Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[deliverable/linux.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
593060d7 28#include <asm/div64.h>
4b4e25f2 29#include "compat.h"
0b86a832
CM
30#include "ctree.h"
31#include "extent_map.h"
32#include "disk-io.h"
33#include "transaction.h"
34#include "print-tree.h"
35#include "volumes.h"
8b712842 36#include "async-thread.h"
21adbd5c 37#include "check-integrity.h"
606686ee 38#include "rcu-string.h"
0b86a832 39
2b82032c
YZ
40static int init_first_rw_device(struct btrfs_trans_handle *trans,
41 struct btrfs_root *root,
42 struct btrfs_device *device);
43static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb
SB
44static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
45static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 46
8a4b83cc
CM
47static DEFINE_MUTEX(uuid_mutex);
48static LIST_HEAD(fs_uuids);
49
7d9eb12c
CM
50static void lock_chunks(struct btrfs_root *root)
51{
7d9eb12c
CM
52 mutex_lock(&root->fs_info->chunk_mutex);
53}
54
55static void unlock_chunks(struct btrfs_root *root)
56{
7d9eb12c
CM
57 mutex_unlock(&root->fs_info->chunk_mutex);
58}
59
e4404d6e
YZ
60static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
61{
62 struct btrfs_device *device;
63 WARN_ON(fs_devices->opened);
64 while (!list_empty(&fs_devices->devices)) {
65 device = list_entry(fs_devices->devices.next,
66 struct btrfs_device, dev_list);
67 list_del(&device->dev_list);
606686ee 68 rcu_string_free(device->name);
e4404d6e
YZ
69 kfree(device);
70 }
71 kfree(fs_devices);
72}
73
143bede5 74void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
75{
76 struct btrfs_fs_devices *fs_devices;
8a4b83cc 77
2b82032c
YZ
78 while (!list_empty(&fs_uuids)) {
79 fs_devices = list_entry(fs_uuids.next,
80 struct btrfs_fs_devices, list);
81 list_del(&fs_devices->list);
e4404d6e 82 free_fs_devices(fs_devices);
8a4b83cc 83 }
8a4b83cc
CM
84}
85
a1b32a59
CM
86static noinline struct btrfs_device *__find_device(struct list_head *head,
87 u64 devid, u8 *uuid)
8a4b83cc
CM
88{
89 struct btrfs_device *dev;
8a4b83cc 90
c6e30871 91 list_for_each_entry(dev, head, dev_list) {
a443755f 92 if (dev->devid == devid &&
8f18cf13 93 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 94 return dev;
a443755f 95 }
8a4b83cc
CM
96 }
97 return NULL;
98}
99
a1b32a59 100static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 101{
8a4b83cc
CM
102 struct btrfs_fs_devices *fs_devices;
103
c6e30871 104 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
105 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
106 return fs_devices;
107 }
108 return NULL;
109}
110
ffbd517d
CM
111static void requeue_list(struct btrfs_pending_bios *pending_bios,
112 struct bio *head, struct bio *tail)
113{
114
115 struct bio *old_head;
116
117 old_head = pending_bios->head;
118 pending_bios->head = head;
119 if (pending_bios->tail)
120 tail->bi_next = old_head;
121 else
122 pending_bios->tail = tail;
123}
124
8b712842
CM
125/*
126 * we try to collect pending bios for a device so we don't get a large
127 * number of procs sending bios down to the same device. This greatly
128 * improves the schedulers ability to collect and merge the bios.
129 *
130 * But, it also turns into a long list of bios to process and that is sure
131 * to eventually make the worker thread block. The solution here is to
132 * make some progress and then put this work struct back at the end of
133 * the list if the block device is congested. This way, multiple devices
134 * can make progress from a single worker thread.
135 */
143bede5 136static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
137{
138 struct bio *pending;
139 struct backing_dev_info *bdi;
b64a2851 140 struct btrfs_fs_info *fs_info;
ffbd517d 141 struct btrfs_pending_bios *pending_bios;
8b712842
CM
142 struct bio *tail;
143 struct bio *cur;
144 int again = 0;
ffbd517d 145 unsigned long num_run;
d644d8a1 146 unsigned long batch_run = 0;
b64a2851 147 unsigned long limit;
b765ead5 148 unsigned long last_waited = 0;
d84275c9 149 int force_reg = 0;
0e588859 150 int sync_pending = 0;
211588ad
CM
151 struct blk_plug plug;
152
153 /*
154 * this function runs all the bios we've collected for
155 * a particular device. We don't want to wander off to
156 * another device without first sending all of these down.
157 * So, setup a plug here and finish it off before we return
158 */
159 blk_start_plug(&plug);
8b712842 160
bedf762b 161 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
162 fs_info = device->dev_root->fs_info;
163 limit = btrfs_async_submit_limit(fs_info);
164 limit = limit * 2 / 3;
165
8b712842
CM
166loop:
167 spin_lock(&device->io_lock);
168
a6837051 169loop_lock:
d84275c9 170 num_run = 0;
ffbd517d 171
8b712842
CM
172 /* take all the bios off the list at once and process them
173 * later on (without the lock held). But, remember the
174 * tail and other pointers so the bios can be properly reinserted
175 * into the list if we hit congestion
176 */
d84275c9 177 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 178 pending_bios = &device->pending_sync_bios;
d84275c9
CM
179 force_reg = 1;
180 } else {
ffbd517d 181 pending_bios = &device->pending_bios;
d84275c9
CM
182 force_reg = 0;
183 }
ffbd517d
CM
184
185 pending = pending_bios->head;
186 tail = pending_bios->tail;
8b712842 187 WARN_ON(pending && !tail);
8b712842
CM
188
189 /*
190 * if pending was null this time around, no bios need processing
191 * at all and we can stop. Otherwise it'll loop back up again
192 * and do an additional check so no bios are missed.
193 *
194 * device->running_pending is used to synchronize with the
195 * schedule_bio code.
196 */
ffbd517d
CM
197 if (device->pending_sync_bios.head == NULL &&
198 device->pending_bios.head == NULL) {
8b712842
CM
199 again = 0;
200 device->running_pending = 0;
ffbd517d
CM
201 } else {
202 again = 1;
203 device->running_pending = 1;
8b712842 204 }
ffbd517d
CM
205
206 pending_bios->head = NULL;
207 pending_bios->tail = NULL;
208
8b712842
CM
209 spin_unlock(&device->io_lock);
210
d397712b 211 while (pending) {
ffbd517d
CM
212
213 rmb();
d84275c9
CM
214 /* we want to work on both lists, but do more bios on the
215 * sync list than the regular list
216 */
217 if ((num_run > 32 &&
218 pending_bios != &device->pending_sync_bios &&
219 device->pending_sync_bios.head) ||
220 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
221 device->pending_bios.head)) {
ffbd517d
CM
222 spin_lock(&device->io_lock);
223 requeue_list(pending_bios, pending, tail);
224 goto loop_lock;
225 }
226
8b712842
CM
227 cur = pending;
228 pending = pending->bi_next;
229 cur->bi_next = NULL;
b64a2851
CM
230 atomic_dec(&fs_info->nr_async_bios);
231
232 if (atomic_read(&fs_info->nr_async_bios) < limit &&
233 waitqueue_active(&fs_info->async_submit_wait))
234 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
235
236 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 237
2ab1ba68
CM
238 /*
239 * if we're doing the sync list, record that our
240 * plug has some sync requests on it
241 *
242 * If we're doing the regular list and there are
243 * sync requests sitting around, unplug before
244 * we add more
245 */
246 if (pending_bios == &device->pending_sync_bios) {
247 sync_pending = 1;
248 } else if (sync_pending) {
249 blk_finish_plug(&plug);
250 blk_start_plug(&plug);
251 sync_pending = 0;
252 }
253
21adbd5c 254 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
255 num_run++;
256 batch_run++;
7eaceacc 257 if (need_resched())
ffbd517d 258 cond_resched();
8b712842
CM
259
260 /*
261 * we made progress, there is more work to do and the bdi
262 * is now congested. Back off and let other work structs
263 * run instead
264 */
57fd5a5f 265 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 266 fs_info->fs_devices->open_devices > 1) {
b765ead5 267 struct io_context *ioc;
8b712842 268
b765ead5
CM
269 ioc = current->io_context;
270
271 /*
272 * the main goal here is that we don't want to
273 * block if we're going to be able to submit
274 * more requests without blocking.
275 *
276 * This code does two great things, it pokes into
277 * the elevator code from a filesystem _and_
278 * it makes assumptions about how batching works.
279 */
280 if (ioc && ioc->nr_batch_requests > 0 &&
281 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
282 (last_waited == 0 ||
283 ioc->last_waited == last_waited)) {
284 /*
285 * we want to go through our batch of
286 * requests and stop. So, we copy out
287 * the ioc->last_waited time and test
288 * against it before looping
289 */
290 last_waited = ioc->last_waited;
7eaceacc 291 if (need_resched())
ffbd517d 292 cond_resched();
b765ead5
CM
293 continue;
294 }
8b712842 295 spin_lock(&device->io_lock);
ffbd517d 296 requeue_list(pending_bios, pending, tail);
a6837051 297 device->running_pending = 1;
8b712842
CM
298
299 spin_unlock(&device->io_lock);
300 btrfs_requeue_work(&device->work);
301 goto done;
302 }
d85c8a6f
CM
303 /* unplug every 64 requests just for good measure */
304 if (batch_run % 64 == 0) {
305 blk_finish_plug(&plug);
306 blk_start_plug(&plug);
307 sync_pending = 0;
308 }
8b712842 309 }
ffbd517d 310
51684082
CM
311 cond_resched();
312 if (again)
313 goto loop;
314
315 spin_lock(&device->io_lock);
316 if (device->pending_bios.head || device->pending_sync_bios.head)
317 goto loop_lock;
318 spin_unlock(&device->io_lock);
319
8b712842 320done:
211588ad 321 blk_finish_plug(&plug);
8b712842
CM
322}
323
b2950863 324static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
325{
326 struct btrfs_device *device;
327
328 device = container_of(work, struct btrfs_device, work);
329 run_scheduled_bios(device);
330}
331
a1b32a59 332static noinline int device_list_add(const char *path,
8a4b83cc
CM
333 struct btrfs_super_block *disk_super,
334 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
335{
336 struct btrfs_device *device;
337 struct btrfs_fs_devices *fs_devices;
606686ee 338 struct rcu_string *name;
8a4b83cc
CM
339 u64 found_transid = btrfs_super_generation(disk_super);
340
341 fs_devices = find_fsid(disk_super->fsid);
342 if (!fs_devices) {
515dc322 343 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
344 if (!fs_devices)
345 return -ENOMEM;
346 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 347 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
348 list_add(&fs_devices->list, &fs_uuids);
349 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
350 fs_devices->latest_devid = devid;
351 fs_devices->latest_trans = found_transid;
e5e9a520 352 mutex_init(&fs_devices->device_list_mutex);
8a4b83cc
CM
353 device = NULL;
354 } else {
a443755f
CM
355 device = __find_device(&fs_devices->devices, devid,
356 disk_super->dev_item.uuid);
8a4b83cc
CM
357 }
358 if (!device) {
2b82032c
YZ
359 if (fs_devices->opened)
360 return -EBUSY;
361
8a4b83cc
CM
362 device = kzalloc(sizeof(*device), GFP_NOFS);
363 if (!device) {
364 /* we can safely leave the fs_devices entry around */
365 return -ENOMEM;
366 }
367 device->devid = devid;
733f4fbb 368 device->dev_stats_valid = 0;
8b712842 369 device->work.func = pending_bios_fn;
a443755f
CM
370 memcpy(device->uuid, disk_super->dev_item.uuid,
371 BTRFS_UUID_SIZE);
b248a415 372 spin_lock_init(&device->io_lock);
606686ee
JB
373
374 name = rcu_string_strdup(path, GFP_NOFS);
375 if (!name) {
8a4b83cc
CM
376 kfree(device);
377 return -ENOMEM;
378 }
606686ee 379 rcu_assign_pointer(device->name, name);
2b82032c 380 INIT_LIST_HEAD(&device->dev_alloc_list);
e5e9a520 381
90519d66
AJ
382 /* init readahead state */
383 spin_lock_init(&device->reada_lock);
384 device->reada_curr_zone = NULL;
385 atomic_set(&device->reada_in_flight, 0);
386 device->reada_next = 0;
387 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
388 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
389
e5e9a520 390 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 391 list_add_rcu(&device->dev_list, &fs_devices->devices);
e5e9a520
CM
392 mutex_unlock(&fs_devices->device_list_mutex);
393
2b82032c 394 device->fs_devices = fs_devices;
8a4b83cc 395 fs_devices->num_devices++;
606686ee
JB
396 } else if (!device->name || strcmp(device->name->str, path)) {
397 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
398 if (!name)
399 return -ENOMEM;
606686ee
JB
400 rcu_string_free(device->name);
401 rcu_assign_pointer(device->name, name);
cd02dca5
CM
402 if (device->missing) {
403 fs_devices->missing_devices--;
404 device->missing = 0;
405 }
8a4b83cc
CM
406 }
407
408 if (found_transid > fs_devices->latest_trans) {
409 fs_devices->latest_devid = devid;
410 fs_devices->latest_trans = found_transid;
411 }
8a4b83cc
CM
412 *fs_devices_ret = fs_devices;
413 return 0;
414}
415
e4404d6e
YZ
416static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
417{
418 struct btrfs_fs_devices *fs_devices;
419 struct btrfs_device *device;
420 struct btrfs_device *orig_dev;
421
422 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
423 if (!fs_devices)
424 return ERR_PTR(-ENOMEM);
425
426 INIT_LIST_HEAD(&fs_devices->devices);
427 INIT_LIST_HEAD(&fs_devices->alloc_list);
428 INIT_LIST_HEAD(&fs_devices->list);
e5e9a520 429 mutex_init(&fs_devices->device_list_mutex);
e4404d6e
YZ
430 fs_devices->latest_devid = orig->latest_devid;
431 fs_devices->latest_trans = orig->latest_trans;
02db0844 432 fs_devices->total_devices = orig->total_devices;
e4404d6e
YZ
433 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
434
46224705 435 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 436 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
437 struct rcu_string *name;
438
e4404d6e
YZ
439 device = kzalloc(sizeof(*device), GFP_NOFS);
440 if (!device)
441 goto error;
442
606686ee
JB
443 /*
444 * This is ok to do without rcu read locked because we hold the
445 * uuid mutex so nothing we touch in here is going to disappear.
446 */
447 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
448 if (!name) {
fd2696f3 449 kfree(device);
e4404d6e 450 goto error;
fd2696f3 451 }
606686ee 452 rcu_assign_pointer(device->name, name);
e4404d6e
YZ
453
454 device->devid = orig_dev->devid;
455 device->work.func = pending_bios_fn;
456 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
e4404d6e
YZ
457 spin_lock_init(&device->io_lock);
458 INIT_LIST_HEAD(&device->dev_list);
459 INIT_LIST_HEAD(&device->dev_alloc_list);
460
461 list_add(&device->dev_list, &fs_devices->devices);
462 device->fs_devices = fs_devices;
463 fs_devices->num_devices++;
464 }
465 return fs_devices;
466error:
467 free_fs_devices(fs_devices);
468 return ERR_PTR(-ENOMEM);
469}
470
143bede5 471void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
dfe25020 472{
c6e30871 473 struct btrfs_device *device, *next;
dfe25020 474
a6b0d5c8
CM
475 struct block_device *latest_bdev = NULL;
476 u64 latest_devid = 0;
477 u64 latest_transid = 0;
478
dfe25020
CM
479 mutex_lock(&uuid_mutex);
480again:
46224705 481 /* This is the initialized path, it is safe to release the devices. */
c6e30871 482 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8
CM
483 if (device->in_fs_metadata) {
484 if (!latest_transid ||
485 device->generation > latest_transid) {
486 latest_devid = device->devid;
487 latest_transid = device->generation;
488 latest_bdev = device->bdev;
489 }
2b82032c 490 continue;
a6b0d5c8 491 }
2b82032c
YZ
492
493 if (device->bdev) {
d4d77629 494 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
495 device->bdev = NULL;
496 fs_devices->open_devices--;
497 }
498 if (device->writeable) {
499 list_del_init(&device->dev_alloc_list);
500 device->writeable = 0;
501 fs_devices->rw_devices--;
502 }
e4404d6e
YZ
503 list_del_init(&device->dev_list);
504 fs_devices->num_devices--;
606686ee 505 rcu_string_free(device->name);
e4404d6e 506 kfree(device);
dfe25020 507 }
2b82032c
YZ
508
509 if (fs_devices->seed) {
510 fs_devices = fs_devices->seed;
2b82032c
YZ
511 goto again;
512 }
513
a6b0d5c8
CM
514 fs_devices->latest_bdev = latest_bdev;
515 fs_devices->latest_devid = latest_devid;
516 fs_devices->latest_trans = latest_transid;
517
dfe25020 518 mutex_unlock(&uuid_mutex);
dfe25020 519}
a0af469b 520
1f78160c
XG
521static void __free_device(struct work_struct *work)
522{
523 struct btrfs_device *device;
524
525 device = container_of(work, struct btrfs_device, rcu_work);
526
527 if (device->bdev)
528 blkdev_put(device->bdev, device->mode);
529
606686ee 530 rcu_string_free(device->name);
1f78160c
XG
531 kfree(device);
532}
533
534static void free_device(struct rcu_head *head)
535{
536 struct btrfs_device *device;
537
538 device = container_of(head, struct btrfs_device, rcu);
539
540 INIT_WORK(&device->rcu_work, __free_device);
541 schedule_work(&device->rcu_work);
542}
543
2b82032c 544static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 545{
8a4b83cc 546 struct btrfs_device *device;
e4404d6e 547
2b82032c
YZ
548 if (--fs_devices->opened > 0)
549 return 0;
8a4b83cc 550
c9513edb 551 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 552 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c 553 struct btrfs_device *new_device;
606686ee 554 struct rcu_string *name;
1f78160c
XG
555
556 if (device->bdev)
a0af469b 557 fs_devices->open_devices--;
1f78160c 558
2b82032c
YZ
559 if (device->writeable) {
560 list_del_init(&device->dev_alloc_list);
561 fs_devices->rw_devices--;
562 }
563
d5e2003c
JB
564 if (device->can_discard)
565 fs_devices->num_can_discard--;
566
1f78160c 567 new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
79787eaa 568 BUG_ON(!new_device); /* -ENOMEM */
1f78160c 569 memcpy(new_device, device, sizeof(*new_device));
606686ee
JB
570
571 /* Safe because we are under uuid_mutex */
572 name = rcu_string_strdup(device->name->str, GFP_NOFS);
573 BUG_ON(device->name && !name); /* -ENOMEM */
574 rcu_assign_pointer(new_device->name, name);
1f78160c
XG
575 new_device->bdev = NULL;
576 new_device->writeable = 0;
577 new_device->in_fs_metadata = 0;
d5e2003c 578 new_device->can_discard = 0;
1f78160c
XG
579 list_replace_rcu(&device->dev_list, &new_device->dev_list);
580
581 call_rcu(&device->rcu, free_device);
8a4b83cc 582 }
c9513edb
XG
583 mutex_unlock(&fs_devices->device_list_mutex);
584
e4404d6e
YZ
585 WARN_ON(fs_devices->open_devices);
586 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
587 fs_devices->opened = 0;
588 fs_devices->seeding = 0;
2b82032c 589
8a4b83cc
CM
590 return 0;
591}
592
2b82032c
YZ
593int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
594{
e4404d6e 595 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
596 int ret;
597
598 mutex_lock(&uuid_mutex);
599 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
600 if (!fs_devices->opened) {
601 seed_devices = fs_devices->seed;
602 fs_devices->seed = NULL;
603 }
2b82032c 604 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
605
606 while (seed_devices) {
607 fs_devices = seed_devices;
608 seed_devices = fs_devices->seed;
609 __btrfs_close_devices(fs_devices);
610 free_fs_devices(fs_devices);
611 }
2b82032c
YZ
612 return ret;
613}
614
e4404d6e
YZ
615static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
616 fmode_t flags, void *holder)
8a4b83cc 617{
d5e2003c 618 struct request_queue *q;
8a4b83cc
CM
619 struct block_device *bdev;
620 struct list_head *head = &fs_devices->devices;
8a4b83cc 621 struct btrfs_device *device;
a0af469b
CM
622 struct block_device *latest_bdev = NULL;
623 struct buffer_head *bh;
624 struct btrfs_super_block *disk_super;
625 u64 latest_devid = 0;
626 u64 latest_transid = 0;
a0af469b 627 u64 devid;
2b82032c 628 int seeding = 1;
a0af469b 629 int ret = 0;
8a4b83cc 630
d4d77629
TH
631 flags |= FMODE_EXCL;
632
c6e30871 633 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
634 if (device->bdev)
635 continue;
dfe25020
CM
636 if (!device->name)
637 continue;
638
606686ee 639 bdev = blkdev_get_by_path(device->name->str, flags, holder);
8a4b83cc 640 if (IS_ERR(bdev)) {
606686ee 641 printk(KERN_INFO "open %s failed\n", device->name->str);
a0af469b 642 goto error;
8a4b83cc 643 }
3c4bb26b
CM
644 filemap_write_and_wait(bdev->bd_inode->i_mapping);
645 invalidate_bdev(bdev);
a061fc8d 646 set_blocksize(bdev, 4096);
a0af469b 647
a512bbf8 648 bh = btrfs_read_dev_super(bdev);
20bcd649 649 if (!bh)
a0af469b
CM
650 goto error_close;
651
652 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 653 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
654 if (devid != device->devid)
655 goto error_brelse;
656
2b82032c
YZ
657 if (memcmp(device->uuid, disk_super->dev_item.uuid,
658 BTRFS_UUID_SIZE))
659 goto error_brelse;
660
661 device->generation = btrfs_super_generation(disk_super);
662 if (!latest_transid || device->generation > latest_transid) {
a0af469b 663 latest_devid = devid;
2b82032c 664 latest_transid = device->generation;
a0af469b
CM
665 latest_bdev = bdev;
666 }
667
2b82032c
YZ
