Btrfs: fix btrfs_search_slot_for_read backwards iteration
[deliverable/linux.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
c6adc9cc 21#include <linux/blkdev.h>
5dc562c5 22#include <linux/list_sort.h>
e02119d5
CM
23#include "ctree.h"
24#include "transaction.h"
25#include "disk-io.h"
26#include "locking.h"
27#include "print-tree.h"
f186373f 28#include "backref.h"
b2950863 29#include "tree-log.h"
f186373f 30#include "hash.h"
e02119d5
CM
31
32/* magic values for the inode_only field in btrfs_log_inode:
33 *
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 * during log replay
37 */
38#define LOG_INODE_ALL 0
39#define LOG_INODE_EXISTS 1
40
12fcfd22
CM
41/*
42 * directory trouble cases
43 *
44 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45 * log, we must force a full commit before doing an fsync of the directory
46 * where the unlink was done.
47 * ---> record transid of last unlink/rename per directory
48 *
49 * mkdir foo/some_dir
50 * normal commit
51 * rename foo/some_dir foo2/some_dir
52 * mkdir foo/some_dir
53 * fsync foo/some_dir/some_file
54 *
55 * The fsync above will unlink the original some_dir without recording
56 * it in its new location (foo2). After a crash, some_dir will be gone
57 * unless the fsync of some_file forces a full commit
58 *
59 * 2) we must log any new names for any file or dir that is in the fsync
60 * log. ---> check inode while renaming/linking.
61 *
62 * 2a) we must log any new names for any file or dir during rename
63 * when the directory they are being removed from was logged.
64 * ---> check inode and old parent dir during rename
65 *
66 * 2a is actually the more important variant. With the extra logging
67 * a crash might unlink the old name without recreating the new one
68 *
69 * 3) after a crash, we must go through any directories with a link count
70 * of zero and redo the rm -rf
71 *
72 * mkdir f1/foo
73 * normal commit
74 * rm -rf f1/foo
75 * fsync(f1)
76 *
77 * The directory f1 was fully removed from the FS, but fsync was never
78 * called on f1, only its parent dir. After a crash the rm -rf must
79 * be replayed. This must be able to recurse down the entire
80 * directory tree. The inode link count fixup code takes care of the
81 * ugly details.
82 */
83
e02119d5
CM
84/*
85 * stages for the tree walking. The first
86 * stage (0) is to only pin down the blocks we find
87 * the second stage (1) is to make sure that all the inodes
88 * we find in the log are created in the subvolume.
89 *
90 * The last stage is to deal with directories and links and extents
91 * and all the other fun semantics
92 */
93#define LOG_WALK_PIN_ONLY 0
94#define LOG_WALK_REPLAY_INODES 1
dd8e7217
JB
95#define LOG_WALK_REPLAY_DIR_INDEX 2
96#define LOG_WALK_REPLAY_ALL 3
e02119d5 97
12fcfd22 98static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
99 struct btrfs_root *root, struct inode *inode,
100 int inode_only);
ec051c0f
YZ
101static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 struct btrfs_root *root,
103 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
104static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 struct btrfs_root *root,
106 struct btrfs_root *log,
107 struct btrfs_path *path,
108 u64 dirid, int del_all);
e02119d5
CM
109
110/*
111 * tree logging is a special write ahead log used to make sure that
112 * fsyncs and O_SYNCs can happen without doing full tree commits.
113 *
114 * Full tree commits are expensive because they require commonly
115 * modified blocks to be recowed, creating many dirty pages in the
116 * extent tree an 4x-6x higher write load than ext3.
117 *
118 * Instead of doing a tree commit on every fsync, we use the
119 * key ranges and transaction ids to find items for a given file or directory
120 * that have changed in this transaction. Those items are copied into
121 * a special tree (one per subvolume root), that tree is written to disk
122 * and then the fsync is considered complete.
123 *
124 * After a crash, items are copied out of the log-tree back into the
125 * subvolume tree. Any file data extents found are recorded in the extent
126 * allocation tree, and the log-tree freed.
127 *
128 * The log tree is read three times, once to pin down all the extents it is
129 * using in ram and once, once to create all the inodes logged in the tree
130 * and once to do all the other items.
131 */
132
e02119d5
CM
133/*
134 * start a sub transaction and setup the log tree
135 * this increments the log tree writer count to make the people
136 * syncing the tree wait for us to finish
137 */
138static int start_log_trans(struct btrfs_trans_handle *trans,
139 struct btrfs_root *root)
140{
141 int ret;
4a500fd1 142 int err = 0;
7237f183
YZ
143
144 mutex_lock(&root->log_mutex);
145 if (root->log_root) {
ff782e0a
JB
146 if (!root->log_start_pid) {
147 root->log_start_pid = current->pid;
148 root->log_multiple_pids = false;
149 } else if (root->log_start_pid != current->pid) {
150 root->log_multiple_pids = true;
151 }
152
2ecb7923 153 atomic_inc(&root->log_batch);
7237f183
YZ
154 atomic_inc(&root->log_writers);
155 mutex_unlock(&root->log_mutex);
156 return 0;
157 }
ff782e0a
JB
158 root->log_multiple_pids = false;
159 root->log_start_pid = current->pid;
e02119d5
CM
160 mutex_lock(&root->fs_info->tree_log_mutex);
161 if (!root->fs_info->log_root_tree) {
162 ret = btrfs_init_log_root_tree(trans, root->fs_info);
4a500fd1
YZ
163 if (ret)
164 err = ret;
e02119d5 165 }
4a500fd1 166 if (err == 0 && !root->log_root) {
e02119d5 167 ret = btrfs_add_log_tree(trans, root);
4a500fd1
YZ
168 if (ret)
169 err = ret;
e02119d5 170 }
e02119d5 171 mutex_unlock(&root->fs_info->tree_log_mutex);
2ecb7923 172 atomic_inc(&root->log_batch);
7237f183
YZ
173 atomic_inc(&root->log_writers);
174 mutex_unlock(&root->log_mutex);
4a500fd1 175 return err;
e02119d5
CM
176}
177
178/*
179 * returns 0 if there was a log transaction running and we were able
180 * to join, or returns -ENOENT if there were not transactions
181 * in progress
182 */
183static int join_running_log_trans(struct btrfs_root *root)
184{
185 int ret = -ENOENT;
186
187 smp_mb();
188 if (!root->log_root)
189 return -ENOENT;
190
7237f183 191 mutex_lock(&root->log_mutex);
e02119d5
CM
192 if (root->log_root) {
193 ret = 0;
7237f183 194 atomic_inc(&root->log_writers);
e02119d5 195 }
7237f183 196 mutex_unlock(&root->log_mutex);
e02119d5
CM
197 return ret;
198}
199
12fcfd22
CM
200/*
201 * This either makes the current running log transaction wait
202 * until you call btrfs_end_log_trans() or it makes any future
203 * log transactions wait until you call btrfs_end_log_trans()
204 */
205int btrfs_pin_log_trans(struct btrfs_root *root)
206{
207 int ret = -ENOENT;
208
209 mutex_lock(&root->log_mutex);
210 atomic_inc(&root->log_writers);
211 mutex_unlock(&root->log_mutex);
212 return ret;
213}
214
e02119d5
CM
215/*
216 * indicate we're done making changes to the log tree
217 * and wake up anyone waiting to do a sync
218 */
143bede5 219void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 220{
7237f183
YZ
221 if (atomic_dec_and_test(&root->log_writers)) {
222 smp_mb();
223 if (waitqueue_active(&root->log_writer_wait))
224 wake_up(&root->log_writer_wait);
225 }
e02119d5
CM
226}
227
228
229/*
230 * the walk control struct is used to pass state down the chain when
231 * processing the log tree. The stage field tells us which part
232 * of the log tree processing we are currently doing. The others
233 * are state fields used for that specific part
234 */
235struct walk_control {
236 /* should we free the extent on disk when done? This is used
237 * at transaction commit time while freeing a log tree
238 */
239 int free;
240
241 /* should we write out the extent buffer? This is used
242 * while flushing the log tree to disk during a sync
243 */
244 int write;
245
246 /* should we wait for the extent buffer io to finish? Also used
247 * while flushing the log tree to disk for a sync
248 */
249 int wait;
250
251 /* pin only walk, we record which extents on disk belong to the
252 * log trees
253 */
254 int pin;
255
256 /* what stage of the replay code we're currently in */
257 int stage;
258
259 /* the root we are currently replaying */
260 struct btrfs_root *replay_dest;
261
262 /* the trans handle for the current replay */
263 struct btrfs_trans_handle *trans;
264
265 /* the function that gets used to process blocks we find in the
266 * tree. Note the extent_buffer might not be up to date when it is
267 * passed in, and it must be checked or read if you need the data
268 * inside it
269 */
270 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
271 struct walk_control *wc, u64 gen);
272};
273
274/*
275 * process_func used to pin down extents, write them or wait on them
276 */
277static int process_one_buffer(struct btrfs_root *log,
278 struct extent_buffer *eb,
279 struct walk_control *wc, u64 gen)
280{
b50c6e25
JB
281 int ret = 0;
282
8c2a1a30
JB
283 /*
284 * If this fs is mixed then we need to be able to process the leaves to
285 * pin down any logged extents, so we have to read the block.
286 */
287 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
288 ret = btrfs_read_buffer(eb, gen);
289 if (ret)
290 return ret;
291 }
292
04018de5 293 if (wc->pin)
b50c6e25
JB
294 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
295 eb->start, eb->len);
e02119d5 296
b50c6e25 297 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30
JB
298 if (wc->pin && btrfs_header_level(eb) == 0)
299 ret = btrfs_exclude_logged_extents(log, eb);
e02119d5
CM
300 if (wc->write)
301 btrfs_write_tree_block(eb);
302 if (wc->wait)
303 btrfs_wait_tree_block_writeback(eb);
304 }
b50c6e25 305 return ret;
e02119d5
CM
306}
307
308/*
309 * Item overwrite used by replay and tree logging. eb, slot and key all refer
310 * to the src data we are copying out.
311 *
312 * root is the tree we are copying into, and path is a scratch
313 * path for use in this function (it should be released on entry and
314 * will be released on exit).
315 *
316 * If the key is already in the destination tree the existing item is
317 * overwritten. If the existing item isn't big enough, it is extended.
318 * If it is too large, it is truncated.
319 *
320 * If the key isn't in the destination yet, a new item is inserted.
321 */
322static noinline int overwrite_item(struct btrfs_trans_handle *trans,
323 struct btrfs_root *root,
324 struct btrfs_path *path,
325 struct extent_buffer *eb, int slot,
326 struct btrfs_key *key)
327{
328 int ret;
329 u32 item_size;
330 u64 saved_i_size = 0;
331 int save_old_i_size = 0;
332 unsigned long src_ptr;
333 unsigned long dst_ptr;
334 int overwrite_root = 0;
4bc4bee4 335 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
336
337 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
338 overwrite_root = 1;
339
340 item_size = btrfs_item_size_nr(eb, slot);
341 src_ptr = btrfs_item_ptr_offset(eb, slot);
342
343 /* look for the key in the destination tree */
344 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
345 if (ret < 0)
346 return ret;
347
e02119d5
CM
348 if (ret == 0) {
349 char *src_copy;
350 char *dst_copy;
351 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
352 path->slots[0]);
353 if (dst_size != item_size)
354 goto insert;
355
356 if (item_size == 0) {
b3b4aa74 357 btrfs_release_path(path);
e02119d5
CM
358 return 0;
359 }
360 dst_copy = kmalloc(item_size, GFP_NOFS);
361 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 362 if (!dst_copy || !src_copy) {
b3b4aa74 363 btrfs_release_path(path);
2a29edc6 364 kfree(dst_copy);
365 kfree(src_copy);
366 return -ENOMEM;
367 }
e02119d5
CM
368
369 read_extent_buffer(eb, src_copy, src_ptr, item_size);
370
371 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
372 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
373 item_size);
374 ret = memcmp(dst_copy, src_copy, item_size);
375
376 kfree(dst_copy);
377 kfree(src_copy);
378 /*
379 * they have the same contents, just return, this saves
380 * us from cowing blocks in the destination tree and doing
381 * extra writes that may not have been done by a previous
382 * sync
383 */
384 if (ret == 0) {
b3b4aa74 385 btrfs_release_path(path);
e02119d5
CM
386 return 0;
387 }
388
4bc4bee4
JB
389 /*
390 * We need to load the old nbytes into the inode so when we
391 * replay the extents we've logged we get the right nbytes.
392 */
393 if (inode_item) {
394 struct btrfs_inode_item *item;
395 u64 nbytes;
d555438b 396 u32 mode;
4bc4bee4
JB
397
398 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
399 struct btrfs_inode_item);
400 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
401 item = btrfs_item_ptr(eb, slot,
402 struct btrfs_inode_item);
403 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
404
405 /*
406 * If this is a directory we need to reset the i_size to
407 * 0 so that we can set it up properly when replaying
408 * the rest of the items in this log.
409 */
410 mode = btrfs_inode_mode(eb, item);
411 if (S_ISDIR(mode))
412 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
413 }
414 } else if (inode_item) {
415 struct btrfs_inode_item *item;
d555438b 416 u32 mode;
4bc4bee4
JB
417
418 /*
419 * New inode, set nbytes to 0 so that the nbytes comes out
420 * properly when we replay the extents.
421 */
422 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
423 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
424
425 /*
426 * If this is a directory we need to reset the i_size to 0 so
427 * that we can set it up properly when replaying the rest of
428 * the items in this log.
429 */
430 mode = btrfs_inode_mode(eb, item);
431 if (S_ISDIR(mode))
432 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
433 }
434insert:
b3b4aa74 435 btrfs_release_path(path);
e02119d5
CM
436 /* try to insert the key into the destination tree */
437 ret = btrfs_insert_empty_item(trans, root, path,
438 key, item_size);
439
440 /* make sure any existing item is the correct size */
441 if (ret == -EEXIST) {
442 u32 found_size;
443 found_size = btrfs_item_size_nr(path->nodes[0],
444 path->slots[0]);
143bede5 445 if (found_size > item_size)
afe5fea7 446 btrfs_truncate_item(root, path, item_size, 1);
143bede5 447 else if (found_size < item_size)
4b90c680 448 btrfs_extend_item(root, path,
143bede5 449 item_size - found_size);
e02119d5 450 } else if (ret) {
4a500fd1 451 return ret;
e02119d5
CM
452 }
453 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
454 path->slots[0]);
455
456 /* don't overwrite an existing inode if the generation number
457 * was logged as zero. This is done when the tree logging code
458 * is just logging an inode to make sure it exists after recovery.
459 *
460 * Also, don't overwrite i_size on directories during replay.
461 * log replay inserts and removes directory items based on the
462 * state of the tree found in the subvolume, and i_size is modified
463 * as it goes
464 */
465 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
466 struct btrfs_inode_item *src_item;
467 struct btrfs_inode_item *dst_item;
468
469 src_item = (struct btrfs_inode_item *)src_ptr;
470 dst_item = (struct btrfs_inode_item *)dst_ptr;
471
472 if (btrfs_inode_generation(eb, src_item) == 0)
473 goto no_copy;
474
475 if (overwrite_root &&
476 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
477 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
478 save_old_i_size = 1;
479 saved_i_size = btrfs_inode_size(path->nodes[0],
480 dst_item);
481 }
482 }
483
484 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
485 src_ptr, item_size);
486
487 if (save_old_i_size) {
488 struct btrfs_inode_item *dst_item;
489 dst_item = (struct btrfs_inode_item *)dst_ptr;
490 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
491 }
492
493 /* make sure the generation is filled in */
494 if (key->type == BTRFS_INODE_ITEM_KEY) {
495 struct btrfs_inode_item *dst_item;
496 dst_item = (struct btrfs_inode_item *)dst_ptr;
497 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
498 btrfs_set_inode_generation(path->nodes[0], dst_item,
499 trans->transid);
500 }
501 }
502no_copy:
503 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 504 btrfs_release_path(path);
e02119d5
CM
505 return 0;
506}
507
508/*
509 * simple helper to read an inode off the disk from a given root
510 * This can only be called for subvolume roots and not for the log
511 */
512static noinline struct inode *read_one_inode(struct btrfs_root *root,
513 u64 objectid)
514{
5d4f98a2 515 struct btrfs_key key;
e02119d5 516 struct inode *inode;
e02119d5 517
5d4f98a2
YZ
518 key.objectid = objectid;
519 key.type = BTRFS_INODE_ITEM_KEY;
520 key.offset = 0;
73f73415 521 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
522 if (IS_ERR(inode)) {
523 inode = NULL;
524 } else if (is_bad_inode(inode)) {
e02119d5
CM
525 iput(inode);
526 inode = NULL;
527 }
528 return inode;
529}
530
531/* replays a single extent in 'eb' at 'slot' with 'key' into the
532 * subvolume 'root'. path is released on entry and should be released
533 * on exit.
534 *
535 * extents in the log tree have not been allocated out of the extent
536 * tree yet. So, this completes the allocation, taking a reference
537 * as required if the extent already exists or creating a new extent
538 * if it isn't in the extent allocation tree yet.
539 *
540 * The extent is inserted into the file, dropping any existing extents
541 * from the file that overlap the new one.
542 */
543static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
544 struct btrfs_root *root,
545 struct btrfs_path *path,
546 struct extent_buffer *eb, int slot,
547 struct btrfs_key *key)
548{
549 int found_type;
e02119d5 550 u64 extent_end;
e02119d5 551 u64 start = key->offset;
4bc4bee4 552 u64 nbytes = 0;
e02119d5
CM
553 struct btrfs_file_extent_item *item;
554 struct inode *inode = NULL;
555 unsigned long size;
556 int ret = 0;
557
558 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
559 found_type = btrfs_file_extent_type(eb, item);
560
d899e052 561 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
562 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
563 nbytes = btrfs_file_extent_num_bytes(eb, item);
564 extent_end = start + nbytes;
565
566 /*
567 * We don't add to the inodes nbytes if we are prealloc or a
568 * hole.
569 */
570 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
571 nbytes = 0;
572 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818 573 size = btrfs_file_extent_inline_len(eb, item);
4bc4bee4 574 nbytes = btrfs_file_extent_ram_bytes(eb, item);
fda2832f 575 extent_end = ALIGN(start + size, root->sectorsize);
e02119d5
CM
576 } else {
577 ret = 0;
578 goto out;
579 }
580
581 inode = read_one_inode(root, key->objectid);
582 if (!inode) {
583 ret = -EIO;
584 goto out;
585 }
586
587 /*
588 * first check to see if we already have this extent in the
589 * file. This must be done before the btrfs_drop_extents run
590 * so we don't try to drop this extent.
