345d01 2890 min_key.objectid = ino;
e02119d5
CM
2891 min_key.type = key_type;
2892 min_key.offset = min_offset;
2893
2894 path->keep_locks = 1;
2895
6174d3cb 2896 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
2897
2898 /*
2899 * we didn't find anything from this transaction, see if there
2900 * is anything at all
2901 */
33345d01
LZ
2902 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2903 min_key.objectid = ino;
e02119d5
CM
2904 min_key.type = key_type;
2905 min_key.offset = (u64)-1;
b3b4aa74 2906 btrfs_release_path(path);
e02119d5
CM
2907 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2908 if (ret < 0) {
b3b4aa74 2909 btrfs_release_path(path);
e02119d5
CM
2910 return ret;
2911 }
33345d01 2912 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
2913
2914 /* if ret == 0 there are items for this type,
2915 * create a range to tell us the last key of this type.
2916 * otherwise, there are no items in this directory after
2917 * *min_offset, and we create a range to indicate that.
2918 */
2919 if (ret == 0) {
2920 struct btrfs_key tmp;
2921 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2922 path->slots[0]);
d397712b 2923 if (key_type == tmp.type)
e02119d5 2924 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
2925 }
2926 goto done;
2927 }
2928
2929 /* go backward to find any previous key */
33345d01 2930 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
2931 if (ret == 0) {
2932 struct btrfs_key tmp;
2933 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2934 if (key_type == tmp.type) {
2935 first_offset = tmp.offset;
2936 ret = overwrite_item(trans, log, dst_path,
2937 path->nodes[0], path->slots[0],
2938 &tmp);
4a500fd1
YZ
2939 if (ret) {
2940 err = ret;
2941 goto done;
2942 }
e02119d5
CM
2943 }
2944 }
b3b4aa74 2945 btrfs_release_path(path);
e02119d5
CM
2946
2947 /* find the first key from this transaction again */
2948 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2949 if (ret != 0) {
2950 WARN_ON(1);
2951 goto done;
2952 }
2953
2954 /*
2955 * we have a block from this transaction, log every item in it
2956 * from our directory
2957 */
d397712b 2958 while (1) {
e02119d5
CM
2959 struct btrfs_key tmp;
2960 src = path->nodes[0];
2961 nritems = btrfs_header_nritems(src);
2962 for (i = path->slots[0]; i < nritems; i++) {
2963 btrfs_item_key_to_cpu(src, &min_key, i);
2964
33345d01 2965 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
2966 goto done;
2967 ret = overwrite_item(trans, log, dst_path, src, i,
2968 &min_key);
4a500fd1
YZ
2969 if (ret) {
2970 err = ret;
2971 goto done;
2972 }
e02119d5
CM
2973 }
2974 path->slots[0] = nritems;
2975
2976 /*
2977 * look ahead to the next item and see if it is also
2978 * from this directory and from this transaction
2979 */
2980 ret = btrfs_next_leaf(root, path);
2981 if (ret == 1) {
2982 last_offset = (u64)-1;
2983 goto done;
2984 }
2985 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 2986 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
2987 last_offset = (u64)-1;
2988 goto done;
2989 }
2990 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2991 ret = overwrite_item(trans, log, dst_path,
2992 path->nodes[0], path->slots[0],
2993 &tmp);
4a500fd1
YZ
2994 if (ret)
2995 err = ret;
2996 else
2997 last_offset = tmp.offset;
e02119d5
CM
2998 goto done;
2999 }
3000 }
3001done:
b3b4aa74
DS
3002 btrfs_release_path(path);
3003 btrfs_release_path(dst_path);
e02119d5 3004
4a500fd1
YZ
3005 if (err == 0) {
3006 *last_offset_ret = last_offset;
3007 /*
3008 * insert the log range keys to indicate where the log
3009 * is valid
3010 */
3011 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3012 ino, first_offset, last_offset);
4a500fd1
YZ
3013 if (ret)
3014 err = ret;
3015 }
3016 return err;
e02119d5
CM
3017}
3018
3019/*
3020 * logging directories is very similar to logging inodes, We find all the items
3021 * from the current transaction and write them to the log.
3022 *
3023 * The recovery code scans the directory in the subvolume, and if it finds a
3024 * key in the range logged that is not present in the log tree, then it means
3025 * that dir entry was unlinked during the transaction.
3026 *
3027 * In order for that scan to work, we must include one key smaller than
3028 * the smallest logged by this transaction and one key larger than the largest
3029 * key logged by this transaction.
3030 */
3031static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3032 struct btrfs_root *root, struct inode *inode,
3033 struct btrfs_path *path,
3034 struct btrfs_path *dst_path)
3035{
3036 u64 min_key;
3037 u64 max_key;
3038 int ret;
3039 int key_type = BTRFS_DIR_ITEM_KEY;
3040
3041again:
3042 min_key = 0;
3043 max_key = 0;
d397712b 3044 while (1) {
e02119d5
CM
3045 ret = log_dir_items(trans, root, inode, path,
3046 dst_path, key_type, min_key,
3047 &max_key);
4a500fd1
YZ
3048 if (ret)
3049 return ret;
e02119d5
CM
3050 if (max_key == (u64)-1)
3051 break;
3052 min_key = max_key + 1;
3053 }
3054
3055 if (key_type == BTRFS_DIR_ITEM_KEY) {
3056 key_type = BTRFS_DIR_INDEX_KEY;
3057 goto again;
3058 }
3059 return 0;
3060}
3061
3062/*
3063 * a helper function to drop items from the log before we relog an
3064 * inode. max_key_type indicates the highest item type to remove.
3065 * This cannot be run for file data extents because it does not
3066 * free the extents they point to.