668 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
669 device->writeable = 0;
670 } else {
671 device->writeable = !bdev_read_only(bdev);
672 seeding = 0;
673 }
674
d5e2003c
JB
675 q = bdev_get_queue(bdev);
676 if (blk_queue_discard(q)) {
677 device->can_discard = 1;
678 fs_devices->num_can_discard++;
679 }
680
8a4b83cc 681 device->bdev = bdev;
dfe25020 682 device->in_fs_metadata = 0;
15916de8
CM
683 device->mode = flags;
684
c289811c
CM
685 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
686 fs_devices->rotating = 1;
687
a0af469b 688 fs_devices->open_devices++;
2b82032c
YZ
689 if (device->writeable) {
690 fs_devices->rw_devices++;
691 list_add(&device->dev_alloc_list,
692 &fs_devices->alloc_list);
693 }
4f6c9328 694 brelse(bh);
a0af469b 695 continue;
a061fc8d 696
a0af469b
CM
697error_brelse:
698 brelse(bh);
699error_close:
d4d77629 700 blkdev_put(bdev, flags);
a0af469b
CM
701error:
702 continue;
8a4b83cc 703 }
a0af469b 704 if (fs_devices->open_devices == 0) {
20bcd649 705 ret = -EINVAL;
a0af469b
CM
706 goto out;
707 }
2b82032c
YZ
708 fs_devices->seeding = seeding;
709 fs_devices->opened = 1;
a0af469b
CM
710 fs_devices->latest_bdev = latest_bdev;
711 fs_devices->latest_devid = latest_devid;
712 fs_devices->latest_trans = latest_transid;
2b82032c 713 fs_devices->total_rw_bytes = 0;
a0af469b 714out:
2b82032c
YZ
715 return ret;
716}
717
718int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 719 fmode_t flags, void *holder)
2b82032c
YZ
720{
721 int ret;
722
723 mutex_lock(&uuid_mutex);
724 if (fs_devices->opened) {
e4404d6e
YZ
725 fs_devices->opened++;
726 ret = 0;
2b82032c 727 } else {
15916de8 728 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 729 }
8a4b83cc 730 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
731 return ret;
732}
733
97288f2c 734int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
735 struct btrfs_fs_devices **fs_devices_ret)
736{
737 struct btrfs_super_block *disk_super;
738 struct block_device *bdev;
739 struct buffer_head *bh;
740 int ret;
741 u64 devid;
f2984462 742 u64 transid;
02db0844 743 u64 total_devices;
8a4b83cc 744
d4d77629
TH
745 flags |= FMODE_EXCL;
746 bdev = blkdev_get_by_path(path, flags, holder);
8a4b83cc
CM
747
748 if (IS_ERR(bdev)) {
8a4b83cc
CM
749 ret = PTR_ERR(bdev);
750 goto error;
751 }
752
10f6327b 753 mutex_lock(&uuid_mutex);
8a4b83cc
CM
754 ret = set_blocksize(bdev, 4096);
755 if (ret)
756 goto error_close;
a512bbf8 757 bh = btrfs_read_dev_super(bdev);
8a4b83cc 758 if (!bh) {
20b45077 759 ret = -EINVAL;
8a4b83cc
CM
760 goto error_close;
761 }
762 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 763 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 764 transid = btrfs_super_generation(disk_super);
02db0844 765 total_devices = btrfs_super_num_devices(disk_super);
7ae9c09d 766 if (disk_super->label[0])
d397712b 767 printk(KERN_INFO "device label %s ", disk_super->label);
22b63a29
ID
768 else
769 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
119e10cf 770 printk(KERN_CONT "devid %llu transid %llu %s\n",
d397712b 771 (unsigned long long)devid, (unsigned long long)transid, path);
8a4b83cc 772 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
02db0844
JB
773 if (!ret && fs_devices_ret)
774 (*fs_devices_ret)->total_devices = total_devices;
8a4b83cc
CM
775 brelse(bh);
776error_close:
10f6327b 777 mutex_unlock(&uuid_mutex);
d4d77629 778 blkdev_put(bdev, flags);
8a4b83cc 779error:
8a4b83cc
CM
780 return ret;
781}
0b86a832 782
6d07bcec
MX
783/* helper to account the used device space in the range */
784int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
785 u64 end, u64 *length)
786{
787 struct btrfs_key key;
788 struct btrfs_root *root = device->dev_root;
789 struct btrfs_dev_extent *dev_extent;
790 struct btrfs_path *path;
791 u64 extent_end;
792 int ret;
793 int slot;
794 struct extent_buffer *l;
795
796 *length = 0;
797
798 if (start >= device->total_bytes)
799 return 0;
800
801 path = btrfs_alloc_path();
802 if (!path)
803 return -ENOMEM;
804 path->reada = 2;
805
806 key.objectid = device->devid;
807 key.offset = start;
808 key.type = BTRFS_DEV_EXTENT_KEY;
809
810 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
811 if (ret < 0)
812 goto out;
813 if (ret > 0) {
814 ret = btrfs_previous_item(root, path, key.objectid, key.type);
815 if (ret < 0)
816 goto out;
817 }
818
819 while (1) {
820 l = path->nodes[0];
821 slot = path->slots[0];
822 if (slot >= btrfs_header_nritems(l)) {
823 ret = btrfs_next_leaf(root, path);
824 if (ret == 0)
825 continue;
826 if (ret < 0)
827 goto out;
828
829 break;
830 }
831 btrfs_item_key_to_cpu(l, &key, slot);
832
833 if (key.objectid < device->devid)
834 goto next;
835
836 if (key.objectid > device->devid)
837 break;
838
839 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
840 goto next;
841
842 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
843 extent_end = key.offset + btrfs_dev_extent_length(l,
844 dev_extent);
845 if (key.offset <= start && extent_end > end) {
846 *length = end - start + 1;
847 break;
848 } else if (key.offset <= start && extent_end > start)
849 *length += extent_end - start;
850 else if (key.offset > start && extent_end <= end)
851 *length += extent_end - key.offset;
852 else if (key.offset > start && key.offset <= end) {
853 *length += end - key.offset + 1;
854 break;
855 } else if (key.offset > end)
856 break;
857
858next:
859 path->slots[0]++;
860 }
861 ret = 0;
862out:
863 btrfs_free_path(path);
864 return ret;
865}
866
0b86a832 867/*
7bfc837d 868 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
869 * @device: the device which we search the free space in
870 * @num_bytes: the size of the free space that we need
871 * @start: store the start of the free space.
872 * @len: the size of the free space. that we find, or the size of the max
873 * free space if we don't find suitable free space
874 *
0b86a832
CM
875 * this uses a pretty simple search, the expectation is that it is
876 * called very infrequently and that a given device has a small number
877 * of extents
7bfc837d
MX
878 *
879 * @start is used to store the start of the free space if we find. But if we
880 * don't find suitable free space, it will be used to store the start position
881 * of the max free space.
882 *
883 * @len is used to store the size of the free space that we find.
884 * But if we don't find suitable free space, it is used to store the size of
885 * the max free space.
0b86a832 886 */
125ccb0a 887int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
7bfc837d 888 u64 *start, u64 *len)
0b86a832
CM
889{
890 struct btrfs_key key;
891 struct btrfs_root *root = device->dev_root;
7bfc837d 892 struct btrfs_dev_extent *dev_extent;
2b82032c 893 struct btrfs_path *path;
7bfc837d
MX
894 u64 hole_size;
895 u64 max_hole_start;
896 u64 max_hole_size;
897 u64 extent_end;
898 u64 search_start;
0b86a832
CM
899 u64 search_end = device->total_bytes;
900 int ret;
7bfc837d 901 int slot;
0b86a832
CM
902 struct extent_buffer *l;
903
0b86a832
CM
904 /* FIXME use last free of some kind */
905
8a4b83cc
CM
906 /* we don't want to overwrite the superblock on the drive,
907 * so we make sure to start at an offset of at least 1MB
908 */
a9c9bf68 909 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 910
7bfc837d
MX
911 max_hole_start = search_start;
912 max_hole_size = 0;
38c01b96 913 hole_size = 0;
7bfc837d
MX
914
915 if (search_start >= search_end) {
916 ret = -ENOSPC;
917 goto error;
918 }
919
920 path = btrfs_alloc_path();
921 if (!path) {
922 ret = -ENOMEM;
923 goto error;
924 }
925 path->reada = 2;
926
0b86a832
CM
927 key.objectid = device->devid;
928 key.offset = search_start;
929 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 930
125ccb0a 931 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 932 if (ret < 0)
7bfc837d 933 goto out;
1fcbac58
YZ
934 if (ret > 0) {
935 ret = btrfs_previous_item(root, path, key.objectid, key.type);
936 if (ret < 0)
7bfc837d 937 goto out;
1fcbac58 938 }
7bfc837d 939
0b86a832
CM
940 while (1) {
941 l = path->nodes[0];
942 slot = path->slots[0];
943 if (slot >= btrfs_header_nritems(l)) {
944 ret = btrfs_next_leaf(root, path);
945 if (ret == 0)
946 continue;
947 if (ret < 0)
7bfc837d
MX
948 goto out;
949
950 break;
0b86a832
CM
951 }
952 btrfs_item_key_to_cpu(l, &key, slot);
953
954 if (key.objectid < device->devid)
955 goto next;
956
957 if (key.objectid > device->devid)
7bfc837d 958 break;
0b86a832 959
7bfc837d
MX
960 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
961 goto next;
9779b72f 962
7bfc837d
MX
963 if (key.offset > search_start) {
964 hole_size = key.offset - search_start;
9779b72f 965
7bfc837d
MX
966 if (hole_size > max_hole_size) {
967 max_hole_start = search_start;
968 max_hole_size = hole_size;
969 }
9779b72f 970
7bfc837d
MX
971 /*
972 * If this free space is greater than which we need,
973 * it must be the max free space that we have found
974 * until now, so max_hole_start must point to the start
975 * of this free space and the length of this free space
976 * is stored in max_hole_size. Thus, we return
977 * max_hole_start and max_hole_size and go back to the
978 * caller.
979 */
980 if (hole_size >= num_bytes) {
981 ret = 0;
982 goto out;
0b86a832
CM
983 }
984 }
0b86a832 985
0b86a832 986 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
987 extent_end = key.offset + btrfs_dev_extent_length(l,
988 dev_extent);
989 if (extent_end > search_start)
990 search_start = extent_end;
0b86a832
CM
991next:
992 path->slots[0]++;
993 cond_resched();
994 }
0b86a832 995
38c01b96 996 /*
997 * At this point, search_start should be the end of
998 * allocated dev extents, and when shrinking the device,
999 * search_end may be smaller than search_start.
1000 */
1001 if (search_end > search_start)
1002 hole_size = search_end - search_start;
1003
7bfc837d
MX
1004 if (hole_size > max_hole_size) {
1005 max_hole_start = search_start;
1006 max_hole_size = hole_size;
0b86a832 1007 }
0b86a832 1008
7bfc837d
MX
1009 /* See above. */
1010 if (hole_size < num_bytes)
1011 ret = -ENOSPC;
1012 else
1013 ret = 0;
1014
1015out:
2b82032c 1016 btrfs_free_path(path);
7bfc837d
MX
1017error:
1018 *start = max_hole_start;
b2117a39 1019 if (len)
7bfc837d 1020 *len = max_hole_size;
0b86a832
CM
1021 return ret;
1022}
1023
b2950863 1024static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
1025 struct btrfs_device *device,
1026 u64 start)
1027{
1028 int ret;
1029 struct btrfs_path *path;
1030 struct btrfs_root *root = device->dev_root;
1031 struct btrfs_key key;
a061fc8d
CM
1032 struct btrfs_key found_key;
1033 struct extent_buffer *leaf = NULL;
1034 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1035
1036 path = btrfs_alloc_path();
1037 if (!path)
1038 return -ENOMEM;
1039
1040 key.objectid = device->devid;
1041 key.offset = start;
1042 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1043again:
8f18cf13 1044 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1045 if (ret > 0) {
1046 ret = btrfs_previous_item(root, path, key.objectid,
1047 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1048 if (ret)
1049 goto out;
a061fc8d
CM
1050 leaf = path->nodes[0];
1051 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1052 extent = btrfs_item_ptr(leaf, path->slots[0],
1053 struct btrfs_dev_extent);
1054 BUG_ON(found_key.offset > start || found_key.offset +
1055 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1056 key = found_key;
1057 btrfs_release_path(path);
1058 goto again;
a061fc8d
CM
1059 } else if (ret == 0) {
1060 leaf = path->nodes[0];
1061 extent = btrfs_item_ptr(leaf, path->slots[0],
1062 struct btrfs_dev_extent);
79787eaa
JM
1063 } else {
1064 btrfs_error(root->fs_info, ret, "Slot search failed");
1065 goto out;
a061fc8d 1066 }
8f18cf13 1067
2bf64758
JB
1068 if (device->bytes_used > 0) {
1069 u64 len = btrfs_dev_extent_length(leaf, extent);
1070 device->bytes_used -= len;
1071 spin_lock(&root->fs_info->free_chunk_lock);
1072 root->fs_info->free_chunk_space += len;
1073 spin_unlock(&root->fs_info->free_chunk_lock);
1074 }
8f18cf13 1075 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1076 if (ret) {
1077 btrfs_error(root->fs_info, ret,
1078 "Failed to remove dev extent item");
1079 }
b0b802d7 1080out:
8f18cf13
CM
1081 btrfs_free_path(path);
1082 return ret;
1083}
1084
2b82032c 1085int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
0b86a832 1086 struct btrfs_device *device,
e17cade2 1087 u64 chunk_tree, u64 chunk_objectid,
2b82032c 1088 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1089{
1090 int ret;
1091 struct btrfs_path *path;
1092 struct btrfs_root *root = device->dev_root;
1093 struct btrfs_dev_extent *extent;
1094 struct extent_buffer *leaf;
1095 struct btrfs_key key;
1096
dfe25020 1097 WARN_ON(!device->in_fs_metadata);
0b86a832
CM
1098 path = btrfs_alloc_path();
1099 if (!path)
1100 return -ENOMEM;
1101
0b86a832 1102 key.objectid = device->devid;
2b82032c 1103 key.offset = start;
0b86a832
CM
1104 key.type = BTRFS_DEV_EXTENT_KEY;
1105 ret = btrfs_insert_empty_item(trans, root, path, &key,
1106 sizeof(*extent));
2cdcecbc
MF
1107 if (ret)
1108 goto out;
0b86a832
CM
1109
1110 leaf = path->nodes[0];
1111 extent = btrfs_item_ptr(leaf, path->slots[0],
1112 struct btrfs_dev_extent);
e17cade2
CM
1113 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1114 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1115 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1116
1117 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1118 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1119 BTRFS_UUID_SIZE);
1120
0b86a832
CM
1121 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1122 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1123out:
0b86a832
CM
1124 btrfs_free_path(path);
1125 return ret;
1126}
1127
a1b32a59
CM
1128static noinline int find_next_chunk(struct btrfs_root *root,
1129 u64 objectid, u64 *offset)
0b86a832
CM
1130{
1131 struct btrfs_path *path;
1132 int ret;
1133 struct btrfs_key key;
e17cade2 1134 struct btrfs_chunk *chunk;
0b86a832
CM
1135 struct btrfs_key found_key;
1136
1137 path = btrfs_alloc_path();
92b8e897
MF
1138 if (!path)
1139 return -ENOMEM;
0b86a832 1140
e17cade2 1141 key.objectid = objectid;
0b86a832
CM
1142 key.offset = (u64)-1;
1143 key.type = BTRFS_CHUNK_ITEM_KEY;
1144
1145 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1146 if (ret < 0)
1147 goto error;
1148
79787eaa 1149 BUG_ON(ret == 0); /* Corruption */
0b86a832
CM
1150
1151 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1152 if (ret) {
e17cade2 1153 *offset = 0;
0b86a832
CM
1154 } else {
1155 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1156 path->slots[0]);
e17cade2
CM
1157 if (found_key.objectid != objectid)
1158 *offset = 0;
1159 else {
1160 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1161 struct btrfs_chunk);
1162 *offset = found_key.offset +
1163 btrfs_chunk_length(path->nodes[0], chunk);
1164 }
0b86a832
CM
1165 }
1166 ret = 0;
1167error:
1168 btrfs_free_path(path);
1169 return ret;
1170}
1171
2b82032c 1172static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
0b86a832
CM
1173{
1174 int ret;
1175 struct btrfs_key key;
1176 struct btrfs_key found_key;
2b82032c
YZ
1177 struct btrfs_path *path;
1178
1179 root = root->fs_info->chunk_root;
1180
1181 path = btrfs_alloc_path();
1182 if (!path)
1183 return -ENOMEM;
0b86a832
CM
1184
1185 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1186 key.type = BTRFS_DEV_ITEM_KEY;
1187 key.offset = (u64)-1;
1188
1189 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1190 if (ret < 0)
1191 goto error;
1192
79787eaa 1193 BUG_ON(ret == 0); /* Corruption */
0b86a832
CM
1194
1195 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1196 BTRFS_DEV_ITEM_KEY);
1197 if (ret) {
1198 *objectid = 1;
1199 } else {
1200 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1201 path->slots[0]);
1202 *objectid = found_key.offset + 1;
1203 }
1204 ret = 0;
1205error:
2b82032c 1206 btrfs_free_path(path);
0b86a832
CM
1207 return ret;
1208}
1209
1210/*
1211 * the device information is stored in the chunk root
1212 * the btrfs_device struct should be fully filled in
1213 */
1214int btrfs_add_device(struct btrfs_trans_handle *trans,
1215 struct btrfs_root *root,
1216 struct btrfs_device *device)
1217{
1218 int ret;
1219 struct btrfs_path *path;
1220 struct btrfs_dev_item *dev_item;
1221 struct extent_buffer *leaf;
1222 struct btrfs_key key;
1223 unsigned long ptr;
0b86a832
CM
1224
1225 root = root->fs_info->chunk_root;
1226
1227 path = btrfs_alloc_path();
1228 if (!path)
1229 return -ENOMEM;
1230
0b86a832
CM
1231 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1232 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1233 key.offset = device->devid;
0b86a832
CM
1234
1235 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1236 sizeof(*dev_item));
0b86a832
CM
1237 if (ret)
1238 goto out;
1239
1240 leaf = path->nodes[0];
1241 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1242
1243 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1244 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1245 btrfs_set_device_type(leaf, dev_item, device->type);
1246 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1247 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1248 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1249 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1250 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1251 btrfs_set_device_group(leaf, dev_item, 0);
1252 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1253 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1254 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1255
0b86a832 1256 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 1257 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2b82032c
YZ
1258 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1259 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1260 btrfs_mark_buffer_dirty(leaf);
0b86a832 1261
2b82032c 1262 ret = 0;
0b86a832
CM
1263out:
1264 btrfs_free_path(path);
1265 return ret;
1266}
8f18cf13 1267
a061fc8d
CM
1268static int btrfs_rm_dev_item(struct btrfs_root *root,
1269 struct btrfs_device *device)
1270{
1271 int ret;
1272 struct btrfs_path *path;
a061fc8d 1273 struct btrfs_key key;
a061fc8d
CM
1274 struct btrfs_trans_handle *trans;
1275
1276 root = root->fs_info->chunk_root;
1277
1278 path = btrfs_alloc_path();
1279 if (!path)
1280 return -ENOMEM;
1281
a22285a6 1282 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1283 if (IS_ERR(trans)) {
1284 btrfs_free_path(path);
1285 return PTR_ERR(trans);
1286 }
a061fc8d
CM
1287 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1288 key.type = BTRFS_DEV_ITEM_KEY;
1289 key.offset = device->devid;
7d9eb12c 1290 lock_chunks(root);
a061fc8d
CM
1291
1292 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1293 if (ret < 0)
1294 goto out;
1295
1296 if (ret > 0) {
1297 ret = -ENOENT;
1298 goto out;
1299 }
1300
1301 ret = btrfs_del_item(trans, root, path);
1302 if (ret)
1303 goto out;
a061fc8d
CM
1304out:
1305 btrfs_free_path(path);
7d9eb12c 1306 unlock_chunks(root);
a061fc8d
CM
1307 btrfs_commit_transaction(trans, root);
1308 return ret;
1309}
1310
1311int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1312{
1313 struct btrfs_device *device;
2b82032c 1314 struct btrfs_device *next_device;
a061fc8d 1315 struct block_device *bdev;
dfe25020 1316 struct buffer_head *bh = NULL;
a061fc8d 1317 struct btrfs_super_block *disk_super;
1f78160c 1318 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1319 u64 all_avail;
1320 u64 devid;
2b82032c
YZ
1321 u64 num_devices;
1322 u8 *dev_uuid;
a061fc8d 1323 int ret = 0;
1f78160c 1324 bool clear_super = false;
a061fc8d 1325
a061fc8d
CM
1326 mutex_lock(&uuid_mutex);
1327
1328 all_avail = root->fs_info->avail_data_alloc_bits |
1329 root->fs_info->avail_system_alloc_bits |
1330 root->fs_info->avail_metadata_alloc_bits;
1331
1332 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
035fe03a 1333 root->fs_info->fs_devices->num_devices <= 4) {
d397712b
CM
1334 printk(KERN_ERR "btrfs: unable to go below four devices "
1335 "on raid10\n");
a061fc8d
CM
1336 ret = -EINVAL;
1337 goto out;
1338 }
1339
1340 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
035fe03a 1341 root->fs_info->fs_devices->num_devices <= 2) {
d397712b
CM
1342 printk(KERN_ERR "btrfs: unable to go below two "
1343 "devices on raid1\n");
a061fc8d
CM
1344 ret = -EINVAL;
1345 goto out;
1346 }
1347
dfe25020 1348 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1349 struct list_head *devices;
1350 struct btrfs_device *tmp;
a061fc8d 1351
dfe25020
CM
1352 device = NULL;
1353 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1354 /*
1355 * It is safe to read the devices since the volume_mutex
1356 * is held.