591 */
33345d01 592 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
e02119d5
CM
593 start, 0);
594
d899e052
YZ
595 if (ret == 0 &&
596 (found_type == BTRFS_FILE_EXTENT_REG ||
597 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
598 struct btrfs_file_extent_item cmp1;
599 struct btrfs_file_extent_item cmp2;
600 struct btrfs_file_extent_item *existing;
601 struct extent_buffer *leaf;
602
603 leaf = path->nodes[0];
604 existing = btrfs_item_ptr(leaf, path->slots[0],
605 struct btrfs_file_extent_item);
606
607 read_extent_buffer(eb, &cmp1, (unsigned long)item,
608 sizeof(cmp1));
609 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
610 sizeof(cmp2));
611
612 /*
613 * we already have a pointer to this exact extent,
614 * we don't have to do anything
615 */
616 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 617 btrfs_release_path(path);
e02119d5
CM
618 goto out;
619 }
620 }
b3b4aa74 621 btrfs_release_path(path);
e02119d5
CM
622
623 /* drop any overlapping extents */
2671485d 624 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
625 if (ret)
626 goto out;
e02119d5 627
07d400a6
YZ
628 if (found_type == BTRFS_FILE_EXTENT_REG ||
629 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 630 u64 offset;
07d400a6
YZ
631 unsigned long dest_offset;
632 struct btrfs_key ins;
633
634 ret = btrfs_insert_empty_item(trans, root, path, key,
635 sizeof(*item));
3650860b
JB
636 if (ret)
637 goto out;
07d400a6
YZ
638 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
639 path->slots[0]);
640 copy_extent_buffer(path->nodes[0], eb, dest_offset,
641 (unsigned long)item, sizeof(*item));
642
643 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
644 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
645 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 646 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6
YZ
647
648 if (ins.objectid > 0) {
649 u64 csum_start;
650 u64 csum_end;
651 LIST_HEAD(ordered_sums);
652 /*
653 * is this extent already allocated in the extent
654 * allocation tree? If so, just add a reference
655 */
656 ret = btrfs_lookup_extent(root, ins.objectid,
657 ins.offset);
658 if (ret == 0) {
659 ret = btrfs_inc_extent_ref(trans, root,
660 ins.objectid, ins.offset,
5d4f98a2 661 0, root->root_key.objectid,
66d7e7f0 662 key->objectid, offset, 0);
b50c6e25
JB
663 if (ret)
664 goto out;
07d400a6
YZ
665 } else {
666 /*
667 * insert the extent pointer in the extent
668 * allocation tree
669 */
5d4f98a2
YZ
670 ret = btrfs_alloc_logged_file_extent(trans,
671 root, root->root_key.objectid,
672 key->objectid, offset, &ins);
b50c6e25
JB
673 if (ret)
674 goto out;
07d400a6 675 }
b3b4aa74 676 btrfs_release_path(path);
07d400a6
YZ
677
678 if (btrfs_file_extent_compression(eb, item)) {
679 csum_start = ins.objectid;
680 csum_end = csum_start + ins.offset;
681 } else {
682 csum_start = ins.objectid +
683 btrfs_file_extent_offset(eb, item);
684 csum_end = csum_start +
685 btrfs_file_extent_num_bytes(eb, item);
686 }
687
688 ret = btrfs_lookup_csums_range(root->log_root,
689 csum_start, csum_end - 1,
a2de733c 690 &ordered_sums, 0);
3650860b
JB
691 if (ret)
692 goto out;
07d400a6
YZ
693 while (!list_empty(&ordered_sums)) {
694 struct btrfs_ordered_sum *sums;
695 sums = list_entry(ordered_sums.next,
696 struct btrfs_ordered_sum,
697 list);
3650860b
JB
698 if (!ret)
699 ret = btrfs_csum_file_blocks(trans,
07d400a6
YZ
700 root->fs_info->csum_root,
701 sums);
07d400a6
YZ
702 list_del(&sums->list);
703 kfree(sums);
704 }
3650860b
JB
705 if (ret)
706 goto out;
07d400a6 707 } else {
b3b4aa74 708 btrfs_release_path(path);
07d400a6
YZ
709 }
710 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
711 /* inline extents are easy, we just overwrite them */
712 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
713 if (ret)
714 goto out;
07d400a6 715 }
e02119d5 716
4bc4bee4 717 inode_add_bytes(inode, nbytes);
b9959295 718 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
719out:
720 if (inode)
721 iput(inode);
722 return ret;
723}
724
725/*
726 * when cleaning up conflicts between the directory names in the
727 * subvolume, directory names in the log and directory names in the
728 * inode back references, we may have to unlink inodes from directories.
729 *
730 * This is a helper function to do the unlink of a specific directory
731 * item
732 */
733static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
734 struct btrfs_root *root,
735 struct btrfs_path *path,
736 struct inode *dir,
737 struct btrfs_dir_item *di)
738{
739 struct inode *inode;
740 char *name;
741 int name_len;
742 struct extent_buffer *leaf;
743 struct btrfs_key location;
744 int ret;
745
746 leaf = path->nodes[0];
747
748 btrfs_dir_item_key_to_cpu(leaf, di, &location);
749 name_len = btrfs_dir_name_len(leaf, di);
750 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 751 if (!name)
752 return -ENOMEM;
753
e02119d5 754 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 755 btrfs_release_path(path);
e02119d5
CM
756
757 inode = read_one_inode(root, location.objectid);
c00e9493 758 if (!inode) {
3650860b
JB
759 ret = -EIO;
760 goto out;
c00e9493 761 }
e02119d5 762
ec051c0f 763 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
764 if (ret)
765 goto out;
12fcfd22 766
e02119d5 767 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3650860b
JB
768 if (ret)
769 goto out;
ada9af21
FDBM
770 else
771 ret = btrfs_run_delayed_items(trans, root);
3650860b 772out:
e02119d5 773 kfree(name);
e02119d5
CM
774 iput(inode);
775 return ret;
776}
777
778/*
779 * helper function to see if a given name and sequence number found
780 * in an inode back reference are already in a directory and correctly
781 * point to this inode
782 */
783static noinline int inode_in_dir(struct btrfs_root *root,
784 struct btrfs_path *path,
785 u64 dirid, u64 objectid, u64 index,
786 const char *name, int name_len)
787{
788 struct btrfs_dir_item *di;
789 struct btrfs_key location;
790 int match = 0;
791
792 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
793 index, name, name_len, 0);
794 if (di && !IS_ERR(di)) {
795 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
796 if (location.objectid != objectid)
797 goto out;
798 } else
799 goto out;
b3b4aa74 800 btrfs_release_path(path);
e02119d5
CM
801
802 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
803 if (di && !IS_ERR(di)) {
804 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
805 if (location.objectid != objectid)
806 goto out;
807 } else
808 goto out;
809 match = 1;
810out:
b3b4aa74 811 btrfs_release_path(path);
e02119d5
CM
812 return match;
813}
814
815/*
816 * helper function to check a log tree for a named back reference in
817 * an inode. This is used to decide if a back reference that is
818 * found in the subvolume conflicts with what we find in the log.
819 *
820 * inode backreferences may have multiple refs in a single item,
821 * during replay we process one reference at a time, and we don't
822 * want to delete valid links to a file from the subvolume if that
823 * link is also in the log.
824 */
825static noinline int backref_in_log(struct btrfs_root *log,
826 struct btrfs_key *key,
f186373f 827 u64 ref_objectid,
e02119d5
CM
828 char *name, int namelen)
829{
830 struct btrfs_path *path;
831 struct btrfs_inode_ref *ref;
832 unsigned long ptr;
833 unsigned long ptr_end;
834 unsigned long name_ptr;
835 int found_name_len;
836 int item_size;
837 int ret;
838 int match = 0;
839
840 path = btrfs_alloc_path();
2a29edc6 841 if (!path)
842 return -ENOMEM;
843
e02119d5
CM
844 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
845 if (ret != 0)
846 goto out;
847
e02119d5 848 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
849
850 if (key->type == BTRFS_INODE_EXTREF_KEY) {
851 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
852 name, namelen, NULL))
853 match = 1;
854
855 goto out;
856 }
857
858 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
859 ptr_end = ptr + item_size;
860 while (ptr < ptr_end) {
861 ref = (struct btrfs_inode_ref *)ptr;
862 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
863 if (found_name_len == namelen) {
864 name_ptr = (unsigned long)(ref + 1);
865 ret = memcmp_extent_buffer(path->nodes[0], name,
866 name_ptr, namelen);
867 if (ret == 0) {
868 match = 1;
869 goto out;
870 }
871 }
872 ptr = (unsigned long)(ref + 1) + found_name_len;
873 }
874out:
875 btrfs_free_path(path);
876 return match;
877}
878
5a1d7843 879static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 880 struct btrfs_root *root,
e02119d5 881 struct btrfs_path *path,
5a1d7843
JS
882 struct btrfs_root *log_root,
883 struct inode *dir, struct inode *inode,
5a1d7843 884 struct extent_buffer *eb,
f186373f
MF
885 u64 inode_objectid, u64 parent_objectid,
886 u64 ref_index, char *name, int namelen,
887 int *search_done)
e02119d5 888{
34f3e4f2 889 int ret;
f186373f
MF
890 char *victim_name;
891 int victim_name_len;
892 struct extent_buffer *leaf;
5a1d7843 893 struct btrfs_dir_item *di;
f186373f
MF
894 struct btrfs_key search_key;
895 struct btrfs_inode_extref *extref;
c622ae60 896
f186373f
MF
897again:
898 /* Search old style refs */
899 search_key.objectid = inode_objectid;
900 search_key.type = BTRFS_INODE_REF_KEY;
901 search_key.offset = parent_objectid;
902 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 903 if (ret == 0) {
e02119d5
CM
904 struct btrfs_inode_ref *victim_ref;
905 unsigned long ptr;
906 unsigned long ptr_end;
f186373f
MF
907
908 leaf = path->nodes[0];
e02119d5
CM
909
910 /* are we trying to overwrite a back ref for the root directory
911 * if so, just jump out, we're done
912 */
f186373f 913 if (search_key.objectid == search_key.offset)
5a1d7843 914 return 1;
e02119d5
CM
915
916 /* check all the names in this back reference to see
917 * if they are in the log. if so, we allow them to stay
918 * otherwise they must be unlinked as a conflict
919 */
920 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
921 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 922 while (ptr < ptr_end) {
e02119d5
CM
923 victim_ref = (struct btrfs_inode_ref *)ptr;
924 victim_name_len = btrfs_inode_ref_name_len(leaf,
925 victim_ref);
926 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
927 if (!victim_name)
928 return -ENOMEM;
e02119d5
CM
929
930 read_extent_buffer(leaf, victim_name,
931 (unsigned long)(victim_ref + 1),
932 victim_name_len);
933
f186373f
MF
934 if (!backref_in_log(log_root, &search_key,
935 parent_objectid,
936 victim_name,
e02119d5 937 victim_name_len)) {
8b558c5f 938 inc_nlink(inode);
b3b4aa74 939 btrfs_release_path(path);
12fcfd22 940
e02119d5
CM
941 ret = btrfs_unlink_inode(trans, root, dir,
942 inode, victim_name,
943 victim_name_len);
f186373f 944 kfree(victim_name);
3650860b
JB
945 if (ret)
946 return ret;
ada9af21
FDBM
947 ret = btrfs_run_delayed_items(trans, root);
948 if (ret)
949 return ret;
f186373f
MF
950 *search_done = 1;
951 goto again;
e02119d5
CM
952 }
953 kfree(victim_name);
f186373f 954
e02119d5
CM
955 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
956 }
e02119d5 957
c622ae60 958 /*
959 * NOTE: we have searched root tree and checked the
960 * coresponding ref, it does not need to check again.
961 */
5a1d7843 962 *search_done = 1;
e02119d5 963 }
b3b4aa74 964 btrfs_release_path(path);
e02119d5 965
f186373f
MF
966 /* Same search but for extended refs */
967 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
968 inode_objectid, parent_objectid, 0,
969 0);
970 if (!IS_ERR_OR_NULL(extref)) {
971 u32 item_size;
972 u32 cur_offset = 0;
973 unsigned long base;
974 struct inode *victim_parent;
975
976 leaf = path->nodes[0];
977
978 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
979 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
980
981 while (cur_offset < item_size) {
982 extref = (struct btrfs_inode_extref *)base + cur_offset;
983
984 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
985
986 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
987 goto next;
988
989 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
990 if (!victim_name)
991 return -ENOMEM;
f186373f
MF
992 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
993 victim_name_len);
994
995 search_key.objectid = inode_objectid;
996 search_key.type = BTRFS_INODE_EXTREF_KEY;
997 search_key.offset = btrfs_extref_hash(parent_objectid,
998 victim_name,
999 victim_name_len);
1000 ret = 0;
1001 if (!backref_in_log(log_root, &search_key,
1002 parent_objectid, victim_name,
1003 victim_name_len)) {
1004 ret = -ENOENT;
1005 victim_parent = read_one_inode(root,
1006 parent_objectid);
1007 if (victim_parent) {
8b558c5f 1008 inc_nlink(inode);
f186373f
MF
1009 btrfs_release_path(path);
1010
1011 ret = btrfs_unlink_inode(trans, root,
1012 victim_parent,
1013 inode,
1014 victim_name,
1015 victim_name_len);
ada9af21
FDBM
1016 if (!ret)
1017 ret = btrfs_run_delayed_items(
1018 trans, root);
f186373f 1019 }
f186373f
MF
1020 iput(victim_parent);
1021 kfree(victim_name);
3650860b
JB
1022 if (ret)
1023 return ret;
f186373f
MF
1024 *search_done = 1;
1025 goto again;
1026 }
1027 kfree(victim_name);
3650860b
JB
1028 if (ret)
1029 return ret;
f186373f
MF
1030next:
1031 cur_offset += victim_name_len + sizeof(*extref);
1032 }
1033 *search_done = 1;
1034 }
1035 btrfs_release_path(path);
1036
34f3e4f2 1037 /* look for a conflicting sequence number */
1038 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1039 ref_index, name, namelen, 0);
34f3e4f2 1040 if (di && !IS_ERR(di)) {
1041 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1042 if (ret)
1043 return ret;
34f3e4f2 1044 }
1045 btrfs_release_path(path);
1046
1047 /* look for a conflicing name */
1048 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1049 name, namelen, 0);
1050 if (di && !IS_ERR(di)) {
1051 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1052 if (ret)
1053 return ret;
34f3e4f2 1054 }
1055 btrfs_release_path(path);
1056
5a1d7843
JS
1057 return 0;
1058}
e02119d5 1059
f186373f
MF
1060static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1061 u32 *namelen, char **name, u64 *index,
1062 u64 *parent_objectid)
1063{
1064 struct btrfs_inode_extref *extref;
1065
1066 extref = (struct btrfs_inode_extref *)ref_ptr;
1067
1068 *namelen = btrfs_inode_extref_name_len(eb, extref);
1069 *name = kmalloc(*namelen, GFP_NOFS);
1070 if (*name == NULL)
1071 return -ENOMEM;
1072
1073 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1074 *namelen);
1075
1076 *index = btrfs_inode_extref_index(eb, extref);
1077 if (parent_objectid)
1078 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1079
1080 return 0;
1081}
1082
1083static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1084 u32 *namelen, char **name, u64 *index)
1085{
1086 struct btrfs_inode_ref *ref;
1087
1088 ref = (struct btrfs_inode_ref *)ref_ptr;
1089
1090 *namelen = btrfs_inode_ref_name_len(eb, ref);
1091 *name = kmalloc(*namelen, GFP_NOFS);
1092 if (*name == NULL)
1093 return -ENOMEM;
1094
1095 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1096
1097 *index = btrfs_inode_ref_index(eb, ref);
1098
1099 return 0;
1100}
1101
5a1d7843
JS
1102/*
1103 * replay one inode back reference item found in the log tree.
1104 * eb, slot and key refer to the buffer and key found in the log tree.
1105 * root is the destination we are replaying into, and path is for temp
1106 * use by this function. (it should be released on return).
1107 */
1108static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1109 struct btrfs_root *root,
1110 struct btrfs_root *log,
1111 struct btrfs_path *path,
1112 struct extent_buffer *eb, int slot,
1113 struct btrfs_key *key)
1114{
03b2f08b
GB
1115 struct inode *dir = NULL;
1116 struct inode *inode = NULL;
5a1d7843
JS
1117 unsigned long ref_ptr;
1118 unsigned long ref_end;
03b2f08b 1119 char *name = NULL;
5a1d7843
JS
1120 int namelen;
1121 int ret;
1122 int search_done = 0;
f186373f
MF
1123 int log_ref_ver = 0;
1124 u64 parent_objectid;
1125 u64 inode_objectid;
f46dbe3d 1126 u64 ref_index = 0;
f186373f
MF
1127 int ref_struct_size;
1128
1129 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1130 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1131
1132 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1133 struct btrfs_inode_extref *r;
1134
1135 ref_struct_size = sizeof(struct btrfs_inode_extref);
1136 log_ref_ver = 1;
1137 r = (struct btrfs_inode_extref *)ref_ptr;
1138 parent_objectid = btrfs_inode_extref_parent(eb, r);
1139 } else {
1140 ref_struct_size = sizeof(struct btrfs_inode_ref);
1141 parent_objectid = key->offset;
1142 }
1143 inode_objectid = key->objectid;
e02119d5 1144
5a1d7843
JS
1145 /*
1146 * it is possible that we didn't log all the parent directories
1147 * for a given inode. If we don't find the dir, just don't
1148 * copy the back ref in. The link count fixup code will take
1149 * care of the rest
1150 */
f186373f 1151 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1152 if (!dir) {
1153 ret = -ENOENT;
1154 goto out;
1155 }
5a1d7843 1156
f186373f 1157 inode = read_one_inode(root, inode_objectid);
5a1d7843 1158 if (!inode) {
03b2f08b
GB
1159 ret = -EIO;
1160 goto out;
5a1d7843
JS
1161 }
1162
5a1d7843 1163 while (ref_ptr < ref_end) {
f186373f
MF
1164 if (log_ref_ver) {
1165 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1166 &ref_index, &parent_objectid);
1167 /*
1168 * parent object can change from one array
1169 * item to another.
