Btrfs: fix memory leak in reading btree blocks
[deliverable/linux.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
b765ead5 23#include <linux/iocontext.h>
6f88a440 24#include <linux/capability.h>
442a4f63 25#include <linux/ratelimit.h>
59641015 26#include <linux/kthread.h>
53b381b3 27#include <linux/raid/pq.h>
803b2f54 28#include <linux/semaphore.h>
8da4b8c4 29#include <linux/uuid.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
af902047
ZL
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
8789f4fe 51 .tolerated_failures = 1,
af902047
ZL
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
8789f4fe 60 .tolerated_failures = 1,
af902047
ZL
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
8789f4fe 69 .tolerated_failures = 0,
af902047
ZL
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
8789f4fe 78 .tolerated_failures = 0,
af902047
ZL
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
8789f4fe 87 .tolerated_failures = 0,
af902047
ZL
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
8789f4fe 96 .tolerated_failures = 1,
af902047
ZL
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
8789f4fe 105 .tolerated_failures = 2,
af902047
ZL
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
fb75d857 111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
af902047
ZL
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
621292ba
DS
121/*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134};
135
2b82032c
YZ
136static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_root *root,
138 struct btrfs_device *device);
139static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 140static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 141static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 142static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 143
67a2c45e 144DEFINE_MUTEX(uuid_mutex);
8a4b83cc 145static LIST_HEAD(fs_uuids);
c73eccf7
AJ
146struct list_head *btrfs_get_fs_uuids(void)
147{
148 return &fs_uuids;
149}
8a4b83cc 150
2208a378
ID
151static struct btrfs_fs_devices *__alloc_fs_devices(void)
152{
153 struct btrfs_fs_devices *fs_devs;
154
78f2c9e6 155 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
156 if (!fs_devs)
157 return ERR_PTR(-ENOMEM);
158
159 mutex_init(&fs_devs->device_list_mutex);
160
161 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 162 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
163 INIT_LIST_HEAD(&fs_devs->alloc_list);
164 INIT_LIST_HEAD(&fs_devs->list);
165
166 return fs_devs;
167}
168
169/**
170 * alloc_fs_devices - allocate struct btrfs_fs_devices
171 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
172 * generated.
173 *
174 * Return: a pointer to a new &struct btrfs_fs_devices on success;
175 * ERR_PTR() on error. Returned struct is not linked onto any lists and
176 * can be destroyed with kfree() right away.
177 */
178static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
179{
180 struct btrfs_fs_devices *fs_devs;
181
182 fs_devs = __alloc_fs_devices();
183 if (IS_ERR(fs_devs))
184 return fs_devs;
185
186 if (fsid)
187 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
188 else
189 generate_random_uuid(fs_devs->fsid);
190
191 return fs_devs;
192}
193
e4404d6e
YZ
194static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
195{
196 struct btrfs_device *device;
197 WARN_ON(fs_devices->opened);
198 while (!list_empty(&fs_devices->devices)) {
199 device = list_entry(fs_devices->devices.next,
200 struct btrfs_device, dev_list);
201 list_del(&device->dev_list);
606686ee 202 rcu_string_free(device->name);
e4404d6e
YZ
203 kfree(device);
204 }
205 kfree(fs_devices);
206}
207
b8b8ff59
LC
208static void btrfs_kobject_uevent(struct block_device *bdev,
209 enum kobject_action action)
210{
211 int ret;
212
213 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
214 if (ret)
efe120a0 215 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
216 action,
217 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
218 &disk_to_dev(bdev->bd_disk)->kobj);
219}
220
143bede5 221void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
222{
223 struct btrfs_fs_devices *fs_devices;
8a4b83cc 224
2b82032c
YZ
225 while (!list_empty(&fs_uuids)) {
226 fs_devices = list_entry(fs_uuids.next,
227 struct btrfs_fs_devices, list);
228 list_del(&fs_devices->list);
e4404d6e 229 free_fs_devices(fs_devices);
8a4b83cc 230 }
8a4b83cc
CM
231}
232
12bd2fc0
ID
233static struct btrfs_device *__alloc_device(void)
234{
235 struct btrfs_device *dev;
236
78f2c9e6 237 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
238 if (!dev)
239 return ERR_PTR(-ENOMEM);
240
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 243 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
244
245 spin_lock_init(&dev->io_lock);
246
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 249 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 250 btrfs_device_data_ordered_init(dev);
d0164adc
MG
251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
12bd2fc0
ID
253
254 return dev;
255}
256
a1b32a59
CM
257static noinline struct btrfs_device *__find_device(struct list_head *head,
258 u64 devid, u8 *uuid)
8a4b83cc
CM
259{
260 struct btrfs_device *dev;
8a4b83cc 261
c6e30871 262 list_for_each_entry(dev, head, dev_list) {
a443755f 263 if (dev->devid == devid &&
8f18cf13 264 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 265 return dev;
a443755f 266 }
8a4b83cc
CM
267 }
268 return NULL;
269}
270
a1b32a59 271static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 272{
8a4b83cc
CM
273 struct btrfs_fs_devices *fs_devices;
274
c6e30871 275 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
276 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
277 return fs_devices;
278 }
279 return NULL;
280}
281
beaf8ab3
SB
282static int
283btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
284 int flush, struct block_device **bdev,
285 struct buffer_head **bh)
286{
287 int ret;
288
289 *bdev = blkdev_get_by_path(device_path, flags, holder);
290
291 if (IS_ERR(*bdev)) {
292 ret = PTR_ERR(*bdev);
beaf8ab3
SB
293 goto error;
294 }
295
296 if (flush)
297 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
298 ret = set_blocksize(*bdev, 4096);
299 if (ret) {
300 blkdev_put(*bdev, flags);
301 goto error;
302 }
303 invalidate_bdev(*bdev);
304 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
305 if (IS_ERR(*bh)) {
306 ret = PTR_ERR(*bh);
beaf8ab3
SB
307 blkdev_put(*bdev, flags);
308 goto error;
309 }
310
311 return 0;
312
313error:
314 *bdev = NULL;
315 *bh = NULL;
316 return ret;
317}
318
ffbd517d
CM
319static void requeue_list(struct btrfs_pending_bios *pending_bios,
320 struct bio *head, struct bio *tail)
321{
322
323 struct bio *old_head;
324
325 old_head = pending_bios->head;
326 pending_bios->head = head;
327 if (pending_bios->tail)
328 tail->bi_next = old_head;
329 else
330 pending_bios->tail = tail;
331}
332
8b712842
CM
333/*
334 * we try to collect pending bios for a device so we don't get a large
335 * number of procs sending bios down to the same device. This greatly
336 * improves the schedulers ability to collect and merge the bios.
337 *
338 * But, it also turns into a long list of bios to process and that is sure
339 * to eventually make the worker thread block. The solution here is to
340 * make some progress and then put this work struct back at the end of
341 * the list if the block device is congested. This way, multiple devices
342 * can make progress from a single worker thread.
343 */
143bede5 344static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
345{
346 struct bio *pending;
347 struct backing_dev_info *bdi;
b64a2851 348 struct btrfs_fs_info *fs_info;
ffbd517d 349 struct btrfs_pending_bios *pending_bios;
8b712842
CM
350 struct bio *tail;
351 struct bio *cur;
352 int again = 0;
ffbd517d 353 unsigned long num_run;
d644d8a1 354 unsigned long batch_run = 0;
b64a2851 355 unsigned long limit;
b765ead5 356 unsigned long last_waited = 0;
d84275c9 357 int force_reg = 0;
0e588859 358 int sync_pending = 0;
211588ad
CM
359 struct blk_plug plug;
360
361 /*
362 * this function runs all the bios we've collected for
363 * a particular device. We don't want to wander off to
364 * another device without first sending all of these down.
365 * So, setup a plug here and finish it off before we return
366 */
367 blk_start_plug(&plug);
8b712842 368
bedf762b 369 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
370 fs_info = device->dev_root->fs_info;
371 limit = btrfs_async_submit_limit(fs_info);
372 limit = limit * 2 / 3;
373
8b712842
CM
374loop:
375 spin_lock(&device->io_lock);
376
a6837051 377loop_lock:
d84275c9 378 num_run = 0;
ffbd517d 379
8b712842
CM
380 /* take all the bios off the list at once and process them
381 * later on (without the lock held). But, remember the
382 * tail and other pointers so the bios can be properly reinserted
383 * into the list if we hit congestion
384 */
d84275c9 385 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 386 pending_bios = &device->pending_sync_bios;
d84275c9
CM
387 force_reg = 1;
388 } else {
ffbd517d 389 pending_bios = &device->pending_bios;
d84275c9
CM
390 force_reg = 0;
391 }
ffbd517d
CM
392
393 pending = pending_bios->head;
394 tail = pending_bios->tail;
8b712842 395 WARN_ON(pending && !tail);
8b712842
CM
396
397 /*
398 * if pending was null this time around, no bios need processing
399 * at all and we can stop. Otherwise it'll loop back up again
400 * and do an additional check so no bios are missed.
401 *
402 * device->running_pending is used to synchronize with the
403 * schedule_bio code.
404 */
ffbd517d
CM
405 if (device->pending_sync_bios.head == NULL &&
406 device->pending_bios.head == NULL) {
8b712842
CM
407 again = 0;
408 device->running_pending = 0;
ffbd517d
CM
409 } else {
410 again = 1;
411 device->running_pending = 1;
8b712842 412 }
ffbd517d
CM
413
414 pending_bios->head = NULL;
415 pending_bios->tail = NULL;
416
8b712842
CM
417 spin_unlock(&device->io_lock);
418
d397712b 419 while (pending) {
ffbd517d
CM
420
421 rmb();
d84275c9
CM
422 /* we want to work on both lists, but do more bios on the
423 * sync list than the regular list
424 */
425 if ((num_run > 32 &&
426 pending_bios != &device->pending_sync_bios &&
427 device->pending_sync_bios.head) ||
428 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
429 device->pending_bios.head)) {
ffbd517d
CM
430 spin_lock(&device->io_lock);
431 requeue_list(pending_bios, pending, tail);
432 goto loop_lock;
433 }
434
8b712842
CM
435 cur = pending;
436 pending = pending->bi_next;
437 cur->bi_next = NULL;
b64a2851 438
ee863954
DS
439 /*
440 * atomic_dec_return implies a barrier for waitqueue_active
441 */
66657b31 442 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
443 waitqueue_active(&fs_info->async_submit_wait))
444 wake_up(&fs_info->async_submit_wait);
492bb6de 445
dac56212 446 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 447
2ab1ba68
CM
448 /*
449 * if we're doing the sync list, record that our
450 * plug has some sync requests on it
451 *
452 * If we're doing the regular list and there are
453 * sync requests sitting around, unplug before
454 * we add more
455 */
456 if (pending_bios == &device->pending_sync_bios) {
457 sync_pending = 1;
458 } else if (sync_pending) {
459 blk_finish_plug(&plug);
460 blk_start_plug(&plug);
461 sync_pending = 0;
462 }
463
4e49ea4a 464 btrfsic_submit_bio(cur);
5ff7ba3a
CM
465 num_run++;
466 batch_run++;
853d8ec4
DS
467
468 cond_resched();
8b712842
CM
469
470 /*
471 * we made progress, there is more work to do and the bdi
472 * is now congested. Back off and let other work structs
473 * run instead
474 */
57fd5a5f 475 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 476 fs_info->fs_devices->open_devices > 1) {
b765ead5 477 struct io_context *ioc;
8b712842 478
b765ead5
CM
479 ioc = current->io_context;
480
481 /*
482 * the main goal here is that we don't want to
483 * block if we're going to be able to submit
484 * more requests without blocking.
485 *
486 * This code does two great things, it pokes into
487 * the elevator code from a filesystem _and_
488 * it makes assumptions about how batching works.
489 */
490 if (ioc && ioc->nr_batch_requests > 0 &&
491 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
492 (last_waited == 0 ||
493 ioc->last_waited == last_waited)) {
494 /*
495 * we want to go through our batch of
496 * requests and stop. So, we copy out
497 * the ioc->last_waited time and test
498 * against it before looping
499 */
500 last_waited = ioc->last_waited;
853d8ec4 501 cond_resched();
b765ead5
CM
502 continue;
503 }
8b712842 504 spin_lock(&device->io_lock);
ffbd517d 505 requeue_list(pending_bios, pending, tail);
a6837051 506 device->running_pending = 1;
8b712842
CM
507
508 spin_unlock(&device->io_lock);
a8c93d4e
QW
509 btrfs_queue_work(fs_info->submit_workers,
510 &device->work);
8b712842
CM
511 goto done;
512 }
d85c8a6f
CM
513 /* unplug every 64 requests just for good measure */
514 if (batch_run % 64 == 0) {
515 blk_finish_plug(&plug);
516 blk_start_plug(&plug);
517 sync_pending = 0;
518 }
8b712842 519 }
ffbd517d 520
51684082
CM
521 cond_resched();
522 if (again)
523 goto loop;
524
525 spin_lock(&device->io_lock);
526 if (device->pending_bios.head || device->pending_sync_bios.head)
527 goto loop_lock;
528 spin_unlock(&device->io_lock);
529
8b712842 530done:
211588ad 531 blk_finish_plug(&plug);
8b712842
CM
532}
533
b2950863 534static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
535{
536 struct btrfs_device *device;
537
538 device = container_of(work, struct btrfs_device, work);
539 run_scheduled_bios(device);
540}
541
4fde46f0
AJ
542
543void btrfs_free_stale_device(struct btrfs_device *cur_dev)
544{
545 struct btrfs_fs_devices *fs_devs;
546 struct btrfs_device *dev;
547
548 if (!cur_dev->name)
549 return;
550
551 list_for_each_entry(fs_devs, &fs_uuids, list) {
552 int del = 1;
553
554 if (fs_devs->opened)
555 continue;
556 if (fs_devs->seeding)
557 continue;
558
559 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
560
561 if (dev == cur_dev)
562 continue;
563 if (!dev->name)
564 continue;
565
566 /*
567 * Todo: This won't be enough. What if the same device
568 * comes back (with new uuid and) with its mapper path?
569 * But for now, this does help as mostly an admin will
570 * either use mapper or non mapper path throughout.
571 */
572 rcu_read_lock();
573 del = strcmp(rcu_str_deref(dev->name),
574 rcu_str_deref(cur_dev->name));
575 rcu_read_unlock();
576 if (!del)
577 break;
578 }
579
580 if (!del) {
581 /* delete the stale device */
582 if (fs_devs->num_devices == 1) {
583 btrfs_sysfs_remove_fsid(fs_devs);
584 list_del(&fs_devs->list);
585 free_fs_devices(fs_devs);
586 } else {
587 fs_devs->num_devices--;
588 list_del(&dev->dev_list);
589 rcu_string_free(dev->name);
590 kfree(dev);
591 }
592 break;
593 }
594 }
595}
596
60999ca4
DS
597/*
598 * Add new device to list of registered devices
599 *
600 * Returns:
601 * 1 - first time device is seen
602 * 0 - device already known
603 * < 0 - error
604 */
a1b32a59 605static noinline int device_list_add(const char *path,
8a4b83cc
CM
606 struct btrfs_super_block *disk_super,
607 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
608{
609 struct btrfs_device *device;
610 struct btrfs_fs_devices *fs_devices;
606686ee 611 struct rcu_string *name;
60999ca4 612 int ret = 0;
8a4b83cc
CM
613 u64 found_transid = btrfs_super_generation(disk_super);
614
615 fs_devices = find_fsid(disk_super->fsid);
616 if (!fs_devices) {
2208a378
ID
617 fs_devices = alloc_fs_devices(disk_super->fsid);
618 if (IS_ERR(fs_devices))
619 return PTR_ERR(fs_devices);
620
8a4b83cc 621 list_add(&fs_devices->list, &fs_uuids);
2208a378 622
8a4b83cc
CM
623 device = NULL;
624 } else {
a443755f
CM
625 device = __find_device(&fs_devices->devices, devid,
626 disk_super->dev_item.uuid);
8a4b83cc 627 }
443f24fe 628
8a4b83cc 629 if (!device) {
2b82032c
YZ
630 if (fs_devices->opened)
631 return -EBUSY;
632
12bd2fc0
ID
633 device = btrfs_alloc_device(NULL, &devid,
634 disk_super->dev_item.uuid);
635 if (IS_ERR(device)) {
8a4b83cc 636 /* we can safely leave the fs_devices entry around */
12bd2fc0 637 return PTR_ERR(device);
8a4b83cc 638 }
606686ee
JB
639
640 name = rcu_string_strdup(path, GFP_NOFS);
641 if (!name) {
8a4b83cc
CM
642 kfree(device);
643 return -ENOMEM;
644 }
606686ee 645 rcu_assign_pointer(device->name, name);
90519d66 646
e5e9a520 647 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 648 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 649 fs_devices->num_devices++;
e5e9a520
CM
650 mutex_unlock(&fs_devices->device_list_mutex);
651
60999ca4 652 ret = 1;
2b82032c 653 device->fs_devices = fs_devices;
606686ee 654 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
655 /*
656 * When FS is already mounted.
657 * 1. If you are here and if the device->name is NULL that
658 * means this device was missing at time of FS mount.
659 * 2. If you are here and if the device->name is different
660 * from 'path' that means either
661 * a. The same device disappeared and reappeared with
662 * different name. or
663 * b. The missing-disk-which-was-replaced, has
664 * reappeared now.
665 *
666 * We must allow 1 and 2a above. But 2b would be a spurious
667 * and unintentional.
668 *
669 * Further in case of 1 and 2a above, the disk at 'path'
670 * would have missed some transaction when it was away and
671 * in case of 2a the stale bdev has to be updated as well.
672 * 2b must not be allowed at all time.
673 */
674
675 /*
0f23ae74
CM
676 * For now, we do allow update to btrfs_fs_device through the
677 * btrfs dev scan cli after FS has been mounted. We're still
678 * tracking a problem where systems fail mount by subvolume id
679 * when we reject replacement on a mounted FS.
b96de000 680 */
0f23ae74 681 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
682 /*
683 * That is if the FS is _not_ mounted and if you
684 * are here, that means there is more than one
685 * disk with same uuid and devid.We keep the one
686 * with larger generation number or the last-in if
687 * generation are equal.
688 */
0f23ae74 689 return -EEXIST;
77bdae4d 690 }
b96de000 691
606686ee 692 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
693 if (!name)
694 return -ENOMEM;
606686ee
JB
695 rcu_string_free(device->name);
696 rcu_assign_pointer(device->name, name);
cd02dca5
CM
697 if (device->missing) {
698 fs_devices->missing_devices--;
699 device->missing = 0;
700 }
8a4b83cc
CM
701 }
702
77bdae4d
AJ
703 /*
704 * Unmount does not free the btrfs_device struct but would zero
705 * generation along with most of the other members. So just update
706 * it back. We need it to pick the disk with largest generation
707 * (as above).
708 */
709 if (!fs_devices->opened)
710 device->generation = found_transid;
711
4fde46f0
AJ
712 /*
713 * if there is new btrfs on an already registered device,
714 * then remove the stale device entry.
715 */
02feae3c
AJ
716 if (ret > 0)
717 btrfs_free_stale_device(device);
4fde46f0 718
8a4b83cc 719 *fs_devices_ret = fs_devices;
60999ca4
DS
720
721 return ret;
8a4b83cc
CM
722}
723
e4404d6e
YZ
724static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
725{
726 struct btrfs_fs_devices *fs_devices;
727 struct btrfs_device *device;
728 struct btrfs_device *orig_dev;
729
2208a378
ID
730 fs_devices = alloc_fs_devices(orig->fsid);
731 if (IS_ERR(fs_devices))
732 return fs_devices;
e4404d6e 733
adbbb863 734 mutex_lock(&orig->device_list_mutex);
02db0844 735 fs_devices->total_devices = orig->total_devices;
e4404d6e 736
46224705 737 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 738 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
739 struct rcu_string *name;
740
12bd2fc0
ID
741 device = btrfs_alloc_device(NULL, &orig_dev->devid,
742 orig_dev->uuid);
743 if (IS_ERR(device))
e4404d6e
YZ
744 goto error;
745
606686ee
JB
746 /*
747 * This is ok to do without rcu read locked because we hold the
748 * uuid mutex so nothing we touch in here is going to disappear.
749 */
e755f780 750 if (orig_dev->name) {
78f2c9e6
DS
751 name = rcu_string_strdup(orig_dev->name->str,
752 GFP_KERNEL);
e755f780
AJ
753 if (!name) {
754 kfree(device);
755 goto error;
756 }
757 rcu_assign_pointer(device->name, name);
fd2696f3 758 }
e4404d6e 759
e4404d6e
YZ
760 list_add(&device->dev_list, &fs_devices->devices);
761 device->fs_devices = fs_devices;
762 fs_devices->num_devices++;
763 }
adbbb863 764 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
765 return fs_devices;
766error:
adbbb863 767 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
768 free_fs_devices(fs_devices);
769 return ERR_PTR(-ENOMEM);
770}
771
9eaed21e 772void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 773{
c6e30871 774 struct btrfs_device *device, *next;
443f24fe 775 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 776
dfe25020
CM
777 mutex_lock(&uuid_mutex);
778again:
46224705 779 /* This is the initialized path, it is safe to release the devices. */
c6e30871 780 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 781 if (device->in_fs_metadata) {
63a212ab 782 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
783 (!latest_dev ||
784 device->generation > latest_dev->generation)) {
785 latest_dev = device;
a6b0d5c8 786 }
2b82032c 787 continue;
a6b0d5c8 788 }
2b82032c 789
8dabb742
SB
790 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
791 /*
792 * In the first step, keep the device which has
793 * the correct fsid and the devid that is used
794 * for the dev_replace procedure.
795 * In the second step, the dev_replace state is
796 * read from the device tree and it is known
797 * whether the procedure is really active or
798 * not, which means whether this device is
799 * used or whether it should be removed.
800 */
801 if (step == 0 || device->is_tgtdev_for_dev_replace) {
802 continue;
803 }
804 }
2b82032c 805 if (device->bdev) {
d4d77629 806 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
807 device->bdev = NULL;
808 fs_devices->open_devices--;
809 }
810 if (device->writeable) {
811 list_del_init(&device->dev_alloc_list);
812 device->writeable = 0;
8dabb742
SB
813 if (!device->is_tgtdev_for_dev_replace)
814 fs_devices->rw_devices--;
2b82032c 815 }
e4404d6e
YZ
816 list_del_init(&device->dev_list);
817 fs_devices->num_devices--;
606686ee 818 rcu_string_free(device->name);
e4404d6e 819 kfree(device);
dfe25020 820 }
2b82032c
YZ
821
822 if (fs_devices->seed) {
823 fs_devices = fs_devices->seed;
2b82032c
YZ
824 goto again;
825 }
826
443f24fe 827 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 828
dfe25020 829 mutex_unlock(&uuid_mutex);
dfe25020 830}
a0af469b 831
1f78160c
XG
832static void __free_device(struct work_struct *work)
833{
834 struct btrfs_device *device;
835
836 device = container_of(work, struct btrfs_device, rcu_work);
606686ee 837 rcu_string_free(device->name);
1f78160c
XG
838 kfree(device);
839}
840
841static void free_device(struct rcu_head *head)
842{
843 struct btrfs_device *device;
844
845 device = container_of(head, struct btrfs_device, rcu);
846
847 INIT_WORK(&device->rcu_work, __free_device);
848 schedule_work(&device->rcu_work);
849}
850
14238819
AJ
851static void btrfs_close_bdev(struct btrfs_device *device)
852{
853 if (device->bdev && device->writeable) {
854 sync_blockdev(device->bdev);
855 invalidate_bdev(device->bdev);
856 }
857
858 if (device->bdev)
859 blkdev_put(device->bdev, device->mode);
860}
861
f448341a
AJ
862static void btrfs_close_one_device(struct btrfs_device *device)
863{
864 struct btrfs_fs_devices *fs_devices = device->fs_devices;
865 struct btrfs_device *new_device;
866 struct rcu_string *name;
867
868 if (device->bdev)
869 fs_devices->open_devices--;
870
871 if (device->writeable &&
872 device->devid != BTRFS_DEV_REPLACE_DEVID) {
873 list_del_init(&device->dev_alloc_list);
874 fs_devices->rw_devices--;
875 }
876
877 if (device->missing)
878 fs_devices->missing_devices--;
879
14238819 880 btrfs_close_bdev(device);
e2bf6e89 881
f448341a
AJ
882 new_device = btrfs_alloc_device(NULL, &device->devid,
883 device->uuid);
884 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
885
886 /* Safe because we are under uuid_mutex */
887 if (device->name) {
888 name = rcu_string_strdup(device->name->str, GFP_NOFS);
889 BUG_ON(!name); /* -ENOMEM */
890 rcu_assign_pointer(new_device->name, name);
891 }
892
893 list_replace_rcu(&device->dev_list, &new_device->dev_list);
894 new_device->fs_devices = device->fs_devices;
895
896 call_rcu(&device->rcu, free_device);
897}
898
2b82032c 899static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 900{
2037a093 901 struct btrfs_device *device, *tmp;
e4404d6e 902
2b82032c
YZ
903 if (--fs_devices->opened > 0)
904 return 0;
8a4b83cc 905
c9513edb 906 mutex_lock(&fs_devices->device_list_mutex);
2037a093 907 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
f190aa47 908 btrfs_close_one_device(device);
8a4b83cc 909 }
c9513edb
XG
910 mutex_unlock(&fs_devices->device_list_mutex);
911
e4404d6e
YZ
912 WARN_ON(fs_devices->open_devices);
913 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
914 fs_devices->opened = 0;
915 fs_devices->seeding = 0;
2b82032c 916
8a4b83cc
CM
917 return 0;
918}
919
2b82032c
YZ
920int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
921{
e4404d6e 922 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
923 int ret;
924
925 mutex_lock(&uuid_mutex);
926 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
927 if (!fs_devices->opened) {
928 seed_devices = fs_devices->seed;
929 fs_devices->seed = NULL;
930 }
2b82032c 931 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
932
933 while (seed_devices) {
934 fs_devices = seed_devices;
935 seed_devices = fs_devices->seed;
936 __btrfs_close_devices(fs_devices);
937 free_fs_devices(fs_devices);
938 }
bc178622
ES
939 /*
940 * Wait for rcu kworkers under __btrfs_close_devices
941 * to finish all blkdev_puts so device is really
942 * free when umount is done.
943 */
944 rcu_barrier();
2b82032c
YZ
945 return ret;
946}
947
e4404d6e
YZ
948static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
949 fmode_t flags, void *holder)
8a4b83cc 950{
d5e2003c 951 struct request_queue *q;
8a4b83cc
CM
952 struct block_device *bdev;
953 struct list_head *head = &fs_devices->devices;
8a4b83cc 954 struct btrfs_device *device;
443f24fe 955 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
956 struct buffer_head *bh;
957 struct btrfs_super_block *disk_super;
a0af469b 958 u64 devid;
2b82032c 959 int seeding = 1;
a0af469b 960 int ret = 0;
8a4b83cc 961
d4d77629
TH
962 flags |= FMODE_EXCL;
963
c6e30871 964 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
965 if (device->bdev)
966 continue;
dfe25020
CM
967 if (!device->name)
968 continue;
969
f63e0cca
ES
970 /* Just open everything we can; ignore failures here */
971 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
972 &bdev, &bh))
beaf8ab3 973 continue;
a0af469b
CM
974
975 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 976 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
977 if (devid != device->devid)
978 goto error_brelse;
979
2b82032c
YZ
980 if (memcmp(device->uuid, disk_super->dev_item.uuid,
981 BTRFS_UUID_SIZE))
982 goto error_brelse;
983
984 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
985 if (!latest_dev ||
986 device->generation > latest_dev->generation)
987 latest_dev = device;
a0af469b 988
2b82032c
YZ
989 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
990 device->writeable = 0;
991 } else {
992 device->writeable = !bdev_read_only(bdev);
993 seeding = 0;
994 }
995
d5e2003c 996 q = bdev_get_queue(bdev);
90180da4 997 if (blk_queue_discard(q))
d5e2003c 998 device->can_discard = 1;
d5e2003c 999
8a4b83cc 1000 device->bdev = bdev;
dfe25020 1001 device->in_fs_metadata = 0;
15916de8
CM
1002 device->mode = flags;
1003
c289811c
CM
1004 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1005 fs_devices->rotating = 1;
1006
a0af469b 1007 fs_devices->open_devices++;
55e50e45
ID
1008 if (device->writeable &&
1009 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
1010 fs_devices->rw_devices++;
1011 list_add(&device->dev_alloc_list,
1012 &fs_devices->alloc_list);
1013 }
4f6c9328 1014 brelse(bh);
a0af469b 1015 continue;
a061fc8d 1016
a0af469b
CM
1017error_brelse:
1018 brelse(bh);
d4d77629 1019 blkdev_put(bdev, flags);
a0af469b 1020 continue;
8a4b83cc 1021 }
a0af469b 1022 if (fs_devices->open_devices == 0) {
20bcd649 1023 ret = -EINVAL;
a0af469b
CM
1024 goto out;
1025 }
2b82032c
YZ
1026 fs_devices->seeding = seeding;
1027 fs_devices->opened = 1;
443f24fe 1028 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1029 fs_devices->total_rw_bytes = 0;
a0af469b 1030out:
2b82032c
YZ
1031 return ret;
1032}
1033
1034int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1035 fmode_t flags, void *holder)
2b82032c
YZ
1036{
1037 int ret;
1038
1039 mutex_lock(&uuid_mutex);
1040 if (fs_devices->opened) {
e4404d6e
YZ
1041 fs_devices->opened++;
1042 ret = 0;
2b82032c 1043 } else {
15916de8 1044 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 1045 }
8a4b83cc 1046 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1047 return ret;
1048}
1049
6cf86a00
AJ
1050void btrfs_release_disk_super(struct page *page)
1051{
1052 kunmap(page);
1053 put_page(page);
1054}
1055
1056int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1057 struct page **page, struct btrfs_super_block **disk_super)
1058{
1059 void *p;
1060 pgoff_t index;
1061
1062 /* make sure our super fits in the device */
1063 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1064 return 1;
1065
1066 /* make sure our super fits in the page */
1067 if (sizeof(**disk_super) > PAGE_SIZE)
1068 return 1;
1069
1070 /* make sure our super doesn't straddle pages on disk */
1071 index = bytenr >> PAGE_SHIFT;
1072 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1073 return 1;
1074
1075 /* pull in the page with our super */
1076 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1077 index, GFP_KERNEL);
1078
1079 if (IS_ERR_OR_NULL(*page))
1080 return 1;
1081
1082 p = kmap(*page);
1083
1084 /* align our pointer to the offset of the super block */
1085 *disk_super = p + (bytenr & ~PAGE_MASK);
1086
1087 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1088 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1089 btrfs_release_disk_super(*page);
1090 return 1;
1091 }
1092
1093 if ((*disk_super)->label[0] &&
1094 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1095 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1096
1097 return 0;
1098}
1099
6f60cbd3
DS
1100/*
1101 * Look for a btrfs signature on a device. This may be called out of the mount path
1102 * and we are not allowed to call set_blocksize during the scan. The superblock
1103 * is read via pagecache
1104 */
97288f2c 1105int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
1106 struct btrfs_fs_devices **fs_devices_ret)
1107{
1108 struct btrfs_super_block *disk_super;
1109 struct block_device *bdev;
6f60cbd3 1110 struct page *page;
6f60cbd3 1111 int ret = -EINVAL;
8a4b83cc 1112 u64 devid;
f2984462 1113 u64 transid;
02db0844 1114 u64 total_devices;
6f60cbd3 1115 u64 bytenr;
8a4b83cc 1116
6f60cbd3
DS
1117 /*
1118 * we would like to check all the supers, but that would make
1119 * a btrfs mount succeed after a mkfs from a different FS.
