Btrfs: fix panic in balance due to EIO
[deliverable/linux.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
b765ead5 23#include <linux/iocontext.h>
6f88a440 24#include <linux/capability.h>
442a4f63 25#include <linux/ratelimit.h>
59641015 26#include <linux/kthread.h>
53b381b3 27#include <linux/raid/pq.h>
803b2f54 28#include <linux/semaphore.h>
8da4b8c4 29#include <linux/uuid.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
af902047
ZL
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
8789f4fe 51 .tolerated_failures = 1,
af902047
ZL
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
8789f4fe 60 .tolerated_failures = 1,
af902047
ZL
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
8789f4fe 69 .tolerated_failures = 0,
af902047
ZL
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
8789f4fe 78 .tolerated_failures = 0,
af902047
ZL
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
8789f4fe 87 .tolerated_failures = 0,
af902047
ZL
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
8789f4fe 96 .tolerated_failures = 1,
af902047
ZL
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
8789f4fe 105 .tolerated_failures = 2,
af902047
ZL
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
fb75d857 111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
af902047
ZL
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
621292ba
DS
121/*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134};
135
2b82032c
YZ
136static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_root *root,
138 struct btrfs_device *device);
139static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 140static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 141static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 142static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 143
67a2c45e 144DEFINE_MUTEX(uuid_mutex);
8a4b83cc 145static LIST_HEAD(fs_uuids);
c73eccf7
AJ
146struct list_head *btrfs_get_fs_uuids(void)
147{
148 return &fs_uuids;
149}
8a4b83cc 150
2208a378
ID
151static struct btrfs_fs_devices *__alloc_fs_devices(void)
152{
153 struct btrfs_fs_devices *fs_devs;
154
78f2c9e6 155 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
156 if (!fs_devs)
157 return ERR_PTR(-ENOMEM);
158
159 mutex_init(&fs_devs->device_list_mutex);
160
161 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 162 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
163 INIT_LIST_HEAD(&fs_devs->alloc_list);
164 INIT_LIST_HEAD(&fs_devs->list);
165
166 return fs_devs;
167}
168
169/**
170 * alloc_fs_devices - allocate struct btrfs_fs_devices
171 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
172 * generated.
173 *
174 * Return: a pointer to a new &struct btrfs_fs_devices on success;
175 * ERR_PTR() on error. Returned struct is not linked onto any lists and
176 * can be destroyed with kfree() right away.
177 */
178static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
179{
180 struct btrfs_fs_devices *fs_devs;
181
182 fs_devs = __alloc_fs_devices();
183 if (IS_ERR(fs_devs))
184 return fs_devs;
185
186 if (fsid)
187 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
188 else
189 generate_random_uuid(fs_devs->fsid);
190
191 return fs_devs;
192}
193
e4404d6e
YZ
194static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
195{
196 struct btrfs_device *device;
197 WARN_ON(fs_devices->opened);
198 while (!list_empty(&fs_devices->devices)) {
199 device = list_entry(fs_devices->devices.next,
200 struct btrfs_device, dev_list);
201 list_del(&device->dev_list);
606686ee 202 rcu_string_free(device->name);
e4404d6e
YZ
203 kfree(device);
204 }
205 kfree(fs_devices);
206}
207
b8b8ff59
LC
208static void btrfs_kobject_uevent(struct block_device *bdev,
209 enum kobject_action action)
210{
211 int ret;
212
213 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
214 if (ret)
efe120a0 215 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
216 action,
217 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
218 &disk_to_dev(bdev->bd_disk)->kobj);
219}
220
143bede5 221void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
222{
223 struct btrfs_fs_devices *fs_devices;
8a4b83cc 224
2b82032c
YZ
225 while (!list_empty(&fs_uuids)) {
226 fs_devices = list_entry(fs_uuids.next,
227 struct btrfs_fs_devices, list);
228 list_del(&fs_devices->list);
e4404d6e 229 free_fs_devices(fs_devices);
8a4b83cc 230 }
8a4b83cc
CM
231}
232
12bd2fc0
ID
233static struct btrfs_device *__alloc_device(void)
234{
235 struct btrfs_device *dev;
236
78f2c9e6 237 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
238 if (!dev)
239 return ERR_PTR(-ENOMEM);
240
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 243 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
244
245 spin_lock_init(&dev->io_lock);
246
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 249 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 250 btrfs_device_data_ordered_init(dev);
d0164adc
MG
251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
12bd2fc0
ID
253
254 return dev;
255}
256
a1b32a59
CM
257static noinline struct btrfs_device *__find_device(struct list_head *head,
258 u64 devid, u8 *uuid)
8a4b83cc
CM
259{
260 struct btrfs_device *dev;
8a4b83cc 261
c6e30871 262 list_for_each_entry(dev, head, dev_list) {
a443755f 263 if (dev->devid == devid &&
8f18cf13 264 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 265 return dev;
a443755f 266 }
8a4b83cc
CM
267 }
268 return NULL;
269}
270
a1b32a59 271static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 272{
8a4b83cc
CM
273 struct btrfs_fs_devices *fs_devices;
274
c6e30871 275 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
276 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
277 return fs_devices;
278 }
279 return NULL;
280}
281
beaf8ab3
SB
282static int
283btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
284 int flush, struct block_device **bdev,
285 struct buffer_head **bh)
286{
287 int ret;
288
289 *bdev = blkdev_get_by_path(device_path, flags, holder);
290
291 if (IS_ERR(*bdev)) {
292 ret = PTR_ERR(*bdev);
beaf8ab3
SB
293 goto error;
294 }
295
296 if (flush)
297 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
298 ret = set_blocksize(*bdev, 4096);
299 if (ret) {
300 blkdev_put(*bdev, flags);
301 goto error;
302 }
303 invalidate_bdev(*bdev);
304 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
305 if (IS_ERR(*bh)) {
306 ret = PTR_ERR(*bh);
beaf8ab3
SB
307 blkdev_put(*bdev, flags);
308 goto error;
309 }
310
311 return 0;
312
313error:
314 *bdev = NULL;
315 *bh = NULL;
316 return ret;
317}
318
ffbd517d
CM
319static void requeue_list(struct btrfs_pending_bios *pending_bios,
320 struct bio *head, struct bio *tail)
321{
322
323 struct bio *old_head;
324
325 old_head = pending_bios->head;
326 pending_bios->head = head;
327 if (pending_bios->tail)
328 tail->bi_next = old_head;
329 else
330 pending_bios->tail = tail;
331}
332
8b712842
CM
333/*
334 * we try to collect pending bios for a device so we don't get a large
335 * number of procs sending bios down to the same device. This greatly
336 * improves the schedulers ability to collect and merge the bios.
337 *
338 * But, it also turns into a long list of bios to process and that is sure
339 * to eventually make the worker thread block. The solution here is to
340 * make some progress and then put this work struct back at the end of
341 * the list if the block device is congested. This way, multiple devices
342 * can make progress from a single worker thread.
343 */
143bede5 344static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
345{
346 struct bio *pending;
347 struct backing_dev_info *bdi;
b64a2851 348 struct btrfs_fs_info *fs_info;
ffbd517d 349 struct btrfs_pending_bios *pending_bios;
8b712842
CM
350 struct bio *tail;
351 struct bio *cur;
352 int again = 0;
ffbd517d 353 unsigned long num_run;
d644d8a1 354 unsigned long batch_run = 0;
b64a2851 355 unsigned long limit;
b765ead5 356 unsigned long last_waited = 0;
d84275c9 357 int force_reg = 0;
0e588859 358 int sync_pending = 0;
211588ad
CM
359 struct blk_plug plug;
360
361 /*
362 * this function runs all the bios we've collected for
363 * a particular device. We don't want to wander off to
364 * another device without first sending all of these down.
365 * So, setup a plug here and finish it off before we return
366 */
367 blk_start_plug(&plug);
8b712842 368
bedf762b 369 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
370 fs_info = device->dev_root->fs_info;
371 limit = btrfs_async_submit_limit(fs_info);
372 limit = limit * 2 / 3;
373
8b712842
CM
374loop:
375 spin_lock(&device->io_lock);
376
a6837051 377loop_lock:
d84275c9 378 num_run = 0;
ffbd517d 379
8b712842
CM
380 /* take all the bios off the list at once and process them
381 * later on (without the lock held). But, remember the
382 * tail and other pointers so the bios can be properly reinserted
383 * into the list if we hit congestion
384 */
d84275c9 385 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 386 pending_bios = &device->pending_sync_bios;
d84275c9
CM
387 force_reg = 1;
388 } else {
ffbd517d 389 pending_bios = &device->pending_bios;
d84275c9
CM
390 force_reg = 0;
391 }
ffbd517d
CM
392
393 pending = pending_bios->head;
394 tail = pending_bios->tail;
8b712842 395 WARN_ON(pending && !tail);
8b712842
CM
396
397 /*
398 * if pending was null this time around, no bios need processing
399 * at all and we can stop. Otherwise it'll loop back up again
400 * and do an additional check so no bios are missed.
401 *
402 * device->running_pending is used to synchronize with the
403 * schedule_bio code.
404 */
ffbd517d
CM
405 if (device->pending_sync_bios.head == NULL &&
406 device->pending_bios.head == NULL) {
8b712842
CM
407 again = 0;
408 device->running_pending = 0;
ffbd517d
CM
409 } else {
410 again = 1;
411 device->running_pending = 1;
8b712842 412 }
ffbd517d
CM
413
414 pending_bios->head = NULL;
415 pending_bios->tail = NULL;
416
8b712842
CM
417 spin_unlock(&device->io_lock);
418
d397712b 419 while (pending) {
ffbd517d
CM
420
421 rmb();
d84275c9
CM
422 /* we want to work on both lists, but do more bios on the
423 * sync list than the regular list
424 */
425 if ((num_run > 32 &&
426 pending_bios != &device->pending_sync_bios &&
427 device->pending_sync_bios.head) ||
428 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
429 device->pending_bios.head)) {
ffbd517d
CM
430 spin_lock(&device->io_lock);
431 requeue_list(pending_bios, pending, tail);
432 goto loop_lock;
433 }
434
8b712842
CM
435 cur = pending;
436 pending = pending->bi_next;
437 cur->bi_next = NULL;
b64a2851 438
ee863954
DS
439 /*
440 * atomic_dec_return implies a barrier for waitqueue_active
441 */
66657b31 442 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
443 waitqueue_active(&fs_info->async_submit_wait))
444 wake_up(&fs_info->async_submit_wait);
492bb6de 445
dac56212 446 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 447
2ab1ba68
CM
448 /*
449 * if we're doing the sync list, record that our
450 * plug has some sync requests on it
451 *
452 * If we're doing the regular list and there are
453 * sync requests sitting around, unplug before
454 * we add more
455 */
456 if (pending_bios == &device->pending_sync_bios) {
457 sync_pending = 1;
458 } else if (sync_pending) {
459 blk_finish_plug(&plug);
460 blk_start_plug(&plug);
461 sync_pending = 0;
462 }
463
21adbd5c 464 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
465 num_run++;
466 batch_run++;
853d8ec4
DS
467
468 cond_resched();
8b712842
CM
469
470 /*
471 * we made progress, there is more work to do and the bdi
472 * is now congested. Back off and let other work structs
473 * run instead
474 */
57fd5a5f 475 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 476 fs_info->fs_devices->open_devices > 1) {
b765ead5 477 struct io_context *ioc;
8b712842 478
b765ead5
CM
479 ioc = current->io_context;
480
481 /*
482 * the main goal here is that we don't want to
483 * block if we're going to be able to submit
484 * more requests without blocking.
485 *
486 * This code does two great things, it pokes into
487 * the elevator code from a filesystem _and_
488 * it makes assumptions about how batching works.
489 */
490 if (ioc && ioc->nr_batch_requests > 0 &&
491 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
492 (last_waited == 0 ||
493 ioc->last_waited == last_waited)) {
494 /*
495 * we want to go through our batch of
496 * requests and stop. So, we copy out
497 * the ioc->last_waited time and test
498 * against it before looping
499 */
500 last_waited = ioc->last_waited;
853d8ec4 501 cond_resched();
b765ead5
CM
502 continue;
503 }
8b712842 504 spin_lock(&device->io_lock);
ffbd517d 505 requeue_list(pending_bios, pending, tail);
a6837051 506 device->running_pending = 1;
8b712842
CM
507
508 spin_unlock(&device->io_lock);
a8c93d4e
QW
509 btrfs_queue_work(fs_info->submit_workers,
510 &device->work);
8b712842
CM
511 goto done;
512 }
d85c8a6f
CM
513 /* unplug every 64 requests just for good measure */
514 if (batch_run % 64 == 0) {
515 blk_finish_plug(&plug);
516 blk_start_plug(&plug);
517 sync_pending = 0;
518 }
8b712842 519 }
ffbd517d 520
51684082
CM
521 cond_resched();
522 if (again)
523 goto loop;
524
525 spin_lock(&device->io_lock);
526 if (device->pending_bios.head || device->pending_sync_bios.head)
527 goto loop_lock;
528 spin_unlock(&device->io_lock);
529
8b712842 530done:
211588ad 531 blk_finish_plug(&plug);
8b712842
CM
532}
533
b2950863 534static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
535{
536 struct btrfs_device *device;
537
538 device = container_of(work, struct btrfs_device, work);
539 run_scheduled_bios(device);
540}
541
4fde46f0
AJ
542
543void btrfs_free_stale_device(struct btrfs_device *cur_dev)
544{
545 struct btrfs_fs_devices *fs_devs;
546 struct btrfs_device *dev;
547
548 if (!cur_dev->name)
549 return;
550
551 list_for_each_entry(fs_devs, &fs_uuids, list) {
552 int del = 1;
553
554 if (fs_devs->opened)
555 continue;
556 if (fs_devs->seeding)
557 continue;
558
559 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
560
561 if (dev == cur_dev)
562 continue;
563 if (!dev->name)
564 continue;
565
566 /*
567 * Todo: This won't be enough. What if the same device
568 * comes back (with new uuid and) with its mapper path?
569 * But for now, this does help as mostly an admin will
570 * either use mapper or non mapper path throughout.
571 */
572 rcu_read_lock();
573 del = strcmp(rcu_str_deref(dev->name),
574 rcu_str_deref(cur_dev->name));
575 rcu_read_unlock();
576 if (!del)
577 break;
578 }
579
580 if (!del) {
581 /* delete the stale device */
582 if (fs_devs->num_devices == 1) {
583 btrfs_sysfs_remove_fsid(fs_devs);
584 list_del(&fs_devs->list);
585 free_fs_devices(fs_devs);
586 } else {
587 fs_devs->num_devices--;
588 list_del(&dev->dev_list);
589 rcu_string_free(dev->name);
590 kfree(dev);
591 }
592 break;
593 }
594 }
595}
596
60999ca4
DS
597/*
598 * Add new device to list of registered devices
599 *
600 * Returns:
601 * 1 - first time device is seen
602 * 0 - device already known
603 * < 0 - error
604 */
a1b32a59 605static noinline int device_list_add(const char *path,
8a4b83cc
CM
606 struct btrfs_super_block *disk_super,
607 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
608{
609 struct btrfs_device *device;
610 struct btrfs_fs_devices *fs_devices;
606686ee 611 struct rcu_string *name;
60999ca4 612 int ret = 0;
8a4b83cc
CM
613 u64 found_transid = btrfs_super_generation(disk_super);
614
615 fs_devices = find_fsid(disk_super->fsid);
616 if (!fs_devices) {
2208a378
ID
617 fs_devices = alloc_fs_devices(disk_super->fsid);
618 if (IS_ERR(fs_devices))
619 return PTR_ERR(fs_devices);
620
8a4b83cc 621 list_add(&fs_devices->list, &fs_uuids);
2208a378 622
8a4b83cc
CM
623 device = NULL;
624 } else {
a443755f
CM
625 device = __find_device(&fs_devices->devices, devid,
626 disk_super->dev_item.uuid);
8a4b83cc 627 }
443f24fe 628
8a4b83cc 629 if (!device) {
2b82032c
YZ
630 if (fs_devices->opened)
631 return -EBUSY;
632
12bd2fc0
ID
633 device = btrfs_alloc_device(NULL, &devid,
634 disk_super->dev_item.uuid);
635 if (IS_ERR(device)) {
8a4b83cc 636 /* we can safely leave the fs_devices entry around */
12bd2fc0 637 return PTR_ERR(device);
8a4b83cc 638 }
606686ee
JB
639
640 name = rcu_string_strdup(path, GFP_NOFS);
641 if (!name) {
8a4b83cc
CM
642 kfree(device);
643 return -ENOMEM;
644 }
606686ee 645 rcu_assign_pointer(device->name, name);
90519d66 646
e5e9a520 647 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 648 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 649 fs_devices->num_devices++;
e5e9a520
CM
650 mutex_unlock(&fs_devices->device_list_mutex);
651
60999ca4 652 ret = 1;
2b82032c 653 device->fs_devices = fs_devices;
606686ee 654 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
655 /*
656 * When FS is already mounted.
657 * 1. If you are here and if the device->name is NULL that
658 * means this device was missing at time of FS mount.
659 * 2. If you are here and if the device->name is different
660 * from 'path' that means either
661 * a. The same device disappeared and reappeared with
662 * different name. or
663 * b. The missing-disk-which-was-replaced, has
664 * reappeared now.
665 *
666 * We must allow 1 and 2a above. But 2b would be a spurious
667 * and unintentional.
668 *
669 * Further in case of 1 and 2a above, the disk at 'path'
670 * would have missed some transaction when it was away and
671 * in case of 2a the stale bdev has to be updated as well.
672 * 2b must not be allowed at all time.
673 */
674
675 /*
0f23ae74
CM
676 * For now, we do allow update to btrfs_fs_device through the
677 * btrfs dev scan cli after FS has been mounted. We're still
678 * tracking a problem where systems fail mount by subvolume id
679 * when we reject replacement on a mounted FS.
b96de000 680 */
0f23ae74 681 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
682 /*
683 * That is if the FS is _not_ mounted and if you
684 * are here, that means there is more than one
685 * disk with same uuid and devid.We keep the one
686 * with larger generation number or the last-in if
687 * generation are equal.
688 */
0f23ae74 689 return -EEXIST;
77bdae4d 690 }
b96de000 691
606686ee 692 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
693 if (!name)
694 return -ENOMEM;
606686ee
JB
695 rcu_string_free(device->name);
696 rcu_assign_pointer(device->name, name);
cd02dca5
CM
697 if (device->missing) {
698 fs_devices->missing_devices--;
699 device->missing = 0;
700 }
8a4b83cc
CM
701 }
702
77bdae4d
AJ
703 /*
704 * Unmount does not free the btrfs_device struct but would zero
705 * generation along with most of the other members. So just update
706 * it back. We need it to pick the disk with largest generation
707 * (as above).
708 */
709 if (!fs_devices->opened)
710 device->generation = found_transid;
711
4fde46f0
AJ
712 /*
713 * if there is new btrfs on an already registered device,
714 * then remove the stale device entry.
715 */
02feae3c
AJ
716 if (ret > 0)
717 btrfs_free_stale_device(device);
4fde46f0 718
8a4b83cc 719 *fs_devices_ret = fs_devices;
60999ca4
DS
720
721 return ret;
8a4b83cc
CM
722}
723
e4404d6e
YZ
724static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
725{
726 struct btrfs_fs_devices *fs_devices;
727 struct btrfs_device *device;
728 struct btrfs_device *orig_dev;
729
2208a378
ID
730 fs_devices = alloc_fs_devices(orig->fsid);
731 if (IS_ERR(fs_devices))
732 return fs_devices;
e4404d6e 733
adbbb863 734 mutex_lock(&orig->device_list_mutex);
02db0844 735 fs_devices->total_devices = orig->total_devices;
e4404d6e 736
46224705 737 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 738 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
739 struct rcu_string *name;
740
12bd2fc0
ID
741 device = btrfs_alloc_device(NULL, &orig_dev->devid,
742 orig_dev->uuid);
743 if (IS_ERR(device))
e4404d6e
YZ
744 goto error;
745
606686ee
JB
746 /*
747 * This is ok to do without rcu read locked because we hold the
748 * uuid mutex so nothing we touch in here is going to disappear.
749 */
e755f780 750 if (orig_dev->name) {
78f2c9e6
DS
751 name = rcu_string_strdup(orig_dev->name->str,
752 GFP_KERNEL);
e755f780
AJ
753 if (!name) {
754 kfree(device);
755 goto error;
756 }
757 rcu_assign_pointer(device->name, name);
fd2696f3 758 }
e4404d6e 759
e4404d6e
YZ
760 list_add(&device->dev_list, &fs_devices->devices);
761 device->fs_devices = fs_devices;
762 fs_devices->num_devices++;
763 }
adbbb863 764 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
765 return fs_devices;
766error:
adbbb863 767 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
768 free_fs_devices(fs_devices);
769 return ERR_PTR(-ENOMEM);
770}
771
9eaed21e 772void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 773{
c6e30871 774 struct btrfs_device *device, *next;
443f24fe 775 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 776
dfe25020
CM
777 mutex_lock(&uuid_mutex);
778again:
46224705 779 /* This is the initialized path, it is safe to release the devices. */
c6e30871 780 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 781 if (device->in_fs_metadata) {
63a212ab 782 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
783 (!latest_dev ||
784 device->generation > latest_dev->generation)) {
785 latest_dev = device;
a6b0d5c8 786 }
2b82032c 787 continue;
a6b0d5c8 788 }
2b82032c 789
8dabb742
SB
790 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
791 /*
792 * In the first step, keep the device which has
793 * the correct fsid and the devid that is used
794 * for the dev_replace procedure.
795 * In the second step, the dev_replace state is
796 * read from the device tree and it is known
797 * whether the procedure is really active or
798 * not, which means whether this device is
799 * used or whether it should be removed.