1170 */
1171 if (!dir)
1172 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1173 if (!dir) {
1174 ret = -ENOENT;
1175 goto out;
1176 }
f186373f
MF
1177 } else {
1178 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1179 &ref_index);
1180 }
1181 if (ret)
03b2f08b 1182 goto out;
5a1d7843
JS
1183
1184 /* if we already have a perfect match, we're done */
1185 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
f186373f 1186 ref_index, name, namelen)) {
5a1d7843
JS
1187 /*
1188 * look for a conflicting back reference in the
1189 * metadata. if we find one we have to unlink that name
1190 * of the file before we add our new link. Later on, we
1191 * overwrite any existing back reference, and we don't
1192 * want to create dangling pointers in the directory.
1193 */
1194
1195 if (!search_done) {
1196 ret = __add_inode_ref(trans, root, path, log,
f186373f
MF
1197 dir, inode, eb,
1198 inode_objectid,
1199 parent_objectid,
1200 ref_index, name, namelen,
5a1d7843 1201 &search_done);
03b2f08b
GB
1202 if (ret) {
1203 if (ret == 1)
1204 ret = 0;
3650860b
JB
1205 goto out;
1206 }
5a1d7843
JS
1207 }
1208
1209 /* insert our name */
1210 ret = btrfs_add_link(trans, dir, inode, name, namelen,
f186373f 1211 0, ref_index);
3650860b
JB
1212 if (ret)
1213 goto out;
5a1d7843
JS
1214
1215 btrfs_update_inode(trans, root, inode);
1216 }
1217
f186373f 1218 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1219 kfree(name);
03b2f08b 1220 name = NULL;
f186373f
MF
1221 if (log_ref_ver) {
1222 iput(dir);
1223 dir = NULL;
1224 }
5a1d7843 1225 }
e02119d5
CM
1226
1227 /* finally write the back reference in the inode */
1228 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1229out:
b3b4aa74 1230 btrfs_release_path(path);
03b2f08b 1231 kfree(name);
e02119d5
CM
1232 iput(dir);
1233 iput(inode);
3650860b 1234 return ret;
e02119d5
CM
1235}
1236
c71bf099
YZ
1237static int insert_orphan_item(struct btrfs_trans_handle *trans,
1238 struct btrfs_root *root, u64 offset)
1239{
1240 int ret;
3f870c28
KN
1241 ret = btrfs_find_item(root, NULL, BTRFS_ORPHAN_OBJECTID,
1242 offset, BTRFS_ORPHAN_ITEM_KEY, NULL);
c71bf099
YZ
1243 if (ret > 0)
1244 ret = btrfs_insert_orphan_item(trans, root, offset);
1245 return ret;
1246}
1247
f186373f
MF
1248static int count_inode_extrefs(struct btrfs_root *root,
1249 struct inode *inode, struct btrfs_path *path)
1250{
1251 int ret = 0;
1252 int name_len;
1253 unsigned int nlink = 0;
1254 u32 item_size;
1255 u32 cur_offset = 0;
1256 u64 inode_objectid = btrfs_ino(inode);
1257 u64 offset = 0;
1258 unsigned long ptr;
1259 struct btrfs_inode_extref *extref;
1260 struct extent_buffer *leaf;
1261
1262 while (1) {
1263 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1264 &extref, &offset);
1265 if (ret)
1266 break;
c71bf099 1267
f186373f
MF
1268 leaf = path->nodes[0];
1269 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1270 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1271
1272 while (cur_offset < item_size) {
1273 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1274 name_len = btrfs_inode_extref_name_len(leaf, extref);
1275
1276 nlink++;
1277
1278 cur_offset += name_len + sizeof(*extref);
1279 }
1280
1281 offset++;
1282 btrfs_release_path(path);
1283 }
1284 btrfs_release_path(path);
1285
1286 if (ret < 0)
1287 return ret;
1288 return nlink;
1289}
1290
1291static int count_inode_refs(struct btrfs_root *root,
1292 struct inode *inode, struct btrfs_path *path)
e02119d5 1293{
e02119d5
CM
1294 int ret;
1295 struct btrfs_key key;
f186373f 1296 unsigned int nlink = 0;
e02119d5
CM
1297 unsigned long ptr;
1298 unsigned long ptr_end;
1299 int name_len;
33345d01 1300 u64 ino = btrfs_ino(inode);
e02119d5 1301
33345d01 1302 key.objectid = ino;
e02119d5
CM
1303 key.type = BTRFS_INODE_REF_KEY;
1304 key.offset = (u64)-1;
1305
d397712b 1306 while (1) {
e02119d5
CM
1307 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1308 if (ret < 0)
1309 break;
1310 if (ret > 0) {
1311 if (path->slots[0] == 0)
1312 break;
1313 path->slots[0]--;
1314 }
e93ae26f 1315process_slot:
e02119d5
CM
1316 btrfs_item_key_to_cpu(path->nodes[0], &key,
1317 path->slots[0]);
33345d01 1318 if (key.objectid != ino ||
e02119d5
CM
1319 key.type != BTRFS_INODE_REF_KEY)
1320 break;
1321 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1322 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1323 path->slots[0]);
d397712b 1324 while (ptr < ptr_end) {
e02119d5
CM
1325 struct btrfs_inode_ref *ref;
1326
1327 ref = (struct btrfs_inode_ref *)ptr;
1328 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1329 ref);
1330 ptr = (unsigned long)(ref + 1) + name_len;
1331 nlink++;
1332 }
1333
1334 if (key.offset == 0)
1335 break;
e93ae26f
FDBM
1336 if (path->slots[0] > 0) {
1337 path->slots[0]--;
1338 goto process_slot;
1339 }
e02119d5 1340 key.offset--;
b3b4aa74 1341 btrfs_release_path(path);
e02119d5 1342 }
b3b4aa74 1343 btrfs_release_path(path);
f186373f
MF
1344
1345 return nlink;
1346}
1347
1348/*
1349 * There are a few corners where the link count of the file can't
1350 * be properly maintained during replay. So, instead of adding
1351 * lots of complexity to the log code, we just scan the backrefs
1352 * for any file that has been through replay.
1353 *
1354 * The scan will update the link count on the inode to reflect the
1355 * number of back refs found. If it goes down to zero, the iput
1356 * will free the inode.
1357 */
1358static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1359 struct btrfs_root *root,
1360 struct inode *inode)
1361{
1362 struct btrfs_path *path;
1363 int ret;
1364 u64 nlink = 0;
1365 u64 ino = btrfs_ino(inode);
1366
1367 path = btrfs_alloc_path();
1368 if (!path)
1369 return -ENOMEM;
1370
1371 ret = count_inode_refs(root, inode, path);
1372 if (ret < 0)
1373 goto out;
1374
1375 nlink = ret;
1376
1377 ret = count_inode_extrefs(root, inode, path);
1378 if (ret == -ENOENT)
1379 ret = 0;
1380
1381 if (ret < 0)
1382 goto out;
1383
1384 nlink += ret;
1385
1386 ret = 0;
1387
e02119d5 1388 if (nlink != inode->i_nlink) {
bfe86848 1389 set_nlink(inode, nlink);
e02119d5
CM
1390 btrfs_update_inode(trans, root, inode);
1391 }
8d5bf1cb 1392 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1393
c71bf099
YZ
1394 if (inode->i_nlink == 0) {
1395 if (S_ISDIR(inode->i_mode)) {
1396 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1397 ino, 1);
3650860b
JB
1398 if (ret)
1399 goto out;
c71bf099 1400 }
33345d01 1401 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1402 }
12fcfd22 1403
f186373f
MF
1404out:
1405 btrfs_free_path(path);
1406 return ret;
e02119d5
CM
1407}
1408
1409static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1410 struct btrfs_root *root,
1411 struct btrfs_path *path)
1412{
1413 int ret;
1414 struct btrfs_key key;
1415 struct inode *inode;
1416
1417 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1418 key.type = BTRFS_ORPHAN_ITEM_KEY;
1419 key.offset = (u64)-1;
d397712b 1420 while (1) {
e02119d5
CM
1421 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1422 if (ret < 0)
1423 break;
1424
1425 if (ret == 1) {
1426 if (path->slots[0] == 0)
1427 break;
1428 path->slots[0]--;
1429 }
1430
1431 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1432 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1433 key.type != BTRFS_ORPHAN_ITEM_KEY)
1434 break;
1435
1436 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1437 if (ret)
1438 goto out;
e02119d5 1439
b3b4aa74 1440 btrfs_release_path(path);
e02119d5 1441 inode = read_one_inode(root, key.offset);
c00e9493
TI
1442 if (!inode)
1443 return -EIO;
e02119d5
CM
1444
1445 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1446 iput(inode);
3650860b
JB
1447 if (ret)
1448 goto out;
e02119d5 1449
12fcfd22
CM
1450 /*
1451 * fixup on a directory may create new entries,
1452 * make sure we always look for the highset possible
1453 * offset
1454 */
1455 key.offset = (u64)-1;
e02119d5 1456 }
65a246c5
TI
1457 ret = 0;
1458out:
b3b4aa74 1459 btrfs_release_path(path);
65a246c5 1460 return ret;
e02119d5
CM
1461}
1462
1463
1464/*
1465 * record a given inode in the fixup dir so we can check its link
1466 * count when replay is done. The link count is incremented here
1467 * so the inode won't go away until we check it
1468 */
1469static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1470 struct btrfs_root *root,
1471 struct btrfs_path *path,
1472 u64 objectid)
1473{
1474 struct btrfs_key key;
1475 int ret = 0;
1476 struct inode *inode;
1477
1478 inode = read_one_inode(root, objectid);
c00e9493
TI
1479 if (!inode)
1480 return -EIO;
e02119d5
CM
1481
1482 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1483 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1484 key.offset = objectid;
1485
1486 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1487
b3b4aa74 1488 btrfs_release_path(path);
e02119d5 1489 if (ret == 0) {
9bf7a489
JB
1490 if (!inode->i_nlink)
1491 set_nlink(inode, 1);
1492 else
8b558c5f 1493 inc_nlink(inode);
b9959295 1494 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1495 } else if (ret == -EEXIST) {
1496 ret = 0;
1497 } else {
3650860b 1498 BUG(); /* Logic Error */
e02119d5
CM
1499 }
1500 iput(inode);
1501
1502 return ret;
1503}
1504
1505/*
1506 * when replaying the log for a directory, we only insert names
1507 * for inodes that actually exist. This means an fsync on a directory
1508 * does not implicitly fsync all the new files in it
1509 */
1510static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1511 struct btrfs_root *root,
1512 struct btrfs_path *path,
1513 u64 dirid, u64 index,
1514 char *name, int name_len, u8 type,
1515 struct btrfs_key *location)
1516{
1517 struct inode *inode;
1518 struct inode *dir;
1519 int ret;
1520
1521 inode = read_one_inode(root, location->objectid);
1522 if (!inode)
1523 return -ENOENT;
1524
1525 dir = read_one_inode(root, dirid);
1526 if (!dir) {
1527 iput(inode);
1528 return -EIO;
1529 }
d555438b 1530
e02119d5
CM
1531 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1532
1533 /* FIXME, put inode into FIXUP list */
1534
1535 iput(inode);
1536 iput(dir);
1537 return ret;
1538}
1539
1540/*
1541 * take a single entry in a log directory item and replay it into
1542 * the subvolume.
1543 *
1544 * if a conflicting item exists in the subdirectory already,
1545 * the inode it points to is unlinked and put into the link count
1546 * fix up tree.
1547 *
1548 * If a name from the log points to a file or directory that does
1549 * not exist in the FS, it is skipped. fsyncs on directories
1550 * do not force down inodes inside that directory, just changes to the
1551 * names or unlinks in a directory.
1552 */
1553static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1554 struct btrfs_root *root,
1555 struct btrfs_path *path,
1556 struct extent_buffer *eb,
1557 struct btrfs_dir_item *di,
1558 struct btrfs_key *key)
1559{
1560 char *name;
1561 int name_len;
1562 struct btrfs_dir_item *dst_di;
1563 struct btrfs_key found_key;
1564 struct btrfs_key log_key;
1565 struct inode *dir;
e02119d5 1566 u8 log_type;
4bef0848 1567 int exists;
3650860b 1568 int ret = 0;
d555438b 1569 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
e02119d5
CM
1570
1571 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1572 if (!dir)
1573 return -EIO;
e02119d5
CM
1574
1575 name_len = btrfs_dir_name_len(eb, di);
1576 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1577 if (!name) {
1578 ret = -ENOMEM;
1579 goto out;
1580 }
2a29edc6 1581
e02119d5
CM
1582 log_type = btrfs_dir_type(eb, di);
1583 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1584 name_len);
1585
1586 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1587 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1588 if (exists == 0)
1589 exists = 1;
1590 else
1591 exists = 0;
b3b4aa74 1592 btrfs_release_path(path);
4bef0848 1593
e02119d5
CM
1594 if (key->type == BTRFS_DIR_ITEM_KEY) {
1595 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1596 name, name_len, 1);
d397712b 1597 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1598 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1599 key->objectid,
1600 key->offset, name,
1601 name_len, 1);
1602 } else {
3650860b
JB
1603 /* Corruption */
1604 ret = -EINVAL;
1605 goto out;
e02119d5 1606 }
c704005d 1607 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1608 /* we need a sequence number to insert, so we only
1609 * do inserts for the BTRFS_DIR_INDEX_KEY types
1610 */
1611 if (key->type != BTRFS_DIR_INDEX_KEY)
1612 goto out;
1613 goto insert;
1614 }
1615
1616 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1617 /* the existing item matches the logged item */
1618 if (found_key.objectid == log_key.objectid &&
1619 found_key.type == log_key.type &&
1620 found_key.offset == log_key.offset &&
1621 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1622 goto out;
1623 }
1624
1625 /*
1626 * don't drop the conflicting directory entry if the inode
1627 * for the new entry doesn't exist
1628 */
4bef0848 1629 if (!exists)
e02119d5
CM
1630 goto out;
1631
e02119d5 1632 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
3650860b
JB
1633 if (ret)
1634 goto out;
e02119d5
CM
1635
1636 if (key->type == BTRFS_DIR_INDEX_KEY)
1637 goto insert;
1638out:
b3b4aa74 1639 btrfs_release_path(path);
d555438b
JB
1640 if (!ret && update_size) {
1641 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1642 ret = btrfs_update_inode(trans, root, dir);
1643 }
e02119d5
CM
1644 kfree(name);
1645 iput(dir);
3650860b 1646 return ret;
e02119d5
CM
1647
1648insert:
b3b4aa74 1649 btrfs_release_path(path);
e02119d5
CM
1650 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1651 name, name_len, log_type, &log_key);
3650860b
JB
1652 if (ret && ret != -ENOENT)
1653 goto out;
d555438b 1654 update_size = false;
3650860b 1655 ret = 0;
e02119d5
CM
1656 goto out;
1657}
1658
1659/*
1660 * find all the names in a directory item and reconcile them into
1661 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1662 * one name in a directory item, but the same code gets used for
1663 * both directory index types
1664 */
1665static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1666 struct btrfs_root *root,
1667 struct btrfs_path *path,
1668 struct extent_buffer *eb, int slot,
1669 struct btrfs_key *key)
1670{
1671 int ret;
1672 u32 item_size = btrfs_item_size_nr(eb, slot);
1673 struct btrfs_dir_item *di;
1674 int name_len;
1675 unsigned long ptr;
1676 unsigned long ptr_end;
1677
1678 ptr = btrfs_item_ptr_offset(eb, slot);
1679 ptr_end = ptr + item_size;
d397712b 1680 while (ptr < ptr_end) {
e02119d5 1681 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1682 if (verify_dir_item(root, eb, di))
1683 return -EIO;
e02119d5
CM
1684 name_len = btrfs_dir_name_len(eb, di);
1685 ret = replay_one_name(trans, root, path, eb, di, key);
3650860b
JB
1686 if (ret)
1687 return ret;
e02119d5
CM
1688 ptr = (unsigned long)(di + 1);
1689 ptr += name_len;
1690 }
1691 return 0;
1692}
1693
1694/*
1695 * directory replay has two parts. There are the standard directory
1696 * items in the log copied from the subvolume, and range items
1697 * created in the log while the subvolume was logged.
1698 *
1699 * The range items tell us which parts of the key space the log
1700 * is authoritative for. During replay, if a key in the subvolume
1701 * directory is in a logged range item, but not actually in the log
1702 * that means it was deleted from the directory before the fsync
1703 * and should be removed.