1120 * So, we need to add a special mount option to scan for
1121 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1122 */
1123 bytenr = btrfs_sb_offset(0);
d4d77629 1124 flags |= FMODE_EXCL;
10f6327b 1125 mutex_lock(&uuid_mutex);
6f60cbd3
DS
1126
1127 bdev = blkdev_get_by_path(path, flags, holder);
6f60cbd3
DS
1128 if (IS_ERR(bdev)) {
1129 ret = PTR_ERR(bdev);
beaf8ab3 1130 goto error;
6f60cbd3
DS
1131 }
1132
6cf86a00 1133 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
6f60cbd3
DS
1134 goto error_bdev_put;
1135
a343832f 1136 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 1137 transid = btrfs_super_generation(disk_super);
02db0844 1138 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 1139
8a4b83cc 1140 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
1141 if (ret > 0) {
1142 if (disk_super->label[0]) {
60999ca4
DS
1143 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1144 } else {
1145 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1146 }
1147
1148 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1149 ret = 0;
1150 }
02db0844
JB
1151 if (!ret && fs_devices_ret)
1152 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3 1153
6cf86a00 1154 btrfs_release_disk_super(page);
6f60cbd3
DS
1155
1156error_bdev_put:
d4d77629 1157 blkdev_put(bdev, flags);
8a4b83cc 1158error:
beaf8ab3 1159 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1160 return ret;
1161}
0b86a832 1162
6d07bcec
MX
1163/* helper to account the used device space in the range */
1164int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1165 u64 end, u64 *length)
1166{
1167 struct btrfs_key key;
1168 struct btrfs_root *root = device->dev_root;
1169 struct btrfs_dev_extent *dev_extent;
1170 struct btrfs_path *path;
1171 u64 extent_end;
1172 int ret;
1173 int slot;
1174 struct extent_buffer *l;
1175
1176 *length = 0;
1177
63a212ab 1178 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1179 return 0;
1180
1181 path = btrfs_alloc_path();
1182 if (!path)
1183 return -ENOMEM;
e4058b54 1184 path->reada = READA_FORWARD;
6d07bcec
MX
1185
1186 key.objectid = device->devid;
1187 key.offset = start;
1188 key.type = BTRFS_DEV_EXTENT_KEY;
1189
1190 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1191 if (ret < 0)
1192 goto out;
1193 if (ret > 0) {
1194 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1195 if (ret < 0)
1196 goto out;
1197 }
1198
1199 while (1) {
1200 l = path->nodes[0];
1201 slot = path->slots[0];
1202 if (slot >= btrfs_header_nritems(l)) {
1203 ret = btrfs_next_leaf(root, path);
1204 if (ret == 0)
1205 continue;
1206 if (ret < 0)
1207 goto out;
1208
1209 break;
1210 }
1211 btrfs_item_key_to_cpu(l, &key, slot);
1212
1213 if (key.objectid < device->devid)
1214 goto next;
1215
1216 if (key.objectid > device->devid)
1217 break;
1218
962a298f 1219 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1220 goto next;
1221
1222 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1223 extent_end = key.offset + btrfs_dev_extent_length(l,
1224 dev_extent);
1225 if (key.offset <= start && extent_end > end) {
1226 *length = end - start + 1;
1227 break;
1228 } else if (key.offset <= start && extent_end > start)
1229 *length += extent_end - start;
1230 else if (key.offset > start && extent_end <= end)
1231 *length += extent_end - key.offset;
1232 else if (key.offset > start && key.offset <= end) {
1233 *length += end - key.offset + 1;
1234 break;
1235 } else if (key.offset > end)
1236 break;
1237
1238next:
1239 path->slots[0]++;
1240 }
1241 ret = 0;
1242out:
1243 btrfs_free_path(path);
1244 return ret;
1245}
1246
499f377f 1247static int contains_pending_extent(struct btrfs_transaction *transaction,
6df9a95e
JB
1248 struct btrfs_device *device,
1249 u64 *start, u64 len)
1250{
499f377f 1251 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
6df9a95e 1252 struct extent_map *em;
499f377f 1253 struct list_head *search_list = &fs_info->pinned_chunks;
6df9a95e 1254 int ret = 0;
1b984508 1255 u64 physical_start = *start;
6df9a95e 1256
499f377f
JM
1257 if (transaction)
1258 search_list = &transaction->pending_chunks;
04216820
FM
1259again:
1260 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1261 struct map_lookup *map;
1262 int i;
1263
95617d69 1264 map = em->map_lookup;
6df9a95e 1265 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1266 u64 end;
1267
6df9a95e
JB
1268 if (map->stripes[i].dev != device)
1269 continue;
1b984508 1270 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1271 map->stripes[i].physical + em->orig_block_len <=
1b984508 1272 physical_start)
6df9a95e 1273 continue;
c152b63e
FM
1274 /*
1275 * Make sure that while processing the pinned list we do
1276 * not override our *start with a lower value, because
1277 * we can have pinned chunks that fall within this
1278 * device hole and that have lower physical addresses
1279 * than the pending chunks we processed before. If we
1280 * do not take this special care we can end up getting
1281 * 2 pending chunks that start at the same physical
1282 * device offsets because the end offset of a pinned
1283 * chunk can be equal to the start offset of some
1284 * pending chunk.
1285 */
1286 end = map->stripes[i].physical + em->orig_block_len;
1287 if (end > *start) {
1288 *start = end;
1289 ret = 1;
1290 }
6df9a95e
JB
1291 }
1292 }
499f377f
JM
1293 if (search_list != &fs_info->pinned_chunks) {
1294 search_list = &fs_info->pinned_chunks;
04216820
FM
1295 goto again;
1296 }
6df9a95e
JB
1297
1298 return ret;
1299}
1300
1301
0b86a832 1302/*
499f377f
JM
1303 * find_free_dev_extent_start - find free space in the specified device
1304 * @device: the device which we search the free space in
1305 * @num_bytes: the size of the free space that we need
1306 * @search_start: the position from which to begin the search
1307 * @start: store the start of the free space.
1308 * @len: the size of the free space. that we find, or the size
1309 * of the max free space if we don't find suitable free space
7bfc837d 1310 *
0b86a832
CM
1311 * this uses a pretty simple search, the expectation is that it is
1312 * called very infrequently and that a given device has a small number
1313 * of extents
7bfc837d
MX
1314 *
1315 * @start is used to store the start of the free space if we find. But if we
1316 * don't find suitable free space, it will be used to store the start position
1317 * of the max free space.
1318 *
1319 * @len is used to store the size of the free space that we find.
1320 * But if we don't find suitable free space, it is used to store the size of
1321 * the max free space.
0b86a832 1322 */
499f377f
JM
1323int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1324 struct btrfs_device *device, u64 num_bytes,
1325 u64 search_start, u64 *start, u64 *len)
0b86a832
CM
1326{
1327 struct btrfs_key key;
1328 struct btrfs_root *root = device->dev_root;
7bfc837d 1329 struct btrfs_dev_extent *dev_extent;
2b82032c 1330 struct btrfs_path *path;
7bfc837d
MX
1331 u64 hole_size;
1332 u64 max_hole_start;
1333 u64 max_hole_size;
1334 u64 extent_end;
0b86a832
CM
1335 u64 search_end = device->total_bytes;
1336 int ret;
7bfc837d 1337 int slot;
0b86a832 1338 struct extent_buffer *l;
8cdc7c5b
FM
1339 u64 min_search_start;
1340
1341 /*
1342 * We don't want to overwrite the superblock on the drive nor any area
1343 * used by the boot loader (grub for example), so we make sure to start
1344 * at an offset of at least 1MB.
1345 */
1346 min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1347 search_start = max(search_start, min_search_start);
0b86a832 1348
6df9a95e
JB
1349 path = btrfs_alloc_path();
1350 if (!path)
1351 return -ENOMEM;
f2ab7618 1352
7bfc837d
MX
1353 max_hole_start = search_start;
1354 max_hole_size = 0;
1355
f2ab7618 1356again:
63a212ab 1357 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1358 ret = -ENOSPC;
6df9a95e 1359 goto out;
7bfc837d
MX
1360 }
1361
e4058b54 1362 path->reada = READA_FORWARD;
6df9a95e
JB
1363 path->search_commit_root = 1;
1364 path->skip_locking = 1;
7bfc837d 1365
0b86a832
CM
1366 key.objectid = device->devid;
1367 key.offset = search_start;
1368 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1369
125ccb0a 1370 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1371 if (ret < 0)
7bfc837d 1372 goto out;
1fcbac58
YZ
1373 if (ret > 0) {
1374 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1375 if (ret < 0)
7bfc837d 1376 goto out;
1fcbac58 1377 }
7bfc837d 1378
0b86a832
CM
1379 while (1) {
1380 l = path->nodes[0];
1381 slot = path->slots[0];
1382 if (slot >= btrfs_header_nritems(l)) {
1383 ret = btrfs_next_leaf(root, path);
1384 if (ret == 0)
1385 continue;
1386 if (ret < 0)
7bfc837d
MX
1387 goto out;
1388
1389 break;
0b86a832
CM
1390 }
1391 btrfs_item_key_to_cpu(l, &key, slot);
1392
1393 if (key.objectid < device->devid)
1394 goto next;
1395
1396 if (key.objectid > device->devid)
7bfc837d 1397 break;
0b86a832 1398
962a298f 1399 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1400 goto next;
9779b72f 1401
7bfc837d
MX
1402 if (key.offset > search_start) {
1403 hole_size = key.offset - search_start;
9779b72f 1404
6df9a95e
JB
1405 /*
1406 * Have to check before we set max_hole_start, otherwise
1407 * we could end up sending back this offset anyway.
1408 */
499f377f 1409 if (contains_pending_extent(transaction, device,
6df9a95e 1410 &search_start,
1b984508
FL
1411 hole_size)) {
1412 if (key.offset >= search_start) {
1413 hole_size = key.offset - search_start;
1414 } else {
1415 WARN_ON_ONCE(1);
1416 hole_size = 0;
1417 }
1418 }
6df9a95e 1419
7bfc837d
MX
1420 if (hole_size > max_hole_size) {
1421 max_hole_start = search_start;
1422 max_hole_size = hole_size;
1423 }
9779b72f 1424
7bfc837d
MX
1425 /*
1426 * If this free space is greater than which we need,
1427 * it must be the max free space that we have found
1428 * until now, so max_hole_start must point to the start
1429 * of this free space and the length of this free space
1430 * is stored in max_hole_size. Thus, we return
1431 * max_hole_start and max_hole_size and go back to the
1432 * caller.
1433 */
1434 if (hole_size >= num_bytes) {
1435 ret = 0;
1436 goto out;
0b86a832
CM
1437 }
1438 }
0b86a832 1439
0b86a832 1440 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1441 extent_end = key.offset + btrfs_dev_extent_length(l,
1442 dev_extent);
1443 if (extent_end > search_start)
1444 search_start = extent_end;
0b86a832
CM
1445next:
1446 path->slots[0]++;
1447 cond_resched();
1448 }
0b86a832 1449
38c01b96 1450 /*
1451 * At this point, search_start should be the end of
1452 * allocated dev extents, and when shrinking the device,
1453 * search_end may be smaller than search_start.
1454 */
f2ab7618 1455 if (search_end > search_start) {
38c01b96 1456 hole_size = search_end - search_start;
1457
499f377f 1458 if (contains_pending_extent(transaction, device, &search_start,
f2ab7618
ZL
1459 hole_size)) {
1460 btrfs_release_path(path);
1461 goto again;
1462 }
0b86a832 1463
f2ab7618
ZL
1464 if (hole_size > max_hole_size) {
1465 max_hole_start = search_start;
1466 max_hole_size = hole_size;
1467 }
6df9a95e
JB
1468 }
1469
7bfc837d 1470 /* See above. */
f2ab7618 1471 if (max_hole_size < num_bytes)
7bfc837d
MX
1472 ret = -ENOSPC;
1473 else
1474 ret = 0;
1475
1476out:
2b82032c 1477 btrfs_free_path(path);
7bfc837d 1478 *start = max_hole_start;
b2117a39 1479 if (len)
7bfc837d 1480 *len = max_hole_size;
0b86a832
CM
1481 return ret;
1482}
1483
499f377f
JM
1484int find_free_dev_extent(struct btrfs_trans_handle *trans,
1485 struct btrfs_device *device, u64 num_bytes,
1486 u64 *start, u64 *len)
1487{
499f377f 1488 /* FIXME use last free of some kind */
499f377f 1489 return find_free_dev_extent_start(trans->transaction, device,
8cdc7c5b 1490 num_bytes, 0, start, len);
499f377f
JM
1491}
1492
b2950863 1493static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1494 struct btrfs_device *device,
2196d6e8 1495 u64 start, u64 *dev_extent_len)
8f18cf13
CM
1496{
1497 int ret;
1498 struct btrfs_path *path;
1499 struct btrfs_root *root = device->dev_root;
1500 struct btrfs_key key;
a061fc8d
CM
1501 struct btrfs_key found_key;
1502 struct extent_buffer *leaf = NULL;
1503 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1504
1505 path = btrfs_alloc_path();
1506 if (!path)
1507 return -ENOMEM;
1508
1509 key.objectid = device->devid;
1510 key.offset = start;
1511 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1512again:
8f18cf13 1513 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1514 if (ret > 0) {
1515 ret = btrfs_previous_item(root, path, key.objectid,
1516 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1517 if (ret)
1518 goto out;
a061fc8d
CM
1519 leaf = path->nodes[0];
1520 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1521 extent = btrfs_item_ptr(leaf, path->slots[0],
1522 struct btrfs_dev_extent);
1523 BUG_ON(found_key.offset > start || found_key.offset +
1524 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1525 key = found_key;
1526 btrfs_release_path(path);
1527 goto again;
a061fc8d
CM
1528 } else if (ret == 0) {
1529 leaf = path->nodes[0];
1530 extent = btrfs_item_ptr(leaf, path->slots[0],
1531 struct btrfs_dev_extent);
79787eaa 1532 } else {
34d97007 1533 btrfs_handle_fs_error(root->fs_info, ret, "Slot search failed");
79787eaa 1534 goto out;
a061fc8d 1535 }
8f18cf13 1536
2196d6e8
MX
1537 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1538
8f18cf13 1539 ret = btrfs_del_item(trans, root, path);
79787eaa 1540 if (ret) {
34d97007 1541 btrfs_handle_fs_error(root->fs_info, ret,
79787eaa 1542 "Failed to remove dev extent item");
13212b54 1543 } else {
3204d33c 1544 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1545 }
b0b802d7 1546out:
8f18cf13
CM
1547 btrfs_free_path(path);
1548 return ret;
1549}
1550
48a3b636
ES
1551static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1552 struct btrfs_device *device,
1553 u64 chunk_tree, u64 chunk_objectid,
1554 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1555{
1556 int ret;
1557 struct btrfs_path *path;
1558 struct btrfs_root *root = device->dev_root;
1559 struct btrfs_dev_extent *extent;
1560 struct extent_buffer *leaf;
1561 struct btrfs_key key;
1562
dfe25020 1563 WARN_ON(!device->in_fs_metadata);
63a212ab 1564 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1565 path = btrfs_alloc_path();
1566 if (!path)
1567 return -ENOMEM;
1568
0b86a832 1569 key.objectid = device->devid;
2b82032c 1570 key.offset = start;
0b86a832
CM
1571 key.type = BTRFS_DEV_EXTENT_KEY;
1572 ret = btrfs_insert_empty_item(trans, root, path, &key,
1573 sizeof(*extent));
2cdcecbc
MF
1574 if (ret)
1575 goto out;
0b86a832
CM
1576
1577 leaf = path->nodes[0];
1578 extent = btrfs_item_ptr(leaf, path->slots[0],
1579 struct btrfs_dev_extent);
e17cade2
CM
1580 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1581 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1582 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1583
1584 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1585 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1586
0b86a832
CM
1587 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1588 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1589out:
0b86a832
CM
1590 btrfs_free_path(path);
1591 return ret;
1592}
1593
6df9a95e 1594static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1595{
6df9a95e
JB
1596 struct extent_map_tree *em_tree;
1597 struct extent_map *em;
1598 struct rb_node *n;
1599 u64 ret = 0;
0b86a832 1600
6df9a95e
JB
1601 em_tree = &fs_info->mapping_tree.map_tree;
1602 read_lock(&em_tree->lock);
1603 n = rb_last(&em_tree->map);
1604 if (n) {
1605 em = rb_entry(n, struct extent_map, rb_node);
1606 ret = em->start + em->len;
0b86a832 1607 }
6df9a95e
JB
1608 read_unlock(&em_tree->lock);
1609
0b86a832
CM
1610 return ret;
1611}
1612
53f10659
ID
1613static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1614 u64 *devid_ret)
0b86a832
CM
1615{
1616 int ret;
1617 struct btrfs_key key;
1618 struct btrfs_key found_key;
2b82032c
YZ
1619 struct btrfs_path *path;
1620
2b82032c
YZ
1621 path = btrfs_alloc_path();
1622 if (!path)
1623 return -ENOMEM;
0b86a832
CM
1624
1625 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1626 key.type = BTRFS_DEV_ITEM_KEY;
1627 key.offset = (u64)-1;
1628
53f10659 1629 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1630 if (ret < 0)
1631 goto error;
1632
79787eaa 1633 BUG_ON(ret == 0); /* Corruption */
0b86a832 1634
53f10659
ID
1635 ret = btrfs_previous_item(fs_info->chunk_root, path,
1636 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1637 BTRFS_DEV_ITEM_KEY);
1638 if (ret) {
53f10659 1639 *devid_ret = 1;
0b86a832
CM
1640 } else {
1641 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1642 path->slots[0]);
53f10659 1643 *devid_ret = found_key.offset + 1;
0b86a832
CM
1644 }
1645 ret = 0;
1646error:
2b82032c 1647 btrfs_free_path(path);
0b86a832
CM
1648 return ret;
1649}
1650
1651/*
1652 * the device information is stored in the chunk root
1653 * the btrfs_device struct should be fully filled in
1654 */
48a3b636
ES
1655static int btrfs_add_device(struct btrfs_trans_handle *trans,
1656 struct btrfs_root *root,
1657 struct btrfs_device *device)
0b86a832
CM
1658{
1659 int ret;
1660 struct btrfs_path *path;
1661 struct btrfs_dev_item *dev_item;
1662 struct extent_buffer *leaf;
1663 struct btrfs_key key;
1664 unsigned long ptr;
0b86a832
CM
1665
1666 root = root->fs_info->chunk_root;
1667
1668 path = btrfs_alloc_path();
1669 if (!path)
1670 return -ENOMEM;
1671
0b86a832
CM
1672 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1673 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1674 key.offset = device->devid;
0b86a832
CM
1675
1676 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1677 sizeof(*dev_item));
0b86a832
CM
1678 if (ret)
1679 goto out;
1680
1681 leaf = path->nodes[0];
1682 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1683
1684 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1685 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1686 btrfs_set_device_type(leaf, dev_item, device->type);
1687 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1688 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1689 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1690 btrfs_set_device_total_bytes(leaf, dev_item,
1691 btrfs_device_get_disk_total_bytes(device));
1692 btrfs_set_device_bytes_used(leaf, dev_item,
1693 btrfs_device_get_bytes_used(device));
e17cade2
CM
1694 btrfs_set_device_group(leaf, dev_item, 0);
1695 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1696 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1697 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1698
410ba3a2 1699 ptr = btrfs_device_uuid(dev_item);
e17cade2 1700 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1701 ptr = btrfs_device_fsid(dev_item);
2b82032c 1702 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1703 btrfs_mark_buffer_dirty(leaf);
0b86a832 1704
2b82032c 1705 ret = 0;
0b86a832
CM
1706out:
1707 btrfs_free_path(path);
1708 return ret;
1709}
8f18cf13 1710
5a1972bd
QW
1711/*
1712 * Function to update ctime/mtime for a given device path.
1713 * Mainly used for ctime/mtime based probe like libblkid.
1714 */
1715static void update_dev_time(char *path_name)
1716{
1717 struct file *filp;
1718
1719 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1720 if (IS_ERR(filp))
5a1972bd
QW
1721 return;
1722 file_update_time(filp);
1723 filp_close(filp, NULL);
5a1972bd
QW
1724}
1725
a061fc8d
CM
1726static int btrfs_rm_dev_item(struct btrfs_root *root,
1727 struct btrfs_device *device)
1728{
1729 int ret;
1730 struct btrfs_path *path;
a061fc8d 1731 struct btrfs_key key;
a061fc8d
CM
1732 struct btrfs_trans_handle *trans;
1733
1734 root = root->fs_info->chunk_root;
1735
1736 path = btrfs_alloc_path();
1737 if (!path)
1738 return -ENOMEM;
1739
a22285a6 1740 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1741 if (IS_ERR(trans)) {
1742 btrfs_free_path(path);
1743 return PTR_ERR(trans);
1744 }
a061fc8d
CM
1745 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1746 key.type = BTRFS_DEV_ITEM_KEY;
1747 key.offset = device->devid;
1748
1749 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1750 if (ret < 0)
1751 goto out;
1752
1753 if (ret > 0) {
1754 ret = -ENOENT;
1755 goto out;
1756 }
1757
1758 ret = btrfs_del_item(trans, root, path);
1759 if (ret)
1760 goto out;
a061fc8d
CM
1761out:
1762 btrfs_free_path(path);
1763 btrfs_commit_transaction(trans, root);
1764 return ret;
1765}
1766
3cc31a0d
DS
1767/*
1768 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1769 * filesystem. It's up to the caller to adjust that number regarding eg. device
1770 * replace.
1771 */
1772static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1773 u64 num_devices)
a061fc8d 1774{
a061fc8d 1775 u64 all_avail;
de98ced9 1776 unsigned seq;
418775a2 1777 int i;
a061fc8d 1778
de98ced9 1779 do {
bd45ffbc 1780 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1781
bd45ffbc
AJ
1782 all_avail = fs_info->avail_data_alloc_bits |
1783 fs_info->avail_system_alloc_bits |
1784 fs_info->avail_metadata_alloc_bits;
1785 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1786
418775a2
DS
1787 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1788 if (!(all_avail & btrfs_raid_group[i]))
1789 continue;
a061fc8d 1790
418775a2
DS
1791 if (num_devices < btrfs_raid_array[i].devs_min) {
1792 int ret = btrfs_raid_mindev_error[i];
bd45ffbc 1793
418775a2
DS
1794 if (ret)
1795 return ret;
1796 }
53b381b3
DW
1797 }
1798
bd45ffbc 1799 return 0;
f1fa7f26
AJ
1800}
1801
88acff64
AJ
1802struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1803 struct btrfs_device *device)
a061fc8d 1804{
2b82032c 1805 struct btrfs_device *next_device;
88acff64
AJ
1806
1807 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1808 if (next_device != device &&
1809 !next_device->missing && next_device->bdev)
1810 return next_device;
1811 }
1812
1813 return NULL;
1814}
1815
1816/*
1817 * Helper function to check if the given device is part of s_bdev / latest_bdev
1818 * and replace it with the provided or the next active device, in the context
1819 * where this function called, there should be always be another device (or
1820 * this_dev) which is active.
1821 */
1822void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1823 struct btrfs_device *device, struct btrfs_device *this_dev)
1824{
1825 struct btrfs_device *next_device;
1826
1827 if (this_dev)
1828 next_device = this_dev;
1829 else
1830 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1831 device);
1832 ASSERT(next_device);
1833
1834 if (fs_info->sb->s_bdev &&
1835 (fs_info->sb->s_bdev == device->bdev))
1836 fs_info->sb->s_bdev = next_device->bdev;
1837
1838 if (fs_info->fs_devices->latest_bdev == device->bdev)
1839 fs_info->fs_devices->latest_bdev = next_device->bdev;
1840}
1841
6b526ed7 1842int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
f1fa7f26
AJ
1843{
1844 struct btrfs_device *device;
1f78160c 1845 struct btrfs_fs_devices *cur_devices;
2b82032c 1846 u64 num_devices;
a061fc8d 1847 int ret = 0;
1f78160c 1848 bool clear_super = false;
42b67427 1849 char *dev_name = NULL;
a061fc8d 1850
a061fc8d
CM
1851 mutex_lock(&uuid_mutex);
1852
8dabb742 1853 num_devices = root->fs_info->fs_devices->num_devices;
73beece9 1854 btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
8dabb742
SB
1855 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1856 WARN_ON(num_devices < 1);
1857 num_devices--;
1858 }
73beece9 1859 btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
8dabb742 1860
3cc31a0d 1861 ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1);
f1fa7f26 1862 if (ret)
a061fc8d 1863 goto out;
a061fc8d 1864
5c5c0df0 1865 ret = btrfs_find_device_by_devspec(root, devid, device_path,
24fc572f
AJ
1866 &device);
1867 if (ret)
53b381b3 1868 goto out;
dfe25020 1869
63a212ab 1870 if (device->is_tgtdev_for_dev_replace) {
183860f6 1871 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 1872 goto out;
63a212ab
SB
1873 }
1874
2b82032c 1875 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1876 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 1877 goto out;
2b82032c
YZ
1878 }
1879
1880 if (device->writeable) {
0c1daee0 1881 lock_chunks(root);
2b82032c 1882 list_del_init(&device->dev_alloc_list);
c3929c36 1883 device->fs_devices->rw_devices--;
0c1daee0 1884 unlock_chunks(root);
42b67427
AJ
1885 dev_name = kstrdup(device->name->str, GFP_KERNEL);
1886 if (!dev_name) {
1887 ret = -ENOMEM;
1888 goto error_undo;
1889 }
1f78160c 1890 clear_super = true;
dfe25020 1891 }
a061fc8d 1892
d7901554 1893 mutex_unlock(&uuid_mutex);
a061fc8d 1894 ret = btrfs_shrink_device(device, 0);
d7901554 1895 mutex_lock(&uuid_mutex);
a061fc8d 1896 if (ret)
9b3517e9 1897 goto error_undo;
a061fc8d 1898
63a212ab
SB
1899 /*
1900 * TODO: the superblock still includes this device in its num_devices
1901 * counter although write_all_supers() is not locked out. This
1902 * could give a filesystem state which requires a degraded mount.