800 */
801 if (step == 0 || device->is_tgtdev_for_dev_replace) {
802 continue;
803 }
804 }
2b82032c 805 if (device->bdev) {
d4d77629 806 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
807 device->bdev = NULL;
808 fs_devices->open_devices--;
809 }
810 if (device->writeable) {
811 list_del_init(&device->dev_alloc_list);
812 device->writeable = 0;
8dabb742
SB
813 if (!device->is_tgtdev_for_dev_replace)
814 fs_devices->rw_devices--;
2b82032c 815 }
e4404d6e
YZ
816 list_del_init(&device->dev_list);
817 fs_devices->num_devices--;
606686ee 818 rcu_string_free(device->name);
e4404d6e 819 kfree(device);
dfe25020 820 }
2b82032c
YZ
821
822 if (fs_devices->seed) {
823 fs_devices = fs_devices->seed;
2b82032c
YZ
824 goto again;
825 }
826
443f24fe 827 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 828
dfe25020 829 mutex_unlock(&uuid_mutex);
dfe25020 830}
a0af469b 831
1f78160c
XG
832static void __free_device(struct work_struct *work)
833{
834 struct btrfs_device *device;
835
836 device = container_of(work, struct btrfs_device, rcu_work);
837
838 if (device->bdev)
839 blkdev_put(device->bdev, device->mode);
840
606686ee 841 rcu_string_free(device->name);
1f78160c
XG
842 kfree(device);
843}
844
845static void free_device(struct rcu_head *head)
846{
847 struct btrfs_device *device;
848
849 device = container_of(head, struct btrfs_device, rcu);
850
851 INIT_WORK(&device->rcu_work, __free_device);
852 schedule_work(&device->rcu_work);
853}
854
f448341a
AJ
855static void btrfs_close_one_device(struct btrfs_device *device)
856{
857 struct btrfs_fs_devices *fs_devices = device->fs_devices;
858 struct btrfs_device *new_device;
859 struct rcu_string *name;
860
861 if (device->bdev)
862 fs_devices->open_devices--;
863
864 if (device->writeable &&
865 device->devid != BTRFS_DEV_REPLACE_DEVID) {
866 list_del_init(&device->dev_alloc_list);
867 fs_devices->rw_devices--;
868 }
869
870 if (device->missing)
871 fs_devices->missing_devices--;
872
e2bf6e89
AJ
873 if (device->bdev && device->writeable) {
874 sync_blockdev(device->bdev);
875 invalidate_bdev(device->bdev);
876 }
877
f448341a
AJ
878 new_device = btrfs_alloc_device(NULL, &device->devid,
879 device->uuid);
880 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
881
882 /* Safe because we are under uuid_mutex */
883 if (device->name) {
884 name = rcu_string_strdup(device->name->str, GFP_NOFS);
885 BUG_ON(!name); /* -ENOMEM */
886 rcu_assign_pointer(new_device->name, name);
887 }
888
889 list_replace_rcu(&device->dev_list, &new_device->dev_list);
890 new_device->fs_devices = device->fs_devices;
891
892 call_rcu(&device->rcu, free_device);
893}
894
2b82032c 895static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 896{
2037a093 897 struct btrfs_device *device, *tmp;
e4404d6e 898
2b82032c
YZ
899 if (--fs_devices->opened > 0)
900 return 0;
8a4b83cc 901
c9513edb 902 mutex_lock(&fs_devices->device_list_mutex);
2037a093 903 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
f190aa47 904 btrfs_close_one_device(device);
8a4b83cc 905 }
c9513edb
XG
906 mutex_unlock(&fs_devices->device_list_mutex);
907
e4404d6e
YZ
908 WARN_ON(fs_devices->open_devices);
909 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
910 fs_devices->opened = 0;
911 fs_devices->seeding = 0;
2b82032c 912
8a4b83cc
CM
913 return 0;
914}
915
2b82032c
YZ
916int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
917{
e4404d6e 918 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
919 int ret;
920
921 mutex_lock(&uuid_mutex);
922 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
923 if (!fs_devices->opened) {
924 seed_devices = fs_devices->seed;
925 fs_devices->seed = NULL;
926 }
2b82032c 927 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
928
929 while (seed_devices) {
930 fs_devices = seed_devices;
931 seed_devices = fs_devices->seed;
932 __btrfs_close_devices(fs_devices);
933 free_fs_devices(fs_devices);
934 }
bc178622
ES
935 /*
936 * Wait for rcu kworkers under __btrfs_close_devices
937 * to finish all blkdev_puts so device is really
938 * free when umount is done.
939 */
940 rcu_barrier();
2b82032c
YZ
941 return ret;
942}
943
e4404d6e
YZ
944static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
945 fmode_t flags, void *holder)
8a4b83cc 946{
d5e2003c 947 struct request_queue *q;
8a4b83cc
CM
948 struct block_device *bdev;
949 struct list_head *head = &fs_devices->devices;
8a4b83cc 950 struct btrfs_device *device;
443f24fe 951 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
952 struct buffer_head *bh;
953 struct btrfs_super_block *disk_super;
a0af469b 954 u64 devid;
2b82032c 955 int seeding = 1;
a0af469b 956 int ret = 0;
8a4b83cc 957
d4d77629
TH
958 flags |= FMODE_EXCL;
959
c6e30871 960 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
961 if (device->bdev)
962 continue;
dfe25020
CM
963 if (!device->name)
964 continue;
965
f63e0cca
ES
966 /* Just open everything we can; ignore failures here */
967 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
968 &bdev, &bh))
beaf8ab3 969 continue;
a0af469b
CM
970
971 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 972 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
973 if (devid != device->devid)
974 goto error_brelse;
975
2b82032c
YZ
976 if (memcmp(device->uuid, disk_super->dev_item.uuid,
977 BTRFS_UUID_SIZE))
978 goto error_brelse;
979
980 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
981 if (!latest_dev ||
982 device->generation > latest_dev->generation)
983 latest_dev = device;
a0af469b 984
2b82032c
YZ
985 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
986 device->writeable = 0;
987 } else {
988 device->writeable = !bdev_read_only(bdev);
989 seeding = 0;
990 }
991
d5e2003c 992 q = bdev_get_queue(bdev);
90180da4 993 if (blk_queue_discard(q))
d5e2003c 994 device->can_discard = 1;
d5e2003c 995
8a4b83cc 996 device->bdev = bdev;
dfe25020 997 device->in_fs_metadata = 0;
15916de8
CM
998 device->mode = flags;
999
c289811c
CM
1000 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1001 fs_devices->rotating = 1;
1002
a0af469b 1003 fs_devices->open_devices++;
55e50e45
ID
1004 if (device->writeable &&
1005 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
1006 fs_devices->rw_devices++;
1007 list_add(&device->dev_alloc_list,
1008 &fs_devices->alloc_list);
1009 }
4f6c9328 1010 brelse(bh);
a0af469b 1011 continue;
a061fc8d 1012
a0af469b
CM
1013error_brelse:
1014 brelse(bh);
d4d77629 1015 blkdev_put(bdev, flags);
a0af469b 1016 continue;
8a4b83cc 1017 }
a0af469b 1018 if (fs_devices->open_devices == 0) {
20bcd649 1019 ret = -EINVAL;
a0af469b
CM
1020 goto out;
1021 }
2b82032c
YZ
1022 fs_devices->seeding = seeding;
1023 fs_devices->opened = 1;
443f24fe 1024 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1025 fs_devices->total_rw_bytes = 0;
a0af469b 1026out:
2b82032c
YZ
1027 return ret;
1028}
1029
1030int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1031 fmode_t flags, void *holder)
2b82032c
YZ
1032{
1033 int ret;
1034
1035 mutex_lock(&uuid_mutex);
1036 if (fs_devices->opened) {
e4404d6e
YZ
1037 fs_devices->opened++;
1038 ret = 0;
2b82032c 1039 } else {
15916de8 1040 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 1041 }
8a4b83cc 1042 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1043 return ret;
1044}
1045
6cf86a00
AJ
1046void btrfs_release_disk_super(struct page *page)
1047{
1048 kunmap(page);
1049 put_page(page);
1050}
1051
1052int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1053 struct page **page, struct btrfs_super_block **disk_super)
1054{
1055 void *p;
1056 pgoff_t index;
1057
1058 /* make sure our super fits in the device */
1059 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1060 return 1;
1061
1062 /* make sure our super fits in the page */
1063 if (sizeof(**disk_super) > PAGE_SIZE)
1064 return 1;
1065
1066 /* make sure our super doesn't straddle pages on disk */
1067 index = bytenr >> PAGE_SHIFT;
1068 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1069 return 1;
1070
1071 /* pull in the page with our super */
1072 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1073 index, GFP_KERNEL);
1074
1075 if (IS_ERR_OR_NULL(*page))
1076 return 1;
1077
1078 p = kmap(*page);
1079
1080 /* align our pointer to the offset of the super block */
1081 *disk_super = p + (bytenr & ~PAGE_MASK);
1082
1083 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1084 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1085 btrfs_release_disk_super(*page);
1086 return 1;
1087 }
1088
1089 if ((*disk_super)->label[0] &&
1090 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1091 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1092
1093 return 0;
1094}
1095
6f60cbd3
DS
1096/*
1097 * Look for a btrfs signature on a device. This may be called out of the mount path
1098 * and we are not allowed to call set_blocksize during the scan. The superblock
1099 * is read via pagecache
1100 */
97288f2c 1101int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
1102 struct btrfs_fs_devices **fs_devices_ret)
1103{
1104 struct btrfs_super_block *disk_super;
1105 struct block_device *bdev;
6f60cbd3 1106 struct page *page;
6f60cbd3 1107 int ret = -EINVAL;
8a4b83cc 1108 u64 devid;
f2984462 1109 u64 transid;
02db0844 1110 u64 total_devices;
6f60cbd3 1111 u64 bytenr;
8a4b83cc 1112
6f60cbd3
DS
1113 /*
1114 * we would like to check all the supers, but that would make
1115 * a btrfs mount succeed after a mkfs from a different FS.
1116 * So, we need to add a special mount option to scan for
1117 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1118 */
1119 bytenr = btrfs_sb_offset(0);
d4d77629 1120 flags |= FMODE_EXCL;
10f6327b 1121 mutex_lock(&uuid_mutex);
6f60cbd3
DS
1122
1123 bdev = blkdev_get_by_path(path, flags, holder);
6f60cbd3
DS
1124 if (IS_ERR(bdev)) {
1125 ret = PTR_ERR(bdev);
beaf8ab3 1126 goto error;
6f60cbd3
DS
1127 }
1128
6cf86a00 1129 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
6f60cbd3
DS
1130 goto error_bdev_put;
1131
a343832f 1132 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 1133 transid = btrfs_super_generation(disk_super);
02db0844 1134 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 1135
8a4b83cc 1136 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
1137 if (ret > 0) {
1138 if (disk_super->label[0]) {
60999ca4
DS
1139 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1140 } else {
1141 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1142 }
1143
1144 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1145 ret = 0;
1146 }
02db0844
JB
1147 if (!ret && fs_devices_ret)
1148 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3 1149
6cf86a00 1150 btrfs_release_disk_super(page);
6f60cbd3
DS
1151
1152error_bdev_put:
d4d77629 1153 blkdev_put(bdev, flags);
8a4b83cc 1154error:
beaf8ab3 1155 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1156 return ret;
1157}
0b86a832 1158
6d07bcec
MX
1159/* helper to account the used device space in the range */
1160int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1161 u64 end, u64 *length)
1162{
1163 struct btrfs_key key;
1164 struct btrfs_root *root = device->dev_root;
1165 struct btrfs_dev_extent *dev_extent;
1166 struct btrfs_path *path;
1167 u64 extent_end;
1168 int ret;
1169 int slot;
1170 struct extent_buffer *l;
1171
1172 *length = 0;
1173
63a212ab 1174 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1175 return 0;
1176
1177 path = btrfs_alloc_path();
1178 if (!path)
1179 return -ENOMEM;
e4058b54 1180 path->reada = READA_FORWARD;
6d07bcec
MX
1181
1182 key.objectid = device->devid;
1183 key.offset = start;
1184 key.type = BTRFS_DEV_EXTENT_KEY;
1185
1186 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1187 if (ret < 0)
1188 goto out;
1189 if (ret > 0) {
1190 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1191 if (ret < 0)
1192 goto out;
1193 }
1194
1195 while (1) {
1196 l = path->nodes[0];
1197 slot = path->slots[0];
1198 if (slot >= btrfs_header_nritems(l)) {
1199 ret = btrfs_next_leaf(root, path);
1200 if (ret == 0)
1201 continue;
1202 if (ret < 0)
1203 goto out;
1204
1205 break;
1206 }
1207 btrfs_item_key_to_cpu(l, &key, slot);
1208
1209 if (key.objectid < device->devid)
1210 goto next;
1211
1212 if (key.objectid > device->devid)
1213 break;
1214
962a298f 1215 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1216 goto next;
1217
1218 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1219 extent_end = key.offset + btrfs_dev_extent_length(l,
1220 dev_extent);
1221 if (key.offset <= start && extent_end > end) {
1222 *length = end - start + 1;
1223 break;
1224 } else if (key.offset <= start && extent_end > start)
1225 *length += extent_end - start;
1226 else if (key.offset > start && extent_end <= end)
1227 *length += extent_end - key.offset;
1228 else if (key.offset > start && key.offset <= end) {
1229 *length += end - key.offset + 1;
1230 break;
1231 } else if (key.offset > end)
1232 break;
1233
1234next:
1235 path->slots[0]++;
1236 }
1237 ret = 0;
1238out:
1239 btrfs_free_path(path);
1240 return ret;
1241}
1242
499f377f 1243static int contains_pending_extent(struct btrfs_transaction *transaction,
6df9a95e
JB
1244 struct btrfs_device *device,
1245 u64 *start, u64 len)
1246{
499f377f 1247 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
6df9a95e 1248 struct extent_map *em;
499f377f 1249 struct list_head *search_list = &fs_info->pinned_chunks;
6df9a95e 1250 int ret = 0;
1b984508 1251 u64 physical_start = *start;
6df9a95e 1252
499f377f
JM
1253 if (transaction)
1254 search_list = &transaction->pending_chunks;
04216820
FM
1255again:
1256 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1257 struct map_lookup *map;
1258 int i;
1259
95617d69 1260 map = em->map_lookup;
6df9a95e 1261 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1262 u64 end;
1263
6df9a95e
JB
1264 if (map->stripes[i].dev != device)
1265 continue;
1b984508 1266 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1267 map->stripes[i].physical + em->orig_block_len <=
1b984508 1268 physical_start)
6df9a95e 1269 continue;
c152b63e
FM
1270 /*
1271 * Make sure that while processing the pinned list we do
1272 * not override our *start with a lower value, because
1273 * we can have pinned chunks that fall within this
1274 * device hole and that have lower physical addresses
1275 * than the pending chunks we processed before. If we
1276 * do not take this special care we can end up getting
1277 * 2 pending chunks that start at the same physical
1278 * device offsets because the end offset of a pinned
1279 * chunk can be equal to the start offset of some
1280 * pending chunk.
1281 */
1282 end = map->stripes[i].physical + em->orig_block_len;
1283 if (end > *start) {
1284 *start = end;
1285 ret = 1;
1286 }
6df9a95e
JB
1287 }
1288 }
499f377f
JM
1289 if (search_list != &fs_info->pinned_chunks) {
1290 search_list = &fs_info->pinned_chunks;
04216820
FM
1291 goto again;
1292 }
6df9a95e
JB
1293
1294 return ret;
1295}
1296
1297
0b86a832 1298/*
499f377f
JM
1299 * find_free_dev_extent_start - find free space in the specified device
1300 * @device: the device which we search the free space in
1301 * @num_bytes: the size of the free space that we need
1302 * @search_start: the position from which to begin the search
1303 * @start: store the start of the free space.
1304 * @len: the size of the free space. that we find, or the size
1305 * of the max free space if we don't find suitable free space
7bfc837d 1306 *
0b86a832
CM
1307 * this uses a pretty simple search, the expectation is that it is
1308 * called very infrequently and that a given device has a small number
1309 * of extents
7bfc837d
MX
1310 *
1311 * @start is used to store the start of the free space if we find. But if we
1312 * don't find suitable free space, it will be used to store the start position
1313 * of the max free space.
1314 *
1315 * @len is used to store the size of the free space that we find.
1316 * But if we don't find suitable free space, it is used to store the size of
1317 * the max free space.
0b86a832 1318 */
499f377f
JM
1319int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1320 struct btrfs_device *device, u64 num_bytes,
1321 u64 search_start, u64 *start, u64 *len)
0b86a832
CM
1322{
1323 struct btrfs_key key;
1324 struct btrfs_root *root = device->dev_root;
7bfc837d 1325 struct btrfs_dev_extent *dev_extent;
2b82032c 1326 struct btrfs_path *path;
7bfc837d
MX
1327 u64 hole_size;
1328 u64 max_hole_start;
1329 u64 max_hole_size;
1330 u64 extent_end;
0b86a832
CM
1331 u64 search_end = device->total_bytes;
1332 int ret;
7bfc837d 1333 int slot;
0b86a832 1334 struct extent_buffer *l;
8cdc7c5b
FM
1335 u64 min_search_start;
1336
1337 /*
1338 * We don't want to overwrite the superblock on the drive nor any area
1339 * used by the boot loader (grub for example), so we make sure to start
1340 * at an offset of at least 1MB.
1341 */
1342 min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1343 search_start = max(search_start, min_search_start);
0b86a832 1344
6df9a95e
JB
1345 path = btrfs_alloc_path();
1346 if (!path)
1347 return -ENOMEM;
f2ab7618 1348
7bfc837d
MX
1349 max_hole_start = search_start;
1350 max_hole_size = 0;
1351
f2ab7618 1352again:
63a212ab 1353 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1354 ret = -ENOSPC;
6df9a95e 1355 goto out;
7bfc837d
MX
1356 }
1357
e4058b54 1358 path->reada = READA_FORWARD;
6df9a95e
JB
1359 path->search_commit_root = 1;
1360 path->skip_locking = 1;
7bfc837d 1361
0b86a832
CM
1362 key.objectid = device->devid;
1363 key.offset = search_start;
1364 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1365
125ccb0a 1366 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1367 if (ret < 0)
7bfc837d 1368 goto out;
1fcbac58
YZ
1369 if (ret > 0) {
1370 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1371 if (ret < 0)
7bfc837d 1372 goto out;
1fcbac58 1373 }
7bfc837d 1374
0b86a832
CM
1375 while (1) {
1376 l = path->nodes[0];
1377 slot = path->slots[0];
1378 if (slot >= btrfs_header_nritems(l)) {
1379 ret = btrfs_next_leaf(root, path);
1380 if (ret == 0)
1381 continue;
1382 if (ret < 0)
7bfc837d
MX
1383 goto out;
1384
1385 break;
0b86a832
CM
1386 }
1387 btrfs_item_key_to_cpu(l, &key, slot);
1388
1389 if (key.objectid < device->devid)
1390 goto next;
1391
1392 if (key.objectid > device->devid)
7bfc837d 1393 break;
0b86a832 1394
962a298f 1395 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1396 goto next;
9779b72f 1397
7bfc837d
MX
1398 if (key.offset > search_start) {
1399 hole_size = key.offset - search_start;
9779b72f 1400
6df9a95e
JB
1401 /*
1402 * Have to check before we set max_hole_start, otherwise
1403 * we could end up sending back this offset anyway.
1404 */
499f377f 1405 if (contains_pending_extent(transaction, device,
6df9a95e 1406 &search_start,
1b984508
FL
1407 hole_size)) {
1408 if (key.offset >= search_start) {
1409 hole_size = key.offset - search_start;
1410 } else {
1411 WARN_ON_ONCE(1);
1412 hole_size = 0;
1413 }
1414 }
6df9a95e 1415
7bfc837d
MX
1416 if (hole_size > max_hole_size) {
1417 max_hole_start = search_start;
1418 max_hole_size = hole_size;
1419 }
9779b72f 1420
7bfc837d
MX
1421 /*
1422 * If this free space is greater than which we need,
1423 * it must be the max free space that we have found
1424 * until now, so max_hole_start must point to the start
1425 * of this free space and the length of this free space
1426 * is stored in max_hole_size. Thus, we return
1427 * max_hole_start and max_hole_size and go back to the
1428 * caller.
1429 */
1430 if (hole_size >= num_bytes) {
1431 ret = 0;
1432 goto out;
0b86a832
CM
1433 }
1434 }
0b86a832 1435
0b86a832 1436 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1437 extent_end = key.offset + btrfs_dev_extent_length(l,
1438 dev_extent);
1439 if (extent_end > search_start)
1440 search_start = extent_end;
0b86a832
CM
1441next:
1442 path->slots[0]++;
1443 cond_resched();
1444 }
0b86a832 1445
38c01b96 1446 /*
1447 * At this point, search_start should be the end of
1448 * allocated dev extents, and when shrinking the device,
1449 * search_end may be smaller than search_start.
1450 */
f2ab7618 1451 if (search_end > search_start) {
38c01b96 1452 hole_size = search_end - search_start;
1453
499f377f 1454 if (contains_pending_extent(transaction, device, &search_start,
f2ab7618
ZL
1455 hole_size)) {
1456 btrfs_release_path(path);
1457 goto again;
1458 }
0b86a832 1459
f2ab7618
ZL
1460 if (hole_size > max_hole_size) {
1461 max_hole_start = search_start;
1462 max_hole_size = hole_size;
1463 }
6df9a95e
JB
1464 }
1465
7bfc837d 1466 /* See above. */
f2ab7618 1467 if (max_hole_size < num_bytes)
7bfc837d
MX
1468 ret = -ENOSPC;
1469 else
1470 ret = 0;
1471
1472out:
2b82032c 1473 btrfs_free_path(path);
7bfc837d 1474 *start = max_hole_start;
b2117a39 1475 if (len)
7bfc837d 1476 *len = max_hole_size;
0b86a832
CM
1477 return ret;
1478}
1479
499f377f
JM
1480int find_free_dev_extent(struct btrfs_trans_handle *trans,
1481 struct btrfs_device *device, u64 num_bytes,
1482 u64 *start, u64 *len)
1483{
499f377f 1484 /* FIXME use last free of some kind */
499f377f 1485 return find_free_dev_extent_start(trans->transaction, device,
8cdc7c5b 1486 num_bytes, 0, start, len);
499f377f
JM
1487}
1488
b2950863 1489static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1490 struct btrfs_device *device,
2196d6e8 1491 u64 start, u64 *dev_extent_len)
8f18cf13
CM
1492{
1493 int ret;
1494 struct btrfs_path *path;
1495 struct btrfs_root *root = device->dev_root;
1496 struct btrfs_key key;
a061fc8d
CM
1497 struct btrfs_key found_key;
1498 struct extent_buffer *leaf = NULL;
1499 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1500
1501 path = btrfs_alloc_path();
1502 if (!path)
1503 return -ENOMEM;
1504
1505 key.objectid = device->devid;
1506 key.offset = start;
1507 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1508again:
8f18cf13 1509 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1510 if (ret > 0) {
1511 ret = btrfs_previous_item(root, path, key.objectid,
1512 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1513 if (ret)
1514 goto out;
a061fc8d
CM
1515 leaf = path->nodes[0];
1516 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1517 extent = btrfs_item_ptr(leaf, path->slots[0],
1518 struct btrfs_dev_extent);
1519 BUG_ON(found_key.offset > start || found_key.offset +
1520 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1521 key = found_key;
1522 btrfs_release_path(path);
1523 goto again;
a061fc8d
CM
1524 } else if (ret == 0) {
1525 leaf = path->nodes[0];
1526 extent = btrfs_item_ptr(leaf, path->slots[0],
1527 struct btrfs_dev_extent);
79787eaa 1528 } else {
34d97007 1529 btrfs_handle_fs_error(root->fs_info, ret, "Slot search failed");
79787eaa 1530 goto out;
a061fc8d 1531 }
8f18cf13 1532
2196d6e8
MX
1533 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1534
8f18cf13 1535 ret = btrfs_del_item(trans, root, path);
79787eaa 1536 if (ret) {
34d97007 1537 btrfs_handle_fs_error(root->fs_info, ret,
79787eaa 1538 "Failed to remove dev extent item");
13212b54 1539 } else {
3204d33c 1540 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1541 }
b0b802d7 1542out:
8f18cf13
CM
1543 btrfs_free_path(path);
1544 return ret;
1545}
1546
48a3b636
ES
1547static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1548 struct btrfs_device *device,
1549 u64 chunk_tree, u64 chunk_objectid,
1550 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1551{
1552 int ret;
1553 struct btrfs_path *path;
1554 struct btrfs_root *root = device->dev_root;
1555 struct btrfs_dev_extent *extent;
1556 struct extent_buffer *leaf;
1557 struct btrfs_key key;
1558
dfe25020 1559 WARN_ON(!device->in_fs_metadata);
63a212ab 1560 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1561 path = btrfs_alloc_path();
1562 if (!path)
1563 return -ENOMEM;
1564
0b86a832 1565 key.objectid = device->devid;
2b82032c 1566 key.offset = start;
0b86a832
CM
1567 key.type = BTRFS_DEV_EXTENT_KEY;
1568 ret = btrfs_insert_empty_item(trans, root, path, &key,
1569 sizeof(*extent));
2cdcecbc
MF
1570 if (ret)
1571 goto out;
0b86a832
CM
1572
1573 leaf = path->nodes[0];
1574 extent = btrfs_item_ptr(leaf, path->slots[0],
1575 struct btrfs_dev_extent);
e17cade2
CM
1576 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1577 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1578 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1579
1580 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1581 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1582
0b86a832
CM
1583 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1584 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1585out:
0b86a832
CM
1586 btrfs_free_path(path);
1587 return ret;
1588}
1589
6df9a95e 1590static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1591{
6df9a95e
JB
1592 struct extent_map_tree *em_tree;
1593 struct extent_map *em;
1594 struct rb_node *n;
1595 u64 ret = 0;
0b86a832 1596
6df9a95e
JB
1597 em_tree = &fs_info->mapping_tree.map_tree;
1598 read_lock(&em_tree->lock);
1599 n = rb_last(&em_tree->map);
1600 if (n) {
1601 em = rb_entry(n, struct extent_map, rb_node);
1602 ret = em->start + em->len;
0b86a832 1603 }
6df9a95e
JB
1604 read_unlock(&em_tree->lock);
1605
0b86a832
CM
1606 return ret;
1607}
1608
53f10659
ID
1609static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1610 u64 *devid_ret)
0b86a832
CM
1611{
1612 int ret;
1613 struct btrfs_key key;
1614 struct btrfs_key found_key;
2b82032c
YZ
1615 struct btrfs_path *path;
1616
2b82032c
YZ
1617 path = btrfs_alloc_path();
1618 if (!path)
1619 return -ENOMEM;
0b86a832
CM
1620
1621 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1622 key.type = BTRFS_DEV_ITEM_KEY;
1623 key.offset = (u64)-1;
1624
53f10659 1625 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1626 if (ret < 0)
1627 goto error;
1628
79787eaa 1629 BUG_ON(ret == 0); /* Corruption */
0b86a832 1630
53f10659
ID
1631 ret = btrfs_previous_item(fs_info->chunk_root, path,
1632 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1633 BTRFS_DEV_ITEM_KEY);
1634 if (ret) {
53f10659 1635 *devid_ret = 1;
0b86a832
CM
1636 } else {
1637 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1638 path->slots[0]);
53f10659 1639 *devid_ret = found_key.offset + 1;
0b86a832
CM
1640 }
1641 ret = 0;
1642error:
2b82032c 1643 btrfs_free_path(path);
0b86a832
CM
1644 return ret;
1645}
1646
1647/*
1648 * the device information is stored in the chunk root
1649 * the btrfs_device struct should be fully filled in
1650 */
48a3b636
ES
1651static int btrfs_add_device(struct btrfs_trans_handle *trans,
1652 struct btrfs_root *root,
1653 struct btrfs_device *device)
0b86a832
CM
1654{
1655 int ret;
1656 struct btrfs_path *path;
1657 struct btrfs_dev_item *dev_item;
1658 struct extent_buffer *leaf;
1659 struct btrfs_key key;
1660 unsigned long ptr;
0b86a832
CM
1661
1662 root = root->fs_info->chunk_root;
1663
1664 path = btrfs_alloc_path();
1665 if (!path)
1666 return -ENOMEM;
1667
0b86a832
CM
1668 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1669 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1670 key.offset = device->devid;
0b86a832
CM
1671
1672 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1673 sizeof(*dev_item));
0b86a832
CM
1674 if (ret)
1675 goto out;
1676
1677 leaf = path->nodes[0];
1678 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1679
1680 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1681 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1682 btrfs_set_device_type(leaf, dev_item, device->type);
1683 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1684 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1685 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1686 btrfs_set_device_total_bytes(leaf, dev_item,
1687 btrfs_device_get_disk_total_bytes(device));
1688 btrfs_set_device_bytes_used(leaf, dev_item,
1689 btrfs_device_get_bytes_used(device));
e17cade2
CM
1690 btrfs_set_device_group(leaf, dev_item, 0);
1691 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1692 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1693 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1694
410ba3a2 1695 ptr = btrfs_device_uuid(dev_item);
e17cade2 1696 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1697 ptr = btrfs_device_fsid(dev_item);
2b82032c 1698 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1699 btrfs_mark_buffer_dirty(leaf);
0b86a832 1700
2b82032c 1701 ret = 0;
0b86a832
CM
1702out:
1703 btrfs_free_path(path);
1704 return ret;
1705}
8f18cf13 1706
5a1972bd
QW
1707/*
1708 * Function to update ctime/mtime for a given device path.