1357 */
c6e30871 1358 list_for_each_entry(tmp, devices, dev_list) {
dfe25020
CM
1359 if (tmp->in_fs_metadata && !tmp->bdev) {
1360 device = tmp;
1361 break;
1362 }
1363 }
1364 bdev = NULL;
1365 bh = NULL;
1366 disk_super = NULL;
1367 if (!device) {
d397712b
CM
1368 printk(KERN_ERR "btrfs: no missing devices found to "
1369 "remove\n");
dfe25020
CM
1370 goto out;
1371 }
dfe25020 1372 } else {
d4d77629
TH
1373 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1374 root->fs_info->bdev_holder);
dfe25020
CM
1375 if (IS_ERR(bdev)) {
1376 ret = PTR_ERR(bdev);
1377 goto out;
1378 }
a061fc8d 1379
2b82032c 1380 set_blocksize(bdev, 4096);
3c4bb26b 1381 invalidate_bdev(bdev);
a512bbf8 1382 bh = btrfs_read_dev_super(bdev);
dfe25020 1383 if (!bh) {
20b45077 1384 ret = -EINVAL;
dfe25020
CM
1385 goto error_close;
1386 }
1387 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1388 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c
YZ
1389 dev_uuid = disk_super->dev_item.uuid;
1390 device = btrfs_find_device(root, devid, dev_uuid,
1391 disk_super->fsid);
dfe25020
CM
1392 if (!device) {
1393 ret = -ENOENT;
1394 goto error_brelse;
1395 }
2b82032c 1396 }
dfe25020 1397
2b82032c 1398 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
d397712b
CM
1399 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1400 "device\n");
2b82032c
YZ
1401 ret = -EINVAL;
1402 goto error_brelse;
1403 }
1404
1405 if (device->writeable) {
0c1daee0 1406 lock_chunks(root);
2b82032c 1407 list_del_init(&device->dev_alloc_list);
0c1daee0 1408 unlock_chunks(root);
2b82032c 1409 root->fs_info->fs_devices->rw_devices--;
1f78160c 1410 clear_super = true;
dfe25020 1411 }
a061fc8d
CM
1412
1413 ret = btrfs_shrink_device(device, 0);
1414 if (ret)
9b3517e9 1415 goto error_undo;
a061fc8d 1416
a061fc8d
CM
1417 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1418 if (ret)
9b3517e9 1419 goto error_undo;
a061fc8d 1420
2bf64758
JB
1421 spin_lock(&root->fs_info->free_chunk_lock);
1422 root->fs_info->free_chunk_space = device->total_bytes -
1423 device->bytes_used;
1424 spin_unlock(&root->fs_info->free_chunk_lock);
1425
2b82032c 1426 device->in_fs_metadata = 0;
a2de733c 1427 btrfs_scrub_cancel_dev(root, device);
e5e9a520
CM
1428
1429 /*
1430 * the device list mutex makes sure that we don't change
1431 * the device list while someone else is writing out all
1432 * the device supers.
1433 */
1f78160c
XG
1434
1435 cur_devices = device->fs_devices;
e5e9a520 1436 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1437 list_del_rcu(&device->dev_list);
e5e9a520 1438
e4404d6e 1439 device->fs_devices->num_devices--;
02db0844 1440 device->fs_devices->total_devices--;
2b82032c 1441
cd02dca5
CM
1442 if (device->missing)
1443 root->fs_info->fs_devices->missing_devices--;
1444
2b82032c
YZ
1445 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1446 struct btrfs_device, dev_list);
1447 if (device->bdev == root->fs_info->sb->s_bdev)
1448 root->fs_info->sb->s_bdev = next_device->bdev;
1449 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1450 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1451
1f78160c 1452 if (device->bdev)
e4404d6e 1453 device->fs_devices->open_devices--;
1f78160c
XG
1454
1455 call_rcu(&device->rcu, free_device);
1456 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
e4404d6e 1457
6c41761f
DS
1458 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1459 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
2b82032c 1460
1f78160c 1461 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1462 struct btrfs_fs_devices *fs_devices;
1463 fs_devices = root->fs_info->fs_devices;
1464 while (fs_devices) {
1f78160c 1465 if (fs_devices->seed == cur_devices)
e4404d6e
YZ
1466 break;
1467 fs_devices = fs_devices->seed;
2b82032c 1468 }
1f78160c
XG
1469 fs_devices->seed = cur_devices->seed;
1470 cur_devices->seed = NULL;
0c1daee0 1471 lock_chunks(root);
1f78160c 1472 __btrfs_close_devices(cur_devices);
0c1daee0 1473 unlock_chunks(root);
1f78160c 1474 free_fs_devices(cur_devices);
2b82032c
YZ
1475 }
1476
1477 /*
1478 * at this point, the device is zero sized. We want to
1479 * remove it from the devices list and zero out the old super
1480 */
1f78160c 1481 if (clear_super) {
dfe25020
CM
1482 /* make sure this device isn't detected as part of
1483 * the FS anymore
1484 */
1485 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1486 set_buffer_dirty(bh);
1487 sync_dirty_buffer(bh);
dfe25020 1488 }
a061fc8d 1489
a061fc8d 1490 ret = 0;
a061fc8d
CM
1491
1492error_brelse:
1493 brelse(bh);
1494error_close:
dfe25020 1495 if (bdev)
e525fd89 1496 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1497out:
1498 mutex_unlock(&uuid_mutex);
a061fc8d 1499 return ret;
9b3517e9
ID
1500error_undo:
1501 if (device->writeable) {
0c1daee0 1502 lock_chunks(root);
9b3517e9
ID
1503 list_add(&device->dev_alloc_list,
1504 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1505 unlock_chunks(root);
9b3517e9
ID
1506 root->fs_info->fs_devices->rw_devices++;
1507 }
1508 goto error_brelse;
a061fc8d
CM
1509}
1510
2b82032c
YZ
1511/*
1512 * does all the dirty work required for changing file system's UUID.
1513 */
125ccb0a 1514static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
1515{
1516 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1517 struct btrfs_fs_devices *old_devices;
e4404d6e 1518 struct btrfs_fs_devices *seed_devices;
6c41761f 1519 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1520 struct btrfs_device *device;
1521 u64 super_flags;
1522
1523 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1524 if (!fs_devices->seeding)
2b82032c
YZ
1525 return -EINVAL;
1526
e4404d6e
YZ
1527 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1528 if (!seed_devices)
2b82032c
YZ
1529 return -ENOMEM;
1530
e4404d6e
YZ
1531 old_devices = clone_fs_devices(fs_devices);
1532 if (IS_ERR(old_devices)) {
1533 kfree(seed_devices);
1534 return PTR_ERR(old_devices);
2b82032c 1535 }
e4404d6e 1536
2b82032c
YZ
1537 list_add(&old_devices->list, &fs_uuids);
1538
e4404d6e
YZ
1539 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1540 seed_devices->opened = 1;
1541 INIT_LIST_HEAD(&seed_devices->devices);
1542 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1543 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1544
1545 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1546 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1547 synchronize_rcu);
c9513edb
XG
1548 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1549
e4404d6e
YZ
1550 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1551 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1552 device->fs_devices = seed_devices;
1553 }
1554
2b82032c
YZ
1555 fs_devices->seeding = 0;
1556 fs_devices->num_devices = 0;
1557 fs_devices->open_devices = 0;
02db0844 1558 fs_devices->total_devices = 0;
e4404d6e 1559 fs_devices->seed = seed_devices;
2b82032c
YZ
1560
1561 generate_random_uuid(fs_devices->fsid);
1562 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1563 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1564 super_flags = btrfs_super_flags(disk_super) &
1565 ~BTRFS_SUPER_FLAG_SEEDING;
1566 btrfs_set_super_flags(disk_super, super_flags);
1567
1568 return 0;
1569}
1570
1571/*
1572 * strore the expected generation for seed devices in device items.
1573 */
1574static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1575 struct btrfs_root *root)
1576{
1577 struct btrfs_path *path;
1578 struct extent_buffer *leaf;
1579 struct btrfs_dev_item *dev_item;
1580 struct btrfs_device *device;
1581 struct btrfs_key key;
1582 u8 fs_uuid[BTRFS_UUID_SIZE];
1583 u8 dev_uuid[BTRFS_UUID_SIZE];
1584 u64 devid;
1585 int ret;
1586
1587 path = btrfs_alloc_path();
1588 if (!path)
1589 return -ENOMEM;
1590
1591 root = root->fs_info->chunk_root;
1592 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1593 key.offset = 0;
1594 key.type = BTRFS_DEV_ITEM_KEY;
1595
1596 while (1) {
1597 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1598 if (ret < 0)
1599 goto error;
1600
1601 leaf = path->nodes[0];
1602next_slot:
1603 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1604 ret = btrfs_next_leaf(root, path);
1605 if (ret > 0)
1606 break;
1607 if (ret < 0)
1608 goto error;
1609 leaf = path->nodes[0];
1610 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 1611 btrfs_release_path(path);
2b82032c
YZ
1612 continue;
1613 }
1614
1615 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1616 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1617 key.type != BTRFS_DEV_ITEM_KEY)
1618 break;
1619
1620 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1621 struct btrfs_dev_item);
1622 devid = btrfs_device_id(leaf, dev_item);
1623 read_extent_buffer(leaf, dev_uuid,
1624 (unsigned long)btrfs_device_uuid(dev_item),
1625 BTRFS_UUID_SIZE);
1626 read_extent_buffer(leaf, fs_uuid,
1627 (unsigned long)btrfs_device_fsid(dev_item),
1628 BTRFS_UUID_SIZE);
1629 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
79787eaa 1630 BUG_ON(!device); /* Logic error */
2b82032c
YZ
1631
1632 if (device->fs_devices->seeding) {
1633 btrfs_set_device_generation(leaf, dev_item,
1634 device->generation);
1635 btrfs_mark_buffer_dirty(leaf);
1636 }
1637
1638 path->slots[0]++;
1639 goto next_slot;
1640 }
1641 ret = 0;
1642error:
1643 btrfs_free_path(path);
1644 return ret;
1645}
1646
788f20eb
CM
1647int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1648{
d5e2003c 1649 struct request_queue *q;
788f20eb
CM
1650 struct btrfs_trans_handle *trans;
1651 struct btrfs_device *device;
1652 struct block_device *bdev;
788f20eb 1653 struct list_head *devices;
2b82032c 1654 struct super_block *sb = root->fs_info->sb;
606686ee 1655 struct rcu_string *name;
788f20eb 1656 u64 total_bytes;
2b82032c 1657 int seeding_dev = 0;
788f20eb
CM
1658 int ret = 0;
1659
2b82032c 1660 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 1661 return -EROFS;
788f20eb 1662
a5d16333 1663 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 1664 root->fs_info->bdev_holder);
7f59203a
JB
1665 if (IS_ERR(bdev))
1666 return PTR_ERR(bdev);
a2135011 1667
2b82032c
YZ
1668 if (root->fs_info->fs_devices->seeding) {
1669 seeding_dev = 1;
1670 down_write(&sb->s_umount);
1671 mutex_lock(&uuid_mutex);
1672 }
1673
8c8bee1d 1674 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 1675
788f20eb 1676 devices = &root->fs_info->fs_devices->devices;
e5e9a520
CM
1677 /*
1678 * we have the volume lock, so we don't need the extra
1679 * device list mutex while reading the list here.
1680 */
c6e30871 1681 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1682 if (device->bdev == bdev) {
1683 ret = -EEXIST;
2b82032c 1684 goto error;
788f20eb
CM
1685 }
1686 }
1687
1688 device = kzalloc(sizeof(*device), GFP_NOFS);
1689 if (!device) {
1690 /* we can safely leave the fs_devices entry around */
1691 ret = -ENOMEM;
2b82032c 1692 goto error;
788f20eb
CM
1693 }
1694
606686ee
JB
1695 name = rcu_string_strdup(device_path, GFP_NOFS);
1696 if (!name) {
788f20eb 1697 kfree(device);
2b82032c
YZ
1698 ret = -ENOMEM;
1699 goto error;
788f20eb 1700 }
606686ee 1701 rcu_assign_pointer(device->name, name);
2b82032c
YZ
1702
1703 ret = find_next_devid(root, &device->devid);
1704 if (ret) {
606686ee 1705 rcu_string_free(device->name);
2b82032c
YZ
1706 kfree(device);
1707 goto error;
1708 }
1709
a22285a6 1710 trans = btrfs_start_transaction(root, 0);
98d5dc13 1711 if (IS_ERR(trans)) {
606686ee 1712 rcu_string_free(device->name);
98d5dc13
TI
1713 kfree(device);
1714 ret = PTR_ERR(trans);
1715 goto error;
1716 }
1717
2b82032c
YZ
1718 lock_chunks(root);
1719
d5e2003c
JB
1720 q = bdev_get_queue(bdev);
1721 if (blk_queue_discard(q))
1722 device->can_discard = 1;
2b82032c
YZ
1723 device->writeable = 1;
1724 device->work.func = pending_bios_fn;
1725 generate_random_uuid(device->uuid);
1726 spin_lock_init(&device->io_lock);
1727 device->generation = trans->transid;
788f20eb
CM
1728 device->io_width = root->sectorsize;
1729 device->io_align = root->sectorsize;
1730 device->sector_size = root->sectorsize;
1731 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 1732 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
1733 device->dev_root = root->fs_info->dev_root;
1734 device->bdev = bdev;
dfe25020 1735 device->in_fs_metadata = 1;
fb01aa85 1736 device->mode = FMODE_EXCL;
2b82032c 1737 set_blocksize(device->bdev, 4096);
788f20eb 1738
2b82032c
YZ
1739 if (seeding_dev) {
1740 sb->s_flags &= ~MS_RDONLY;
125ccb0a 1741 ret = btrfs_prepare_sprout(root);
79787eaa 1742 BUG_ON(ret); /* -ENOMEM */
2b82032c 1743 }
788f20eb 1744
2b82032c 1745 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 1746
e5e9a520 1747 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1748 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
1749 list_add(&device->dev_alloc_list,
1750 &root->fs_info->fs_devices->alloc_list);
1751 root->fs_info->fs_devices->num_devices++;
1752 root->fs_info->fs_devices->open_devices++;
1753 root->fs_info->fs_devices->rw_devices++;
02db0844 1754 root->fs_info->fs_devices->total_devices++;
d5e2003c
JB
1755 if (device->can_discard)
1756 root->fs_info->fs_devices->num_can_discard++;
2b82032c 1757 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 1758
2bf64758
JB
1759 spin_lock(&root->fs_info->free_chunk_lock);
1760 root->fs_info->free_chunk_space += device->total_bytes;
1761 spin_unlock(&root->fs_info->free_chunk_lock);
1762
c289811c
CM
1763 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1764 root->fs_info->fs_devices->rotating = 1;
1765
6c41761f
DS
1766 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
1767 btrfs_set_super_total_bytes(root->fs_info->super_copy,
788f20eb
CM
1768 total_bytes + device->total_bytes);
1769
6c41761f
DS
1770 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
1771 btrfs_set_super_num_devices(root->fs_info->super_copy,
788f20eb 1772 total_bytes + 1);
e5e9a520 1773 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 1774
2b82032c
YZ
1775 if (seeding_dev) {
1776 ret = init_first_rw_device(trans, root, device);
79787eaa
JM
1777 if (ret)
1778 goto error_trans;
2b82032c 1779 ret = btrfs_finish_sprout(trans, root);
79787eaa
JM
1780 if (ret)
1781 goto error_trans;
2b82032c
YZ
1782 } else {
1783 ret = btrfs_add_device(trans, root, device);
79787eaa
JM
1784 if (ret)
1785 goto error_trans;
2b82032c
YZ
1786 }
1787
913d952e
CM
1788 /*
1789 * we've got more storage, clear any full flags on the space
1790 * infos
1791 */
1792 btrfs_clear_space_info_full(root->fs_info);
1793
7d9eb12c 1794 unlock_chunks(root);
79787eaa 1795 ret = btrfs_commit_transaction(trans, root);
a2135011 1796
2b82032c
YZ
1797 if (seeding_dev) {
1798 mutex_unlock(&uuid_mutex);
1799 up_write(&sb->s_umount);
788f20eb 1800
79787eaa
JM
1801 if (ret) /* transaction commit */
1802 return ret;
1803
2b82032c 1804 ret = btrfs_relocate_sys_chunks(root);
79787eaa
JM
1805 if (ret < 0)
1806 btrfs_error(root->fs_info, ret,
1807 "Failed to relocate sys chunks after "
1808 "device initialization. This can be fixed "
1809 "using the \"btrfs balance\" command.");
2b82032c 1810 }
c9e9f97b 1811
2b82032c 1812 return ret;
79787eaa
JM
1813
1814error_trans:
1815 unlock_chunks(root);
1816 btrfs_abort_transaction(trans, root, ret);
1817 btrfs_end_transaction(trans, root);
606686ee 1818 rcu_string_free(device->name);
79787eaa 1819 kfree(device);
2b82032c 1820error:
e525fd89 1821 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
1822 if (seeding_dev) {
1823 mutex_unlock(&uuid_mutex);
1824 up_write(&sb->s_umount);
1825 }
c9e9f97b 1826 return ret;
788f20eb
CM
1827}
1828
d397712b
CM
1829static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1830 struct btrfs_device *device)
0b86a832
CM
1831{
1832 int ret;
1833 struct btrfs_path *path;
1834 struct btrfs_root *root;
1835 struct btrfs_dev_item *dev_item;
1836 struct extent_buffer *leaf;
1837 struct btrfs_key key;
1838
1839 root = device->dev_root->fs_info->chunk_root;
1840
1841 path = btrfs_alloc_path();
1842 if (!path)
1843 return -ENOMEM;
1844
1845 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1846 key.type = BTRFS_DEV_ITEM_KEY;
1847 key.offset = device->devid;
1848
1849 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1850 if (ret < 0)
1851 goto out;
1852
1853 if (ret > 0) {
1854 ret = -ENOENT;
1855 goto out;
1856 }
1857
1858 leaf = path->nodes[0];
1859 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1860
1861 btrfs_set_device_id(leaf, dev_item, device->devid);
1862 btrfs_set_device_type(leaf, dev_item, device->type);
1863 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1864 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1865 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 1866 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
1867 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1868 btrfs_mark_buffer_dirty(leaf);
1869
1870out:
1871 btrfs_free_path(path);
1872 return ret;
1873}
1874
7d9eb12c 1875static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
1876 struct btrfs_device *device, u64 new_size)
1877{
1878 struct btrfs_super_block *super_copy =
6c41761f 1879 device->dev_root->fs_info->super_copy;
8f18cf13
CM
1880 u64 old_total = btrfs_super_total_bytes(super_copy);
1881 u64 diff = new_size - device->total_bytes;
1882
2b82032c
YZ
1883 if (!device->writeable)
1884 return -EACCES;
1885 if (new_size <= device->total_bytes)
1886 return -EINVAL;
1887
8f18cf13 1888 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
1889 device->fs_devices->total_rw_bytes += diff;
1890
1891 device->total_bytes = new_size;
9779b72f 1892 device->disk_total_bytes = new_size;
4184ea7f
CM
1893 btrfs_clear_space_info_full(device->dev_root->fs_info);
1894
8f18cf13
CM
1895 return btrfs_update_device(trans, device);
1896}
1897
7d9eb12c
CM
1898int btrfs_grow_device(struct btrfs_trans_handle *trans,
1899 struct btrfs_device *device, u64 new_size)
1900{
1901 int ret;
1902 lock_chunks(device->dev_root);
1903 ret = __btrfs_grow_device(trans, device, new_size);
1904 unlock_chunks(device->dev_root);
1905 return ret;
1906}
1907
8f18cf13
CM
1908static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1909 struct btrfs_root *root,
1910 u64 chunk_tree, u64 chunk_objectid,
1911 u64 chunk_offset)
1912{
1913 int ret;
1914 struct btrfs_path *path;
1915 struct btrfs_key key;
1916
1917 root = root->fs_info->chunk_root;
1918 path = btrfs_alloc_path();
1919 if (!path)
1920 return -ENOMEM;
1921
1922 key.objectid = chunk_objectid;
1923 key.offset = chunk_offset;
1924 key.type = BTRFS_CHUNK_ITEM_KEY;
1925
1926 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
1927 if (ret < 0)
1928 goto out;
1929 else if (ret > 0) { /* Logic error or corruption */
1930 btrfs_error(root->fs_info, -ENOENT,
1931 "Failed lookup while freeing chunk.");
1932 ret = -ENOENT;
1933 goto out;
1934 }
8f18cf13
CM
1935
1936 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1937 if (ret < 0)
1938 btrfs_error(root->fs_info, ret,
1939 "Failed to delete chunk item.");
1940out:
8f18cf13 1941 btrfs_free_path(path);
65a246c5 1942 return ret;
8f18cf13
CM
1943}
1944
b2950863 1945static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
1946 chunk_offset)
1947{
6c41761f 1948 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
1949 struct btrfs_disk_key *disk_key;
1950 struct btrfs_chunk *chunk;
1951 u8 *ptr;
1952 int ret = 0;
1953 u32 num_stripes;
1954 u32 array_size;
1955 u32 len = 0;
1956 u32 cur;
1957 struct btrfs_key key;
1958
1959 array_size = btrfs_super_sys_array_size(super_copy);
1960
1961 ptr = super_copy->sys_chunk_array;
1962 cur = 0;
1963
1964 while (cur < array_size) {
1965 disk_key = (struct btrfs_disk_key *)ptr;
1966 btrfs_disk_key_to_cpu(&key, disk_key);
1967
1968 len = sizeof(*disk_key);
1969
1970 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1971 chunk = (struct btrfs_chunk *)(ptr + len);
1972 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1973 len += btrfs_chunk_item_size(num_stripes);
1974 } else {
1975 ret = -EIO;
1976 break;
1977 }
1978 if (key.objectid == chunk_objectid &&
1979 key.offset == chunk_offset) {
1980 memmove(ptr, ptr + len, array_size - (cur + len));
1981 array_size -= len;
1982 btrfs_set_super_sys_array_size(super_copy, array_size);
1983 } else {
1984 ptr += len;
1985 cur += len;
1986 }
1987 }
1988 return ret;
1989}
1990
b2950863 1991static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
1992 u64 chunk_tree, u64 chunk_objectid,
1993 u64 chunk_offset)
1994{
1995 struct extent_map_tree *em_tree;
1996 struct btrfs_root *extent_root;
1997 struct btrfs_trans_handle *trans;
1998 struct extent_map *em;
1999 struct map_lookup *map;
2000 int ret;
2001 int i;
2002
2003 root = root->fs_info->chunk_root;
2004 extent_root = root->fs_info->extent_root;
2005 em_tree = &root->fs_info->mapping_tree.map_tree;
2006
ba1bf481
JB
2007 ret = btrfs_can_relocate(extent_root, chunk_offset);
2008 if (ret)
2009 return -ENOSPC;
2010
8f18cf13 2011 /* step one, relocate all the extents inside this chunk */
1a40e23b 2012 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
2013 if (ret)
2014 return ret;
8f18cf13 2015
a22285a6 2016 trans = btrfs_start_transaction(root, 0);