1903 */
a061fc8d
CM
1904 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1905 if (ret)
9b3517e9 1906 goto error_undo;
a061fc8d 1907
2b82032c 1908 device->in_fs_metadata = 0;
aa1b8cd4 1909 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1910
1911 /*
1912 * the device list mutex makes sure that we don't change
1913 * the device list while someone else is writing out all
d7306801
FDBM
1914 * the device supers. Whoever is writing all supers, should
1915 * lock the device list mutex before getting the number of
1916 * devices in the super block (super_copy). Conversely,
1917 * whoever updates the number of devices in the super block
1918 * (super_copy) should hold the device list mutex.
e5e9a520 1919 */
1f78160c
XG
1920
1921 cur_devices = device->fs_devices;
e5e9a520 1922 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1923 list_del_rcu(&device->dev_list);
e5e9a520 1924
e4404d6e 1925 device->fs_devices->num_devices--;
02db0844 1926 device->fs_devices->total_devices--;
2b82032c 1927
cd02dca5 1928 if (device->missing)
3a7d55c8 1929 device->fs_devices->missing_devices--;
cd02dca5 1930
88acff64 1931 btrfs_assign_next_active_device(root->fs_info, device, NULL);
2b82032c 1932
0bfaa9c5 1933 if (device->bdev) {
e4404d6e 1934 device->fs_devices->open_devices--;
0bfaa9c5 1935 /* remove sysfs entry */
32576040 1936 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
0bfaa9c5 1937 }
99994cde 1938
14238819
AJ
1939 btrfs_close_bdev(device);
1940
1f78160c 1941 call_rcu(&device->rcu, free_device);
e4404d6e 1942
6c41761f
DS
1943 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1944 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
d7306801 1945 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c 1946
1f78160c 1947 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1948 struct btrfs_fs_devices *fs_devices;
1949 fs_devices = root->fs_info->fs_devices;
1950 while (fs_devices) {
8321cf25
RS
1951 if (fs_devices->seed == cur_devices) {
1952 fs_devices->seed = cur_devices->seed;
e4404d6e 1953 break;
8321cf25 1954 }
e4404d6e 1955 fs_devices = fs_devices->seed;
2b82032c 1956 }
1f78160c 1957 cur_devices->seed = NULL;
1f78160c 1958 __btrfs_close_devices(cur_devices);
1f78160c 1959 free_fs_devices(cur_devices);
2b82032c
YZ
1960 }
1961
5af3e8cc
SB
1962 root->fs_info->num_tolerated_disk_barrier_failures =
1963 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1964
2b82032c
YZ
1965 /*
1966 * at this point, the device is zero sized. We want to
1967 * remove it from the devices list and zero out the old super
1968 */
24fc572f 1969 if (clear_super) {
42b67427 1970 struct block_device *bdev;
4d90d28b 1971
42b67427
AJ
1972 bdev = blkdev_get_by_path(dev_name, FMODE_READ | FMODE_EXCL,
1973 root->fs_info->bdev_holder);
1974 if (!IS_ERR(bdev)) {
1975 btrfs_scratch_superblocks(bdev, dev_name);
24fc572f 1976 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
4d90d28b 1977 }
dfe25020 1978 }
a061fc8d 1979
a061fc8d 1980out:
42b67427
AJ
1981 kfree(dev_name);
1982
a061fc8d 1983 mutex_unlock(&uuid_mutex);
a061fc8d 1984 return ret;
24fc572f 1985
9b3517e9
ID
1986error_undo:
1987 if (device->writeable) {
0c1daee0 1988 lock_chunks(root);
9b3517e9
ID
1989 list_add(&device->dev_alloc_list,
1990 &root->fs_info->fs_devices->alloc_list);
c3929c36 1991 device->fs_devices->rw_devices++;
0c1daee0 1992 unlock_chunks(root);
9b3517e9 1993 }
24fc572f 1994 goto out;
a061fc8d
CM
1995}
1996
084b6e7c
QW
1997void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1998 struct btrfs_device *srcdev)
e93c89c1 1999{
d51908ce
AJ
2000 struct btrfs_fs_devices *fs_devices;
2001
e93c89c1 2002 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 2003
25e8e911
AJ
2004 /*
2005 * in case of fs with no seed, srcdev->fs_devices will point
2006 * to fs_devices of fs_info. However when the dev being replaced is
2007 * a seed dev it will point to the seed's local fs_devices. In short
2008 * srcdev will have its correct fs_devices in both the cases.
2009 */
2010 fs_devices = srcdev->fs_devices;
d51908ce 2011
e93c89c1
SB
2012 list_del_rcu(&srcdev->dev_list);
2013 list_del_rcu(&srcdev->dev_alloc_list);
d51908ce 2014 fs_devices->num_devices--;
82372bc8 2015 if (srcdev->missing)
d51908ce 2016 fs_devices->missing_devices--;
e93c89c1 2017
48b3b9d4 2018 if (srcdev->writeable)
82372bc8 2019 fs_devices->rw_devices--;
1357272f 2020
82372bc8 2021 if (srcdev->bdev)
d51908ce 2022 fs_devices->open_devices--;
084b6e7c
QW
2023}
2024
2025void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2026 struct btrfs_device *srcdev)
2027{
2028 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2029
48b3b9d4
AJ
2030 if (srcdev->writeable) {
2031 /* zero out the old super if it is writable */
2032 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2033 }
14238819
AJ
2034
2035 btrfs_close_bdev(srcdev);
2036
e93c89c1 2037 call_rcu(&srcdev->rcu, free_device);
94d5f0c2
AJ
2038
2039 /*
2040 * unless fs_devices is seed fs, num_devices shouldn't go
2041 * zero
2042 */
2043 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2044
2045 /* if this is no devs we rather delete the fs_devices */
2046 if (!fs_devices->num_devices) {
2047 struct btrfs_fs_devices *tmp_fs_devices;
2048
2049 tmp_fs_devices = fs_info->fs_devices;
2050 while (tmp_fs_devices) {
2051 if (tmp_fs_devices->seed == fs_devices) {
2052 tmp_fs_devices->seed = fs_devices->seed;
2053 break;
2054 }
2055 tmp_fs_devices = tmp_fs_devices->seed;
2056 }
2057 fs_devices->seed = NULL;
8bef8401
AJ
2058 __btrfs_close_devices(fs_devices);
2059 free_fs_devices(fs_devices);
94d5f0c2 2060 }
e93c89c1
SB
2061}
2062
2063void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2064 struct btrfs_device *tgtdev)
2065{
67a2c45e 2066 mutex_lock(&uuid_mutex);
e93c89c1
SB
2067 WARN_ON(!tgtdev);
2068 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d2ff1b20 2069
32576040 2070 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
d2ff1b20 2071
779bf3fe 2072 if (tgtdev->bdev)
e93c89c1 2073 fs_info->fs_devices->open_devices--;
779bf3fe 2074
e93c89c1 2075 fs_info->fs_devices->num_devices--;
e93c89c1 2076
88acff64 2077 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
e93c89c1 2078
e93c89c1 2079 list_del_rcu(&tgtdev->dev_list);
e93c89c1
SB
2080
2081 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 2082 mutex_unlock(&uuid_mutex);
779bf3fe
AJ
2083
2084 /*
2085 * The update_dev_time() with in btrfs_scratch_superblocks()
2086 * may lead to a call to btrfs_show_devname() which will try
2087 * to hold device_list_mutex. And here this device
2088 * is already out of device list, so we don't have to hold
2089 * the device_list_mutex lock.
2090 */
2091 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
14238819
AJ
2092
2093 btrfs_close_bdev(tgtdev);
779bf3fe 2094 call_rcu(&tgtdev->rcu, free_device);
e93c89c1
SB
2095}
2096
48a3b636
ES
2097static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2098 struct btrfs_device **device)
7ba15b7d
SB
2099{
2100 int ret = 0;
2101 struct btrfs_super_block *disk_super;
2102 u64 devid;
2103 u8 *dev_uuid;
2104 struct block_device *bdev;
2105 struct buffer_head *bh;
2106
2107 *device = NULL;
2108 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2109 root->fs_info->bdev_holder, 0, &bdev, &bh);
2110 if (ret)
2111 return ret;
2112 disk_super = (struct btrfs_super_block *)bh->b_data;
2113 devid = btrfs_stack_device_id(&disk_super->dev_item);
2114 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 2115 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
2116 disk_super->fsid);
2117 brelse(bh);
2118 if (!*device)
2119 ret = -ENOENT;
2120 blkdev_put(bdev, FMODE_READ);
2121 return ret;
2122}
2123
2124int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2125 char *device_path,
2126 struct btrfs_device **device)
2127{
2128 *device = NULL;
2129 if (strcmp(device_path, "missing") == 0) {
2130 struct list_head *devices;
2131 struct btrfs_device *tmp;
2132
2133 devices = &root->fs_info->fs_devices->devices;
2134 /*
2135 * It is safe to read the devices since the volume_mutex
2136 * is held by the caller.
2137 */
2138 list_for_each_entry(tmp, devices, dev_list) {
2139 if (tmp->in_fs_metadata && !tmp->bdev) {
2140 *device = tmp;
2141 break;
2142 }
2143 }
2144
d74a6259
AJ
2145 if (!*device)
2146 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
7ba15b7d
SB
2147
2148 return 0;
2149 } else {
2150 return btrfs_find_device_by_path(root, device_path, device);
2151 }
2152}
2153
5c5c0df0
DS
2154/*
2155 * Lookup a device given by device id, or the path if the id is 0.
2156 */
2157int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid,
2158 char *devpath,
24e0474b
AJ
2159 struct btrfs_device **device)
2160{
2161 int ret;
2162
5c5c0df0 2163 if (devid) {
24e0474b 2164 ret = 0;
5c5c0df0 2165 *device = btrfs_find_device(root->fs_info, devid, NULL,
24e0474b
AJ
2166 NULL);
2167 if (!*device)
2168 ret = -ENOENT;
2169 } else {
5c5c0df0 2170 if (!devpath || !devpath[0])
b3d1b153
AJ
2171 return -EINVAL;
2172
5c5c0df0 2173 ret = btrfs_find_device_missing_or_by_path(root, devpath,
24e0474b
AJ
2174 device);
2175 }
2176 return ret;
2177}
2178
2b82032c
YZ
2179/*
2180 * does all the dirty work required for changing file system's UUID.
2181 */
125ccb0a 2182static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
2183{
2184 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2185 struct btrfs_fs_devices *old_devices;
e4404d6e 2186 struct btrfs_fs_devices *seed_devices;
6c41761f 2187 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
2188 struct btrfs_device *device;
2189 u64 super_flags;
2190
2191 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 2192 if (!fs_devices->seeding)
2b82032c
YZ
2193 return -EINVAL;
2194
2208a378
ID
2195 seed_devices = __alloc_fs_devices();
2196 if (IS_ERR(seed_devices))
2197 return PTR_ERR(seed_devices);
2b82032c 2198
e4404d6e
YZ
2199 old_devices = clone_fs_devices(fs_devices);
2200 if (IS_ERR(old_devices)) {
2201 kfree(seed_devices);
2202 return PTR_ERR(old_devices);
2b82032c 2203 }
e4404d6e 2204
2b82032c
YZ
2205 list_add(&old_devices->list, &fs_uuids);
2206
e4404d6e
YZ
2207 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2208 seed_devices->opened = 1;
2209 INIT_LIST_HEAD(&seed_devices->devices);
2210 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2211 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
2212
2213 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2214 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2215 synchronize_rcu);
2196d6e8
MX
2216 list_for_each_entry(device, &seed_devices->devices, dev_list)
2217 device->fs_devices = seed_devices;
c9513edb 2218
2196d6e8 2219 lock_chunks(root);
e4404d6e 2220 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2196d6e8 2221 unlock_chunks(root);
e4404d6e 2222
2b82032c
YZ
2223 fs_devices->seeding = 0;
2224 fs_devices->num_devices = 0;
2225 fs_devices->open_devices = 0;
69611ac8 2226 fs_devices->missing_devices = 0;
69611ac8 2227 fs_devices->rotating = 0;
e4404d6e 2228 fs_devices->seed = seed_devices;
2b82032c
YZ
2229
2230 generate_random_uuid(fs_devices->fsid);
2231 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2232 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750
FDBM
2233 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2234
2b82032c
YZ
2235 super_flags = btrfs_super_flags(disk_super) &
2236 ~BTRFS_SUPER_FLAG_SEEDING;
2237 btrfs_set_super_flags(disk_super, super_flags);
2238
2239 return 0;
2240}
2241
2242/*
01327610 2243 * Store the expected generation for seed devices in device items.
2b82032c
YZ
2244 */
2245static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2246 struct btrfs_root *root)
2247{
2248 struct btrfs_path *path;
2249 struct extent_buffer *leaf;
2250 struct btrfs_dev_item *dev_item;
2251 struct btrfs_device *device;
2252 struct btrfs_key key;
2253 u8 fs_uuid[BTRFS_UUID_SIZE];
2254 u8 dev_uuid[BTRFS_UUID_SIZE];
2255 u64 devid;
2256 int ret;
2257
2258 path = btrfs_alloc_path();
2259 if (!path)
2260 return -ENOMEM;
2261
2262 root = root->fs_info->chunk_root;
2263 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2264 key.offset = 0;
2265 key.type = BTRFS_DEV_ITEM_KEY;
2266
2267 while (1) {
2268 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2269 if (ret < 0)
2270 goto error;
2271
2272 leaf = path->nodes[0];
2273next_slot:
2274 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2275 ret = btrfs_next_leaf(root, path);
2276 if (ret > 0)
2277 break;
2278 if (ret < 0)
2279 goto error;
2280 leaf = path->nodes[0];
2281 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2282 btrfs_release_path(path);
2b82032c
YZ
2283 continue;
2284 }
2285
2286 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2287 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2288 key.type != BTRFS_DEV_ITEM_KEY)
2289 break;
2290
2291 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2292 struct btrfs_dev_item);
2293 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2294 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2295 BTRFS_UUID_SIZE);
1473b24e 2296 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 2297 BTRFS_UUID_SIZE);
aa1b8cd4
SB
2298 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2299 fs_uuid);
79787eaa 2300 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2301
2302 if (device->fs_devices->seeding) {
2303 btrfs_set_device_generation(leaf, dev_item,
2304 device->generation);
2305 btrfs_mark_buffer_dirty(leaf);
2306 }
2307
2308 path->slots[0]++;
2309 goto next_slot;
2310 }
2311 ret = 0;
2312error:
2313 btrfs_free_path(path);
2314 return ret;
2315}
2316
788f20eb
CM
2317int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2318{
d5e2003c 2319 struct request_queue *q;
788f20eb
CM
2320 struct btrfs_trans_handle *trans;
2321 struct btrfs_device *device;
2322 struct block_device *bdev;
788f20eb 2323 struct list_head *devices;
2b82032c 2324 struct super_block *sb = root->fs_info->sb;
606686ee 2325 struct rcu_string *name;
3c1dbdf5 2326 u64 tmp;
2b82032c 2327 int seeding_dev = 0;
788f20eb
CM
2328 int ret = 0;
2329
2b82032c 2330 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 2331 return -EROFS;
788f20eb 2332
a5d16333 2333 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 2334 root->fs_info->bdev_holder);
7f59203a
JB
2335 if (IS_ERR(bdev))
2336 return PTR_ERR(bdev);
a2135011 2337
2b82032c
YZ
2338 if (root->fs_info->fs_devices->seeding) {
2339 seeding_dev = 1;
2340 down_write(&sb->s_umount);
2341 mutex_lock(&uuid_mutex);
2342 }
2343
8c8bee1d 2344 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2345
788f20eb 2346 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
2347
2348 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 2349 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2350 if (device->bdev == bdev) {
2351 ret = -EEXIST;
d25628bd
LB
2352 mutex_unlock(
2353 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 2354 goto error;
788f20eb
CM
2355 }
2356 }
d25628bd 2357 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2358
12bd2fc0
ID
2359 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2360 if (IS_ERR(device)) {
788f20eb 2361 /* we can safely leave the fs_devices entry around */
12bd2fc0 2362 ret = PTR_ERR(device);
2b82032c 2363 goto error;
788f20eb
CM
2364 }
2365
78f2c9e6 2366 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2367 if (!name) {
788f20eb 2368 kfree(device);
2b82032c
YZ
2369 ret = -ENOMEM;
2370 goto error;
788f20eb 2371 }
606686ee 2372 rcu_assign_pointer(device->name, name);
2b82032c 2373
a22285a6 2374 trans = btrfs_start_transaction(root, 0);
98d5dc13 2375 if (IS_ERR(trans)) {
606686ee 2376 rcu_string_free(device->name);
98d5dc13
TI
2377 kfree(device);
2378 ret = PTR_ERR(trans);
2379 goto error;
2380 }
2381
d5e2003c
JB
2382 q = bdev_get_queue(bdev);
2383 if (blk_queue_discard(q))
2384 device->can_discard = 1;
2b82032c 2385 device->writeable = 1;
2b82032c 2386 device->generation = trans->transid;
788f20eb
CM
2387 device->io_width = root->sectorsize;
2388 device->io_align = root->sectorsize;
2389 device->sector_size = root->sectorsize;
2390 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2391 device->disk_total_bytes = device->total_bytes;
935e5cc9 2392 device->commit_total_bytes = device->total_bytes;
788f20eb
CM
2393 device->dev_root = root->fs_info->dev_root;
2394 device->bdev = bdev;
dfe25020 2395 device->in_fs_metadata = 1;
63a212ab 2396 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2397 device->mode = FMODE_EXCL;
27087f37 2398 device->dev_stats_valid = 1;
2b82032c 2399 set_blocksize(device->bdev, 4096);
788f20eb 2400
2b82032c
YZ
2401 if (seeding_dev) {
2402 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2403 ret = btrfs_prepare_sprout(root);
79787eaa 2404 BUG_ON(ret); /* -ENOMEM */
2b82032c 2405 }
788f20eb 2406
2b82032c 2407 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2408
e5e9a520 2409 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2196d6e8 2410 lock_chunks(root);
1f78160c 2411 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2412 list_add(&device->dev_alloc_list,
2413 &root->fs_info->fs_devices->alloc_list);
2414 root->fs_info->fs_devices->num_devices++;
2415 root->fs_info->fs_devices->open_devices++;
2416 root->fs_info->fs_devices->rw_devices++;
02db0844 2417 root->fs_info->fs_devices->total_devices++;
2b82032c 2418 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2419
2bf64758
JB
2420 spin_lock(&root->fs_info->free_chunk_lock);
2421 root->fs_info->free_chunk_space += device->total_bytes;
2422 spin_unlock(&root->fs_info->free_chunk_lock);
2423
c289811c
CM
2424 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2425 root->fs_info->fs_devices->rotating = 1;
2426
3c1dbdf5 2427 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
6c41761f 2428 btrfs_set_super_total_bytes(root->fs_info->super_copy,
3c1dbdf5 2429 tmp + device->total_bytes);
788f20eb 2430
3c1dbdf5 2431 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
6c41761f 2432 btrfs_set_super_num_devices(root->fs_info->super_copy,
3c1dbdf5 2433 tmp + 1);
0d39376a
AJ
2434
2435 /* add sysfs device entry */
e3bd6973 2436 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
0d39376a 2437
2196d6e8
MX
2438 /*
2439 * we've got more storage, clear any full flags on the space
2440 * infos
2441 */
2442 btrfs_clear_space_info_full(root->fs_info);
2443
2444 unlock_chunks(root);
e5e9a520 2445 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2446
2b82032c 2447 if (seeding_dev) {
2196d6e8 2448 lock_chunks(root);
2b82032c 2449 ret = init_first_rw_device(trans, root, device);
2196d6e8 2450 unlock_chunks(root);
005d6427 2451 if (ret) {
66642832 2452 btrfs_abort_transaction(trans, ret);
79787eaa 2453 goto error_trans;
005d6427 2454 }
2196d6e8
MX
2455 }
2456
2457 ret = btrfs_add_device(trans, root, device);
2458 if (ret) {
66642832 2459 btrfs_abort_transaction(trans, ret);
2196d6e8
MX
2460 goto error_trans;
2461 }
2462
2463 if (seeding_dev) {
2464 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2465
2b82032c 2466 ret = btrfs_finish_sprout(trans, root);
005d6427 2467 if (ret) {
66642832 2468 btrfs_abort_transaction(trans, ret);
79787eaa 2469 goto error_trans;
005d6427 2470 }
b2373f25
AJ
2471
2472 /* Sprouting would change fsid of the mounted root,
2473 * so rename the fsid on the sysfs
2474 */
2475 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2476 root->fs_info->fsid);
c1b7e474 2477 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2e7910d6 2478 fsid_buf))
f14d104d
DS
2479 btrfs_warn(root->fs_info,
2480 "sysfs: failed to create fsid for sprout");
2b82032c
YZ
2481 }
2482
5af3e8cc
SB
2483 root->fs_info->num_tolerated_disk_barrier_failures =
2484 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2485 ret = btrfs_commit_transaction(trans, root);
a2135011 2486
2b82032c
YZ
2487 if (seeding_dev) {
2488 mutex_unlock(&uuid_mutex);
2489 up_write(&sb->s_umount);
788f20eb 2490
79787eaa
JM
2491 if (ret) /* transaction commit */
2492 return ret;
2493
2b82032c 2494 ret = btrfs_relocate_sys_chunks(root);
79787eaa 2495 if (ret < 0)
34d97007 2496 btrfs_handle_fs_error(root->fs_info, ret,
79787eaa
JM
2497 "Failed to relocate sys chunks after "
2498 "device initialization. This can be fixed "
2499 "using the \"btrfs balance\" command.");
671415b7
MX
2500 trans = btrfs_attach_transaction(root);
2501 if (IS_ERR(trans)) {
2502 if (PTR_ERR(trans) == -ENOENT)
2503 return 0;
2504 return PTR_ERR(trans);
2505 }
2506 ret = btrfs_commit_transaction(trans, root);
2b82032c 2507 }
c9e9f97b 2508
5a1972bd
QW
2509 /* Update ctime/mtime for libblkid */
2510 update_dev_time(device_path);
2b82032c 2511 return ret;
79787eaa
JM
2512
2513error_trans:
79787eaa 2514 btrfs_end_transaction(trans, root);
606686ee 2515 rcu_string_free(device->name);
32576040 2516 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
79787eaa 2517 kfree(device);
2b82032c 2518error:
e525fd89 2519 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2520 if (seeding_dev) {
2521 mutex_unlock(&uuid_mutex);
2522 up_write(&sb->s_umount);
2523 }
c9e9f97b 2524 return ret;
788f20eb
CM
2525}
2526
e93c89c1 2527int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
1c43366d 2528 struct btrfs_device *srcdev,
e93c89c1
SB
2529 struct btrfs_device **device_out)
2530{
2531 struct request_queue *q;
2532 struct btrfs_device *device;
2533 struct block_device *bdev;
2534 struct btrfs_fs_info *fs_info = root->fs_info;
2535 struct list_head *devices;
2536 struct rcu_string *name;
12bd2fc0 2537 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2538 int ret = 0;
2539
2540 *device_out = NULL;
1c43366d
MX
2541 if (fs_info->fs_devices->seeding) {
2542 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2543 return -EINVAL;
1c43366d 2544 }
e93c89c1
SB
2545
2546 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2547 fs_info->bdev_holder);
1c43366d
MX
2548 if (IS_ERR(bdev)) {
2549 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2550 return PTR_ERR(bdev);
1c43366d 2551 }
e93c89c1
SB
2552
2553 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2554
2555 devices = &fs_info->fs_devices->devices;
2556 list_for_each_entry(device, devices, dev_list) {
2557 if (device->bdev == bdev) {
1c43366d 2558 btrfs_err(fs_info, "target device is in the filesystem!");
e93c89c1
SB
2559 ret = -EEXIST;
2560 goto error;
2561 }
2562 }
2563
1c43366d 2564
7cc8e58d
MX
2565 if (i_size_read(bdev->bd_inode) <
2566 btrfs_device_get_total_bytes(srcdev)) {
1c43366d
MX
2567 btrfs_err(fs_info, "target device is smaller than source device!");
2568 ret = -EINVAL;
2569 goto error;
2570 }
2571
2572
12bd2fc0
ID
2573 device = btrfs_alloc_device(NULL, &devid, NULL);
2574 if (IS_ERR(device)) {
2575 ret = PTR_ERR(device);
e93c89c1
SB
2576 goto error;
2577 }
2578
2579 name = rcu_string_strdup(device_path, GFP_NOFS);
2580 if (!name) {
2581 kfree(device);
2582 ret = -ENOMEM;
2583 goto error;
2584 }
2585 rcu_assign_pointer(device->name, name);
2586
2587 q = bdev_get_queue(bdev);
2588 if (blk_queue_discard(q))
2589 device->can_discard = 1;
2590 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2591 device->writeable = 1;
e93c89c1
SB
2592 device->generation = 0;
2593 device->io_width = root->sectorsize;
2594 device->io_align = root->sectorsize;
2595 device->sector_size = root->sectorsize;
7cc8e58d
MX
2596 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2597 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2598 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2599 ASSERT(list_empty(&srcdev->resized_list));
2600 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2601 device->commit_bytes_used = device->bytes_used;
e93c89c1
SB
2602 device->dev_root = fs_info->dev_root;
2603 device->bdev = bdev;
2604 device->in_fs_metadata = 1;
2605 device->is_tgtdev_for_dev_replace = 1;
2606 device->mode = FMODE_EXCL;
27087f37 2607 device->dev_stats_valid = 1;
e93c89c1
SB
2608 set_blocksize(device->bdev, 4096);
2609 device->fs_devices = fs_info->fs_devices;
2610 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2611 fs_info->fs_devices->num_devices++;
2612 fs_info->fs_devices->open_devices++;
e93c89c1
SB
2613 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2614
2615 *device_out = device;
2616 return ret;
2617
2618error:
2619 blkdev_put(bdev, FMODE_EXCL);
2620 return ret;
2621}
2622
2623void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2624 struct btrfs_device *tgtdev)
2625{
2626 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2627 tgtdev->io_width = fs_info->dev_root->sectorsize;
2628 tgtdev->io_align = fs_info->dev_root->sectorsize;
2629 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2630 tgtdev->dev_root = fs_info->dev_root;
2631 tgtdev->in_fs_metadata = 1;
2632}
2633
d397712b
CM
2634static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2635 struct btrfs_device *device)
0b86a832
CM
2636{
2637 int ret;
2638 struct btrfs_path *path;
2639 struct btrfs_root *root;
2640 struct btrfs_dev_item *dev_item;
2641 struct extent_buffer *leaf;
2642 struct btrfs_key key;
2643
2644 root = device->dev_root->fs_info->chunk_root;
2645
2646 path = btrfs_alloc_path();
2647 if (!path)
2648 return -ENOMEM;
2649
2650 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2651 key.type = BTRFS_DEV_ITEM_KEY;
2652 key.offset = device->devid;
2653
2654 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2655 if (ret < 0)
2656 goto out;
2657
2658 if (ret > 0) {
2659 ret = -ENOENT;
2660 goto out;
2661 }
2662
2663 leaf = path->nodes[0];
2664 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2665
2666 btrfs_set_device_id(leaf, dev_item, device->devid);
2667 btrfs_set_device_type(leaf, dev_item, device->type);
2668 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2669 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2670 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2671 btrfs_set_device_total_bytes(leaf, dev_item,
2672 btrfs_device_get_disk_total_bytes(device));
2673 btrfs_set_device_bytes_used(leaf, dev_item,
2674 btrfs_device_get_bytes_used(device));
0b86a832
CM
2675 btrfs_mark_buffer_dirty(leaf);
2676
2677out:
2678 btrfs_free_path(path);
2679 return ret;
2680}
2681
2196d6e8 2682int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2683 struct btrfs_device *device, u64 new_size)
2684{
2685 struct btrfs_super_block *super_copy =
6c41761f 2686 device->dev_root->fs_info->super_copy;
935e5cc9 2687 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2688 u64 old_total;
2689 u64 diff;
8f18cf13 2690
2b82032c
YZ
2691 if (!device->writeable)
2692 return -EACCES;
2196d6e8
MX
2693
2694 lock_chunks(device->dev_root);
2695 old_total = btrfs_super_total_bytes(super_copy);
2696 diff = new_size - device->total_bytes;
2697
63a212ab 2698 if (new_size <= device->total_bytes ||
2196d6e8
MX
2699 device->is_tgtdev_for_dev_replace) {
2700 unlock_chunks(device->dev_root);
2b82032c 2701 return -EINVAL;
2196d6e8 2702 }
2b82032c 2703
935e5cc9 2704 fs_devices = device->dev_root->fs_info->fs_devices;
2b82032c 2705
8f18cf13 2706 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2707 device->fs_devices->total_rw_bytes += diff;
2708
7cc8e58d
MX
2709 btrfs_device_set_total_bytes(device, new_size);
2710 btrfs_device_set_disk_total_bytes(device, new_size);
4184ea7f 2711 btrfs_clear_space_info_full(device->dev_root->fs_info);
935e5cc9
MX
2712 if (list_empty(&device->resized_list))
2713 list_add_tail(&device->resized_list,
2714 &fs_devices->resized_devices);
2196d6e8 2715 unlock_chunks(device->dev_root);
4184ea7f 2716
8f18cf13
CM
2717 return btrfs_update_device(trans, device);
2718}
2719
2720static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
a688a04a 2721 struct btrfs_root *root, u64 chunk_objectid,
8f18cf13
CM
2722 u64 chunk_offset)
2723{
2724 int ret;
2725 struct btrfs_path *path;
2726 struct btrfs_key key;
2727
2728 root = root->fs_info->chunk_root;
2729 path = btrfs_alloc_path();
2730 if (!path)
2731 return -ENOMEM;
2732
2733 key.objectid = chunk_objectid;
2734 key.offset = chunk_offset;
2735 key.type = BTRFS_CHUNK_ITEM_KEY;
2736
2737 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2738 if (ret < 0)
2739 goto out;
2740 else if (ret > 0) { /* Logic error or corruption */
34d97007 2741 btrfs_handle_fs_error(root->fs_info, -ENOENT,
79787eaa
JM
2742 "Failed lookup while freeing chunk.");
2743 ret = -ENOENT;
2744 goto out;
2745 }
8f18cf13
CM
2746
2747 ret = btrfs_del_item(trans, root, path);
79787eaa 2748 if (ret < 0)
34d97007 2749 btrfs_handle_fs_error(root->fs_info, ret,
79787eaa
JM
2750 "Failed to delete chunk item.");
2751out:
8f18cf13 2752 btrfs_free_path(path);
65a246c5 2753 return ret;
8f18cf13
CM
2754}
2755
b2950863 2756static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2757 chunk_offset)
2758{
6c41761f 2759 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2760 struct btrfs_disk_key *disk_key;
2761 struct btrfs_chunk *chunk;
2762 u8 *ptr;
2763 int ret = 0;
2764 u32 num_stripes;
2765 u32 array_size;
2766 u32 len = 0;
2767 u32 cur;
2768 struct btrfs_key key;
2769
2196d6e8 2770 lock_chunks(root);
8f18cf13
CM
2771 array_size = btrfs_super_sys_array_size(super_copy);
2772
2773 ptr = super_copy->sys_chunk_array;
2774 cur = 0;
2775
2776 while (cur < array_size) {
2777 disk_key = (struct btrfs_disk_key *)ptr;
2778 btrfs_disk_key_to_cpu(&key, disk_key);
2779
2780 len = sizeof(*disk_key);
2781
2782 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2783 chunk = (struct btrfs_chunk *)(ptr + len);
2784 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2785 len += btrfs_chunk_item_size(num_stripes);
2786 } else {
2787 ret = -EIO;
2788 break;
2789 }
2790 if (key.objectid == chunk_objectid &&
2791 key.offset == chunk_offset) {
2792 memmove(ptr, ptr + len, array_size - (cur + len));
2793 array_size -= len;
2794 btrfs_set_super_sys_array_size(super_copy, array_size);
2795 } else {
2796 ptr += len;
2797 cur += len;
2798 }
2799 }
2196d6e8 2800 unlock_chunks(root);
8f18cf13
CM
2801 return ret;
2802}
2803
47ab2a6c
JB
2804int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2805 struct btrfs_root *root, u64 chunk_offset)
8f18cf13
CM
2806{
2807 struct extent_map_tree *em_tree;
8f18cf13 2808 struct extent_map *em;
47ab2a6c 2809 struct btrfs_root *extent_root = root->fs_info->extent_root;
8f18cf13 2810 struct map_lookup *map;
2196d6e8 2811 u64 dev_extent_len = 0;
47ab2a6c 2812 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
47ab2a6c 2813 int i, ret = 0;
57ba4cb8 2814 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8f18cf13 2815
47ab2a6c 2816 /* Just in case */
8f18cf13 2817 root = root->fs_info->chunk_root;
8f18cf13
CM
2818 em_tree = &root->fs_info->mapping_tree.map_tree;
2819
890871be 2820 read_lock(&em_tree->lock);
8f18cf13 2821 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2822 read_unlock(&em_tree->lock);
8f18cf13 2823
47ab2a6c
JB
2824 if (!em || em->start > chunk_offset ||
2825 em->start + em->len < chunk_offset) {
2826 /*
2827 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2828 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2829 * do anything we still error out.