1704 */
1705static noinline int find_dir_range(struct btrfs_root *root,
1706 struct btrfs_path *path,
1707 u64 dirid, int key_type,
1708 u64 *start_ret, u64 *end_ret)
1709{
1710 struct btrfs_key key;
1711 u64 found_end;
1712 struct btrfs_dir_log_item *item;
1713 int ret;
1714 int nritems;
1715
1716 if (*start_ret == (u64)-1)
1717 return 1;
1718
1719 key.objectid = dirid;
1720 key.type = key_type;
1721 key.offset = *start_ret;
1722
1723 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1724 if (ret < 0)
1725 goto out;
1726 if (ret > 0) {
1727 if (path->slots[0] == 0)
1728 goto out;
1729 path->slots[0]--;
1730 }
1731 if (ret != 0)
1732 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1733
1734 if (key.type != key_type || key.objectid != dirid) {
1735 ret = 1;
1736 goto next;
1737 }
1738 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1739 struct btrfs_dir_log_item);
1740 found_end = btrfs_dir_log_end(path->nodes[0], item);
1741
1742 if (*start_ret >= key.offset && *start_ret <= found_end) {
1743 ret = 0;
1744 *start_ret = key.offset;
1745 *end_ret = found_end;
1746 goto out;
1747 }
1748 ret = 1;
1749next:
1750 /* check the next slot in the tree to see if it is a valid item */
1751 nritems = btrfs_header_nritems(path->nodes[0]);
1752 if (path->slots[0] >= nritems) {
1753 ret = btrfs_next_leaf(root, path);
1754 if (ret)
1755 goto out;
1756 } else {
1757 path->slots[0]++;
1758 }
1759
1760 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1761
1762 if (key.type != key_type || key.objectid != dirid) {
1763 ret = 1;
1764 goto out;
1765 }
1766 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1767 struct btrfs_dir_log_item);
1768 found_end = btrfs_dir_log_end(path->nodes[0], item);
1769 *start_ret = key.offset;
1770 *end_ret = found_end;
1771 ret = 0;
1772out:
b3b4aa74 1773 btrfs_release_path(path);
e02119d5
CM
1774 return ret;
1775}
1776
1777/*
1778 * this looks for a given directory item in the log. If the directory
1779 * item is not in the log, the item is removed and the inode it points
1780 * to is unlinked
1781 */
1782static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1783 struct btrfs_root *root,
1784 struct btrfs_root *log,
1785 struct btrfs_path *path,
1786 struct btrfs_path *log_path,
1787 struct inode *dir,
1788 struct btrfs_key *dir_key)
1789{
1790 int ret;
1791 struct extent_buffer *eb;
1792 int slot;
1793 u32 item_size;
1794 struct btrfs_dir_item *di;
1795 struct btrfs_dir_item *log_di;
1796 int name_len;
1797 unsigned long ptr;
1798 unsigned long ptr_end;
1799 char *name;
1800 struct inode *inode;
1801 struct btrfs_key location;
1802
1803again:
1804 eb = path->nodes[0];
1805 slot = path->slots[0];
1806 item_size = btrfs_item_size_nr(eb, slot);
1807 ptr = btrfs_item_ptr_offset(eb, slot);
1808 ptr_end = ptr + item_size;
d397712b 1809 while (ptr < ptr_end) {
e02119d5 1810 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1811 if (verify_dir_item(root, eb, di)) {
1812 ret = -EIO;
1813 goto out;
1814 }
1815
e02119d5
CM
1816 name_len = btrfs_dir_name_len(eb, di);
1817 name = kmalloc(name_len, GFP_NOFS);
1818 if (!name) {
1819 ret = -ENOMEM;
1820 goto out;
1821 }
1822 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1823 name_len);
1824 log_di = NULL;
12fcfd22 1825 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
1826 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1827 dir_key->objectid,
1828 name, name_len, 0);
12fcfd22 1829 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1830 log_di = btrfs_lookup_dir_index_item(trans, log,
1831 log_path,
1832 dir_key->objectid,
1833 dir_key->offset,
1834 name, name_len, 0);
1835 }
269d040f 1836 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
e02119d5 1837 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
1838 btrfs_release_path(path);
1839 btrfs_release_path(log_path);
e02119d5 1840 inode = read_one_inode(root, location.objectid);
c00e9493
TI
1841 if (!inode) {
1842 kfree(name);
1843 return -EIO;
1844 }
e02119d5
CM
1845
1846 ret = link_to_fixup_dir(trans, root,
1847 path, location.objectid);
3650860b
JB
1848 if (ret) {
1849 kfree(name);
1850 iput(inode);
1851 goto out;
1852 }
1853
8b558c5f 1854 inc_nlink(inode);
e02119d5
CM
1855 ret = btrfs_unlink_inode(trans, root, dir, inode,
1856 name, name_len);
3650860b 1857 if (!ret)
ada9af21 1858 ret = btrfs_run_delayed_items(trans, root);
e02119d5
CM
1859 kfree(name);
1860 iput(inode);
3650860b
JB
1861 if (ret)
1862 goto out;
e02119d5
CM
1863
1864 /* there might still be more names under this key
1865 * check and repeat if required
1866 */
1867 ret = btrfs_search_slot(NULL, root, dir_key, path,
1868 0, 0);
1869 if (ret == 0)
1870 goto again;
1871 ret = 0;
1872 goto out;
269d040f
FDBM
1873 } else if (IS_ERR(log_di)) {
1874 kfree(name);
1875 return PTR_ERR(log_di);
e02119d5 1876 }
b3b4aa74 1877 btrfs_release_path(log_path);
e02119d5
CM
1878 kfree(name);
1879
1880 ptr = (unsigned long)(di + 1);
1881 ptr += name_len;
1882 }
1883 ret = 0;
1884out:
b3b4aa74
DS
1885 btrfs_release_path(path);
1886 btrfs_release_path(log_path);
e02119d5
CM
1887 return ret;
1888}
1889
1890/*
1891 * deletion replay happens before we copy any new directory items
1892 * out of the log or out of backreferences from inodes. It
1893 * scans the log to find ranges of keys that log is authoritative for,
1894 * and then scans the directory to find items in those ranges that are
1895 * not present in the log.
1896 *
1897 * Anything we don't find in the log is unlinked and removed from the
1898 * directory.
1899 */
1900static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1901 struct btrfs_root *root,
1902 struct btrfs_root *log,
1903 struct btrfs_path *path,
12fcfd22 1904 u64 dirid, int del_all)
e02119d5
CM
1905{
1906 u64 range_start;
1907 u64 range_end;
1908 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1909 int ret = 0;
1910 struct btrfs_key dir_key;
1911 struct btrfs_key found_key;
1912 struct btrfs_path *log_path;
1913 struct inode *dir;
1914
1915 dir_key.objectid = dirid;
1916 dir_key.type = BTRFS_DIR_ITEM_KEY;
1917 log_path = btrfs_alloc_path();
1918 if (!log_path)
1919 return -ENOMEM;
1920
1921 dir = read_one_inode(root, dirid);
1922 /* it isn't an error if the inode isn't there, that can happen
1923 * because we replay the deletes before we copy in the inode item
1924 * from the log
1925 */
1926 if (!dir) {
1927 btrfs_free_path(log_path);
1928 return 0;
1929 }
1930again:
1931 range_start = 0;
1932 range_end = 0;
d397712b 1933 while (1) {
12fcfd22
CM
1934 if (del_all)
1935 range_end = (u64)-1;
1936 else {
1937 ret = find_dir_range(log, path, dirid, key_type,
1938 &range_start, &range_end);
1939 if (ret != 0)
1940 break;
1941 }
e02119d5
CM
1942
1943 dir_key.offset = range_start;
d397712b 1944 while (1) {
e02119d5
CM
1945 int nritems;
1946 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1947 0, 0);
1948 if (ret < 0)
1949 goto out;
1950
1951 nritems = btrfs_header_nritems(path->nodes[0]);
1952 if (path->slots[0] >= nritems) {
1953 ret = btrfs_next_leaf(root, path);
1954 if (ret)
1955 break;
1956 }
1957 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1958 path->slots[0]);
1959 if (found_key.objectid != dirid ||
1960 found_key.type != dir_key.type)
1961 goto next_type;
1962
1963 if (found_key.offset > range_end)
1964 break;
1965
1966 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
1967 log_path, dir,
1968 &found_key);
3650860b
JB
1969 if (ret)
1970 goto out;
e02119d5
CM
1971 if (found_key.offset == (u64)-1)
1972 break;
1973 dir_key.offset = found_key.offset + 1;
1974 }
b3b4aa74 1975 btrfs_release_path(path);
e02119d5
CM
1976 if (range_end == (u64)-1)
1977 break;
1978 range_start = range_end + 1;
1979 }
1980
1981next_type:
1982 ret = 0;
1983 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1984 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1985 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 1986 btrfs_release_path(path);
e02119d5
CM
1987 goto again;
1988 }
1989out:
b3b4aa74 1990 btrfs_release_path(path);
e02119d5
CM
1991 btrfs_free_path(log_path);
1992 iput(dir);
1993 return ret;
1994}
1995
1996/*
1997 * the process_func used to replay items from the log tree. This
1998 * gets called in two different stages. The first stage just looks
1999 * for inodes and makes sure they are all copied into the subvolume.
2000 *
2001 * The second stage copies all the other item types from the log into
2002 * the subvolume. The two stage approach is slower, but gets rid of
2003 * lots of complexity around inodes referencing other inodes that exist
2004 * only in the log (references come from either directory items or inode
2005 * back refs).
2006 */
2007static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2008 struct walk_control *wc, u64 gen)
2009{
2010 int nritems;
2011 struct btrfs_path *path;
2012 struct btrfs_root *root = wc->replay_dest;
2013 struct btrfs_key key;
e02119d5
CM
2014 int level;
2015 int i;
2016 int ret;
2017
018642a1
TI
2018 ret = btrfs_read_buffer(eb, gen);
2019 if (ret)
2020 return ret;
e02119d5
CM
2021
2022 level = btrfs_header_level(eb);
2023
2024 if (level != 0)
2025 return 0;
2026
2027 path = btrfs_alloc_path();
1e5063d0
MF
2028 if (!path)
2029 return -ENOMEM;
e02119d5
CM
2030
2031 nritems = btrfs_header_nritems(eb);
2032 for (i = 0; i < nritems; i++) {
2033 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2034
2035 /* inode keys are done during the first stage */
2036 if (key.type == BTRFS_INODE_ITEM_KEY &&
2037 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2038 struct btrfs_inode_item *inode_item;
2039 u32 mode;
2040
2041 inode_item = btrfs_item_ptr(eb, i,
2042 struct btrfs_inode_item);
2043 mode = btrfs_inode_mode(eb, inode_item);
2044 if (S_ISDIR(mode)) {
2045 ret = replay_dir_deletes(wc->trans,
12fcfd22 2046 root, log, path, key.objectid, 0);
b50c6e25
JB
2047 if (ret)
2048 break;
e02119d5
CM
2049 }
2050 ret = overwrite_item(wc->trans, root, path,
2051 eb, i, &key);
b50c6e25
JB
2052 if (ret)
2053 break;
e02119d5 2054
c71bf099
YZ
2055 /* for regular files, make sure corresponding
2056 * orhpan item exist. extents past the new EOF
2057 * will be truncated later by orphan cleanup.
e02119d5
CM
2058 */
2059 if (S_ISREG(mode)) {
c71bf099
YZ
2060 ret = insert_orphan_item(wc->trans, root,
2061 key.objectid);
b50c6e25
JB
2062 if (ret)
2063 break;
e02119d5 2064 }
c71bf099 2065
e02119d5
CM
2066 ret = link_to_fixup_dir(wc->trans, root,
2067 path, key.objectid);
b50c6e25
JB
2068 if (ret)
2069 break;
e02119d5 2070 }
dd8e7217
JB
2071
2072 if (key.type == BTRFS_DIR_INDEX_KEY &&
2073 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2074 ret = replay_one_dir_item(wc->trans, root, path,
2075 eb, i, &key);
2076 if (ret)
2077 break;
2078 }
2079
e02119d5
CM
2080 if (wc->stage < LOG_WALK_REPLAY_ALL)
2081 continue;
2082
2083 /* these keys are simply copied */
2084 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2085 ret = overwrite_item(wc->trans, root, path,
2086 eb, i, &key);
b50c6e25
JB
2087 if (ret)
2088 break;
2da1c669
LB
2089 } else if (key.type == BTRFS_INODE_REF_KEY ||
2090 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2091 ret = add_inode_ref(wc->trans, root, log, path,
2092 eb, i, &key);
b50c6e25
JB
2093 if (ret && ret != -ENOENT)
2094 break;
2095 ret = 0;
e02119d5
CM
2096 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2097 ret = replay_one_extent(wc->trans, root, path,
2098 eb, i, &key);
b50c6e25
JB
2099 if (ret)
2100 break;
dd8e7217 2101 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2102 ret = replay_one_dir_item(wc->trans, root, path,
2103 eb, i, &key);
b50c6e25
JB
2104 if (ret)
2105 break;
e02119d5
CM
2106 }
2107 }
2108 btrfs_free_path(path);
b50c6e25 2109 return ret;
e02119d5
CM
2110}
2111
d397712b 2112static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2113 struct btrfs_root *root,
2114 struct btrfs_path *path, int *level,
2115 struct walk_control *wc)
2116{
2117 u64 root_owner;
e02119d5
CM
2118 u64 bytenr;
2119 u64 ptr_gen;
2120 struct extent_buffer *next;
2121 struct extent_buffer *cur;
2122 struct extent_buffer *parent;
2123 u32 blocksize;
2124 int ret = 0;
2125
2126 WARN_ON(*level < 0);
2127 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2128
d397712b 2129 while (*level > 0) {
e02119d5
CM
2130 WARN_ON(*level < 0);
2131 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2132 cur = path->nodes[*level];
2133
fae7f21c 2134 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2135
2136 if (path->slots[*level] >=
2137 btrfs_header_nritems(cur))
2138 break;
2139
2140 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2141 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2142 blocksize = btrfs_level_size(root, *level - 1);
2143
2144 parent = path->nodes[*level];
2145 root_owner = btrfs_header_owner(parent);
e02119d5
CM
2146
2147 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2a29edc6 2148 if (!next)
2149 return -ENOMEM;
e02119d5 2150
e02119d5 2151 if (*level == 1) {
1e5063d0 2152 ret = wc->process_func(root, next, wc, ptr_gen);
b50c6e25
JB
2153 if (ret) {
2154 free_extent_buffer(next);
1e5063d0 2155 return ret;
b50c6e25 2156 }
4a500fd1 2157
e02119d5
CM
2158 path->slots[*level]++;
2159 if (wc->free) {
018642a1
TI
2160 ret = btrfs_read_buffer(next, ptr_gen);
2161 if (ret) {
2162 free_extent_buffer(next);
2163 return ret;
2164 }
e02119d5 2165
681ae509
JB
2166 if (trans) {
2167 btrfs_tree_lock(next);
2168 btrfs_set_lock_blocking(next);
2169 clean_tree_block(trans, root, next);
2170 btrfs_wait_tree_block_writeback(next);
2171 btrfs_tree_unlock(next);
2172 }
e02119d5 2173
e02119d5
CM
2174 WARN_ON(root_owner !=
2175 BTRFS_TREE_LOG_OBJECTID);
e688b725 2176 ret = btrfs_free_and_pin_reserved_extent(root,
d00aff00 2177 bytenr, blocksize);
3650860b
JB
2178 if (ret) {
2179 free_extent_buffer(next);
2180 return ret;
2181 }
e02119d5
CM
2182 }
2183 free_extent_buffer(next);
2184 continue;
2185 }
018642a1
TI
2186 ret = btrfs_read_buffer(next, ptr_gen);
2187 if (ret) {
2188 free_extent_buffer(next);
2189 return ret;
2190 }
e02119d5
CM
2191
2192 WARN_ON(*level <= 0);
2193 if (path->nodes[*level-1])
2194 free_extent_buffer(path->nodes[*level-1]);
2195 path->nodes[*level-1] = next;
2196 *level = btrfs_header_level(next);
2197 path->slots[*level] = 0;
2198 cond_resched();
2199 }
2200 WARN_ON(*level < 0);
2201 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2202
4a500fd1 2203 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2204
2205 cond_resched();
2206 return 0;
2207}
2208
d397712b 2209static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2210 struct btrfs_root *root,
2211 struct btrfs_path *path, int *level,
2212 struct walk_control *wc)
2213{
2214 u64 root_owner;
e02119d5
CM
2215 int i;
2216 int slot;
2217 int ret;
2218
d397712b 2219 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2220 slot = path->slots[i];
4a500fd1 2221 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2222 path->slots[i]++;
2223 *level = i;
2224 WARN_ON(*level == 0);
2225 return 0;
2226 } else {
31840ae1
ZY
2227 struct extent_buffer *parent;
2228 if (path->nodes[*level] == root->node)
2229 parent = path->nodes[*level];
2230 else
2231 parent = path->nodes[*level + 1];
2232
2233 root_owner = btrfs_header_owner(parent);
1e5063d0 2234 ret = wc->process_func(root, path->nodes[*level], wc,
e02119d5 2235 btrfs_header_generation(path->nodes[*level]));
1e5063d0
MF
2236 if (ret)
2237 return ret;
2238
e02119d5
CM
2239 if (wc->free) {
2240 struct extent_buffer *next;
2241
2242 next = path->nodes[*level];
2243
681ae509
JB
2244 if (trans) {
2245 btrfs_tree_lock(next);
2246 btrfs_set_lock_blocking(next);
2247 clean_tree_block(trans, root, next);
2248 btrfs_wait_tree_block_writeback(next);
2249 btrfs_tree_unlock(next);
2250 }
e02119d5 2251
e02119d5 2252 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
e688b725 2253 ret = btrfs_free_and_pin_reserved_extent(root,
e02119d5 2254 path->nodes[*level]->start,
d00aff00 2255 path->nodes[*level]->len);
3650860b
JB
2256 if (ret)
2257 return ret;
e02119d5
CM
2258 }
2259 free_extent_buffer(path->nodes[*level]);
2260 path->nodes[*level] = NULL;
2261 *level = i + 1;
2262 }
2263 }
2264 return 1;
2265}
2266
2267/*
2268 * drop the reference count on the tree rooted at 'snap'. This traverses
2269 * the tree freeing any blocks that have a ref count of zero after being
2270 * decremented.