98d5dc13 2017 BUG_ON(IS_ERR(trans));
8f18cf13 2018
7d9eb12c
CM
2019 lock_chunks(root);
2020
8f18cf13
CM
2021 /*
2022 * step two, delete the device extents and the
2023 * chunk tree entries
2024 */
890871be 2025 read_lock(&em_tree->lock);
8f18cf13 2026 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2027 read_unlock(&em_tree->lock);
8f18cf13 2028
285190d9 2029 BUG_ON(!em || em->start > chunk_offset ||
a061fc8d 2030 em->start + em->len < chunk_offset);
8f18cf13
CM
2031 map = (struct map_lookup *)em->bdev;
2032
2033 for (i = 0; i < map->num_stripes; i++) {
2034 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2035 map->stripes[i].physical);
2036 BUG_ON(ret);
a061fc8d 2037
dfe25020
CM
2038 if (map->stripes[i].dev) {
2039 ret = btrfs_update_device(trans, map->stripes[i].dev);
2040 BUG_ON(ret);
2041 }
8f18cf13
CM
2042 }
2043 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2044 chunk_offset);
2045
2046 BUG_ON(ret);
2047
1abe9b8a 2048 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2049
8f18cf13
CM
2050 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2051 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2052 BUG_ON(ret);
8f18cf13
CM
2053 }
2054
2b82032c
YZ
2055 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2056 BUG_ON(ret);
2057
890871be 2058 write_lock(&em_tree->lock);
2b82032c 2059 remove_extent_mapping(em_tree, em);
890871be 2060 write_unlock(&em_tree->lock);
2b82032c
YZ
2061
2062 kfree(map);
2063 em->bdev = NULL;
2064
2065 /* once for the tree */
2066 free_extent_map(em);
2067 /* once for us */
2068 free_extent_map(em);
2069
2070 unlock_chunks(root);
2071 btrfs_end_transaction(trans, root);
2072 return 0;
2073}
2074
2075static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2076{
2077 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2078 struct btrfs_path *path;
2079 struct extent_buffer *leaf;
2080 struct btrfs_chunk *chunk;
2081 struct btrfs_key key;
2082 struct btrfs_key found_key;
2083 u64 chunk_tree = chunk_root->root_key.objectid;
2084 u64 chunk_type;
ba1bf481
JB
2085 bool retried = false;
2086 int failed = 0;
2b82032c
YZ
2087 int ret;
2088
2089 path = btrfs_alloc_path();
2090 if (!path)
2091 return -ENOMEM;
2092
ba1bf481 2093again:
2b82032c
YZ
2094 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2095 key.offset = (u64)-1;
2096 key.type = BTRFS_CHUNK_ITEM_KEY;
2097
2098 while (1) {
2099 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2100 if (ret < 0)
2101 goto error;
79787eaa 2102 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2103
2104 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2105 key.type);
2106 if (ret < 0)
2107 goto error;
2108 if (ret > 0)
2109 break;
1a40e23b 2110
2b82032c
YZ
2111 leaf = path->nodes[0];
2112 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2113
2b82032c
YZ
2114 chunk = btrfs_item_ptr(leaf, path->slots[0],
2115 struct btrfs_chunk);
2116 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2117 btrfs_release_path(path);
8f18cf13 2118
2b82032c
YZ
2119 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2120 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2121 found_key.objectid,
2122 found_key.offset);
ba1bf481
JB
2123 if (ret == -ENOSPC)
2124 failed++;
2125 else if (ret)
2126 BUG();
2b82032c 2127 }
8f18cf13 2128
2b82032c
YZ
2129 if (found_key.offset == 0)
2130 break;
2131 key.offset = found_key.offset - 1;
2132 }
2133 ret = 0;
ba1bf481
JB
2134 if (failed && !retried) {
2135 failed = 0;
2136 retried = true;
2137 goto again;
2138 } else if (failed && retried) {
2139 WARN_ON(1);
2140 ret = -ENOSPC;
2141 }
2b82032c
YZ
2142error:
2143 btrfs_free_path(path);
2144 return ret;
8f18cf13
CM
2145}
2146
0940ebf6
ID
2147static int insert_balance_item(struct btrfs_root *root,
2148 struct btrfs_balance_control *bctl)
2149{
2150 struct btrfs_trans_handle *trans;
2151 struct btrfs_balance_item *item;
2152 struct btrfs_disk_balance_args disk_bargs;
2153 struct btrfs_path *path;
2154 struct extent_buffer *leaf;
2155 struct btrfs_key key;
2156 int ret, err;
2157
2158 path = btrfs_alloc_path();
2159 if (!path)
2160 return -ENOMEM;
2161
2162 trans = btrfs_start_transaction(root, 0);
2163 if (IS_ERR(trans)) {
2164 btrfs_free_path(path);
2165 return PTR_ERR(trans);
2166 }
2167
2168 key.objectid = BTRFS_BALANCE_OBJECTID;
2169 key.type = BTRFS_BALANCE_ITEM_KEY;
2170 key.offset = 0;
2171
2172 ret = btrfs_insert_empty_item(trans, root, path, &key,
2173 sizeof(*item));
2174 if (ret)
2175 goto out;
2176
2177 leaf = path->nodes[0];
2178 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2179
2180 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2181
2182 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2183 btrfs_set_balance_data(leaf, item, &disk_bargs);
2184 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2185 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2186 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2187 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2188
2189 btrfs_set_balance_flags(leaf, item, bctl->flags);
2190
2191 btrfs_mark_buffer_dirty(leaf);
2192out:
2193 btrfs_free_path(path);
2194 err = btrfs_commit_transaction(trans, root);
2195 if (err && !ret)
2196 ret = err;
2197 return ret;
2198}
2199
2200static int del_balance_item(struct btrfs_root *root)
2201{
2202 struct btrfs_trans_handle *trans;
2203 struct btrfs_path *path;
2204 struct btrfs_key key;
2205 int ret, err;
2206
2207 path = btrfs_alloc_path();
2208 if (!path)
2209 return -ENOMEM;
2210
2211 trans = btrfs_start_transaction(root, 0);
2212 if (IS_ERR(trans)) {
2213 btrfs_free_path(path);
2214 return PTR_ERR(trans);
2215 }
2216
2217 key.objectid = BTRFS_BALANCE_OBJECTID;
2218 key.type = BTRFS_BALANCE_ITEM_KEY;
2219 key.offset = 0;
2220
2221 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2222 if (ret < 0)
2223 goto out;
2224 if (ret > 0) {
2225 ret = -ENOENT;
2226 goto out;
2227 }
2228
2229 ret = btrfs_del_item(trans, root, path);
2230out:
2231 btrfs_free_path(path);
2232 err = btrfs_commit_transaction(trans, root);
2233 if (err && !ret)
2234 ret = err;
2235 return ret;
2236}
2237
59641015
ID
2238/*
2239 * This is a heuristic used to reduce the number of chunks balanced on
2240 * resume after balance was interrupted.
2241 */
2242static void update_balance_args(struct btrfs_balance_control *bctl)
2243{
2244 /*
2245 * Turn on soft mode for chunk types that were being converted.
2246 */
2247 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2248 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2249 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2250 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2251 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2252 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2253
2254 /*
2255 * Turn on usage filter if is not already used. The idea is
2256 * that chunks that we have already balanced should be
2257 * reasonably full. Don't do it for chunks that are being
2258 * converted - that will keep us from relocating unconverted
2259 * (albeit full) chunks.
2260 */
2261 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2262 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2263 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2264 bctl->data.usage = 90;
2265 }
2266 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2267 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2268 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2269 bctl->sys.usage = 90;
2270 }
2271 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2272 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2273 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2274 bctl->meta.usage = 90;
2275 }
2276}
2277
c9e9f97b
ID
2278/*
2279 * Should be called with both balance and volume mutexes held to
2280 * serialize other volume operations (add_dev/rm_dev/resize) with
2281 * restriper. Same goes for unset_balance_control.
2282 */
2283static void set_balance_control(struct btrfs_balance_control *bctl)
2284{
2285 struct btrfs_fs_info *fs_info = bctl->fs_info;
2286
2287 BUG_ON(fs_info->balance_ctl);
2288
2289 spin_lock(&fs_info->balance_lock);
2290 fs_info->balance_ctl = bctl;
2291 spin_unlock(&fs_info->balance_lock);
2292}
2293
2294static void unset_balance_control(struct btrfs_fs_info *fs_info)
2295{
2296 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2297
2298 BUG_ON(!fs_info->balance_ctl);
2299
2300 spin_lock(&fs_info->balance_lock);
2301 fs_info->balance_ctl = NULL;
2302 spin_unlock(&fs_info->balance_lock);
2303
2304 kfree(bctl);
2305}
2306
ed25e9b2
ID
2307/*
2308 * Balance filters. Return 1 if chunk should be filtered out
2309 * (should not be balanced).
2310 */
899c81ea 2311static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
2312 struct btrfs_balance_args *bargs)
2313{
899c81ea
ID
2314 chunk_type = chunk_to_extended(chunk_type) &
2315 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 2316
899c81ea 2317 if (bargs->profiles & chunk_type)
ed25e9b2
ID
2318 return 0;
2319
2320 return 1;
2321}
2322
5ce5b3c0
ID
2323static u64 div_factor_fine(u64 num, int factor)
2324{
2325 if (factor <= 0)
2326 return 0;
2327 if (factor >= 100)
2328 return num;
2329
2330 num *= factor;
2331 do_div(num, 100);
2332 return num;
2333}
2334
2335static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2336 struct btrfs_balance_args *bargs)
2337{
2338 struct btrfs_block_group_cache *cache;
2339 u64 chunk_used, user_thresh;
2340 int ret = 1;
2341
2342 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2343 chunk_used = btrfs_block_group_used(&cache->item);
2344
2345 user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
2346 if (chunk_used < user_thresh)
2347 ret = 0;
2348
2349 btrfs_put_block_group(cache);
2350 return ret;
2351}
2352
409d404b
ID
2353static int chunk_devid_filter(struct extent_buffer *leaf,
2354 struct btrfs_chunk *chunk,
2355 struct btrfs_balance_args *bargs)
2356{
2357 struct btrfs_stripe *stripe;
2358 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2359 int i;
2360
2361 for (i = 0; i < num_stripes; i++) {
2362 stripe = btrfs_stripe_nr(chunk, i);
2363 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2364 return 0;
2365 }
2366
2367 return 1;
2368}
2369
94e60d5a
ID
2370/* [pstart, pend) */
2371static int chunk_drange_filter(struct extent_buffer *leaf,
2372 struct btrfs_chunk *chunk,
2373 u64 chunk_offset,
2374 struct btrfs_balance_args *bargs)
2375{
2376 struct btrfs_stripe *stripe;
2377 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2378 u64 stripe_offset;
2379 u64 stripe_length;
2380 int factor;
2381 int i;
2382
2383 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2384 return 0;
2385
2386 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2387 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
2388 factor = 2;
2389 else
2390 factor = 1;
2391 factor = num_stripes / factor;
2392
2393 for (i = 0; i < num_stripes; i++) {
2394 stripe = btrfs_stripe_nr(chunk, i);
2395 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2396 continue;
2397
2398 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2399 stripe_length = btrfs_chunk_length(leaf, chunk);
2400 do_div(stripe_length, factor);
2401
2402 if (stripe_offset < bargs->pend &&
2403 stripe_offset + stripe_length > bargs->pstart)
2404 return 0;
2405 }
2406
2407 return 1;
2408}
2409
ea67176a
ID
2410/* [vstart, vend) */
2411static int chunk_vrange_filter(struct extent_buffer *leaf,
2412 struct btrfs_chunk *chunk,
2413 u64 chunk_offset,
2414 struct btrfs_balance_args *bargs)
2415{
2416 if (chunk_offset < bargs->vend &&
2417 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2418 /* at least part of the chunk is inside this vrange */
2419 return 0;
2420
2421 return 1;
2422}
2423
899c81ea 2424static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
2425 struct btrfs_balance_args *bargs)
2426{
2427 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2428 return 0;
2429
899c81ea
ID
2430 chunk_type = chunk_to_extended(chunk_type) &
2431 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 2432
899c81ea 2433 if (bargs->target == chunk_type)
cfa4c961
ID
2434 return 1;
2435
2436 return 0;
2437}
2438
f43ffb60
ID
2439static int should_balance_chunk(struct btrfs_root *root,
2440 struct extent_buffer *leaf,
2441 struct btrfs_chunk *chunk, u64 chunk_offset)
2442{
2443 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2444 struct btrfs_balance_args *bargs = NULL;
2445 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2446
2447 /* type filter */
2448 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2449 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2450 return 0;
2451 }
2452
2453 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2454 bargs = &bctl->data;
2455 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2456 bargs = &bctl->sys;
2457 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2458 bargs = &bctl->meta;
2459
ed25e9b2
ID
2460 /* profiles filter */
2461 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2462 chunk_profiles_filter(chunk_type, bargs)) {
2463 return 0;
5ce5b3c0
ID
2464 }
2465
2466 /* usage filter */
2467 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2468 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2469 return 0;
409d404b
ID
2470 }
2471
2472 /* devid filter */
2473 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2474 chunk_devid_filter(leaf, chunk, bargs)) {
2475 return 0;
94e60d5a
ID
2476 }
2477
2478 /* drange filter, makes sense only with devid filter */
2479 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2480 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2481 return 0;
ea67176a
ID
2482 }
2483
2484 /* vrange filter */
2485 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2486 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2487 return 0;
ed25e9b2
ID
2488 }
2489
cfa4c961
ID
2490 /* soft profile changing mode */
2491 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2492 chunk_soft_convert_filter(chunk_type, bargs)) {
2493 return 0;
2494 }
2495
f43ffb60
ID
2496 return 1;
2497}
2498
ec44a35c
CM
2499static u64 div_factor(u64 num, int factor)
2500{
2501 if (factor == 10)
2502 return num;
2503 num *= factor;
2504 do_div(num, 10);
2505 return num;
2506}
2507
c9e9f97b 2508static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 2509{
19a39dce 2510 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
2511 struct btrfs_root *chunk_root = fs_info->chunk_root;
2512 struct btrfs_root *dev_root = fs_info->dev_root;
2513 struct list_head *devices;
ec44a35c
CM
2514 struct btrfs_device *device;
2515 u64 old_size;
2516 u64 size_to_free;
f43ffb60 2517 struct btrfs_chunk *chunk;
ec44a35c
CM
2518 struct btrfs_path *path;
2519 struct btrfs_key key;
ec44a35c 2520 struct btrfs_key found_key;
c9e9f97b 2521 struct btrfs_trans_handle *trans;
f43ffb60
ID
2522 struct extent_buffer *leaf;
2523 int slot;
c9e9f97b
ID
2524 int ret;
2525 int enospc_errors = 0;
19a39dce 2526 bool counting = true;
ec44a35c 2527
ec44a35c 2528 /* step one make some room on all the devices */
c9e9f97b 2529 devices = &fs_info->fs_devices->devices;
c6e30871 2530 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2531 old_size = device->total_bytes;
2532 size_to_free = div_factor(old_size, 1);
2533 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c
YZ
2534 if (!device->writeable ||
2535 device->total_bytes - device->bytes_used > size_to_free)
ec44a35c
CM
2536 continue;
2537
2538 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2539 if (ret == -ENOSPC)
2540 break;
ec44a35c
CM
2541 BUG_ON(ret);
2542
a22285a6 2543 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2544 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2545
2546 ret = btrfs_grow_device(trans, device, old_size);
2547 BUG_ON(ret);
2548
2549 btrfs_end_transaction(trans, dev_root);
2550 }
2551
2552 /* step two, relocate all the chunks */
2553 path = btrfs_alloc_path();
17e9f796
MF
2554 if (!path) {
2555 ret = -ENOMEM;
2556 goto error;
2557 }
19a39dce
ID
2558
2559 /* zero out stat counters */
2560 spin_lock(&fs_info->balance_lock);
2561 memset(&bctl->stat, 0, sizeof(bctl->stat));
2562 spin_unlock(&fs_info->balance_lock);
2563again:
ec44a35c
CM
2564 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2565 key.offset = (u64)-1;
2566 key.type = BTRFS_CHUNK_ITEM_KEY;
2567
d397712b 2568 while (1) {
19a39dce 2569 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 2570 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
2571 ret = -ECANCELED;
2572 goto error;
2573 }
2574
ec44a35c
CM
2575 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2576 if (ret < 0)
2577 goto error;
2578
2579 /*
2580 * this shouldn't happen, it means the last relocate
2581 * failed
2582 */
2583 if (ret == 0)
c9e9f97b 2584 BUG(); /* FIXME break ? */
ec44a35c
CM
2585
2586 ret = btrfs_previous_item(chunk_root, path, 0,
2587 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b
ID
2588 if (ret) {
2589 ret = 0;
ec44a35c 2590 break;
c9e9f97b 2591 }
7d9eb12c 2592
f43ffb60
ID
2593 leaf = path->nodes[0];
2594 slot = path->slots[0];
2595 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 2596
ec44a35c
CM
2597 if (found_key.objectid != key.objectid)
2598 break;
7d9eb12c 2599
ec44a35c 2600 /* chunk zero is special */
ba1bf481 2601 if (found_key.offset == 0)
ec44a35c
CM
2602 break;
2603
f43ffb60
ID
2604 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2605
19a39dce
ID
2606 if (!counting) {
2607 spin_lock(&fs_info->balance_lock);
2608 bctl->stat.considered++;
2609 spin_unlock(&fs_info->balance_lock);
2610 }
2611
f43ffb60
ID
2612 ret = should_balance_chunk(chunk_root, leaf, chunk,
2613 found_key.offset);
b3b4aa74 2614 btrfs_release_path(path);
f43ffb60
ID
2615 if (!ret)
2616 goto loop;
2617
19a39dce
ID
2618 if (counting) {
2619 spin_lock(&fs_info->balance_lock);
2620 bctl->stat.expected++;
2621 spin_unlock(&fs_info->balance_lock);
2622 goto loop;
2623 }
2624
ec44a35c
CM
2625 ret = btrfs_relocate_chunk(chunk_root,
2626 chunk_root->root_key.objectid,
2627 found_key.objectid,
2628 found_key.offset);
508794eb
JB
2629 if (ret && ret != -ENOSPC)
2630 goto error;
19a39dce 2631 if (ret == -ENOSPC) {
c9e9f97b 2632 enospc_errors++;
19a39dce
ID
2633 } else {
2634 spin_lock(&fs_info->balance_lock);
2635 bctl->stat.completed++;
2636 spin_unlock(&fs_info->balance_lock);
2637 }
f43ffb60 2638loop:
ba1bf481 2639 key.offset = found_key.offset - 1;
ec44a35c 2640 }
c9e9f97b 2641
19a39dce
ID
2642 if (counting) {
2643 btrfs_release_path(path);
2644 counting = false;
2645 goto again;
2646 }
ec44a35c
CM
2647error:
2648 btrfs_free_path(path);
c9e9f97b
ID
2649 if (enospc_errors) {
2650 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
2651 enospc_errors);
2652 if (!ret)
2653 ret = -ENOSPC;
2654 }
2655
ec44a35c
CM
2656 return ret;
2657}
2658
0c460c0d
ID
2659/**
2660 * alloc_profile_is_valid - see if a given profile is valid and reduced
2661 * @flags: profile to validate
2662 * @extended: if true @flags is treated as an extended profile
2663 */
2664static int alloc_profile_is_valid(u64 flags, int extended)
2665{
2666 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
2667 BTRFS_BLOCK_GROUP_PROFILE_MASK);
2668
2669 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
2670
2671 /* 1) check that all other bits are zeroed */
2672 if (flags & ~mask)
2673 return 0;
2674
2675 /* 2) see if profile is reduced */
2676 if (flags == 0)
2677 return !extended; /* "0" is valid for usual profiles */
2678
2679 /* true if exactly one bit set */
2680 return (flags & (flags - 1)) == 0;
2681}
2682
837d5b6e
ID
2683static inline int balance_need_close(struct btrfs_fs_info *fs_info)
2684{
a7e99c69
ID
2685 /* cancel requested || normal exit path */
2686 return atomic_read(&fs_info->balance_cancel_req) ||
2687 (atomic_read(&fs_info->balance_pause_req) == 0 &&
2688 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
2689}
2690
c9e9f97b
ID
2691static void __cancel_balance(struct btrfs_fs_info *fs_info)
2692{
0940ebf6
ID
2693 int ret;
2694
c9e9f97b 2695 unset_balance_control(fs_info);
0940ebf6
ID
2696 ret = del_balance_item(fs_info->tree_root);
2697 BUG_ON(ret);
c9e9f97b
ID
2698}
2699
19a39dce 2700void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
c9e9f97b
ID
2701 struct btrfs_ioctl_balance_args *bargs);
2702
2703/*
2704 * Should be called with both balance and volume mutexes held
2705 */
2706int btrfs_balance(struct btrfs_balance_control *bctl,
2707 struct btrfs_ioctl_balance_args *bargs)
2708{
2709 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 2710 u64 allowed;
e4837f8f 2711 int mixed = 0;
c9e9f97b
ID
2712 int ret;
2713
837d5b6e 2714 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
2715 atomic_read(&fs_info->balance_pause_req) ||
2716 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
2717 ret = -EINVAL;
2718 goto out;
2719 }
2720
e4837f8f
ID
2721 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
2722 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
2723 mixed = 1;
2724
f43ffb60
ID
2725 /*
2726 * In case of mixed groups both data and meta should be picked,
2727 * and identical options should be given for both of them.