2830 */
2831 ASSERT(0);
2832 if (em)
2833 free_extent_map(em);
2834 return -EINVAL;
2835 }
95617d69 2836 map = em->map_lookup;
39c2d7fa 2837 lock_chunks(root->fs_info->chunk_root);
4617ea3a 2838 check_system_chunk(trans, extent_root, map->type);
39c2d7fa 2839 unlock_chunks(root->fs_info->chunk_root);
8f18cf13 2840
57ba4cb8
FM
2841 /*
2842 * Take the device list mutex to prevent races with the final phase of
2843 * a device replace operation that replaces the device object associated
2844 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2845 */
2846 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 2847 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2848 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2849 ret = btrfs_free_dev_extent(trans, device,
2850 map->stripes[i].physical,
2851 &dev_extent_len);
47ab2a6c 2852 if (ret) {
57ba4cb8 2853 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2854 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2855 goto out;
2856 }
a061fc8d 2857
2196d6e8
MX
2858 if (device->bytes_used > 0) {
2859 lock_chunks(root);
2860 btrfs_device_set_bytes_used(device,
2861 device->bytes_used - dev_extent_len);
2862 spin_lock(&root->fs_info->free_chunk_lock);
2863 root->fs_info->free_chunk_space += dev_extent_len;
2864 spin_unlock(&root->fs_info->free_chunk_lock);
2865 btrfs_clear_space_info_full(root->fs_info);
2866 unlock_chunks(root);
2867 }
a061fc8d 2868
dfe25020
CM
2869 if (map->stripes[i].dev) {
2870 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c 2871 if (ret) {
57ba4cb8 2872 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2873 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2874 goto out;
2875 }
dfe25020 2876 }
8f18cf13 2877 }
57ba4cb8
FM
2878 mutex_unlock(&fs_devices->device_list_mutex);
2879
a688a04a 2880 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
47ab2a6c 2881 if (ret) {
66642832 2882 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2883 goto out;
2884 }
8f18cf13 2885
1abe9b8a 2886 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2887
8f18cf13
CM
2888 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2889 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
47ab2a6c 2890 if (ret) {
66642832 2891 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2892 goto out;
2893 }
8f18cf13
CM
2894 }
2895
04216820 2896 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
47ab2a6c 2897 if (ret) {
66642832 2898 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2899 goto out;
2900 }
2b82032c 2901
47ab2a6c 2902out:
2b82032c
YZ
2903 /* once for us */
2904 free_extent_map(em);
47ab2a6c
JB
2905 return ret;
2906}
2b82032c 2907
dc2ee4e2 2908static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
47ab2a6c
JB
2909{
2910 struct btrfs_root *extent_root;
2911 struct btrfs_trans_handle *trans;
2912 int ret;
2b82032c 2913
47ab2a6c
JB
2914 root = root->fs_info->chunk_root;
2915 extent_root = root->fs_info->extent_root;
2916
67c5e7d4
FM
2917 /*
2918 * Prevent races with automatic removal of unused block groups.
2919 * After we relocate and before we remove the chunk with offset
2920 * chunk_offset, automatic removal of the block group can kick in,
2921 * resulting in a failure when calling btrfs_remove_chunk() below.
2922 *
2923 * Make sure to acquire this mutex before doing a tree search (dev
2924 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2925 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2926 * we release the path used to search the chunk/dev tree and before
2927 * the current task acquires this mutex and calls us.
2928 */
2929 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2930
47ab2a6c
JB
2931 ret = btrfs_can_relocate(extent_root, chunk_offset);
2932 if (ret)
2933 return -ENOSPC;
2934
2935 /* step one, relocate all the extents inside this chunk */
55e3a601 2936 btrfs_scrub_pause(root);
47ab2a6c 2937 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
55e3a601 2938 btrfs_scrub_continue(root);
47ab2a6c
JB
2939 if (ret)
2940 return ret;
2941
7fd01182
FM
2942 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2943 chunk_offset);
47ab2a6c
JB
2944 if (IS_ERR(trans)) {
2945 ret = PTR_ERR(trans);
34d97007 2946 btrfs_handle_fs_error(root->fs_info, ret, NULL);
47ab2a6c
JB
2947 return ret;
2948 }
2949
2950 /*
2951 * step two, delete the device extents and the
2952 * chunk tree entries
2953 */
2954 ret = btrfs_remove_chunk(trans, root, chunk_offset);
05f9a780 2955 btrfs_end_transaction(trans, extent_root);
47ab2a6c 2956 return ret;
2b82032c
YZ
2957}
2958
2959static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2960{
2961 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2962 struct btrfs_path *path;
2963 struct extent_buffer *leaf;
2964 struct btrfs_chunk *chunk;
2965 struct btrfs_key key;
2966 struct btrfs_key found_key;
2b82032c 2967 u64 chunk_type;
ba1bf481
JB
2968 bool retried = false;
2969 int failed = 0;
2b82032c
YZ
2970 int ret;
2971
2972 path = btrfs_alloc_path();
2973 if (!path)
2974 return -ENOMEM;
2975
ba1bf481 2976again:
2b82032c
YZ
2977 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2978 key.offset = (u64)-1;
2979 key.type = BTRFS_CHUNK_ITEM_KEY;
2980
2981 while (1) {
67c5e7d4 2982 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2983 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
2984 if (ret < 0) {
2985 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2986 goto error;
67c5e7d4 2987 }
79787eaa 2988 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2989
2990 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2991 key.type);
67c5e7d4
FM
2992 if (ret)
2993 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
2994 if (ret < 0)
2995 goto error;
2996 if (ret > 0)
2997 break;
1a40e23b 2998
2b82032c
YZ
2999 leaf = path->nodes[0];
3000 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 3001
2b82032c
YZ
3002 chunk = btrfs_item_ptr(leaf, path->slots[0],
3003 struct btrfs_chunk);
3004 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3005 btrfs_release_path(path);
8f18cf13 3006
2b82032c 3007 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
a688a04a 3008 ret = btrfs_relocate_chunk(chunk_root,
2b82032c 3009 found_key.offset);
ba1bf481
JB
3010 if (ret == -ENOSPC)
3011 failed++;
14586651
HS
3012 else
3013 BUG_ON(ret);
2b82032c 3014 }
67c5e7d4 3015 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 3016
2b82032c
YZ
3017 if (found_key.offset == 0)
3018 break;
3019 key.offset = found_key.offset - 1;
3020 }
3021 ret = 0;
ba1bf481
JB
3022 if (failed && !retried) {
3023 failed = 0;
3024 retried = true;
3025 goto again;
fae7f21c 3026 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3027 ret = -ENOSPC;
3028 }
2b82032c
YZ
3029error:
3030 btrfs_free_path(path);
3031 return ret;
8f18cf13
CM
3032}
3033
0940ebf6
ID
3034static int insert_balance_item(struct btrfs_root *root,
3035 struct btrfs_balance_control *bctl)
3036{
3037 struct btrfs_trans_handle *trans;
3038 struct btrfs_balance_item *item;
3039 struct btrfs_disk_balance_args disk_bargs;
3040 struct btrfs_path *path;
3041 struct extent_buffer *leaf;
3042 struct btrfs_key key;
3043 int ret, err;
3044
3045 path = btrfs_alloc_path();
3046 if (!path)
3047 return -ENOMEM;
3048
3049 trans = btrfs_start_transaction(root, 0);
3050 if (IS_ERR(trans)) {
3051 btrfs_free_path(path);
3052 return PTR_ERR(trans);
3053 }
3054
3055 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3056 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3057 key.offset = 0;
3058
3059 ret = btrfs_insert_empty_item(trans, root, path, &key,
3060 sizeof(*item));
3061 if (ret)
3062 goto out;
3063
3064 leaf = path->nodes[0];
3065 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3066
3067 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3068
3069 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3070 btrfs_set_balance_data(leaf, item, &disk_bargs);
3071 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3072 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3073 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3074 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3075
3076 btrfs_set_balance_flags(leaf, item, bctl->flags);
3077
3078 btrfs_mark_buffer_dirty(leaf);
3079out:
3080 btrfs_free_path(path);
3081 err = btrfs_commit_transaction(trans, root);
3082 if (err && !ret)
3083 ret = err;
3084 return ret;
3085}
3086
3087static int del_balance_item(struct btrfs_root *root)
3088{
3089 struct btrfs_trans_handle *trans;
3090 struct btrfs_path *path;
3091 struct btrfs_key key;
3092 int ret, err;
3093
3094 path = btrfs_alloc_path();
3095 if (!path)
3096 return -ENOMEM;
3097
3098 trans = btrfs_start_transaction(root, 0);
3099 if (IS_ERR(trans)) {
3100 btrfs_free_path(path);
3101 return PTR_ERR(trans);
3102 }
3103
3104 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3105 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3106 key.offset = 0;
3107
3108 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3109 if (ret < 0)
3110 goto out;
3111 if (ret > 0) {
3112 ret = -ENOENT;
3113 goto out;
3114 }
3115
3116 ret = btrfs_del_item(trans, root, path);
3117out:
3118 btrfs_free_path(path);
3119 err = btrfs_commit_transaction(trans, root);
3120 if (err && !ret)
3121 ret = err;
3122 return ret;
3123}
3124
59641015
ID
3125/*
3126 * This is a heuristic used to reduce the number of chunks balanced on
3127 * resume after balance was interrupted.
3128 */
3129static void update_balance_args(struct btrfs_balance_control *bctl)
3130{
3131 /*
3132 * Turn on soft mode for chunk types that were being converted.
3133 */
3134 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3135 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3136 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3137 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3138 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3139 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3140
3141 /*
3142 * Turn on usage filter if is not already used. The idea is
3143 * that chunks that we have already balanced should be
3144 * reasonably full. Don't do it for chunks that are being
3145 * converted - that will keep us from relocating unconverted
3146 * (albeit full) chunks.
3147 */
3148 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3149 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3150 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3151 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3152 bctl->data.usage = 90;
3153 }
3154 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3155 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3156 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3157 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3158 bctl->sys.usage = 90;
3159 }
3160 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3161 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3162 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3163 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3164 bctl->meta.usage = 90;
3165 }
3166}
3167
c9e9f97b
ID
3168/*
3169 * Should be called with both balance and volume mutexes held to
3170 * serialize other volume operations (add_dev/rm_dev/resize) with
3171 * restriper. Same goes for unset_balance_control.
3172 */
3173static void set_balance_control(struct btrfs_balance_control *bctl)
3174{
3175 struct btrfs_fs_info *fs_info = bctl->fs_info;
3176
3177 BUG_ON(fs_info->balance_ctl);
3178
3179 spin_lock(&fs_info->balance_lock);
3180 fs_info->balance_ctl = bctl;
3181 spin_unlock(&fs_info->balance_lock);
3182}
3183
3184static void unset_balance_control(struct btrfs_fs_info *fs_info)
3185{
3186 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3187
3188 BUG_ON(!fs_info->balance_ctl);
3189
3190 spin_lock(&fs_info->balance_lock);
3191 fs_info->balance_ctl = NULL;
3192 spin_unlock(&fs_info->balance_lock);
3193
3194 kfree(bctl);
3195}
3196
ed25e9b2
ID
3197/*
3198 * Balance filters. Return 1 if chunk should be filtered out
3199 * (should not be balanced).
3200 */
899c81ea 3201static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3202 struct btrfs_balance_args *bargs)
3203{
899c81ea
ID
3204 chunk_type = chunk_to_extended(chunk_type) &
3205 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3206
899c81ea 3207 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3208 return 0;
3209
3210 return 1;
3211}
3212
dba72cb3 3213static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3214 struct btrfs_balance_args *bargs)
bc309467
DS
3215{
3216 struct btrfs_block_group_cache *cache;
3217 u64 chunk_used;
3218 u64 user_thresh_min;
3219 u64 user_thresh_max;
3220 int ret = 1;
3221
3222 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3223 chunk_used = btrfs_block_group_used(&cache->item);
3224
3225 if (bargs->usage_min == 0)
3226 user_thresh_min = 0;
3227 else
3228 user_thresh_min = div_factor_fine(cache->key.offset,
3229 bargs->usage_min);
3230
3231 if (bargs->usage_max == 0)
3232 user_thresh_max = 1;
3233 else if (bargs->usage_max > 100)
3234 user_thresh_max = cache->key.offset;
3235 else
3236 user_thresh_max = div_factor_fine(cache->key.offset,
3237 bargs->usage_max);
3238
3239 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3240 ret = 0;
3241
3242 btrfs_put_block_group(cache);
3243 return ret;
3244}
3245
dba72cb3 3246static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3247 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0
ID
3248{
3249 struct btrfs_block_group_cache *cache;
3250 u64 chunk_used, user_thresh;
3251 int ret = 1;
3252
3253 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3254 chunk_used = btrfs_block_group_used(&cache->item);
3255
bc309467 3256 if (bargs->usage_min == 0)
3e39cea6 3257 user_thresh = 1;
a105bb88
ID
3258 else if (bargs->usage > 100)
3259 user_thresh = cache->key.offset;
3260 else
3261 user_thresh = div_factor_fine(cache->key.offset,
3262 bargs->usage);
3263
5ce5b3c0
ID
3264 if (chunk_used < user_thresh)
3265 ret = 0;
3266
3267 btrfs_put_block_group(cache);
3268 return ret;
3269}
3270
409d404b
ID
3271static int chunk_devid_filter(struct extent_buffer *leaf,
3272 struct btrfs_chunk *chunk,
3273 struct btrfs_balance_args *bargs)
3274{
3275 struct btrfs_stripe *stripe;
3276 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3277 int i;
3278
3279 for (i = 0; i < num_stripes; i++) {
3280 stripe = btrfs_stripe_nr(chunk, i);
3281 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3282 return 0;
3283 }
3284
3285 return 1;
3286}
3287
94e60d5a
ID
3288/* [pstart, pend) */
3289static int chunk_drange_filter(struct extent_buffer *leaf,
3290 struct btrfs_chunk *chunk,
3291 u64 chunk_offset,
3292 struct btrfs_balance_args *bargs)
3293{
3294 struct btrfs_stripe *stripe;
3295 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3296 u64 stripe_offset;
3297 u64 stripe_length;
3298 int factor;
3299 int i;
3300
3301 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3302 return 0;
3303
3304 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3305 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3306 factor = num_stripes / 2;
3307 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3308 factor = num_stripes - 1;
3309 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3310 factor = num_stripes - 2;
3311 } else {
3312 factor = num_stripes;
3313 }
94e60d5a
ID
3314
3315 for (i = 0; i < num_stripes; i++) {
3316 stripe = btrfs_stripe_nr(chunk, i);
3317 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3318 continue;
3319
3320 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3321 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3322 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3323
3324 if (stripe_offset < bargs->pend &&
3325 stripe_offset + stripe_length > bargs->pstart)
3326 return 0;
3327 }
3328
3329 return 1;
3330}
3331
ea67176a
ID
3332/* [vstart, vend) */
3333static int chunk_vrange_filter(struct extent_buffer *leaf,
3334 struct btrfs_chunk *chunk,
3335 u64 chunk_offset,
3336 struct btrfs_balance_args *bargs)
3337{
3338 if (chunk_offset < bargs->vend &&
3339 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3340 /* at least part of the chunk is inside this vrange */
3341 return 0;
3342
3343 return 1;
3344}
3345
dee32d0a
GAP
3346static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3347 struct btrfs_chunk *chunk,
3348 struct btrfs_balance_args *bargs)
3349{
3350 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3351
3352 if (bargs->stripes_min <= num_stripes
3353 && num_stripes <= bargs->stripes_max)
3354 return 0;
3355
3356 return 1;
3357}
3358
899c81ea 3359static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3360 struct btrfs_balance_args *bargs)
3361{
3362 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3363 return 0;
3364
899c81ea
ID
3365 chunk_type = chunk_to_extended(chunk_type) &
3366 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3367
899c81ea 3368 if (bargs->target == chunk_type)
cfa4c961
ID
3369 return 1;
3370
3371 return 0;
3372}
3373
f43ffb60
ID
3374static int should_balance_chunk(struct btrfs_root *root,
3375 struct extent_buffer *leaf,
3376 struct btrfs_chunk *chunk, u64 chunk_offset)
3377{
3378 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3379 struct btrfs_balance_args *bargs = NULL;
3380 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3381
3382 /* type filter */
3383 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3384 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3385 return 0;
3386 }
3387
3388 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3389 bargs = &bctl->data;
3390 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3391 bargs = &bctl->sys;
3392 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3393 bargs = &bctl->meta;
3394
ed25e9b2
ID
3395 /* profiles filter */
3396 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3397 chunk_profiles_filter(chunk_type, bargs)) {
3398 return 0;
5ce5b3c0
ID
3399 }
3400
3401 /* usage filter */
3402 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3403 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3404 return 0;
bc309467
DS
3405 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3406 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3407 return 0;
409d404b
ID
3408 }
3409
3410 /* devid filter */
3411 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3412 chunk_devid_filter(leaf, chunk, bargs)) {
3413 return 0;
94e60d5a
ID
3414 }
3415
3416 /* drange filter, makes sense only with devid filter */
3417 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3418 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3419 return 0;
ea67176a
ID
3420 }
3421
3422 /* vrange filter */
3423 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3424 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3425 return 0;
ed25e9b2
ID
3426 }
3427
dee32d0a
GAP
3428 /* stripes filter */
3429 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3430 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3431 return 0;
3432 }
3433
cfa4c961
ID
3434 /* soft profile changing mode */
3435 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3436 chunk_soft_convert_filter(chunk_type, bargs)) {
3437 return 0;
3438 }
3439
7d824b6f
DS
3440 /*
3441 * limited by count, must be the last filter
3442 */
3443 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3444 if (bargs->limit == 0)
3445 return 0;
3446 else
3447 bargs->limit--;
12907fc7
DS
3448 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3449 /*
3450 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3451 * determined here because we do not have the global information
12907fc7
DS
3452 * about the count of all chunks that satisfy the filters.
3453 */
3454 if (bargs->limit_max == 0)
3455 return 0;
3456 else
3457 bargs->limit_max--;
7d824b6f
DS
3458 }
3459
f43ffb60
ID
3460 return 1;
3461}
3462
c9e9f97b 3463static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3464{
19a39dce 3465 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3466 struct btrfs_root *chunk_root = fs_info->chunk_root;
3467 struct btrfs_root *dev_root = fs_info->dev_root;
3468 struct list_head *devices;
ec44a35c
CM
3469 struct btrfs_device *device;
3470 u64 old_size;
3471 u64 size_to_free;
12907fc7 3472 u64 chunk_type;
f43ffb60 3473 struct btrfs_chunk *chunk;
5a488b9d 3474 struct btrfs_path *path = NULL;
ec44a35c 3475 struct btrfs_key key;
ec44a35c 3476 struct btrfs_key found_key;
c9e9f97b 3477 struct btrfs_trans_handle *trans;
f43ffb60
ID
3478 struct extent_buffer *leaf;
3479 int slot;
c9e9f97b
ID
3480 int ret;
3481 int enospc_errors = 0;
19a39dce 3482 bool counting = true;
12907fc7 3483 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3484 u64 limit_data = bctl->data.limit;
3485 u64 limit_meta = bctl->meta.limit;
3486 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3487 u32 count_data = 0;
3488 u32 count_meta = 0;
3489 u32 count_sys = 0;
2c9fe835 3490 int chunk_reserved = 0;
cf25ce51 3491 u64 bytes_used = 0;
ec44a35c 3492
ec44a35c 3493 /* step one make some room on all the devices */
c9e9f97b 3494 devices = &fs_info->fs_devices->devices;
c6e30871 3495 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3496 old_size = btrfs_device_get_total_bytes(device);
ec44a35c 3497 size_to_free = div_factor(old_size, 1);
ee22184b 3498 size_to_free = min_t(u64, size_to_free, SZ_1M);
2b82032c 3499 if (!device->writeable ||
7cc8e58d
MX
3500 btrfs_device_get_total_bytes(device) -
3501 btrfs_device_get_bytes_used(device) > size_to_free ||
63a212ab 3502 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3503 continue;
3504
3505 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3506 if (ret == -ENOSPC)
3507 break;
5a488b9d
LB
3508 if (ret) {
3509 /* btrfs_shrink_device never returns ret > 0 */
3510 WARN_ON(ret > 0);
3511 goto error;
3512 }
ec44a35c 3513
a22285a6 3514 trans = btrfs_start_transaction(dev_root, 0);
5a488b9d
LB
3515 if (IS_ERR(trans)) {
3516 ret = PTR_ERR(trans);
3517 btrfs_info_in_rcu(fs_info,
3518 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3519 rcu_str_deref(device->name), ret,
3520 old_size, old_size - size_to_free);
3521 goto error;
3522 }
ec44a35c
CM
3523
3524 ret = btrfs_grow_device(trans, device, old_size);
5a488b9d
LB
3525 if (ret) {
3526 btrfs_end_transaction(trans, dev_root);
3527 /* btrfs_grow_device never returns ret > 0 */
3528 WARN_ON(ret > 0);
3529 btrfs_info_in_rcu(fs_info,
3530 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3531 rcu_str_deref(device->name), ret,
3532 old_size, old_size - size_to_free);
3533 goto error;
3534 }
ec44a35c
CM
3535
3536 btrfs_end_transaction(trans, dev_root);
3537 }
3538
3539 /* step two, relocate all the chunks */
3540 path = btrfs_alloc_path();
17e9f796
MF
3541 if (!path) {
3542 ret = -ENOMEM;
3543 goto error;
3544 }
19a39dce
ID
3545
3546 /* zero out stat counters */
3547 spin_lock(&fs_info->balance_lock);
3548 memset(&bctl->stat, 0, sizeof(bctl->stat));
3549 spin_unlock(&fs_info->balance_lock);
3550again:
7d824b6f 3551 if (!counting) {
12907fc7
DS
3552 /*
3553 * The single value limit and min/max limits use the same bytes
3554 * in the
3555 */
7d824b6f
DS
3556 bctl->data.limit = limit_data;
3557 bctl->meta.limit = limit_meta;
3558 bctl->sys.limit = limit_sys;
3559 }
ec44a35c
CM
3560 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3561 key.offset = (u64)-1;
3562 key.type = BTRFS_CHUNK_ITEM_KEY;
3563
d397712b 3564 while (1) {
19a39dce 3565 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3566 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3567 ret = -ECANCELED;
3568 goto error;
3569 }
3570
67c5e7d4 3571 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3572 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3573 if (ret < 0) {
3574 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3575 goto error;
67c5e7d4 3576 }
ec44a35c
CM
3577
3578 /*
3579 * this shouldn't happen, it means the last relocate
3580 * failed
3581 */
3582 if (ret == 0)
c9e9f97b 3583 BUG(); /* FIXME break ? */
ec44a35c
CM
3584
3585 ret = btrfs_previous_item(chunk_root, path, 0,
3586 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3587 if (ret) {
67c5e7d4 3588 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3589 ret = 0;
ec44a35c 3590 break;
c9e9f97b 3591 }
7d9eb12c 3592
f43ffb60
ID
3593 leaf = path->nodes[0];
3594 slot = path->slots[0];
3595 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3596
67c5e7d4
FM
3597 if (found_key.objectid != key.objectid) {
3598 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3599 break;
67c5e7d4 3600 }
7d9eb12c 3601
f43ffb60 3602 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3603 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3604
19a39dce
ID
3605 if (!counting) {
3606 spin_lock(&fs_info->balance_lock);
3607 bctl->stat.considered++;
3608 spin_unlock(&fs_info->balance_lock);
3609 }
3610
f43ffb60
ID
3611 ret = should_balance_chunk(chunk_root, leaf, chunk,
3612 found_key.offset);
2c9fe835 3613
b3b4aa74 3614 btrfs_release_path(path);
67c5e7d4
FM
3615 if (!ret) {
3616 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3617 goto loop;
67c5e7d4 3618 }
f43ffb60 3619
19a39dce 3620 if (counting) {
67c5e7d4 3621 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3622 spin_lock(&fs_info->balance_lock);
3623 bctl->stat.expected++;
3624 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3625
3626 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3627 count_data++;
3628 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3629 count_sys++;
3630 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3631 count_meta++;
3632
3633 goto loop;
3634 }
3635
3636 /*
3637 * Apply limit_min filter, no need to check if the LIMITS
3638 * filter is used, limit_min is 0 by default
3639 */
3640 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3641 count_data < bctl->data.limit_min)
3642 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3643 count_meta < bctl->meta.limit_min)
3644 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3645 count_sys < bctl->sys.limit_min)) {
3646 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3647 goto loop;
3648 }
3649
cf25ce51
LB
3650 ASSERT(fs_info->data_sinfo);
3651 spin_lock(&fs_info->data_sinfo->lock);
3652 bytes_used = fs_info->data_sinfo->bytes_used;
3653 spin_unlock(&fs_info->data_sinfo->lock);
3654
3655 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3656 !chunk_reserved && !bytes_used) {
2c9fe835
ZL
3657 trans = btrfs_start_transaction(chunk_root, 0);
3658 if (IS_ERR(trans)) {
3659 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3660 ret = PTR_ERR(trans);
3661 goto error;
3662 }
3663
3664 ret = btrfs_force_chunk_alloc(trans, chunk_root,
3665 BTRFS_BLOCK_GROUP_DATA);
8a7d656f 3666 btrfs_end_transaction(trans, chunk_root);
2c9fe835
ZL
3667 if (ret < 0) {
3668 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3669 goto error;
3670 }
2c9fe835
ZL
3671 chunk_reserved = 1;
3672 }
3673
ec44a35c 3674 ret = btrfs_relocate_chunk(chunk_root,
ec44a35c 3675 found_key.offset);
67c5e7d4 3676 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3677 if (ret && ret != -ENOSPC)
3678 goto error;
19a39dce 3679 if (ret == -ENOSPC) {
c9e9f97b 3680 enospc_errors++;
19a39dce
ID
3681 } else {
3682 spin_lock(&fs_info->balance_lock);
3683 bctl->stat.completed++;
3684 spin_unlock(&fs_info->balance_lock);
3685 }
f43ffb60 3686loop:
795a3321
ID
3687 if (found_key.offset == 0)
3688 break;
ba1bf481 3689 key.offset = found_key.offset - 1;
ec44a35c 3690 }
c9e9f97b 3691
19a39dce
ID
3692 if (counting) {
3693 btrfs_release_path(path);
3694 counting = false;
3695 goto again;
3696 }
ec44a35c
CM
3697error:
3698 btrfs_free_path(path);
c9e9f97b 3699 if (enospc_errors) {
efe120a0 3700 btrfs_info(fs_info, "%d enospc errors during balance",
c9e9f97b
ID
3701 enospc_errors);
3702 if (!ret)
3703 ret = -ENOSPC;
3704 }
3705
ec44a35c
CM
3706 return ret;
3707}
3708
0c460c0d
ID
3709/**
3710 * alloc_profile_is_valid - see if a given profile is valid and reduced
3711 * @flags: profile to validate
3712 * @extended: if true @flags is treated as an extended profile
3713 */
3714static int alloc_profile_is_valid(u64 flags, int extended)
3715{
3716 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3717 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3718
3719 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3720
3721 /* 1) check that all other bits are zeroed */
3722 if (flags & ~mask)
3723 return 0;
3724
3725 /* 2) see if profile is reduced */
3726 if (flags == 0)
3727 return !extended; /* "0" is valid for usual profiles */
3728
3729 /* true if exactly one bit set */
3730 return (flags & (flags - 1)) == 0;
3731}
3732
837d5b6e
ID
3733static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3734{
a7e99c69
ID
3735 /* cancel requested || normal exit path */
3736 return atomic_read(&fs_info->balance_cancel_req) ||
3737 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3738 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3739}
3740
c9e9f97b
ID
3741static void __cancel_balance(struct btrfs_fs_info *fs_info)
3742{
0940ebf6
ID
3743 int ret;
3744
c9e9f97b 3745 unset_balance_control(fs_info);
0940ebf6 3746 ret = del_balance_item(fs_info->tree_root);
0f788c58 3747 if (ret)
34d97007 3748 btrfs_handle_fs_error(fs_info, ret, NULL);
ed0fb78f
ID
3749
3750 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3751}
3752
bdcd3c97
AM
3753/* Non-zero return value signifies invalidity */
3754static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3755 u64 allowed)
3756{
3757 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3758 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3759 (bctl_arg->target & ~allowed)));
3760}
3761
c9e9f97b
ID
3762/*
3763 * Should be called with both balance and volume mutexes held
3764 */
3765int btrfs_balance(struct btrfs_balance_control *bctl,
3766 struct btrfs_ioctl_balance_args *bargs)
3767{
3768 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3769 u64 allowed;
e4837f8f 3770 int mixed = 0;
c9e9f97b 3771 int ret;
8dabb742 3772 u64 num_devices;
de98ced9 3773 unsigned seq;
c9e9f97b 3774
837d5b6e 3775 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3776 atomic_read(&fs_info->balance_pause_req) ||
3777 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3778 ret = -EINVAL;
3779 goto out;
3780 }
3781
e4837f8f
ID
3782 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3783 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3784 mixed = 1;
3785
f43ffb60
ID
3786 /*
3787 * In case of mixed groups both data and meta should be picked,
3788 * and identical options should be given for both of them.