1709 * Mainly used for ctime/mtime based probe like libblkid.
1710 */
1711static void update_dev_time(char *path_name)
1712{
1713 struct file *filp;
1714
1715 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1716 if (IS_ERR(filp))
5a1972bd
QW
1717 return;
1718 file_update_time(filp);
1719 filp_close(filp, NULL);
5a1972bd
QW
1720}
1721
a061fc8d
CM
1722static int btrfs_rm_dev_item(struct btrfs_root *root,
1723 struct btrfs_device *device)
1724{
1725 int ret;
1726 struct btrfs_path *path;
a061fc8d 1727 struct btrfs_key key;
a061fc8d
CM
1728 struct btrfs_trans_handle *trans;
1729
1730 root = root->fs_info->chunk_root;
1731
1732 path = btrfs_alloc_path();
1733 if (!path)
1734 return -ENOMEM;
1735
a22285a6 1736 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1737 if (IS_ERR(trans)) {
1738 btrfs_free_path(path);
1739 return PTR_ERR(trans);
1740 }
a061fc8d
CM
1741 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1742 key.type = BTRFS_DEV_ITEM_KEY;
1743 key.offset = device->devid;
1744
1745 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1746 if (ret < 0)
1747 goto out;
1748
1749 if (ret > 0) {
1750 ret = -ENOENT;
1751 goto out;
1752 }
1753
1754 ret = btrfs_del_item(trans, root, path);
1755 if (ret)
1756 goto out;
a061fc8d
CM
1757out:
1758 btrfs_free_path(path);
1759 btrfs_commit_transaction(trans, root);
1760 return ret;
1761}
1762
3cc31a0d
DS
1763/*
1764 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1765 * filesystem. It's up to the caller to adjust that number regarding eg. device
1766 * replace.
1767 */
1768static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1769 u64 num_devices)
a061fc8d 1770{
a061fc8d 1771 u64 all_avail;
de98ced9 1772 unsigned seq;
418775a2 1773 int i;
a061fc8d 1774
de98ced9 1775 do {
bd45ffbc 1776 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1777
bd45ffbc
AJ
1778 all_avail = fs_info->avail_data_alloc_bits |
1779 fs_info->avail_system_alloc_bits |
1780 fs_info->avail_metadata_alloc_bits;
1781 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1782
418775a2
DS
1783 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1784 if (!(all_avail & btrfs_raid_group[i]))
1785 continue;
a061fc8d 1786
418775a2
DS
1787 if (num_devices < btrfs_raid_array[i].devs_min) {
1788 int ret = btrfs_raid_mindev_error[i];
bd45ffbc 1789
418775a2
DS
1790 if (ret)
1791 return ret;
1792 }
53b381b3
DW
1793 }
1794
bd45ffbc 1795 return 0;
f1fa7f26
AJ
1796}
1797
88acff64
AJ
1798struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1799 struct btrfs_device *device)
a061fc8d 1800{
2b82032c 1801 struct btrfs_device *next_device;
88acff64
AJ
1802
1803 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1804 if (next_device != device &&
1805 !next_device->missing && next_device->bdev)
1806 return next_device;
1807 }
1808
1809 return NULL;
1810}
1811
1812/*
1813 * Helper function to check if the given device is part of s_bdev / latest_bdev
1814 * and replace it with the provided or the next active device, in the context
1815 * where this function called, there should be always be another device (or
1816 * this_dev) which is active.
1817 */
1818void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1819 struct btrfs_device *device, struct btrfs_device *this_dev)
1820{
1821 struct btrfs_device *next_device;
1822
1823 if (this_dev)
1824 next_device = this_dev;
1825 else
1826 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1827 device);
1828 ASSERT(next_device);
1829
1830 if (fs_info->sb->s_bdev &&
1831 (fs_info->sb->s_bdev == device->bdev))
1832 fs_info->sb->s_bdev = next_device->bdev;
1833
1834 if (fs_info->fs_devices->latest_bdev == device->bdev)
1835 fs_info->fs_devices->latest_bdev = next_device->bdev;
1836}
1837
6b526ed7 1838int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
f1fa7f26
AJ
1839{
1840 struct btrfs_device *device;
1f78160c 1841 struct btrfs_fs_devices *cur_devices;
2b82032c 1842 u64 num_devices;
a061fc8d 1843 int ret = 0;
1f78160c 1844 bool clear_super = false;
42b67427 1845 char *dev_name = NULL;
a061fc8d 1846
a061fc8d
CM
1847 mutex_lock(&uuid_mutex);
1848
8dabb742 1849 num_devices = root->fs_info->fs_devices->num_devices;
73beece9 1850 btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
8dabb742
SB
1851 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1852 WARN_ON(num_devices < 1);
1853 num_devices--;
1854 }
73beece9 1855 btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
8dabb742 1856
3cc31a0d 1857 ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1);
f1fa7f26 1858 if (ret)
a061fc8d 1859 goto out;
a061fc8d 1860
5c5c0df0 1861 ret = btrfs_find_device_by_devspec(root, devid, device_path,
24fc572f
AJ
1862 &device);
1863 if (ret)
53b381b3 1864 goto out;
dfe25020 1865
63a212ab 1866 if (device->is_tgtdev_for_dev_replace) {
183860f6 1867 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 1868 goto out;
63a212ab
SB
1869 }
1870
2b82032c 1871 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1872 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 1873 goto out;
2b82032c
YZ
1874 }
1875
1876 if (device->writeable) {
0c1daee0 1877 lock_chunks(root);
2b82032c 1878 list_del_init(&device->dev_alloc_list);
c3929c36 1879 device->fs_devices->rw_devices--;
0c1daee0 1880 unlock_chunks(root);
42b67427
AJ
1881 dev_name = kstrdup(device->name->str, GFP_KERNEL);
1882 if (!dev_name) {
1883 ret = -ENOMEM;
1884 goto error_undo;
1885 }
1f78160c 1886 clear_super = true;
dfe25020 1887 }
a061fc8d 1888
d7901554 1889 mutex_unlock(&uuid_mutex);
a061fc8d 1890 ret = btrfs_shrink_device(device, 0);
d7901554 1891 mutex_lock(&uuid_mutex);
a061fc8d 1892 if (ret)
9b3517e9 1893 goto error_undo;
a061fc8d 1894
63a212ab
SB
1895 /*
1896 * TODO: the superblock still includes this device in its num_devices
1897 * counter although write_all_supers() is not locked out. This
1898 * could give a filesystem state which requires a degraded mount.
1899 */
a061fc8d
CM
1900 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1901 if (ret)
9b3517e9 1902 goto error_undo;
a061fc8d 1903
2b82032c 1904 device->in_fs_metadata = 0;
aa1b8cd4 1905 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1906
1907 /*
1908 * the device list mutex makes sure that we don't change
1909 * the device list while someone else is writing out all
d7306801
FDBM
1910 * the device supers. Whoever is writing all supers, should
1911 * lock the device list mutex before getting the number of
1912 * devices in the super block (super_copy). Conversely,
1913 * whoever updates the number of devices in the super block
1914 * (super_copy) should hold the device list mutex.
e5e9a520 1915 */
1f78160c
XG
1916
1917 cur_devices = device->fs_devices;
e5e9a520 1918 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1919 list_del_rcu(&device->dev_list);
e5e9a520 1920
e4404d6e 1921 device->fs_devices->num_devices--;
02db0844 1922 device->fs_devices->total_devices--;
2b82032c 1923
cd02dca5 1924 if (device->missing)
3a7d55c8 1925 device->fs_devices->missing_devices--;
cd02dca5 1926
88acff64 1927 btrfs_assign_next_active_device(root->fs_info, device, NULL);
2b82032c 1928
0bfaa9c5 1929 if (device->bdev) {
e4404d6e 1930 device->fs_devices->open_devices--;
0bfaa9c5 1931 /* remove sysfs entry */
32576040 1932 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
0bfaa9c5 1933 }
99994cde 1934
1f78160c 1935 call_rcu(&device->rcu, free_device);
e4404d6e 1936
6c41761f
DS
1937 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1938 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
d7306801 1939 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c 1940
1f78160c 1941 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1942 struct btrfs_fs_devices *fs_devices;
1943 fs_devices = root->fs_info->fs_devices;
1944 while (fs_devices) {
8321cf25
RS
1945 if (fs_devices->seed == cur_devices) {
1946 fs_devices->seed = cur_devices->seed;
e4404d6e 1947 break;
8321cf25 1948 }
e4404d6e 1949 fs_devices = fs_devices->seed;
2b82032c 1950 }
1f78160c 1951 cur_devices->seed = NULL;
1f78160c 1952 __btrfs_close_devices(cur_devices);
1f78160c 1953 free_fs_devices(cur_devices);
2b82032c
YZ
1954 }
1955
5af3e8cc
SB
1956 root->fs_info->num_tolerated_disk_barrier_failures =
1957 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1958
2b82032c
YZ
1959 /*
1960 * at this point, the device is zero sized. We want to
1961 * remove it from the devices list and zero out the old super
1962 */
24fc572f 1963 if (clear_super) {
42b67427 1964 struct block_device *bdev;
4d90d28b 1965
42b67427
AJ
1966 bdev = blkdev_get_by_path(dev_name, FMODE_READ | FMODE_EXCL,
1967 root->fs_info->bdev_holder);
1968 if (!IS_ERR(bdev)) {
1969 btrfs_scratch_superblocks(bdev, dev_name);
24fc572f 1970 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
4d90d28b 1971 }
dfe25020 1972 }
a061fc8d 1973
a061fc8d 1974out:
42b67427
AJ
1975 kfree(dev_name);
1976
a061fc8d 1977 mutex_unlock(&uuid_mutex);
a061fc8d 1978 return ret;
24fc572f 1979
9b3517e9
ID
1980error_undo:
1981 if (device->writeable) {
0c1daee0 1982 lock_chunks(root);
9b3517e9
ID
1983 list_add(&device->dev_alloc_list,
1984 &root->fs_info->fs_devices->alloc_list);
c3929c36 1985 device->fs_devices->rw_devices++;
0c1daee0 1986 unlock_chunks(root);
9b3517e9 1987 }
24fc572f 1988 goto out;
a061fc8d
CM
1989}
1990
084b6e7c
QW
1991void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1992 struct btrfs_device *srcdev)
e93c89c1 1993{
d51908ce
AJ
1994 struct btrfs_fs_devices *fs_devices;
1995
e93c89c1 1996 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 1997
25e8e911
AJ
1998 /*
1999 * in case of fs with no seed, srcdev->fs_devices will point
2000 * to fs_devices of fs_info. However when the dev being replaced is
2001 * a seed dev it will point to the seed's local fs_devices. In short
2002 * srcdev will have its correct fs_devices in both the cases.
2003 */
2004 fs_devices = srcdev->fs_devices;
d51908ce 2005
e93c89c1
SB
2006 list_del_rcu(&srcdev->dev_list);
2007 list_del_rcu(&srcdev->dev_alloc_list);
d51908ce 2008 fs_devices->num_devices--;
82372bc8 2009 if (srcdev->missing)
d51908ce 2010 fs_devices->missing_devices--;
e93c89c1 2011
48b3b9d4 2012 if (srcdev->writeable)
82372bc8 2013 fs_devices->rw_devices--;
1357272f 2014
82372bc8 2015 if (srcdev->bdev)
d51908ce 2016 fs_devices->open_devices--;
084b6e7c
QW
2017}
2018
2019void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2020 struct btrfs_device *srcdev)
2021{
2022 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2023
48b3b9d4
AJ
2024 if (srcdev->writeable) {
2025 /* zero out the old super if it is writable */
2026 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2027 }
e93c89c1 2028 call_rcu(&srcdev->rcu, free_device);
94d5f0c2
AJ
2029
2030 /*
2031 * unless fs_devices is seed fs, num_devices shouldn't go
2032 * zero
2033 */
2034 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2035
2036 /* if this is no devs we rather delete the fs_devices */
2037 if (!fs_devices->num_devices) {
2038 struct btrfs_fs_devices *tmp_fs_devices;
2039
2040 tmp_fs_devices = fs_info->fs_devices;
2041 while (tmp_fs_devices) {
2042 if (tmp_fs_devices->seed == fs_devices) {
2043 tmp_fs_devices->seed = fs_devices->seed;
2044 break;
2045 }
2046 tmp_fs_devices = tmp_fs_devices->seed;
2047 }
2048 fs_devices->seed = NULL;
8bef8401
AJ
2049 __btrfs_close_devices(fs_devices);
2050 free_fs_devices(fs_devices);
94d5f0c2 2051 }
e93c89c1
SB
2052}
2053
2054void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2055 struct btrfs_device *tgtdev)
2056{
67a2c45e 2057 mutex_lock(&uuid_mutex);
e93c89c1
SB
2058 WARN_ON(!tgtdev);
2059 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d2ff1b20 2060
32576040 2061 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
d2ff1b20 2062
779bf3fe 2063 if (tgtdev->bdev)
e93c89c1 2064 fs_info->fs_devices->open_devices--;
779bf3fe 2065
e93c89c1 2066 fs_info->fs_devices->num_devices--;
e93c89c1 2067
88acff64 2068 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
e93c89c1 2069
e93c89c1 2070 list_del_rcu(&tgtdev->dev_list);
e93c89c1
SB
2071
2072 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 2073 mutex_unlock(&uuid_mutex);
779bf3fe
AJ
2074
2075 /*
2076 * The update_dev_time() with in btrfs_scratch_superblocks()
2077 * may lead to a call to btrfs_show_devname() which will try
2078 * to hold device_list_mutex. And here this device
2079 * is already out of device list, so we don't have to hold
2080 * the device_list_mutex lock.
2081 */
2082 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2083 call_rcu(&tgtdev->rcu, free_device);
e93c89c1
SB
2084}
2085
48a3b636
ES
2086static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2087 struct btrfs_device **device)
7ba15b7d
SB
2088{
2089 int ret = 0;
2090 struct btrfs_super_block *disk_super;
2091 u64 devid;
2092 u8 *dev_uuid;
2093 struct block_device *bdev;
2094 struct buffer_head *bh;
2095
2096 *device = NULL;
2097 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2098 root->fs_info->bdev_holder, 0, &bdev, &bh);
2099 if (ret)
2100 return ret;
2101 disk_super = (struct btrfs_super_block *)bh->b_data;
2102 devid = btrfs_stack_device_id(&disk_super->dev_item);
2103 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 2104 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
2105 disk_super->fsid);
2106 brelse(bh);
2107 if (!*device)
2108 ret = -ENOENT;
2109 blkdev_put(bdev, FMODE_READ);
2110 return ret;
2111}
2112
2113int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2114 char *device_path,
2115 struct btrfs_device **device)
2116{
2117 *device = NULL;
2118 if (strcmp(device_path, "missing") == 0) {
2119 struct list_head *devices;
2120 struct btrfs_device *tmp;
2121
2122 devices = &root->fs_info->fs_devices->devices;
2123 /*
2124 * It is safe to read the devices since the volume_mutex
2125 * is held by the caller.
2126 */
2127 list_for_each_entry(tmp, devices, dev_list) {
2128 if (tmp->in_fs_metadata && !tmp->bdev) {
2129 *device = tmp;
2130 break;
2131 }
2132 }
2133
d74a6259
AJ
2134 if (!*device)
2135 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
7ba15b7d
SB
2136
2137 return 0;
2138 } else {
2139 return btrfs_find_device_by_path(root, device_path, device);
2140 }
2141}
2142
5c5c0df0
DS
2143/*
2144 * Lookup a device given by device id, or the path if the id is 0.
2145 */
2146int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid,
2147 char *devpath,
24e0474b
AJ
2148 struct btrfs_device **device)
2149{
2150 int ret;
2151
5c5c0df0 2152 if (devid) {
24e0474b 2153 ret = 0;
5c5c0df0 2154 *device = btrfs_find_device(root->fs_info, devid, NULL,
24e0474b
AJ
2155 NULL);
2156 if (!*device)
2157 ret = -ENOENT;
2158 } else {
5c5c0df0 2159 if (!devpath || !devpath[0])
b3d1b153
AJ
2160 return -EINVAL;
2161
5c5c0df0 2162 ret = btrfs_find_device_missing_or_by_path(root, devpath,
24e0474b
AJ
2163 device);
2164 }
2165 return ret;
2166}
2167
2b82032c
YZ
2168/*
2169 * does all the dirty work required for changing file system's UUID.
2170 */
125ccb0a 2171static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
2172{
2173 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2174 struct btrfs_fs_devices *old_devices;
e4404d6e 2175 struct btrfs_fs_devices *seed_devices;
6c41761f 2176 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
2177 struct btrfs_device *device;
2178 u64 super_flags;
2179
2180 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 2181 if (!fs_devices->seeding)
2b82032c
YZ
2182 return -EINVAL;
2183
2208a378
ID
2184 seed_devices = __alloc_fs_devices();
2185 if (IS_ERR(seed_devices))
2186 return PTR_ERR(seed_devices);
2b82032c 2187
e4404d6e
YZ
2188 old_devices = clone_fs_devices(fs_devices);
2189 if (IS_ERR(old_devices)) {
2190 kfree(seed_devices);
2191 return PTR_ERR(old_devices);
2b82032c 2192 }
e4404d6e 2193
2b82032c
YZ
2194 list_add(&old_devices->list, &fs_uuids);
2195
e4404d6e
YZ
2196 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2197 seed_devices->opened = 1;
2198 INIT_LIST_HEAD(&seed_devices->devices);
2199 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2200 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
2201
2202 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2203 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2204 synchronize_rcu);
2196d6e8
MX
2205 list_for_each_entry(device, &seed_devices->devices, dev_list)
2206 device->fs_devices = seed_devices;
c9513edb 2207
2196d6e8 2208 lock_chunks(root);
e4404d6e 2209 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2196d6e8 2210 unlock_chunks(root);
e4404d6e 2211
2b82032c
YZ
2212 fs_devices->seeding = 0;
2213 fs_devices->num_devices = 0;
2214 fs_devices->open_devices = 0;
69611ac8 2215 fs_devices->missing_devices = 0;
69611ac8 2216 fs_devices->rotating = 0;
e4404d6e 2217 fs_devices->seed = seed_devices;
2b82032c
YZ
2218
2219 generate_random_uuid(fs_devices->fsid);
2220 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2221 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750
FDBM
2222 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2223
2b82032c
YZ
2224 super_flags = btrfs_super_flags(disk_super) &
2225 ~BTRFS_SUPER_FLAG_SEEDING;
2226 btrfs_set_super_flags(disk_super, super_flags);
2227
2228 return 0;
2229}
2230
2231/*
01327610 2232 * Store the expected generation for seed devices in device items.