3067 */
3068static int drop_objectid_items(struct btrfs_trans_handle *trans,
3069 struct btrfs_root *log,
3070 struct btrfs_path *path,
3071 u64 objectid, int max_key_type)
3072{
3073 int ret;
3074 struct btrfs_key key;
3075 struct btrfs_key found_key;
18ec90d6 3076 int start_slot;
e02119d5
CM
3077
3078 key.objectid = objectid;
3079 key.type = max_key_type;
3080 key.offset = (u64)-1;
3081
d397712b 3082 while (1) {
e02119d5 3083 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3084 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3085 if (ret < 0)
e02119d5
CM
3086 break;
3087
3088 if (path->slots[0] == 0)
3089 break;
3090
3091 path->slots[0]--;
3092 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3093 path->slots[0]);
3094
3095 if (found_key.objectid != objectid)
3096 break;
3097
18ec90d6
JB
3098 found_key.offset = 0;
3099 found_key.type = 0;
3100 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3101 &start_slot);
3102
3103 ret = btrfs_del_items(trans, log, path, start_slot,
3104 path->slots[0] - start_slot + 1);
3105 /*
3106 * If start slot isn't 0 then we don't need to re-search, we've
3107 * found the last guy with the objectid in this tree.
3108 */
3109 if (ret || start_slot != 0)
65a246c5 3110 break;
b3b4aa74 3111 btrfs_release_path(path);
e02119d5 3112 }
b3b4aa74 3113 btrfs_release_path(path);
5bdbeb21
JB
3114 if (ret > 0)
3115 ret = 0;
4a500fd1 3116 return ret;
e02119d5
CM
3117}
3118
94edf4ae
JB
3119static void fill_inode_item(struct btrfs_trans_handle *trans,
3120 struct extent_buffer *leaf,
3121 struct btrfs_inode_item *item,
3122 struct inode *inode, int log_inode_only)
3123{
0b1c6cca
JB
3124 struct btrfs_map_token token;
3125
3126 btrfs_init_map_token(&token);
94edf4ae
JB
3127
3128 if (log_inode_only) {
3129 /* set the generation to zero so the recover code
3130 * can tell the difference between an logging
3131 * just to say 'this inode exists' and a logging
3132 * to say 'update this inode with these values'
3133 */
0b1c6cca
JB
3134 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3135 btrfs_set_token_inode_size(leaf, item, 0, &token);
94edf4ae 3136 } else {
0b1c6cca
JB
3137 btrfs_set_token_inode_generation(leaf, item,
3138 BTRFS_I(inode)->generation,
3139 &token);
3140 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3141 }
3142
3143 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3144 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3145 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3146 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3147
3148 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3149 inode->i_atime.tv_sec, &token);
3150 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3151 inode->i_atime.tv_nsec, &token);
3152
3153 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3154 inode->i_mtime.tv_sec, &token);
3155 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3156 inode->i_mtime.tv_nsec, &token);
3157
3158 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3159 inode->i_ctime.tv_sec, &token);
3160 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3161 inode->i_ctime.tv_nsec, &token);
3162
3163 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3164 &token);
3165
3166 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3167 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3168 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3169 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3170 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3171}
3172
a95249b3
JB
3173static int log_inode_item(struct btrfs_trans_handle *trans,
3174 struct btrfs_root *log, struct btrfs_path *path,
3175 struct inode *inode)
3176{
3177 struct btrfs_inode_item *inode_item;
a95249b3
JB
3178 int ret;
3179
efd0c405
FDBM
3180 ret = btrfs_insert_empty_item(trans, log, path,
3181 &BTRFS_I(inode)->location,
a95249b3
JB
3182 sizeof(*inode_item));
3183 if (ret && ret != -EEXIST)
3184 return ret;
3185 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3186 struct btrfs_inode_item);
3187 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3188 btrfs_release_path(path);
3189 return 0;
3190}
3191
31ff1cd2 3192static noinline int copy_items(struct btrfs_trans_handle *trans,
d2794405 3193 struct inode *inode,
31ff1cd2
CM
3194 struct btrfs_path *dst_path,
3195 struct extent_buffer *src,
3196 int start_slot, int nr, int inode_only)
3197{
3198 unsigned long src_offset;
3199 unsigned long dst_offset;
d2794405 3200 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
31ff1cd2
CM
3201 struct btrfs_file_extent_item *extent;
3202 struct btrfs_inode_item *inode_item;
3203 int ret;
3204 struct btrfs_key *ins_keys;
3205 u32 *ins_sizes;
3206 char *ins_data;
3207 int i;
d20f7043 3208 struct list_head ordered_sums;
d2794405 3209 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
d20f7043
CM
3210
3211 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3212
3213 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3214 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3215 if (!ins_data)
3216 return -ENOMEM;
3217
31ff1cd2
CM
3218 ins_sizes = (u32 *)ins_data;
3219 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3220
3221 for (i = 0; i < nr; i++) {
3222 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3223 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3224 }
3225 ret = btrfs_insert_empty_items(trans, log, dst_path,
3226 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3227 if (ret) {
3228 kfree(ins_data);
3229 return ret;
3230 }
31ff1cd2 3231
5d4f98a2 3232 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3233 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3234 dst_path->slots[0]);
3235
3236 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3237
94edf4ae 3238 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3239 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3240 dst_path->slots[0],
3241 struct btrfs_inode_item);
94edf4ae
JB
3242 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3243 inode, inode_only == LOG_INODE_EXISTS);
3244 } else {
3245 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3246 src_offset, ins_sizes[i]);
31ff1cd2 3247 }
94edf4ae 3248
31ff1cd2
CM
3249 /* take a reference on file data extents so that truncates
3250 * or deletes of this inode don't have to relog the inode
3251 * again
3252 */
d2794405
LB
3253 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3254 !skip_csum) {
31ff1cd2
CM
3255 int found_type;
3256 extent = btrfs_item_ptr(src, start_slot + i,
3257 struct btrfs_file_extent_item);
3258
8e531cdf 3259 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3260 continue;
3261
31ff1cd2 3262 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 3263 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
3264 u64 ds, dl, cs, cl;
3265 ds = btrfs_file_extent_disk_bytenr(src,
3266 extent);
3267 /* ds == 0 is a hole */
3268 if (ds == 0)
3269 continue;
3270
3271 dl = btrfs_file_extent_disk_num_bytes(src,
3272 extent);
3273 cs = btrfs_file_extent_offset(src, extent);
3274 cl = btrfs_file_extent_num_bytes(src,
a419aef8 3275 extent);
580afd76
CM
3276 if (btrfs_file_extent_compression(src,
3277 extent)) {
3278 cs = 0;
3279 cl = dl;
3280 }
5d4f98a2
YZ
3281
3282 ret = btrfs_lookup_csums_range(
3283 log->fs_info->csum_root,
3284 ds + cs, ds + cs + cl - 1,
a2de733c 3285 &ordered_sums, 0);
3650860b
JB
3286 if (ret) {
3287 btrfs_release_path(dst_path);
3288 kfree(ins_data);
3289 return ret;
3290 }
31ff1cd2
CM
3291 }
3292 }
31ff1cd2
CM
3293 }
3294
3295 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 3296 btrfs_release_path(dst_path);
31ff1cd2 3297 kfree(ins_data);
d20f7043
CM
3298
3299 /*
3300 * we have to do this after the loop above to avoid changing the
3301 * log tree while trying to change the log tree.