3789 */
e4837f8f
ID
3790 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3791 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3792 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3793 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3794 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
efe120a0
FH
3795 btrfs_err(fs_info, "with mixed groups data and "
3796 "metadata balance options must be the same");
f43ffb60
ID
3797 ret = -EINVAL;
3798 goto out;
3799 }
3800 }
3801
8dabb742 3802 num_devices = fs_info->fs_devices->num_devices;
73beece9 3803 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
8dabb742
SB
3804 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3805 BUG_ON(num_devices < 1);
3806 num_devices--;
3807 }
73beece9 3808 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
88be159c
AH
3809 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3810 if (num_devices > 1)
e4d8ec0f 3811 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3812 if (num_devices > 2)
3813 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3814 if (num_devices > 3)
3815 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3816 BTRFS_BLOCK_GROUP_RAID6);
bdcd3c97 3817 if (validate_convert_profile(&bctl->data, allowed)) {
efe120a0
FH
3818 btrfs_err(fs_info, "unable to start balance with target "
3819 "data profile %llu",
c1c9ff7c 3820 bctl->data.target);
e4d8ec0f
ID
3821 ret = -EINVAL;
3822 goto out;
3823 }
bdcd3c97 3824 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0
FH
3825 btrfs_err(fs_info,
3826 "unable to start balance with target metadata profile %llu",
c1c9ff7c 3827 bctl->meta.target);
e4d8ec0f
ID
3828 ret = -EINVAL;
3829 goto out;
3830 }
bdcd3c97 3831 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0
FH
3832 btrfs_err(fs_info,
3833 "unable to start balance with target system profile %llu",
c1c9ff7c 3834 bctl->sys.target);
e4d8ec0f
ID
3835 ret = -EINVAL;
3836 goto out;
3837 }
3838
e4d8ec0f
ID
3839 /* allow to reduce meta or sys integrity only if force set */
3840 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3841 BTRFS_BLOCK_GROUP_RAID10 |
3842 BTRFS_BLOCK_GROUP_RAID5 |
3843 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3844 do {
3845 seq = read_seqbegin(&fs_info->profiles_lock);
3846
3847 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3848 (fs_info->avail_system_alloc_bits & allowed) &&
3849 !(bctl->sys.target & allowed)) ||
3850 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3851 (fs_info->avail_metadata_alloc_bits & allowed) &&
3852 !(bctl->meta.target & allowed))) {
3853 if (bctl->flags & BTRFS_BALANCE_FORCE) {
efe120a0 3854 btrfs_info(fs_info, "force reducing metadata integrity");
de98ced9 3855 } else {
efe120a0
FH
3856 btrfs_err(fs_info, "balance will reduce metadata "
3857 "integrity, use force if you want this");
de98ced9
MX
3858 ret = -EINVAL;
3859 goto out;
3860 }
e4d8ec0f 3861 }
de98ced9 3862 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3863
ee592d07
ST
3864 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3865 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3866 btrfs_warn(fs_info,
fedc0045 3867 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
ee592d07
ST
3868 bctl->meta.target, bctl->data.target);
3869 }
3870
5af3e8cc 3871 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
943c6e99
ZL
3872 fs_info->num_tolerated_disk_barrier_failures = min(
3873 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3874 btrfs_get_num_tolerated_disk_barrier_failures(
3875 bctl->sys.target));
5af3e8cc
SB
3876 }
3877
0940ebf6 3878 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3879 if (ret && ret != -EEXIST)
0940ebf6
ID
3880 goto out;
3881
59641015
ID
3882 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3883 BUG_ON(ret == -EEXIST);
3884 set_balance_control(bctl);
3885 } else {
3886 BUG_ON(ret != -EEXIST);
3887 spin_lock(&fs_info->balance_lock);
3888 update_balance_args(bctl);
3889 spin_unlock(&fs_info->balance_lock);
3890 }
c9e9f97b 3891
837d5b6e 3892 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3893 mutex_unlock(&fs_info->balance_mutex);
3894
3895 ret = __btrfs_balance(fs_info);
3896
3897 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3898 atomic_dec(&fs_info->balance_running);
c9e9f97b 3899
bf023ecf
ID
3900 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3901 fs_info->num_tolerated_disk_barrier_failures =
3902 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3903 }
3904
c9e9f97b
ID
3905 if (bargs) {
3906 memset(bargs, 0, sizeof(*bargs));
19a39dce 3907 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3908 }
3909
3a01aa7a
ID
3910 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3911 balance_need_close(fs_info)) {
3912 __cancel_balance(fs_info);
3913 }
3914
837d5b6e 3915 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3916
3917 return ret;
3918out:
59641015
ID
3919 if (bctl->flags & BTRFS_BALANCE_RESUME)
3920 __cancel_balance(fs_info);
ed0fb78f 3921 else {
59641015 3922 kfree(bctl);
ed0fb78f
ID
3923 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3924 }
59641015
ID
3925 return ret;
3926}
3927
3928static int balance_kthread(void *data)
3929{
2b6ba629 3930 struct btrfs_fs_info *fs_info = data;
9555c6c1 3931 int ret = 0;
59641015
ID
3932
3933 mutex_lock(&fs_info->volume_mutex);
3934 mutex_lock(&fs_info->balance_mutex);
3935
2b6ba629 3936 if (fs_info->balance_ctl) {
efe120a0 3937 btrfs_info(fs_info, "continuing balance");
2b6ba629 3938 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3939 }
59641015
ID
3940
3941 mutex_unlock(&fs_info->balance_mutex);
3942 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3943
59641015
ID
3944 return ret;
3945}
3946
2b6ba629
ID
3947int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3948{
3949 struct task_struct *tsk;
3950
3951 spin_lock(&fs_info->balance_lock);
3952 if (!fs_info->balance_ctl) {
3953 spin_unlock(&fs_info->balance_lock);
3954 return 0;
3955 }
3956 spin_unlock(&fs_info->balance_lock);
3957
3cdde224 3958 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
efe120a0 3959 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3960 return 0;
3961 }
3962
3963 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3964 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3965}
3966
68310a5e 3967int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3968{
59641015
ID
3969 struct btrfs_balance_control *bctl;
3970 struct btrfs_balance_item *item;
3971 struct btrfs_disk_balance_args disk_bargs;
3972 struct btrfs_path *path;
3973 struct extent_buffer *leaf;
3974 struct btrfs_key key;
3975 int ret;
3976
3977 path = btrfs_alloc_path();
3978 if (!path)
3979 return -ENOMEM;
3980
59641015 3981 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3982 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
3983 key.offset = 0;
3984
68310a5e 3985 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3986 if (ret < 0)
68310a5e 3987 goto out;
59641015
ID
3988 if (ret > 0) { /* ret = -ENOENT; */
3989 ret = 0;
68310a5e
ID
3990 goto out;
3991 }
3992
3993 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3994 if (!bctl) {
3995 ret = -ENOMEM;
3996 goto out;
59641015
ID
3997 }
3998
3999 leaf = path->nodes[0];
4000 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4001
68310a5e
ID
4002 bctl->fs_info = fs_info;
4003 bctl->flags = btrfs_balance_flags(leaf, item);
4004 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4005
4006 btrfs_balance_data(leaf, item, &disk_bargs);
4007 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4008 btrfs_balance_meta(leaf, item, &disk_bargs);
4009 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4010 btrfs_balance_sys(leaf, item, &disk_bargs);
4011 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4012
ed0fb78f
ID
4013 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
4014
68310a5e
ID
4015 mutex_lock(&fs_info->volume_mutex);
4016 mutex_lock(&fs_info->balance_mutex);
59641015 4017
68310a5e
ID
4018 set_balance_control(bctl);
4019
4020 mutex_unlock(&fs_info->balance_mutex);
4021 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
4022out:
4023 btrfs_free_path(path);
ec44a35c
CM
4024 return ret;
4025}
4026
837d5b6e
ID
4027int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4028{
4029 int ret = 0;
4030
4031 mutex_lock(&fs_info->balance_mutex);
4032 if (!fs_info->balance_ctl) {
4033 mutex_unlock(&fs_info->balance_mutex);
4034 return -ENOTCONN;
4035 }
4036
4037 if (atomic_read(&fs_info->balance_running)) {
4038 atomic_inc(&fs_info->balance_pause_req);
4039 mutex_unlock(&fs_info->balance_mutex);
4040
4041 wait_event(fs_info->balance_wait_q,
4042 atomic_read(&fs_info->balance_running) == 0);
4043
4044 mutex_lock(&fs_info->balance_mutex);
4045 /* we are good with balance_ctl ripped off from under us */
4046 BUG_ON(atomic_read(&fs_info->balance_running));
4047 atomic_dec(&fs_info->balance_pause_req);
4048 } else {
4049 ret = -ENOTCONN;
4050 }
4051
4052 mutex_unlock(&fs_info->balance_mutex);
4053 return ret;
4054}
4055
a7e99c69
ID
4056int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4057{
e649e587
ID
4058 if (fs_info->sb->s_flags & MS_RDONLY)
4059 return -EROFS;
4060
a7e99c69
ID
4061 mutex_lock(&fs_info->balance_mutex);
4062 if (!fs_info->balance_ctl) {
4063 mutex_unlock(&fs_info->balance_mutex);
4064 return -ENOTCONN;
4065 }
4066
4067 atomic_inc(&fs_info->balance_cancel_req);
4068 /*
4069 * if we are running just wait and return, balance item is
4070 * deleted in btrfs_balance in this case
4071 */
4072 if (atomic_read(&fs_info->balance_running)) {
4073 mutex_unlock(&fs_info->balance_mutex);
4074 wait_event(fs_info->balance_wait_q,
4075 atomic_read(&fs_info->balance_running) == 0);
4076 mutex_lock(&fs_info->balance_mutex);
4077 } else {
4078 /* __cancel_balance needs volume_mutex */
4079 mutex_unlock(&fs_info->balance_mutex);
4080 mutex_lock(&fs_info->volume_mutex);
4081 mutex_lock(&fs_info->balance_mutex);
4082
4083 if (fs_info->balance_ctl)
4084 __cancel_balance(fs_info);
4085
4086 mutex_unlock(&fs_info->volume_mutex);
4087 }
4088
4089 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4090 atomic_dec(&fs_info->balance_cancel_req);
4091 mutex_unlock(&fs_info->balance_mutex);
4092 return 0;
4093}
4094
803b2f54
SB
4095static int btrfs_uuid_scan_kthread(void *data)
4096{
4097 struct btrfs_fs_info *fs_info = data;
4098 struct btrfs_root *root = fs_info->tree_root;
4099 struct btrfs_key key;
4100 struct btrfs_key max_key;
4101 struct btrfs_path *path = NULL;
4102 int ret = 0;
4103 struct extent_buffer *eb;
4104 int slot;
4105 struct btrfs_root_item root_item;
4106 u32 item_size;
f45388f3 4107 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
4108
4109 path = btrfs_alloc_path();
4110 if (!path) {
4111 ret = -ENOMEM;
4112 goto out;
4113 }
4114
4115 key.objectid = 0;
4116 key.type = BTRFS_ROOT_ITEM_KEY;
4117 key.offset = 0;
4118
4119 max_key.objectid = (u64)-1;
4120 max_key.type = BTRFS_ROOT_ITEM_KEY;
4121 max_key.offset = (u64)-1;
4122
803b2f54 4123 while (1) {
6174d3cb 4124 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
4125 if (ret) {
4126 if (ret > 0)
4127 ret = 0;
4128 break;
4129 }
4130
4131 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4132 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4133 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4134 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4135 goto skip;
4136
4137 eb = path->nodes[0];
4138 slot = path->slots[0];
4139 item_size = btrfs_item_size_nr(eb, slot);
4140 if (item_size < sizeof(root_item))
4141 goto skip;
4142
803b2f54
SB
4143 read_extent_buffer(eb, &root_item,
4144 btrfs_item_ptr_offset(eb, slot),
4145 (int)sizeof(root_item));
4146 if (btrfs_root_refs(&root_item) == 0)
4147 goto skip;
f45388f3
FDBM
4148
4149 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4150 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4151 if (trans)
4152 goto update_tree;
4153
4154 btrfs_release_path(path);
803b2f54
SB
4155 /*
4156 * 1 - subvol uuid item
4157 * 1 - received_subvol uuid item
4158 */
4159 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4160 if (IS_ERR(trans)) {
4161 ret = PTR_ERR(trans);
4162 break;
4163 }
f45388f3
FDBM
4164 continue;
4165 } else {
4166 goto skip;
4167 }
4168update_tree:
4169 if (!btrfs_is_empty_uuid(root_item.uuid)) {
803b2f54
SB
4170 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4171 root_item.uuid,
4172 BTRFS_UUID_KEY_SUBVOL,
4173 key.objectid);
4174 if (ret < 0) {
efe120a0 4175 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4176 ret);
803b2f54
SB
4177 break;
4178 }
4179 }
4180
4181 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
803b2f54
SB
4182 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4183 root_item.received_uuid,
4184 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4185 key.objectid);
4186 if (ret < 0) {
efe120a0 4187 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4188 ret);
803b2f54
SB
4189 break;
4190 }
4191 }
4192
f45388f3 4193skip:
803b2f54
SB
4194 if (trans) {
4195 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
f45388f3 4196 trans = NULL;
803b2f54
SB
4197 if (ret)
4198 break;
4199 }
4200
803b2f54
SB
4201 btrfs_release_path(path);
4202 if (key.offset < (u64)-1) {
4203 key.offset++;
4204 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4205 key.offset = 0;
4206 key.type = BTRFS_ROOT_ITEM_KEY;
4207 } else if (key.objectid < (u64)-1) {
4208 key.offset = 0;
4209 key.type = BTRFS_ROOT_ITEM_KEY;
4210 key.objectid++;
4211 } else {
4212 break;
4213 }
4214 cond_resched();
4215 }
4216
4217out:
4218 btrfs_free_path(path);
f45388f3
FDBM
4219 if (trans && !IS_ERR(trans))
4220 btrfs_end_transaction(trans, fs_info->uuid_root);
803b2f54 4221 if (ret)
efe120a0 4222 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175
SB
4223 else
4224 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
4225 up(&fs_info->uuid_tree_rescan_sem);
4226 return 0;
4227}
4228
70f80175
SB
4229/*
4230 * Callback for btrfs_uuid_tree_iterate().
4231 * returns:
4232 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4233 * < 0 if an error occurred.
70f80175
SB
4234 * > 0 if the check failed, which means the caller shall remove the entry.
4235 */
4236static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4237 u8 *uuid, u8 type, u64 subid)
4238{
4239 struct btrfs_key key;
4240 int ret = 0;
4241 struct btrfs_root *subvol_root;
4242
4243 if (type != BTRFS_UUID_KEY_SUBVOL &&
4244 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4245 goto out;
4246
4247 key.objectid = subid;
4248 key.type = BTRFS_ROOT_ITEM_KEY;
4249 key.offset = (u64)-1;
4250 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4251 if (IS_ERR(subvol_root)) {
4252 ret = PTR_ERR(subvol_root);
4253 if (ret == -ENOENT)
4254 ret = 1;
4255 goto out;
4256 }
4257
4258 switch (type) {
4259 case BTRFS_UUID_KEY_SUBVOL:
4260 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4261 ret = 1;
4262 break;
4263 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4264 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4265 BTRFS_UUID_SIZE))
4266 ret = 1;
4267 break;
4268 }
4269
4270out:
4271 return ret;
4272}
4273
4274static int btrfs_uuid_rescan_kthread(void *data)
4275{
4276 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4277 int ret;
4278
4279 /*
4280 * 1st step is to iterate through the existing UUID tree and
4281 * to delete all entries that contain outdated data.
4282 * 2nd step is to add all missing entries to the UUID tree.
4283 */
4284 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4285 if (ret < 0) {
efe120a0 4286 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4287 up(&fs_info->uuid_tree_rescan_sem);
4288 return ret;
4289 }
4290 return btrfs_uuid_scan_kthread(data);
4291}
4292
f7a81ea4
SB
4293int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4294{
4295 struct btrfs_trans_handle *trans;
4296 struct btrfs_root *tree_root = fs_info->tree_root;
4297 struct btrfs_root *uuid_root;
803b2f54
SB
4298 struct task_struct *task;
4299 int ret;
f7a81ea4
SB
4300
4301 /*
4302 * 1 - root node
4303 * 1 - root item
4304 */
4305 trans = btrfs_start_transaction(tree_root, 2);
4306 if (IS_ERR(trans))
4307 return PTR_ERR(trans);
4308
4309 uuid_root = btrfs_create_tree(trans, fs_info,
4310 BTRFS_UUID_TREE_OBJECTID);
4311 if (IS_ERR(uuid_root)) {
6d13f549 4312 ret = PTR_ERR(uuid_root);
66642832 4313 btrfs_abort_transaction(trans, ret);
65d4f4c1 4314 btrfs_end_transaction(trans, tree_root);
6d13f549 4315 return ret;
f7a81ea4
SB
4316 }
4317
4318 fs_info->uuid_root = uuid_root;
4319
803b2f54
SB
4320 ret = btrfs_commit_transaction(trans, tree_root);
4321 if (ret)
4322 return ret;
4323
4324 down(&fs_info->uuid_tree_rescan_sem);
4325 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4326 if (IS_ERR(task)) {
70f80175 4327 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4328 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4329 up(&fs_info->uuid_tree_rescan_sem);
4330 return PTR_ERR(task);
4331 }
4332
4333 return 0;
f7a81ea4 4334}
803b2f54 4335
70f80175
SB
4336int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4337{
4338 struct task_struct *task;
4339
4340 down(&fs_info->uuid_tree_rescan_sem);
4341 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4342 if (IS_ERR(task)) {
4343 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4344 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4345 up(&fs_info->uuid_tree_rescan_sem);
4346 return PTR_ERR(task);
4347 }
4348
4349 return 0;
4350}
4351
8f18cf13
CM
4352/*
4353 * shrinking a device means finding all of the device extents past
4354 * the new size, and then following the back refs to the chunks.
4355 * The chunk relocation code actually frees the device extent
4356 */
4357int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4358{
4359 struct btrfs_trans_handle *trans;
4360 struct btrfs_root *root = device->dev_root;
4361 struct btrfs_dev_extent *dev_extent = NULL;
4362 struct btrfs_path *path;
4363 u64 length;
8f18cf13
CM
4364 u64 chunk_offset;
4365 int ret;
4366 int slot;
ba1bf481
JB
4367 int failed = 0;
4368 bool retried = false;
53e489bc 4369 bool checked_pending_chunks = false;
8f18cf13
CM
4370 struct extent_buffer *l;
4371 struct btrfs_key key;
6c41761f 4372 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 4373 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d
MX
4374 u64 old_size = btrfs_device_get_total_bytes(device);
4375 u64 diff = old_size - new_size;
8f18cf13 4376
63a212ab
SB
4377 if (device->is_tgtdev_for_dev_replace)
4378 return -EINVAL;
4379
8f18cf13
CM
4380 path = btrfs_alloc_path();
4381 if (!path)
4382 return -ENOMEM;
4383
e4058b54 4384 path->reada = READA_FORWARD;
8f18cf13 4385
7d9eb12c
CM
4386 lock_chunks(root);
4387
7cc8e58d 4388 btrfs_device_set_total_bytes(device, new_size);
2bf64758 4389 if (device->writeable) {
2b82032c 4390 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
4391 spin_lock(&root->fs_info->free_chunk_lock);
4392 root->fs_info->free_chunk_space -= diff;
4393 spin_unlock(&root->fs_info->free_chunk_lock);
4394 }
7d9eb12c 4395 unlock_chunks(root);
8f18cf13 4396
ba1bf481 4397again:
8f18cf13
CM
4398 key.objectid = device->devid;
4399 key.offset = (u64)-1;
4400 key.type = BTRFS_DEV_EXTENT_KEY;
4401
213e64da 4402 do {
67c5e7d4 4403 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4404 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4
FM
4405 if (ret < 0) {
4406 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4407 goto done;
67c5e7d4 4408 }
8f18cf13
CM
4409
4410 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4
FM
4411 if (ret)
4412 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4413 if (ret < 0)
4414 goto done;
4415 if (ret) {
4416 ret = 0;
b3b4aa74 4417 btrfs_release_path(path);
bf1fb512 4418 break;
8f18cf13
CM
4419 }
4420
4421 l = path->nodes[0];
4422 slot = path->slots[0];
4423 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4424
ba1bf481 4425 if (key.objectid != device->devid) {
67c5e7d4 4426 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4427 btrfs_release_path(path);
bf1fb512 4428 break;
ba1bf481 4429 }
8f18cf13
CM
4430
4431 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4432 length = btrfs_dev_extent_length(l, dev_extent);
4433
ba1bf481 4434 if (key.offset + length <= new_size) {
67c5e7d4 4435 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4436 btrfs_release_path(path);
d6397bae 4437 break;
ba1bf481 4438 }
8f18cf13 4439
8f18cf13 4440 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4441 btrfs_release_path(path);
8f18cf13 4442
dc2ee4e2 4443 ret = btrfs_relocate_chunk(root, chunk_offset);
67c5e7d4 4444 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
ba1bf481 4445 if (ret && ret != -ENOSPC)
8f18cf13 4446 goto done;
ba1bf481
JB
4447 if (ret == -ENOSPC)
4448 failed++;
213e64da 4449 } while (key.offset-- > 0);
ba1bf481
JB
4450
4451 if (failed && !retried) {
4452 failed = 0;
4453 retried = true;
4454 goto again;
4455 } else if (failed && retried) {
4456 ret = -ENOSPC;
ba1bf481 4457 goto done;
8f18cf13
CM
4458 }
4459
d6397bae 4460 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4461 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4462 if (IS_ERR(trans)) {
4463 ret = PTR_ERR(trans);
4464 goto done;
4465 }
4466
d6397bae 4467 lock_chunks(root);
53e489bc
FM
4468
4469 /*
4470 * We checked in the above loop all device extents that were already in
4471 * the device tree. However before we have updated the device's
4472 * total_bytes to the new size, we might have had chunk allocations that
4473 * have not complete yet (new block groups attached to transaction
4474 * handles), and therefore their device extents were not yet in the
4475 * device tree and we missed them in the loop above. So if we have any
4476 * pending chunk using a device extent that overlaps the device range
4477 * that we can not use anymore, commit the current transaction and
4478 * repeat the search on the device tree - this way we guarantee we will
4479 * not have chunks using device extents that end beyond 'new_size'.
4480 */
4481 if (!checked_pending_chunks) {
4482 u64 start = new_size;
4483 u64 len = old_size - new_size;
4484
499f377f
JM
4485 if (contains_pending_extent(trans->transaction, device,
4486 &start, len)) {
53e489bc
FM
4487 unlock_chunks(root);
4488 checked_pending_chunks = true;
4489 failed = 0;
4490 retried = false;
4491 ret = btrfs_commit_transaction(trans, root);
4492 if (ret)
4493 goto done;
4494 goto again;
4495 }
4496 }
4497
7cc8e58d 4498 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4499 if (list_empty(&device->resized_list))
4500 list_add_tail(&device->resized_list,
4501 &root->fs_info->fs_devices->resized_devices);
d6397bae 4502
d6397bae
CB
4503 WARN_ON(diff > old_total);
4504 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4505 unlock_chunks(root);
2196d6e8
MX
4506
4507 /* Now btrfs_update_device() will change the on-disk size. */
4508 ret = btrfs_update_device(trans, device);
d6397bae 4509 btrfs_end_transaction(trans, root);
8f18cf13
CM
4510done:
4511 btrfs_free_path(path);
53e489bc
FM
4512 if (ret) {
4513 lock_chunks(root);
4514 btrfs_device_set_total_bytes(device, old_size);
4515 if (device->writeable)
4516 device->fs_devices->total_rw_bytes += diff;
4517 spin_lock(&root->fs_info->free_chunk_lock);
4518 root->fs_info->free_chunk_space += diff;
4519 spin_unlock(&root->fs_info->free_chunk_lock);
4520 unlock_chunks(root);
4521 }
8f18cf13
CM
4522 return ret;
4523}
4524
125ccb0a 4525static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
4526 struct btrfs_key *key,
4527 struct btrfs_chunk *chunk, int item_size)
4528{
6c41761f 4529 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
4530 struct btrfs_disk_key disk_key;
4531 u32 array_size;
4532 u8 *ptr;
4533
fe48a5c0 4534 lock_chunks(root);
0b86a832 4535 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4536 if (array_size + item_size + sizeof(disk_key)
fe48a5c0
MX
4537 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4538 unlock_chunks(root);
0b86a832 4539 return -EFBIG;
fe48a5c0 4540 }
0b86a832
CM
4541
4542 ptr = super_copy->sys_chunk_array + array_size;
4543 btrfs_cpu_key_to_disk(&disk_key, key);
4544 memcpy(ptr, &disk_key, sizeof(disk_key));
4545 ptr += sizeof(disk_key);
4546 memcpy(ptr, chunk, item_size);
4547 item_size += sizeof(disk_key);
4548 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0
MX
4549 unlock_chunks(root);
4550
0b86a832
CM
4551 return 0;
4552}
4553
73c5de00
AJ
4554/*
4555 * sort the devices in descending order by max_avail, total_avail
4556 */
4557static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4558{
73c5de00
AJ
4559 const struct btrfs_device_info *di_a = a;
4560 const struct btrfs_device_info *di_b = b;
9b3f68b9 4561
73c5de00 4562 if (di_a->max_avail > di_b->max_avail)
b2117a39 4563 return -1;
73c5de00 4564 if (di_a->max_avail < di_b->max_avail)
b2117a39 4565 return 1;
73c5de00
AJ
4566 if (di_a->total_avail > di_b->total_avail)
4567 return -1;
4568 if (di_a->total_avail < di_b->total_avail)
4569 return 1;
4570 return 0;
b2117a39 4571}
0b86a832 4572
53b381b3
DW
4573static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4574{
4575 /* TODO allow them to set a preferred stripe size */
ee22184b 4576 return SZ_64K;
53b381b3
DW
4577}
4578
4579static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4580{
ffe2d203 4581 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4582 return;
4583
ceda0864 4584 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4585}
4586
14a1e067 4587#define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r) \
23f8f9b7
GH
4588 - sizeof(struct btrfs_chunk)) \
4589 / sizeof(struct btrfs_stripe) + 1)
4590
4591#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4592 - 2 * sizeof(struct btrfs_disk_key) \
4593 - 2 * sizeof(struct btrfs_chunk)) \
4594 / sizeof(struct btrfs_stripe) + 1)
4595
73c5de00 4596static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
4597 struct btrfs_root *extent_root, u64 start,
4598 u64 type)
b2117a39 4599{
73c5de00
AJ
4600 struct btrfs_fs_info *info = extent_root->fs_info;
4601 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4602 struct list_head *cur;
4603 struct map_lookup *map = NULL;
4604 struct extent_map_tree *em_tree;
4605 struct extent_map *em;
4606 struct btrfs_device_info *devices_info = NULL;
4607 u64 total_avail;
4608 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4609 int data_stripes; /* number of stripes that count for
4610 block group size */
73c5de00
AJ
4611 int sub_stripes; /* sub_stripes info for map */
4612 int dev_stripes; /* stripes per dev */
4613 int devs_max; /* max devs to use */
4614 int devs_min; /* min devs needed */
4615 int devs_increment; /* ndevs has to be a multiple of this */
4616 int ncopies; /* how many copies to data has */
4617 int ret;
4618 u64 max_stripe_size;
4619 u64 max_chunk_size;
4620 u64 stripe_size;
4621 u64 num_bytes;
53b381b3 4622 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4623 int ndevs;
4624 int i;
4625 int j;
31e50229 4626 int index;
593060d7 4627
0c460c0d 4628 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4629
73c5de00
AJ
4630 if (list_empty(&fs_devices->alloc_list))
4631 return -ENOSPC;
b2117a39 4632
31e50229 4633 index = __get_raid_index(type);
73c5de00 4634
31e50229
LB
4635 sub_stripes = btrfs_raid_array[index].sub_stripes;
4636 dev_stripes = btrfs_raid_array[index].dev_stripes;
4637 devs_max = btrfs_raid_array[index].devs_max;
4638 devs_min = btrfs_raid_array[index].devs_min;
4639 devs_increment = btrfs_raid_array[index].devs_increment;
4640 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4641
9b3f68b9 4642 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4643 max_stripe_size = SZ_1G;
73c5de00 4644 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4645 if (!devs_max)
4646 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4647 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4648 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4649 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4650 max_stripe_size = SZ_1G;
1100373f 4651 else
ee22184b 4652 max_stripe_size = SZ_256M;
73c5de00 4653 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4654 if (!devs_max)
4655 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4656 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4657 max_stripe_size = SZ_32M;
73c5de00 4658 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4659 if (!devs_max)
4660 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4661 } else {
351fd353 4662 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4663 type);
4664 BUG_ON(1);
9b3f68b9
CM
4665 }
4666
2b82032c
YZ
4667 /* we don't want a chunk larger than 10% of writeable space */
4668 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4669 max_chunk_size);
9b3f68b9 4670
31e818fe 4671 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4672 GFP_NOFS);
4673 if (!devices_info)
4674 return -ENOMEM;
0cad8a11 4675
73c5de00 4676 cur = fs_devices->alloc_list.next;
9b3f68b9 4677
9f680ce0 4678 /*
73c5de00
AJ
4679 * in the first pass through the devices list, we gather information
4680 * about the available holes on each device.