2271 */
2272static int walk_log_tree(struct btrfs_trans_handle *trans,
2273 struct btrfs_root *log, struct walk_control *wc)
2274{
2275 int ret = 0;
2276 int wret;
2277 int level;
2278 struct btrfs_path *path;
e02119d5
CM
2279 int orig_level;
2280
2281 path = btrfs_alloc_path();
db5b493a
TI
2282 if (!path)
2283 return -ENOMEM;
e02119d5
CM
2284
2285 level = btrfs_header_level(log->node);
2286 orig_level = level;
2287 path->nodes[level] = log->node;
2288 extent_buffer_get(log->node);
2289 path->slots[level] = 0;
2290
d397712b 2291 while (1) {
e02119d5
CM
2292 wret = walk_down_log_tree(trans, log, path, &level, wc);
2293 if (wret > 0)
2294 break;
79787eaa 2295 if (wret < 0) {
e02119d5 2296 ret = wret;
79787eaa
JM
2297 goto out;
2298 }
e02119d5
CM
2299
2300 wret = walk_up_log_tree(trans, log, path, &level, wc);
2301 if (wret > 0)
2302 break;
79787eaa 2303 if (wret < 0) {
e02119d5 2304 ret = wret;
79787eaa
JM
2305 goto out;
2306 }
e02119d5
CM
2307 }
2308
2309 /* was the root node processed? if not, catch it here */
2310 if (path->nodes[orig_level]) {
79787eaa 2311 ret = wc->process_func(log, path->nodes[orig_level], wc,
e02119d5 2312 btrfs_header_generation(path->nodes[orig_level]));
79787eaa
JM
2313 if (ret)
2314 goto out;
e02119d5
CM
2315 if (wc->free) {
2316 struct extent_buffer *next;
2317
2318 next = path->nodes[orig_level];
2319
681ae509
JB
2320 if (trans) {
2321 btrfs_tree_lock(next);
2322 btrfs_set_lock_blocking(next);
2323 clean_tree_block(trans, log, next);
2324 btrfs_wait_tree_block_writeback(next);
2325 btrfs_tree_unlock(next);
2326 }
e02119d5 2327
e02119d5
CM
2328 WARN_ON(log->root_key.objectid !=
2329 BTRFS_TREE_LOG_OBJECTID);
e688b725 2330 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
d00aff00 2331 next->len);
3650860b
JB
2332 if (ret)
2333 goto out;
e02119d5
CM
2334 }
2335 }
2336
79787eaa 2337out:
e02119d5 2338 btrfs_free_path(path);
e02119d5
CM
2339 return ret;
2340}
2341
7237f183
YZ
2342/*
2343 * helper function to update the item for a given subvolumes log root
2344 * in the tree of log roots
2345 */
2346static int update_log_root(struct btrfs_trans_handle *trans,
2347 struct btrfs_root *log)
2348{
2349 int ret;
2350
2351 if (log->log_transid == 1) {
2352 /* insert root item on the first sync */
2353 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2354 &log->root_key, &log->root_item);
2355 } else {
2356 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2357 &log->root_key, &log->root_item);
2358 }
2359 return ret;
2360}
2361
12fcfd22
CM
2362static int wait_log_commit(struct btrfs_trans_handle *trans,
2363 struct btrfs_root *root, unsigned long transid)
e02119d5
CM
2364{
2365 DEFINE_WAIT(wait);
7237f183 2366 int index = transid % 2;
e02119d5 2367
7237f183
YZ
2368 /*
2369 * we only allow two pending log transactions at a time,
2370 * so we know that if ours is more than 2 older than the
2371 * current transaction, we're done
2372 */
e02119d5 2373 do {
7237f183
YZ
2374 prepare_to_wait(&root->log_commit_wait[index],
2375 &wait, TASK_UNINTERRUPTIBLE);
2376 mutex_unlock(&root->log_mutex);
12fcfd22
CM
2377
2378 if (root->fs_info->last_trans_log_full_commit !=
2379 trans->transid && root->log_transid < transid + 2 &&
7237f183
YZ
2380 atomic_read(&root->log_commit[index]))
2381 schedule();
12fcfd22 2382
7237f183
YZ
2383 finish_wait(&root->log_commit_wait[index], &wait);
2384 mutex_lock(&root->log_mutex);
6dd70ce4
JK
2385 } while (root->fs_info->last_trans_log_full_commit !=
2386 trans->transid && root->log_transid < transid + 2 &&
7237f183
YZ
2387 atomic_read(&root->log_commit[index]));
2388 return 0;
2389}
2390
143bede5
JM
2391static void wait_for_writer(struct btrfs_trans_handle *trans,
2392 struct btrfs_root *root)
7237f183
YZ
2393{
2394 DEFINE_WAIT(wait);
6dd70ce4
JK
2395 while (root->fs_info->last_trans_log_full_commit !=
2396 trans->transid && atomic_read(&root->log_writers)) {
7237f183
YZ
2397 prepare_to_wait(&root->log_writer_wait,
2398 &wait, TASK_UNINTERRUPTIBLE);
2399 mutex_unlock(&root->log_mutex);
12fcfd22
CM
2400 if (root->fs_info->last_trans_log_full_commit !=
2401 trans->transid && atomic_read(&root->log_writers))
e02119d5 2402 schedule();
7237f183
YZ
2403 mutex_lock(&root->log_mutex);
2404 finish_wait(&root->log_writer_wait, &wait);
2405 }
e02119d5
CM
2406}
2407
2408/*
2409 * btrfs_sync_log does sends a given tree log down to the disk and
2410 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2411 * you know that any inodes previously logged are safely on disk only
2412 * if it returns 0.
2413 *
2414 * Any other return value means you need to call btrfs_commit_transaction.
2415 * Some of the edge cases for fsyncing directories that have had unlinks
2416 * or renames done in the past mean that sometimes the only safe
2417 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2418 * that has happened.
e02119d5
CM
2419 */
2420int btrfs_sync_log(struct btrfs_trans_handle *trans,
2421 struct btrfs_root *root)
2422{
7237f183
YZ
2423 int index1;
2424 int index2;
8cef4e16 2425 int mark;
e02119d5 2426 int ret;
e02119d5 2427 struct btrfs_root *log = root->log_root;
7237f183 2428 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
8cef4e16 2429 unsigned long log_transid = 0;
c6adc9cc 2430 struct blk_plug plug;
e02119d5 2431
7237f183 2432 mutex_lock(&root->log_mutex);
2ab28f32 2433 log_transid = root->log_transid;
7237f183
YZ
2434 index1 = root->log_transid % 2;
2435 if (atomic_read(&root->log_commit[index1])) {
12fcfd22 2436 wait_log_commit(trans, root, root->log_transid);
7237f183
YZ
2437 mutex_unlock(&root->log_mutex);
2438 return 0;
e02119d5 2439 }
7237f183
YZ
2440 atomic_set(&root->log_commit[index1], 1);
2441
2442 /* wait for previous tree log sync to complete */
2443 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
12fcfd22 2444 wait_log_commit(trans, root, root->log_transid - 1);
86df7eb9 2445 while (1) {
2ecb7923 2446 int batch = atomic_read(&root->log_batch);
cd354ad6
CM
2447 /* when we're on an ssd, just kick the log commit out */
2448 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
86df7eb9
YZ
2449 mutex_unlock(&root->log_mutex);
2450 schedule_timeout_uninterruptible(1);
2451 mutex_lock(&root->log_mutex);
2452 }
12fcfd22 2453 wait_for_writer(trans, root);
2ecb7923 2454 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2455 break;
2456 }
e02119d5 2457
12fcfd22
CM
2458 /* bail out if we need to do a full commit */
2459 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2460 ret = -EAGAIN;
2ab28f32 2461 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2462 mutex_unlock(&root->log_mutex);
2463 goto out;
2464 }
2465
8cef4e16
YZ
2466 if (log_transid % 2 == 0)
2467 mark = EXTENT_DIRTY;
2468 else
2469 mark = EXTENT_NEW;
2470
690587d1
CM
2471 /* we start IO on all the marked extents here, but we don't actually
2472 * wait for them until later.
2473 */
c6adc9cc 2474 blk_start_plug(&plug);
8cef4e16 2475 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
79787eaa 2476 if (ret) {
c6adc9cc 2477 blk_finish_plug(&plug);
79787eaa 2478 btrfs_abort_transaction(trans, root, ret);
2ab28f32 2479 btrfs_free_logged_extents(log, log_transid);
79787eaa
JM
2480 mutex_unlock(&root->log_mutex);
2481 goto out;
2482 }
7237f183 2483
5d4f98a2 2484 btrfs_set_root_node(&log->root_item, log->node);
7237f183 2485
7237f183
YZ
2486 root->log_transid++;
2487 log->log_transid = root->log_transid;
ff782e0a 2488 root->log_start_pid = 0;
7237f183
YZ
2489 smp_mb();
2490 /*
8cef4e16
YZ
2491 * IO has been started, blocks of the log tree have WRITTEN flag set
2492 * in their headers. new modifications of the log will be written to
2493 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2494 */
2495 mutex_unlock(&root->log_mutex);
2496
2497 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 2498 atomic_inc(&log_root_tree->log_batch);
7237f183
YZ
2499 atomic_inc(&log_root_tree->log_writers);
2500 mutex_unlock(&log_root_tree->log_mutex);
2501
2502 ret = update_log_root(trans, log);
7237f183
YZ
2503
2504 mutex_lock(&log_root_tree->log_mutex);
2505 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2506 smp_mb();
2507 if (waitqueue_active(&log_root_tree->log_writer_wait))
2508 wake_up(&log_root_tree->log_writer_wait);
2509 }
2510
4a500fd1 2511 if (ret) {
c6adc9cc 2512 blk_finish_plug(&plug);
79787eaa
JM
2513 if (ret != -ENOSPC) {
2514 btrfs_abort_transaction(trans, root, ret);
2515 mutex_unlock(&log_root_tree->log_mutex);
2516 goto out;
2517 }
4a500fd1
YZ
2518 root->fs_info->last_trans_log_full_commit = trans->transid;
2519 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2520 btrfs_free_logged_extents(log, log_transid);
4a500fd1
YZ
2521 mutex_unlock(&log_root_tree->log_mutex);
2522 ret = -EAGAIN;
2523 goto out;
2524 }
2525
7237f183
YZ
2526 index2 = log_root_tree->log_transid % 2;
2527 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 2528 blk_finish_plug(&plug);
8cef4e16 2529 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
12fcfd22
CM
2530 wait_log_commit(trans, log_root_tree,
2531 log_root_tree->log_transid);
2ab28f32 2532 btrfs_free_logged_extents(log, log_transid);
7237f183 2533 mutex_unlock(&log_root_tree->log_mutex);
b31eabd8 2534 ret = 0;
7237f183
YZ
2535 goto out;
2536 }
2537 atomic_set(&log_root_tree->log_commit[index2], 1);
2538
12fcfd22
CM
2539 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2540 wait_log_commit(trans, log_root_tree,
2541 log_root_tree->log_transid - 1);
2542 }
2543
2544 wait_for_writer(trans, log_root_tree);
7237f183 2545
12fcfd22
CM
2546 /*
2547 * now that we've moved on to the tree of log tree roots,
2548 * check the full commit flag again
2549 */
2550 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
c6adc9cc 2551 blk_finish_plug(&plug);
8cef4e16 2552 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2553 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2554 mutex_unlock(&log_root_tree->log_mutex);
2555 ret = -EAGAIN;
2556 goto out_wake_log_root;
2557 }
7237f183 2558
c6adc9cc
MX
2559 ret = btrfs_write_marked_extents(log_root_tree,
2560 &log_root_tree->dirty_log_pages,
2561 EXTENT_DIRTY | EXTENT_NEW);
2562 blk_finish_plug(&plug);
79787eaa
JM
2563 if (ret) {
2564 btrfs_abort_transaction(trans, root, ret);
2ab28f32 2565 btrfs_free_logged_extents(log, log_transid);
79787eaa
JM
2566 mutex_unlock(&log_root_tree->log_mutex);
2567 goto out_wake_log_root;
2568 }
8cef4e16 2569 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
c6adc9cc
MX
2570 btrfs_wait_marked_extents(log_root_tree,
2571 &log_root_tree->dirty_log_pages,
2572 EXTENT_NEW | EXTENT_DIRTY);
2ab28f32 2573 btrfs_wait_logged_extents(log, log_transid);
e02119d5 2574
6c41761f 2575 btrfs_set_super_log_root(root->fs_info->super_for_commit,
7237f183 2576 log_root_tree->node->start);
6c41761f 2577 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
7237f183 2578 btrfs_header_level(log_root_tree->node));
e02119d5 2579
7237f183 2580 log_root_tree->log_transid++;
e02119d5 2581 smp_mb();
7237f183
YZ
2582
2583 mutex_unlock(&log_root_tree->log_mutex);
2584
2585 /*
2586 * nobody else is going to jump in and write the the ctree
2587 * super here because the log_commit atomic below is protecting
2588 * us. We must be called with a transaction handle pinning
2589 * the running transaction open, so a full commit can't hop
2590 * in and cause problems either.
2591 */
5af3e8cc 2592 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
5af3e8cc
SB
2593 if (ret) {
2594 btrfs_abort_transaction(trans, root, ret);
2595 goto out_wake_log_root;
2596 }
7237f183 2597
257c62e1
CM
2598 mutex_lock(&root->log_mutex);
2599 if (root->last_log_commit < log_transid)
2600 root->last_log_commit = log_transid;
2601 mutex_unlock(&root->log_mutex);
2602
12fcfd22 2603out_wake_log_root:
7237f183
YZ
2604 atomic_set(&log_root_tree->log_commit[index2], 0);
2605 smp_mb();
2606 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2607 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 2608out:
7237f183
YZ
2609 atomic_set(&root->log_commit[index1], 0);
2610 smp_mb();
2611 if (waitqueue_active(&root->log_commit_wait[index1]))
2612 wake_up(&root->log_commit_wait[index1]);
b31eabd8 2613 return ret;
e02119d5
CM
2614}
2615
4a500fd1
YZ
2616static void free_log_tree(struct btrfs_trans_handle *trans,
2617 struct btrfs_root *log)
e02119d5
CM
2618{
2619 int ret;
d0c803c4
CM
2620 u64 start;
2621 u64 end;
e02119d5
CM
2622 struct walk_control wc = {
2623 .free = 1,
2624 .process_func = process_one_buffer
2625 };
2626
681ae509
JB
2627 ret = walk_log_tree(trans, log, &wc);
2628 /* I don't think this can happen but just in case */
2629 if (ret)
2630 btrfs_abort_transaction(trans, log, ret);
e02119d5 2631
d397712b 2632 while (1) {
d0c803c4 2633 ret = find_first_extent_bit(&log->dirty_log_pages,
e6138876
JB
2634 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2635 NULL);
d0c803c4
CM
2636 if (ret)
2637 break;
2638
8cef4e16
YZ
2639 clear_extent_bits(&log->dirty_log_pages, start, end,
2640 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
d0c803c4
CM
2641 }
2642
2ab28f32
JB
2643 /*
2644 * We may have short-circuited the log tree with the full commit logic
2645 * and left ordered extents on our list, so clear these out to keep us
2646 * from leaking inodes and memory.
2647 */
2648 btrfs_free_logged_extents(log, 0);
2649 btrfs_free_logged_extents(log, 1);
2650
7237f183
YZ
2651 free_extent_buffer(log->node);
2652 kfree(log);
4a500fd1
YZ
2653}
2654
2655/*
2656 * free all the extents used by the tree log. This should be called
2657 * at commit time of the full transaction
2658 */
2659int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2660{
2661 if (root->log_root) {
2662 free_log_tree(trans, root->log_root);
2663 root->log_root = NULL;
2664 }
2665 return 0;
2666}
2667
2668int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2669 struct btrfs_fs_info *fs_info)
2670{
2671 if (fs_info->log_root_tree) {
2672 free_log_tree(trans, fs_info->log_root_tree);
2673 fs_info->log_root_tree = NULL;
2674 }
e02119d5
CM
2675 return 0;
2676}
2677
e02119d5
CM
2678/*
2679 * If both a file and directory are logged, and unlinks or renames are
2680 * mixed in, we have a few interesting corners:
2681 *
2682 * create file X in dir Y
2683 * link file X to X.link in dir Y
2684 * fsync file X
2685 * unlink file X but leave X.link
2686 * fsync dir Y
2687 *
2688 * After a crash we would expect only X.link to exist. But file X
2689 * didn't get fsync'd again so the log has back refs for X and X.link.
2690 *
2691 * We solve this by removing directory entries and inode backrefs from the
2692 * log when a file that was logged in the current transaction is
2693 * unlinked. Any later fsync will include the updated log entries, and
2694 * we'll be able to reconstruct the proper directory items from backrefs.
2695 *
2696 * This optimizations allows us to avoid relogging the entire inode
2697 * or the entire directory.
2698 */
2699int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2700 struct btrfs_root *root,
2701 const char *name, int name_len,
2702 struct inode *dir, u64 index)
2703{
2704 struct btrfs_root *log;
2705 struct btrfs_dir_item *di;
2706 struct btrfs_path *path;
2707 int ret;
4a500fd1 2708 int err = 0;
e02119d5 2709 int bytes_del = 0;
33345d01 2710 u64 dir_ino = btrfs_ino(dir);
e02119d5 2711
3a5f1d45
CM
2712 if (BTRFS_I(dir)->logged_trans < trans->transid)
2713 return 0;
2714
e02119d5
CM
2715 ret = join_running_log_trans(root);
2716 if (ret)
2717 return 0;
2718
2719 mutex_lock(&BTRFS_I(dir)->log_mutex);
2720
2721 log = root->log_root;
2722 path = btrfs_alloc_path();
a62f44a5
TI
2723 if (!path) {
2724 err = -ENOMEM;
2725 goto out_unlock;
2726 }
2a29edc6 2727
33345d01 2728 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 2729 name, name_len, -1);
4a500fd1
YZ
2730 if (IS_ERR(di)) {
2731 err = PTR_ERR(di);
2732 goto fail;
2733 }
2734 if (di) {
e02119d5
CM
2735 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2736 bytes_del += name_len;
3650860b
JB
2737 if (ret) {
2738 err = ret;
2739 goto fail;
2740 }
e02119d5 2741 }
b3b4aa74 2742 btrfs_release_path(path);
33345d01 2743 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 2744 index, name, name_len, -1);
4a500fd1
YZ
2745 if (IS_ERR(di)) {
2746 err = PTR_ERR(di);
2747 goto fail;
2748 }
2749 if (di) {
e02119d5
CM
2750 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2751 bytes_del += name_len;
3650860b
JB
2752 if (ret) {
2753 err = ret;
2754 goto fail;
2755 }
e02119d5
CM
2756 }
2757
2758 /* update the directory size in the log to reflect the names
2759 * we have removed
2760 */
2761 if (bytes_del) {
2762 struct btrfs_key key;
2763
33345d01 2764 key.objectid = dir_ino;
e02119d5
CM
2765 key.offset = 0;
2766 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 2767 btrfs_release_path(path);
e02119d5
CM
2768
2769 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
2770 if (ret < 0) {
2771 err = ret;
2772 goto fail;
2773 }
e02119d5
CM
2774 if (ret == 0) {
2775 struct btrfs_inode_item *item;
2776 u64 i_size;
2777
2778 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2779 struct btrfs_inode_item);
2780 i_size = btrfs_inode_size(path->nodes[0], item);
2781 if (i_size > bytes_del)
2782 i_size -= bytes_del;
2783 else
2784 i_size = 0;
2785 btrfs_set_inode_size(path->nodes[0], item, i_size);
2786 btrfs_mark_buffer_dirty(path->nodes[0]);
2787 } else
2788 ret = 0;
b3b4aa74 2789 btrfs_release_path(path);
e02119d5 2790 }
4a500fd1 2791fail:
e02119d5 2792 btrfs_free_path(path);
a62f44a5 2793out_unlock:
e02119d5 2794 mutex_unlock(&BTRFS_I(dir)->log_mutex);
4a500fd1
YZ
2795 if (ret == -ENOSPC) {
2796 root->fs_info->last_trans_log_full_commit = trans->transid;
2797 ret = 0;
79787eaa
JM
2798 } else if (ret < 0)
2799 btrfs_abort_transaction(trans, root, ret);
2800
12fcfd22 2801 btrfs_end_log_trans(root);
e02119d5 2802
411fc6bc 2803 return err;
e02119d5
CM
2804}
2805
2806/* see comments for btrfs_del_dir_entries_in_log */
2807int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2808 struct btrfs_root *root,
2809 const char *name, int name_len,
2810 struct inode *inode, u64 dirid)
2811{
2812 struct btrfs_root *log;
2813 u64 index;
2814 int ret;
2815
3a5f1d45
CM
2816 if (BTRFS_I(inode)->logged_trans < trans->transid)
2817 return 0;
2818
e02119d5
CM
2819 ret = join_running_log_trans(root);
2820 if (ret)
2821 return 0;
2822 log = root->log_root;
2823 mutex_lock(&BTRFS_I(inode)->log_mutex);
2824
33345d01 2825 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5
CM
2826 dirid, &index);
2827 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4a500fd1
YZ
2828 if (ret == -ENOSPC) {
2829 root->fs_info->last_trans_log_full_commit = trans->transid;
2830 ret = 0;
79787eaa
JM
2831 } else if (ret < 0 && ret != -ENOENT)
2832 btrfs_abort_transaction(trans, root, ret);
12fcfd22 2833 btrfs_end_log_trans(root);
e02119d5 2834
e02119d5
CM
2835 return ret;
2836}
2837
2838/*
2839 * creates a range item in the log for 'dirid'. first_offset and
2840 * last_offset tell us which parts of the key space the log should
2841 * be considered authoritative for.