2b82032c
YZ
2233 */
2234static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2235 struct btrfs_root *root)
2236{
2237 struct btrfs_path *path;
2238 struct extent_buffer *leaf;
2239 struct btrfs_dev_item *dev_item;
2240 struct btrfs_device *device;
2241 struct btrfs_key key;
2242 u8 fs_uuid[BTRFS_UUID_SIZE];
2243 u8 dev_uuid[BTRFS_UUID_SIZE];
2244 u64 devid;
2245 int ret;
2246
2247 path = btrfs_alloc_path();
2248 if (!path)
2249 return -ENOMEM;
2250
2251 root = root->fs_info->chunk_root;
2252 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2253 key.offset = 0;
2254 key.type = BTRFS_DEV_ITEM_KEY;
2255
2256 while (1) {
2257 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2258 if (ret < 0)
2259 goto error;
2260
2261 leaf = path->nodes[0];
2262next_slot:
2263 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2264 ret = btrfs_next_leaf(root, path);
2265 if (ret > 0)
2266 break;
2267 if (ret < 0)
2268 goto error;
2269 leaf = path->nodes[0];
2270 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2271 btrfs_release_path(path);
2b82032c
YZ
2272 continue;
2273 }
2274
2275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2276 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2277 key.type != BTRFS_DEV_ITEM_KEY)
2278 break;
2279
2280 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2281 struct btrfs_dev_item);
2282 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2283 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2284 BTRFS_UUID_SIZE);
1473b24e 2285 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 2286 BTRFS_UUID_SIZE);
aa1b8cd4
SB
2287 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2288 fs_uuid);
79787eaa 2289 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2290
2291 if (device->fs_devices->seeding) {
2292 btrfs_set_device_generation(leaf, dev_item,
2293 device->generation);
2294 btrfs_mark_buffer_dirty(leaf);
2295 }
2296
2297 path->slots[0]++;
2298 goto next_slot;
2299 }
2300 ret = 0;
2301error:
2302 btrfs_free_path(path);
2303 return ret;
2304}
2305
788f20eb
CM
2306int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2307{
d5e2003c 2308 struct request_queue *q;
788f20eb
CM
2309 struct btrfs_trans_handle *trans;
2310 struct btrfs_device *device;
2311 struct block_device *bdev;
788f20eb 2312 struct list_head *devices;
2b82032c 2313 struct super_block *sb = root->fs_info->sb;
606686ee 2314 struct rcu_string *name;
3c1dbdf5 2315 u64 tmp;
2b82032c 2316 int seeding_dev = 0;
788f20eb
CM
2317 int ret = 0;
2318
2b82032c 2319 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 2320 return -EROFS;
788f20eb 2321
a5d16333 2322 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 2323 root->fs_info->bdev_holder);
7f59203a
JB
2324 if (IS_ERR(bdev))
2325 return PTR_ERR(bdev);
a2135011 2326
2b82032c
YZ
2327 if (root->fs_info->fs_devices->seeding) {
2328 seeding_dev = 1;
2329 down_write(&sb->s_umount);
2330 mutex_lock(&uuid_mutex);
2331 }
2332
8c8bee1d 2333 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2334
788f20eb 2335 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
2336
2337 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 2338 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2339 if (device->bdev == bdev) {
2340 ret = -EEXIST;
d25628bd
LB
2341 mutex_unlock(
2342 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 2343 goto error;
788f20eb
CM
2344 }
2345 }
d25628bd 2346 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2347
12bd2fc0
ID
2348 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2349 if (IS_ERR(device)) {
788f20eb 2350 /* we can safely leave the fs_devices entry around */
12bd2fc0 2351 ret = PTR_ERR(device);
2b82032c 2352 goto error;
788f20eb
CM
2353 }
2354
78f2c9e6 2355 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2356 if (!name) {
788f20eb 2357 kfree(device);
2b82032c
YZ
2358 ret = -ENOMEM;
2359 goto error;
788f20eb 2360 }
606686ee 2361 rcu_assign_pointer(device->name, name);
2b82032c 2362
a22285a6 2363 trans = btrfs_start_transaction(root, 0);
98d5dc13 2364 if (IS_ERR(trans)) {
606686ee 2365 rcu_string_free(device->name);
98d5dc13
TI
2366 kfree(device);
2367 ret = PTR_ERR(trans);
2368 goto error;
2369 }
2370
d5e2003c
JB
2371 q = bdev_get_queue(bdev);
2372 if (blk_queue_discard(q))
2373 device->can_discard = 1;
2b82032c 2374 device->writeable = 1;
2b82032c 2375 device->generation = trans->transid;
788f20eb
CM
2376 device->io_width = root->sectorsize;
2377 device->io_align = root->sectorsize;
2378 device->sector_size = root->sectorsize;
2379 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2380 device->disk_total_bytes = device->total_bytes;
935e5cc9 2381 device->commit_total_bytes = device->total_bytes;
788f20eb
CM
2382 device->dev_root = root->fs_info->dev_root;
2383 device->bdev = bdev;
dfe25020 2384 device->in_fs_metadata = 1;
63a212ab 2385 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2386 device->mode = FMODE_EXCL;
27087f37 2387 device->dev_stats_valid = 1;
2b82032c 2388 set_blocksize(device->bdev, 4096);
788f20eb 2389
2b82032c
YZ
2390 if (seeding_dev) {
2391 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2392 ret = btrfs_prepare_sprout(root);
79787eaa 2393 BUG_ON(ret); /* -ENOMEM */
2b82032c 2394 }
788f20eb 2395
2b82032c 2396 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2397
e5e9a520 2398 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2196d6e8 2399 lock_chunks(root);
1f78160c 2400 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2401 list_add(&device->dev_alloc_list,
2402 &root->fs_info->fs_devices->alloc_list);
2403 root->fs_info->fs_devices->num_devices++;
2404 root->fs_info->fs_devices->open_devices++;
2405 root->fs_info->fs_devices->rw_devices++;
02db0844 2406 root->fs_info->fs_devices->total_devices++;
2b82032c 2407 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2408
2bf64758
JB
2409 spin_lock(&root->fs_info->free_chunk_lock);
2410 root->fs_info->free_chunk_space += device->total_bytes;
2411 spin_unlock(&root->fs_info->free_chunk_lock);
2412
c289811c
CM
2413 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2414 root->fs_info->fs_devices->rotating = 1;
2415
3c1dbdf5 2416 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
6c41761f 2417 btrfs_set_super_total_bytes(root->fs_info->super_copy,
3c1dbdf5 2418 tmp + device->total_bytes);
788f20eb 2419
3c1dbdf5 2420 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
6c41761f 2421 btrfs_set_super_num_devices(root->fs_info->super_copy,
3c1dbdf5 2422 tmp + 1);
0d39376a
AJ
2423
2424 /* add sysfs device entry */
e3bd6973 2425 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
0d39376a 2426
2196d6e8
MX
2427 /*
2428 * we've got more storage, clear any full flags on the space
2429 * infos
2430 */
2431 btrfs_clear_space_info_full(root->fs_info);
2432
2433 unlock_chunks(root);
e5e9a520 2434 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2435
2b82032c 2436 if (seeding_dev) {
2196d6e8 2437 lock_chunks(root);
2b82032c 2438 ret = init_first_rw_device(trans, root, device);
2196d6e8 2439 unlock_chunks(root);
005d6427
DS
2440 if (ret) {
2441 btrfs_abort_transaction(trans, root, ret);
79787eaa 2442 goto error_trans;
005d6427 2443 }
2196d6e8
MX
2444 }
2445
2446 ret = btrfs_add_device(trans, root, device);
2447 if (ret) {
2448 btrfs_abort_transaction(trans, root, ret);
2449 goto error_trans;
2450 }
2451
2452 if (seeding_dev) {
2453 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2454
2b82032c 2455 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2456 if (ret) {
2457 btrfs_abort_transaction(trans, root, ret);
79787eaa 2458 goto error_trans;
005d6427 2459 }
b2373f25
AJ
2460
2461 /* Sprouting would change fsid of the mounted root,
2462 * so rename the fsid on the sysfs
2463 */
2464 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2465 root->fs_info->fsid);
c1b7e474 2466 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2e7910d6 2467 fsid_buf))
f14d104d
DS
2468 btrfs_warn(root->fs_info,
2469 "sysfs: failed to create fsid for sprout");
2b82032c
YZ
2470 }
2471
5af3e8cc
SB
2472 root->fs_info->num_tolerated_disk_barrier_failures =
2473 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2474 ret = btrfs_commit_transaction(trans, root);
a2135011 2475
2b82032c
YZ
2476 if (seeding_dev) {
2477 mutex_unlock(&uuid_mutex);
2478 up_write(&sb->s_umount);
788f20eb 2479
79787eaa
JM
2480 if (ret) /* transaction commit */
2481 return ret;
2482
2b82032c 2483 ret = btrfs_relocate_sys_chunks(root);
79787eaa 2484 if (ret < 0)
34d97007 2485 btrfs_handle_fs_error(root->fs_info, ret,
79787eaa
JM
2486 "Failed to relocate sys chunks after "
2487 "device initialization. This can be fixed "
2488 "using the \"btrfs balance\" command.");
671415b7
MX
2489 trans = btrfs_attach_transaction(root);
2490 if (IS_ERR(trans)) {
2491 if (PTR_ERR(trans) == -ENOENT)
2492 return 0;
2493 return PTR_ERR(trans);
2494 }
2495 ret = btrfs_commit_transaction(trans, root);
2b82032c 2496 }
c9e9f97b 2497
5a1972bd
QW
2498 /* Update ctime/mtime for libblkid */
2499 update_dev_time(device_path);
2b82032c 2500 return ret;
79787eaa
JM
2501
2502error_trans:
79787eaa 2503 btrfs_end_transaction(trans, root);
606686ee 2504 rcu_string_free(device->name);
32576040 2505 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
79787eaa 2506 kfree(device);
2b82032c 2507error:
e525fd89 2508 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2509 if (seeding_dev) {
2510 mutex_unlock(&uuid_mutex);
2511 up_write(&sb->s_umount);
2512 }
c9e9f97b 2513 return ret;
788f20eb
CM
2514}
2515
e93c89c1 2516int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
1c43366d 2517 struct btrfs_device *srcdev,
e93c89c1
SB
2518 struct btrfs_device **device_out)
2519{
2520 struct request_queue *q;
2521 struct btrfs_device *device;
2522 struct block_device *bdev;
2523 struct btrfs_fs_info *fs_info = root->fs_info;
2524 struct list_head *devices;
2525 struct rcu_string *name;
12bd2fc0 2526 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2527 int ret = 0;
2528
2529 *device_out = NULL;
1c43366d
MX
2530 if (fs_info->fs_devices->seeding) {
2531 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2532 return -EINVAL;
1c43366d 2533 }
e93c89c1
SB
2534
2535 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2536 fs_info->bdev_holder);
1c43366d
MX
2537 if (IS_ERR(bdev)) {
2538 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2539 return PTR_ERR(bdev);
1c43366d 2540 }
e93c89c1
SB
2541
2542 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2543
2544 devices = &fs_info->fs_devices->devices;
2545 list_for_each_entry(device, devices, dev_list) {
2546 if (device->bdev == bdev) {
1c43366d 2547 btrfs_err(fs_info, "target device is in the filesystem!");
e93c89c1
SB
2548 ret = -EEXIST;
2549 goto error;
2550 }
2551 }
2552
1c43366d 2553
7cc8e58d
MX
2554 if (i_size_read(bdev->bd_inode) <
2555 btrfs_device_get_total_bytes(srcdev)) {
1c43366d
MX
2556 btrfs_err(fs_info, "target device is smaller than source device!");
2557 ret = -EINVAL;
2558 goto error;
2559 }
2560
2561
12bd2fc0
ID
2562 device = btrfs_alloc_device(NULL, &devid, NULL);
2563 if (IS_ERR(device)) {
2564 ret = PTR_ERR(device);
e93c89c1
SB
2565 goto error;
2566 }
2567
2568 name = rcu_string_strdup(device_path, GFP_NOFS);
2569 if (!name) {
2570 kfree(device);
2571 ret = -ENOMEM;
2572 goto error;
2573 }
2574 rcu_assign_pointer(device->name, name);
2575
2576 q = bdev_get_queue(bdev);
2577 if (blk_queue_discard(q))
2578 device->can_discard = 1;
2579 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2580 device->writeable = 1;
e93c89c1
SB
2581 device->generation = 0;
2582 device->io_width = root->sectorsize;
2583 device->io_align = root->sectorsize;
2584 device->sector_size = root->sectorsize;
7cc8e58d
MX
2585 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2586 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2587 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2588 ASSERT(list_empty(&srcdev->resized_list));
2589 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2590 device->commit_bytes_used = device->bytes_used;
e93c89c1
SB
2591 device->dev_root = fs_info->dev_root;
2592 device->bdev = bdev;
2593 device->in_fs_metadata = 1;
2594 device->is_tgtdev_for_dev_replace = 1;
2595 device->mode = FMODE_EXCL;
27087f37 2596 device->dev_stats_valid = 1;
e93c89c1
SB
2597 set_blocksize(device->bdev, 4096);
2598 device->fs_devices = fs_info->fs_devices;
2599 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2600 fs_info->fs_devices->num_devices++;
2601 fs_info->fs_devices->open_devices++;
e93c89c1
SB
2602 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2603
2604 *device_out = device;
2605 return ret;
2606
2607error:
2608 blkdev_put(bdev, FMODE_EXCL);
2609 return ret;
2610}
2611
2612void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2613 struct btrfs_device *tgtdev)
2614{
2615 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2616 tgtdev->io_width = fs_info->dev_root->sectorsize;
2617 tgtdev->io_align = fs_info->dev_root->sectorsize;
2618 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2619 tgtdev->dev_root = fs_info->dev_root;
2620 tgtdev->in_fs_metadata = 1;
2621}
2622
d397712b
CM
2623static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2624 struct btrfs_device *device)
0b86a832
CM
2625{
2626 int ret;
2627 struct btrfs_path *path;
2628 struct btrfs_root *root;
2629 struct btrfs_dev_item *dev_item;
2630 struct extent_buffer *leaf;
2631 struct btrfs_key key;
2632
2633 root = device->dev_root->fs_info->chunk_root;
2634
2635 path = btrfs_alloc_path();
2636 if (!path)
2637 return -ENOMEM;
2638
2639 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2640 key.type = BTRFS_DEV_ITEM_KEY;
2641 key.offset = device->devid;
2642
2643 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2644 if (ret < 0)
2645 goto out;
2646
2647 if (ret > 0) {
2648 ret = -ENOENT;
2649 goto out;
2650 }
2651
2652 leaf = path->nodes[0];
2653 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2654
2655 btrfs_set_device_id(leaf, dev_item, device->devid);
2656 btrfs_set_device_type(leaf, dev_item, device->type);
2657 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2658 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2659 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2660 btrfs_set_device_total_bytes(leaf, dev_item,
2661 btrfs_device_get_disk_total_bytes(device));
2662 btrfs_set_device_bytes_used(leaf, dev_item,
2663 btrfs_device_get_bytes_used(device));
0b86a832
CM
2664 btrfs_mark_buffer_dirty(leaf);
2665
2666out:
2667 btrfs_free_path(path);
2668 return ret;
2669}
2670
2196d6e8 2671int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2672 struct btrfs_device *device, u64 new_size)
2673{
2674 struct btrfs_super_block *super_copy =
6c41761f 2675 device->dev_root->fs_info->super_copy;
935e5cc9 2676 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2677 u64 old_total;
2678 u64 diff;
8f18cf13 2679
2b82032c
YZ
2680 if (!device->writeable)
2681 return -EACCES;
2196d6e8
MX
2682
2683 lock_chunks(device->dev_root);
2684 old_total = btrfs_super_total_bytes(super_copy);
2685 diff = new_size - device->total_bytes;
2686
63a212ab 2687 if (new_size <= device->total_bytes ||
2196d6e8
MX
2688 device->is_tgtdev_for_dev_replace) {
2689 unlock_chunks(device->dev_root);
2b82032c 2690 return -EINVAL;
2196d6e8 2691 }
2b82032c 2692
935e5cc9 2693 fs_devices = device->dev_root->fs_info->fs_devices;
2b82032c 2694
8f18cf13 2695 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2696 device->fs_devices->total_rw_bytes += diff;
2697
7cc8e58d
MX
2698 btrfs_device_set_total_bytes(device, new_size);
2699 btrfs_device_set_disk_total_bytes(device, new_size);
4184ea7f 2700 btrfs_clear_space_info_full(device->dev_root->fs_info);
935e5cc9
MX
2701 if (list_empty(&device->resized_list))
2702 list_add_tail(&device->resized_list,
2703 &fs_devices->resized_devices);
2196d6e8 2704 unlock_chunks(device->dev_root);
4184ea7f 2705
8f18cf13
CM
2706 return btrfs_update_device(trans, device);
2707}
2708
2709static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
a688a04a 2710 struct btrfs_root *root, u64 chunk_objectid,
8f18cf13
CM
2711 u64 chunk_offset)
2712{
2713 int ret;
2714 struct btrfs_path *path;
2715 struct btrfs_key key;
2716
2717 root = root->fs_info->chunk_root;
2718 path = btrfs_alloc_path();
2719 if (!path)
2720 return -ENOMEM;
2721
2722 key.objectid = chunk_objectid;
2723 key.offset = chunk_offset;
2724 key.type = BTRFS_CHUNK_ITEM_KEY;
2725
2726 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2727 if (ret < 0)
2728 goto out;
2729 else if (ret > 0) { /* Logic error or corruption */
34d97007 2730 btrfs_handle_fs_error(root->fs_info, -ENOENT,
79787eaa
JM
2731 "Failed lookup while freeing chunk.");
2732 ret = -ENOENT;
2733 goto out;
2734 }
8f18cf13
CM
2735
2736 ret = btrfs_del_item(trans, root, path);
79787eaa 2737 if (ret < 0)
34d97007 2738 btrfs_handle_fs_error(root->fs_info, ret,
79787eaa
JM
2739 "Failed to delete chunk item.");
2740out:
8f18cf13 2741 btrfs_free_path(path);
65a246c5 2742 return ret;
8f18cf13
CM
2743}
2744
b2950863 2745static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2746 chunk_offset)
2747{
6c41761f 2748 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2749 struct btrfs_disk_key *disk_key;
2750 struct btrfs_chunk *chunk;
2751 u8 *ptr;
2752 int ret = 0;
2753 u32 num_stripes;
2754 u32 array_size;
2755 u32 len = 0;
2756 u32 cur;
2757 struct btrfs_key key;
2758
2196d6e8 2759 lock_chunks(root);
8f18cf13
CM
2760 array_size = btrfs_super_sys_array_size(super_copy);
2761
2762 ptr = super_copy->sys_chunk_array;
2763 cur = 0;
2764
2765 while (cur < array_size) {
2766 disk_key = (struct btrfs_disk_key *)ptr;
2767 btrfs_disk_key_to_cpu(&key, disk_key);
2768
2769 len = sizeof(*disk_key);
2770
2771 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2772 chunk = (struct btrfs_chunk *)(ptr + len);
2773 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2774 len += btrfs_chunk_item_size(num_stripes);
2775 } else {
2776 ret = -EIO;
2777 break;
2778 }
2779 if (key.objectid == chunk_objectid &&
2780 key.offset == chunk_offset) {
2781 memmove(ptr, ptr + len, array_size - (cur + len));
2782 array_size -= len;
2783 btrfs_set_super_sys_array_size(super_copy, array_size);
2784 } else {
2785 ptr += len;
2786 cur += len;
2787 }
2788 }
2196d6e8 2789 unlock_chunks(root);
8f18cf13
CM
2790 return ret;
2791}
2792
47ab2a6c
JB
2793int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2794 struct btrfs_root *root, u64 chunk_offset)
8f18cf13
CM
2795{
2796 struct extent_map_tree *em_tree;
8f18cf13 2797 struct extent_map *em;
47ab2a6c 2798 struct btrfs_root *extent_root = root->fs_info->extent_root;
8f18cf13 2799 struct map_lookup *map;
2196d6e8 2800 u64 dev_extent_len = 0;
47ab2a6c 2801 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
47ab2a6c 2802 int i, ret = 0;
57ba4cb8 2803 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8f18cf13 2804
47ab2a6c 2805 /* Just in case */
8f18cf13 2806 root = root->fs_info->chunk_root;
8f18cf13
CM
2807 em_tree = &root->fs_info->mapping_tree.map_tree;
2808
890871be 2809 read_lock(&em_tree->lock);
8f18cf13 2810 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2811 read_unlock(&em_tree->lock);
8f18cf13 2812
47ab2a6c
JB
2813 if (!em || em->start > chunk_offset ||
2814 em->start + em->len < chunk_offset) {
2815 /*
2816 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2817 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2818 * do anything we still error out.
2819 */
2820 ASSERT(0);
2821 if (em)
2822 free_extent_map(em);
2823 return -EINVAL;
2824 }
95617d69 2825 map = em->map_lookup;
39c2d7fa 2826 lock_chunks(root->fs_info->chunk_root);
4617ea3a 2827 check_system_chunk(trans, extent_root, map->type);
39c2d7fa 2828 unlock_chunks(root->fs_info->chunk_root);
8f18cf13 2829
57ba4cb8
FM
2830 /*
2831 * Take the device list mutex to prevent races with the final phase of
2832 * a device replace operation that replaces the device object associated
2833 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2834 */
2835 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 2836 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2837 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2838 ret = btrfs_free_dev_extent(trans, device,
2839 map->stripes[i].physical,
2840 &dev_extent_len);
47ab2a6c 2841 if (ret) {
57ba4cb8 2842 mutex_unlock(&fs_devices->device_list_mutex);
47ab2a6c
JB
2843 btrfs_abort_transaction(trans, root, ret);
2844 goto out;
2845 }
a061fc8d 2846
2196d6e8
MX
2847 if (device->bytes_used > 0) {
2848 lock_chunks(root);
2849 btrfs_device_set_bytes_used(device,
2850 device->bytes_used - dev_extent_len);
2851 spin_lock(&root->fs_info->free_chunk_lock);
2852 root->fs_info->free_chunk_space += dev_extent_len;
2853 spin_unlock(&root->fs_info->free_chunk_lock);
2854 btrfs_clear_space_info_full(root->fs_info);
2855 unlock_chunks(root);
2856 }
a061fc8d 2857
dfe25020
CM
2858 if (map->stripes[i].dev) {
2859 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c 2860 if (ret) {
57ba4cb8 2861 mutex_unlock(&fs_devices->device_list_mutex);
47ab2a6c
JB
2862 btrfs_abort_transaction(trans, root, ret);
2863 goto out;
2864 }
dfe25020 2865 }
8f18cf13 2866 }
57ba4cb8
FM
2867 mutex_unlock(&fs_devices->device_list_mutex);
2868
a688a04a 2869 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
47ab2a6c
JB
2870 if (ret) {
2871 btrfs_abort_transaction(trans, root, ret);
2872 goto out;
2873 }
8f18cf13 2874
1abe9b8a 2875 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2876
8f18cf13
CM
2877 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2878 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
47ab2a6c
JB
2879 if (ret) {
2880 btrfs_abort_transaction(trans, root, ret);
2881 goto out;
2882 }
8f18cf13
CM
2883 }
2884
04216820 2885 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
47ab2a6c
JB
2886 if (ret) {
2887 btrfs_abort_transaction(trans, extent_root, ret);
2888 goto out;
2889 }
2b82032c 2890
47ab2a6c 2891out:
2b82032c
YZ
2892 /* once for us */
2893 free_extent_map(em);
47ab2a6c
JB
2894 return ret;
2895}
2b82032c 2896
dc2ee4e2 2897static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
47ab2a6c
JB
2898{
2899 struct btrfs_root *extent_root;
2900 struct btrfs_trans_handle *trans;
2901 int ret;
2b82032c 2902
47ab2a6c
JB
2903 root = root->fs_info->chunk_root;
2904 extent_root = root->fs_info->extent_root;
2905
67c5e7d4
FM
2906 /*
2907 * Prevent races with automatic removal of unused block groups.
2908 * After we relocate and before we remove the chunk with offset
2909 * chunk_offset, automatic removal of the block group can kick in,
2910 * resulting in a failure when calling btrfs_remove_chunk() below.
2911 *
2912 * Make sure to acquire this mutex before doing a tree search (dev
2913 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2914 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2915 * we release the path used to search the chunk/dev tree and before
2916 * the current task acquires this mutex and calls us.