3302 */
4a500fd1 3303 ret = 0;
d397712b 3304 while (!list_empty(&ordered_sums)) {
d20f7043
CM
3305 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3306 struct btrfs_ordered_sum,
3307 list);
4a500fd1
YZ
3308 if (!ret)
3309 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
3310 list_del(&sums->list);
3311 kfree(sums);
3312 }
4a500fd1 3313 return ret;
31ff1cd2
CM
3314}
3315
5dc562c5
JB
3316static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3317{
3318 struct extent_map *em1, *em2;
3319
3320 em1 = list_entry(a, struct extent_map, list);
3321 em2 = list_entry(b, struct extent_map, list);
3322
3323 if (em1->start < em2->start)
3324 return -1;
3325 else if (em1->start > em2->start)
3326 return 1;
3327 return 0;
3328}
3329
5dc562c5
JB
3330static int log_one_extent(struct btrfs_trans_handle *trans,
3331 struct inode *inode, struct btrfs_root *root,
70c8a91c 3332 struct extent_map *em, struct btrfs_path *path)
5dc562c5
JB
3333{
3334 struct btrfs_root *log = root->log_root;
70c8a91c
JB
3335 struct btrfs_file_extent_item *fi;
3336 struct extent_buffer *leaf;
2ab28f32 3337 struct btrfs_ordered_extent *ordered;
70c8a91c 3338 struct list_head ordered_sums;
0b1c6cca 3339 struct btrfs_map_token token;
5dc562c5 3340 struct btrfs_key key;
2ab28f32
JB
3341 u64 mod_start = em->mod_start;
3342 u64 mod_len = em->mod_len;
3343 u64 csum_offset;
3344 u64 csum_len;
70c8a91c
JB
3345 u64 extent_offset = em->start - em->orig_start;
3346 u64 block_len;
5dc562c5 3347 int ret;
2ab28f32 3348 int index = log->log_transid % 2;
70c8a91c 3349 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5dc562c5 3350
09a2a8f9
JB
3351 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3352 em->start + em->len, NULL, 0);
3353 if (ret)
3354 return ret;
3355
70c8a91c 3356 INIT_LIST_HEAD(&ordered_sums);
0b1c6cca 3357 btrfs_init_map_token(&token);
70c8a91c
JB
3358 key.objectid = btrfs_ino(inode);
3359 key.type = BTRFS_EXTENT_DATA_KEY;
3360 key.offset = em->start;
70c8a91c
JB
3361
3362 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*fi));
09a2a8f9 3363 if (ret)
70c8a91c 3364 return ret;
70c8a91c
JB
3365 leaf = path->nodes[0];
3366 fi = btrfs_item_ptr(leaf, path->slots[0],
3367 struct btrfs_file_extent_item);
124fe663 3368
0b1c6cca
JB
3369 btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3370 &token);
70c8a91c
JB
3371 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3372 skip_csum = true;
0b1c6cca
JB
3373 btrfs_set_token_file_extent_type(leaf, fi,
3374 BTRFS_FILE_EXTENT_PREALLOC,
3375 &token);
70c8a91c 3376 } else {
0b1c6cca
JB
3377 btrfs_set_token_file_extent_type(leaf, fi,
3378 BTRFS_FILE_EXTENT_REG,
3379 &token);
ed9e8af8 3380 if (em->block_start == EXTENT_MAP_HOLE)
70c8a91c
JB
3381 skip_csum = true;
3382 }
3383
3384 block_len = max(em->block_len, em->orig_block_len);
3385 if (em->compress_type != BTRFS_COMPRESS_NONE) {
0b1c6cca
JB
3386 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3387 em->block_start,
3388 &token);
3389 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3390 &token);
70c8a91c 3391 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
0b1c6cca
JB
3392 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3393 em->block_start -
3394 extent_offset, &token);
3395 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3396 &token);
70c8a91c 3397 } else {
0b1c6cca
JB
3398 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3399 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3400 &token);
3401 }
3402
3403 btrfs_set_token_file_extent_offset(leaf, fi,
3404 em->start - em->orig_start,
3405 &token);
3406 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
cc95bef6 3407 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
0b1c6cca
JB
3408 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3409 &token);
3410 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3411 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
70c8a91c 3412 btrfs_mark_buffer_dirty(leaf);
0aa4a17d 3413
70c8a91c 3414 btrfs_release_path(path);
70c8a91c
JB
3415 if (ret) {
3416 return ret;
3417 }
0aa4a17d 3418
70c8a91c
JB
3419 if (skip_csum)
3420 return 0;
5dc562c5 3421
192000dd
LB
3422 if (em->compress_type) {
3423 csum_offset = 0;
3424 csum_len = block_len;
3425 }
3426
2ab28f32
JB
3427 /*
3428 * First check and see if our csums are on our outstanding ordered
3429 * extents.