2842 */
2843static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2844 struct btrfs_root *log,
2845 struct btrfs_path *path,
2846 int key_type, u64 dirid,
2847 u64 first_offset, u64 last_offset)
2848{
2849 int ret;
2850 struct btrfs_key key;
2851 struct btrfs_dir_log_item *item;
2852
2853 key.objectid = dirid;
2854 key.offset = first_offset;
2855 if (key_type == BTRFS_DIR_ITEM_KEY)
2856 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2857 else
2858 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2859 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
2860 if (ret)
2861 return ret;
e02119d5
CM
2862
2863 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2864 struct btrfs_dir_log_item);
2865 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2866 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 2867 btrfs_release_path(path);
e02119d5
CM
2868 return 0;
2869}
2870
2871/*
2872 * log all the items included in the current transaction for a given
2873 * directory. This also creates the range items in the log tree required
2874 * to replay anything deleted before the fsync
2875 */
2876static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2877 struct btrfs_root *root, struct inode *inode,
2878 struct btrfs_path *path,
2879 struct btrfs_path *dst_path, int key_type,
2880 u64 min_offset, u64 *last_offset_ret)
2881{
2882 struct btrfs_key min_key;
e02119d5
CM
2883 struct btrfs_root *log = root->log_root;
2884 struct extent_buffer *src;
4a500fd1 2885 int err = 0;
e02119d5
CM
2886 int ret;
2887 int i;
2888 int nritems;
2889 u64 first_offset = min_offset;
2890 u64 last_offset = (u64)-1;
33345d01 2891 u64 ino = btrfs_ino(inode);
e02119d5
CM
2892
2893 log = root->log_root;
e02119d5 2894
33345d01 2895 min_key.objectid = ino;
e02119d5
CM
2896 min_key.type = key_type;
2897 min_key.offset = min_offset;
2898
2899 path->keep_locks = 1;
2900
6174d3cb 2901 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
2902
2903 /*
2904 * we didn't find anything from this transaction, see if there
2905 * is anything at all
2906 */
33345d01
LZ
2907 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2908 min_key.objectid = ino;
e02119d5
CM
2909 min_key.type = key_type;
2910 min_key.offset = (u64)-1;
b3b4aa74 2911 btrfs_release_path(path);
e02119d5
CM
2912 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2913 if (ret < 0) {
b3b4aa74 2914 btrfs_release_path(path);
e02119d5
CM
2915 return ret;
2916 }
33345d01 2917 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
2918
2919 /* if ret == 0 there are items for this type,
2920 * create a range to tell us the last key of this type.
2921 * otherwise, there are no items in this directory after
2922 * *min_offset, and we create a range to indicate that.
2923 */
2924 if (ret == 0) {
2925 struct btrfs_key tmp;
2926 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2927 path->slots[0]);
d397712b 2928 if (key_type == tmp.type)
e02119d5 2929 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
2930 }
2931 goto done;
2932 }
2933
2934 /* go backward to find any previous key */
33345d01 2935 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
2936 if (ret == 0) {
2937 struct btrfs_key tmp;
2938 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2939 if (key_type == tmp.type) {
2940 first_offset = tmp.offset;
2941 ret = overwrite_item(trans, log, dst_path,
2942 path->nodes[0], path->slots[0],
2943 &tmp);
4a500fd1
YZ
2944 if (ret) {
2945 err = ret;
2946 goto done;
2947 }
e02119d5
CM
2948 }
2949 }
b3b4aa74 2950 btrfs_release_path(path);
e02119d5
CM
2951
2952 /* find the first key from this transaction again */
2953 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
fae7f21c 2954 if (WARN_ON(ret != 0))
e02119d5 2955 goto done;
e02119d5
CM
2956
2957 /*
2958 * we have a block from this transaction, log every item in it
2959 * from our directory
2960 */
d397712b 2961 while (1) {
e02119d5
CM
2962 struct btrfs_key tmp;
2963 src = path->nodes[0];
2964 nritems = btrfs_header_nritems(src);
2965 for (i = path->slots[0]; i < nritems; i++) {
2966 btrfs_item_key_to_cpu(src, &min_key, i);
2967
33345d01 2968 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
2969 goto done;
2970 ret = overwrite_item(trans, log, dst_path, src, i,
2971 &min_key);
4a500fd1
YZ
2972 if (ret) {
2973 err = ret;
2974 goto done;
2975 }
e02119d5
CM
2976 }
2977 path->slots[0] = nritems;
2978
2979 /*
2980 * look ahead to the next item and see if it is also
2981 * from this directory and from this transaction
2982 */
2983 ret = btrfs_next_leaf(root, path);
2984 if (ret == 1) {
2985 last_offset = (u64)-1;
2986 goto done;
2987 }
2988 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 2989 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
2990 last_offset = (u64)-1;
2991 goto done;
2992 }
2993 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2994 ret = overwrite_item(trans, log, dst_path,
2995 path->nodes[0], path->slots[0],
2996 &tmp);
4a500fd1
YZ
2997 if (ret)
2998 err = ret;
2999 else
3000 last_offset = tmp.offset;
e02119d5
CM
3001 goto done;
3002 }
3003 }
3004done:
b3b4aa74
DS
3005 btrfs_release_path(path);
3006 btrfs_release_path(dst_path);
e02119d5 3007
4a500fd1
YZ
3008 if (err == 0) {
3009 *last_offset_ret = last_offset;
3010 /*
3011 * insert the log range keys to indicate where the log
3012 * is valid
3013 */
3014 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3015 ino, first_offset, last_offset);
4a500fd1
YZ
3016 if (ret)
3017 err = ret;
3018 }
3019 return err;
e02119d5
CM
3020}
3021
3022/*
3023 * logging directories is very similar to logging inodes, We find all the items
3024 * from the current transaction and write them to the log.
3025 *
3026 * The recovery code scans the directory in the subvolume, and if it finds a
3027 * key in the range logged that is not present in the log tree, then it means
3028 * that dir entry was unlinked during the transaction.
3029 *
3030 * In order for that scan to work, we must include one key smaller than
3031 * the smallest logged by this transaction and one key larger than the largest
3032 * key logged by this transaction.
3033 */
3034static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3035 struct btrfs_root *root, struct inode *inode,
3036 struct btrfs_path *path,
3037 struct btrfs_path *dst_path)
3038{
3039 u64 min_key;
3040 u64 max_key;
3041 int ret;
3042 int key_type = BTRFS_DIR_ITEM_KEY;
3043
3044again:
3045 min_key = 0;
3046 max_key = 0;
d397712b 3047 while (1) {
e02119d5
CM
3048 ret = log_dir_items(trans, root, inode, path,
3049 dst_path, key_type, min_key,
3050 &max_key);
4a500fd1
YZ
3051 if (ret)
3052 return ret;
e02119d5
CM
3053 if (max_key == (u64)-1)
3054 break;
3055 min_key = max_key + 1;
3056 }
3057
3058 if (key_type == BTRFS_DIR_ITEM_KEY) {
3059 key_type = BTRFS_DIR_INDEX_KEY;
3060 goto again;
3061 }
3062 return 0;
3063}
3064
3065/*
3066 * a helper function to drop items from the log before we relog an
3067 * inode. max_key_type indicates the highest item type to remove.
3068 * This cannot be run for file data extents because it does not
3069 * free the extents they point to.
3070 */
3071static int drop_objectid_items(struct btrfs_trans_handle *trans,
3072 struct btrfs_root *log,
3073 struct btrfs_path *path,
3074 u64 objectid, int max_key_type)
3075{
3076 int ret;
3077 struct btrfs_key key;
3078 struct btrfs_key found_key;
18ec90d6 3079 int start_slot;
e02119d5
CM
3080
3081 key.objectid = objectid;
3082 key.type = max_key_type;
3083 key.offset = (u64)-1;
3084
d397712b 3085 while (1) {
e02119d5 3086 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3087 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3088 if (ret < 0)
e02119d5
CM
3089 break;
3090
3091 if (path->slots[0] == 0)
3092 break;
3093
3094 path->slots[0]--;
3095 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3096 path->slots[0]);
3097
3098 if (found_key.objectid != objectid)
3099 break;
3100
18ec90d6
JB
3101 found_key.offset = 0;
3102 found_key.type = 0;
3103 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3104 &start_slot);
3105
3106 ret = btrfs_del_items(trans, log, path, start_slot,
3107 path->slots[0] - start_slot + 1);
3108 /*
3109 * If start slot isn't 0 then we don't need to re-search, we've
3110 * found the last guy with the objectid in this tree.
3111 */
3112 if (ret || start_slot != 0)
65a246c5 3113 break;
b3b4aa74 3114 btrfs_release_path(path);
e02119d5 3115 }
b3b4aa74 3116 btrfs_release_path(path);
5bdbeb21
JB
3117 if (ret > 0)
3118 ret = 0;
4a500fd1 3119 return ret;
e02119d5
CM
3120}
3121
94edf4ae
JB
3122static void fill_inode_item(struct btrfs_trans_handle *trans,
3123 struct extent_buffer *leaf,
3124 struct btrfs_inode_item *item,
3125 struct inode *inode, int log_inode_only)
3126{
0b1c6cca
JB
3127 struct btrfs_map_token token;
3128
3129 btrfs_init_map_token(&token);
94edf4ae
JB
3130
3131 if (log_inode_only) {
3132 /* set the generation to zero so the recover code
3133 * can tell the difference between an logging
3134 * just to say 'this inode exists' and a logging
3135 * to say 'update this inode with these values'
3136 */
0b1c6cca
JB
3137 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3138 btrfs_set_token_inode_size(leaf, item, 0, &token);
94edf4ae 3139 } else {
0b1c6cca
JB
3140 btrfs_set_token_inode_generation(leaf, item,
3141 BTRFS_I(inode)->generation,
3142 &token);
3143 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3144 }
3145
3146 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3147 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3148 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3149 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3150
3151 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3152 inode->i_atime.tv_sec, &token);
3153 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3154 inode->i_atime.tv_nsec, &token);
3155
3156 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3157 inode->i_mtime.tv_sec, &token);
3158 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3159 inode->i_mtime.tv_nsec, &token);
3160
3161 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3162 inode->i_ctime.tv_sec, &token);
3163 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3164 inode->i_ctime.tv_nsec, &token);
3165
3166 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3167 &token);
3168
3169 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3170 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3171 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3172 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3173 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3174}
3175
a95249b3
JB
3176static int log_inode_item(struct btrfs_trans_handle *trans,
3177 struct btrfs_root *log, struct btrfs_path *path,
3178 struct inode *inode)
3179{
3180 struct btrfs_inode_item *inode_item;
a95249b3
JB
3181 int ret;
3182
efd0c405
FDBM
3183 ret = btrfs_insert_empty_item(trans, log, path,
3184 &BTRFS_I(inode)->location,
a95249b3
JB
3185 sizeof(*inode_item));
3186 if (ret && ret != -EEXIST)
3187 return ret;
3188 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3189 struct btrfs_inode_item);
3190 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3191 btrfs_release_path(path);
3192 return 0;
3193}
3194
31ff1cd2 3195static noinline int copy_items(struct btrfs_trans_handle *trans,
d2794405 3196 struct inode *inode,
31ff1cd2 3197 struct btrfs_path *dst_path,
16e7549f 3198 struct btrfs_path *src_path, u64 *last_extent,
31ff1cd2
CM
3199 int start_slot, int nr, int inode_only)
3200{
3201 unsigned long src_offset;
3202 unsigned long dst_offset;
d2794405 3203 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
31ff1cd2
CM
3204 struct btrfs_file_extent_item *extent;
3205 struct btrfs_inode_item *inode_item;
16e7549f
JB
3206 struct extent_buffer *src = src_path->nodes[0];
3207 struct btrfs_key first_key, last_key, key;
31ff1cd2
CM
3208 int ret;
3209 struct btrfs_key *ins_keys;
3210 u32 *ins_sizes;
3211 char *ins_data;
3212 int i;
d20f7043 3213 struct list_head ordered_sums;
d2794405 3214 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
16e7549f
JB
3215 bool has_extents = false;
3216 bool need_find_last_extent = (*last_extent == 0);
3217 bool done = false;
d20f7043
CM
3218
3219 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3220
3221 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3222 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3223 if (!ins_data)
3224 return -ENOMEM;
3225
16e7549f
JB
3226 first_key.objectid = (u64)-1;
3227
31ff1cd2
CM
3228 ins_sizes = (u32 *)ins_data;
3229 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3230
3231 for (i = 0; i < nr; i++) {
3232 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3233 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3234 }
3235 ret = btrfs_insert_empty_items(trans, log, dst_path,
3236 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3237 if (ret) {
3238 kfree(ins_data);
3239 return ret;
3240 }
31ff1cd2 3241
5d4f98a2 3242 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3243 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3244 dst_path->slots[0]);
3245
3246 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3247
16e7549f
JB
3248 if ((i == (nr - 1)))
3249 last_key = ins_keys[i];
3250
94edf4ae 3251 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3252 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3253 dst_path->slots[0],
3254 struct btrfs_inode_item);
94edf4ae
JB
3255 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3256 inode, inode_only == LOG_INODE_EXISTS);
3257 } else {
3258 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3259 src_offset, ins_sizes[i]);
31ff1cd2 3260 }
94edf4ae 3261
16e7549f
JB
3262 /*
3263 * We set need_find_last_extent here in case we know we were
3264 * processing other items and then walk into the first extent in
3265 * the inode. If we don't hit an extent then nothing changes,
3266 * we'll do the last search the next time around.
3267 */
3268 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3269 has_extents = true;
3270 if (need_find_last_extent &&
3271 first_key.objectid == (u64)-1)
3272 first_key = ins_keys[i];
3273 } else {
3274 need_find_last_extent = false;
3275 }
3276
31ff1cd2
CM
3277 /* take a reference on file data extents so that truncates
3278 * or deletes of this inode don't have to relog the inode
3279 * again
3280 */
d2794405
LB
3281 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3282 !skip_csum) {
31ff1cd2
CM
3283 int found_type;
3284 extent = btrfs_item_ptr(src, start_slot + i,
3285 struct btrfs_file_extent_item);
3286
8e531cdf 3287 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3288 continue;
3289
31ff1cd2 3290 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 3291 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
3292 u64 ds, dl, cs, cl;
3293 ds = btrfs_file_extent_disk_bytenr(src,
3294 extent);
3295 /* ds == 0 is a hole */
3296 if (ds == 0)
3297 continue;
3298
3299 dl = btrfs_file_extent_disk_num_bytes(src,
3300 extent);
3301 cs = btrfs_file_extent_offset(src, extent);
3302 cl = btrfs_file_extent_num_bytes(src,
a419aef8 3303 extent);
580afd76
CM
3304 if (btrfs_file_extent_compression(src,
3305 extent)) {
3306 cs = 0;
3307 cl = dl;
3308 }
5d4f98a2
YZ
3309
3310 ret = btrfs_lookup_csums_range(
3311 log->fs_info->csum_root,
3312 ds + cs, ds + cs + cl - 1,
a2de733c 3313 &ordered_sums, 0);
3650860b
JB
3314 if (ret) {
3315 btrfs_release_path(dst_path);
3316 kfree(ins_data);
3317 return ret;
3318 }
31ff1cd2
CM
3319 }
3320 }
31ff1cd2
CM
3321 }
3322
3323 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 3324 btrfs_release_path(dst_path);
31ff1cd2 3325 kfree(ins_data);
d20f7043
CM
3326
3327 /*
3328 * we have to do this after the loop above to avoid changing the
3329 * log tree while trying to change the log tree.
3330 */
4a500fd1 3331 ret = 0;
d397712b 3332 while (!list_empty(&ordered_sums)) {
d20f7043
CM
3333 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3334 struct btrfs_ordered_sum,
3335 list);
4a500fd1
YZ
3336 if (!ret)
3337 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
3338 list_del(&sums->list);
3339 kfree(sums);
3340 }
16e7549f
JB
3341
3342 if (!has_extents)
3343 return ret;
3344
3345 /*
3346 * Because we use btrfs_search_forward we could skip leaves that were
3347 * not modified and then assume *last_extent is valid when it really
3348 * isn't. So back up to the previous leaf and read the end of the last
3349 * extent before we go and fill in holes.
3350 */
3351 if (need_find_last_extent) {
3352 u64 len;
3353
3354 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3355 if (ret < 0)
3356 return ret;
3357 if (ret)
3358 goto fill_holes;
3359 if (src_path->slots[0])
3360 src_path->slots[0]--;
3361 src = src_path->nodes[0];
3362 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3363 if (key.objectid != btrfs_ino(inode) ||
3364 key.type != BTRFS_EXTENT_DATA_KEY)
3365 goto fill_holes;
3366 extent = btrfs_item_ptr(src, src_path->slots[0],
3367 struct btrfs_file_extent_item);
3368 if (btrfs_file_extent_type(src, extent) ==
3369 BTRFS_FILE_EXTENT_INLINE) {
3370 len = btrfs_file_extent_inline_len(src, extent);
3371 *last_extent = ALIGN(key.offset + len,
3372 log->sectorsize);
3373 } else {
3374 len = btrfs_file_extent_num_bytes(src, extent);
3375 *last_extent = key.offset + len;
3376 }
3377 }
3378fill_holes:
3379 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3380 * things could have happened
3381 *
3382 * 1) A merge could have happened, so we could currently be on a leaf
3383 * that holds what we were copying in the first place.