2917 */
2918 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2919
47ab2a6c
JB
2920 ret = btrfs_can_relocate(extent_root, chunk_offset);
2921 if (ret)
2922 return -ENOSPC;
2923
2924 /* step one, relocate all the extents inside this chunk */
55e3a601 2925 btrfs_scrub_pause(root);
47ab2a6c 2926 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
55e3a601 2927 btrfs_scrub_continue(root);
47ab2a6c
JB
2928 if (ret)
2929 return ret;
2930
7fd01182
FM
2931 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2932 chunk_offset);
47ab2a6c
JB
2933 if (IS_ERR(trans)) {
2934 ret = PTR_ERR(trans);
34d97007 2935 btrfs_handle_fs_error(root->fs_info, ret, NULL);
47ab2a6c
JB
2936 return ret;
2937 }
2938
2939 /*
2940 * step two, delete the device extents and the
2941 * chunk tree entries
2942 */
2943 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2b82032c 2944 btrfs_end_transaction(trans, root);
47ab2a6c 2945 return ret;
2b82032c
YZ
2946}
2947
2948static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2949{
2950 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2951 struct btrfs_path *path;
2952 struct extent_buffer *leaf;
2953 struct btrfs_chunk *chunk;
2954 struct btrfs_key key;
2955 struct btrfs_key found_key;
2b82032c 2956 u64 chunk_type;
ba1bf481
JB
2957 bool retried = false;
2958 int failed = 0;
2b82032c
YZ
2959 int ret;
2960
2961 path = btrfs_alloc_path();
2962 if (!path)
2963 return -ENOMEM;
2964
ba1bf481 2965again:
2b82032c
YZ
2966 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2967 key.offset = (u64)-1;
2968 key.type = BTRFS_CHUNK_ITEM_KEY;
2969
2970 while (1) {
67c5e7d4 2971 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2972 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
2973 if (ret < 0) {
2974 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2975 goto error;
67c5e7d4 2976 }
79787eaa 2977 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2978
2979 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2980 key.type);
67c5e7d4
FM
2981 if (ret)
2982 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
2983 if (ret < 0)
2984 goto error;
2985 if (ret > 0)
2986 break;
1a40e23b 2987
2b82032c
YZ
2988 leaf = path->nodes[0];
2989 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2990
2b82032c
YZ
2991 chunk = btrfs_item_ptr(leaf, path->slots[0],
2992 struct btrfs_chunk);
2993 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2994 btrfs_release_path(path);
8f18cf13 2995
2b82032c 2996 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
a688a04a 2997 ret = btrfs_relocate_chunk(chunk_root,
2b82032c 2998 found_key.offset);
ba1bf481
JB
2999 if (ret == -ENOSPC)
3000 failed++;
14586651
HS
3001 else
3002 BUG_ON(ret);
2b82032c 3003 }
67c5e7d4 3004 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 3005
2b82032c
YZ
3006 if (found_key.offset == 0)
3007 break;
3008 key.offset = found_key.offset - 1;
3009 }
3010 ret = 0;
ba1bf481
JB
3011 if (failed && !retried) {
3012 failed = 0;
3013 retried = true;
3014 goto again;
fae7f21c 3015 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3016 ret = -ENOSPC;
3017 }
2b82032c
YZ
3018error:
3019 btrfs_free_path(path);
3020 return ret;
8f18cf13
CM
3021}
3022
0940ebf6
ID
3023static int insert_balance_item(struct btrfs_root *root,
3024 struct btrfs_balance_control *bctl)
3025{
3026 struct btrfs_trans_handle *trans;
3027 struct btrfs_balance_item *item;
3028 struct btrfs_disk_balance_args disk_bargs;
3029 struct btrfs_path *path;
3030 struct extent_buffer *leaf;
3031 struct btrfs_key key;
3032 int ret, err;
3033
3034 path = btrfs_alloc_path();
3035 if (!path)
3036 return -ENOMEM;
3037
3038 trans = btrfs_start_transaction(root, 0);
3039 if (IS_ERR(trans)) {
3040 btrfs_free_path(path);
3041 return PTR_ERR(trans);
3042 }
3043
3044 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3045 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3046 key.offset = 0;
3047
3048 ret = btrfs_insert_empty_item(trans, root, path, &key,
3049 sizeof(*item));
3050 if (ret)
3051 goto out;
3052
3053 leaf = path->nodes[0];
3054 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3055
3056 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3057
3058 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3059 btrfs_set_balance_data(leaf, item, &disk_bargs);
3060 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3061 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3062 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3063 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3064
3065 btrfs_set_balance_flags(leaf, item, bctl->flags);
3066
3067 btrfs_mark_buffer_dirty(leaf);
3068out:
3069 btrfs_free_path(path);
3070 err = btrfs_commit_transaction(trans, root);
3071 if (err && !ret)
3072 ret = err;
3073 return ret;
3074}
3075
3076static int del_balance_item(struct btrfs_root *root)
3077{
3078 struct btrfs_trans_handle *trans;
3079 struct btrfs_path *path;
3080 struct btrfs_key key;
3081 int ret, err;
3082
3083 path = btrfs_alloc_path();
3084 if (!path)
3085 return -ENOMEM;
3086
3087 trans = btrfs_start_transaction(root, 0);
3088 if (IS_ERR(trans)) {
3089 btrfs_free_path(path);
3090 return PTR_ERR(trans);
3091 }
3092
3093 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3094 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3095 key.offset = 0;
3096
3097 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3098 if (ret < 0)
3099 goto out;
3100 if (ret > 0) {
3101 ret = -ENOENT;
3102 goto out;
3103 }
3104
3105 ret = btrfs_del_item(trans, root, path);
3106out:
3107 btrfs_free_path(path);
3108 err = btrfs_commit_transaction(trans, root);
3109 if (err && !ret)
3110 ret = err;
3111 return ret;
3112}
3113
59641015
ID
3114/*
3115 * This is a heuristic used to reduce the number of chunks balanced on
3116 * resume after balance was interrupted.
3117 */
3118static void update_balance_args(struct btrfs_balance_control *bctl)
3119{
3120 /*
3121 * Turn on soft mode for chunk types that were being converted.
3122 */
3123 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3124 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3125 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3126 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3127 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3128 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3129
3130 /*
3131 * Turn on usage filter if is not already used. The idea is
3132 * that chunks that we have already balanced should be
3133 * reasonably full. Don't do it for chunks that are being
3134 * converted - that will keep us from relocating unconverted
3135 * (albeit full) chunks.
3136 */
3137 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3138 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3139 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3140 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3141 bctl->data.usage = 90;
3142 }
3143 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3144 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3145 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3146 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3147 bctl->sys.usage = 90;
3148 }
3149 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3150 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3151 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3152 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3153 bctl->meta.usage = 90;
3154 }
3155}
3156
c9e9f97b
ID
3157/*
3158 * Should be called with both balance and volume mutexes held to
3159 * serialize other volume operations (add_dev/rm_dev/resize) with
3160 * restriper. Same goes for unset_balance_control.
3161 */
3162static void set_balance_control(struct btrfs_balance_control *bctl)
3163{
3164 struct btrfs_fs_info *fs_info = bctl->fs_info;
3165
3166 BUG_ON(fs_info->balance_ctl);
3167
3168 spin_lock(&fs_info->balance_lock);
3169 fs_info->balance_ctl = bctl;
3170 spin_unlock(&fs_info->balance_lock);
3171}
3172
3173static void unset_balance_control(struct btrfs_fs_info *fs_info)
3174{
3175 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3176
3177 BUG_ON(!fs_info->balance_ctl);
3178
3179 spin_lock(&fs_info->balance_lock);
3180 fs_info->balance_ctl = NULL;
3181 spin_unlock(&fs_info->balance_lock);
3182
3183 kfree(bctl);
3184}
3185
ed25e9b2
ID
3186/*
3187 * Balance filters. Return 1 if chunk should be filtered out
3188 * (should not be balanced).
3189 */
899c81ea 3190static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3191 struct btrfs_balance_args *bargs)
3192{
899c81ea
ID
3193 chunk_type = chunk_to_extended(chunk_type) &
3194 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3195
899c81ea 3196 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3197 return 0;
3198
3199 return 1;
3200}
3201
dba72cb3 3202static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3203 struct btrfs_balance_args *bargs)
bc309467
DS
3204{
3205 struct btrfs_block_group_cache *cache;
3206 u64 chunk_used;
3207 u64 user_thresh_min;
3208 u64 user_thresh_max;
3209 int ret = 1;
3210
3211 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3212 chunk_used = btrfs_block_group_used(&cache->item);
3213
3214 if (bargs->usage_min == 0)
3215 user_thresh_min = 0;
3216 else
3217 user_thresh_min = div_factor_fine(cache->key.offset,
3218 bargs->usage_min);
3219
3220 if (bargs->usage_max == 0)
3221 user_thresh_max = 1;
3222 else if (bargs->usage_max > 100)
3223 user_thresh_max = cache->key.offset;
3224 else
3225 user_thresh_max = div_factor_fine(cache->key.offset,
3226 bargs->usage_max);
3227
3228 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3229 ret = 0;
3230
3231 btrfs_put_block_group(cache);
3232 return ret;
3233}
3234
dba72cb3 3235static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3236 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0
ID
3237{
3238 struct btrfs_block_group_cache *cache;
3239 u64 chunk_used, user_thresh;
3240 int ret = 1;
3241
3242 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3243 chunk_used = btrfs_block_group_used(&cache->item);
3244
bc309467 3245 if (bargs->usage_min == 0)
3e39cea6 3246 user_thresh = 1;
a105bb88
ID
3247 else if (bargs->usage > 100)
3248 user_thresh = cache->key.offset;
3249 else
3250 user_thresh = div_factor_fine(cache->key.offset,
3251 bargs->usage);
3252
5ce5b3c0
ID
3253 if (chunk_used < user_thresh)
3254 ret = 0;
3255
3256 btrfs_put_block_group(cache);
3257 return ret;
3258}
3259
409d404b
ID
3260static int chunk_devid_filter(struct extent_buffer *leaf,
3261 struct btrfs_chunk *chunk,
3262 struct btrfs_balance_args *bargs)
3263{
3264 struct btrfs_stripe *stripe;
3265 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3266 int i;
3267
3268 for (i = 0; i < num_stripes; i++) {
3269 stripe = btrfs_stripe_nr(chunk, i);
3270 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3271 return 0;
3272 }
3273
3274 return 1;
3275}
3276
94e60d5a
ID
3277/* [pstart, pend) */
3278static int chunk_drange_filter(struct extent_buffer *leaf,
3279 struct btrfs_chunk *chunk,
3280 u64 chunk_offset,
3281 struct btrfs_balance_args *bargs)
3282{
3283 struct btrfs_stripe *stripe;
3284 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3285 u64 stripe_offset;
3286 u64 stripe_length;
3287 int factor;
3288 int i;
3289
3290 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3291 return 0;
3292
3293 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3294 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3295 factor = num_stripes / 2;
3296 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3297 factor = num_stripes - 1;
3298 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3299 factor = num_stripes - 2;
3300 } else {
3301 factor = num_stripes;
3302 }
94e60d5a
ID
3303
3304 for (i = 0; i < num_stripes; i++) {
3305 stripe = btrfs_stripe_nr(chunk, i);
3306 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3307 continue;
3308
3309 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3310 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3311 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3312
3313 if (stripe_offset < bargs->pend &&
3314 stripe_offset + stripe_length > bargs->pstart)
3315 return 0;
3316 }
3317
3318 return 1;
3319}
3320
ea67176a
ID
3321/* [vstart, vend) */
3322static int chunk_vrange_filter(struct extent_buffer *leaf,
3323 struct btrfs_chunk *chunk,
3324 u64 chunk_offset,
3325 struct btrfs_balance_args *bargs)
3326{
3327 if (chunk_offset < bargs->vend &&
3328 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3329 /* at least part of the chunk is inside this vrange */
3330 return 0;
3331
3332 return 1;
3333}
3334
dee32d0a
GAP
3335static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3336 struct btrfs_chunk *chunk,
3337 struct btrfs_balance_args *bargs)
3338{
3339 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3340
3341 if (bargs->stripes_min <= num_stripes
3342 && num_stripes <= bargs->stripes_max)
3343 return 0;
3344
3345 return 1;
3346}
3347
899c81ea 3348static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3349 struct btrfs_balance_args *bargs)
3350{
3351 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3352 return 0;
3353
899c81ea
ID
3354 chunk_type = chunk_to_extended(chunk_type) &
3355 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3356
899c81ea 3357 if (bargs->target == chunk_type)
cfa4c961
ID
3358 return 1;
3359
3360 return 0;
3361}
3362
f43ffb60
ID
3363static int should_balance_chunk(struct btrfs_root *root,
3364 struct extent_buffer *leaf,
3365 struct btrfs_chunk *chunk, u64 chunk_offset)
3366{
3367 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3368 struct btrfs_balance_args *bargs = NULL;
3369 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3370
3371 /* type filter */
3372 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3373 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3374 return 0;
3375 }
3376
3377 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3378 bargs = &bctl->data;
3379 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3380 bargs = &bctl->sys;
3381 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3382 bargs = &bctl->meta;
3383
ed25e9b2
ID
3384 /* profiles filter */
3385 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3386 chunk_profiles_filter(chunk_type, bargs)) {
3387 return 0;
5ce5b3c0
ID
3388 }
3389
3390 /* usage filter */
3391 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3392 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3393 return 0;
bc309467
DS
3394 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3395 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3396 return 0;
409d404b
ID
3397 }
3398
3399 /* devid filter */
3400 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3401 chunk_devid_filter(leaf, chunk, bargs)) {
3402 return 0;
94e60d5a
ID
3403 }
3404
3405 /* drange filter, makes sense only with devid filter */
3406 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3407 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3408 return 0;
ea67176a
ID
3409 }
3410
3411 /* vrange filter */
3412 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3413 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3414 return 0;
ed25e9b2
ID
3415 }
3416
dee32d0a
GAP
3417 /* stripes filter */
3418 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3419 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3420 return 0;
3421 }
3422
cfa4c961
ID
3423 /* soft profile changing mode */
3424 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3425 chunk_soft_convert_filter(chunk_type, bargs)) {
3426 return 0;
3427 }
3428
7d824b6f
DS
3429 /*
3430 * limited by count, must be the last filter
3431 */
3432 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3433 if (bargs->limit == 0)
3434 return 0;
3435 else
3436 bargs->limit--;
12907fc7
DS
3437 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3438 /*
3439 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3440 * determined here because we do not have the global information
12907fc7
DS
3441 * about the count of all chunks that satisfy the filters.
3442 */
3443 if (bargs->limit_max == 0)
3444 return 0;
3445 else
3446 bargs->limit_max--;
7d824b6f
DS
3447 }
3448
f43ffb60
ID
3449 return 1;
3450}
3451
c9e9f97b 3452static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3453{
19a39dce 3454 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3455 struct btrfs_root *chunk_root = fs_info->chunk_root;
3456 struct btrfs_root *dev_root = fs_info->dev_root;
3457 struct list_head *devices;
ec44a35c
CM
3458 struct btrfs_device *device;
3459 u64 old_size;
3460 u64 size_to_free;
12907fc7 3461 u64 chunk_type;
f43ffb60 3462 struct btrfs_chunk *chunk;
ec44a35c
CM
3463 struct btrfs_path *path;
3464 struct btrfs_key key;
ec44a35c 3465 struct btrfs_key found_key;
c9e9f97b 3466 struct btrfs_trans_handle *trans;
f43ffb60
ID
3467 struct extent_buffer *leaf;
3468 int slot;
c9e9f97b
ID
3469 int ret;
3470 int enospc_errors = 0;
19a39dce 3471 bool counting = true;
12907fc7 3472 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3473 u64 limit_data = bctl->data.limit;
3474 u64 limit_meta = bctl->meta.limit;
3475 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3476 u32 count_data = 0;
3477 u32 count_meta = 0;
3478 u32 count_sys = 0;
2c9fe835 3479 int chunk_reserved = 0;
cf25ce51 3480 u64 bytes_used = 0;
ec44a35c 3481
ec44a35c 3482 /* step one make some room on all the devices */
c9e9f97b 3483 devices = &fs_info->fs_devices->devices;
c6e30871 3484 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3485 old_size = btrfs_device_get_total_bytes(device);
ec44a35c 3486 size_to_free = div_factor(old_size, 1);
ee22184b 3487 size_to_free = min_t(u64, size_to_free, SZ_1M);
2b82032c 3488 if (!device->writeable ||
7cc8e58d
MX
3489 btrfs_device_get_total_bytes(device) -
3490 btrfs_device_get_bytes_used(device) > size_to_free ||
63a212ab 3491 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3492 continue;
3493
3494 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3495 if (ret == -ENOSPC)
3496 break;
ec44a35c
CM
3497 BUG_ON(ret);
3498
a22285a6 3499 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 3500 BUG_ON(IS_ERR(trans));
ec44a35c
CM
3501
3502 ret = btrfs_grow_device(trans, device, old_size);
3503 BUG_ON(ret);
3504
3505 btrfs_end_transaction(trans, dev_root);
3506 }
3507
3508 /* step two, relocate all the chunks */
3509 path = btrfs_alloc_path();
17e9f796
MF
3510 if (!path) {
3511 ret = -ENOMEM;
3512 goto error;
3513 }
19a39dce
ID
3514
3515 /* zero out stat counters */
3516 spin_lock(&fs_info->balance_lock);
3517 memset(&bctl->stat, 0, sizeof(bctl->stat));
3518 spin_unlock(&fs_info->balance_lock);
3519again:
7d824b6f 3520 if (!counting) {
12907fc7
DS
3521 /*
3522 * The single value limit and min/max limits use the same bytes
3523 * in the
3524 */
7d824b6f
DS
3525 bctl->data.limit = limit_data;
3526 bctl->meta.limit = limit_meta;
3527 bctl->sys.limit = limit_sys;
3528 }
ec44a35c
CM
3529 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3530 key.offset = (u64)-1;
3531 key.type = BTRFS_CHUNK_ITEM_KEY;
3532
d397712b 3533 while (1) {
19a39dce 3534 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3535 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3536 ret = -ECANCELED;
3537 goto error;
3538 }
3539
67c5e7d4 3540 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3541 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3542 if (ret < 0) {
3543 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3544 goto error;
67c5e7d4 3545 }
ec44a35c
CM
3546
3547 /*
3548 * this shouldn't happen, it means the last relocate
3549 * failed
3550 */
3551 if (ret == 0)
c9e9f97b 3552 BUG(); /* FIXME break ? */
ec44a35c
CM
3553
3554 ret = btrfs_previous_item(chunk_root, path, 0,
3555 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3556 if (ret) {
67c5e7d4 3557 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3558 ret = 0;
ec44a35c 3559 break;
c9e9f97b 3560 }
7d9eb12c 3561
f43ffb60
ID
3562 leaf = path->nodes[0];
3563 slot = path->slots[0];
3564 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3565
67c5e7d4
FM
3566 if (found_key.objectid != key.objectid) {
3567 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3568 break;
67c5e7d4 3569 }
7d9eb12c 3570
f43ffb60 3571 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3572 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3573
19a39dce
ID
3574 if (!counting) {
3575 spin_lock(&fs_info->balance_lock);
3576 bctl->stat.considered++;
3577 spin_unlock(&fs_info->balance_lock);
3578 }
3579
f43ffb60
ID
3580 ret = should_balance_chunk(chunk_root, leaf, chunk,
3581 found_key.offset);
2c9fe835 3582
b3b4aa74 3583 btrfs_release_path(path);
67c5e7d4
FM
3584 if (!ret) {
3585 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3586 goto loop;
67c5e7d4 3587 }
f43ffb60 3588
19a39dce 3589 if (counting) {
67c5e7d4 3590 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3591 spin_lock(&fs_info->balance_lock);
3592 bctl->stat.expected++;
3593 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3594
3595 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3596 count_data++;
3597 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3598 count_sys++;
3599 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3600 count_meta++;
3601
3602 goto loop;
3603 }
3604
3605 /*
3606 * Apply limit_min filter, no need to check if the LIMITS
3607 * filter is used, limit_min is 0 by default
3608 */
3609 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3610 count_data < bctl->data.limit_min)
3611 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3612 count_meta < bctl->meta.limit_min)
3613 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3614 count_sys < bctl->sys.limit_min)) {
3615 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3616 goto loop;
3617 }
3618
cf25ce51
LB
3619 ASSERT(fs_info->data_sinfo);
3620 spin_lock(&fs_info->data_sinfo->lock);
3621 bytes_used = fs_info->data_sinfo->bytes_used;
3622 spin_unlock(&fs_info->data_sinfo->lock);
3623
3624 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3625 !chunk_reserved && !bytes_used) {
2c9fe835
ZL
3626 trans = btrfs_start_transaction(chunk_root, 0);
3627 if (IS_ERR(trans)) {
3628 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3629 ret = PTR_ERR(trans);
3630 goto error;
3631 }
3632
3633 ret = btrfs_force_chunk_alloc(trans, chunk_root,
3634 BTRFS_BLOCK_GROUP_DATA);
8a7d656f 3635 btrfs_end_transaction(trans, chunk_root);
2c9fe835
ZL
3636 if (ret < 0) {
3637 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3638 goto error;
3639 }
2c9fe835
ZL
3640 chunk_reserved = 1;
3641 }
3642
ec44a35c 3643 ret = btrfs_relocate_chunk(chunk_root,
ec44a35c 3644 found_key.offset);
67c5e7d4 3645 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3646 if (ret && ret != -ENOSPC)
3647 goto error;
19a39dce 3648 if (ret == -ENOSPC) {
c9e9f97b 3649 enospc_errors++;
19a39dce
ID
3650 } else {
3651 spin_lock(&fs_info->balance_lock);
3652 bctl->stat.completed++;
3653 spin_unlock(&fs_info->balance_lock);
3654 }
f43ffb60 3655loop:
795a3321
ID
3656 if (found_key.offset == 0)
3657 break;
ba1bf481 3658 key.offset = found_key.offset - 1;
ec44a35c 3659 }
c9e9f97b 3660
19a39dce
ID
3661 if (counting) {
3662 btrfs_release_path(path);
3663 counting = false;
3664 goto again;
3665 }
ec44a35c
CM
3666error:
3667 btrfs_free_path(path);
c9e9f97b 3668 if (enospc_errors) {
efe120a0 3669 btrfs_info(fs_info, "%d enospc errors during balance",
c9e9f97b
ID
3670 enospc_errors);
3671 if (!ret)
3672 ret = -ENOSPC;
3673 }
3674
ec44a35c
CM
3675 return ret;
3676}
3677
0c460c0d
ID
3678/**
3679 * alloc_profile_is_valid - see if a given profile is valid and reduced
3680 * @flags: profile to validate
3681 * @extended: if true @flags is treated as an extended profile
3682 */
3683static int alloc_profile_is_valid(u64 flags, int extended)
3684{
3685 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3686 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3687
3688 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3689
3690 /* 1) check that all other bits are zeroed */
3691 if (flags & ~mask)
3692 return 0;
3693
3694 /* 2) see if profile is reduced */
3695 if (flags == 0)
3696 return !extended; /* "0" is valid for usual profiles */
3697
3698 /* true if exactly one bit set */
3699 return (flags & (flags - 1)) == 0;
3700}
3701
837d5b6e
ID
3702static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3703{
a7e99c69
ID
3704 /* cancel requested || normal exit path */
3705 return atomic_read(&fs_info->balance_cancel_req) ||
3706 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3707 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3708}
3709
c9e9f97b
ID
3710static void __cancel_balance(struct btrfs_fs_info *fs_info)
3711{
0940ebf6
ID
3712 int ret;
3713
c9e9f97b 3714 unset_balance_control(fs_info);
0940ebf6 3715 ret = del_balance_item(fs_info->tree_root);
0f788c58 3716 if (ret)
34d97007 3717 btrfs_handle_fs_error(fs_info, ret, NULL);
ed0fb78f
ID
3718
3719 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3720}
3721
bdcd3c97
AM
3722/* Non-zero return value signifies invalidity */
3723static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3724 u64 allowed)
3725{
3726 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3727 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3728 (bctl_arg->target & ~allowed)));
3729}
3730
c9e9f97b
ID
3731/*
3732 * Should be called with both balance and volume mutexes held
3733 */
3734int btrfs_balance(struct btrfs_balance_control *bctl,
3735 struct btrfs_ioctl_balance_args *bargs)
3736{
3737 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3738 u64 allowed;
e4837f8f 3739 int mixed = 0;
c9e9f97b 3740 int ret;
8dabb742 3741 u64 num_devices;
de98ced9 3742 unsigned seq;
c9e9f97b 3743
837d5b6e 3744 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3745 atomic_read(&fs_info->balance_pause_req) ||
3746 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3747 ret = -EINVAL;
3748 goto out;
3749 }
3750
e4837f8f
ID
3751 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3752 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3753 mixed = 1;
3754
f43ffb60
ID
3755 /*
3756 * In case of mixed groups both data and meta should be picked,
3757 * and identical options should be given for both of them.