2728 */
e4837f8f
ID
2729 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
2730 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
2731 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
2732 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
2733 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
2734 printk(KERN_ERR "btrfs: with mixed groups data and "
2735 "metadata balance options must be the same\n");
2736 ret = -EINVAL;
2737 goto out;
2738 }
2739 }
2740
e4d8ec0f
ID
2741 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2742 if (fs_info->fs_devices->num_devices == 1)
2743 allowed |= BTRFS_BLOCK_GROUP_DUP;
2744 else if (fs_info->fs_devices->num_devices < 4)
2745 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
2746 else
2747 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2748 BTRFS_BLOCK_GROUP_RAID10);
2749
6728b198
ID
2750 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2751 (!alloc_profile_is_valid(bctl->data.target, 1) ||
2752 (bctl->data.target & ~allowed))) {
e4d8ec0f
ID
2753 printk(KERN_ERR "btrfs: unable to start balance with target "
2754 "data profile %llu\n",
2755 (unsigned long long)bctl->data.target);
2756 ret = -EINVAL;
2757 goto out;
2758 }
6728b198
ID
2759 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2760 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
2761 (bctl->meta.target & ~allowed))) {
e4d8ec0f
ID
2762 printk(KERN_ERR "btrfs: unable to start balance with target "
2763 "metadata profile %llu\n",
2764 (unsigned long long)bctl->meta.target);
2765 ret = -EINVAL;
2766 goto out;
2767 }
6728b198
ID
2768 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2769 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
2770 (bctl->sys.target & ~allowed))) {
e4d8ec0f
ID
2771 printk(KERN_ERR "btrfs: unable to start balance with target "
2772 "system profile %llu\n",
2773 (unsigned long long)bctl->sys.target);
2774 ret = -EINVAL;
2775 goto out;
2776 }
2777
e4837f8f
ID
2778 /* allow dup'ed data chunks only in mixed mode */
2779 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 2780 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
e4d8ec0f
ID
2781 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
2782 ret = -EINVAL;
2783 goto out;
2784 }
2785
2786 /* allow to reduce meta or sys integrity only if force set */
2787 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2788 BTRFS_BLOCK_GROUP_RAID10;
2789 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2790 (fs_info->avail_system_alloc_bits & allowed) &&
2791 !(bctl->sys.target & allowed)) ||
2792 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2793 (fs_info->avail_metadata_alloc_bits & allowed) &&
2794 !(bctl->meta.target & allowed))) {
2795 if (bctl->flags & BTRFS_BALANCE_FORCE) {
2796 printk(KERN_INFO "btrfs: force reducing metadata "
2797 "integrity\n");
2798 } else {
2799 printk(KERN_ERR "btrfs: balance will reduce metadata "
2800 "integrity, use force if you want this\n");
2801 ret = -EINVAL;
2802 goto out;
2803 }
2804 }
2805
0940ebf6 2806 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 2807 if (ret && ret != -EEXIST)
0940ebf6
ID
2808 goto out;
2809
59641015
ID
2810 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
2811 BUG_ON(ret == -EEXIST);
2812 set_balance_control(bctl);
2813 } else {
2814 BUG_ON(ret != -EEXIST);
2815 spin_lock(&fs_info->balance_lock);
2816 update_balance_args(bctl);
2817 spin_unlock(&fs_info->balance_lock);
2818 }
c9e9f97b 2819
837d5b6e 2820 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
2821 mutex_unlock(&fs_info->balance_mutex);
2822
2823 ret = __btrfs_balance(fs_info);
2824
2825 mutex_lock(&fs_info->balance_mutex);
837d5b6e 2826 atomic_dec(&fs_info->balance_running);
c9e9f97b
ID
2827
2828 if (bargs) {
2829 memset(bargs, 0, sizeof(*bargs));
19a39dce 2830 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
2831 }
2832
837d5b6e
ID
2833 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
2834 balance_need_close(fs_info)) {
2835 __cancel_balance(fs_info);
2836 }
2837
2838 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
2839
2840 return ret;
2841out:
59641015
ID
2842 if (bctl->flags & BTRFS_BALANCE_RESUME)
2843 __cancel_balance(fs_info);
2844 else
2845 kfree(bctl);
2846 return ret;
2847}
2848
2849static int balance_kthread(void *data)
2850{
2b6ba629 2851 struct btrfs_fs_info *fs_info = data;
9555c6c1 2852 int ret = 0;
59641015
ID
2853
2854 mutex_lock(&fs_info->volume_mutex);
2855 mutex_lock(&fs_info->balance_mutex);
2856
2b6ba629 2857 if (fs_info->balance_ctl) {
9555c6c1 2858 printk(KERN_INFO "btrfs: continuing balance\n");
2b6ba629 2859 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 2860 }
59641015
ID
2861
2862 mutex_unlock(&fs_info->balance_mutex);
2863 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 2864
59641015
ID
2865 return ret;
2866}
2867
2b6ba629
ID
2868int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
2869{
2870 struct task_struct *tsk;
2871
2872 spin_lock(&fs_info->balance_lock);
2873 if (!fs_info->balance_ctl) {
2874 spin_unlock(&fs_info->balance_lock);
2875 return 0;
2876 }
2877 spin_unlock(&fs_info->balance_lock);
2878
2879 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
2880 printk(KERN_INFO "btrfs: force skipping balance\n");
2881 return 0;
2882 }
2883
2884 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
2885 if (IS_ERR(tsk))
2886 return PTR_ERR(tsk);
2887
2888 return 0;
2889}
2890
68310a5e 2891int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 2892{
59641015
ID
2893 struct btrfs_balance_control *bctl;
2894 struct btrfs_balance_item *item;
2895 struct btrfs_disk_balance_args disk_bargs;
2896 struct btrfs_path *path;
2897 struct extent_buffer *leaf;
2898 struct btrfs_key key;
2899 int ret;
2900
2901 path = btrfs_alloc_path();
2902 if (!path)
2903 return -ENOMEM;
2904
59641015
ID
2905 key.objectid = BTRFS_BALANCE_OBJECTID;
2906 key.type = BTRFS_BALANCE_ITEM_KEY;
2907 key.offset = 0;
2908
68310a5e 2909 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 2910 if (ret < 0)
68310a5e 2911 goto out;
59641015
ID
2912 if (ret > 0) { /* ret = -ENOENT; */
2913 ret = 0;
68310a5e
ID
2914 goto out;
2915 }
2916
2917 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
2918 if (!bctl) {
2919 ret = -ENOMEM;
2920 goto out;
59641015
ID
2921 }
2922
2923 leaf = path->nodes[0];
2924 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2925
68310a5e
ID
2926 bctl->fs_info = fs_info;
2927 bctl->flags = btrfs_balance_flags(leaf, item);
2928 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
2929
2930 btrfs_balance_data(leaf, item, &disk_bargs);
2931 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
2932 btrfs_balance_meta(leaf, item, &disk_bargs);
2933 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
2934 btrfs_balance_sys(leaf, item, &disk_bargs);
2935 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
2936
68310a5e
ID
2937 mutex_lock(&fs_info->volume_mutex);
2938 mutex_lock(&fs_info->balance_mutex);
59641015 2939
68310a5e
ID
2940 set_balance_control(bctl);
2941
2942 mutex_unlock(&fs_info->balance_mutex);
2943 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
2944out:
2945 btrfs_free_path(path);
ec44a35c
CM
2946 return ret;
2947}
2948
837d5b6e
ID
2949int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
2950{
2951 int ret = 0;
2952
2953 mutex_lock(&fs_info->balance_mutex);
2954 if (!fs_info->balance_ctl) {
2955 mutex_unlock(&fs_info->balance_mutex);
2956 return -ENOTCONN;
2957 }
2958
2959 if (atomic_read(&fs_info->balance_running)) {
2960 atomic_inc(&fs_info->balance_pause_req);
2961 mutex_unlock(&fs_info->balance_mutex);
2962
2963 wait_event(fs_info->balance_wait_q,
2964 atomic_read(&fs_info->balance_running) == 0);
2965
2966 mutex_lock(&fs_info->balance_mutex);
2967 /* we are good with balance_ctl ripped off from under us */
2968 BUG_ON(atomic_read(&fs_info->balance_running));
2969 atomic_dec(&fs_info->balance_pause_req);
2970 } else {
2971 ret = -ENOTCONN;
2972 }
2973
2974 mutex_unlock(&fs_info->balance_mutex);
2975 return ret;
2976}
2977
a7e99c69
ID
2978int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
2979{
2980 mutex_lock(&fs_info->balance_mutex);
2981 if (!fs_info->balance_ctl) {
2982 mutex_unlock(&fs_info->balance_mutex);
2983 return -ENOTCONN;
2984 }
2985
2986 atomic_inc(&fs_info->balance_cancel_req);
2987 /*
2988 * if we are running just wait and return, balance item is
2989 * deleted in btrfs_balance in this case
2990 */
2991 if (atomic_read(&fs_info->balance_running)) {
2992 mutex_unlock(&fs_info->balance_mutex);
2993 wait_event(fs_info->balance_wait_q,
2994 atomic_read(&fs_info->balance_running) == 0);
2995 mutex_lock(&fs_info->balance_mutex);
2996 } else {
2997 /* __cancel_balance needs volume_mutex */
2998 mutex_unlock(&fs_info->balance_mutex);
2999 mutex_lock(&fs_info->volume_mutex);
3000 mutex_lock(&fs_info->balance_mutex);
3001
3002 if (fs_info->balance_ctl)
3003 __cancel_balance(fs_info);
3004
3005 mutex_unlock(&fs_info->volume_mutex);
3006 }
3007
3008 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3009 atomic_dec(&fs_info->balance_cancel_req);
3010 mutex_unlock(&fs_info->balance_mutex);
3011 return 0;
3012}
3013
8f18cf13
CM
3014/*
3015 * shrinking a device means finding all of the device extents past
3016 * the new size, and then following the back refs to the chunks.
3017 * The chunk relocation code actually frees the device extent
3018 */
3019int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3020{
3021 struct btrfs_trans_handle *trans;
3022 struct btrfs_root *root = device->dev_root;
3023 struct btrfs_dev_extent *dev_extent = NULL;
3024 struct btrfs_path *path;
3025 u64 length;
3026 u64 chunk_tree;
3027 u64 chunk_objectid;
3028 u64 chunk_offset;
3029 int ret;
3030 int slot;
ba1bf481
JB
3031 int failed = 0;
3032 bool retried = false;
8f18cf13
CM
3033 struct extent_buffer *l;
3034 struct btrfs_key key;
6c41761f 3035 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 3036 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 3037 u64 old_size = device->total_bytes;
8f18cf13
CM
3038 u64 diff = device->total_bytes - new_size;
3039
2b82032c
YZ
3040 if (new_size >= device->total_bytes)
3041 return -EINVAL;
8f18cf13
CM
3042
3043 path = btrfs_alloc_path();
3044 if (!path)
3045 return -ENOMEM;
3046
8f18cf13
CM
3047 path->reada = 2;
3048
7d9eb12c
CM
3049 lock_chunks(root);
3050
8f18cf13 3051 device->total_bytes = new_size;
2bf64758 3052 if (device->writeable) {
2b82032c 3053 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
3054 spin_lock(&root->fs_info->free_chunk_lock);
3055 root->fs_info->free_chunk_space -= diff;
3056 spin_unlock(&root->fs_info->free_chunk_lock);
3057 }
7d9eb12c 3058 unlock_chunks(root);
8f18cf13 3059
ba1bf481 3060again:
8f18cf13
CM
3061 key.objectid = device->devid;
3062 key.offset = (u64)-1;
3063 key.type = BTRFS_DEV_EXTENT_KEY;
3064
213e64da 3065 do {
8f18cf13
CM
3066 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3067 if (ret < 0)
3068 goto done;
3069
3070 ret = btrfs_previous_item(root, path, 0, key.type);
3071 if (ret < 0)
3072 goto done;
3073 if (ret) {
3074 ret = 0;
b3b4aa74 3075 btrfs_release_path(path);
bf1fb512 3076 break;
8f18cf13
CM
3077 }
3078
3079 l = path->nodes[0];
3080 slot = path->slots[0];
3081 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3082
ba1bf481 3083 if (key.objectid != device->devid) {
b3b4aa74 3084 btrfs_release_path(path);
bf1fb512 3085 break;
ba1bf481 3086 }
8f18cf13
CM
3087
3088 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3089 length = btrfs_dev_extent_length(l, dev_extent);
3090
ba1bf481 3091 if (key.offset + length <= new_size) {
b3b4aa74 3092 btrfs_release_path(path);
d6397bae 3093 break;
ba1bf481 3094 }
8f18cf13
CM
3095
3096 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3097 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3098 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 3099 btrfs_release_path(path);
8f18cf13
CM
3100
3101 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3102 chunk_offset);
ba1bf481 3103 if (ret && ret != -ENOSPC)
8f18cf13 3104 goto done;
ba1bf481
JB
3105 if (ret == -ENOSPC)
3106 failed++;
213e64da 3107 } while (key.offset-- > 0);
ba1bf481
JB
3108
3109 if (failed && !retried) {
3110 failed = 0;
3111 retried = true;
3112 goto again;
3113 } else if (failed && retried) {
3114 ret = -ENOSPC;
3115 lock_chunks(root);
3116
3117 device->total_bytes = old_size;
3118 if (device->writeable)
3119 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
3120 spin_lock(&root->fs_info->free_chunk_lock);
3121 root->fs_info->free_chunk_space += diff;
3122 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
3123 unlock_chunks(root);
3124 goto done;
8f18cf13
CM
3125 }
3126
d6397bae 3127 /* Shrinking succeeded, else we would be at "done". */
a22285a6 3128 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
3129 if (IS_ERR(trans)) {
3130 ret = PTR_ERR(trans);
3131 goto done;
3132 }
3133
d6397bae
CB
3134 lock_chunks(root);
3135
3136 device->disk_total_bytes = new_size;
3137 /* Now btrfs_update_device() will change the on-disk size. */
3138 ret = btrfs_update_device(trans, device);
3139 if (ret) {
3140 unlock_chunks(root);
3141 btrfs_end_transaction(trans, root);
3142 goto done;
3143 }
3144 WARN_ON(diff > old_total);
3145 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3146 unlock_chunks(root);
3147 btrfs_end_transaction(trans, root);
8f18cf13
CM
3148done:
3149 btrfs_free_path(path);
3150 return ret;
3151}
3152
125ccb0a 3153static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
3154 struct btrfs_key *key,
3155 struct btrfs_chunk *chunk, int item_size)
3156{
6c41761f 3157 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
3158 struct btrfs_disk_key disk_key;
3159 u32 array_size;
3160 u8 *ptr;
3161
3162 array_size = btrfs_super_sys_array_size(super_copy);
3163 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3164 return -EFBIG;
3165
3166 ptr = super_copy->sys_chunk_array + array_size;
3167 btrfs_cpu_key_to_disk(&disk_key, key);
3168 memcpy(ptr, &disk_key, sizeof(disk_key));
3169 ptr += sizeof(disk_key);
3170 memcpy(ptr, chunk, item_size);
3171 item_size += sizeof(disk_key);
3172 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3173 return 0;
3174}
3175
73c5de00
AJ
3176/*
3177 * sort the devices in descending order by max_avail, total_avail
3178 */
3179static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 3180{
73c5de00
AJ
3181 const struct btrfs_device_info *di_a = a;
3182 const struct btrfs_device_info *di_b = b;
9b3f68b9 3183
73c5de00 3184 if (di_a->max_avail > di_b->max_avail)
b2117a39 3185 return -1;
73c5de00 3186 if (di_a->max_avail < di_b->max_avail)
b2117a39 3187 return 1;
73c5de00
AJ
3188 if (di_a->total_avail > di_b->total_avail)
3189 return -1;
3190 if (di_a->total_avail < di_b->total_avail)
3191 return 1;
3192 return 0;
b2117a39 3193}
0b86a832 3194
73c5de00
AJ
3195static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3196 struct btrfs_root *extent_root,
3197 struct map_lookup **map_ret,
3198 u64 *num_bytes_out, u64 *stripe_size_out,
3199 u64 start, u64 type)
b2117a39 3200{
73c5de00
AJ
3201 struct btrfs_fs_info *info = extent_root->fs_info;
3202 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3203 struct list_head *cur;
3204 struct map_lookup *map = NULL;
3205 struct extent_map_tree *em_tree;
3206 struct extent_map *em;
3207 struct btrfs_device_info *devices_info = NULL;
3208 u64 total_avail;
3209 int num_stripes; /* total number of stripes to allocate */
3210 int sub_stripes; /* sub_stripes info for map */
3211 int dev_stripes; /* stripes per dev */
3212 int devs_max; /* max devs to use */
3213 int devs_min; /* min devs needed */
3214 int devs_increment; /* ndevs has to be a multiple of this */
3215 int ncopies; /* how many copies to data has */
3216 int ret;
3217 u64 max_stripe_size;
3218 u64 max_chunk_size;
3219 u64 stripe_size;
3220 u64 num_bytes;
3221 int ndevs;
3222 int i;
3223 int j;
593060d7 3224
0c460c0d 3225 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 3226
73c5de00
AJ
3227 if (list_empty(&fs_devices->alloc_list))
3228 return -ENOSPC;
b2117a39 3229
73c5de00
AJ
3230 sub_stripes = 1;
3231 dev_stripes = 1;
3232 devs_increment = 1;
3233 ncopies = 1;
3234 devs_max = 0; /* 0 == as many as possible */
3235 devs_min = 1;
3236
3237 /*
3238 * define the properties of each RAID type.