3384 * 2) A split could have happened, and now not all of the items we want
3385 * are on the same leaf.
3386 *
3387 * So we need to adjust how we search for holes, we need to drop the
3388 * path and re-search for the first extent key we found, and then walk
3389 * forward until we hit the last one we copied.
3390 */
3391 if (need_find_last_extent) {
3392 /* btrfs_prev_leaf could return 1 without releasing the path */
3393 btrfs_release_path(src_path);
3394 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3395 src_path, 0, 0);
3396 if (ret < 0)
3397 return ret;
3398 ASSERT(ret == 0);
3399 src = src_path->nodes[0];
3400 i = src_path->slots[0];
3401 } else {
3402 i = start_slot;
3403 }
3404
3405 /*
3406 * Ok so here we need to go through and fill in any holes we may have
3407 * to make sure that holes are punched for those areas in case they had
3408 * extents previously.
3409 */
3410 while (!done) {
3411 u64 offset, len;
3412 u64 extent_end;
3413
3414 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3415 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3416 if (ret < 0)
3417 return ret;
3418 ASSERT(ret == 0);
3419 src = src_path->nodes[0];
3420 i = 0;
3421 }
3422
3423 btrfs_item_key_to_cpu(src, &key, i);
3424 if (!btrfs_comp_cpu_keys(&key, &last_key))
3425 done = true;
3426 if (key.objectid != btrfs_ino(inode) ||
3427 key.type != BTRFS_EXTENT_DATA_KEY) {
3428 i++;
3429 continue;
3430 }
3431 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3432 if (btrfs_file_extent_type(src, extent) ==
3433 BTRFS_FILE_EXTENT_INLINE) {
3434 len = btrfs_file_extent_inline_len(src, extent);
3435 extent_end = ALIGN(key.offset + len, log->sectorsize);
3436 } else {
3437 len = btrfs_file_extent_num_bytes(src, extent);
3438 extent_end = key.offset + len;
3439 }
3440 i++;
3441
3442 if (*last_extent == key.offset) {
3443 *last_extent = extent_end;
3444 continue;
3445 }
3446 offset = *last_extent;
3447 len = key.offset - *last_extent;
3448 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3449 offset, 0, 0, len, 0, len, 0,
3450 0, 0);
3451 if (ret)
3452 break;
3453 *last_extent = offset + len;
3454 }
3455 /*
3456 * Need to let the callers know we dropped the path so they should
3457 * re-search.
3458 */
3459 if (!ret && need_find_last_extent)
3460 ret = 1;
4a500fd1 3461 return ret;
31ff1cd2
CM
3462}
3463
5dc562c5
JB
3464static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3465{
3466 struct extent_map *em1, *em2;
3467
3468 em1 = list_entry(a, struct extent_map, list);
3469 em2 = list_entry(b, struct extent_map, list);
3470
3471 if (em1->start < em2->start)
3472 return -1;
3473 else if (em1->start > em2->start)
3474 return 1;
3475 return 0;
3476}
3477
5dc562c5
JB
3478static int log_one_extent(struct btrfs_trans_handle *trans,
3479 struct inode *inode, struct btrfs_root *root,
70c8a91c 3480 struct extent_map *em, struct btrfs_path *path)
5dc562c5
JB
3481{
3482 struct btrfs_root *log = root->log_root;
70c8a91c
JB
3483 struct btrfs_file_extent_item *fi;
3484 struct extent_buffer *leaf;
2ab28f32 3485 struct btrfs_ordered_extent *ordered;
70c8a91c 3486 struct list_head ordered_sums;
0b1c6cca 3487 struct btrfs_map_token token;
5dc562c5 3488 struct btrfs_key key;
2ab28f32
JB
3489 u64 mod_start = em->mod_start;
3490 u64 mod_len = em->mod_len;
3491 u64 csum_offset;
3492 u64 csum_len;
70c8a91c
JB
3493 u64 extent_offset = em->start - em->orig_start;
3494 u64 block_len;
5dc562c5 3495 int ret;
2ab28f32 3496 int index = log->log_transid % 2;
70c8a91c 3497 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1acae57b 3498 int extent_inserted = 0;
09a2a8f9 3499
70c8a91c 3500 INIT_LIST_HEAD(&ordered_sums);
0b1c6cca 3501 btrfs_init_map_token(&token);
70c8a91c 3502
1acae57b
FDBM
3503 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3504 em->start + em->len, NULL, 0, 1,
3505 sizeof(*fi), &extent_inserted);
09a2a8f9 3506 if (ret)
70c8a91c 3507 return ret;
1acae57b
FDBM
3508
3509 if (!extent_inserted) {
3510 key.objectid = btrfs_ino(inode);
3511 key.type = BTRFS_EXTENT_DATA_KEY;
3512 key.offset = em->start;
3513
3514 ret = btrfs_insert_empty_item(trans, log, path, &key,
3515 sizeof(*fi));
3516 if (ret)
3517 return ret;
3518 }
70c8a91c
JB
3519 leaf = path->nodes[0];
3520 fi = btrfs_item_ptr(leaf, path->slots[0],
3521 struct btrfs_file_extent_item);
124fe663 3522
0b1c6cca
JB
3523 btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3524 &token);
70c8a91c
JB
3525 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3526 skip_csum = true;
0b1c6cca
JB
3527 btrfs_set_token_file_extent_type(leaf, fi,
3528 BTRFS_FILE_EXTENT_PREALLOC,
3529 &token);
70c8a91c 3530 } else {
0b1c6cca
JB
3531 btrfs_set_token_file_extent_type(leaf, fi,
3532 BTRFS_FILE_EXTENT_REG,
3533 &token);
ed9e8af8 3534 if (em->block_start == EXTENT_MAP_HOLE)
70c8a91c
JB
3535 skip_csum = true;
3536 }
3537
3538 block_len = max(em->block_len, em->orig_block_len);
3539 if (em->compress_type != BTRFS_COMPRESS_NONE) {
0b1c6cca
JB
3540 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3541 em->block_start,
3542 &token);
3543 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3544 &token);
70c8a91c 3545 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
0b1c6cca
JB
3546 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3547 em->block_start -
3548 extent_offset, &token);
3549 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3550 &token);
70c8a91c 3551 } else {
0b1c6cca
JB
3552 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3553 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3554 &token);
3555 }
3556
3557 btrfs_set_token_file_extent_offset(leaf, fi,
3558 em->start - em->orig_start,
3559 &token);
3560 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
cc95bef6 3561 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
0b1c6cca
JB
3562 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3563 &token);
3564 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3565 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
70c8a91c 3566 btrfs_mark_buffer_dirty(leaf);
0aa4a17d 3567
70c8a91c 3568 btrfs_release_path(path);
70c8a91c
JB
3569 if (ret) {
3570 return ret;
3571 }
0aa4a17d 3572
70c8a91c
JB
3573 if (skip_csum)
3574 return 0;
5dc562c5 3575
2ab28f32
JB
3576 /*
3577 * First check and see if our csums are on our outstanding ordered
3578 * extents.
3579 */
3580again:
3581 spin_lock_irq(&log->log_extents_lock[index]);
3582 list_for_each_entry(ordered, &log->logged_list[index], log_list) {
3583 struct btrfs_ordered_sum *sum;
3584
3585 if (!mod_len)
3586 break;
3587
3588 if (ordered->inode != inode)
3589 continue;
3590
3591 if (ordered->file_offset + ordered->len <= mod_start ||
3592 mod_start + mod_len <= ordered->file_offset)
3593 continue;
3594
3595 /*
3596 * We are going to copy all the csums on this ordered extent, so
3597 * go ahead and adjust mod_start and mod_len in case this
3598 * ordered extent has already been logged.
3599 */
3600 if (ordered->file_offset > mod_start) {
3601 if (ordered->file_offset + ordered->len >=
3602 mod_start + mod_len)
3603 mod_len = ordered->file_offset - mod_start;
3604 /*
3605 * If we have this case
3606 *
3607 * |--------- logged extent ---------|
3608 * |----- ordered extent ----|
3609 *
3610 * Just don't mess with mod_start and mod_len, we'll
3611 * just end up logging more csums than we need and it
3612 * will be ok.
3613 */
3614 } else {
3615 if (ordered->file_offset + ordered->len <
3616 mod_start + mod_len) {
3617 mod_len = (mod_start + mod_len) -
3618 (ordered->file_offset + ordered->len);
3619 mod_start = ordered->file_offset +
3620 ordered->len;
3621 } else {
3622 mod_len = 0;
3623 }
3624 }
3625
3626 /*
3627 * To keep us from looping for the above case of an ordered
3628 * extent that falls inside of the logged extent.
3629 */
3630 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3631 &ordered->flags))
3632 continue;
3633 atomic_inc(&ordered->refs);
3634 spin_unlock_irq(&log->log_extents_lock[index]);
3635 /*
3636 * we've dropped the lock, we must either break or
3637 * start over after this.
3638 */
3639
23c671a5
MX
3640 if (ordered->csum_bytes_left) {
3641 btrfs_start_ordered_extent(inode, ordered, 0);
3642 wait_event(ordered->wait,
3643 ordered->csum_bytes_left == 0);
3644 }
2ab28f32
JB
3645
3646 list_for_each_entry(sum, &ordered->list, list) {
3647 ret = btrfs_csum_file_blocks(trans, log, sum);
3648 if (ret) {
3649 btrfs_put_ordered_extent(ordered);
3650 goto unlocked;
3651 }
3652 }
3653 btrfs_put_ordered_extent(ordered);
3654 goto again;
3655
3656 }
3657 spin_unlock_irq(&log->log_extents_lock[index]);
3658unlocked:
3659
3660 if (!mod_len || ret)
3661 return ret;
3662
488111aa
FDBM
3663 if (em->compress_type) {
3664 csum_offset = 0;
3665 csum_len = block_len;
3666 } else {
3667 csum_offset = mod_start - em->start;
3668 csum_len = mod_len;
3669 }
2ab28f32 3670
70c8a91c
JB
3671 /* block start is already adjusted for the file extent offset. */
3672 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3673 em->block_start + csum_offset,
3674 em->block_start + csum_offset +
3675 csum_len - 1, &ordered_sums, 0);
3676 if (ret)
3677 return ret;
5dc562c5 3678
70c8a91c
JB
3679 while (!list_empty(&ordered_sums)) {
3680 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3681 struct btrfs_ordered_sum,
3682 list);
3683 if (!ret)
3684 ret = btrfs_csum_file_blocks(trans, log, sums);
3685 list_del(&sums->list);
3686 kfree(sums);
5dc562c5
JB
3687 }
3688
70c8a91c 3689 return ret;
5dc562c5
JB
3690}
3691
3692static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3693 struct btrfs_root *root,
3694 struct inode *inode,
70c8a91c 3695 struct btrfs_path *path)
5dc562c5 3696{
5dc562c5
JB
3697 struct extent_map *em, *n;
3698 struct list_head extents;
3699 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3700 u64 test_gen;
3701 int ret = 0;
2ab28f32 3702 int num = 0;
5dc562c5
JB
3703
3704 INIT_LIST_HEAD(&extents);
3705
5dc562c5
JB
3706 write_lock(&tree->lock);
3707 test_gen = root->fs_info->last_trans_committed;
3708
3709 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3710 list_del_init(&em->list);
2ab28f32
JB
3711
3712 /*
3713 * Just an arbitrary number, this can be really CPU intensive
3714 * once we start getting a lot of extents, and really once we
3715 * have a bunch of extents we just want to commit since it will
3716 * be faster.
3717 */
3718 if (++num > 32768) {
3719 list_del_init(&tree->modified_extents);
3720 ret = -EFBIG;
3721 goto process;
3722 }
3723
5dc562c5
JB
3724 if (em->generation <= test_gen)
3725 continue;
ff44c6e3
JB
3726 /* Need a ref to keep it from getting evicted from cache */
3727 atomic_inc(&em->refs);
3728 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 3729 list_add_tail(&em->list, &extents);
2ab28f32 3730 num++;
5dc562c5
JB
3731 }
3732
3733 list_sort(NULL, &extents, extent_cmp);
3734
2ab28f32 3735process:
5dc562c5
JB
3736 while (!list_empty(&extents)) {
3737 em = list_entry(extents.next, struct extent_map, list);
3738
3739 list_del_init(&em->list);
3740
3741 /*
3742 * If we had an error we just need to delete everybody from our
3743 * private list.
3744 */
ff44c6e3 3745 if (ret) {
201a9038 3746 clear_em_logging(tree, em);
ff44c6e3 3747 free_extent_map(em);
5dc562c5 3748 continue;
ff44c6e3
JB
3749 }
3750
3751 write_unlock(&tree->lock);
5dc562c5 3752
70c8a91c 3753 ret = log_one_extent(trans, inode, root, em, path);
ff44c6e3 3754 write_lock(&tree->lock);
201a9038
JB
3755 clear_em_logging(tree, em);
3756 free_extent_map(em);
5dc562c5 3757 }
ff44c6e3
JB
3758 WARN_ON(!list_empty(&extents));
3759 write_unlock(&tree->lock);
5dc562c5 3760
5dc562c5 3761 btrfs_release_path(path);
5dc562c5
JB
3762 return ret;
3763}
3764
e02119d5
CM
3765/* log a single inode in the tree log.
3766 * At least one parent directory for this inode must exist in the tree
3767 * or be logged already.
3768 *
3769 * Any items from this inode changed by the current transaction are copied
3770 * to the log tree. An extra reference is taken on any extents in this
3771 * file, allowing us to avoid a whole pile of corner cases around logging
3772 * blocks that have been removed from the tree.
3773 *
3774 * See LOG_INODE_ALL and related defines for a description of what inode_only
3775 * does.
3776 *
3777 * This handles both files and directories.
3778 */
12fcfd22 3779static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
3780 struct btrfs_root *root, struct inode *inode,
3781 int inode_only)
3782{
3783 struct btrfs_path *path;
3784 struct btrfs_path *dst_path;
3785 struct btrfs_key min_key;
3786 struct btrfs_key max_key;
3787 struct btrfs_root *log = root->log_root;
31ff1cd2 3788 struct extent_buffer *src = NULL;
16e7549f 3789 u64 last_extent = 0;
4a500fd1 3790 int err = 0;
e02119d5 3791 int ret;
3a5f1d45 3792 int nritems;
31ff1cd2
CM
3793 int ins_start_slot = 0;
3794 int ins_nr;
5dc562c5 3795 bool fast_search = false;
33345d01 3796 u64 ino = btrfs_ino(inode);
e02119d5 3797
e02119d5 3798 path = btrfs_alloc_path();
5df67083
TI
3799 if (!path)
3800 return -ENOMEM;
e02119d5 3801 dst_path = btrfs_alloc_path();
5df67083
TI
3802 if (!dst_path) {
3803 btrfs_free_path(path);
3804 return -ENOMEM;
3805 }
e02119d5 3806
33345d01 3807 min_key.objectid = ino;
e02119d5
CM
3808 min_key.type = BTRFS_INODE_ITEM_KEY;
3809 min_key.offset = 0;
3810
33345d01 3811 max_key.objectid = ino;
12fcfd22 3812
12fcfd22 3813
5dc562c5 3814 /* today the code can only do partial logging of directories */
5269b67e
MX
3815 if (S_ISDIR(inode->i_mode) ||
3816 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3817 &BTRFS_I(inode)->runtime_flags) &&
3818 inode_only == LOG_INODE_EXISTS))
e02119d5
CM
3819 max_key.type = BTRFS_XATTR_ITEM_KEY;
3820 else
3821 max_key.type = (u8)-1;
3822 max_key.offset = (u64)-1;
3823
94edf4ae
JB
3824 /* Only run delayed items if we are a dir or a new file */
3825 if (S_ISDIR(inode->i_mode) ||
3826 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3827 ret = btrfs_commit_inode_delayed_items(trans, inode);
3828 if (ret) {
3829 btrfs_free_path(path);
3830 btrfs_free_path(dst_path);
3831 return ret;
3832 }
16cdcec7
MX
3833 }
3834
e02119d5
CM
3835 mutex_lock(&BTRFS_I(inode)->log_mutex);
3836
2ab28f32
JB
3837 btrfs_get_logged_extents(log, inode);
3838
e02119d5
CM
3839 /*
3840 * a brute force approach to making sure we get the most uptodate
3841 * copies of everything.