3758 */
e4837f8f
ID
3759 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3760 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3761 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3762 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3763 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
efe120a0
FH
3764 btrfs_err(fs_info, "with mixed groups data and "
3765 "metadata balance options must be the same");
f43ffb60
ID
3766 ret = -EINVAL;
3767 goto out;
3768 }
3769 }
3770
8dabb742 3771 num_devices = fs_info->fs_devices->num_devices;
73beece9 3772 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
8dabb742
SB
3773 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3774 BUG_ON(num_devices < 1);
3775 num_devices--;
3776 }
73beece9 3777 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
88be159c
AH
3778 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3779 if (num_devices > 1)
e4d8ec0f 3780 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3781 if (num_devices > 2)
3782 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3783 if (num_devices > 3)
3784 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3785 BTRFS_BLOCK_GROUP_RAID6);
bdcd3c97 3786 if (validate_convert_profile(&bctl->data, allowed)) {
efe120a0
FH
3787 btrfs_err(fs_info, "unable to start balance with target "
3788 "data profile %llu",
c1c9ff7c 3789 bctl->data.target);
e4d8ec0f
ID
3790 ret = -EINVAL;
3791 goto out;
3792 }
bdcd3c97 3793 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0
FH
3794 btrfs_err(fs_info,
3795 "unable to start balance with target metadata profile %llu",
c1c9ff7c 3796 bctl->meta.target);
e4d8ec0f
ID
3797 ret = -EINVAL;
3798 goto out;
3799 }
bdcd3c97 3800 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0
FH
3801 btrfs_err(fs_info,
3802 "unable to start balance with target system profile %llu",
c1c9ff7c 3803 bctl->sys.target);
e4d8ec0f
ID
3804 ret = -EINVAL;
3805 goto out;
3806 }
3807
e4d8ec0f
ID
3808 /* allow to reduce meta or sys integrity only if force set */
3809 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3810 BTRFS_BLOCK_GROUP_RAID10 |
3811 BTRFS_BLOCK_GROUP_RAID5 |
3812 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3813 do {
3814 seq = read_seqbegin(&fs_info->profiles_lock);
3815
3816 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3817 (fs_info->avail_system_alloc_bits & allowed) &&
3818 !(bctl->sys.target & allowed)) ||
3819 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3820 (fs_info->avail_metadata_alloc_bits & allowed) &&
3821 !(bctl->meta.target & allowed))) {
3822 if (bctl->flags & BTRFS_BALANCE_FORCE) {
efe120a0 3823 btrfs_info(fs_info, "force reducing metadata integrity");
de98ced9 3824 } else {
efe120a0
FH
3825 btrfs_err(fs_info, "balance will reduce metadata "
3826 "integrity, use force if you want this");
de98ced9
MX
3827 ret = -EINVAL;
3828 goto out;
3829 }
e4d8ec0f 3830 }
de98ced9 3831 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3832
ee592d07
ST
3833 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3834 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3835 btrfs_warn(fs_info,
fedc0045 3836 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
ee592d07
ST
3837 bctl->meta.target, bctl->data.target);
3838 }
3839
5af3e8cc 3840 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
943c6e99
ZL
3841 fs_info->num_tolerated_disk_barrier_failures = min(
3842 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3843 btrfs_get_num_tolerated_disk_barrier_failures(
3844 bctl->sys.target));
5af3e8cc
SB
3845 }
3846
0940ebf6 3847 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3848 if (ret && ret != -EEXIST)
0940ebf6
ID
3849 goto out;
3850
59641015
ID
3851 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3852 BUG_ON(ret == -EEXIST);
3853 set_balance_control(bctl);
3854 } else {
3855 BUG_ON(ret != -EEXIST);
3856 spin_lock(&fs_info->balance_lock);
3857 update_balance_args(bctl);
3858 spin_unlock(&fs_info->balance_lock);
3859 }
c9e9f97b 3860
837d5b6e 3861 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3862 mutex_unlock(&fs_info->balance_mutex);
3863
3864 ret = __btrfs_balance(fs_info);
3865
3866 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3867 atomic_dec(&fs_info->balance_running);
c9e9f97b 3868
bf023ecf
ID
3869 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3870 fs_info->num_tolerated_disk_barrier_failures =
3871 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3872 }
3873
c9e9f97b
ID
3874 if (bargs) {
3875 memset(bargs, 0, sizeof(*bargs));
19a39dce 3876 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3877 }
3878
3a01aa7a
ID
3879 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3880 balance_need_close(fs_info)) {
3881 __cancel_balance(fs_info);
3882 }
3883
837d5b6e 3884 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3885
3886 return ret;
3887out:
59641015
ID
3888 if (bctl->flags & BTRFS_BALANCE_RESUME)
3889 __cancel_balance(fs_info);
ed0fb78f 3890 else {
59641015 3891 kfree(bctl);
ed0fb78f
ID
3892 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3893 }
59641015
ID
3894 return ret;
3895}
3896
3897static int balance_kthread(void *data)
3898{
2b6ba629 3899 struct btrfs_fs_info *fs_info = data;
9555c6c1 3900 int ret = 0;
59641015
ID
3901
3902 mutex_lock(&fs_info->volume_mutex);
3903 mutex_lock(&fs_info->balance_mutex);
3904
2b6ba629 3905 if (fs_info->balance_ctl) {
efe120a0 3906 btrfs_info(fs_info, "continuing balance");
2b6ba629 3907 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3908 }
59641015
ID
3909
3910 mutex_unlock(&fs_info->balance_mutex);
3911 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3912
59641015
ID
3913 return ret;
3914}
3915
2b6ba629
ID
3916int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3917{
3918 struct task_struct *tsk;
3919
3920 spin_lock(&fs_info->balance_lock);
3921 if (!fs_info->balance_ctl) {
3922 spin_unlock(&fs_info->balance_lock);
3923 return 0;
3924 }
3925 spin_unlock(&fs_info->balance_lock);
3926
3927 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
efe120a0 3928 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3929 return 0;
3930 }
3931
3932 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3933 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3934}
3935
68310a5e 3936int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3937{
59641015
ID
3938 struct btrfs_balance_control *bctl;
3939 struct btrfs_balance_item *item;
3940 struct btrfs_disk_balance_args disk_bargs;
3941 struct btrfs_path *path;
3942 struct extent_buffer *leaf;
3943 struct btrfs_key key;
3944 int ret;
3945
3946 path = btrfs_alloc_path();
3947 if (!path)
3948 return -ENOMEM;
3949
59641015 3950 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3951 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
3952 key.offset = 0;
3953
68310a5e 3954 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3955 if (ret < 0)
68310a5e 3956 goto out;
59641015
ID
3957 if (ret > 0) { /* ret = -ENOENT; */
3958 ret = 0;
68310a5e
ID
3959 goto out;
3960 }
3961
3962 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3963 if (!bctl) {
3964 ret = -ENOMEM;
3965 goto out;
59641015
ID
3966 }
3967
3968 leaf = path->nodes[0];
3969 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3970
68310a5e
ID
3971 bctl->fs_info = fs_info;
3972 bctl->flags = btrfs_balance_flags(leaf, item);
3973 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3974
3975 btrfs_balance_data(leaf, item, &disk_bargs);
3976 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3977 btrfs_balance_meta(leaf, item, &disk_bargs);
3978 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3979 btrfs_balance_sys(leaf, item, &disk_bargs);
3980 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3981
ed0fb78f
ID
3982 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3983
68310a5e
ID
3984 mutex_lock(&fs_info->volume_mutex);
3985 mutex_lock(&fs_info->balance_mutex);
59641015 3986
68310a5e
ID
3987 set_balance_control(bctl);
3988
3989 mutex_unlock(&fs_info->balance_mutex);
3990 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3991out:
3992 btrfs_free_path(path);
ec44a35c
CM
3993 return ret;
3994}
3995
837d5b6e
ID
3996int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3997{
3998 int ret = 0;
3999
4000 mutex_lock(&fs_info->balance_mutex);
4001 if (!fs_info->balance_ctl) {
4002 mutex_unlock(&fs_info->balance_mutex);
4003 return -ENOTCONN;
4004 }
4005
4006 if (atomic_read(&fs_info->balance_running)) {
4007 atomic_inc(&fs_info->balance_pause_req);
4008 mutex_unlock(&fs_info->balance_mutex);
4009
4010 wait_event(fs_info->balance_wait_q,
4011 atomic_read(&fs_info->balance_running) == 0);
4012
4013 mutex_lock(&fs_info->balance_mutex);
4014 /* we are good with balance_ctl ripped off from under us */
4015 BUG_ON(atomic_read(&fs_info->balance_running));
4016 atomic_dec(&fs_info->balance_pause_req);
4017 } else {
4018 ret = -ENOTCONN;
4019 }
4020
4021 mutex_unlock(&fs_info->balance_mutex);
4022 return ret;
4023}
4024
a7e99c69
ID
4025int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4026{
e649e587
ID
4027 if (fs_info->sb->s_flags & MS_RDONLY)
4028 return -EROFS;
4029
a7e99c69
ID
4030 mutex_lock(&fs_info->balance_mutex);
4031 if (!fs_info->balance_ctl) {
4032 mutex_unlock(&fs_info->balance_mutex);
4033 return -ENOTCONN;
4034 }
4035
4036 atomic_inc(&fs_info->balance_cancel_req);
4037 /*
4038 * if we are running just wait and return, balance item is
4039 * deleted in btrfs_balance in this case
4040 */
4041 if (atomic_read(&fs_info->balance_running)) {
4042 mutex_unlock(&fs_info->balance_mutex);
4043 wait_event(fs_info->balance_wait_q,
4044 atomic_read(&fs_info->balance_running) == 0);
4045 mutex_lock(&fs_info->balance_mutex);
4046 } else {
4047 /* __cancel_balance needs volume_mutex */
4048 mutex_unlock(&fs_info->balance_mutex);
4049 mutex_lock(&fs_info->volume_mutex);
4050 mutex_lock(&fs_info->balance_mutex);
4051
4052 if (fs_info->balance_ctl)
4053 __cancel_balance(fs_info);
4054
4055 mutex_unlock(&fs_info->volume_mutex);
4056 }
4057
4058 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4059 atomic_dec(&fs_info->balance_cancel_req);
4060 mutex_unlock(&fs_info->balance_mutex);
4061 return 0;
4062}
4063
803b2f54
SB
4064static int btrfs_uuid_scan_kthread(void *data)
4065{
4066 struct btrfs_fs_info *fs_info = data;
4067 struct btrfs_root *root = fs_info->tree_root;
4068 struct btrfs_key key;
4069 struct btrfs_key max_key;
4070 struct btrfs_path *path = NULL;
4071 int ret = 0;
4072 struct extent_buffer *eb;
4073 int slot;
4074 struct btrfs_root_item root_item;
4075 u32 item_size;
f45388f3 4076 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
4077
4078 path = btrfs_alloc_path();
4079 if (!path) {
4080 ret = -ENOMEM;
4081 goto out;
4082 }
4083
4084 key.objectid = 0;
4085 key.type = BTRFS_ROOT_ITEM_KEY;
4086 key.offset = 0;
4087
4088 max_key.objectid = (u64)-1;
4089 max_key.type = BTRFS_ROOT_ITEM_KEY;
4090 max_key.offset = (u64)-1;
4091
803b2f54 4092 while (1) {
6174d3cb 4093 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
4094 if (ret) {
4095 if (ret > 0)
4096 ret = 0;
4097 break;
4098 }
4099
4100 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4101 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4102 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4103 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4104 goto skip;
4105
4106 eb = path->nodes[0];
4107 slot = path->slots[0];
4108 item_size = btrfs_item_size_nr(eb, slot);
4109 if (item_size < sizeof(root_item))
4110 goto skip;
4111
803b2f54
SB
4112 read_extent_buffer(eb, &root_item,
4113 btrfs_item_ptr_offset(eb, slot),
4114 (int)sizeof(root_item));
4115 if (btrfs_root_refs(&root_item) == 0)
4116 goto skip;
f45388f3
FDBM
4117
4118 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4119 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4120 if (trans)
4121 goto update_tree;
4122
4123 btrfs_release_path(path);
803b2f54
SB
4124 /*
4125 * 1 - subvol uuid item
4126 * 1 - received_subvol uuid item
4127 */
4128 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4129 if (IS_ERR(trans)) {
4130 ret = PTR_ERR(trans);
4131 break;
4132 }
f45388f3
FDBM
4133 continue;
4134 } else {
4135 goto skip;
4136 }
4137update_tree:
4138 if (!btrfs_is_empty_uuid(root_item.uuid)) {
803b2f54
SB
4139 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4140 root_item.uuid,
4141 BTRFS_UUID_KEY_SUBVOL,
4142 key.objectid);
4143 if (ret < 0) {
efe120a0 4144 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4145 ret);
803b2f54
SB
4146 break;
4147 }
4148 }
4149
4150 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
803b2f54
SB
4151 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4152 root_item.received_uuid,
4153 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4154 key.objectid);
4155 if (ret < 0) {
efe120a0 4156 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4157 ret);
803b2f54
SB
4158 break;
4159 }
4160 }
4161
f45388f3 4162skip:
803b2f54
SB
4163 if (trans) {
4164 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
f45388f3 4165 trans = NULL;
803b2f54
SB
4166 if (ret)
4167 break;
4168 }
4169
803b2f54
SB
4170 btrfs_release_path(path);
4171 if (key.offset < (u64)-1) {
4172 key.offset++;
4173 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4174 key.offset = 0;
4175 key.type = BTRFS_ROOT_ITEM_KEY;
4176 } else if (key.objectid < (u64)-1) {
4177 key.offset = 0;
4178 key.type = BTRFS_ROOT_ITEM_KEY;
4179 key.objectid++;
4180 } else {
4181 break;
4182 }
4183 cond_resched();
4184 }
4185
4186out:
4187 btrfs_free_path(path);
f45388f3
FDBM
4188 if (trans && !IS_ERR(trans))
4189 btrfs_end_transaction(trans, fs_info->uuid_root);
803b2f54 4190 if (ret)
efe120a0 4191 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175
SB
4192 else
4193 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
4194 up(&fs_info->uuid_tree_rescan_sem);
4195 return 0;
4196}
4197
70f80175
SB
4198/*
4199 * Callback for btrfs_uuid_tree_iterate().
4200 * returns:
4201 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4202 * < 0 if an error occurred.
70f80175
SB
4203 * > 0 if the check failed, which means the caller shall remove the entry.
4204 */
4205static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4206 u8 *uuid, u8 type, u64 subid)
4207{
4208 struct btrfs_key key;
4209 int ret = 0;
4210 struct btrfs_root *subvol_root;
4211
4212 if (type != BTRFS_UUID_KEY_SUBVOL &&
4213 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4214 goto out;
4215
4216 key.objectid = subid;
4217 key.type = BTRFS_ROOT_ITEM_KEY;
4218 key.offset = (u64)-1;
4219 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4220 if (IS_ERR(subvol_root)) {
4221 ret = PTR_ERR(subvol_root);
4222 if (ret == -ENOENT)
4223 ret = 1;
4224 goto out;
4225 }
4226
4227 switch (type) {
4228 case BTRFS_UUID_KEY_SUBVOL:
4229 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4230 ret = 1;
4231 break;
4232 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4233 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4234 BTRFS_UUID_SIZE))
4235 ret = 1;
4236 break;
4237 }
4238
4239out:
4240 return ret;
4241}
4242
4243static int btrfs_uuid_rescan_kthread(void *data)
4244{
4245 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4246 int ret;
4247
4248 /*
4249 * 1st step is to iterate through the existing UUID tree and
4250 * to delete all entries that contain outdated data.
4251 * 2nd step is to add all missing entries to the UUID tree.
4252 */
4253 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4254 if (ret < 0) {
efe120a0 4255 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4256 up(&fs_info->uuid_tree_rescan_sem);
4257 return ret;
4258 }
4259 return btrfs_uuid_scan_kthread(data);
4260}
4261
f7a81ea4
SB
4262int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4263{
4264 struct btrfs_trans_handle *trans;
4265 struct btrfs_root *tree_root = fs_info->tree_root;
4266 struct btrfs_root *uuid_root;
803b2f54
SB
4267 struct task_struct *task;
4268 int ret;
f7a81ea4
SB
4269
4270 /*
4271 * 1 - root node
4272 * 1 - root item
4273 */
4274 trans = btrfs_start_transaction(tree_root, 2);
4275 if (IS_ERR(trans))
4276 return PTR_ERR(trans);
4277
4278 uuid_root = btrfs_create_tree(trans, fs_info,
4279 BTRFS_UUID_TREE_OBJECTID);
4280 if (IS_ERR(uuid_root)) {
6d13f549
DS
4281 ret = PTR_ERR(uuid_root);
4282 btrfs_abort_transaction(trans, tree_root, ret);
65d4f4c1 4283 btrfs_end_transaction(trans, tree_root);
6d13f549 4284 return ret;
f7a81ea4
SB
4285 }
4286
4287 fs_info->uuid_root = uuid_root;
4288
803b2f54
SB
4289 ret = btrfs_commit_transaction(trans, tree_root);
4290 if (ret)
4291 return ret;
4292
4293 down(&fs_info->uuid_tree_rescan_sem);
4294 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4295 if (IS_ERR(task)) {
70f80175 4296 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4297 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4298 up(&fs_info->uuid_tree_rescan_sem);
4299 return PTR_ERR(task);
4300 }
4301
4302 return 0;
f7a81ea4 4303}
803b2f54 4304
70f80175
SB
4305int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4306{
4307 struct task_struct *task;
4308
4309 down(&fs_info->uuid_tree_rescan_sem);
4310 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4311 if (IS_ERR(task)) {
4312 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4313 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4314 up(&fs_info->uuid_tree_rescan_sem);
4315 return PTR_ERR(task);
4316 }
4317
4318 return 0;
4319}
4320
8f18cf13
CM
4321/*
4322 * shrinking a device means finding all of the device extents past
4323 * the new size, and then following the back refs to the chunks.
4324 * The chunk relocation code actually frees the device extent
4325 */
4326int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4327{
4328 struct btrfs_trans_handle *trans;
4329 struct btrfs_root *root = device->dev_root;
4330 struct btrfs_dev_extent *dev_extent = NULL;
4331 struct btrfs_path *path;
4332 u64 length;
8f18cf13
CM
4333 u64 chunk_offset;
4334 int ret;
4335 int slot;
ba1bf481
JB
4336 int failed = 0;
4337 bool retried = false;
53e489bc 4338 bool checked_pending_chunks = false;
8f18cf13
CM
4339 struct extent_buffer *l;
4340 struct btrfs_key key;
6c41761f 4341 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 4342 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d
MX
4343 u64 old_size = btrfs_device_get_total_bytes(device);
4344 u64 diff = old_size - new_size;
8f18cf13 4345
63a212ab
SB
4346 if (device->is_tgtdev_for_dev_replace)
4347 return -EINVAL;
4348
8f18cf13
CM
4349 path = btrfs_alloc_path();
4350 if (!path)
4351 return -ENOMEM;
4352
e4058b54 4353 path->reada = READA_FORWARD;
8f18cf13 4354
7d9eb12c
CM
4355 lock_chunks(root);
4356
7cc8e58d 4357 btrfs_device_set_total_bytes(device, new_size);
2bf64758 4358 if (device->writeable) {
2b82032c 4359 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
4360 spin_lock(&root->fs_info->free_chunk_lock);
4361 root->fs_info->free_chunk_space -= diff;
4362 spin_unlock(&root->fs_info->free_chunk_lock);
4363 }
7d9eb12c 4364 unlock_chunks(root);
8f18cf13 4365
ba1bf481 4366again:
8f18cf13
CM
4367 key.objectid = device->devid;
4368 key.offset = (u64)-1;
4369 key.type = BTRFS_DEV_EXTENT_KEY;
4370
213e64da 4371 do {
67c5e7d4 4372 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4373 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4
FM
4374 if (ret < 0) {
4375 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4376 goto done;
67c5e7d4 4377 }
8f18cf13
CM
4378
4379 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4
FM
4380 if (ret)
4381 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4382 if (ret < 0)
4383 goto done;
4384 if (ret) {
4385 ret = 0;
b3b4aa74 4386 btrfs_release_path(path);
bf1fb512 4387 break;
8f18cf13
CM
4388 }
4389
4390 l = path->nodes[0];
4391 slot = path->slots[0];
4392 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4393
ba1bf481 4394 if (key.objectid != device->devid) {
67c5e7d4 4395 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4396 btrfs_release_path(path);
bf1fb512 4397 break;
ba1bf481 4398 }
8f18cf13
CM
4399
4400 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4401 length = btrfs_dev_extent_length(l, dev_extent);
4402
ba1bf481 4403 if (key.offset + length <= new_size) {
67c5e7d4 4404 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4405 btrfs_release_path(path);
d6397bae 4406 break;
ba1bf481 4407 }
8f18cf13 4408
8f18cf13 4409 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4410 btrfs_release_path(path);
8f18cf13 4411
dc2ee4e2 4412 ret = btrfs_relocate_chunk(root, chunk_offset);
67c5e7d4 4413 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
ba1bf481 4414 if (ret && ret != -ENOSPC)
8f18cf13 4415 goto done;
ba1bf481
JB
4416 if (ret == -ENOSPC)
4417 failed++;
213e64da 4418 } while (key.offset-- > 0);
ba1bf481
JB
4419
4420 if (failed && !retried) {
4421 failed = 0;
4422 retried = true;
4423 goto again;
4424 } else if (failed && retried) {
4425 ret = -ENOSPC;
ba1bf481 4426 goto done;
8f18cf13
CM
4427 }
4428
d6397bae 4429 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4430 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4431 if (IS_ERR(trans)) {
4432 ret = PTR_ERR(trans);
4433 goto done;
4434 }
4435
d6397bae 4436 lock_chunks(root);
53e489bc
FM
4437
4438 /*
4439 * We checked in the above loop all device extents that were already in
4440 * the device tree. However before we have updated the device's
4441 * total_bytes to the new size, we might have had chunk allocations that
4442 * have not complete yet (new block groups attached to transaction
4443 * handles), and therefore their device extents were not yet in the
4444 * device tree and we missed them in the loop above. So if we have any
4445 * pending chunk using a device extent that overlaps the device range
4446 * that we can not use anymore, commit the current transaction and
4447 * repeat the search on the device tree - this way we guarantee we will
4448 * not have chunks using device extents that end beyond 'new_size'.