3239 * FIXME: move this to a global table and use it in all RAID
3240 * calculation code
3241 */
3242 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
3243 dev_stripes = 2;
b2117a39 3244 ncopies = 2;
73c5de00
AJ
3245 devs_max = 1;
3246 } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
3247 devs_min = 2;
3248 } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
3249 devs_increment = 2;
b2117a39 3250 ncopies = 2;
73c5de00
AJ
3251 devs_max = 2;
3252 devs_min = 2;
3253 } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
3254 sub_stripes = 2;
3255 devs_increment = 2;
3256 ncopies = 2;
3257 devs_min = 4;
3258 } else {
3259 devs_max = 1;
3260 }
b2117a39 3261
9b3f68b9 3262 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
3263 max_stripe_size = 1024 * 1024 * 1024;
3264 max_chunk_size = 10 * max_stripe_size;
9b3f68b9 3265 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
3266 /* for larger filesystems, use larger metadata chunks */
3267 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3268 max_stripe_size = 1024 * 1024 * 1024;
3269 else
3270 max_stripe_size = 256 * 1024 * 1024;
73c5de00 3271 max_chunk_size = max_stripe_size;
a40a90a0 3272 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 3273 max_stripe_size = 32 * 1024 * 1024;
73c5de00
AJ
3274 max_chunk_size = 2 * max_stripe_size;
3275 } else {
3276 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3277 type);
3278 BUG_ON(1);
9b3f68b9
CM
3279 }
3280
2b82032c
YZ
3281 /* we don't want a chunk larger than 10% of writeable space */
3282 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3283 max_chunk_size);
9b3f68b9 3284
73c5de00
AJ
3285 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3286 GFP_NOFS);
3287 if (!devices_info)
3288 return -ENOMEM;
0cad8a11 3289
73c5de00 3290 cur = fs_devices->alloc_list.next;
9b3f68b9 3291
9f680ce0 3292 /*
73c5de00
AJ
3293 * in the first pass through the devices list, we gather information
3294 * about the available holes on each device.
9f680ce0 3295 */
73c5de00
AJ
3296 ndevs = 0;
3297 while (cur != &fs_devices->alloc_list) {
3298 struct btrfs_device *device;
3299 u64 max_avail;
3300 u64 dev_offset;
b2117a39 3301
73c5de00 3302 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 3303
73c5de00 3304 cur = cur->next;
b2117a39 3305
73c5de00
AJ
3306 if (!device->writeable) {
3307 printk(KERN_ERR
3308 "btrfs: read-only device in alloc_list\n");
3309 WARN_ON(1);
3310 continue;
3311 }
b2117a39 3312
73c5de00
AJ
3313 if (!device->in_fs_metadata)
3314 continue;
b2117a39 3315
73c5de00
AJ
3316 if (device->total_bytes > device->bytes_used)
3317 total_avail = device->total_bytes - device->bytes_used;
3318 else
3319 total_avail = 0;
38c01b96 3320
3321 /* If there is no space on this device, skip it. */
3322 if (total_avail == 0)
3323 continue;
b2117a39 3324
125ccb0a 3325 ret = find_free_dev_extent(device,
73c5de00
AJ
3326 max_stripe_size * dev_stripes,
3327 &dev_offset, &max_avail);
3328 if (ret && ret != -ENOSPC)
3329 goto error;
b2117a39 3330
73c5de00
AJ
3331 if (ret == 0)
3332 max_avail = max_stripe_size * dev_stripes;
b2117a39 3333
73c5de00
AJ
3334 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
3335 continue;
b2117a39 3336
73c5de00
AJ
3337 devices_info[ndevs].dev_offset = dev_offset;
3338 devices_info[ndevs].max_avail = max_avail;
3339 devices_info[ndevs].total_avail = total_avail;
3340 devices_info[ndevs].dev = device;
3341 ++ndevs;
3342 }
b2117a39 3343
73c5de00
AJ
3344 /*
3345 * now sort the devices by hole size / available space
3346 */
3347 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3348 btrfs_cmp_device_info, NULL);
b2117a39 3349
73c5de00
AJ
3350 /* round down to number of usable stripes */
3351 ndevs -= ndevs % devs_increment;
b2117a39 3352
73c5de00
AJ
3353 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3354 ret = -ENOSPC;
3355 goto error;
b2117a39 3356 }
9f680ce0 3357
73c5de00
AJ
3358 if (devs_max && ndevs > devs_max)
3359 ndevs = devs_max;
3360 /*
3361 * the primary goal is to maximize the number of stripes, so use as many
3362 * devices as possible, even if the stripes are not maximum sized.
3363 */
3364 stripe_size = devices_info[ndevs-1].max_avail;
3365 num_stripes = ndevs * dev_stripes;
b2117a39 3366
37db63a4 3367 if (stripe_size * ndevs > max_chunk_size * ncopies) {
73c5de00 3368 stripe_size = max_chunk_size * ncopies;
37db63a4 3369 do_div(stripe_size, ndevs);
b2117a39 3370 }
b2117a39 3371
73c5de00 3372 do_div(stripe_size, dev_stripes);
37db63a4
ID
3373
3374 /* align to BTRFS_STRIPE_LEN */
73c5de00
AJ
3375 do_div(stripe_size, BTRFS_STRIPE_LEN);
3376 stripe_size *= BTRFS_STRIPE_LEN;
b2117a39
MX
3377
3378 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3379 if (!map) {
3380 ret = -ENOMEM;
3381 goto error;
3382 }
3383 map->num_stripes = num_stripes;
9b3f68b9 3384
73c5de00
AJ
3385 for (i = 0; i < ndevs; ++i) {
3386 for (j = 0; j < dev_stripes; ++j) {
3387 int s = i * dev_stripes + j;
3388 map->stripes[s].dev = devices_info[i].dev;
3389 map->stripes[s].physical = devices_info[i].dev_offset +
3390 j * stripe_size;
6324fbf3 3391 }
6324fbf3 3392 }
2b82032c 3393 map->sector_size = extent_root->sectorsize;
b2117a39
MX
3394 map->stripe_len = BTRFS_STRIPE_LEN;
3395 map->io_align = BTRFS_STRIPE_LEN;
3396 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 3397 map->type = type;
2b82032c 3398 map->sub_stripes = sub_stripes;
0b86a832 3399
2b82032c 3400 *map_ret = map;
73c5de00 3401 num_bytes = stripe_size * (num_stripes / ncopies);
0b86a832 3402
73c5de00
AJ
3403 *stripe_size_out = stripe_size;
3404 *num_bytes_out = num_bytes;
0b86a832 3405
73c5de00 3406 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 3407
172ddd60 3408 em = alloc_extent_map();
2b82032c 3409 if (!em) {
b2117a39
MX
3410 ret = -ENOMEM;
3411 goto error;
593060d7 3412 }
2b82032c
YZ
3413 em->bdev = (struct block_device *)map;
3414 em->start = start;
73c5de00 3415 em->len = num_bytes;
2b82032c
YZ
3416 em->block_start = 0;
3417 em->block_len = em->len;
593060d7 3418
2b82032c 3419 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 3420 write_lock(&em_tree->lock);
2b82032c 3421 ret = add_extent_mapping(em_tree, em);
890871be 3422 write_unlock(&em_tree->lock);
2b82032c 3423 free_extent_map(em);
1dd4602f
MF
3424 if (ret)
3425 goto error;
0b86a832 3426
2b82032c
YZ
3427 ret = btrfs_make_block_group(trans, extent_root, 0, type,
3428 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
73c5de00 3429 start, num_bytes);
79787eaa
JM
3430 if (ret)
3431 goto error;
611f0e00 3432
73c5de00
AJ
3433 for (i = 0; i < map->num_stripes; ++i) {
3434 struct btrfs_device *device;
3435 u64 dev_offset;
3436
3437 device = map->stripes[i].dev;
3438 dev_offset = map->stripes[i].physical;
0b86a832
CM
3439
3440 ret = btrfs_alloc_dev_extent(trans, device,
2b82032c
YZ
3441 info->chunk_root->root_key.objectid,
3442 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
73c5de00 3443 start, dev_offset, stripe_size);
79787eaa
JM
3444 if (ret) {
3445 btrfs_abort_transaction(trans, extent_root, ret);
3446 goto error;
3447 }
2b82032c
YZ
3448 }
3449
b2117a39 3450 kfree(devices_info);
2b82032c 3451 return 0;
b2117a39
MX
3452
3453error:
3454 kfree(map);
3455 kfree(devices_info);
3456 return ret;
2b82032c
YZ
3457}
3458
3459static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
3460 struct btrfs_root *extent_root,
3461 struct map_lookup *map, u64 chunk_offset,
3462 u64 chunk_size, u64 stripe_size)
3463{
3464 u64 dev_offset;
3465 struct btrfs_key key;
3466 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3467 struct btrfs_device *device;
3468 struct btrfs_chunk *chunk;
3469 struct btrfs_stripe *stripe;
3470 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
3471 int index = 0;
3472 int ret;
3473
3474 chunk = kzalloc(item_size, GFP_NOFS);
3475 if (!chunk)
3476 return -ENOMEM;
3477
3478 index = 0;
3479 while (index < map->num_stripes) {
3480 device = map->stripes[index].dev;
3481 device->bytes_used += stripe_size;
0b86a832 3482 ret = btrfs_update_device(trans, device);
3acd3953
MF
3483 if (ret)
3484 goto out_free;
2b82032c
YZ
3485 index++;
3486 }
3487
2bf64758
JB
3488 spin_lock(&extent_root->fs_info->free_chunk_lock);
3489 extent_root->fs_info->free_chunk_space -= (stripe_size *
3490 map->num_stripes);
3491 spin_unlock(&extent_root->fs_info->free_chunk_lock);
3492
2b82032c
YZ
3493 index = 0;
3494 stripe = &chunk->stripe;
3495 while (index < map->num_stripes) {
3496 device = map->stripes[index].dev;
3497 dev_offset = map->stripes[index].physical;
0b86a832 3498
e17cade2
CM
3499 btrfs_set_stack_stripe_devid(stripe, device->devid);
3500 btrfs_set_stack_stripe_offset(stripe, dev_offset);
3501 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 3502 stripe++;
0b86a832
CM
3503 index++;
3504 }
3505
2b82032c 3506 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 3507 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
3508 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
3509 btrfs_set_stack_chunk_type(chunk, map->type);
3510 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
3511 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
3512 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 3513 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 3514 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 3515
2b82032c
YZ
3516 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3517 key.type = BTRFS_CHUNK_ITEM_KEY;
3518 key.offset = chunk_offset;
0b86a832 3519
2b82032c 3520 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
0b86a832 3521
4ed1d16e
MF
3522 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3523 /*
3524 * TODO: Cleanup of inserted chunk root in case of
3525 * failure.
3526 */
125ccb0a 3527 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 3528 item_size);
8f18cf13 3529 }
1abe9b8a 3530
3acd3953 3531out_free:
0b86a832 3532 kfree(chunk);
4ed1d16e 3533 return ret;
2b82032c 3534}
0b86a832 3535
2b82032c
YZ
3536/*
3537 * Chunk allocation falls into two parts. The first part does works
3538 * that make the new allocated chunk useable, but not do any operation
3539 * that modifies the chunk tree. The second part does the works that
3540 * require modifying the chunk tree. This division is important for the
3541 * bootstrap process of adding storage to a seed btrfs.
3542 */
3543int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3544 struct btrfs_root *extent_root, u64 type)
3545{
3546 u64 chunk_offset;
3547 u64 chunk_size;
3548 u64 stripe_size;
3549 struct map_lookup *map;
3550 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3551 int ret;
3552
3553 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3554 &chunk_offset);
3555 if (ret)
3556 return ret;
3557
3558 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3559 &stripe_size, chunk_offset, type);
3560 if (ret)
3561 return ret;
3562
3563 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3564 chunk_size, stripe_size);
79787eaa
JM
3565 if (ret)
3566 return ret;
2b82032c
YZ
3567 return 0;
3568}
3569
d397712b 3570static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
3571 struct btrfs_root *root,
3572 struct btrfs_device *device)
3573{
3574 u64 chunk_offset;
3575 u64 sys_chunk_offset;
3576 u64 chunk_size;
3577 u64 sys_chunk_size;
3578 u64 stripe_size;
3579 u64 sys_stripe_size;
3580 u64 alloc_profile;
3581 struct map_lookup *map;
3582 struct map_lookup *sys_map;
3583 struct btrfs_fs_info *fs_info = root->fs_info;
3584 struct btrfs_root *extent_root = fs_info->extent_root;
3585 int ret;
3586
3587 ret = find_next_chunk(fs_info->chunk_root,
3588 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
92b8e897
MF
3589 if (ret)
3590 return ret;
2b82032c
YZ
3591
3592 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
6fef8df1 3593 fs_info->avail_metadata_alloc_bits;
2b82032c
YZ
3594 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3595
3596 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3597 &stripe_size, chunk_offset, alloc_profile);
79787eaa
JM
3598 if (ret)
3599 return ret;
2b82032c
YZ
3600
3601 sys_chunk_offset = chunk_offset + chunk_size;
3602
3603 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
6fef8df1 3604 fs_info->avail_system_alloc_bits;
2b82032c
YZ
3605 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3606
3607 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
3608 &sys_chunk_size, &sys_stripe_size,
3609 sys_chunk_offset, alloc_profile);
79787eaa
JM
3610 if (ret)
3611 goto abort;
2b82032c
YZ
3612
3613 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
79787eaa
JM
3614 if (ret)
3615 goto abort;
2b82032c
YZ
3616
3617 /*
3618 * Modifying chunk tree needs allocating new blocks from both
3619 * system block group and metadata block group. So we only can
3620 * do operations require modifying the chunk tree after both
3621 * block groups were created.