3430 */
3431again:
3432 spin_lock_irq(&log->log_extents_lock[index]);
3433 list_for_each_entry(ordered, &log->logged_list[index], log_list) {
3434 struct btrfs_ordered_sum *sum;
3435
3436 if (!mod_len)
3437 break;
3438
3439 if (ordered->inode != inode)
3440 continue;
3441
3442 if (ordered->file_offset + ordered->len <= mod_start ||
3443 mod_start + mod_len <= ordered->file_offset)
3444 continue;
3445
3446 /*
3447 * We are going to copy all the csums on this ordered extent, so
3448 * go ahead and adjust mod_start and mod_len in case this
3449 * ordered extent has already been logged.
3450 */
3451 if (ordered->file_offset > mod_start) {
3452 if (ordered->file_offset + ordered->len >=
3453 mod_start + mod_len)
3454 mod_len = ordered->file_offset - mod_start;
3455 /*
3456 * If we have this case
3457 *
3458 * |--------- logged extent ---------|
3459 * |----- ordered extent ----|
3460 *
3461 * Just don't mess with mod_start and mod_len, we'll
3462 * just end up logging more csums than we need and it
3463 * will be ok.
3464 */
3465 } else {
3466 if (ordered->file_offset + ordered->len <
3467 mod_start + mod_len) {
3468 mod_len = (mod_start + mod_len) -
3469 (ordered->file_offset + ordered->len);
3470 mod_start = ordered->file_offset +
3471 ordered->len;
3472 } else {
3473 mod_len = 0;
3474 }
3475 }
3476
3477 /*
3478 * To keep us from looping for the above case of an ordered
3479 * extent that falls inside of the logged extent.
3480 */
3481 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3482 &ordered->flags))
3483 continue;
3484 atomic_inc(&ordered->refs);
3485 spin_unlock_irq(&log->log_extents_lock[index]);
3486 /*
3487 * we've dropped the lock, we must either break or
3488 * start over after this.
3489 */
3490
3491 wait_event(ordered->wait, ordered->csum_bytes_left == 0);
3492
3493 list_for_each_entry(sum, &ordered->list, list) {
3494 ret = btrfs_csum_file_blocks(trans, log, sum);
3495 if (ret) {
3496 btrfs_put_ordered_extent(ordered);
3497 goto unlocked;
3498 }
3499 }
3500 btrfs_put_ordered_extent(ordered);
3501 goto again;
3502
3503 }
3504 spin_unlock_irq(&log->log_extents_lock[index]);
3505unlocked:
3506
3507 if (!mod_len || ret)
3508 return ret;
3509
3510 csum_offset = mod_start - em->start;
3511 csum_len = mod_len;
3512
70c8a91c
JB
3513 /* block start is already adjusted for the file extent offset. */
3514 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3515 em->block_start + csum_offset,
3516 em->block_start + csum_offset +
3517 csum_len - 1, &ordered_sums, 0);
3518 if (ret)
3519 return ret;
5dc562c5 3520
70c8a91c
JB
3521 while (!list_empty(&ordered_sums)) {
3522 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3523 struct btrfs_ordered_sum,
3524 list);
3525 if (!ret)
3526 ret = btrfs_csum_file_blocks(trans, log, sums);
3527 list_del(&sums->list);
3528 kfree(sums);
5dc562c5
JB
3529 }
3530
70c8a91c 3531 return ret;
5dc562c5
JB
3532}
3533
3534static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3535 struct btrfs_root *root,
3536 struct inode *inode,
70c8a91c 3537 struct btrfs_path *path)
5dc562c5 3538{
5dc562c5
JB
3539 struct extent_map *em, *n;
3540 struct list_head extents;
3541 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3542 u64 test_gen;
3543 int ret = 0;
2ab28f32 3544 int num = 0;
5dc562c5
JB
3545
3546 INIT_LIST_HEAD(&extents);
3547
5dc562c5
JB
3548 write_lock(&tree->lock);
3549 test_gen = root->fs_info->last_trans_committed;
3550
3551 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3552 list_del_init(&em->list);
2ab28f32
JB
3553
3554 /*
3555 * Just an arbitrary number, this can be really CPU intensive
3556 * once we start getting a lot of extents, and really once we
3557 * have a bunch of extents we just want to commit since it will
3558 * be faster.
3559 */
3560 if (++num > 32768) {
3561 list_del_init(&tree->modified_extents);
3562 ret = -EFBIG;
3563 goto process;
3564 }
3565
5dc562c5
JB
3566 if (em->generation <= test_gen)
3567 continue;
ff44c6e3
JB
3568 /* Need a ref to keep it from getting evicted from cache */
3569 atomic_inc(&em->refs);
3570 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 3571 list_add_tail(&em->list, &extents);
2ab28f32 3572 num++;
5dc562c5
JB
3573 }
3574
3575 list_sort(NULL, &extents, extent_cmp);
3576
2ab28f32 3577process:
5dc562c5
JB
3578 while (!list_empty(&extents)) {
3579 em = list_entry(extents.next, struct extent_map, list);
3580
3581 list_del_init(&em->list);
3582
3583 /*
3584 * If we had an error we just need to delete everybody from our
3585 * private list.
3586 */
ff44c6e3 3587 if (ret) {
201a9038 3588 clear_em_logging(tree, em);
ff44c6e3 3589 free_extent_map(em);
5dc562c5 3590 continue;
ff44c6e3
JB
3591 }
3592
3593 write_unlock(&tree->lock);
5dc562c5 3594
70c8a91c 3595 ret = log_one_extent(trans, inode, root, em, path);
ff44c6e3 3596 write_lock(&tree->lock);
201a9038
JB
3597 clear_em_logging(tree, em);
3598 free_extent_map(em);
5dc562c5 3599 }
ff44c6e3
JB
3600 WARN_ON(!list_empty(&extents));
3601 write_unlock(&tree->lock);
5dc562c5 3602
5dc562c5 3603 btrfs_release_path(path);
5dc562c5
JB
3604 return ret;
3605}
3606
e02119d5
CM
3607/* log a single inode in the tree log.