4449 */
4450 if (!checked_pending_chunks) {
4451 u64 start = new_size;
4452 u64 len = old_size - new_size;
4453
499f377f
JM
4454 if (contains_pending_extent(trans->transaction, device,
4455 &start, len)) {
53e489bc
FM
4456 unlock_chunks(root);
4457 checked_pending_chunks = true;
4458 failed = 0;
4459 retried = false;
4460 ret = btrfs_commit_transaction(trans, root);
4461 if (ret)
4462 goto done;
4463 goto again;
4464 }
4465 }
4466
7cc8e58d 4467 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4468 if (list_empty(&device->resized_list))
4469 list_add_tail(&device->resized_list,
4470 &root->fs_info->fs_devices->resized_devices);
d6397bae 4471
d6397bae
CB
4472 WARN_ON(diff > old_total);
4473 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4474 unlock_chunks(root);
2196d6e8
MX
4475
4476 /* Now btrfs_update_device() will change the on-disk size. */
4477 ret = btrfs_update_device(trans, device);
d6397bae 4478 btrfs_end_transaction(trans, root);
8f18cf13
CM
4479done:
4480 btrfs_free_path(path);
53e489bc
FM
4481 if (ret) {
4482 lock_chunks(root);
4483 btrfs_device_set_total_bytes(device, old_size);
4484 if (device->writeable)
4485 device->fs_devices->total_rw_bytes += diff;
4486 spin_lock(&root->fs_info->free_chunk_lock);
4487 root->fs_info->free_chunk_space += diff;
4488 spin_unlock(&root->fs_info->free_chunk_lock);
4489 unlock_chunks(root);
4490 }
8f18cf13
CM
4491 return ret;
4492}
4493
125ccb0a 4494static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
4495 struct btrfs_key *key,
4496 struct btrfs_chunk *chunk, int item_size)
4497{
6c41761f 4498 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
4499 struct btrfs_disk_key disk_key;
4500 u32 array_size;
4501 u8 *ptr;
4502
fe48a5c0 4503 lock_chunks(root);
0b86a832 4504 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4505 if (array_size + item_size + sizeof(disk_key)
fe48a5c0
MX
4506 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4507 unlock_chunks(root);
0b86a832 4508 return -EFBIG;
fe48a5c0 4509 }
0b86a832
CM
4510
4511 ptr = super_copy->sys_chunk_array + array_size;
4512 btrfs_cpu_key_to_disk(&disk_key, key);
4513 memcpy(ptr, &disk_key, sizeof(disk_key));
4514 ptr += sizeof(disk_key);
4515 memcpy(ptr, chunk, item_size);
4516 item_size += sizeof(disk_key);
4517 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0
MX
4518 unlock_chunks(root);
4519
0b86a832
CM
4520 return 0;
4521}
4522
73c5de00
AJ
4523/*
4524 * sort the devices in descending order by max_avail, total_avail
4525 */
4526static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4527{
73c5de00
AJ
4528 const struct btrfs_device_info *di_a = a;
4529 const struct btrfs_device_info *di_b = b;
9b3f68b9 4530
73c5de00 4531 if (di_a->max_avail > di_b->max_avail)
b2117a39 4532 return -1;
73c5de00 4533 if (di_a->max_avail < di_b->max_avail)
b2117a39 4534 return 1;
73c5de00
AJ
4535 if (di_a->total_avail > di_b->total_avail)
4536 return -1;
4537 if (di_a->total_avail < di_b->total_avail)
4538 return 1;
4539 return 0;
b2117a39 4540}
0b86a832 4541
53b381b3
DW
4542static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4543{
4544 /* TODO allow them to set a preferred stripe size */
ee22184b 4545 return SZ_64K;
53b381b3
DW
4546}
4547
4548static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4549{
ffe2d203 4550 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4551 return;
4552
ceda0864 4553 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4554}
4555
23f8f9b7
GH
4556#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4557 - sizeof(struct btrfs_item) \
4558 - sizeof(struct btrfs_chunk)) \
4559 / sizeof(struct btrfs_stripe) + 1)
4560
4561#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4562 - 2 * sizeof(struct btrfs_disk_key) \
4563 - 2 * sizeof(struct btrfs_chunk)) \
4564 / sizeof(struct btrfs_stripe) + 1)
4565
73c5de00 4566static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
4567 struct btrfs_root *extent_root, u64 start,
4568 u64 type)
b2117a39 4569{
73c5de00
AJ
4570 struct btrfs_fs_info *info = extent_root->fs_info;
4571 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4572 struct list_head *cur;
4573 struct map_lookup *map = NULL;
4574 struct extent_map_tree *em_tree;
4575 struct extent_map *em;
4576 struct btrfs_device_info *devices_info = NULL;
4577 u64 total_avail;
4578 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4579 int data_stripes; /* number of stripes that count for
4580 block group size */
73c5de00
AJ
4581 int sub_stripes; /* sub_stripes info for map */
4582 int dev_stripes; /* stripes per dev */
4583 int devs_max; /* max devs to use */
4584 int devs_min; /* min devs needed */
4585 int devs_increment; /* ndevs has to be a multiple of this */
4586 int ncopies; /* how many copies to data has */
4587 int ret;
4588 u64 max_stripe_size;
4589 u64 max_chunk_size;
4590 u64 stripe_size;
4591 u64 num_bytes;
53b381b3 4592 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4593 int ndevs;
4594 int i;
4595 int j;
31e50229 4596 int index;
593060d7 4597
0c460c0d 4598 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4599
73c5de00
AJ
4600 if (list_empty(&fs_devices->alloc_list))
4601 return -ENOSPC;
b2117a39 4602
31e50229 4603 index = __get_raid_index(type);
73c5de00 4604
31e50229
LB
4605 sub_stripes = btrfs_raid_array[index].sub_stripes;
4606 dev_stripes = btrfs_raid_array[index].dev_stripes;
4607 devs_max = btrfs_raid_array[index].devs_max;
4608 devs_min = btrfs_raid_array[index].devs_min;
4609 devs_increment = btrfs_raid_array[index].devs_increment;
4610 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4611
9b3f68b9 4612 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4613 max_stripe_size = SZ_1G;
73c5de00 4614 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4615 if (!devs_max)
4616 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4617 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4618 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4619 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4620 max_stripe_size = SZ_1G;
1100373f 4621 else
ee22184b 4622 max_stripe_size = SZ_256M;
73c5de00 4623 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4624 if (!devs_max)
4625 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4626 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4627 max_stripe_size = SZ_32M;
73c5de00 4628 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4629 if (!devs_max)
4630 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4631 } else {
351fd353 4632 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4633 type);
4634 BUG_ON(1);
9b3f68b9
CM
4635 }
4636
2b82032c
YZ
4637 /* we don't want a chunk larger than 10% of writeable space */
4638 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4639 max_chunk_size);
9b3f68b9 4640
31e818fe 4641 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4642 GFP_NOFS);
4643 if (!devices_info)
4644 return -ENOMEM;
0cad8a11 4645
73c5de00 4646 cur = fs_devices->alloc_list.next;
9b3f68b9 4647
9f680ce0 4648 /*
73c5de00
AJ
4649 * in the first pass through the devices list, we gather information
4650 * about the available holes on each device.
9f680ce0 4651 */
73c5de00
AJ
4652 ndevs = 0;
4653 while (cur != &fs_devices->alloc_list) {
4654 struct btrfs_device *device;
4655 u64 max_avail;
4656 u64 dev_offset;
b2117a39 4657
73c5de00 4658 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4659
73c5de00 4660 cur = cur->next;
b2117a39 4661
73c5de00 4662 if (!device->writeable) {
31b1a2bd 4663 WARN(1, KERN_ERR
efe120a0 4664 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4665 continue;
4666 }
b2117a39 4667
63a212ab
SB
4668 if (!device->in_fs_metadata ||
4669 device->is_tgtdev_for_dev_replace)
73c5de00 4670 continue;
b2117a39 4671
73c5de00
AJ
4672 if (device->total_bytes > device->bytes_used)
4673 total_avail = device->total_bytes - device->bytes_used;
4674 else
4675 total_avail = 0;
38c01b96 4676
4677 /* If there is no space on this device, skip it. */
4678 if (total_avail == 0)
4679 continue;
b2117a39 4680
6df9a95e 4681 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4682 max_stripe_size * dev_stripes,
4683 &dev_offset, &max_avail);
4684 if (ret && ret != -ENOSPC)
4685 goto error;
b2117a39 4686
73c5de00
AJ
4687 if (ret == 0)
4688 max_avail = max_stripe_size * dev_stripes;
b2117a39 4689
73c5de00
AJ
4690 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4691 continue;
b2117a39 4692
063d006f
ES
4693 if (ndevs == fs_devices->rw_devices) {
4694 WARN(1, "%s: found more than %llu devices\n",
4695 __func__, fs_devices->rw_devices);
4696 break;
4697 }
73c5de00
AJ
4698 devices_info[ndevs].dev_offset = dev_offset;
4699 devices_info[ndevs].max_avail = max_avail;
4700 devices_info[ndevs].total_avail = total_avail;
4701 devices_info[ndevs].dev = device;
4702 ++ndevs;
4703 }
b2117a39 4704
73c5de00
AJ
4705 /*
4706 * now sort the devices by hole size / available space
4707 */
4708 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4709 btrfs_cmp_device_info, NULL);
b2117a39 4710
73c5de00
AJ
4711 /* round down to number of usable stripes */
4712 ndevs -= ndevs % devs_increment;
b2117a39 4713
73c5de00
AJ
4714 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4715 ret = -ENOSPC;
4716 goto error;
b2117a39 4717 }
9f680ce0 4718
73c5de00
AJ
4719 if (devs_max && ndevs > devs_max)
4720 ndevs = devs_max;
4721 /*
4722 * the primary goal is to maximize the number of stripes, so use as many
4723 * devices as possible, even if the stripes are not maximum sized.
4724 */
4725 stripe_size = devices_info[ndevs-1].max_avail;
4726 num_stripes = ndevs * dev_stripes;
b2117a39 4727
53b381b3
DW
4728 /*
4729 * this will have to be fixed for RAID1 and RAID10 over
4730 * more drives
4731 */
4732 data_stripes = num_stripes / ncopies;
4733
53b381b3
DW
4734 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4735 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
b7f67055 4736 extent_root->stripesize);
53b381b3
DW
4737 data_stripes = num_stripes - 1;
4738 }
4739 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4740 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
b7f67055 4741 extent_root->stripesize);
53b381b3
DW
4742 data_stripes = num_stripes - 2;
4743 }
86db2578
CM
4744
4745 /*
4746 * Use the number of data stripes to figure out how big this chunk
4747 * is really going to be in terms of logical address space,
4748 * and compare that answer with the max chunk size
4749 */
4750 if (stripe_size * data_stripes > max_chunk_size) {
4751 u64 mask = (1ULL << 24) - 1;
b8b93add
DS
4752
4753 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4754
4755 /* bump the answer up to a 16MB boundary */
4756 stripe_size = (stripe_size + mask) & ~mask;
4757
4758 /* but don't go higher than the limits we found
4759 * while searching for free extents
4760 */
4761 if (stripe_size > devices_info[ndevs-1].max_avail)
4762 stripe_size = devices_info[ndevs-1].max_avail;
4763 }
4764
b8b93add 4765 stripe_size = div_u64(stripe_size, dev_stripes);
37db63a4
ID
4766
4767 /* align to BTRFS_STRIPE_LEN */
b8b93add 4768 stripe_size = div_u64(stripe_size, raid_stripe_len);
53b381b3 4769 stripe_size *= raid_stripe_len;
b2117a39
MX
4770
4771 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4772 if (!map) {
4773 ret = -ENOMEM;
4774 goto error;
4775 }
4776 map->num_stripes = num_stripes;
9b3f68b9 4777
73c5de00
AJ
4778 for (i = 0; i < ndevs; ++i) {
4779 for (j = 0; j < dev_stripes; ++j) {
4780 int s = i * dev_stripes + j;
4781 map->stripes[s].dev = devices_info[i].dev;
4782 map->stripes[s].physical = devices_info[i].dev_offset +
4783 j * stripe_size;
6324fbf3 4784 }
6324fbf3 4785 }
2b82032c 4786 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4787 map->stripe_len = raid_stripe_len;
4788 map->io_align = raid_stripe_len;
4789 map->io_width = raid_stripe_len;
2b82032c 4790 map->type = type;
2b82032c 4791 map->sub_stripes = sub_stripes;
0b86a832 4792
53b381b3 4793 num_bytes = stripe_size * data_stripes;
0b86a832 4794
73c5de00 4795 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4796
172ddd60 4797 em = alloc_extent_map();
2b82032c 4798 if (!em) {
298a8f9c 4799 kfree(map);
b2117a39
MX
4800 ret = -ENOMEM;
4801 goto error;
593060d7 4802 }
298a8f9c 4803 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 4804 em->map_lookup = map;
2b82032c 4805 em->start = start;
73c5de00 4806 em->len = num_bytes;
2b82032c
YZ
4807 em->block_start = 0;
4808 em->block_len = em->len;
6df9a95e 4809 em->orig_block_len = stripe_size;
593060d7 4810
2b82032c 4811 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4812 write_lock(&em_tree->lock);
09a2a8f9 4813 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4814 if (!ret) {
4815 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4816 atomic_inc(&em->refs);
4817 }
890871be 4818 write_unlock(&em_tree->lock);
0f5d42b2
JB
4819 if (ret) {
4820 free_extent_map(em);
1dd4602f 4821 goto error;
0f5d42b2 4822 }
0b86a832 4823
04487488
JB
4824 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4825 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4826 start, num_bytes);
6df9a95e
JB
4827 if (ret)
4828 goto error_del_extent;
2b82032c 4829
7cc8e58d
MX
4830 for (i = 0; i < map->num_stripes; i++) {
4831 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4832 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4833 }
43530c46 4834
1c116187
MX
4835 spin_lock(&extent_root->fs_info->free_chunk_lock);
4836 extent_root->fs_info->free_chunk_space -= (stripe_size *
4837 map->num_stripes);
4838 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4839
0f5d42b2 4840 free_extent_map(em);
53b381b3
DW
4841 check_raid56_incompat_flag(extent_root->fs_info, type);
4842
b2117a39 4843 kfree(devices_info);
2b82032c 4844 return 0;
b2117a39 4845
6df9a95e 4846error_del_extent:
0f5d42b2
JB
4847 write_lock(&em_tree->lock);
4848 remove_extent_mapping(em_tree, em);
4849 write_unlock(&em_tree->lock);
4850
4851 /* One for our allocation */
4852 free_extent_map(em);
4853 /* One for the tree reference */
4854 free_extent_map(em);
495e64f4
FM
4855 /* One for the pending_chunks list reference */
4856 free_extent_map(em);
b2117a39 4857error:
b2117a39
MX
4858 kfree(devices_info);
4859 return ret;
2b82032c
YZ
4860}
4861
6df9a95e 4862int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4863 struct btrfs_root *extent_root,
6df9a95e 4864 u64 chunk_offset, u64 chunk_size)
2b82032c 4865{
2b82032c
YZ
4866 struct btrfs_key key;
4867 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4868 struct btrfs_device *device;
4869 struct btrfs_chunk *chunk;
4870 struct btrfs_stripe *stripe;
6df9a95e
JB
4871 struct extent_map_tree *em_tree;
4872 struct extent_map *em;
4873 struct map_lookup *map;
4874 size_t item_size;
4875 u64 dev_offset;
4876 u64 stripe_size;
4877 int i = 0;
140e639f 4878 int ret = 0;
2b82032c 4879
6df9a95e
JB
4880 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4881 read_lock(&em_tree->lock);
4882 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4883 read_unlock(&em_tree->lock);
4884
4885 if (!em) {
4886 btrfs_crit(extent_root->fs_info, "unable to find logical "
4887 "%Lu len %Lu", chunk_offset, chunk_size);
4888 return -EINVAL;
4889 }
4890
4891 if (em->start != chunk_offset || em->len != chunk_size) {
4892 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
351fd353 4893 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
6df9a95e
JB
4894 chunk_size, em->start, em->len);
4895 free_extent_map(em);
4896 return -EINVAL;
4897 }
4898
95617d69 4899 map = em->map_lookup;
6df9a95e
JB
4900 item_size = btrfs_chunk_item_size(map->num_stripes);
4901 stripe_size = em->orig_block_len;
4902
2b82032c 4903 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4904 if (!chunk) {
4905 ret = -ENOMEM;
4906 goto out;
4907 }
4908
50460e37
FM
4909 /*
4910 * Take the device list mutex to prevent races with the final phase of
4911 * a device replace operation that replaces the device object associated
4912 * with the map's stripes, because the device object's id can change
4913 * at any time during that final phase of the device replace operation
4914 * (dev-replace.c:btrfs_dev_replace_finishing()).
4915 */
4916 mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
4917 for (i = 0; i < map->num_stripes; i++) {
4918 device = map->stripes[i].dev;
4919 dev_offset = map->stripes[i].physical;
2b82032c 4920
0b86a832 4921 ret = btrfs_update_device(trans, device);
3acd3953 4922 if (ret)
50460e37 4923 break;
6df9a95e
JB
4924 ret = btrfs_alloc_dev_extent(trans, device,
4925 chunk_root->root_key.objectid,
4926 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4927 chunk_offset, dev_offset,
4928 stripe_size);
4929 if (ret)
50460e37
FM
4930 break;
4931 }
4932 if (ret) {
4933 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4934 goto out;
2b82032c
YZ
4935 }
4936
2b82032c 4937 stripe = &chunk->stripe;
6df9a95e
JB
4938 for (i = 0; i < map->num_stripes; i++) {
4939 device = map->stripes[i].dev;
4940 dev_offset = map->stripes[i].physical;
0b86a832 4941
e17cade2
CM
4942 btrfs_set_stack_stripe_devid(stripe, device->devid);
4943 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4944 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4945 stripe++;
0b86a832 4946 }
50460e37 4947 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
0b86a832 4948
2b82032c 4949 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4950 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4951 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4952 btrfs_set_stack_chunk_type(chunk, map->type);
4953 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4954 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4955 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4956 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4957 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4958
2b82032c
YZ
4959 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4960 key.type = BTRFS_CHUNK_ITEM_KEY;
4961 key.offset = chunk_offset;
0b86a832 4962
2b82032c 4963 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4964 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4965 /*
4966 * TODO: Cleanup of inserted chunk root in case of
4967 * failure.
4968 */
125ccb0a 4969 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4970 item_size);
8f18cf13 4971 }
1abe9b8a 4972
6df9a95e 4973out:
0b86a832 4974 kfree(chunk);
6df9a95e 4975 free_extent_map(em);
4ed1d16e 4976 return ret;
2b82032c 4977}
0b86a832 4978
2b82032c
YZ
4979/*
4980 * Chunk allocation falls into two parts. The first part does works
4981 * that make the new allocated chunk useable, but not do any operation
4982 * that modifies the chunk tree. The second part does the works that
4983 * require modifying the chunk tree. This division is important for the
4984 * bootstrap process of adding storage to a seed btrfs.
4985 */
4986int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4987 struct btrfs_root *extent_root, u64 type)
4988{
4989 u64 chunk_offset;
2b82032c 4990
a9629596 4991 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
6df9a95e
JB
4992 chunk_offset = find_next_chunk(extent_root->fs_info);
4993 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4994}
4995
d397712b 4996static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4997 struct btrfs_root *root,
4998 struct btrfs_device *device)
4999{
5000 u64 chunk_offset;
5001 u64 sys_chunk_offset;
2b82032c 5002 u64 alloc_profile;
2b82032c
YZ
5003 struct btrfs_fs_info *fs_info = root->fs_info;
5004 struct btrfs_root *extent_root = fs_info->extent_root;
5005 int ret;
5006
6df9a95e 5007 chunk_offset = find_next_chunk(fs_info);
de98ced9 5008 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
5009 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
5010 alloc_profile);
79787eaa
JM
5011 if (ret)
5012 return ret;
2b82032c 5013
6df9a95e 5014 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 5015 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
5016 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
5017 alloc_profile);
79787eaa 5018 return ret;
2b82032c
YZ
5019}
5020
d20983b4
MX
5021static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5022{
5023 int max_errors;
5024
5025 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5026 BTRFS_BLOCK_GROUP_RAID10 |
5027 BTRFS_BLOCK_GROUP_RAID5 |
5028 BTRFS_BLOCK_GROUP_DUP)) {
5029 max_errors = 1;
5030 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5031 max_errors = 2;
5032 } else {
5033 max_errors = 0;
005d6427 5034 }
2b82032c 5035
d20983b4 5036 return max_errors;
2b82032c
YZ
5037}
5038
5039int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
5040{
5041 struct extent_map *em;
5042 struct map_lookup *map;
5043 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5044 int readonly = 0;
d20983b4 5045 int miss_ndevs = 0;
2b82032c
YZ
5046 int i;
5047
890871be 5048 read_lock(&map_tree->map_tree.lock);
2b82032c 5049 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 5050 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
5051 if (!em)
5052 return 1;
5053
95617d69 5054 map = em->map_lookup;
2b82032c 5055 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
5056 if (map->stripes[i].dev->missing) {
5057 miss_ndevs++;
5058 continue;
5059 }
5060
2b82032c
YZ
5061 if (!map->stripes[i].dev->writeable) {
5062 readonly = 1;
d20983b4 5063 goto end;
2b82032c
YZ
5064 }
5065 }
d20983b4
MX
5066
5067 /*
5068 * If the number of missing devices is larger than max errors,
5069 * we can not write the data into that chunk successfully, so
5070 * set it readonly.
5071 */
5072 if (miss_ndevs > btrfs_chunk_max_errors(map))
5073 readonly = 1;
5074end:
0b86a832 5075 free_extent_map(em);
2b82032c 5076 return readonly;
0b86a832
CM
5077}
5078
5079void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5080{
a8067e02 5081 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
5082}
5083
5084void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5085{
5086 struct extent_map *em;
5087
d397712b 5088 while (1) {
890871be 5089 write_lock(&tree->map_tree.lock);
0b86a832
CM
5090 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5091 if (em)
5092 remove_extent_mapping(&tree->map_tree, em);
890871be 5093 write_unlock(&tree->map_tree.lock);
0b86a832
CM
5094 if (!em)
5095 break;
0b86a832
CM
5096 /* once for us */
5097 free_extent_map(em);
5098 /* once for the tree */
5099 free_extent_map(em);
5100 }
5101}
5102
5d964051 5103int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 5104{
5d964051 5105 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
5106 struct extent_map *em;
5107 struct map_lookup *map;
5108 struct extent_map_tree *em_tree = &map_tree->map_tree;
5109 int ret;
5110
890871be 5111 read_lock(&em_tree->lock);
f188591e 5112 em = lookup_extent_mapping(em_tree, logical, len);
890871be 5113 read_unlock(&em_tree->lock);
f188591e 5114
fb7669b5
JB
5115 /*
5116 * We could return errors for these cases, but that could get ugly and
5117 * we'd probably do the same thing which is just not do anything else
5118 * and exit, so return 1 so the callers don't try to use other copies.