3842 */
3843 if (S_ISDIR(inode->i_mode)) {
3844 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3845
3846 if (inode_only == LOG_INODE_EXISTS)
3847 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 3848 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 3849 } else {
5dc562c5
JB
3850 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3851 &BTRFS_I(inode)->runtime_flags)) {
e9976151
JB
3852 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3853 &BTRFS_I(inode)->runtime_flags);
5dc562c5
JB
3854 ret = btrfs_truncate_inode_items(trans, log,
3855 inode, 0, 0);
a95249b3 3856 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6cfab851
JB
3857 &BTRFS_I(inode)->runtime_flags) ||
3858 inode_only == LOG_INODE_EXISTS) {
183f37fa
LB
3859 if (inode_only == LOG_INODE_ALL)
3860 fast_search = true;
a95249b3 3861 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 3862 ret = drop_objectid_items(trans, log, path, ino,
e9976151 3863 max_key.type);
a95249b3
JB
3864 } else {
3865 if (inode_only == LOG_INODE_ALL)
3866 fast_search = true;
3867 ret = log_inode_item(trans, log, dst_path, inode);
3868 if (ret) {
3869 err = ret;
3870 goto out_unlock;
3871 }
3872 goto log_extents;
5dc562c5 3873 }
a95249b3 3874
e02119d5 3875 }
4a500fd1
YZ
3876 if (ret) {
3877 err = ret;
3878 goto out_unlock;
3879 }
e02119d5
CM
3880 path->keep_locks = 1;
3881
d397712b 3882 while (1) {
31ff1cd2 3883 ins_nr = 0;
6174d3cb 3884 ret = btrfs_search_forward(root, &min_key,
de78b51a 3885 path, trans->transid);
e02119d5
CM
3886 if (ret != 0)
3887 break;
3a5f1d45 3888again:
31ff1cd2 3889 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 3890 if (min_key.objectid != ino)
e02119d5
CM
3891 break;
3892 if (min_key.type > max_key.type)
3893 break;
31ff1cd2 3894
e02119d5 3895 src = path->nodes[0];
31ff1cd2
CM
3896 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3897 ins_nr++;
3898 goto next_slot;
3899 } else if (!ins_nr) {
3900 ins_start_slot = path->slots[0];
3901 ins_nr = 1;
3902 goto next_slot;
e02119d5
CM
3903 }
3904
16e7549f
JB
3905 ret = copy_items(trans, inode, dst_path, path, &last_extent,
3906 ins_start_slot, ins_nr, inode_only);
3907 if (ret < 0) {
4a500fd1
YZ
3908 err = ret;
3909 goto out_unlock;
16e7549f
JB
3910 } if (ret) {
3911 ins_nr = 0;
3912 btrfs_release_path(path);
3913 continue;
4a500fd1 3914 }
31ff1cd2
CM
3915 ins_nr = 1;
3916 ins_start_slot = path->slots[0];
3917next_slot:
e02119d5 3918
3a5f1d45
CM
3919 nritems = btrfs_header_nritems(path->nodes[0]);
3920 path->slots[0]++;
3921 if (path->slots[0] < nritems) {
3922 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3923 path->slots[0]);
3924 goto again;
3925 }
31ff1cd2 3926 if (ins_nr) {
16e7549f
JB
3927 ret = copy_items(trans, inode, dst_path, path,
3928 &last_extent, ins_start_slot,
31ff1cd2 3929 ins_nr, inode_only);
16e7549f 3930 if (ret < 0) {
4a500fd1
YZ
3931 err = ret;
3932 goto out_unlock;
3933 }
16e7549f 3934 ret = 0;
31ff1cd2
CM
3935 ins_nr = 0;
3936 }
b3b4aa74 3937 btrfs_release_path(path);
3a5f1d45 3938
3d41d702 3939 if (min_key.offset < (u64)-1) {
e02119d5 3940 min_key.offset++;
3d41d702 3941 } else if (min_key.type < max_key.type) {
e02119d5 3942 min_key.type++;
3d41d702
FDBM
3943 min_key.offset = 0;
3944 } else {
e02119d5 3945 break;
3d41d702 3946 }
e02119d5 3947 }
31ff1cd2 3948 if (ins_nr) {
16e7549f
JB
3949 ret = copy_items(trans, inode, dst_path, path, &last_extent,
3950 ins_start_slot, ins_nr, inode_only);
3951 if (ret < 0) {
4a500fd1
YZ
3952 err = ret;
3953 goto out_unlock;
3954 }
16e7549f 3955 ret = 0;
31ff1cd2
CM
3956 ins_nr = 0;
3957 }
5dc562c5 3958
a95249b3 3959log_extents:
f3b15ccd
JB
3960 btrfs_release_path(path);
3961 btrfs_release_path(dst_path);
5dc562c5 3962 if (fast_search) {
70c8a91c 3963 ret = btrfs_log_changed_extents(trans, root, inode, dst_path);
5dc562c5
JB
3964 if (ret) {
3965 err = ret;
3966 goto out_unlock;
3967 }
d006a048 3968 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
3969 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3970 struct extent_map *em, *n;
3971
bbe14267 3972 write_lock(&tree->lock);
06d3d22b
LB
3973 list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3974 list_del_init(&em->list);
bbe14267 3975 write_unlock(&tree->lock);
5dc562c5
JB
3976 }
3977
9623f9a3 3978 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
e02119d5 3979 ret = log_directory_changes(trans, root, inode, path, dst_path);
4a500fd1
YZ
3980 if (ret) {
3981 err = ret;
3982 goto out_unlock;
3983 }
e02119d5 3984 }
3a5f1d45 3985 BTRFS_I(inode)->logged_trans = trans->transid;
46d8bc34 3986 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4a500fd1 3987out_unlock:
2ab28f32
JB
3988 if (err)
3989 btrfs_free_logged_extents(log, log->log_transid);
e02119d5
CM
3990 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3991
3992 btrfs_free_path(path);
3993 btrfs_free_path(dst_path);
4a500fd1 3994 return err;
e02119d5
CM
3995}
3996
12fcfd22
CM
3997/*
3998 * follow the dentry parent pointers up the chain and see if any
3999 * of the directories in it require a full commit before they can
4000 * be logged. Returns zero if nothing special needs to be done or 1 if
4001 * a full commit is required.
4002 */
4003static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4004 struct inode *inode,
4005 struct dentry *parent,
4006 struct super_block *sb,
4007 u64 last_committed)
e02119d5 4008{
12fcfd22
CM
4009 int ret = 0;
4010 struct btrfs_root *root;
6a912213 4011 struct dentry *old_parent = NULL;
de2b530b 4012 struct inode *orig_inode = inode;
e02119d5 4013
af4176b4
CM
4014 /*
4015 * for regular files, if its inode is already on disk, we don't
4016 * have to worry about the parents at all. This is because
4017 * we can use the last_unlink_trans field to record renames
4018 * and other fun in this file.
4019 */
4020 if (S_ISREG(inode->i_mode) &&
4021 BTRFS_I(inode)->generation <= last_committed &&
4022 BTRFS_I(inode)->last_unlink_trans <= last_committed)
4023 goto out;
4024
12fcfd22
CM
4025 if (!S_ISDIR(inode->i_mode)) {
4026 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4027 goto out;
4028 inode = parent->d_inode;
4029 }
4030
4031 while (1) {
de2b530b
JB
4032 /*
4033 * If we are logging a directory then we start with our inode,
4034 * not our parents inode, so we need to skipp setting the
4035 * logged_trans so that further down in the log code we don't
4036 * think this inode has already been logged.
4037 */
4038 if (inode != orig_inode)
4039 BTRFS_I(inode)->logged_trans = trans->transid;
12fcfd22
CM
4040 smp_mb();
4041
4042 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4043 root = BTRFS_I(inode)->root;
4044
4045 /*
4046 * make sure any commits to the log are forced
4047 * to be full commits
4048 */
4049 root->fs_info->last_trans_log_full_commit =
4050 trans->transid;
4051 ret = 1;
4052 break;
4053 }
4054
4055 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4056 break;
4057
76dda93c 4058 if (IS_ROOT(parent))
12fcfd22
CM
4059 break;
4060
6a912213
JB
4061 parent = dget_parent(parent);
4062 dput(old_parent);
4063 old_parent = parent;
12fcfd22
CM
4064 inode = parent->d_inode;
4065
4066 }
6a912213 4067 dput(old_parent);
12fcfd22 4068out:
e02119d5
CM
4069 return ret;
4070}
4071
4072/*
4073 * helper function around btrfs_log_inode to make sure newly created
4074 * parent directories also end up in the log. A minimal inode and backref
4075 * only logging is done of any parent directories that are older than
4076 * the last committed transaction
4077 */
48a3b636
ES
4078static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4079 struct btrfs_root *root, struct inode *inode,
4080 struct dentry *parent, int exists_only)
e02119d5 4081{
12fcfd22 4082 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
e02119d5 4083 struct super_block *sb;
6a912213 4084 struct dentry *old_parent = NULL;
12fcfd22
CM
4085 int ret = 0;
4086 u64 last_committed = root->fs_info->last_trans_committed;
4087
4088 sb = inode->i_sb;
4089
3a5e1404
SW
4090 if (btrfs_test_opt(root, NOTREELOG)) {
4091 ret = 1;
4092 goto end_no_trans;
4093 }
4094
12fcfd22
CM
4095 if (root->fs_info->last_trans_log_full_commit >
4096 root->fs_info->last_trans_committed) {
4097 ret = 1;
4098 goto end_no_trans;
4099 }
4100
76dda93c
YZ
4101 if (root != BTRFS_I(inode)->root ||
4102 btrfs_root_refs(&root->root_item) == 0) {
4103 ret = 1;
4104 goto end_no_trans;
4105 }
4106
12fcfd22
CM
4107 ret = check_parent_dirs_for_sync(trans, inode, parent,
4108 sb, last_committed);
4109 if (ret)
4110 goto end_no_trans;
e02119d5 4111
22ee6985 4112 if (btrfs_inode_in_log(inode, trans->transid)) {
257c62e1
CM
4113 ret = BTRFS_NO_LOG_SYNC;
4114 goto end_no_trans;
4115 }
4116
4a500fd1
YZ
4117 ret = start_log_trans(trans, root);
4118 if (ret)
4119 goto end_trans;
e02119d5 4120
12fcfd22 4121 ret = btrfs_log_inode(trans, root, inode, inode_only);
4a500fd1
YZ
4122 if (ret)
4123 goto end_trans;
12fcfd22 4124
af4176b4
CM
4125 /*
4126 * for regular files, if its inode is already on disk, we don't
4127 * have to worry about the parents at all. This is because
4128 * we can use the last_unlink_trans field to record renames
4129 * and other fun in this file.
4130 */
4131 if (S_ISREG(inode->i_mode) &&
4132 BTRFS_I(inode)->generation <= last_committed &&
4a500fd1
YZ
4133 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4134 ret = 0;
4135 goto end_trans;
4136 }
af4176b4
CM
4137
4138 inode_only = LOG_INODE_EXISTS;
12fcfd22
CM
4139 while (1) {
4140 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
e02119d5
CM
4141 break;
4142
12fcfd22 4143 inode = parent->d_inode;
76dda93c
YZ
4144 if (root != BTRFS_I(inode)->root)
4145 break;
4146
12fcfd22
CM
4147 if (BTRFS_I(inode)->generation >
4148 root->fs_info->last_trans_committed) {
4149 ret = btrfs_log_inode(trans, root, inode, inode_only);
4a500fd1
YZ
4150 if (ret)
4151 goto end_trans;
12fcfd22 4152 }
76dda93c 4153 if (IS_ROOT(parent))
e02119d5 4154 break;
12fcfd22 4155
6a912213
JB
4156 parent = dget_parent(parent);
4157 dput(old_parent);
4158 old_parent = parent;
e02119d5 4159 }
12fcfd22 4160 ret = 0;
4a500fd1 4161end_trans:
6a912213 4162 dput(old_parent);
4a500fd1 4163 if (ret < 0) {
4a500fd1
YZ
4164 root->fs_info->last_trans_log_full_commit = trans->transid;
4165 ret = 1;
4166 }
12fcfd22
CM
4167 btrfs_end_log_trans(root);
4168end_no_trans:
4169 return ret;
e02119d5
CM
4170}
4171
4172/*
4173 * it is not safe to log dentry if the chunk root has added new
4174 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
4175 * If this returns 1, you must commit the transaction to safely get your
4176 * data on disk.
4177 */
4178int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4179 struct btrfs_root *root, struct dentry *dentry)
4180{
6a912213
JB
4181 struct dentry *parent = dget_parent(dentry);
4182 int ret;
4183
4184 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
4185 dput(parent);
4186
4187 return ret;
e02119d5
CM
4188}
4189
4190/*
4191 * should be called during mount to recover any replay any log trees
4192 * from the FS
4193 */
4194int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4195{
4196 int ret;
4197 struct btrfs_path *path;
4198 struct btrfs_trans_handle *trans;
4199 struct btrfs_key key;
4200 struct btrfs_key found_key;
4201 struct btrfs_key tmp_key;
4202 struct btrfs_root *log;
4203 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4204 struct walk_control wc = {
4205 .process_func = process_one_buffer,
4206 .stage = 0,
4207 };
4208
e02119d5 4209 path = btrfs_alloc_path();
db5b493a
TI
4210 if (!path)
4211 return -ENOMEM;
4212
4213 fs_info->log_root_recovering = 1;
e02119d5 4214
4a500fd1 4215 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
4216 if (IS_ERR(trans)) {
4217 ret = PTR_ERR(trans);
4218 goto error;
4219 }
e02119d5
CM
4220
4221 wc.trans = trans;
4222 wc.pin = 1;
4223
db5b493a 4224 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa
JM
4225 if (ret) {
4226 btrfs_error(fs_info, ret, "Failed to pin buffers while "
4227 "recovering log root tree.");
4228 goto error;
4229 }
e02119d5
CM
4230
4231again:
4232 key.objectid = BTRFS_TREE_LOG_OBJECTID;
4233 key.offset = (u64)-1;
4234 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4235
d397712b 4236 while (1) {
e02119d5 4237 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
4238
4239 if (ret < 0) {
4240 btrfs_error(fs_info, ret,
4241 "Couldn't find tree log root.");
4242 goto error;
4243 }
e02119d5
CM
4244 if (ret > 0) {
4245 if (path->slots[0] == 0)
4246 break;
4247 path->slots[0]--;
4248 }
4249 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4250 path->slots[0]);
b3b4aa74 4251 btrfs_release_path(path);
e02119d5
CM
4252 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4253 break;
4254
cb517eab 4255 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
4256 if (IS_ERR(log)) {
4257 ret = PTR_ERR(log);
4258 btrfs_error(fs_info, ret,
4259 "Couldn't read tree log root.");
4260 goto error;
4261 }
e02119d5
CM
4262
4263 tmp_key.objectid = found_key.offset;
4264 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4265 tmp_key.offset = (u64)-1;
4266
4267 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
4268 if (IS_ERR(wc.replay_dest)) {
4269 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
4270 free_extent_buffer(log->node);
4271 free_extent_buffer(log->commit_root);
4272 kfree(log);
79787eaa
JM
4273 btrfs_error(fs_info, ret, "Couldn't read target root "
4274 "for tree log recovery.");
4275 goto error;
4276 }
e02119d5 4277
07d400a6 4278 wc.replay_dest->log_root = log;
5d4f98a2 4279 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 4280 ret = walk_log_tree(trans, log, &wc);
e02119d5 4281
b50c6e25 4282 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
4283 ret = fixup_inode_link_counts(trans, wc.replay_dest,
4284 path);
e02119d5
CM
4285 }
4286
4287 key.offset = found_key.offset - 1;
07d400a6 4288 wc.replay_dest->log_root = NULL;
e02119d5 4289 free_extent_buffer(log->node);
b263c2c8 4290 free_extent_buffer(log->commit_root);
e02119d5
CM
4291 kfree(log);
4292
b50c6e25
JB
4293 if (ret)
4294 goto error;
4295
e02119d5
CM
4296 if (found_key.offset == 0)
4297 break;
4298 }
b3b4aa74 4299 btrfs_release_path(path);
e02119d5
CM
4300
4301 /* step one is to pin it all, step two is to replay just inodes */
4302 if (wc.pin) {
4303 wc.pin = 0;
4304 wc.process_func = replay_one_buffer;
4305 wc.stage = LOG_WALK_REPLAY_INODES;
4306 goto again;
4307 }
4308 /* step three is to replay everything */
4309 if (wc.stage < LOG_WALK_REPLAY_ALL) {
4310 wc.stage++;
4311 goto again;
4312 }
4313
4314 btrfs_free_path(path);
4315
abefa55a
JB
4316 /* step 4: commit the transaction, which also unpins the blocks */
4317 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4318 if (ret)
4319 return ret;
4320
e02119d5
CM
4321 free_extent_buffer(log_root_tree->node);
4322 log_root_tree->log_root = NULL;
4323 fs_info->log_root_recovering = 0;
e02119d5 4324 kfree(log_root_tree);
79787eaa 4325
abefa55a 4326 return 0;
79787eaa 4327error:
b50c6e25
JB
4328 if (wc.trans)
4329 btrfs_end_transaction(wc.trans, fs_info->tree_root);
79787eaa
JM
4330 btrfs_free_path(path);
4331 return ret;
e02119d5 4332}
12fcfd22
CM
4333
4334/*
4335 * there are some corner cases where we want to force a full
4336 * commit instead of allowing a directory to be logged.
4337 *
4338 * They revolve around files there were unlinked from the directory, and
4339 * this function updates the parent directory so that a full commit is
4340 * properly done if it is fsync'd later after the unlinks are done.
4341 */
4342void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4343 struct inode *dir, struct inode *inode,
4344 int for_rename)
4345{
af4176b4
CM
4346 /*
4347 * when we're logging a file, if it hasn't been renamed
4348 * or unlinked, and its inode is fully committed on disk,
4349 * we don't have to worry about walking up the directory chain
4350 * to log its parents.
4351 *
4352 * So, we use the last_unlink_trans field to put this transid
4353 * into the file. When the file is logged we check it and
4354 * don't log the parents if the file is fully on disk.
4355 */
4356 if (S_ISREG(inode->i_mode))
4357 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4358
12fcfd22
CM
4359 /*
4360 * if this directory was already logged any new
4361 * names for this file/dir will get recorded
4362 */
4363 smp_mb();
4364 if (BTRFS_I(dir)->logged_trans == trans->transid)
4365 return;
4366
4367 /*
4368 * if the inode we're about to unlink was logged,
4369 * the log will be properly updated for any new names
4370 */
4371 if (BTRFS_I(inode)->logged_trans == trans->transid)
4372 return;
4373
4374 /*
4375 * when renaming files across directories, if the directory
4376 * there we're unlinking from gets fsync'd later on, there's
4377 * no way to find the destination directory later and fsync it
4378 * properly. So, we have to be conservative and force commits
4379 * so the new name gets discovered.
4380 */
4381 if (for_rename)
4382 goto record;
4383
4384 /* we can safely do the unlink without any special recording */
4385 return;
4386
4387record:
4388 BTRFS_I(dir)->last_unlink_trans = trans->transid;
4389}
4390
4391/*
4392 * Call this after adding a new name for a file and it will properly
4393 * update the log to reflect the new name.
4394 *
4395 * It will return zero if all goes well, and it will return 1 if a
4396 * full transaction commit is required.
4397 */
4398int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4399 struct inode *inode, struct inode *old_dir,
4400 struct dentry *parent)
4401{
4402 struct btrfs_root * root = BTRFS_I(inode)->root;
4403
af4176b4
CM
4404 /*
4405 * this will force the logging code to walk the dentry chain
4406 * up for the file
4407 */
4408 if (S_ISREG(inode->i_mode))
4409 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4410
12fcfd22
CM
4411 /*
4412 * if this inode hasn't been logged and directory we're renaming it
4413 * from hasn't been logged, we don't need to log it
4414 */
4415 if (BTRFS_I(inode)->logged_trans <=
4416 root->fs_info->last_trans_committed &&
4417 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4418 root->fs_info->last_trans_committed))
4419 return 0;
4420
4421 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
4422}
4423
This page took 0.458457 seconds and 5 git commands to generate.