3608 * At least one parent directory for this inode must exist in the tree
3609 * or be logged already.
3610 *
3611 * Any items from this inode changed by the current transaction are copied
3612 * to the log tree. An extra reference is taken on any extents in this
3613 * file, allowing us to avoid a whole pile of corner cases around logging
3614 * blocks that have been removed from the tree.
3615 *
3616 * See LOG_INODE_ALL and related defines for a description of what inode_only
3617 * does.
3618 *
3619 * This handles both files and directories.
3620 */
12fcfd22 3621static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
3622 struct btrfs_root *root, struct inode *inode,
3623 int inode_only)
3624{
3625 struct btrfs_path *path;
3626 struct btrfs_path *dst_path;
3627 struct btrfs_key min_key;
3628 struct btrfs_key max_key;
3629 struct btrfs_root *log = root->log_root;
31ff1cd2 3630 struct extent_buffer *src = NULL;
4a500fd1 3631 int err = 0;
e02119d5 3632 int ret;
3a5f1d45 3633 int nritems;
31ff1cd2
CM
3634 int ins_start_slot = 0;
3635 int ins_nr;
5dc562c5 3636 bool fast_search = false;
33345d01 3637 u64 ino = btrfs_ino(inode);
e02119d5 3638
e02119d5 3639 path = btrfs_alloc_path();
5df67083
TI
3640 if (!path)
3641 return -ENOMEM;
e02119d5 3642 dst_path = btrfs_alloc_path();
5df67083
TI
3643 if (!dst_path) {
3644 btrfs_free_path(path);
3645 return -ENOMEM;
3646 }
e02119d5 3647
33345d01 3648 min_key.objectid = ino;
e02119d5
CM
3649 min_key.type = BTRFS_INODE_ITEM_KEY;
3650 min_key.offset = 0;
3651
33345d01 3652 max_key.objectid = ino;
12fcfd22 3653
12fcfd22 3654
5dc562c5 3655 /* today the code can only do partial logging of directories */
5269b67e
MX
3656 if (S_ISDIR(inode->i_mode) ||
3657 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3658 &BTRFS_I(inode)->runtime_flags) &&
3659 inode_only == LOG_INODE_EXISTS))
e02119d5
CM
3660 max_key.type = BTRFS_XATTR_ITEM_KEY;
3661 else
3662 max_key.type = (u8)-1;
3663 max_key.offset = (u64)-1;
3664
94edf4ae
JB
3665 /* Only run delayed items if we are a dir or a new file */
3666 if (S_ISDIR(inode->i_mode) ||
3667 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3668 ret = btrfs_commit_inode_delayed_items(trans, inode);
3669 if (ret) {
3670 btrfs_free_path(path);
3671 btrfs_free_path(dst_path);
3672 return ret;
3673 }
16cdcec7
MX
3674 }
3675
e02119d5
CM
3676 mutex_lock(&BTRFS_I(inode)->log_mutex);
3677
2ab28f32
JB
3678 btrfs_get_logged_extents(log, inode);
3679
e02119d5
CM
3680 /*
3681 * a brute force approach to making sure we get the most uptodate
3682 * copies of everything.
3683 */
3684 if (S_ISDIR(inode->i_mode)) {
3685 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3686
3687 if (inode_only == LOG_INODE_EXISTS)
3688 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 3689 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 3690 } else {
5dc562c5
JB
3691 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3692 &BTRFS_I(inode)->runtime_flags)) {
e9976151
JB
3693 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3694 &BTRFS_I(inode)->runtime_flags);
5dc562c5
JB
3695 ret = btrfs_truncate_inode_items(trans, log,
3696 inode, 0, 0);
a95249b3
JB
3697 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3698 &BTRFS_I(inode)->runtime_flags)) {
183f37fa
LB
3699 if (inode_only == LOG_INODE_ALL)
3700 fast_search = true;
a95249b3 3701 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 3702 ret = drop_objectid_items(trans, log, path, ino,
e9976151 3703 max_key.type);
a95249b3
JB
3704 } else {
3705 if (inode_only == LOG_INODE_ALL)
3706 fast_search = true;
3707 ret = log_inode_item(trans, log, dst_path, inode);
3708 if (ret) {
3709 err = ret;
3710 goto out_unlock;
3711 }
3712 goto log_extents;
5dc562c5 3713 }
a95249b3 3714
e02119d5 3715 }
4a500fd1
YZ
3716 if (ret) {
3717 err = ret;
3718 goto out_unlock;
3719 }
e02119d5
CM
3720 path->keep_locks = 1;
3721
d397712b 3722 while (1) {
31ff1cd2 3723 ins_nr = 0;
6174d3cb 3724 ret = btrfs_search_forward(root, &min_key,
de78b51a 3725 path, trans->transid);
e02119d5
CM
3726 if (ret != 0)
3727 break;
3a5f1d45 3728again:
31ff1cd2 3729 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 3730 if (min_key.objectid != ino)
e02119d5
CM
3731 break;
3732 if (min_key.type > max_key.type)
3733 break;
31ff1cd2 3734
e02119d5 3735 src = path->nodes[0];
31ff1cd2
CM