9f680ce0 4681 */
73c5de00
AJ
4682 ndevs = 0;
4683 while (cur != &fs_devices->alloc_list) {
4684 struct btrfs_device *device;
4685 u64 max_avail;
4686 u64 dev_offset;
b2117a39 4687
73c5de00 4688 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4689
73c5de00 4690 cur = cur->next;
b2117a39 4691
73c5de00 4692 if (!device->writeable) {
31b1a2bd 4693 WARN(1, KERN_ERR
efe120a0 4694 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4695 continue;
4696 }
b2117a39 4697
63a212ab
SB
4698 if (!device->in_fs_metadata ||
4699 device->is_tgtdev_for_dev_replace)
73c5de00 4700 continue;
b2117a39 4701
73c5de00
AJ
4702 if (device->total_bytes > device->bytes_used)
4703 total_avail = device->total_bytes - device->bytes_used;
4704 else
4705 total_avail = 0;
38c01b96 4706
4707 /* If there is no space on this device, skip it. */
4708 if (total_avail == 0)
4709 continue;
b2117a39 4710
6df9a95e 4711 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4712 max_stripe_size * dev_stripes,
4713 &dev_offset, &max_avail);
4714 if (ret && ret != -ENOSPC)
4715 goto error;
b2117a39 4716
73c5de00
AJ
4717 if (ret == 0)
4718 max_avail = max_stripe_size * dev_stripes;
b2117a39 4719
73c5de00
AJ
4720 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4721 continue;
b2117a39 4722
063d006f
ES
4723 if (ndevs == fs_devices->rw_devices) {
4724 WARN(1, "%s: found more than %llu devices\n",
4725 __func__, fs_devices->rw_devices);
4726 break;
4727 }
73c5de00
AJ
4728 devices_info[ndevs].dev_offset = dev_offset;
4729 devices_info[ndevs].max_avail = max_avail;
4730 devices_info[ndevs].total_avail = total_avail;
4731 devices_info[ndevs].dev = device;
4732 ++ndevs;
4733 }
b2117a39 4734
73c5de00
AJ
4735 /*
4736 * now sort the devices by hole size / available space
4737 */
4738 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4739 btrfs_cmp_device_info, NULL);
b2117a39 4740
73c5de00
AJ
4741 /* round down to number of usable stripes */
4742 ndevs -= ndevs % devs_increment;
b2117a39 4743
73c5de00
AJ
4744 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4745 ret = -ENOSPC;
4746 goto error;
b2117a39 4747 }
9f680ce0 4748
73c5de00
AJ
4749 if (devs_max && ndevs > devs_max)
4750 ndevs = devs_max;
4751 /*
4752 * the primary goal is to maximize the number of stripes, so use as many
4753 * devices as possible, even if the stripes are not maximum sized.
4754 */
4755 stripe_size = devices_info[ndevs-1].max_avail;
4756 num_stripes = ndevs * dev_stripes;
b2117a39 4757
53b381b3
DW
4758 /*
4759 * this will have to be fixed for RAID1 and RAID10 over
4760 * more drives
4761 */
4762 data_stripes = num_stripes / ncopies;
4763
53b381b3
DW
4764 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4765 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
b7f67055 4766 extent_root->stripesize);
53b381b3
DW
4767 data_stripes = num_stripes - 1;
4768 }
4769 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4770 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
b7f67055 4771 extent_root->stripesize);
53b381b3
DW
4772 data_stripes = num_stripes - 2;
4773 }
86db2578
CM
4774
4775 /*
4776 * Use the number of data stripes to figure out how big this chunk
4777 * is really going to be in terms of logical address space,
4778 * and compare that answer with the max chunk size
4779 */
4780 if (stripe_size * data_stripes > max_chunk_size) {
4781 u64 mask = (1ULL << 24) - 1;
b8b93add
DS
4782
4783 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4784
4785 /* bump the answer up to a 16MB boundary */
4786 stripe_size = (stripe_size + mask) & ~mask;
4787
4788 /* but don't go higher than the limits we found
4789 * while searching for free extents
4790 */
4791 if (stripe_size > devices_info[ndevs-1].max_avail)
4792 stripe_size = devices_info[ndevs-1].max_avail;
4793 }
4794
b8b93add 4795 stripe_size = div_u64(stripe_size, dev_stripes);
37db63a4
ID
4796
4797 /* align to BTRFS_STRIPE_LEN */
b8b93add 4798 stripe_size = div_u64(stripe_size, raid_stripe_len);
53b381b3 4799 stripe_size *= raid_stripe_len;
b2117a39
MX
4800
4801 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4802 if (!map) {
4803 ret = -ENOMEM;
4804 goto error;
4805 }
4806 map->num_stripes = num_stripes;
9b3f68b9 4807
73c5de00
AJ
4808 for (i = 0; i < ndevs; ++i) {
4809 for (j = 0; j < dev_stripes; ++j) {
4810 int s = i * dev_stripes + j;
4811 map->stripes[s].dev = devices_info[i].dev;
4812 map->stripes[s].physical = devices_info[i].dev_offset +
4813 j * stripe_size;
6324fbf3 4814 }
6324fbf3 4815 }
2b82032c 4816 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4817 map->stripe_len = raid_stripe_len;
4818 map->io_align = raid_stripe_len;
4819 map->io_width = raid_stripe_len;
2b82032c 4820 map->type = type;
2b82032c 4821 map->sub_stripes = sub_stripes;
0b86a832 4822
53b381b3 4823 num_bytes = stripe_size * data_stripes;
0b86a832 4824
73c5de00 4825 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4826
172ddd60 4827 em = alloc_extent_map();
2b82032c 4828 if (!em) {
298a8f9c 4829 kfree(map);
b2117a39
MX
4830 ret = -ENOMEM;
4831 goto error;
593060d7 4832 }
298a8f9c 4833 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 4834 em->map_lookup = map;
2b82032c 4835 em->start = start;
73c5de00 4836 em->len = num_bytes;
2b82032c
YZ
4837 em->block_start = 0;
4838 em->block_len = em->len;
6df9a95e 4839 em->orig_block_len = stripe_size;
593060d7 4840
2b82032c 4841 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4842 write_lock(&em_tree->lock);
09a2a8f9 4843 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4844 if (!ret) {
4845 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4846 atomic_inc(&em->refs);
4847 }
890871be 4848 write_unlock(&em_tree->lock);
0f5d42b2
JB
4849 if (ret) {
4850 free_extent_map(em);
1dd4602f 4851 goto error;
0f5d42b2 4852 }
0b86a832 4853
04487488
JB
4854 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4855 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4856 start, num_bytes);
6df9a95e
JB
4857 if (ret)
4858 goto error_del_extent;
2b82032c 4859
7cc8e58d
MX
4860 for (i = 0; i < map->num_stripes; i++) {
4861 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4862 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4863 }
43530c46 4864
1c116187
MX
4865 spin_lock(&extent_root->fs_info->free_chunk_lock);
4866 extent_root->fs_info->free_chunk_space -= (stripe_size *
4867 map->num_stripes);
4868 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4869
0f5d42b2 4870 free_extent_map(em);
53b381b3
DW
4871 check_raid56_incompat_flag(extent_root->fs_info, type);
4872
b2117a39 4873 kfree(devices_info);
2b82032c 4874 return 0;
b2117a39 4875
6df9a95e 4876error_del_extent:
0f5d42b2
JB
4877 write_lock(&em_tree->lock);
4878 remove_extent_mapping(em_tree, em);
4879 write_unlock(&em_tree->lock);
4880
4881 /* One for our allocation */
4882 free_extent_map(em);
4883 /* One for the tree reference */
4884 free_extent_map(em);
495e64f4
FM
4885 /* One for the pending_chunks list reference */
4886 free_extent_map(em);
b2117a39 4887error:
b2117a39
MX
4888 kfree(devices_info);
4889 return ret;
2b82032c
YZ
4890}
4891
6df9a95e 4892int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4893 struct btrfs_root *extent_root,
6df9a95e 4894 u64 chunk_offset, u64 chunk_size)
2b82032c 4895{
2b82032c
YZ
4896 struct btrfs_key key;
4897 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4898 struct btrfs_device *device;
4899 struct btrfs_chunk *chunk;
4900 struct btrfs_stripe *stripe;
6df9a95e
JB
4901 struct extent_map_tree *em_tree;
4902 struct extent_map *em;
4903 struct map_lookup *map;
4904 size_t item_size;
4905 u64 dev_offset;
4906 u64 stripe_size;
4907 int i = 0;
140e639f 4908 int ret = 0;
2b82032c 4909
6df9a95e
JB
4910 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4911 read_lock(&em_tree->lock);
4912 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4913 read_unlock(&em_tree->lock);
4914
4915 if (!em) {
4916 btrfs_crit(extent_root->fs_info, "unable to find logical "
4917 "%Lu len %Lu", chunk_offset, chunk_size);
4918 return -EINVAL;
4919 }
4920
4921 if (em->start != chunk_offset || em->len != chunk_size) {
4922 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
351fd353 4923 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
6df9a95e
JB
4924 chunk_size, em->start, em->len);
4925 free_extent_map(em);
4926 return -EINVAL;
4927 }
4928
95617d69 4929 map = em->map_lookup;
6df9a95e
JB
4930 item_size = btrfs_chunk_item_size(map->num_stripes);
4931 stripe_size = em->orig_block_len;
4932
2b82032c 4933 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4934 if (!chunk) {
4935 ret = -ENOMEM;
4936 goto out;
4937 }
4938
50460e37
FM
4939 /*
4940 * Take the device list mutex to prevent races with the final phase of
4941 * a device replace operation that replaces the device object associated
4942 * with the map's stripes, because the device object's id can change
4943 * at any time during that final phase of the device replace operation
4944 * (dev-replace.c:btrfs_dev_replace_finishing()).
4945 */
4946 mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
4947 for (i = 0; i < map->num_stripes; i++) {
4948 device = map->stripes[i].dev;
4949 dev_offset = map->stripes[i].physical;
2b82032c 4950
0b86a832 4951 ret = btrfs_update_device(trans, device);
3acd3953 4952 if (ret)
50460e37 4953 break;
6df9a95e
JB
4954 ret = btrfs_alloc_dev_extent(trans, device,
4955 chunk_root->root_key.objectid,
4956 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4957 chunk_offset, dev_offset,
4958 stripe_size);
4959 if (ret)
50460e37
FM
4960 break;
4961 }
4962 if (ret) {
4963 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4964 goto out;
2b82032c
YZ
4965 }
4966
2b82032c 4967 stripe = &chunk->stripe;
6df9a95e
JB
4968 for (i = 0; i < map->num_stripes; i++) {
4969 device = map->stripes[i].dev;
4970 dev_offset = map->stripes[i].physical;
0b86a832 4971
e17cade2
CM
4972 btrfs_set_stack_stripe_devid(stripe, device->devid);
4973 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4974 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4975 stripe++;
0b86a832 4976 }
50460e37 4977 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
0b86a832 4978
2b82032c 4979 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4980 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4981 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4982 btrfs_set_stack_chunk_type(chunk, map->type);
4983 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4984 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4985 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4986 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4987 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4988
2b82032c
YZ
4989 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4990 key.type = BTRFS_CHUNK_ITEM_KEY;
4991 key.offset = chunk_offset;
0b86a832 4992
2b82032c 4993 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4994 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4995 /*
4996 * TODO: Cleanup of inserted chunk root in case of
4997 * failure.
4998 */
125ccb0a 4999 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 5000 item_size);
8f18cf13 5001 }
1abe9b8a 5002
6df9a95e 5003out:
0b86a832 5004 kfree(chunk);
6df9a95e 5005 free_extent_map(em);
4ed1d16e 5006 return ret;
2b82032c 5007}
0b86a832 5008
2b82032c
YZ
5009/*
5010 * Chunk allocation falls into two parts. The first part does works
5011 * that make the new allocated chunk useable, but not do any operation
5012 * that modifies the chunk tree. The second part does the works that
5013 * require modifying the chunk tree. This division is important for the
5014 * bootstrap process of adding storage to a seed btrfs.
5015 */
5016int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5017 struct btrfs_root *extent_root, u64 type)
5018{
5019 u64 chunk_offset;
2b82032c 5020
a9629596 5021 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
6df9a95e
JB
5022 chunk_offset = find_next_chunk(extent_root->fs_info);
5023 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
5024}
5025
d397712b 5026static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
5027 struct btrfs_root *root,
5028 struct btrfs_device *device)
5029{
5030 u64 chunk_offset;
5031 u64 sys_chunk_offset;
2b82032c 5032 u64 alloc_profile;
2b82032c
YZ
5033 struct btrfs_fs_info *fs_info = root->fs_info;
5034 struct btrfs_root *extent_root = fs_info->extent_root;
5035 int ret;
5036
6df9a95e 5037 chunk_offset = find_next_chunk(fs_info);
de98ced9 5038 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
5039 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
5040 alloc_profile);
79787eaa
JM
5041 if (ret)
5042 return ret;
2b82032c 5043
6df9a95e 5044 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 5045 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
5046 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
5047 alloc_profile);
79787eaa 5048 return ret;
2b82032c
YZ
5049}
5050
d20983b4
MX
5051static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5052{
5053 int max_errors;
5054
5055 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5056 BTRFS_BLOCK_GROUP_RAID10 |
5057 BTRFS_BLOCK_GROUP_RAID5 |
5058 BTRFS_BLOCK_GROUP_DUP)) {
5059 max_errors = 1;
5060 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5061 max_errors = 2;
5062 } else {
5063 max_errors = 0;
005d6427 5064 }
2b82032c 5065
d20983b4 5066 return max_errors;
2b82032c
YZ
5067}
5068
5069int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
5070{
5071 struct extent_map *em;
5072 struct map_lookup *map;
5073 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5074 int readonly = 0;
d20983b4 5075 int miss_ndevs = 0;
2b82032c
YZ
5076 int i;
5077
890871be 5078 read_lock(&map_tree->map_tree.lock);
2b82032c 5079 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 5080 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
5081 if (!em)
5082 return 1;
5083
95617d69 5084 map = em->map_lookup;
2b82032c 5085 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
5086 if (map->stripes[i].dev->missing) {
5087 miss_ndevs++;
5088 continue;
5089 }
5090
2b82032c
YZ
5091 if (!map->stripes[i].dev->writeable) {
5092 readonly = 1;
d20983b4 5093 goto end;
2b82032c
YZ
5094 }
5095 }
d20983b4
MX
5096
5097 /*
5098 * If the number of missing devices is larger than max errors,
5099 * we can not write the data into that chunk successfully, so
5100 * set it readonly.
5101 */
5102 if (miss_ndevs > btrfs_chunk_max_errors(map))
5103 readonly = 1;
5104end:
0b86a832 5105 free_extent_map(em);
2b82032c 5106 return readonly;
0b86a832
CM
5107}
5108
5109void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5110{
a8067e02 5111 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
5112}
5113
5114void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5115{
5116 struct extent_map *em;
5117
d397712b 5118 while (1) {
890871be 5119 write_lock(&tree->map_tree.lock);
0b86a832
CM
5120 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5121 if (em)
5122 remove_extent_mapping(&tree->map_tree, em);
890871be 5123 write_unlock(&tree->map_tree.lock);
0b86a832
CM
5124 if (!em)
5125 break;
0b86a832
CM
5126 /* once for us */
5127 free_extent_map(em);
5128 /* once for the tree */
5129 free_extent_map(em);
5130 }
5131}
5132
5d964051 5133int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 5134{
5d964051 5135 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
5136 struct extent_map *em;
5137 struct map_lookup *map;
5138 struct extent_map_tree *em_tree = &map_tree->map_tree;
5139 int ret;
5140
890871be 5141 read_lock(&em_tree->lock);
f188591e 5142 em = lookup_extent_mapping(em_tree, logical, len);
890871be 5143 read_unlock(&em_tree->lock);
f188591e 5144
fb7669b5
JB
5145 /*
5146 * We could return errors for these cases, but that could get ugly and
5147 * we'd probably do the same thing which is just not do anything else
5148 * and exit, so return 1 so the callers don't try to use other copies.
5149 */
5150 if (!em) {
351fd353 5151 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
fb7669b5
JB
5152 logical+len);
5153 return 1;
5154 }
5155
5156 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 5157 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
351fd353 5158 "%Lu-%Lu", logical, logical+len, em->start,
fb7669b5 5159 em->start + em->len);
7d3d1744 5160 free_extent_map(em);
fb7669b5
JB
5161 return 1;
5162 }
5163
95617d69 5164 map = em->map_lookup;
f188591e
CM
5165 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5166 ret = map->num_stripes;
321aecc6
CM
5167 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5168 ret = map->sub_stripes;
53b381b3
DW
5169 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5170 ret = 2;
5171 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5172 ret = 3;
f188591e
CM
5173 else
5174 ret = 1;
5175 free_extent_map(em);
ad6d620e 5176
73beece9 5177 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
ad6d620e
SB
5178 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5179 ret++;
73beece9 5180 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
ad6d620e 5181
f188591e
CM
5182 return ret;
5183}
5184
53b381b3
DW
5185unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5186 struct btrfs_mapping_tree *map_tree,
5187 u64 logical)
5188{
5189 struct extent_map *em;
5190 struct map_lookup *map;
5191 struct extent_map_tree *em_tree = &map_tree->map_tree;
5192 unsigned long len = root->sectorsize;
5193
5194 read_lock(&em_tree->lock);
5195 em = lookup_extent_mapping(em_tree, logical, len);
5196 read_unlock(&em_tree->lock);
5197 BUG_ON(!em);
5198
5199 BUG_ON(em->start > logical || em->start + em->len < logical);
95617d69 5200 map = em->map_lookup;
ffe2d203 5201 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3 5202 len = map->stripe_len * nr_data_stripes(map);
53b381b3
DW
5203 free_extent_map(em);
5204 return len;
5205}
5206
5207int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5208 u64 logical, u64 len, int mirror_num)
5209{
5210 struct extent_map *em;
5211 struct map_lookup *map;
5212 struct extent_map_tree *em_tree = &map_tree->map_tree;
5213 int ret = 0;
5214
5215 read_lock(&em_tree->lock);
5216 em = lookup_extent_mapping(em_tree, logical, len);
5217 read_unlock(&em_tree->lock);
5218 BUG_ON(!em);
5219
5220 BUG_ON(em->start > logical || em->start + em->len < logical);
95617d69 5221 map = em->map_lookup;
ffe2d203 5222 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
5223 ret = 1;
5224 free_extent_map(em);
5225 return ret;
5226}
5227
30d9861f
SB
5228static int find_live_mirror(struct btrfs_fs_info *fs_info,
5229 struct map_lookup *map, int first, int num,
5230 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
5231{
5232 int i;
30d9861f
SB
5233 int tolerance;
5234 struct btrfs_device *srcdev;
5235
5236 if (dev_replace_is_ongoing &&
5237 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5238 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5239 srcdev = fs_info->dev_replace.srcdev;
5240 else
5241 srcdev = NULL;
5242
5243 /*
5244 * try to avoid the drive that is the source drive for a
5245 * dev-replace procedure, only choose it if no other non-missing
5246 * mirror is available
5247 */
5248 for (tolerance = 0; tolerance < 2; tolerance++) {
5249 if (map->stripes[optimal].dev->bdev &&
5250 (tolerance || map->stripes[optimal].dev != srcdev))
5251 return optimal;
5252 for (i = first; i < first + num; i++) {
5253 if (map->stripes[i].dev->bdev &&
5254 (tolerance || map->stripes[i].dev != srcdev))
5255 return i;
5256 }
dfe25020 5257 }
30d9861f 5258
dfe25020
CM
5259 /* we couldn't find one that doesn't fail. Just return something
5260 * and the io error handling code will clean up eventually
5261 */
5262 return optimal;
5263}
5264
53b381b3
DW
5265static inline int parity_smaller(u64 a, u64 b)
5266{
5267 return a > b;
5268}
5269
5270/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5271static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5272{
5273 struct btrfs_bio_stripe s;
5274 int i;
5275 u64 l;
5276 int again = 1;
5277
5278 while (again) {
5279 again = 0;
cc7539ed 5280 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5281 if (parity_smaller(bbio->raid_map[i],
5282 bbio->raid_map[i+1])) {
53b381b3 5283 s = bbio->stripes[i];
8e5cfb55 5284 l = bbio->raid_map[i];
53b381b3 5285 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5286 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5287 bbio->stripes[i+1] = s;
8e5cfb55 5288 bbio->raid_map[i+1] = l;
2c8cdd6e 5289
53b381b3
DW
5290 again = 1;
5291 }
5292 }
5293 }
5294}
5295
6e9606d2
ZL
5296static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5297{
5298 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5299 /* the size of the btrfs_bio */
6e9606d2 5300 sizeof(struct btrfs_bio) +
e57cf21e 5301 /* plus the variable array for the stripes */
6e9606d2 5302 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5303 /* plus the variable array for the tgt dev */
6e9606d2 5304 sizeof(int) * (real_stripes) +
e57cf21e
CM
5305 /*
5306 * plus the raid_map, which includes both the tgt dev
5307 * and the stripes
5308 */
5309 sizeof(u64) * (total_stripes),
277fb5fc 5310 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5311
5312 atomic_set(&bbio->error, 0);
5313 atomic_set(&bbio->refs, 1);
5314
5315 return bbio;
5316}
5317
5318void btrfs_get_bbio(struct btrfs_bio *bbio)
5319{
5320 WARN_ON(!atomic_read(&bbio->refs));
5321 atomic_inc(&bbio->refs);
5322}
5323
5324void btrfs_put_bbio(struct btrfs_bio *bbio)
5325{
5326 if (!bbio)
5327 return;
5328 if (atomic_dec_and_test(&bbio->refs))
5329 kfree(bbio);
5330}
5331
b3d3fa51 5332static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
f2d8d74d 5333 u64 logical, u64 *length,
a1d3c478 5334 struct btrfs_bio **bbio_ret,
8e5cfb55 5335 int mirror_num, int need_raid_map)
0b86a832
CM
5336{
5337 struct extent_map *em;
5338 struct map_lookup *map;
3ec706c8 5339 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
5340 struct extent_map_tree *em_tree = &map_tree->map_tree;
5341 u64 offset;
593060d7 5342 u64 stripe_offset;
fce3bb9a 5343 u64 stripe_end_offset;
593060d7 5344 u64 stripe_nr;
fce3bb9a
LD
5345 u64 stripe_nr_orig;
5346 u64 stripe_nr_end;
53b381b3 5347 u64 stripe_len;
9d644a62 5348 u32 stripe_index;
cea9e445 5349 int i;
de11cc12 5350 int ret = 0;
f2d8d74d 5351 int num_stripes;
a236aed1 5352 int max_errors = 0;
2c8cdd6e 5353 int tgtdev_indexes = 0;
a1d3c478 5354 struct btrfs_bio *bbio = NULL;
472262f3
SB
5355 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5356 int dev_replace_is_ongoing = 0;
5357 int num_alloc_stripes;
ad6d620e
SB
5358 int patch_the_first_stripe_for_dev_replace = 0;
5359 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5360 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5361
890871be 5362 read_lock(&em_tree->lock);
0b86a832 5363 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 5364 read_unlock(&em_tree->lock);
f2d8d74d 5365
3b951516 5366 if (!em) {
c2cf52eb 5367 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 5368 logical, *length);
9bb91873
JB
5369 return -EINVAL;
5370 }
5371
5372 if (em->start > logical || em->start + em->len < logical) {
5373 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
351fd353 5374 "found %Lu-%Lu", logical, em->start,
9bb91873 5375 em->start + em->len);
7d3d1744 5376 free_extent_map(em);
9bb91873 5377 return -EINVAL;
3b951516 5378 }
0b86a832 5379
95617d69 5380 map = em->map_lookup;
0b86a832 5381 offset = logical - em->start;
593060d7 5382
53b381b3 5383 stripe_len = map->stripe_len;
593060d7
CM
5384 stripe_nr = offset;
5385 /*
5386 * stripe_nr counts the total number of stripes we have to stride
5387 * to get to this block
5388 */
47c5713f 5389 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5390
53b381b3 5391 stripe_offset = stripe_nr * stripe_len;
e042d1ec
JB
5392 if (offset < stripe_offset) {
5393 btrfs_crit(fs_info, "stripe math has gone wrong, "
5394 "stripe_offset=%llu, offset=%llu, start=%llu, "
5395 "logical=%llu, stripe_len=%llu",
5396 stripe_offset, offset, em->start, logical,
5397 stripe_len);
5398 free_extent_map(em);
5399 return -EINVAL;
5400 }
593060d7
CM
5401
5402 /* stripe_offset is the offset of this block in its stripe*/
5403 stripe_offset = offset - stripe_offset;
5404
53b381b3 5405 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5406 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5407 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5408 raid56_full_stripe_start = offset;
5409
5410 /* allow a write of a full stripe, but make sure we don't
5411 * allow straddling of stripes
5412 */
47c5713f
DS
5413 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5414 full_stripe_len);
53b381b3
DW
5415 raid56_full_stripe_start *= full_stripe_len;
5416 }
5417
b3d3fa51 5418 if (op == REQ_OP_DISCARD) {
53b381b3 5419 /* we don't discard raid56 yet */
ffe2d203 5420 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5421 ret = -EOPNOTSUPP;
5422 goto out;
5423 }
fce3bb9a 5424 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
5425 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5426 u64 max_len;
5427 /* For writes to RAID[56], allow a full stripeset across all disks.
5428 For other RAID types and for RAID[56] reads, just allow a single
5429 stripe (on a single disk). */
ffe2d203 5430 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
b3d3fa51 5431 (op == REQ_OP_WRITE)) {
53b381b3
DW
5432 max_len = stripe_len * nr_data_stripes(map) -
5433 (offset - raid56_full_stripe_start);
5434 } else {
5435 /* we limit the length of each bio to what fits in a stripe */
5436 max_len = stripe_len - stripe_offset;
5437 }
5438 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5439 } else {
5440 *length = em->len - offset;
5441 }
f2d8d74d 5442
53b381b3
DW
5443 /* This is for when we're called from btrfs_merge_bio_hook() and all
5444 it cares about is the length */
a1d3c478 5445 if (!bbio_ret)
cea9e445
CM
5446 goto out;
5447
73beece9 5448 btrfs_dev_replace_lock(dev_replace, 0);
472262f3
SB
5449 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5450 if (!dev_replace_is_ongoing)
73beece9
LB
5451 btrfs_dev_replace_unlock(dev_replace, 0);
5452 else
5453 btrfs_dev_replace_set_lock_blocking(dev_replace);
472262f3 5454
ad6d620e 5455 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
b3d3fa51
MC
5456 op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5457 op != REQ_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
ad6d620e
SB
5458 /*
5459 * in dev-replace case, for repair case (that's the only
5460 * case where the mirror is selected explicitly when
5461 * calling btrfs_map_block), blocks left of the left cursor
5462 * can also be read from the target drive.
5463 * For REQ_GET_READ_MIRRORS, the target drive is added as
5464 * the last one to the array of stripes. For READ, it also
5465 * needs to be supported using the same mirror number.
5466 * If the requested block is not left of the left cursor,
5467 * EIO is returned. This can happen because btrfs_num_copies()
5468 * returns one more in the dev-replace case.
5469 */
5470 u64 tmp_length = *length;
5471 struct btrfs_bio *tmp_bbio = NULL;
5472 int tmp_num_stripes;
5473 u64 srcdev_devid = dev_replace->srcdev->devid;
5474 int index_srcdev = 0;
5475 int found = 0;
5476 u64 physical_of_found = 0;
5477
5478 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
8e5cfb55 5479 logical, &tmp_length, &tmp_bbio, 0, 0);
ad6d620e
SB
5480 if (ret) {
5481 WARN_ON(tmp_bbio != NULL);
5482 goto out;
5483 }
5484
5485 tmp_num_stripes = tmp_bbio->num_stripes;
5486 if (mirror_num > tmp_num_stripes) {
5487 /*
5488 * REQ_GET_READ_MIRRORS does not contain this
5489 * mirror, that means that the requested area
5490 * is not left of the left cursor
5491 */
5492 ret = -EIO;
6e9606d2 5493 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5494 goto out;
5495 }
5496
5497 /*
5498 * process the rest of the function using the mirror_num
5499 * of the source drive. Therefore look it up first.
5500 * At the end, patch the device pointer to the one of the
5501 * target drive.