3622 */
3623 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3624 chunk_size, stripe_size);
79787eaa
JM
3625 if (ret)
3626 goto abort;
2b82032c
YZ
3627
3628 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
3629 sys_chunk_offset, sys_chunk_size,
3630 sys_stripe_size);
79787eaa
JM
3631 if (ret)
3632 goto abort;
3633
2b82032c 3634 return 0;
79787eaa
JM
3635
3636abort:
3637 btrfs_abort_transaction(trans, root, ret);
3638 return ret;
2b82032c
YZ
3639}
3640
3641int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
3642{
3643 struct extent_map *em;
3644 struct map_lookup *map;
3645 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3646 int readonly = 0;
3647 int i;
3648
890871be 3649 read_lock(&map_tree->map_tree.lock);
2b82032c 3650 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 3651 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
3652 if (!em)
3653 return 1;
3654
f48b9075
JB
3655 if (btrfs_test_opt(root, DEGRADED)) {
3656 free_extent_map(em);
3657 return 0;
3658 }
3659
2b82032c
YZ
3660 map = (struct map_lookup *)em->bdev;
3661 for (i = 0; i < map->num_stripes; i++) {
3662 if (!map->stripes[i].dev->writeable) {
3663 readonly = 1;
3664 break;
3665 }
3666 }
0b86a832 3667 free_extent_map(em);
2b82032c 3668 return readonly;
0b86a832
CM
3669}
3670
3671void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
3672{
a8067e02 3673 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
3674}
3675
3676void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
3677{
3678 struct extent_map *em;
3679
d397712b 3680 while (1) {
890871be 3681 write_lock(&tree->map_tree.lock);
0b86a832
CM
3682 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
3683 if (em)
3684 remove_extent_mapping(&tree->map_tree, em);
890871be 3685 write_unlock(&tree->map_tree.lock);
0b86a832
CM
3686 if (!em)
3687 break;
3688 kfree(em->bdev);
3689 /* once for us */
3690 free_extent_map(em);
3691 /* once for the tree */
3692 free_extent_map(em);
3693 }
3694}
3695
f188591e
CM
3696int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
3697{
3698 struct extent_map *em;
3699 struct map_lookup *map;
3700 struct extent_map_tree *em_tree = &map_tree->map_tree;
3701 int ret;
3702
890871be 3703 read_lock(&em_tree->lock);
f188591e 3704 em = lookup_extent_mapping(em_tree, logical, len);
890871be 3705 read_unlock(&em_tree->lock);
f188591e
CM
3706 BUG_ON(!em);
3707
3708 BUG_ON(em->start > logical || em->start + em->len < logical);
3709 map = (struct map_lookup *)em->bdev;
3710 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
3711 ret = map->num_stripes;
321aecc6
CM
3712 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3713 ret = map->sub_stripes;
f188591e
CM
3714 else
3715 ret = 1;
3716 free_extent_map(em);
f188591e
CM
3717 return ret;
3718}
3719
dfe25020
CM
3720static int find_live_mirror(struct map_lookup *map, int first, int num,
3721 int optimal)
3722{
3723 int i;
3724 if (map->stripes[optimal].dev->bdev)
3725 return optimal;
3726 for (i = first; i < first + num; i++) {
3727 if (map->stripes[i].dev->bdev)
3728 return i;
3729 }
3730 /* we couldn't find one that doesn't fail. Just return something
3731 * and the io error handling code will clean up eventually
3732 */
3733 return optimal;
3734}
3735
f2d8d74d
CM
3736static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3737 u64 logical, u64 *length,
a1d3c478 3738 struct btrfs_bio **bbio_ret,
7eaceacc 3739 int mirror_num)
0b86a832
CM
3740{
3741 struct extent_map *em;
3742 struct map_lookup *map;
3743 struct extent_map_tree *em_tree = &map_tree->map_tree;
3744 u64 offset;
593060d7 3745 u64 stripe_offset;
fce3bb9a 3746 u64 stripe_end_offset;
593060d7 3747 u64 stripe_nr;
fce3bb9a
LD
3748 u64 stripe_nr_orig;
3749 u64 stripe_nr_end;
593060d7 3750 int stripe_index;
cea9e445 3751 int i;
de11cc12 3752 int ret = 0;
f2d8d74d 3753 int num_stripes;
a236aed1 3754 int max_errors = 0;
a1d3c478 3755 struct btrfs_bio *bbio = NULL;
0b86a832 3756
890871be 3757 read_lock(&em_tree->lock);
0b86a832 3758 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 3759 read_unlock(&em_tree->lock);
f2d8d74d 3760
3b951516 3761 if (!em) {
d397712b
CM
3762 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
3763 (unsigned long long)logical,
3764 (unsigned long long)*length);
f2d8d74d 3765 BUG();
3b951516 3766 }
0b86a832
CM
3767
3768 BUG_ON(em->start > logical || em->start + em->len < logical);
3769 map = (struct map_lookup *)em->bdev;
3770 offset = logical - em->start;
593060d7 3771
f188591e
CM
3772 if (mirror_num > map->num_stripes)
3773 mirror_num = 0;
3774
593060d7
CM
3775 stripe_nr = offset;
3776 /*
3777 * stripe_nr counts the total number of stripes we have to stride
3778 * to get to this block
3779 */
3780 do_div(stripe_nr, map->stripe_len);
3781
3782 stripe_offset = stripe_nr * map->stripe_len;
3783 BUG_ON(offset < stripe_offset);
3784
3785 /* stripe_offset is the offset of this block in its stripe*/
3786 stripe_offset = offset - stripe_offset;
3787
fce3bb9a
LD
3788 if (rw & REQ_DISCARD)
3789 *length = min_t(u64, em->len - offset, *length);
52ba6929 3790 else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
cea9e445
CM
3791 /* we limit the length of each bio to what fits in a stripe */
3792 *length = min_t(u64, em->len - offset,
fce3bb9a 3793 map->stripe_len - stripe_offset);
cea9e445
CM
3794 } else {
3795 *length = em->len - offset;
3796 }
f2d8d74d 3797
a1d3c478 3798 if (!bbio_ret)
cea9e445
CM
3799 goto out;
3800
f2d8d74d 3801 num_stripes = 1;
cea9e445 3802 stripe_index = 0;
fce3bb9a
LD
3803 stripe_nr_orig = stripe_nr;
3804 stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3805 (~(map->stripe_len - 1));
3806 do_div(stripe_nr_end, map->stripe_len);
3807 stripe_end_offset = stripe_nr_end * map->stripe_len -
3808 (offset + *length);
3809 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3810 if (rw & REQ_DISCARD)
3811 num_stripes = min_t(u64, map->num_stripes,
3812 stripe_nr_end - stripe_nr_orig);
3813 stripe_index = do_div(stripe_nr, map->num_stripes);
3814 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
212a17ab 3815 if (rw & (REQ_WRITE | REQ_DISCARD))
f2d8d74d 3816 num_stripes = map->num_stripes;
2fff734f 3817 else if (mirror_num)
f188591e 3818 stripe_index = mirror_num - 1;
dfe25020
CM
3819 else {
3820 stripe_index = find_live_mirror(map, 0,
3821 map->num_stripes,
3822 current->pid % map->num_stripes);
a1d3c478 3823 mirror_num = stripe_index + 1;
dfe25020 3824 }
2fff734f 3825
611f0e00 3826 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
a1d3c478 3827 if (rw & (REQ_WRITE | REQ_DISCARD)) {
f2d8d74d 3828 num_stripes = map->num_stripes;
a1d3c478 3829 } else if (mirror_num) {
f188591e 3830 stripe_index = mirror_num - 1;
a1d3c478
JS
3831 } else {
3832 mirror_num = 1;
3833 }
2fff734f 3834
321aecc6
CM
3835 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3836 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
3837
3838 stripe_index = do_div(stripe_nr, factor);
3839 stripe_index *= map->sub_stripes;
3840
7eaceacc 3841 if (rw & REQ_WRITE)
f2d8d74d 3842 num_stripes = map->sub_stripes;
fce3bb9a
LD
3843 else if (rw & REQ_DISCARD)
3844 num_stripes = min_t(u64, map->sub_stripes *
3845 (stripe_nr_end - stripe_nr_orig),
3846 map->num_stripes);
321aecc6
CM
3847 else if (mirror_num)
3848 stripe_index += mirror_num - 1;
dfe25020 3849 else {
3e74317a 3850 int old_stripe_index = stripe_index;
dfe25020
CM
3851 stripe_index = find_live_mirror(map, stripe_index,
3852 map->sub_stripes, stripe_index +
3853 current->pid % map->sub_stripes);
3e74317a 3854 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 3855 }
8790d502
CM
3856 } else {
3857 /*
3858 * after this do_div call, stripe_nr is the number of stripes
3859 * on this device we have to walk to find the data, and
3860 * stripe_index is the number of our device in the stripe array
3861 */
3862 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 3863 mirror_num = stripe_index + 1;
8790d502 3864 }
593060d7 3865 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 3866
de11cc12
LZ
3867 bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS);
3868 if (!bbio) {
3869 ret = -ENOMEM;
3870 goto out;
3871 }
3872 atomic_set(&bbio->error, 0);
3873
fce3bb9a 3874 if (rw & REQ_DISCARD) {
ec9ef7a1
LZ
3875 int factor = 0;
3876 int sub_stripes = 0;
3877 u64 stripes_per_dev = 0;
3878 u32 remaining_stripes = 0;
b89203f7 3879 u32 last_stripe = 0;
ec9ef7a1
LZ
3880
3881 if (map->type &
3882 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3883 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3884 sub_stripes = 1;
3885 else
3886 sub_stripes = map->sub_stripes;
3887
3888 factor = map->num_stripes / sub_stripes;
3889 stripes_per_dev = div_u64_rem(stripe_nr_end -
3890 stripe_nr_orig,
3891 factor,
3892 &remaining_stripes);
b89203f7
LB
3893 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
3894 last_stripe *= sub_stripes;
ec9ef7a1
LZ
3895 }
3896
fce3bb9a 3897 for (i = 0; i < num_stripes; i++) {
a1d3c478 3898 bbio->stripes[i].physical =
f2d8d74d
CM
3899 map->stripes[stripe_index].physical +
3900 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 3901 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 3902
ec9ef7a1
LZ
3903 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3904 BTRFS_BLOCK_GROUP_RAID10)) {
3905 bbio->stripes[i].length = stripes_per_dev *
3906 map->stripe_len;
b89203f7 3907
ec9ef7a1
LZ
3908 if (i / sub_stripes < remaining_stripes)
3909 bbio->stripes[i].length +=
3910 map->stripe_len;
b89203f7
LB
3911
3912 /*
3913 * Special for the first stripe and
3914 * the last stripe:
3915 *
3916 * |-------|...|-------|
3917 * |----------|
3918 * off end_off
3919 */
ec9ef7a1 3920 if (i < sub_stripes)
a1d3c478 3921 bbio->stripes[i].length -=
fce3bb9a 3922 stripe_offset;
b89203f7
LB
3923
3924 if (stripe_index >= last_stripe &&
3925 stripe_index <= (last_stripe +
3926 sub_stripes - 1))
a1d3c478 3927 bbio->stripes[i].length -=
fce3bb9a 3928 stripe_end_offset;
b89203f7 3929
ec9ef7a1
LZ
3930 if (i == sub_stripes - 1)
3931 stripe_offset = 0;
fce3bb9a 3932 } else
a1d3c478 3933 bbio->stripes[i].length = *length;
fce3bb9a
LD
3934
3935 stripe_index++;
3936 if (stripe_index == map->num_stripes) {
3937 /* This could only happen for RAID0/10 */
3938 stripe_index = 0;
3939 stripe_nr++;
3940 }
3941 }
3942 } else {
3943 for (i = 0; i < num_stripes; i++) {
a1d3c478 3944 bbio->stripes[i].physical =
212a17ab
LT
3945 map->stripes[stripe_index].physical +
3946 stripe_offset +
3947 stripe_nr * map->stripe_len;
a1d3c478 3948 bbio->stripes[i].dev =
212a17ab 3949 map->stripes[stripe_index].dev;
fce3bb9a 3950 stripe_index++;
f2d8d74d 3951 }
593060d7 3952 }
de11cc12
LZ
3953
3954 if (rw & REQ_WRITE) {
3955 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3956 BTRFS_BLOCK_GROUP_RAID10 |
3957 BTRFS_BLOCK_GROUP_DUP)) {
3958 max_errors = 1;
3959 }
f2d8d74d 3960 }
de11cc12
LZ
3961
3962 *bbio_ret = bbio;
3963 bbio->num_stripes = num_stripes;
3964 bbio->max_errors = max_errors;
3965 bbio->mirror_num = mirror_num;
cea9e445 3966out:
0b86a832 3967 free_extent_map(em);
de11cc12 3968 return ret;
0b86a832
CM
3969}
3970
f2d8d74d
CM
3971int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3972 u64 logical, u64 *length,
a1d3c478 3973 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 3974{
a1d3c478 3975 return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
7eaceacc 3976 mirror_num);
f2d8d74d
CM
3977}
3978
a512bbf8
YZ
3979int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3980 u64 chunk_start, u64 physical, u64 devid,
3981 u64 **logical, int *naddrs, int *stripe_len)
3982{
3983 struct extent_map_tree *em_tree = &map_tree->map_tree;
3984 struct extent_map *em;
3985 struct map_lookup *map;
3986 u64 *buf;
3987 u64 bytenr;
3988 u64 length;
3989 u64 stripe_nr;
3990 int i, j, nr = 0;
3991
890871be 3992 read_lock(&em_tree->lock);
a512bbf8 3993 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 3994 read_unlock(&em_tree->lock);
a512bbf8
YZ
3995
3996 BUG_ON(!em || em->start != chunk_start);
3997 map = (struct map_lookup *)em->bdev;
3998
3999 length = em->len;
4000 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4001 do_div(length, map->num_stripes / map->sub_stripes);
4002 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4003 do_div(length, map->num_stripes);
4004
4005 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
79787eaa 4006 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
4007
4008 for (i = 0; i < map->num_stripes; i++) {
4009 if (devid && map->stripes[i].dev->devid != devid)
4010 continue;
4011 if (map->stripes[i].physical > physical ||
4012 map->stripes[i].physical + length <= physical)
4013 continue;
4014
4015 stripe_nr = physical - map->stripes[i].physical;
4016 do_div(stripe_nr, map->stripe_len);
4017
4018 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4019 stripe_nr = stripe_nr * map->num_stripes + i;
4020 do_div(stripe_nr, map->sub_stripes);
4021 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4022 stripe_nr = stripe_nr * map->num_stripes + i;
4023 }
4024 bytenr = chunk_start + stripe_nr * map->stripe_len;
934d375b 4025 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
4026 for (j = 0; j < nr; j++) {
4027 if (buf[j] == bytenr)
4028 break;
4029 }
934d375b
CM
4030 if (j == nr) {
4031 WARN_ON(nr >= map->num_stripes);
a512bbf8 4032 buf[nr++] = bytenr;
934d375b 4033 }
a512bbf8
YZ
4034 }
4035
a512bbf8
YZ
4036 *logical = buf;
4037 *naddrs = nr;
4038 *stripe_len = map->stripe_len;
4039
4040 free_extent_map(em);
4041 return 0;
f2d8d74d
CM
4042}
4043
442a4f63
SB
4044static void *merge_stripe_index_into_bio_private(void *bi_private,
4045 unsigned int stripe_index)
4046{
4047 /*
4048 * with single, dup, RAID0, RAID1 and RAID10, stripe_index is
4049 * at most 1.
4050 * The alternative solution (instead of stealing bits from the
4051 * pointer) would be to allocate an intermediate structure
4052 * that contains the old private pointer plus the stripe_index.
4053 */
4054 BUG_ON((((uintptr_t)bi_private) & 3) != 0);
4055 BUG_ON(stripe_index > 3);
4056 return (void *)(((uintptr_t)bi_private) | stripe_index);
4057}
4058
4059static struct btrfs_bio *extract_bbio_from_bio_private(void *bi_private)
4060{
4061 return (struct btrfs_bio *)(((uintptr_t)bi_private) & ~((uintptr_t)3));
4062}
4063
4064static unsigned int extract_stripe_index_from_bio_private(void *bi_private)
4065{
4066 return (unsigned int)((uintptr_t)bi_private) & 3;
4067}
4068
a1d3c478 4069static void btrfs_end_bio(struct bio *bio, int err)
8790d502 4070{
442a4f63 4071 struct btrfs_bio *bbio = extract_bbio_from_bio_private(bio->bi_private);
7d2b4daa 4072 int is_orig_bio = 0;
8790d502 4073
442a4f63 4074 if (err) {
a1d3c478 4075 atomic_inc(&bbio->error);
442a4f63
SB
4076 if (err == -EIO || err == -EREMOTEIO) {
4077 unsigned int stripe_index =
4078 extract_stripe_index_from_bio_private(
4079 bio->bi_private);
4080 struct btrfs_device *dev;
4081
4082 BUG_ON(stripe_index >= bbio->num_stripes);
4083 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
4084 if (dev->bdev) {
4085 if (bio->bi_rw & WRITE)
4086 btrfs_dev_stat_inc(dev,
4087 BTRFS_DEV_STAT_WRITE_ERRS);
4088 else
4089 btrfs_dev_stat_inc(dev,
4090 BTRFS_DEV_STAT_READ_ERRS);
4091 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
4092 btrfs_dev_stat_inc(dev,
4093 BTRFS_DEV_STAT_FLUSH_ERRS);
4094 btrfs_dev_stat_print_on_error(dev);
4095 }
442a4f63
SB
4096 }
4097 }
8790d502 4098
a1d3c478 4099 if (bio == bbio->orig_bio)
7d2b4daa
CM
4100 is_orig_bio = 1;
4101
a1d3c478 4102 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
4103 if (!is_orig_bio) {
4104 bio_put(bio);
a1d3c478 4105 bio = bbio->orig_bio;
7d2b4daa 4106 }
a1d3c478
JS
4107 bio->bi_private = bbio->private;
4108 bio->bi_end_io = bbio->end_io;
2774b2ca
JS
4109 bio->bi_bdev = (struct block_device *)
4110 (unsigned long)bbio->mirror_num;
a236aed1
CM
4111 /* only send an error to the higher layers if it is
4112 * beyond the tolerance of the multi-bio
4113 */
a1d3c478 4114 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 4115 err = -EIO;
5dbc8fca 4116 } else {
1259ab75
CM
4117 /*
4118 * this bio is actually up to date, we didn't
4119 * go over the max number of errors
4120 */
4121 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 4122 err = 0;
1259ab75 4123 }
a1d3c478 4124 kfree(bbio);
8790d502
CM
4125
4126 bio_endio(bio, err);
7d2b4daa 4127 } else if (!is_orig_bio) {
8790d502
CM
4128 bio_put(bio);
4129 }
8790d502
CM
4130}
4131
8b712842
CM
4132struct async_sched {
4133 struct bio *bio;
4134 int rw;
4135 struct btrfs_fs_info *info;
4136 struct btrfs_work work;
4137};
4138
4139/*
4140 * see run_scheduled_bios for a description of why bios are collected for
4141 * async submit.
4142 *
4143 * This will add one bio to the pending list for a device and make sure
4144 * the work struct is scheduled.