3736 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3737 ins_nr++;
3738 goto next_slot;
3739 } else if (!ins_nr) {
3740 ins_start_slot = path->slots[0];
3741 ins_nr = 1;
3742 goto next_slot;
e02119d5
CM
3743 }
3744
d2794405 3745 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
31ff1cd2 3746 ins_nr, inode_only);
4a500fd1
YZ
3747 if (ret) {
3748 err = ret;
3749 goto out_unlock;
3750 }
31ff1cd2
CM
3751 ins_nr = 1;
3752 ins_start_slot = path->slots[0];
3753next_slot:
e02119d5 3754
3a5f1d45
CM
3755 nritems = btrfs_header_nritems(path->nodes[0]);
3756 path->slots[0]++;
3757 if (path->slots[0] < nritems) {
3758 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3759 path->slots[0]);
3760 goto again;
3761 }
31ff1cd2 3762 if (ins_nr) {
d2794405 3763 ret = copy_items(trans, inode, dst_path, src,
31ff1cd2
CM
3764 ins_start_slot,
3765 ins_nr, inode_only);
4a500fd1
YZ
3766 if (ret) {
3767 err = ret;
3768 goto out_unlock;
3769 }
31ff1cd2
CM
3770 ins_nr = 0;
3771 }
b3b4aa74 3772 btrfs_release_path(path);
3a5f1d45 3773
3d41d702 3774 if (min_key.offset < (u64)-1) {
e02119d5 3775 min_key.offset++;
3d41d702 3776 } else if (min_key.type < max_key.type) {
e02119d5 3777 min_key.type++;
3d41d702
FDBM
3778 min_key.offset = 0;
3779 } else {
e02119d5 3780 break;
3d41d702 3781 }
e02119d5 3782 }
31ff1cd2 3783 if (ins_nr) {
d2794405 3784 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
31ff1cd2 3785 ins_nr, inode_only);
4a500fd1
YZ
3786 if (ret) {
3787 err = ret;
3788 goto out_unlock;
3789 }
31ff1cd2
CM
3790 ins_nr = 0;
3791 }
5dc562c5 3792
a95249b3 3793log_extents:
f3b15ccd
JB
3794 btrfs_release_path(path);
3795 btrfs_release_path(dst_path);
5dc562c5 3796 if (fast_search) {
70c8a91c 3797 ret = btrfs_log_changed_extents(trans, root, inode, dst_path);
5dc562c5
JB
3798 if (ret) {
3799 err = ret;
3800 goto out_unlock;
3801 }
06d3d22b
LB
3802 } else {
3803 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3804 struct extent_map *em, *n;
3805
bbe14267 3806 write_lock(&tree->lock);
06d3d22b
LB
3807 list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3808 list_del_init(&em->list);
bbe14267 3809 write_unlock(&tree->lock);
5dc562c5
JB
3810 }
3811
9623f9a3 3812 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
e02119d5 3813 ret = log_directory_changes(trans, root, inode, path, dst_path);
4a500fd1
YZ
3814 if (ret) {
3815 err = ret;
3816 goto out_unlock;
3817 }
e02119d5 3818 }
3a5f1d45 3819 BTRFS_I(inode)->logged_trans = trans->transid;
46d8bc34 3820 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4a500fd1 3821out_unlock:
2ab28f32
JB
3822 if (err)
3823 btrfs_free_logged_extents(log, log->log_transid);
e02119d5
CM
3824 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3825
3826 btrfs_free_path(path);
3827 btrfs_free_path(dst_path);
4a500fd1 3828 return err;
e02119d5
CM
3829}
3830
12fcfd22
CM
3831/*
3832 * follow the dentry parent pointers up the chain and see if any
3833 * of the directories in it require a full commit before they can
3834 * be logged. Returns zero if nothing special needs to be done or 1 if
3835 * a full commit is required.
3836 */
3837static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
3838 struct inode *inode,
3839 struct dentry *parent,
3840 struct super_block *sb,
3841 u64 last_committed)
e02119d5 3842{
12fcfd22
CM
3843 int ret = 0;
3844 struct btrfs_root *root;
6a912213 3845 struct dentry *old_parent = NULL;
de2b530b 3846 struct inode *orig_inode = inode;
e02119d5 3847
af4176b4
CM
3848 /*
3849 * for regular files, if its inode is already on disk, we don't
3850 * have to worry about the parents at all. This is because
3851 * we can use the last_unlink_trans field to record renames
3852 * and other fun in this file.
3853 */
3854 if (S_ISREG(inode->i_mode) &&
3855 BTRFS_I(inode)->generation <= last_committed &&
3856 BTRFS_I(inode)->last_unlink_trans <= last_committed)
3857 goto out;
3858
12fcfd22
CM
3859 if (!S_ISDIR(inode->i_mode)) {
3860 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3861 goto out;
3862 inode = parent->d_inode;
3863 }
3864
3865 while (1) {
de2b530b
JB
3866 /*
3867 * If we are logging a directory then we start with our inode,
3868 * not our parents inode, so we need to skipp setting the
3869 * logged_trans so that further down in the log code we don't
3870 * think this inode has already been logged.