5502 */
5503 for (i = 0; i < tmp_num_stripes; i++) {
94a97dfe
ZL
5504 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5505 continue;
5506
5507 /*
5508 * In case of DUP, in order to keep it simple, only add
5509 * the mirror with the lowest physical address
5510 */
5511 if (found &&
5512 physical_of_found <= tmp_bbio->stripes[i].physical)
5513 continue;
5514
5515 index_srcdev = i;
5516 found = 1;
5517 physical_of_found = tmp_bbio->stripes[i].physical;
ad6d620e
SB
5518 }
5519
94a97dfe
ZL
5520 btrfs_put_bbio(tmp_bbio);
5521
5522 if (!found) {
ad6d620e
SB
5523 WARN_ON(1);
5524 ret = -EIO;
ad6d620e
SB
5525 goto out;
5526 }
5527
94a97dfe
ZL
5528 mirror_num = index_srcdev + 1;
5529 patch_the_first_stripe_for_dev_replace = 1;
5530 physical_to_patch_in_first_stripe = physical_of_found;
ad6d620e
SB
5531 } else if (mirror_num > map->num_stripes) {
5532 mirror_num = 0;
5533 }
5534
f2d8d74d 5535 num_stripes = 1;
cea9e445 5536 stripe_index = 0;
fce3bb9a 5537 stripe_nr_orig = stripe_nr;
fda2832f 5538 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
b8b93add 5539 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
fce3bb9a
LD
5540 stripe_end_offset = stripe_nr_end * map->stripe_len -
5541 (offset + *length);
53b381b3 5542
fce3bb9a 5543 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
b3d3fa51 5544 if (op == REQ_OP_DISCARD)
fce3bb9a
LD
5545 num_stripes = min_t(u64, map->num_stripes,
5546 stripe_nr_end - stripe_nr_orig);
47c5713f
DS
5547 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5548 &stripe_index);
b3d3fa51
MC
5549 if (op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5550 op != REQ_GET_READ_MIRRORS)
28e1cc7d 5551 mirror_num = 1;
fce3bb9a 5552 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
b3d3fa51
MC
5553 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5554 op == REQ_GET_READ_MIRRORS)
f2d8d74d 5555 num_stripes = map->num_stripes;
2fff734f 5556 else if (mirror_num)
f188591e 5557 stripe_index = mirror_num - 1;
dfe25020 5558 else {
30d9861f 5559 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5560 map->num_stripes,
30d9861f
SB
5561 current->pid % map->num_stripes,
5562 dev_replace_is_ongoing);
a1d3c478 5563 mirror_num = stripe_index + 1;
dfe25020 5564 }
2fff734f 5565
611f0e00 5566 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
df5c82a8 5567 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
b3d3fa51 5568 op == REQ_GET_READ_MIRRORS) {
f2d8d74d 5569 num_stripes = map->num_stripes;
a1d3c478 5570 } else if (mirror_num) {
f188591e 5571 stripe_index = mirror_num - 1;
a1d3c478
JS
5572 } else {
5573 mirror_num = 1;
5574 }
2fff734f 5575
321aecc6 5576 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5577 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5578
47c5713f 5579 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5580 stripe_index *= map->sub_stripes;
5581
b3d3fa51 5582 if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
f2d8d74d 5583 num_stripes = map->sub_stripes;
b3d3fa51 5584 else if (op == REQ_OP_DISCARD)
fce3bb9a
LD
5585 num_stripes = min_t(u64, map->sub_stripes *
5586 (stripe_nr_end - stripe_nr_orig),
5587 map->num_stripes);
321aecc6
CM
5588 else if (mirror_num)
5589 stripe_index += mirror_num - 1;
dfe25020 5590 else {
3e74317a 5591 int old_stripe_index = stripe_index;
30d9861f
SB
5592 stripe_index = find_live_mirror(fs_info, map,
5593 stripe_index,
dfe25020 5594 map->sub_stripes, stripe_index +
30d9861f
SB
5595 current->pid % map->sub_stripes,
5596 dev_replace_is_ongoing);
3e74317a 5597 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5598 }
53b381b3 5599
ffe2d203 5600 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8e5cfb55 5601 if (need_raid_map &&
b3d3fa51 5602 (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS ||
af8e2d1d 5603 mirror_num > 1)) {
53b381b3 5604 /* push stripe_nr back to the start of the full stripe */
b8b93add
DS
5605 stripe_nr = div_u64(raid56_full_stripe_start,
5606 stripe_len * nr_data_stripes(map));
53b381b3
DW
5607
5608 /* RAID[56] write or recovery. Return all stripes */
5609 num_stripes = map->num_stripes;
5610 max_errors = nr_parity_stripes(map);
5611
53b381b3
DW
5612 *length = map->stripe_len;
5613 stripe_index = 0;
5614 stripe_offset = 0;
5615 } else {
5616 /*
5617 * Mirror #0 or #1 means the original data block.
5618 * Mirror #2 is RAID5 parity block.
5619 * Mirror #3 is RAID6 Q block.
5620 */
47c5713f
DS
5621 stripe_nr = div_u64_rem(stripe_nr,
5622 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5623 if (mirror_num > 1)
5624 stripe_index = nr_data_stripes(map) +
5625 mirror_num - 2;
5626
5627 /* We distribute the parity blocks across stripes */
47c5713f
DS
5628 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5629 &stripe_index);
b3d3fa51
MC
5630 if ((op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5631 op != REQ_GET_READ_MIRRORS) && mirror_num <= 1)
28e1cc7d 5632 mirror_num = 1;
53b381b3 5633 }
8790d502
CM
5634 } else {
5635 /*
47c5713f
DS
5636 * after this, stripe_nr is the number of stripes on this
5637 * device we have to walk to find the data, and stripe_index is
5638 * the number of our device in the stripe array
8790d502 5639 */
47c5713f
DS
5640 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5641 &stripe_index);
a1d3c478 5642 mirror_num = stripe_index + 1;
8790d502 5643 }
e042d1ec
JB
5644 if (stripe_index >= map->num_stripes) {
5645 btrfs_crit(fs_info, "stripe index math went horribly wrong, "
5646 "got stripe_index=%u, num_stripes=%u",
5647 stripe_index, map->num_stripes);
5648 ret = -EINVAL;
5649 goto out;
5650 }
cea9e445 5651
472262f3 5652 num_alloc_stripes = num_stripes;
ad6d620e 5653 if (dev_replace_is_ongoing) {
b3d3fa51 5654 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD)
ad6d620e 5655 num_alloc_stripes <<= 1;
b3d3fa51 5656 if (op == REQ_GET_READ_MIRRORS)
ad6d620e 5657 num_alloc_stripes++;
2c8cdd6e 5658 tgtdev_indexes = num_stripes;
ad6d620e 5659 }
2c8cdd6e 5660
6e9606d2 5661 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5662 if (!bbio) {
5663 ret = -ENOMEM;
5664 goto out;
5665 }
2c8cdd6e
MX
5666 if (dev_replace_is_ongoing)
5667 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5668
8e5cfb55 5669 /* build raid_map */
ffe2d203 5670 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
b3d3fa51
MC
5671 need_raid_map &&
5672 ((op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS) ||
8e5cfb55
ZL
5673 mirror_num > 1)) {
5674 u64 tmp;
9d644a62 5675 unsigned rot;
8e5cfb55
ZL
5676
5677 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5678 sizeof(struct btrfs_bio_stripe) *
5679 num_alloc_stripes +
5680 sizeof(int) * tgtdev_indexes);
5681
5682 /* Work out the disk rotation on this stripe-set */
47c5713f 5683 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5684
5685 /* Fill in the logical address of each stripe */
5686 tmp = stripe_nr * nr_data_stripes(map);
5687 for (i = 0; i < nr_data_stripes(map); i++)
5688 bbio->raid_map[(i+rot) % num_stripes] =
5689 em->start + (tmp + i) * map->stripe_len;
5690
5691 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5692 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5693 bbio->raid_map[(i+rot+1) % num_stripes] =
5694 RAID6_Q_STRIPE;
5695 }
5696
b3d3fa51 5697 if (op == REQ_OP_DISCARD) {
9d644a62
DS
5698 u32 factor = 0;
5699 u32 sub_stripes = 0;
ec9ef7a1
LZ
5700 u64 stripes_per_dev = 0;
5701 u32 remaining_stripes = 0;
b89203f7 5702 u32 last_stripe = 0;
ec9ef7a1
LZ
5703
5704 if (map->type &
5705 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5706 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5707 sub_stripes = 1;
5708 else
5709 sub_stripes = map->sub_stripes;
5710
5711 factor = map->num_stripes / sub_stripes;
5712 stripes_per_dev = div_u64_rem(stripe_nr_end -
5713 stripe_nr_orig,
5714 factor,
5715 &remaining_stripes);
b89203f7
LB
5716 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5717 last_stripe *= sub_stripes;
ec9ef7a1
LZ
5718 }
5719
fce3bb9a 5720 for (i = 0; i < num_stripes; i++) {
a1d3c478 5721 bbio->stripes[i].physical =
f2d8d74d
CM
5722 map->stripes[stripe_index].physical +
5723 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 5724 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 5725
ec9ef7a1
LZ
5726 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5727 BTRFS_BLOCK_GROUP_RAID10)) {
5728 bbio->stripes[i].length = stripes_per_dev *
5729 map->stripe_len;
b89203f7 5730
ec9ef7a1
LZ
5731 if (i / sub_stripes < remaining_stripes)
5732 bbio->stripes[i].length +=
5733 map->stripe_len;
b89203f7
LB
5734
5735 /*
5736 * Special for the first stripe and
5737 * the last stripe:
5738 *
5739 * |-------|...|-------|
5740 * |----------|
5741 * off end_off
5742 */
ec9ef7a1 5743 if (i < sub_stripes)
a1d3c478 5744 bbio->stripes[i].length -=
fce3bb9a 5745 stripe_offset;
b89203f7
LB
5746
5747 if (stripe_index >= last_stripe &&
5748 stripe_index <= (last_stripe +
5749 sub_stripes - 1))
a1d3c478 5750 bbio->stripes[i].length -=
fce3bb9a 5751 stripe_end_offset;
b89203f7 5752
ec9ef7a1
LZ
5753 if (i == sub_stripes - 1)
5754 stripe_offset = 0;
fce3bb9a 5755 } else
a1d3c478 5756 bbio->stripes[i].length = *length;
fce3bb9a
LD
5757
5758 stripe_index++;
5759 if (stripe_index == map->num_stripes) {
5760 /* This could only happen for RAID0/10 */
5761 stripe_index = 0;
5762 stripe_nr++;
5763 }
5764 }
5765 } else {
5766 for (i = 0; i < num_stripes; i++) {
a1d3c478 5767 bbio->stripes[i].physical =
212a17ab
LT
5768 map->stripes[stripe_index].physical +
5769 stripe_offset +
5770 stripe_nr * map->stripe_len;
a1d3c478 5771 bbio->stripes[i].dev =
212a17ab 5772 map->stripes[stripe_index].dev;
fce3bb9a 5773 stripe_index++;
f2d8d74d 5774 }
593060d7 5775 }
de11cc12 5776
b3d3fa51 5777 if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
d20983b4 5778 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5779
8e5cfb55
ZL
5780 if (bbio->raid_map)
5781 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5782
2c8cdd6e 5783 tgtdev_indexes = 0;
b3d3fa51
MC
5784 if (dev_replace_is_ongoing &&
5785 (op == REQ_OP_WRITE || op == REQ_OP_DISCARD) &&
472262f3
SB
5786 dev_replace->tgtdev != NULL) {
5787 int index_where_to_add;
5788 u64 srcdev_devid = dev_replace->srcdev->devid;
5789
5790 /*
5791 * duplicate the write operations while the dev replace
5792 * procedure is running. Since the copying of the old disk
5793 * to the new disk takes place at run time while the
5794 * filesystem is mounted writable, the regular write
5795 * operations to the old disk have to be duplicated to go
5796 * to the new disk as well.
5797 * Note that device->missing is handled by the caller, and
5798 * that the write to the old disk is already set up in the
5799 * stripes array.
5800 */
5801 index_where_to_add = num_stripes;
5802 for (i = 0; i < num_stripes; i++) {
5803 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5804 /* write to new disk, too */
5805 struct btrfs_bio_stripe *new =
5806 bbio->stripes + index_where_to_add;
5807 struct btrfs_bio_stripe *old =
5808 bbio->stripes + i;
5809
5810 new->physical = old->physical;
5811 new->length = old->length;
5812 new->dev = dev_replace->tgtdev;
2c8cdd6e 5813 bbio->tgtdev_map[i] = index_where_to_add;
472262f3
SB
5814 index_where_to_add++;
5815 max_errors++;
2c8cdd6e 5816 tgtdev_indexes++;
472262f3
SB
5817 }
5818 }
5819 num_stripes = index_where_to_add;
b3d3fa51 5820 } else if (dev_replace_is_ongoing && (op == REQ_GET_READ_MIRRORS) &&
ad6d620e
SB
5821 dev_replace->tgtdev != NULL) {
5822 u64 srcdev_devid = dev_replace->srcdev->devid;
5823 int index_srcdev = 0;
5824 int found = 0;
5825 u64 physical_of_found = 0;
5826
5827 /*
5828 * During the dev-replace procedure, the target drive can
5829 * also be used to read data in case it is needed to repair
5830 * a corrupt block elsewhere. This is possible if the
5831 * requested area is left of the left cursor. In this area,
5832 * the target drive is a full copy of the source drive.
5833 */
5834 for (i = 0; i < num_stripes; i++) {
5835 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5836 /*
5837 * In case of DUP, in order to keep it
5838 * simple, only add the mirror with the
5839 * lowest physical address
5840 */
5841 if (found &&
5842 physical_of_found <=
5843 bbio->stripes[i].physical)
5844 continue;
5845 index_srcdev = i;
5846 found = 1;
5847 physical_of_found = bbio->stripes[i].physical;
5848 }
5849 }
5850 if (found) {
22ab04e8
FM
5851 struct btrfs_bio_stripe *tgtdev_stripe =
5852 bbio->stripes + num_stripes;
ad6d620e 5853
22ab04e8
FM
5854 tgtdev_stripe->physical = physical_of_found;
5855 tgtdev_stripe->length =
5856 bbio->stripes[index_srcdev].length;
5857 tgtdev_stripe->dev = dev_replace->tgtdev;
5858 bbio->tgtdev_map[index_srcdev] = num_stripes;
ad6d620e 5859
22ab04e8
FM
5860 tgtdev_indexes++;
5861 num_stripes++;
ad6d620e 5862 }
472262f3
SB
5863 }
5864
de11cc12 5865 *bbio_ret = bbio;
10f11900 5866 bbio->map_type = map->type;
de11cc12
LZ
5867 bbio->num_stripes = num_stripes;
5868 bbio->max_errors = max_errors;
5869 bbio->mirror_num = mirror_num;
2c8cdd6e 5870 bbio->num_tgtdevs = tgtdev_indexes;
ad6d620e
SB
5871
5872 /*
5873 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5874 * mirror_num == num_stripes + 1 && dev_replace target drive is
5875 * available as a mirror
5876 */
5877 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5878 WARN_ON(num_stripes > 1);
5879 bbio->stripes[0].dev = dev_replace->tgtdev;
5880 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5881 bbio->mirror_num = map->num_stripes + 1;
5882 }
cea9e445 5883out:
73beece9
LB
5884 if (dev_replace_is_ongoing) {
5885 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5886 btrfs_dev_replace_unlock(dev_replace, 0);
5887 }
0b86a832 5888 free_extent_map(em);
de11cc12 5889 return ret;
0b86a832
CM
5890}
5891
b3d3fa51 5892int btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
f2d8d74d 5893 u64 logical, u64 *length,
a1d3c478 5894 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5895{
b3d3fa51 5896 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 5897 mirror_num, 0);
f2d8d74d
CM
5898}
5899
af8e2d1d 5900/* For Scrub/replace */
b3d3fa51 5901int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int op,
af8e2d1d
MX
5902 u64 logical, u64 *length,
5903 struct btrfs_bio **bbio_ret, int mirror_num,
8e5cfb55 5904 int need_raid_map)
af8e2d1d 5905{
b3d3fa51 5906 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 5907 mirror_num, need_raid_map);
af8e2d1d
MX
5908}
5909
a512bbf8
YZ
5910int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5911 u64 chunk_start, u64 physical, u64 devid,
5912 u64 **logical, int *naddrs, int *stripe_len)
5913{
5914 struct extent_map_tree *em_tree = &map_tree->map_tree;
5915 struct extent_map *em;
5916 struct map_lookup *map;
5917 u64 *buf;
5918 u64 bytenr;
5919 u64 length;
5920 u64 stripe_nr;
53b381b3 5921 u64 rmap_len;
a512bbf8
YZ
5922 int i, j, nr = 0;
5923
890871be 5924 read_lock(&em_tree->lock);
a512bbf8 5925 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5926 read_unlock(&em_tree->lock);
a512bbf8 5927
835d974f 5928 if (!em) {
efe120a0 5929 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
835d974f
JB
5930 chunk_start);
5931 return -EIO;
5932 }
5933
5934 if (em->start != chunk_start) {
efe120a0 5935 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
835d974f
JB
5936 em->start, chunk_start);
5937 free_extent_map(em);
5938 return -EIO;
5939 }
95617d69 5940 map = em->map_lookup;
a512bbf8
YZ
5941
5942 length = em->len;
53b381b3
DW
5943 rmap_len = map->stripe_len;
5944
a512bbf8 5945 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 5946 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 5947 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 5948 length = div_u64(length, map->num_stripes);
ffe2d203 5949 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 5950 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
5951 rmap_len = map->stripe_len * nr_data_stripes(map);
5952 }
a512bbf8 5953
31e818fe 5954 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 5955 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5956
5957 for (i = 0; i < map->num_stripes; i++) {
5958 if (devid && map->stripes[i].dev->devid != devid)
5959 continue;
5960 if (map->stripes[i].physical > physical ||
5961 map->stripes[i].physical + length <= physical)
5962 continue;
5963
5964 stripe_nr = physical - map->stripes[i].physical;
b8b93add 5965 stripe_nr = div_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
5966
5967 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5968 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 5969 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
5970 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5971 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5972 } /* else if RAID[56], multiply by nr_data_stripes().
5973 * Alternatively, just use rmap_len below instead of
5974 * map->stripe_len */
5975
5976 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5977 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5978 for (j = 0; j < nr; j++) {
5979 if (buf[j] == bytenr)
5980 break;
5981 }
934d375b
CM
5982 if (j == nr) {
5983 WARN_ON(nr >= map->num_stripes);
a512bbf8 5984 buf[nr++] = bytenr;
934d375b 5985 }
a512bbf8
YZ
5986 }
5987
a512bbf8
YZ
5988 *logical = buf;
5989 *naddrs = nr;
53b381b3 5990 *stripe_len = rmap_len;
a512bbf8
YZ
5991
5992 free_extent_map(em);
5993 return 0;
f2d8d74d
CM
5994}
5995
4246a0b6 5996static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 5997{
326e1dbb
MS
5998 bio->bi_private = bbio->private;
5999 bio->bi_end_io = bbio->end_io;
4246a0b6 6000 bio_endio(bio);
326e1dbb 6001
6e9606d2 6002 btrfs_put_bbio(bbio);
8408c716
MX
6003}
6004
4246a0b6 6005static void btrfs_end_bio(struct bio *bio)
8790d502 6006{
9be3395b 6007 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 6008 int is_orig_bio = 0;
8790d502 6009
4246a0b6 6010 if (bio->bi_error) {
a1d3c478 6011 atomic_inc(&bbio->error);
4246a0b6 6012 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
442a4f63 6013 unsigned int stripe_index =
9be3395b 6014 btrfs_io_bio(bio)->stripe_index;
65f53338 6015 struct btrfs_device *dev;
442a4f63
SB
6016
6017 BUG_ON(stripe_index >= bbio->num_stripes);
6018 dev = bbio->stripes[stripe_index].dev;
597a60fa 6019 if (dev->bdev) {
37226b21 6020 if (bio_op(bio) == REQ_OP_WRITE)
597a60fa
SB
6021 btrfs_dev_stat_inc(dev,
6022 BTRFS_DEV_STAT_WRITE_ERRS);
6023 else
6024 btrfs_dev_stat_inc(dev,
6025 BTRFS_DEV_STAT_READ_ERRS);
1eff9d32 6026 if ((bio->bi_opf & WRITE_FLUSH) == WRITE_FLUSH)
597a60fa
SB
6027 btrfs_dev_stat_inc(dev,
6028 BTRFS_DEV_STAT_FLUSH_ERRS);
6029 btrfs_dev_stat_print_on_error(dev);
6030 }
442a4f63
SB
6031 }
6032 }
8790d502 6033
a1d3c478 6034 if (bio == bbio->orig_bio)
7d2b4daa
CM
6035 is_orig_bio = 1;
6036
c404e0dc
MX
6037 btrfs_bio_counter_dec(bbio->fs_info);
6038
a1d3c478 6039 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6040 if (!is_orig_bio) {
6041 bio_put(bio);
a1d3c478 6042 bio = bbio->orig_bio;
7d2b4daa 6043 }
c7b22bb1 6044
9be3395b 6045 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6046 /* only send an error to the higher layers if it is
53b381b3 6047 * beyond the tolerance of the btrfs bio
a236aed1 6048 */
a1d3c478 6049 if (atomic_read(&bbio->error) > bbio->max_errors) {
4246a0b6 6050 bio->bi_error = -EIO;
5dbc8fca 6051 } else {
1259ab75
CM
6052 /*
6053 * this bio is actually up to date, we didn't
6054 * go over the max number of errors
6055 */
4246a0b6 6056 bio->bi_error = 0;
1259ab75 6057 }
c55f1396 6058
4246a0b6 6059 btrfs_end_bbio(bbio, bio);
7d2b4daa 6060 } else if (!is_orig_bio) {
8790d502
CM
6061 bio_put(bio);
6062 }
8790d502
CM
6063}
6064
8b712842
CM
6065/*
6066 * see run_scheduled_bios for a description of why bios are collected for
6067 * async submit.
6068 *
6069 * This will add one bio to the pending list for a device and make sure
6070 * the work struct is scheduled.
6071 */
48a3b636
ES
6072static noinline void btrfs_schedule_bio(struct btrfs_root *root,
6073 struct btrfs_device *device,
4e49ea4a 6074 struct bio *bio)
8b712842
CM
6075{
6076 int should_queue = 1;
ffbd517d 6077 struct btrfs_pending_bios *pending_bios;
8b712842 6078
53b381b3 6079 if (device->missing || !device->bdev) {
4246a0b6 6080 bio_io_error(bio);
53b381b3
DW
6081 return;
6082 }
6083
8b712842 6084 /* don't bother with additional async steps for reads, right now */
37226b21 6085 if (bio_op(bio) == REQ_OP_READ) {
492bb6de 6086 bio_get(bio);
4e49ea4a 6087 btrfsic_submit_bio(bio);
492bb6de 6088 bio_put(bio);
143bede5 6089 return;
8b712842
CM
6090 }
6091
6092 /*
0986fe9e 6093 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
6094 * higher layers. Otherwise, the async bio makes it appear we have
6095 * made progress against dirty pages when we've really just put it
6096 * on a queue for later
6097 */
0986fe9e 6098 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 6099 WARN_ON(bio->bi_next);
8b712842 6100 bio->bi_next = NULL;
8b712842
CM
6101
6102 spin_lock(&device->io_lock);
1eff9d32 6103 if (bio->bi_opf & REQ_SYNC)
ffbd517d
CM
6104 pending_bios = &device->pending_sync_bios;
6105 else
6106 pending_bios = &device->pending_bios;
8b712842 6107
ffbd517d
CM
6108 if (pending_bios->tail)
6109 pending_bios->tail->bi_next = bio;
8b712842 6110
ffbd517d
CM
6111 pending_bios->tail = bio;
6112 if (!pending_bios->head)
6113 pending_bios->head = bio;
8b712842
CM
6114 if (device->running_pending)
6115 should_queue = 0;
6116
6117 spin_unlock(&device->io_lock);
6118
6119 if (should_queue)
a8c93d4e
QW
6120 btrfs_queue_work(root->fs_info->submit_workers,
6121 &device->work);
8b712842
CM
6122}
6123
de1ee92a
JB
6124static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
6125 struct bio *bio, u64 physical, int dev_nr,
81a75f67 6126 int async)
de1ee92a
JB
6127{
6128 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6129
6130 bio->bi_private = bbio;
9be3395b 6131 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 6132 bio->bi_end_io = btrfs_end_bio;
4f024f37 6133 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
6134#ifdef DEBUG
6135 {
6136 struct rcu_string *name;
6137
6138 rcu_read_lock();
6139 name = rcu_dereference(dev->name);
81a75f67 6140 pr_debug("btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu "
1eff9d32 6141 "(%s id %llu), size=%u\n", bio_op(bio), bio->bi_opf,
1b6e4469
FF
6142 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
6143 name->str, dev->devid, bio->bi_iter.bi_size);
de1ee92a
JB
6144 rcu_read_unlock();
6145 }
6146#endif
6147 bio->bi_bdev = dev->bdev;
c404e0dc
MX
6148
6149 btrfs_bio_counter_inc_noblocked(root->fs_info);
6150
de1ee92a 6151 if (async)
4e49ea4a 6152 btrfs_schedule_bio(root, dev, bio);
de1ee92a 6153 else
4e49ea4a 6154 btrfsic_submit_bio(bio);
de1ee92a
JB
6155}
6156
de1ee92a
JB
6157static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6158{
6159 atomic_inc(&bbio->error);
6160 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6161 /* Should be the original bio. */
8408c716
MX
6162 WARN_ON(bio != bbio->orig_bio);
6163
9be3395b 6164 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6165 bio->bi_iter.bi_sector = logical >> 9;
4246a0b6
CH
6166 bio->bi_error = -EIO;
6167 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6168 }
6169}
6170
81a75f67 6171int btrfs_map_bio(struct btrfs_root *root, struct bio *bio,
8b712842 6172 int mirror_num, int async_submit)
0b86a832 6173{
0b86a832 6174 struct btrfs_device *dev;
8790d502 6175 struct bio *first_bio = bio;
4f024f37 6176 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6177 u64 length = 0;
6178 u64 map_length;
0b86a832 6179 int ret;
08da757d
ZL
6180 int dev_nr;
6181 int total_devs;
a1d3c478 6182 struct btrfs_bio *bbio = NULL;
0b86a832 6183
4f024f37 6184 length = bio->bi_iter.bi_size;
0b86a832 6185 map_length = length;
cea9e445 6186
c404e0dc 6187 btrfs_bio_counter_inc_blocked(root->fs_info);
37226b21
MC
6188 ret = __btrfs_map_block(root->fs_info, bio_op(bio), logical,
6189 &map_length, &bbio, mirror_num, 1);
c404e0dc
MX
6190 if (ret) {
6191 btrfs_bio_counter_dec(root->fs_info);
79787eaa 6192 return ret;
c404e0dc 6193 }
cea9e445 6194
a1d3c478 6195 total_devs = bbio->num_stripes;
53b381b3
DW
6196 bbio->orig_bio = first_bio;
6197 bbio->private = first_bio->bi_private;
6198 bbio->end_io = first_bio->bi_end_io;
c404e0dc 6199 bbio->fs_info = root->fs_info;
53b381b3
DW
6200 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6201
ad1ba2a0 6202 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
37226b21 6203 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6204 /* In this case, map_length has been set to the length of
6205 a single stripe; not the whole write */
37226b21 6206 if (bio_op(bio) == REQ_OP_WRITE) {
8e5cfb55 6207 ret = raid56_parity_write(root, bio, bbio, map_length);
53b381b3 6208 } else {
8e5cfb55 6209 ret = raid56_parity_recover(root, bio, bbio, map_length,
4245215d 6210 mirror_num, 1);
53b381b3 6211 }
4245215d 6212
c404e0dc
MX
6213 btrfs_bio_counter_dec(root->fs_info);
6214 return ret;
53b381b3
DW
6215 }
6216
cea9e445 6217 if (map_length < length) {
c2cf52eb 6218 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 6219 logical, length, map_length);
cea9e445
CM
6220 BUG();
6221 }
a1d3c478 6222
08da757d 6223 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a 6224 dev = bbio->stripes[dev_nr].dev;
37226b21
MC
6225 if (!dev || !dev->bdev ||
6226 (bio_op(bio) == REQ_OP_WRITE && !dev->writeable)) {
de1ee92a 6227 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6228 continue;
6229 }
6230
a1d3c478 6231 if (dev_nr < total_devs - 1) {
9be3395b 6232 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 6233 BUG_ON(!bio); /* -ENOMEM */
326e1dbb 6234 } else
a1d3c478 6235 bio = first_bio;
de1ee92a
JB
6236
6237 submit_stripe_bio(root, bbio, bio,
81a75f67 6238 bbio->stripes[dev_nr].physical, dev_nr,
de1ee92a 6239 async_submit);
8790d502 6240 }
c404e0dc 6241 btrfs_bio_counter_dec(root->fs_info);
0b86a832
CM
6242 return 0;
6243}
6244
aa1b8cd4 6245struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 6246 u8 *uuid, u8 *fsid)
0b86a832 6247{
2b82032c
YZ
6248 struct btrfs_device *device;
6249 struct btrfs_fs_devices *cur_devices;
6250
aa1b8cd4 6251 cur_devices = fs_info->fs_devices;
2b82032c
YZ
6252 while (cur_devices) {
6253 if (!fsid ||
6254 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6255 device = __find_device(&cur_devices->devices,
6256 devid, uuid);
6257 if (device)
6258 return device;
6259 }
6260 cur_devices = cur_devices->seed;
6261 }
6262 return NULL;
0b86a832
CM
6263}
6264
dfe25020 6265static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5f375835 6266 struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6267 u64 devid, u8 *dev_uuid)
6268{
6269 struct btrfs_device *device;
dfe25020 6270
12bd2fc0
ID
6271 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6272 if (IS_ERR(device))
7cbd8a83 6273 return NULL;
12bd2fc0
ID
6274
6275 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6276 device->fs_devices = fs_devices;
dfe25020 6277 fs_devices->num_devices++;
12bd2fc0
ID
6278
6279 device->missing = 1;
cd02dca5 6280 fs_devices->missing_devices++;
12bd2fc0 6281
dfe25020
CM
6282 return device;
6283}
6284
12bd2fc0
ID
6285/**
6286 * btrfs_alloc_device - allocate struct btrfs_device
6287 * @fs_info: used only for generating a new devid, can be NULL if
6288 * devid is provided (i.e. @devid != NULL).