4145 */
143bede5 4146static noinline void schedule_bio(struct btrfs_root *root,
a1b32a59
CM
4147 struct btrfs_device *device,
4148 int rw, struct bio *bio)
8b712842
CM
4149{
4150 int should_queue = 1;
ffbd517d 4151 struct btrfs_pending_bios *pending_bios;
8b712842
CM
4152
4153 /* don't bother with additional async steps for reads, right now */
7b6d91da 4154 if (!(rw & REQ_WRITE)) {
492bb6de 4155 bio_get(bio);
21adbd5c 4156 btrfsic_submit_bio(rw, bio);
492bb6de 4157 bio_put(bio);
143bede5 4158 return;
8b712842
CM
4159 }
4160
4161 /*
0986fe9e 4162 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
4163 * higher layers. Otherwise, the async bio makes it appear we have
4164 * made progress against dirty pages when we've really just put it
4165 * on a queue for later
4166 */
0986fe9e 4167 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 4168 WARN_ON(bio->bi_next);
8b712842
CM
4169 bio->bi_next = NULL;
4170 bio->bi_rw |= rw;
4171
4172 spin_lock(&device->io_lock);
7b6d91da 4173 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
4174 pending_bios = &device->pending_sync_bios;
4175 else
4176 pending_bios = &device->pending_bios;
8b712842 4177
ffbd517d
CM
4178 if (pending_bios->tail)
4179 pending_bios->tail->bi_next = bio;
8b712842 4180
ffbd517d
CM
4181 pending_bios->tail = bio;
4182 if (!pending_bios->head)
4183 pending_bios->head = bio;
8b712842
CM
4184 if (device->running_pending)
4185 should_queue = 0;
4186
4187 spin_unlock(&device->io_lock);
4188
4189 if (should_queue)
1cc127b5
CM
4190 btrfs_queue_worker(&root->fs_info->submit_workers,
4191 &device->work);
8b712842
CM
4192}
4193
f188591e 4194int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 4195 int mirror_num, int async_submit)
0b86a832
CM
4196{
4197 struct btrfs_mapping_tree *map_tree;
4198 struct btrfs_device *dev;
8790d502 4199 struct bio *first_bio = bio;
a62b9401 4200 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
4201 u64 length = 0;
4202 u64 map_length;
0b86a832 4203 int ret;
8790d502
CM
4204 int dev_nr = 0;
4205 int total_devs = 1;
a1d3c478 4206 struct btrfs_bio *bbio = NULL;
0b86a832 4207
f2d8d74d 4208 length = bio->bi_size;
0b86a832
CM
4209 map_tree = &root->fs_info->mapping_tree;
4210 map_length = length;
cea9e445 4211
a1d3c478 4212 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
f188591e 4213 mirror_num);
79787eaa
JM
4214 if (ret) /* -ENOMEM */
4215 return ret;
cea9e445 4216
a1d3c478 4217 total_devs = bbio->num_stripes;
cea9e445 4218 if (map_length < length) {
d397712b
CM
4219 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
4220 "len %llu\n", (unsigned long long)logical,
4221 (unsigned long long)length,
4222 (unsigned long long)map_length);
cea9e445
CM
4223 BUG();
4224 }
a1d3c478
JS
4225
4226 bbio->orig_bio = first_bio;
4227 bbio->private = first_bio->bi_private;
4228 bbio->end_io = first_bio->bi_end_io;
4229 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
cea9e445 4230
d397712b 4231 while (dev_nr < total_devs) {
a1d3c478
JS
4232 if (dev_nr < total_devs - 1) {
4233 bio = bio_clone(first_bio, GFP_NOFS);
79787eaa 4234 BUG_ON(!bio); /* -ENOMEM */
a1d3c478
JS
4235 } else {
4236 bio = first_bio;
8790d502 4237 }
a1d3c478 4238 bio->bi_private = bbio;
442a4f63
SB
4239 bio->bi_private = merge_stripe_index_into_bio_private(
4240 bio->bi_private, (unsigned int)dev_nr);
a1d3c478
JS
4241 bio->bi_end_io = btrfs_end_bio;
4242 bio->bi_sector = bbio->stripes[dev_nr].physical >> 9;
4243 dev = bbio->stripes[dev_nr].dev;
18e503d6 4244 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
606686ee
JB
4245#ifdef DEBUG
4246 struct rcu_string *name;
4247
4248 rcu_read_lock();
4249 name = rcu_dereference(dev->name);
a1d3c478
JS
4250 pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
4251 "(%s id %llu), size=%u\n", rw,
4252 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
606686ee
JB
4253 name->str, dev->devid, bio->bi_size);
4254 rcu_read_unlock();
4255#endif
dfe25020 4256 bio->bi_bdev = dev->bdev;
8b712842
CM
4257 if (async_submit)
4258 schedule_bio(root, dev, rw, bio);
4259 else
21adbd5c 4260 btrfsic_submit_bio(rw, bio);
dfe25020
CM
4261 } else {
4262 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
4263 bio->bi_sector = logical >> 9;
dfe25020 4264 bio_endio(bio, -EIO);
dfe25020 4265 }
8790d502
CM
4266 dev_nr++;
4267 }
0b86a832
CM
4268 return 0;
4269}
4270
a443755f 4271struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2b82032c 4272 u8 *uuid, u8 *fsid)
0b86a832 4273{
2b82032c
YZ
4274 struct btrfs_device *device;
4275 struct btrfs_fs_devices *cur_devices;
4276
4277 cur_devices = root->fs_info->fs_devices;
4278 while (cur_devices) {
4279 if (!fsid ||
4280 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4281 device = __find_device(&cur_devices->devices,
4282 devid, uuid);
4283 if (device)
4284 return device;
4285 }
4286 cur_devices = cur_devices->seed;
4287 }
4288 return NULL;
0b86a832
CM
4289}
4290
dfe25020
CM
4291static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
4292 u64 devid, u8 *dev_uuid)
4293{
4294 struct btrfs_device *device;
4295 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4296
4297 device = kzalloc(sizeof(*device), GFP_NOFS);
7cbd8a83 4298 if (!device)
4299 return NULL;
dfe25020
CM
4300 list_add(&device->dev_list,
4301 &fs_devices->devices);
dfe25020
CM
4302 device->dev_root = root->fs_info->dev_root;
4303 device->devid = devid;
8b712842 4304 device->work.func = pending_bios_fn;
e4404d6e 4305 device->fs_devices = fs_devices;
cd02dca5 4306 device->missing = 1;
dfe25020 4307 fs_devices->num_devices++;
cd02dca5 4308 fs_devices->missing_devices++;
dfe25020 4309 spin_lock_init(&device->io_lock);
d20f7043 4310 INIT_LIST_HEAD(&device->dev_alloc_list);
dfe25020
CM
4311 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
4312 return device;
4313}
4314
0b86a832
CM
4315static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
4316 struct extent_buffer *leaf,
4317 struct btrfs_chunk *chunk)
4318{
4319 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4320 struct map_lookup *map;
4321 struct extent_map *em;
4322 u64 logical;
4323 u64 length;
4324 u64 devid;
a443755f 4325 u8 uuid[BTRFS_UUID_SIZE];
593060d7 4326 int num_stripes;
0b86a832 4327 int ret;
593060d7 4328 int i;
0b86a832 4329
e17cade2
CM
4330 logical = key->offset;
4331 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 4332
890871be 4333 read_lock(&map_tree->map_tree.lock);
0b86a832 4334 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 4335 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
4336
4337 /* already mapped? */
4338 if (em && em->start <= logical && em->start + em->len > logical) {
4339 free_extent_map(em);
0b86a832
CM
4340 return 0;
4341 } else if (em) {
4342 free_extent_map(em);
4343 }
0b86a832 4344
172ddd60 4345 em = alloc_extent_map();
0b86a832
CM
4346 if (!em)
4347 return -ENOMEM;
593060d7
CM
4348 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4349 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
4350 if (!map) {
4351 free_extent_map(em);
4352 return -ENOMEM;
4353 }
4354
4355 em->bdev = (struct block_device *)map;
4356 em->start = logical;
4357 em->len = length;
4358 em->block_start = 0;
c8b97818 4359 em->block_len = em->len;
0b86a832 4360
593060d7
CM
4361 map->num_stripes = num_stripes;
4362 map->io_width = btrfs_chunk_io_width(leaf, chunk);
4363 map->io_align = btrfs_chunk_io_align(leaf, chunk);
4364 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
4365 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
4366 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 4367 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
4368 for (i = 0; i < num_stripes; i++) {
4369 map->stripes[i].physical =
4370 btrfs_stripe_offset_nr(leaf, chunk, i);
4371 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
4372 read_extent_buffer(leaf, uuid, (unsigned long)
4373 btrfs_stripe_dev_uuid_nr(chunk, i),
4374 BTRFS_UUID_SIZE);
2b82032c
YZ
4375 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
4376 NULL);
dfe25020 4377 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
4378 kfree(map);
4379 free_extent_map(em);
4380 return -EIO;
4381 }
dfe25020
CM
4382 if (!map->stripes[i].dev) {
4383 map->stripes[i].dev =
4384 add_missing_dev(root, devid, uuid);
4385 if (!map->stripes[i].dev) {
4386 kfree(map);
4387 free_extent_map(em);
4388 return -EIO;
4389 }
4390 }
4391 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
4392 }
4393
890871be 4394 write_lock(&map_tree->map_tree.lock);
0b86a832 4395 ret = add_extent_mapping(&map_tree->map_tree, em);
890871be 4396 write_unlock(&map_tree->map_tree.lock);
79787eaa 4397 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
4398 free_extent_map(em);
4399
4400 return 0;
4401}
4402
143bede5 4403static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
4404 struct btrfs_dev_item *dev_item,
4405 struct btrfs_device *device)
4406{
4407 unsigned long ptr;
0b86a832
CM
4408
4409 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
4410 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
4411 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
4412 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
4413 device->type = btrfs_device_type(leaf, dev_item);
4414 device->io_align = btrfs_device_io_align(leaf, dev_item);
4415 device->io_width = btrfs_device_io_width(leaf, dev_item);
4416 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
4417
4418 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 4419 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
4420}
4421
2b82032c
YZ
4422static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
4423{
4424 struct btrfs_fs_devices *fs_devices;
4425 int ret;
4426
b367e47f 4427 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
4428
4429 fs_devices = root->fs_info->fs_devices->seed;
4430 while (fs_devices) {
4431 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4432 ret = 0;
4433 goto out;
4434 }
4435 fs_devices = fs_devices->seed;
4436 }
4437
4438 fs_devices = find_fsid(fsid);
4439 if (!fs_devices) {
4440 ret = -ENOENT;
4441 goto out;
4442 }
e4404d6e
YZ
4443
4444 fs_devices = clone_fs_devices(fs_devices);
4445 if (IS_ERR(fs_devices)) {
4446 ret = PTR_ERR(fs_devices);
2b82032c
YZ
4447 goto out;
4448 }
4449
97288f2c 4450 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 4451 root->fs_info->bdev_holder);
48d28232
JL
4452 if (ret) {
4453 free_fs_devices(fs_devices);
2b82032c 4454 goto out;
48d28232 4455 }
2b82032c
YZ
4456
4457 if (!fs_devices->seeding) {
4458 __btrfs_close_devices(fs_devices);
e4404d6e 4459 free_fs_devices(fs_devices);
2b82032c
YZ
4460 ret = -EINVAL;
4461 goto out;
4462 }
4463
4464 fs_devices->seed = root->fs_info->fs_devices->seed;
4465 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 4466out:
2b82032c
YZ
4467 return ret;
4468}
4469
0d81ba5d 4470static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
4471 struct extent_buffer *leaf,
4472 struct btrfs_dev_item *dev_item)
4473{
4474 struct btrfs_device *device;
4475 u64 devid;
4476 int ret;
2b82032c 4477 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
4478 u8 dev_uuid[BTRFS_UUID_SIZE];
4479
0b86a832 4480 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
4481 read_extent_buffer(leaf, dev_uuid,
4482 (unsigned long)btrfs_device_uuid(dev_item),
4483 BTRFS_UUID_SIZE);
2b82032c
YZ
4484 read_extent_buffer(leaf, fs_uuid,
4485 (unsigned long)btrfs_device_fsid(dev_item),
4486 BTRFS_UUID_SIZE);
4487
4488 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
4489 ret = open_seed_devices(root, fs_uuid);
e4404d6e 4490 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 4491 return ret;
2b82032c
YZ
4492 }
4493
4494 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
4495 if (!device || !device->bdev) {
e4404d6e 4496 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
4497 return -EIO;
4498
4499 if (!device) {
d397712b
CM
4500 printk(KERN_WARNING "warning devid %llu missing\n",
4501 (unsigned long long)devid);
2b82032c
YZ
4502 device = add_missing_dev(root, devid, dev_uuid);
4503 if (!device)
4504 return -ENOMEM;
cd02dca5
CM
4505 } else if (!device->missing) {
4506 /*
4507 * this happens when a device that was properly setup
4508 * in the device info lists suddenly goes bad.
4509 * device->bdev is NULL, and so we have to set
4510 * device->missing to one here
4511 */
4512 root->fs_info->fs_devices->missing_devices++;
4513 device->missing = 1;
2b82032c
YZ
4514 }
4515 }
4516
4517 if (device->fs_devices != root->fs_info->fs_devices) {
4518 BUG_ON(device->writeable);
4519 if (device->generation !=
4520 btrfs_device_generation(leaf, dev_item))
4521 return -EINVAL;
6324fbf3 4522 }
0b86a832
CM
4523
4524 fill_device_from_item(leaf, dev_item, device);
4525 device->dev_root = root->fs_info->dev_root;
dfe25020 4526 device->in_fs_metadata = 1;
2bf64758 4527 if (device->writeable) {
2b82032c 4528 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
4529 spin_lock(&root->fs_info->free_chunk_lock);
4530 root->fs_info->free_chunk_space += device->total_bytes -
4531 device->bytes_used;
4532 spin_unlock(&root->fs_info->free_chunk_lock);
4533 }
0b86a832 4534 ret = 0;
0b86a832
CM
4535 return ret;
4536}
4537
e4404d6e 4538int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 4539{
6c41761f 4540 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 4541 struct extent_buffer *sb;
0b86a832 4542 struct btrfs_disk_key *disk_key;
0b86a832 4543 struct btrfs_chunk *chunk;
84eed90f
CM
4544 u8 *ptr;
4545 unsigned long sb_ptr;
4546 int ret = 0;
0b86a832
CM
4547 u32 num_stripes;
4548 u32 array_size;
4549 u32 len = 0;
0b86a832 4550 u32 cur;
84eed90f 4551 struct btrfs_key key;
0b86a832 4552
e4404d6e 4553 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
4554 BTRFS_SUPER_INFO_SIZE);
4555 if (!sb)
4556 return -ENOMEM;
4557 btrfs_set_buffer_uptodate(sb);
85d4e461 4558 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
4559 /*
4560 * The sb extent buffer is artifical and just used to read the system array.
4561 * btrfs_set_buffer_uptodate() call does not properly mark all it's
4562 * pages up-to-date when the page is larger: extent does not cover the
4563 * whole page and consequently check_page_uptodate does not find all
4564 * the page's extents up-to-date (the hole beyond sb),
4565 * write_extent_buffer then triggers a WARN_ON.
4566 *
4567 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
4568 * but sb spans only this function. Add an explicit SetPageUptodate call
4569 * to silence the warning eg. on PowerPC 64.
4570 */
4571 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 4572 SetPageUptodate(sb->pages[0]);
4008c04a 4573
a061fc8d 4574 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
4575 array_size = btrfs_super_sys_array_size(super_copy);
4576
0b86a832
CM
4577 ptr = super_copy->sys_chunk_array;
4578 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
4579 cur = 0;
4580
4581 while (cur < array_size) {
4582 disk_key = (struct btrfs_disk_key *)ptr;
4583 btrfs_disk_key_to_cpu(&key, disk_key);
4584
a061fc8d 4585 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
4586 sb_ptr += len;
4587 cur += len;
4588
0d81ba5d 4589 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 4590 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 4591 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
4592 if (ret)
4593 break;
0b86a832
CM
4594 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
4595 len = btrfs_chunk_item_size(num_stripes);
4596 } else {
84eed90f
CM
4597 ret = -EIO;
4598 break;
0b86a832
CM
4599 }
4600 ptr += len;
4601 sb_ptr += len;
4602 cur += len;
4603 }
a061fc8d 4604 free_extent_buffer(sb);
84eed90f 4605 return ret;
0b86a832
CM
4606}
4607
442a4f63
SB
4608struct btrfs_device *btrfs_find_device_for_logical(struct btrfs_root *root,
4609 u64 logical, int mirror_num)
4610{
4611 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4612 int ret;
4613 u64 map_length = 0;
4614 struct btrfs_bio *bbio = NULL;
4615 struct btrfs_device *device;
4616
4617 BUG_ON(mirror_num == 0);
4618 ret = btrfs_map_block(map_tree, WRITE, logical, &map_length, &bbio,
4619 mirror_num);
4620 if (ret) {
4621 BUG_ON(bbio != NULL);
4622 return NULL;
4623 }
4624 BUG_ON(mirror_num != bbio->mirror_num);
4625 device = bbio->stripes[mirror_num - 1].dev;
4626 kfree(bbio);
4627 return device;
4628}
4629
0b86a832
CM
4630int btrfs_read_chunk_tree(struct btrfs_root *root)
4631{
4632 struct btrfs_path *path;
4633 struct extent_buffer *leaf;
4634 struct btrfs_key key;
4635 struct btrfs_key found_key;
4636 int ret;
4637 int slot;
4638
4639 root = root->fs_info->chunk_root;
4640
4641 path = btrfs_alloc_path();
4642 if (!path)
4643 return -ENOMEM;
4644
b367e47f
LZ
4645 mutex_lock(&uuid_mutex);
4646 lock_chunks(root);
4647
0b86a832
CM
4648 /* first we search for all of the device items, and then we
4649 * read in all of the chunk items. This way we can create chunk
4650 * mappings that reference all of the devices that are afound
4651 */
4652 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
4653 key.offset = 0;
4654 key.type = 0;
4655again:
4656 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
4657 if (ret < 0)
4658 goto error;
d397712b 4659 while (1) {
0b86a832
CM
4660 leaf = path->nodes[0];
4661 slot = path->slots[0];
4662 if (slot >= btrfs_header_nritems(leaf)) {
4663 ret = btrfs_next_leaf(root, path);
4664 if (ret == 0)
4665 continue;
4666 if (ret < 0)
4667 goto error;
4668 break;
4669 }
4670 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4671 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4672 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
4673 break;
4674 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
4675 struct btrfs_dev_item *dev_item;
4676 dev_item = btrfs_item_ptr(leaf, slot,
4677 struct btrfs_dev_item);
0d81ba5d 4678 ret = read_one_dev(root, leaf, dev_item);
2b82032c
YZ
4679 if (ret)
4680 goto error;
0b86a832
CM
4681 }
4682 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
4683 struct btrfs_chunk *chunk;
4684 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4685 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
4686 if (ret)
4687 goto error;
0b86a832
CM
4688 }
4689 path->slots[0]++;
4690 }
4691 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4692 key.objectid = 0;
b3b4aa74 4693 btrfs_release_path(path);
0b86a832
CM
4694 goto again;
4695 }
0b86a832
CM
4696 ret = 0;
4697error:
b367e47f
LZ
4698 unlock_chunks(root);
4699 mutex_unlock(&uuid_mutex);
4700
2b82032c 4701 btrfs_free_path(path);
0b86a832
CM
4702 return ret;
4703}
442a4f63 4704
733f4fbb
SB
4705static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
4706{
4707 int i;
4708
4709 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4710 btrfs_dev_stat_reset(dev, i);
4711}
4712
4713int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
4714{
4715 struct btrfs_key key;
4716 struct btrfs_key found_key;
4717 struct btrfs_root *dev_root = fs_info->dev_root;
4718 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4719 struct extent_buffer *eb;
4720 int slot;
4721 int ret = 0;
4722 struct btrfs_device *device;
4723 struct btrfs_path *path = NULL;
4724 int i;
4725
4726 path = btrfs_alloc_path();
4727 if (!path) {
4728 ret = -ENOMEM;
4729 goto out;
4730 }
4731
4732 mutex_lock(&fs_devices->device_list_mutex);
4733 list_for_each_entry(device, &fs_devices->devices, dev_list) {
4734 int item_size;
4735 struct btrfs_dev_stats_item *ptr;
4736
4737 key.objectid = 0;
4738 key.type = BTRFS_DEV_STATS_KEY;
4739 key.offset = device->devid;
4740 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
4741 if (ret) {
733f4fbb
SB
4742 __btrfs_reset_dev_stats(device);
4743 device->dev_stats_valid = 1;
4744 btrfs_release_path(path);
4745 continue;
4746 }
4747 slot = path->slots[0];
4748 eb = path->nodes[0];
4749 btrfs_item_key_to_cpu(eb, &found_key, slot);
4750 item_size = btrfs_item_size_nr(eb, slot);
4751
4752 ptr = btrfs_item_ptr(eb, slot,
4753 struct btrfs_dev_stats_item);
4754
4755 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4756 if (item_size >= (1 + i) * sizeof(__le64))
4757 btrfs_dev_stat_set(device, i,
4758 btrfs_dev_stats_value(eb, ptr, i));
4759 else
4760 btrfs_dev_stat_reset(device, i);
4761 }
4762
4763 device->dev_stats_valid = 1;
4764 btrfs_dev_stat_print_on_load(device);
4765 btrfs_release_path(path);
4766 }
4767 mutex_unlock(&fs_devices->device_list_mutex);
4768
4769out:
4770 btrfs_free_path(path);
4771 return ret < 0 ? ret : 0;
4772}
4773
4774static int update_dev_stat_item(struct btrfs_trans_handle *trans,
4775 struct btrfs_root *dev_root,
4776 struct btrfs_device *device)
4777{
4778 struct btrfs_path *path;
4779 struct btrfs_key key;
4780 struct extent_buffer *eb;
4781 struct btrfs_dev_stats_item *ptr;
4782 int ret;
4783 int i;
4784
4785 key.objectid = 0;
4786 key.type = BTRFS_DEV_STATS_KEY;
4787 key.offset = device->devid;
4788
4789 path = btrfs_alloc_path();
4790 BUG_ON(!path);
4791 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
4792 if (ret < 0) {
606686ee
JB
4793 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
4794 ret, rcu_str_deref(device->name));
733f4fbb
SB
4795 goto out;
4796 }
4797
4798 if (ret == 0 &&
4799 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
4800 /* need to delete old one and insert a new one */
4801 ret = btrfs_del_item(trans, dev_root, path);
4802 if (ret != 0) {
606686ee
JB
4803 printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
4804 rcu_str_deref(device->name), ret);
733f4fbb
SB
4805 goto out;
4806 }
4807 ret = 1;
4808 }
4809
4810 if (ret == 1) {
4811 /* need to insert a new item */
4812 btrfs_release_path(path);
4813 ret = btrfs_insert_empty_item(trans, dev_root, path,
4814 &key, sizeof(*ptr));
4815 if (ret < 0) {
606686ee
JB
4816 printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
4817 rcu_str_deref(device->name), ret);
733f4fbb
SB
4818 goto out;
4819 }
4820 }
4821
4822 eb = path->nodes[0];
4823 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
4824 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4825 btrfs_set_dev_stats_value(eb, ptr, i,
4826 btrfs_dev_stat_read(device, i));
4827 btrfs_mark_buffer_dirty(eb);
4828
4829out:
4830 btrfs_free_path(path);
4831 return ret;
4832}
4833
4834/*
4835 * called from commit_transaction. Writes all changed device stats to disk.
4836 */
4837int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
4838 struct btrfs_fs_info *fs_info)
4839{
4840 struct btrfs_root *dev_root = fs_info->dev_root;
4841 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4842 struct btrfs_device *device;
4843 int ret = 0;
4844
4845 mutex_lock(&fs_devices->device_list_mutex);
4846 list_for_each_entry(device, &fs_devices->devices, dev_list) {
4847 if (!device->dev_stats_valid || !device->dev_stats_dirty)
4848 continue;
4849
4850 ret = update_dev_stat_item(trans, dev_root, device);
4851 if (!ret)
4852 device->dev_stats_dirty = 0;
4853 }
4854 mutex_unlock(&fs_devices->device_list_mutex);
4855
4856 return ret;
4857}
4858
442a4f63
SB
4859void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
4860{
4861 btrfs_dev_stat_inc(dev, index);
4862 btrfs_dev_stat_print_on_error(dev);
4863}
4864
4865void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
4866{
733f4fbb
SB
4867 if (!dev->dev_stats_valid)
4868 return;
606686ee 4869 printk_ratelimited_in_rcu(KERN_ERR
442a4f63 4870 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 4871 rcu_str_deref(dev->name),
442a4f63
SB
4872 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4873 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4874 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4875 btrfs_dev_stat_read(dev,
4876 BTRFS_DEV_STAT_CORRUPTION_ERRS),
4877 btrfs_dev_stat_read(dev,
4878 BTRFS_DEV_STAT_GENERATION_ERRS));
4879}
c11d2c23 4880
733f4fbb
SB
4881static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
4882{
a98cdb85
SB
4883 int i;
4884
4885 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4886 if (btrfs_dev_stat_read(dev, i) != 0)
4887 break;
4888 if (i == BTRFS_DEV_STAT_VALUES_MAX)
4889 return; /* all values == 0, suppress message */
4890
606686ee
JB
4891 printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
4892 rcu_str_deref(dev->name),
733f4fbb
SB
4893 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4894 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4895 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4896 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
4897 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
4898}
4899
c11d2c23 4900int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 4901 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
4902{
4903 struct btrfs_device *dev;
4904 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4905 int i;
4906
4907 mutex_lock(&fs_devices->device_list_mutex);
4908 dev = btrfs_find_device(root, stats->devid, NULL, NULL);
4909 mutex_unlock(&fs_devices->device_list_mutex);
4910
4911 if (!dev) {
4912 printk(KERN_WARNING
4913 "btrfs: get dev_stats failed, device not found\n");
4914 return -ENODEV;
733f4fbb
SB
4915 } else if (!dev->dev_stats_valid) {
4916 printk(KERN_WARNING
4917 "btrfs: get dev_stats failed, not yet valid\n");
4918 return -ENODEV;
b27f7c0c 4919 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
4920 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4921 if (stats->nr_items > i)
4922 stats->values[i] =
4923 btrfs_dev_stat_read_and_reset(dev, i);
4924 else
4925 btrfs_dev_stat_reset(dev, i);
4926 }
4927 } else {
4928 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4929 if (stats->nr_items > i)
4930 stats->values[i] = btrfs_dev_stat_read(dev, i);
4931 }
4932 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
4933 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
4934 return 0;
4935}
This page took 0.534449 seconds and 5 git commands to generate.