3871 */
3872 if (inode != orig_inode)
3873 BTRFS_I(inode)->logged_trans = trans->transid;
12fcfd22
CM
3874 smp_mb();
3875
3876 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3877 root = BTRFS_I(inode)->root;
3878
3879 /*
3880 * make sure any commits to the log are forced
3881 * to be full commits
3882 */
3883 root->fs_info->last_trans_log_full_commit =
3884 trans->transid;
3885 ret = 1;
3886 break;
3887 }
3888
3889 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3890 break;
3891
76dda93c 3892 if (IS_ROOT(parent))
12fcfd22
CM
3893 break;
3894
6a912213
JB
3895 parent = dget_parent(parent);
3896 dput(old_parent);
3897 old_parent = parent;
12fcfd22
CM
3898 inode = parent->d_inode;
3899
3900 }
6a912213 3901 dput(old_parent);
12fcfd22 3902out:
e02119d5
CM
3903 return ret;
3904}
3905
3906/*
3907 * helper function around btrfs_log_inode to make sure newly created
3908 * parent directories also end up in the log. A minimal inode and backref
3909 * only logging is done of any parent directories that are older than
3910 * the last committed transaction
3911 */
48a3b636
ES
3912static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3913 struct btrfs_root *root, struct inode *inode,
3914 struct dentry *parent, int exists_only)
e02119d5 3915{
12fcfd22 3916 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
e02119d5 3917 struct super_block *sb;
6a912213 3918 struct dentry *old_parent = NULL;
12fcfd22
CM
3919 int ret = 0;
3920 u64 last_committed = root->fs_info->last_trans_committed;
3921
3922 sb = inode->i_sb;
3923
3a5e1404
SW
3924 if (btrfs_test_opt(root, NOTREELOG)) {
3925 ret = 1;
3926 goto end_no_trans;
3927 }
3928
12fcfd22
CM
3929 if (root->fs_info->last_trans_log_full_commit >
3930 root->fs_info->last_trans_committed) {
3931 ret = 1;
3932 goto end_no_trans;
3933 }
3934
76dda93c
YZ
3935 if (root != BTRFS_I(inode)->root ||
3936 btrfs_root_refs(&root->root_item) == 0) {
3937 ret = 1;
3938 goto end_no_trans;
3939 }
3940
12fcfd22
CM
3941 ret = check_parent_dirs_for_sync(trans, inode, parent,
3942 sb, last_committed);
3943 if (ret)
3944 goto end_no_trans;
e02119d5 3945
22ee6985 3946 if (btrfs_inode_in_log(inode, trans->transid)) {
257c62e1
CM
3947 ret = BTRFS_NO_LOG_SYNC;
3948 goto end_no_trans;
3949 }
3950
4a500fd1
YZ
3951 ret = start_log_trans(trans, root);
3952 if (ret)
3953 goto end_trans;
e02119d5 3954
12fcfd22 3955 ret = btrfs_log_inode(trans, root, inode, inode_only);
4a500fd1
YZ
3956 if (ret)
3957 goto end_trans;
12fcfd22 3958
af4176b4
CM
3959 /*
3960 * for regular files, if its inode is already on disk, we don't
3961 * have to worry about the parents at all. This is because
3962 * we can use the last_unlink_trans field to record renames
3963 * and other fun in this file.
3964 */
3965 if (S_ISREG(inode->i_mode) &&
3966 BTRFS_I(inode)->generation <= last_committed &&
4a500fd1
YZ
3967 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3968 ret = 0;
3969 goto end_trans;
3970 }
af4176b4
CM
3971
3972 inode_only = LOG_INODE_EXISTS;
12fcfd22
CM
3973 while (1) {
3974 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
e02119d5
CM
3975 break;
3976
12fcfd22 3977 inode = parent->d_inode;
76dda93c
YZ
3978 if (root != BTRFS_I(inode)->root)
3979 break;
3980
12fcfd22
CM
3981 if (BTRFS_I(inode)->generation >
3982 root->fs_info->last_trans_committed) {
3983 ret = btrfs_log_inode(trans, root, inode, inode_only);
4a500fd1
YZ
3984 if (ret)
3985 goto end_trans;
12fcfd22 3986 }
76dda93c 3987 if (IS_ROOT(parent))
e02119d5 3988 break;
12fcfd22 3989
6a912213
JB
3990 parent = dget_parent(parent);
3991 dput(old_parent);
3992 old_parent = parent;
e02119d5 3993 }
12fcfd22 3994 ret = 0;
4a500fd1 3995end_trans:
6a912213 3996 dput(old_parent);
4a500fd1 3997 if (ret < 0) {
4a500fd1
YZ
3998 root->fs_info->last_trans_log_full_commit = trans->transid;
3999 ret = 1;
4000 }
12fcfd22
CM
4001 btrfs_end_log_trans(root);
4002end_no_trans:
4003 return ret;
e02119d5
CM
4004}
4005
4006/*
4007 * it is not safe to log dentry if the chunk root has added new
4008 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
4009 * If this returns 1, you must commit the transaction to safely get your
4010 * data on disk.
4011 */
4012int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4013 struct btrfs_root *root, struct dentry *dentry)
4014{
6a912213
JB
4015 struct dentry *parent = dget_parent(dentry);
4016 int ret;
4017
4018 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
4019 dput(parent);
4020
4021 return ret;
e02119d5
CM
4022}
4023
4024/*
4025 * should be called during mount to recover any replay any log trees
4026 * from the FS
4027 */
4028int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4029{
4030 int ret;
4031 struct btrfs_path *path;
4032 struct btrfs_trans_handle *trans;
4033 struct btrfs_key key;
4034 struct btrfs_key found_key;
4035 struct btrfs_key tmp_key;
4036 struct btrfs_root *log;
4037 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4038 struct walk_control wc = {
4039 .process_func = process_one_buffer,
4040 .stage = 0,
4041 };
4042
e02119d5 4043 path = btrfs_alloc_path();
db5b493a
TI
4044 if (!path)
4045 return -ENOMEM;
4046
4047 fs_info->log_root_recovering = 1;
e02119d5 4048
4a500fd1 4049 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
4050 if (IS_ERR(trans)) {
4051 ret = PTR_ERR(trans);
4052 goto error;
4053 }
e02119d5
CM
4054
4055 wc.trans = trans;
4056 wc.pin = 1;
4057
db5b493a 4058 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa
JM
4059 if (ret) {
4060 btrfs_error(fs_info, ret, "Failed to pin buffers while "
4061 "recovering log root tree.");
4062 goto error;
4063 }
e02119d5
CM
4064
4065again:
4066 key.objectid = BTRFS_TREE_LOG_OBJECTID;
4067 key.offset = (u64)-1;
4068 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4069
d397712b 4070 while (1) {
e02119d5 4071 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
4072
4073 if (ret < 0) {
4074 btrfs_error(fs_info, ret,
4075 "Couldn't find tree log root.");