6289 * @devid: a pointer to devid for this device. If NULL a new devid
6290 * is generated.
6291 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6292 * is generated.
6293 *
6294 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6295 * on error. Returned struct is not linked onto any lists and can be
6296 * destroyed with kfree() right away.
6297 */
6298struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6299 const u64 *devid,
6300 const u8 *uuid)
6301{
6302 struct btrfs_device *dev;
6303 u64 tmp;
6304
fae7f21c 6305 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6306 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6307
6308 dev = __alloc_device();
6309 if (IS_ERR(dev))
6310 return dev;
6311
6312 if (devid)
6313 tmp = *devid;
6314 else {
6315 int ret;
6316
6317 ret = find_next_devid(fs_info, &tmp);
6318 if (ret) {
6319 kfree(dev);
6320 return ERR_PTR(ret);
6321 }
6322 }
6323 dev->devid = tmp;
6324
6325 if (uuid)
6326 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6327 else
6328 generate_random_uuid(dev->uuid);
6329
9e0af237
LB
6330 btrfs_init_work(&dev->work, btrfs_submit_helper,
6331 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6332
6333 return dev;
6334}
6335
e06cd3dd
LB
6336/* Return -EIO if any error, otherwise return 0. */
6337static int btrfs_check_chunk_valid(struct btrfs_root *root,
6338 struct extent_buffer *leaf,
6339 struct btrfs_chunk *chunk, u64 logical)
0b86a832 6340{
0b86a832 6341 u64 length;
f04b772b 6342 u64 stripe_len;
e06cd3dd
LB
6343 u16 num_stripes;
6344 u16 sub_stripes;
6345 u64 type;
0b86a832 6346
e17cade2 6347 length = btrfs_chunk_length(leaf, chunk);
f04b772b
QW
6348 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6349 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
e06cd3dd
LB
6350 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6351 type = btrfs_chunk_type(leaf, chunk);
6352
f04b772b
QW
6353 if (!num_stripes) {
6354 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6355 num_stripes);
6356 return -EIO;
6357 }
6358 if (!IS_ALIGNED(logical, root->sectorsize)) {
6359 btrfs_err(root->fs_info,
6360 "invalid chunk logical %llu", logical);
6361 return -EIO;
6362 }
e06cd3dd
LB
6363 if (btrfs_chunk_sector_size(leaf, chunk) != root->sectorsize) {
6364 btrfs_err(root->fs_info, "invalid chunk sectorsize %u",
6365 btrfs_chunk_sector_size(leaf, chunk));
6366 return -EIO;
6367 }
f04b772b
QW
6368 if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6369 btrfs_err(root->fs_info,
6370 "invalid chunk length %llu", length);
6371 return -EIO;
6372 }
3d8da678 6373 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
f04b772b
QW
6374 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6375 stripe_len);
6376 return -EIO;
6377 }
6378 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
e06cd3dd 6379 type) {
f04b772b
QW
6380 btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6381 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6382 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6383 btrfs_chunk_type(leaf, chunk));
6384 return -EIO;
6385 }
e06cd3dd
LB
6386 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6387 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6388 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6389 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6390 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6391 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6392 num_stripes != 1)) {
6393 btrfs_err(root->fs_info,
6394 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6395 num_stripes, sub_stripes,
6396 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6397 return -EIO;
6398 }
6399
6400 return 0;
6401}
6402
6403static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6404 struct extent_buffer *leaf,
6405 struct btrfs_chunk *chunk)
6406{
6407 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6408 struct map_lookup *map;
6409 struct extent_map *em;
6410 u64 logical;
6411 u64 length;
6412 u64 stripe_len;
6413 u64 devid;
6414 u8 uuid[BTRFS_UUID_SIZE];
6415 int num_stripes;
6416 int ret;
6417 int i;
6418
6419 logical = key->offset;
6420 length = btrfs_chunk_length(leaf, chunk);
6421 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6422 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6423
6424 ret = btrfs_check_chunk_valid(root, leaf, chunk, logical);
6425 if (ret)
6426 return ret;
a061fc8d 6427
890871be 6428 read_lock(&map_tree->map_tree.lock);
0b86a832 6429 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6430 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6431
6432 /* already mapped? */
6433 if (em && em->start <= logical && em->start + em->len > logical) {
6434 free_extent_map(em);
0b86a832
CM
6435 return 0;
6436 } else if (em) {
6437 free_extent_map(em);
6438 }
0b86a832 6439
172ddd60 6440 em = alloc_extent_map();
0b86a832
CM
6441 if (!em)
6442 return -ENOMEM;
593060d7 6443 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6444 if (!map) {
6445 free_extent_map(em);
6446 return -ENOMEM;
6447 }
6448
298a8f9c 6449 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6450 em->map_lookup = map;
0b86a832
CM
6451 em->start = logical;
6452 em->len = length;
70c8a91c 6453 em->orig_start = 0;
0b86a832 6454 em->block_start = 0;
c8b97818 6455 em->block_len = em->len;
0b86a832 6456
593060d7
CM
6457 map->num_stripes = num_stripes;
6458 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6459 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6460 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6461 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6462 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6463 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6464 for (i = 0; i < num_stripes; i++) {
6465 map->stripes[i].physical =
6466 btrfs_stripe_offset_nr(leaf, chunk, i);
6467 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6468 read_extent_buffer(leaf, uuid, (unsigned long)
6469 btrfs_stripe_dev_uuid_nr(chunk, i),
6470 BTRFS_UUID_SIZE);
aa1b8cd4
SB
6471 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6472 uuid, NULL);
3cdde224
JM
6473 if (!map->stripes[i].dev &&
6474 !btrfs_test_opt(root->fs_info, DEGRADED)) {
593060d7
CM
6475 free_extent_map(em);
6476 return -EIO;
6477 }
dfe25020
CM
6478 if (!map->stripes[i].dev) {
6479 map->stripes[i].dev =
5f375835
MX
6480 add_missing_dev(root, root->fs_info->fs_devices,
6481 devid, uuid);
dfe25020 6482 if (!map->stripes[i].dev) {
dfe25020
CM
6483 free_extent_map(em);
6484 return -EIO;
6485 }
816fcebe
AJ
6486 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6487 devid, uuid);
dfe25020
CM
6488 }
6489 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
6490 }
6491
890871be 6492 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6493 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6494 write_unlock(&map_tree->map_tree.lock);
79787eaa 6495 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6496 free_extent_map(em);
6497
6498 return 0;
6499}
6500
143bede5 6501static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6502 struct btrfs_dev_item *dev_item,
6503 struct btrfs_device *device)
6504{
6505 unsigned long ptr;
0b86a832
CM
6506
6507 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6508 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6509 device->total_bytes = device->disk_total_bytes;
935e5cc9 6510 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6511 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6512 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6513 device->type = btrfs_device_type(leaf, dev_item);
6514 device->io_align = btrfs_device_io_align(leaf, dev_item);
6515 device->io_width = btrfs_device_io_width(leaf, dev_item);
6516 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6517 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6518 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6519
410ba3a2 6520 ptr = btrfs_device_uuid(dev_item);
e17cade2 6521 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6522}
6523
5f375835
MX
6524static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6525 u8 *fsid)
2b82032c
YZ
6526{
6527 struct btrfs_fs_devices *fs_devices;
6528 int ret;
6529
b367e47f 6530 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
6531
6532 fs_devices = root->fs_info->fs_devices->seed;
6533 while (fs_devices) {
5f375835
MX
6534 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6535 return fs_devices;
6536
2b82032c
YZ
6537 fs_devices = fs_devices->seed;
6538 }
6539
6540 fs_devices = find_fsid(fsid);
6541 if (!fs_devices) {
3cdde224 6542 if (!btrfs_test_opt(root->fs_info, DEGRADED))
5f375835
MX
6543 return ERR_PTR(-ENOENT);
6544
6545 fs_devices = alloc_fs_devices(fsid);
6546 if (IS_ERR(fs_devices))
6547 return fs_devices;
6548
6549 fs_devices->seeding = 1;
6550 fs_devices->opened = 1;
6551 return fs_devices;
2b82032c 6552 }
e4404d6e
YZ
6553
6554 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6555 if (IS_ERR(fs_devices))
6556 return fs_devices;
2b82032c 6557
97288f2c 6558 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 6559 root->fs_info->bdev_holder);
48d28232
JL
6560 if (ret) {
6561 free_fs_devices(fs_devices);
5f375835 6562 fs_devices = ERR_PTR(ret);
2b82032c 6563 goto out;
48d28232 6564 }
2b82032c
YZ
6565
6566 if (!fs_devices->seeding) {
6567 __btrfs_close_devices(fs_devices);
e4404d6e 6568 free_fs_devices(fs_devices);
5f375835 6569 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6570 goto out;
6571 }
6572
6573 fs_devices->seed = root->fs_info->fs_devices->seed;
6574 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 6575out:
5f375835 6576 return fs_devices;
2b82032c
YZ
6577}
6578
0d81ba5d 6579static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
6580 struct extent_buffer *leaf,
6581 struct btrfs_dev_item *dev_item)
6582{
5f375835 6583 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
0b86a832
CM
6584 struct btrfs_device *device;
6585 u64 devid;
6586 int ret;
2b82032c 6587 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
6588 u8 dev_uuid[BTRFS_UUID_SIZE];
6589
0b86a832 6590 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6591 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6592 BTRFS_UUID_SIZE);
1473b24e 6593 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
6594 BTRFS_UUID_SIZE);
6595
6596 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5f375835
MX
6597 fs_devices = open_seed_devices(root, fs_uuid);
6598 if (IS_ERR(fs_devices))
6599 return PTR_ERR(fs_devices);
2b82032c
YZ
6600 }
6601
aa1b8cd4 6602 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5f375835 6603 if (!device) {
3cdde224 6604 if (!btrfs_test_opt(root->fs_info, DEGRADED))
2b82032c
YZ
6605 return -EIO;
6606
5f375835
MX
6607 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6608 if (!device)
6609 return -ENOMEM;
33b97e43
AJ
6610 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6611 devid, dev_uuid);
5f375835 6612 } else {
3cdde224 6613 if (!device->bdev && !btrfs_test_opt(root->fs_info, DEGRADED))
5f375835
MX
6614 return -EIO;
6615
6616 if(!device->bdev && !device->missing) {
cd02dca5
CM
6617 /*
6618 * this happens when a device that was properly setup
6619 * in the device info lists suddenly goes bad.
6620 * device->bdev is NULL, and so we have to set
6621 * device->missing to one here
6622 */
5f375835 6623 device->fs_devices->missing_devices++;
cd02dca5 6624 device->missing = 1;
2b82032c 6625 }
5f375835
MX
6626
6627 /* Move the device to its own fs_devices */
6628 if (device->fs_devices != fs_devices) {
6629 ASSERT(device->missing);
6630
6631 list_move(&device->dev_list, &fs_devices->devices);
6632 device->fs_devices->num_devices--;
6633 fs_devices->num_devices++;
6634
6635 device->fs_devices->missing_devices--;
6636 fs_devices->missing_devices++;
6637
6638 device->fs_devices = fs_devices;
6639 }
2b82032c
YZ
6640 }
6641
6642 if (device->fs_devices != root->fs_info->fs_devices) {
6643 BUG_ON(device->writeable);
6644 if (device->generation !=
6645 btrfs_device_generation(leaf, dev_item))
6646 return -EINVAL;
6324fbf3 6647 }
0b86a832
CM
6648
6649 fill_device_from_item(leaf, dev_item, device);
dfe25020 6650 device->in_fs_metadata = 1;
63a212ab 6651 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6652 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
6653 spin_lock(&root->fs_info->free_chunk_lock);
6654 root->fs_info->free_chunk_space += device->total_bytes -
6655 device->bytes_used;
6656 spin_unlock(&root->fs_info->free_chunk_lock);
6657 }
0b86a832 6658 ret = 0;
0b86a832
CM
6659 return ret;
6660}
6661
e4404d6e 6662int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 6663{
6c41761f 6664 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 6665 struct extent_buffer *sb;
0b86a832 6666 struct btrfs_disk_key *disk_key;
0b86a832 6667 struct btrfs_chunk *chunk;
1ffb22cf
DS
6668 u8 *array_ptr;
6669 unsigned long sb_array_offset;
84eed90f 6670 int ret = 0;
0b86a832
CM
6671 u32 num_stripes;
6672 u32 array_size;
6673 u32 len = 0;
1ffb22cf 6674 u32 cur_offset;
e06cd3dd 6675 u64 type;
84eed90f 6676 struct btrfs_key key;
0b86a832 6677
a83fffb7
DS
6678 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6679 /*
6680 * This will create extent buffer of nodesize, superblock size is
6681 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6682 * overallocate but we can keep it as-is, only the first page is used.
6683 */
6684 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
c871b0f2
LB
6685 if (IS_ERR(sb))
6686 return PTR_ERR(sb);
4db8c528 6687 set_extent_buffer_uptodate(sb);
85d4e461 6688 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426 6689 /*
01327610 6690 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 6691 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
6692 * pages up-to-date when the page is larger: extent does not cover the
6693 * whole page and consequently check_page_uptodate does not find all
6694 * the page's extents up-to-date (the hole beyond sb),
6695 * write_extent_buffer then triggers a WARN_ON.
6696 *
6697 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6698 * but sb spans only this function. Add an explicit SetPageUptodate call
6699 * to silence the warning eg. on PowerPC 64.
6700 */
09cbfeaf 6701 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6702 SetPageUptodate(sb->pages[0]);
4008c04a 6703
a061fc8d 6704 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6705 array_size = btrfs_super_sys_array_size(super_copy);
6706
1ffb22cf
DS
6707 array_ptr = super_copy->sys_chunk_array;
6708 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6709 cur_offset = 0;
0b86a832 6710
1ffb22cf
DS
6711 while (cur_offset < array_size) {
6712 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6713 len = sizeof(*disk_key);
6714 if (cur_offset + len > array_size)
6715 goto out_short_read;
6716
0b86a832
CM
6717 btrfs_disk_key_to_cpu(&key, disk_key);
6718
1ffb22cf
DS
6719 array_ptr += len;
6720 sb_array_offset += len;
6721 cur_offset += len;
0b86a832 6722
0d81ba5d 6723 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6724 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6725 /*
6726 * At least one btrfs_chunk with one stripe must be
6727 * present, exact stripe count check comes afterwards
6728 */
6729 len = btrfs_chunk_item_size(1);
6730 if (cur_offset + len > array_size)
6731 goto out_short_read;
6732
6733 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
f5cdedd7
DS
6734 if (!num_stripes) {
6735 printk(KERN_ERR
6736 "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6737 num_stripes, cur_offset);
6738 ret = -EIO;
6739 break;
6740 }
6741
e06cd3dd
LB
6742 type = btrfs_chunk_type(sb, chunk);
6743 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6744 btrfs_err(root->fs_info,
6745 "invalid chunk type %llu in sys_array at offset %u",
6746 type, cur_offset);
6747 ret = -EIO;
6748 break;
6749 }
6750
e3540eab
DS
6751 len = btrfs_chunk_item_size(num_stripes);
6752 if (cur_offset + len > array_size)
6753 goto out_short_read;
6754
0d81ba5d 6755 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
6756 if (ret)
6757 break;
0b86a832 6758 } else {
93a3d467
DS
6759 printk(KERN_ERR
6760 "BTRFS: unexpected item type %u in sys_array at offset %u\n",
6761 (u32)key.type, cur_offset);
84eed90f
CM
6762 ret = -EIO;
6763 break;
0b86a832 6764 }
1ffb22cf
DS
6765 array_ptr += len;
6766 sb_array_offset += len;
6767 cur_offset += len;
0b86a832 6768 }
d865177a 6769 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6770 free_extent_buffer_stale(sb);
84eed90f 6771 return ret;
e3540eab
DS
6772
6773out_short_read:
6774 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6775 len, cur_offset);
d865177a 6776 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6777 free_extent_buffer_stale(sb);
e3540eab 6778 return -EIO;
0b86a832
CM
6779}
6780
6781int btrfs_read_chunk_tree(struct btrfs_root *root)
6782{
6783 struct btrfs_path *path;
6784 struct extent_buffer *leaf;
6785 struct btrfs_key key;
6786 struct btrfs_key found_key;
6787 int ret;
6788 int slot;
99e3ecfc 6789 u64 total_dev = 0;
0b86a832
CM
6790
6791 root = root->fs_info->chunk_root;
6792
6793 path = btrfs_alloc_path();
6794 if (!path)
6795 return -ENOMEM;
6796
b367e47f
LZ
6797 mutex_lock(&uuid_mutex);
6798 lock_chunks(root);
6799
395927a9
FDBM
6800 /*
6801 * Read all device items, and then all the chunk items. All
6802 * device items are found before any chunk item (their object id
6803 * is smaller than the lowest possible object id for a chunk
6804 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6805 */
6806 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6807 key.offset = 0;
6808 key.type = 0;
0b86a832 6809 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6810 if (ret < 0)
6811 goto error;
d397712b 6812 while (1) {
0b86a832
CM
6813 leaf = path->nodes[0];
6814 slot = path->slots[0];
6815 if (slot >= btrfs_header_nritems(leaf)) {
6816 ret = btrfs_next_leaf(root, path);
6817 if (ret == 0)
6818 continue;
6819 if (ret < 0)
6820 goto error;
6821 break;
6822 }
6823 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6824 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6825 struct btrfs_dev_item *dev_item;
6826 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6827 struct btrfs_dev_item);
395927a9
FDBM
6828 ret = read_one_dev(root, leaf, dev_item);
6829 if (ret)
6830 goto error;
99e3ecfc 6831 total_dev++;
0b86a832
CM
6832 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6833 struct btrfs_chunk *chunk;
6834 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6835 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6836 if (ret)
6837 goto error;
0b86a832
CM
6838 }
6839 path->slots[0]++;
6840 }
99e3ecfc
LB
6841
6842 /*
6843 * After loading chunk tree, we've got all device information,
6844 * do another round of validation checks.
6845 */
6846 if (total_dev != root->fs_info->fs_devices->total_devices) {
6847 btrfs_err(root->fs_info,
6848 "super_num_devices %llu mismatch with num_devices %llu found here",
6849 btrfs_super_num_devices(root->fs_info->super_copy),
6850 total_dev);
6851 ret = -EINVAL;
6852 goto error;
6853 }
6854 if (btrfs_super_total_bytes(root->fs_info->super_copy) <
6855 root->fs_info->fs_devices->total_rw_bytes) {
6856 btrfs_err(root->fs_info,
6857 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6858 btrfs_super_total_bytes(root->fs_info->super_copy),
6859 root->fs_info->fs_devices->total_rw_bytes);
6860 ret = -EINVAL;
6861 goto error;
6862 }
0b86a832
CM
6863 ret = 0;
6864error:
b367e47f
LZ
6865 unlock_chunks(root);
6866 mutex_unlock(&uuid_mutex);
6867
2b82032c 6868 btrfs_free_path(path);
0b86a832
CM
6869 return ret;
6870}
442a4f63 6871
cb517eab
MX
6872void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6873{
6874 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6875 struct btrfs_device *device;
6876
29cc83f6
LB
6877 while (fs_devices) {
6878 mutex_lock(&fs_devices->device_list_mutex);
6879 list_for_each_entry(device, &fs_devices->devices, dev_list)
6880 device->dev_root = fs_info->dev_root;
6881 mutex_unlock(&fs_devices->device_list_mutex);
6882
6883 fs_devices = fs_devices->seed;
6884 }
cb517eab
MX
6885}
6886
733f4fbb
SB
6887static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6888{
6889 int i;
6890
6891 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6892 btrfs_dev_stat_reset(dev, i);
6893}
6894
6895int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6896{
6897 struct btrfs_key key;
6898 struct btrfs_key found_key;
6899 struct btrfs_root *dev_root = fs_info->dev_root;
6900 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6901 struct extent_buffer *eb;
6902 int slot;
6903 int ret = 0;
6904 struct btrfs_device *device;
6905 struct btrfs_path *path = NULL;
6906 int i;
6907
6908 path = btrfs_alloc_path();
6909 if (!path) {
6910 ret = -ENOMEM;
6911 goto out;
6912 }
6913
6914 mutex_lock(&fs_devices->device_list_mutex);
6915 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6916 int item_size;
6917 struct btrfs_dev_stats_item *ptr;
6918
242e2956
DS
6919 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6920 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6921 key.offset = device->devid;
6922 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6923 if (ret) {
733f4fbb
SB
6924 __btrfs_reset_dev_stats(device);
6925 device->dev_stats_valid = 1;
6926 btrfs_release_path(path);
6927 continue;
6928 }
6929 slot = path->slots[0];
6930 eb = path->nodes[0];
6931 btrfs_item_key_to_cpu(eb, &found_key, slot);
6932 item_size = btrfs_item_size_nr(eb, slot);
6933
6934 ptr = btrfs_item_ptr(eb, slot,
6935 struct btrfs_dev_stats_item);
6936
6937 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6938 if (item_size >= (1 + i) * sizeof(__le64))
6939 btrfs_dev_stat_set(device, i,
6940 btrfs_dev_stats_value(eb, ptr, i));
6941 else
6942 btrfs_dev_stat_reset(device, i);
6943 }
6944
6945 device->dev_stats_valid = 1;
6946 btrfs_dev_stat_print_on_load(device);
6947 btrfs_release_path(path);
6948 }
6949 mutex_unlock(&fs_devices->device_list_mutex);
6950
6951out:
6952 btrfs_free_path(path);
6953 return ret < 0 ? ret : 0;
6954}
6955
6956static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6957 struct btrfs_root *dev_root,
6958 struct btrfs_device *device)
6959{
6960 struct btrfs_path *path;
6961 struct btrfs_key key;
6962 struct extent_buffer *eb;
6963 struct btrfs_dev_stats_item *ptr;
6964 int ret;
6965 int i;
6966
242e2956
DS
6967 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6968 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6969 key.offset = device->devid;
6970
6971 path = btrfs_alloc_path();
6972 BUG_ON(!path);
6973 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6974 if (ret < 0) {
ecaeb14b
DS
6975 btrfs_warn_in_rcu(dev_root->fs_info,
6976 "error %d while searching for dev_stats item for device %s",
606686ee 6977 ret, rcu_str_deref(device->name));
733f4fbb
SB
6978 goto out;
6979 }
6980
6981 if (ret == 0 &&
6982 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6983 /* need to delete old one and insert a new one */
6984 ret = btrfs_del_item(trans, dev_root, path);
6985 if (ret != 0) {
ecaeb14b
DS
6986 btrfs_warn_in_rcu(dev_root->fs_info,
6987 "delete too small dev_stats item for device %s failed %d",
606686ee 6988 rcu_str_deref(device->name), ret);
733f4fbb
SB
6989 goto out;
6990 }
6991 ret = 1;
6992 }
6993
6994 if (ret == 1) {
6995 /* need to insert a new item */
6996 btrfs_release_path(path);
6997 ret = btrfs_insert_empty_item(trans, dev_root, path,
6998 &key, sizeof(*ptr));
6999 if (ret < 0) {
ecaeb14b
DS
7000 btrfs_warn_in_rcu(dev_root->fs_info,
7001 "insert dev_stats item for device %s failed %d",
7002 rcu_str_deref(device->name), ret);
733f4fbb
SB
7003 goto out;
7004 }
7005 }
7006
7007 eb = path->nodes[0];
7008 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7009 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7010 btrfs_set_dev_stats_value(eb, ptr, i,
7011 btrfs_dev_stat_read(device, i));
7012 btrfs_mark_buffer_dirty(eb);
7013
7014out:
7015 btrfs_free_path(path);
7016 return ret;
7017}
7018
7019/*
7020 * called from commit_transaction. Writes all changed device stats to disk.
7021 */
7022int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7023 struct btrfs_fs_info *fs_info)
7024{
7025 struct btrfs_root *dev_root = fs_info->dev_root;
7026 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7027 struct btrfs_device *device;
addc3fa7 7028 int stats_cnt;
733f4fbb
SB
7029 int ret = 0;
7030
7031 mutex_lock(&fs_devices->device_list_mutex);
7032 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 7033 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
7034 continue;
7035
addc3fa7 7036 stats_cnt = atomic_read(&device->dev_stats_ccnt);
733f4fbb
SB
7037 ret = update_dev_stat_item(trans, dev_root, device);
7038 if (!ret)
addc3fa7 7039 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7040 }
7041 mutex_unlock(&fs_devices->device_list_mutex);
7042
7043 return ret;
7044}
7045
442a4f63
SB
7046void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7047{
7048 btrfs_dev_stat_inc(dev, index);
7049 btrfs_dev_stat_print_on_error(dev);
7050}
7051
48a3b636 7052static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7053{
733f4fbb
SB
7054 if (!dev->dev_stats_valid)
7055 return;
b14af3b4
DS
7056 btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
7057 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7058 rcu_str_deref(dev->name),
442a4f63
SB
7059 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7060 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7061 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7062 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7063 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7064}
c11d2c23 7065
733f4fbb
SB
7066static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7067{
a98cdb85
SB
7068 int i;
7069
7070 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7071 if (btrfs_dev_stat_read(dev, i) != 0)
7072 break;
7073 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7074 return; /* all values == 0, suppress message */
7075
ecaeb14b
DS
7076 btrfs_info_in_rcu(dev->dev_root->fs_info,
7077 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7078 rcu_str_deref(dev->name),
733f4fbb
SB
7079 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7080 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7081 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7082 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7083 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7084}
7085
c11d2c23 7086int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 7087 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
7088{
7089 struct btrfs_device *dev;
7090 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7091 int i;
7092
7093 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 7094 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
7095 mutex_unlock(&fs_devices->device_list_mutex);
7096
7097 if (!dev) {
efe120a0 7098 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
c11d2c23 7099 return -ENODEV;
733f4fbb 7100 } else if (!dev->dev_stats_valid) {
efe120a0 7101 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7102 return -ENODEV;
b27f7c0c 7103 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7104 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7105 if (stats->nr_items > i)
7106 stats->values[i] =
7107 btrfs_dev_stat_read_and_reset(dev, i);
7108 else
7109 btrfs_dev_stat_reset(dev, i);
7110 }
7111 } else {
7112 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7113 if (stats->nr_items > i)
7114 stats->values[i] = btrfs_dev_stat_read(dev, i);
7115 }
7116 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7117 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7118 return 0;
7119}
a8a6dab7 7120
12b1c263 7121void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
a8a6dab7
SB
7122{
7123 struct buffer_head *bh;
7124 struct btrfs_super_block *disk_super;
12b1c263 7125 int copy_num;
a8a6dab7 7126
12b1c263
AJ
7127 if (!bdev)
7128 return;
a8a6dab7 7129
12b1c263
AJ
7130 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7131 copy_num++) {
a8a6dab7 7132
12b1c263
AJ
7133 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7134 continue;
7135
7136 disk_super = (struct btrfs_super_block *)bh->b_data;
7137
7138 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7139 set_buffer_dirty(bh);
7140 sync_dirty_buffer(bh);
7141 brelse(bh);
7142 }
7143
7144 /* Notify udev that device has changed */
7145 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7146
7147 /* Update ctime/mtime for device path for libblkid */
7148 update_dev_time(device_path);
a8a6dab7 7149}
935e5cc9
MX
7150
7151/*
7152 * Update the size of all devices, which is used for writing out the
7153 * super blocks.
7154 */
7155void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7156{
7157 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7158 struct btrfs_device *curr, *next;
7159
7160 if (list_empty(&fs_devices->resized_devices))
7161 return;
7162
7163 mutex_lock(&fs_devices->device_list_mutex);
7164 lock_chunks(fs_info->dev_root);
7165 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7166 resized_list) {
7167 list_del_init(&curr->resized_list);
7168 curr->commit_total_bytes = curr->disk_total_bytes;
7169 }
7170 unlock_chunks(fs_info->dev_root);
7171 mutex_unlock(&fs_devices->device_list_mutex);
7172}
ce7213c7
MX
7173
7174/* Must be invoked during the transaction commit */
7175void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
7176 struct btrfs_transaction *transaction)
7177{
7178 struct extent_map *em;
7179 struct map_lookup *map;
7180 struct btrfs_device *dev;
7181 int i;
7182
7183 if (list_empty(&transaction->pending_chunks))
7184 return;
7185
7186 /* In order to kick the device replace finish process */
7187 lock_chunks(root);
7188 list_for_each_entry(em, &transaction->pending_chunks, list) {
95617d69 7189 map = em->map_lookup;
ce7213c7
MX
7190
7191 for (i = 0; i < map->num_stripes; i++) {
7192 dev = map->stripes[i].dev;
7193 dev->commit_bytes_used = dev->bytes_used;
7194 }
7195 }
7196 unlock_chunks(root);
7197}
5a13f430
AJ
7198
7199void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7200{
7201 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7202 while (fs_devices) {
7203 fs_devices->fs_info = fs_info;
7204 fs_devices = fs_devices->seed;
7205 }
7206}
7207
7208void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7209{
7210 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7211 while (fs_devices) {
7212 fs_devices->fs_info = NULL;
7213 fs_devices = fs_devices->seed;
7214 }
7215}
This page took 0.989538 seconds and 5 git commands to generate.