4076 goto error;
4077 }
e02119d5
CM
4078 if (ret > 0) {
4079 if (path->slots[0] == 0)
4080 break;
4081 path->slots[0]--;
4082 }
4083 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4084 path->slots[0]);
b3b4aa74 4085 btrfs_release_path(path);
e02119d5
CM
4086 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4087 break;
4088
cb517eab 4089 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
4090 if (IS_ERR(log)) {
4091 ret = PTR_ERR(log);
4092 btrfs_error(fs_info, ret,
4093 "Couldn't read tree log root.");
4094 goto error;
4095 }
e02119d5
CM
4096
4097 tmp_key.objectid = found_key.offset;
4098 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4099 tmp_key.offset = (u64)-1;
4100
4101 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
4102 if (IS_ERR(wc.replay_dest)) {
4103 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
4104 free_extent_buffer(log->node);
4105 free_extent_buffer(log->commit_root);
4106 kfree(log);
79787eaa
JM
4107 btrfs_error(fs_info, ret, "Couldn't read target root "
4108 "for tree log recovery.");
4109 goto error;
4110 }
e02119d5 4111
07d400a6 4112 wc.replay_dest->log_root = log;
5d4f98a2 4113 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 4114 ret = walk_log_tree(trans, log, &wc);
e02119d5 4115
b50c6e25 4116 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
4117 ret = fixup_inode_link_counts(trans, wc.replay_dest,
4118 path);
e02119d5
CM
4119 }
4120
4121 key.offset = found_key.offset - 1;
07d400a6 4122 wc.replay_dest->log_root = NULL;
e02119d5 4123 free_extent_buffer(log->node);
b263c2c8 4124 free_extent_buffer(log->commit_root);
e02119d5
CM
4125 kfree(log);
4126
b50c6e25
JB
4127 if (ret)
4128 goto error;
4129
e02119d5
CM
4130 if (found_key.offset == 0)
4131 break;
4132 }
b3b4aa74 4133 btrfs_release_path(path);
e02119d5
CM
4134
4135 /* step one is to pin it all, step two is to replay just inodes */
4136 if (wc.pin) {
4137 wc.pin = 0;
4138 wc.process_func = replay_one_buffer;
4139 wc.stage = LOG_WALK_REPLAY_INODES;
4140 goto again;
4141 }
4142 /* step three is to replay everything */
4143 if (wc.stage < LOG_WALK_REPLAY_ALL) {
4144 wc.stage++;
4145 goto again;
4146 }
4147
4148 btrfs_free_path(path);
4149
abefa55a
JB
4150 /* step 4: commit the transaction, which also unpins the blocks */
4151 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4152 if (ret)
4153 return ret;
4154
e02119d5
CM
4155 free_extent_buffer(log_root_tree->node);
4156 log_root_tree->log_root = NULL;
4157 fs_info->log_root_recovering = 0;
e02119d5 4158 kfree(log_root_tree);
79787eaa 4159
abefa55a 4160 return 0;
79787eaa 4161error:
b50c6e25
JB
4162 if (wc.trans)
4163 btrfs_end_transaction(wc.trans, fs_info->tree_root);
79787eaa
JM
4164 btrfs_free_path(path);
4165 return ret;
e02119d5 4166}
12fcfd22
CM
4167
4168/*
4169 * there are some corner cases where we want to force a full
4170 * commit instead of allowing a directory to be logged.
4171 *
4172 * They revolve around files there were unlinked from the directory, and
4173 * this function updates the parent directory so that a full commit is
4174 * properly done if it is fsync'd later after the unlinks are done.
4175 */
4176void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4177 struct inode *dir, struct inode *inode,
4178 int for_rename)
4179{
af4176b4
CM
4180 /*
4181 * when we're logging a file, if it hasn't been renamed
4182 * or unlinked, and its inode is fully committed on disk,
4183 * we don't have to worry about walking up the directory chain
4184 * to log its parents.
4185 *
4186 * So, we use the last_unlink_trans field to put this transid
4187 * into the file. When the file is logged we check it and
4188 * don't log the parents if the file is fully on disk.
4189 */
4190 if (S_ISREG(inode->i_mode))
4191 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4192
12fcfd22
CM
4193 /*
4194 * if this directory was already logged any new
4195 * names for this file/dir will get recorded
4196 */
4197 smp_mb();
4198 if (BTRFS_I(dir)->logged_trans == trans->transid)
4199 return;
4200
4201 /*
4202 * if the inode we're about to unlink was logged,
4203 * the log will be properly updated for any new names
4204 */
4205 if (BTRFS_I(inode)->logged_trans == trans->transid)
4206 return;
4207
4208 /*
4209 * when renaming files across directories, if the directory
4210 * there we're unlinking from gets fsync'd later on, there's
4211 * no way to find the destination directory later and fsync it
4212 * properly. So, we have to be conservative and force commits
4213 * so the new name gets discovered.
4214 */
4215 if (for_rename)
4216 goto record;
4217
4218 /* we can safely do the unlink without any special recording */
4219 return;
4220
4221record:
4222 BTRFS_I(dir)->last_unlink_trans = trans->transid;
4223}
4224
4225/*
4226 * Call this after adding a new name for a file and it will properly
4227 * update the log to reflect the new name.
4228 *
4229 * It will return zero if all goes well, and it will return 1 if a
4230 * full transaction commit is required.
4231 */
4232int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4233 struct inode *inode, struct inode *old_dir,
4234 struct dentry *parent)
4235{
4236 struct btrfs_root * root = BTRFS_I(inode)->root;
4237
af4176b4
CM
4238 /*
4239 * this will force the logging code to walk the dentry chain
4240 * up for the file
4241 */
4242 if (S_ISREG(inode->i_mode))
4243 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4244
12fcfd22
CM
4245 /*
4246 * if this inode hasn't been logged and directory we're renaming it
4247 * from hasn't been logged, we don't need to log it
4248 */
4249 if (BTRFS_I(inode)->logged_trans <=
4250 root->fs_info->last_trans_committed &&
4251 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4252 root->fs_info->last_trans_committed))
4253 return 0;
4254
4255 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
4256}
4257
This page took 0.4435 seconds and 5 git commands to generate.