5119 */
5120 if (!em) {
351fd353 5121 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
fb7669b5
JB
5122 logical+len);
5123 return 1;
5124 }
5125
5126 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 5127 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
351fd353 5128 "%Lu-%Lu", logical, logical+len, em->start,
fb7669b5 5129 em->start + em->len);
7d3d1744 5130 free_extent_map(em);
fb7669b5
JB
5131 return 1;
5132 }
5133
95617d69 5134 map = em->map_lookup;
f188591e
CM
5135 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5136 ret = map->num_stripes;
321aecc6
CM
5137 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5138 ret = map->sub_stripes;
53b381b3
DW
5139 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5140 ret = 2;
5141 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5142 ret = 3;
f188591e
CM
5143 else
5144 ret = 1;
5145 free_extent_map(em);
ad6d620e 5146
73beece9 5147 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
ad6d620e
SB
5148 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5149 ret++;
73beece9 5150 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
ad6d620e 5151
f188591e
CM
5152 return ret;
5153}
5154
53b381b3
DW
5155unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5156 struct btrfs_mapping_tree *map_tree,
5157 u64 logical)
5158{
5159 struct extent_map *em;
5160 struct map_lookup *map;
5161 struct extent_map_tree *em_tree = &map_tree->map_tree;
5162 unsigned long len = root->sectorsize;
5163
5164 read_lock(&em_tree->lock);
5165 em = lookup_extent_mapping(em_tree, logical, len);
5166 read_unlock(&em_tree->lock);
5167 BUG_ON(!em);
5168
5169 BUG_ON(em->start > logical || em->start + em->len < logical);
95617d69 5170 map = em->map_lookup;
ffe2d203 5171 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3 5172 len = map->stripe_len * nr_data_stripes(map);
53b381b3
DW
5173 free_extent_map(em);
5174 return len;
5175}
5176
5177int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5178 u64 logical, u64 len, int mirror_num)
5179{
5180 struct extent_map *em;
5181 struct map_lookup *map;
5182 struct extent_map_tree *em_tree = &map_tree->map_tree;
5183 int ret = 0;
5184
5185 read_lock(&em_tree->lock);
5186 em = lookup_extent_mapping(em_tree, logical, len);
5187 read_unlock(&em_tree->lock);
5188 BUG_ON(!em);
5189
5190 BUG_ON(em->start > logical || em->start + em->len < logical);
95617d69 5191 map = em->map_lookup;
ffe2d203 5192 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
5193 ret = 1;
5194 free_extent_map(em);
5195 return ret;
5196}
5197
30d9861f
SB
5198static int find_live_mirror(struct btrfs_fs_info *fs_info,
5199 struct map_lookup *map, int first, int num,
5200 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
5201{
5202 int i;
30d9861f
SB
5203 int tolerance;
5204 struct btrfs_device *srcdev;
5205
5206 if (dev_replace_is_ongoing &&
5207 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5208 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5209 srcdev = fs_info->dev_replace.srcdev;
5210 else
5211 srcdev = NULL;
5212
5213 /*
5214 * try to avoid the drive that is the source drive for a
5215 * dev-replace procedure, only choose it if no other non-missing
5216 * mirror is available
5217 */
5218 for (tolerance = 0; tolerance < 2; tolerance++) {
5219 if (map->stripes[optimal].dev->bdev &&
5220 (tolerance || map->stripes[optimal].dev != srcdev))
5221 return optimal;
5222 for (i = first; i < first + num; i++) {
5223 if (map->stripes[i].dev->bdev &&
5224 (tolerance || map->stripes[i].dev != srcdev))
5225 return i;
5226 }
dfe25020 5227 }
30d9861f 5228
dfe25020
CM
5229 /* we couldn't find one that doesn't fail. Just return something
5230 * and the io error handling code will clean up eventually
5231 */
5232 return optimal;
5233}
5234
53b381b3
DW
5235static inline int parity_smaller(u64 a, u64 b)
5236{
5237 return a > b;
5238}
5239
5240/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5241static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5242{
5243 struct btrfs_bio_stripe s;
5244 int i;
5245 u64 l;
5246 int again = 1;
5247
5248 while (again) {
5249 again = 0;
cc7539ed 5250 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5251 if (parity_smaller(bbio->raid_map[i],
5252 bbio->raid_map[i+1])) {
53b381b3 5253 s = bbio->stripes[i];
8e5cfb55 5254 l = bbio->raid_map[i];
53b381b3 5255 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5256 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5257 bbio->stripes[i+1] = s;
8e5cfb55 5258 bbio->raid_map[i+1] = l;
2c8cdd6e 5259
53b381b3
DW
5260 again = 1;
5261 }
5262 }
5263 }
5264}
5265
6e9606d2
ZL
5266static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5267{
5268 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5269 /* the size of the btrfs_bio */
6e9606d2 5270 sizeof(struct btrfs_bio) +
e57cf21e 5271 /* plus the variable array for the stripes */
6e9606d2 5272 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5273 /* plus the variable array for the tgt dev */
6e9606d2 5274 sizeof(int) * (real_stripes) +
e57cf21e
CM
5275 /*
5276 * plus the raid_map, which includes both the tgt dev
5277 * and the stripes
5278 */
5279 sizeof(u64) * (total_stripes),
277fb5fc 5280 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5281
5282 atomic_set(&bbio->error, 0);
5283 atomic_set(&bbio->refs, 1);
5284
5285 return bbio;
5286}
5287
5288void btrfs_get_bbio(struct btrfs_bio *bbio)
5289{
5290 WARN_ON(!atomic_read(&bbio->refs));
5291 atomic_inc(&bbio->refs);
5292}
5293
5294void btrfs_put_bbio(struct btrfs_bio *bbio)
5295{
5296 if (!bbio)
5297 return;
5298 if (atomic_dec_and_test(&bbio->refs))
5299 kfree(bbio);
5300}
5301
3ec706c8 5302static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5303 u64 logical, u64 *length,
a1d3c478 5304 struct btrfs_bio **bbio_ret,
8e5cfb55 5305 int mirror_num, int need_raid_map)
0b86a832
CM
5306{
5307 struct extent_map *em;
5308 struct map_lookup *map;
3ec706c8 5309 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
5310 struct extent_map_tree *em_tree = &map_tree->map_tree;
5311 u64 offset;
593060d7 5312 u64 stripe_offset;
fce3bb9a 5313 u64 stripe_end_offset;
593060d7 5314 u64 stripe_nr;
fce3bb9a
LD
5315 u64 stripe_nr_orig;
5316 u64 stripe_nr_end;
53b381b3 5317 u64 stripe_len;
9d644a62 5318 u32 stripe_index;
cea9e445 5319 int i;
de11cc12 5320 int ret = 0;
f2d8d74d 5321 int num_stripes;
a236aed1 5322 int max_errors = 0;
2c8cdd6e 5323 int tgtdev_indexes = 0;
a1d3c478 5324 struct btrfs_bio *bbio = NULL;
472262f3
SB
5325 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5326 int dev_replace_is_ongoing = 0;
5327 int num_alloc_stripes;
ad6d620e
SB
5328 int patch_the_first_stripe_for_dev_replace = 0;
5329 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5330 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5331
890871be 5332 read_lock(&em_tree->lock);
0b86a832 5333 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 5334 read_unlock(&em_tree->lock);
f2d8d74d 5335
3b951516 5336 if (!em) {
c2cf52eb 5337 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 5338 logical, *length);
9bb91873
JB
5339 return -EINVAL;
5340 }
5341
5342 if (em->start > logical || em->start + em->len < logical) {
5343 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
351fd353 5344 "found %Lu-%Lu", logical, em->start,
9bb91873 5345 em->start + em->len);
7d3d1744 5346 free_extent_map(em);
9bb91873 5347 return -EINVAL;
3b951516 5348 }
0b86a832 5349
95617d69 5350 map = em->map_lookup;
0b86a832 5351 offset = logical - em->start;
593060d7 5352
53b381b3 5353 stripe_len = map->stripe_len;
593060d7
CM
5354 stripe_nr = offset;
5355 /*
5356 * stripe_nr counts the total number of stripes we have to stride
5357 * to get to this block
5358 */
47c5713f 5359 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5360
53b381b3 5361 stripe_offset = stripe_nr * stripe_len;
e042d1ec
JB
5362 if (offset < stripe_offset) {
5363 btrfs_crit(fs_info, "stripe math has gone wrong, "
5364 "stripe_offset=%llu, offset=%llu, start=%llu, "
5365 "logical=%llu, stripe_len=%llu",
5366 stripe_offset, offset, em->start, logical,
5367 stripe_len);
5368 free_extent_map(em);
5369 return -EINVAL;
5370 }
593060d7
CM
5371
5372 /* stripe_offset is the offset of this block in its stripe*/
5373 stripe_offset = offset - stripe_offset;
5374
53b381b3 5375 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5376 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5377 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5378 raid56_full_stripe_start = offset;
5379
5380 /* allow a write of a full stripe, but make sure we don't
5381 * allow straddling of stripes
5382 */
47c5713f
DS
5383 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5384 full_stripe_len);
53b381b3
DW
5385 raid56_full_stripe_start *= full_stripe_len;
5386 }
5387
5388 if (rw & REQ_DISCARD) {
5389 /* we don't discard raid56 yet */
ffe2d203 5390 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5391 ret = -EOPNOTSUPP;
5392 goto out;
5393 }
fce3bb9a 5394 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
5395 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5396 u64 max_len;
5397 /* For writes to RAID[56], allow a full stripeset across all disks.
5398 For other RAID types and for RAID[56] reads, just allow a single
5399 stripe (on a single disk). */
ffe2d203 5400 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
53b381b3
DW
5401 (rw & REQ_WRITE)) {
5402 max_len = stripe_len * nr_data_stripes(map) -
5403 (offset - raid56_full_stripe_start);
5404 } else {
5405 /* we limit the length of each bio to what fits in a stripe */
5406 max_len = stripe_len - stripe_offset;
5407 }
5408 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5409 } else {
5410 *length = em->len - offset;
5411 }
f2d8d74d 5412
53b381b3
DW
5413 /* This is for when we're called from btrfs_merge_bio_hook() and all
5414 it cares about is the length */
a1d3c478 5415 if (!bbio_ret)
cea9e445
CM
5416 goto out;
5417
73beece9 5418 btrfs_dev_replace_lock(dev_replace, 0);
472262f3
SB
5419 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5420 if (!dev_replace_is_ongoing)
73beece9
LB
5421 btrfs_dev_replace_unlock(dev_replace, 0);
5422 else
5423 btrfs_dev_replace_set_lock_blocking(dev_replace);
472262f3 5424
ad6d620e
SB
5425 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5426 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5427 dev_replace->tgtdev != NULL) {
5428 /*
5429 * in dev-replace case, for repair case (that's the only
5430 * case where the mirror is selected explicitly when
5431 * calling btrfs_map_block), blocks left of the left cursor
5432 * can also be read from the target drive.
5433 * For REQ_GET_READ_MIRRORS, the target drive is added as
5434 * the last one to the array of stripes. For READ, it also
5435 * needs to be supported using the same mirror number.
5436 * If the requested block is not left of the left cursor,
5437 * EIO is returned. This can happen because btrfs_num_copies()
5438 * returns one more in the dev-replace case.
5439 */
5440 u64 tmp_length = *length;
5441 struct btrfs_bio *tmp_bbio = NULL;
5442 int tmp_num_stripes;
5443 u64 srcdev_devid = dev_replace->srcdev->devid;
5444 int index_srcdev = 0;
5445 int found = 0;
5446 u64 physical_of_found = 0;
5447
5448 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
8e5cfb55 5449 logical, &tmp_length, &tmp_bbio, 0, 0);
ad6d620e
SB
5450 if (ret) {
5451 WARN_ON(tmp_bbio != NULL);
5452 goto out;
5453 }
5454
5455 tmp_num_stripes = tmp_bbio->num_stripes;
5456 if (mirror_num > tmp_num_stripes) {
5457 /*
5458 * REQ_GET_READ_MIRRORS does not contain this
5459 * mirror, that means that the requested area
5460 * is not left of the left cursor
5461 */
5462 ret = -EIO;
6e9606d2 5463 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5464 goto out;
5465 }
5466
5467 /*
5468 * process the rest of the function using the mirror_num
5469 * of the source drive. Therefore look it up first.
5470 * At the end, patch the device pointer to the one of the
5471 * target drive.
5472 */
5473 for (i = 0; i < tmp_num_stripes; i++) {
94a97dfe
ZL
5474 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5475 continue;
5476
5477 /*
5478 * In case of DUP, in order to keep it simple, only add
5479 * the mirror with the lowest physical address
5480 */
5481 if (found &&
5482 physical_of_found <= tmp_bbio->stripes[i].physical)
5483 continue;
5484
5485 index_srcdev = i;
5486 found = 1;
5487 physical_of_found = tmp_bbio->stripes[i].physical;
ad6d620e
SB
5488 }
5489
94a97dfe
ZL
5490 btrfs_put_bbio(tmp_bbio);
5491
5492 if (!found) {
ad6d620e
SB
5493 WARN_ON(1);
5494 ret = -EIO;
ad6d620e
SB
5495 goto out;
5496 }
5497
94a97dfe
ZL
5498 mirror_num = index_srcdev + 1;
5499 patch_the_first_stripe_for_dev_replace = 1;
5500 physical_to_patch_in_first_stripe = physical_of_found;
ad6d620e
SB
5501 } else if (mirror_num > map->num_stripes) {
5502 mirror_num = 0;
5503 }
5504
f2d8d74d 5505 num_stripes = 1;
cea9e445 5506 stripe_index = 0;
fce3bb9a 5507 stripe_nr_orig = stripe_nr;
fda2832f 5508 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
b8b93add 5509 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
fce3bb9a
LD
5510 stripe_end_offset = stripe_nr_end * map->stripe_len -
5511 (offset + *length);
53b381b3 5512
fce3bb9a
LD
5513 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5514 if (rw & REQ_DISCARD)
5515 num_stripes = min_t(u64, map->num_stripes,
5516 stripe_nr_end - stripe_nr_orig);
47c5713f
DS
5517 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5518 &stripe_index);
28e1cc7d
MX
5519 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5520 mirror_num = 1;
fce3bb9a 5521 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 5522 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 5523 num_stripes = map->num_stripes;
2fff734f 5524 else if (mirror_num)
f188591e 5525 stripe_index = mirror_num - 1;
dfe25020 5526 else {
30d9861f 5527 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5528 map->num_stripes,
30d9861f
SB
5529 current->pid % map->num_stripes,
5530 dev_replace_is_ongoing);
a1d3c478 5531 mirror_num = stripe_index + 1;
dfe25020 5532 }
2fff734f 5533
611f0e00 5534 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 5535 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 5536 num_stripes = map->num_stripes;
a1d3c478 5537 } else if (mirror_num) {
f188591e 5538 stripe_index = mirror_num - 1;
a1d3c478
JS
5539 } else {
5540 mirror_num = 1;
5541 }
2fff734f 5542
321aecc6 5543 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5544 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5545
47c5713f 5546 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5547 stripe_index *= map->sub_stripes;
5548
29a8d9a0 5549 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 5550 num_stripes = map->sub_stripes;
fce3bb9a
LD
5551 else if (rw & REQ_DISCARD)
5552 num_stripes = min_t(u64, map->sub_stripes *
5553 (stripe_nr_end - stripe_nr_orig),
5554 map->num_stripes);
321aecc6
CM
5555 else if (mirror_num)
5556 stripe_index += mirror_num - 1;
dfe25020 5557 else {
3e74317a 5558 int old_stripe_index = stripe_index;
30d9861f
SB
5559 stripe_index = find_live_mirror(fs_info, map,
5560 stripe_index,
dfe25020 5561 map->sub_stripes, stripe_index +
30d9861f
SB
5562 current->pid % map->sub_stripes,
5563 dev_replace_is_ongoing);
3e74317a 5564 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5565 }
53b381b3 5566
ffe2d203 5567 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8e5cfb55 5568 if (need_raid_map &&
af8e2d1d
MX
5569 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5570 mirror_num > 1)) {
53b381b3 5571 /* push stripe_nr back to the start of the full stripe */
b8b93add
DS
5572 stripe_nr = div_u64(raid56_full_stripe_start,
5573 stripe_len * nr_data_stripes(map));
53b381b3
DW
5574
5575 /* RAID[56] write or recovery. Return all stripes */
5576 num_stripes = map->num_stripes;
5577 max_errors = nr_parity_stripes(map);
5578
53b381b3
DW
5579 *length = map->stripe_len;
5580 stripe_index = 0;
5581 stripe_offset = 0;
5582 } else {
5583 /*
5584 * Mirror #0 or #1 means the original data block.
5585 * Mirror #2 is RAID5 parity block.
5586 * Mirror #3 is RAID6 Q block.
5587 */
47c5713f
DS
5588 stripe_nr = div_u64_rem(stripe_nr,
5589 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5590 if (mirror_num > 1)
5591 stripe_index = nr_data_stripes(map) +
5592 mirror_num - 2;
5593
5594 /* We distribute the parity blocks across stripes */
47c5713f
DS
5595 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5596 &stripe_index);
28e1cc7d
MX
5597 if (!(rw & (REQ_WRITE | REQ_DISCARD |
5598 REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5599 mirror_num = 1;
53b381b3 5600 }
8790d502
CM
5601 } else {
5602 /*
47c5713f
DS
5603 * after this, stripe_nr is the number of stripes on this
5604 * device we have to walk to find the data, and stripe_index is
5605 * the number of our device in the stripe array
8790d502 5606 */
47c5713f
DS
5607 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5608 &stripe_index);
a1d3c478 5609 mirror_num = stripe_index + 1;
8790d502 5610 }
e042d1ec
JB
5611 if (stripe_index >= map->num_stripes) {
5612 btrfs_crit(fs_info, "stripe index math went horribly wrong, "
5613 "got stripe_index=%u, num_stripes=%u",
5614 stripe_index, map->num_stripes);
5615 ret = -EINVAL;
5616 goto out;
5617 }
cea9e445 5618
472262f3 5619 num_alloc_stripes = num_stripes;
ad6d620e
SB
5620 if (dev_replace_is_ongoing) {
5621 if (rw & (REQ_WRITE | REQ_DISCARD))
5622 num_alloc_stripes <<= 1;
5623 if (rw & REQ_GET_READ_MIRRORS)
5624 num_alloc_stripes++;
2c8cdd6e 5625 tgtdev_indexes = num_stripes;
ad6d620e 5626 }
2c8cdd6e 5627
6e9606d2 5628 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5629 if (!bbio) {
5630 ret = -ENOMEM;
5631 goto out;
5632 }
2c8cdd6e
MX
5633 if (dev_replace_is_ongoing)
5634 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5635
8e5cfb55 5636 /* build raid_map */
ffe2d203 5637 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
8e5cfb55
ZL
5638 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5639 mirror_num > 1)) {
5640 u64 tmp;
9d644a62 5641 unsigned rot;
8e5cfb55
ZL
5642
5643 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5644 sizeof(struct btrfs_bio_stripe) *
5645 num_alloc_stripes +
5646 sizeof(int) * tgtdev_indexes);
5647
5648 /* Work out the disk rotation on this stripe-set */
47c5713f 5649 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5650
5651 /* Fill in the logical address of each stripe */
5652 tmp = stripe_nr * nr_data_stripes(map);
5653 for (i = 0; i < nr_data_stripes(map); i++)
5654 bbio->raid_map[(i+rot) % num_stripes] =
5655 em->start + (tmp + i) * map->stripe_len;
5656
5657 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5658 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5659 bbio->raid_map[(i+rot+1) % num_stripes] =
5660 RAID6_Q_STRIPE;
5661 }
5662
fce3bb9a 5663 if (rw & REQ_DISCARD) {
9d644a62
DS
5664 u32 factor = 0;
5665 u32 sub_stripes = 0;
ec9ef7a1
LZ
5666 u64 stripes_per_dev = 0;
5667 u32 remaining_stripes = 0;
b89203f7 5668 u32 last_stripe = 0;
ec9ef7a1
LZ
5669
5670 if (map->type &
5671 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5672 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5673 sub_stripes = 1;
5674 else
5675 sub_stripes = map->sub_stripes;
5676
5677 factor = map->num_stripes / sub_stripes;
5678 stripes_per_dev = div_u64_rem(stripe_nr_end -
5679 stripe_nr_orig,
5680 factor,
5681 &remaining_stripes);
b89203f7
LB
5682 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5683 last_stripe *= sub_stripes;
ec9ef7a1
LZ
5684 }
5685
fce3bb9a 5686 for (i = 0; i < num_stripes; i++) {
a1d3c478 5687 bbio->stripes[i].physical =
f2d8d74d
CM
5688 map->stripes[stripe_index].physical +
5689 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 5690 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 5691
ec9ef7a1
LZ
5692 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5693 BTRFS_BLOCK_GROUP_RAID10)) {
5694 bbio->stripes[i].length = stripes_per_dev *
5695 map->stripe_len;
b89203f7 5696
ec9ef7a1
LZ
5697 if (i / sub_stripes < remaining_stripes)
5698 bbio->stripes[i].length +=
5699 map->stripe_len;
b89203f7
LB
5700
5701 /*
5702 * Special for the first stripe and
5703 * the last stripe:
5704 *
5705 * |-------|...|-------|
5706 * |----------|
5707 * off end_off
5708 */
ec9ef7a1 5709 if (i < sub_stripes)
a1d3c478 5710 bbio->stripes[i].length -=
fce3bb9a 5711 stripe_offset;
b89203f7
LB
5712
5713 if (stripe_index >= last_stripe &&
5714 stripe_index <= (last_stripe +
5715 sub_stripes - 1))
a1d3c478 5716 bbio->stripes[i].length -=
fce3bb9a 5717 stripe_end_offset;
b89203f7 5718
ec9ef7a1
LZ
5719 if (i == sub_stripes - 1)
5720 stripe_offset = 0;
fce3bb9a 5721 } else
a1d3c478 5722 bbio->stripes[i].length = *length;
fce3bb9a
LD
5723
5724 stripe_index++;
5725 if (stripe_index == map->num_stripes) {
5726 /* This could only happen for RAID0/10 */
5727 stripe_index = 0;
5728 stripe_nr++;
5729 }
5730 }
5731 } else {
5732 for (i = 0; i < num_stripes; i++) {
a1d3c478 5733 bbio->stripes[i].physical =
212a17ab
LT
5734 map->stripes[stripe_index].physical +
5735 stripe_offset +
5736 stripe_nr * map->stripe_len;
a1d3c478 5737 bbio->stripes[i].dev =
212a17ab 5738 map->stripes[stripe_index].dev;
fce3bb9a 5739 stripe_index++;
f2d8d74d 5740 }
593060d7 5741 }
de11cc12 5742
d20983b4
MX
5743 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5744 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5745
8e5cfb55
ZL
5746 if (bbio->raid_map)
5747 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5748
2c8cdd6e 5749 tgtdev_indexes = 0;
472262f3
SB
5750 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5751 dev_replace->tgtdev != NULL) {
5752 int index_where_to_add;
5753 u64 srcdev_devid = dev_replace->srcdev->devid;
5754
5755 /*
5756 * duplicate the write operations while the dev replace
5757 * procedure is running. Since the copying of the old disk
5758 * to the new disk takes place at run time while the
5759 * filesystem is mounted writable, the regular write
5760 * operations to the old disk have to be duplicated to go
5761 * to the new disk as well.
5762 * Note that device->missing is handled by the caller, and
5763 * that the write to the old disk is already set up in the
5764 * stripes array.
5765 */
5766 index_where_to_add = num_stripes;
5767 for (i = 0; i < num_stripes; i++) {
5768 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5769 /* write to new disk, too */
5770 struct btrfs_bio_stripe *new =
5771 bbio->stripes + index_where_to_add;
5772 struct btrfs_bio_stripe *old =
5773 bbio->stripes + i;
5774
5775 new->physical = old->physical;
5776 new->length = old->length;
5777 new->dev = dev_replace->tgtdev;
2c8cdd6e 5778 bbio->tgtdev_map[i] = index_where_to_add;
472262f3
SB
5779 index_where_to_add++;
5780 max_errors++;
2c8cdd6e 5781 tgtdev_indexes++;
472262f3
SB
5782 }
5783 }
5784 num_stripes = index_where_to_add;
ad6d620e
SB
5785 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5786 dev_replace->tgtdev != NULL) {
5787 u64 srcdev_devid = dev_replace->srcdev->devid;
5788 int index_srcdev = 0;
5789 int found = 0;
5790 u64 physical_of_found = 0;
5791
5792 /*
5793 * During the dev-replace procedure, the target drive can
5794 * also be used to read data in case it is needed to repair
5795 * a corrupt block elsewhere. This is possible if the
5796 * requested area is left of the left cursor. In this area,
5797 * the target drive is a full copy of the source drive.
5798 */
5799 for (i = 0; i < num_stripes; i++) {
5800 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5801 /*
5802 * In case of DUP, in order to keep it
5803 * simple, only add the mirror with the
5804 * lowest physical address
5805 */
5806 if (found &&
5807 physical_of_found <=
5808 bbio->stripes[i].physical)
5809 continue;
5810 index_srcdev = i;
5811 found = 1;
5812 physical_of_found = bbio->stripes[i].physical;
5813 }
5814 }
5815 if (found) {
22ab04e8
FM
5816 struct btrfs_bio_stripe *tgtdev_stripe =
5817 bbio->stripes + num_stripes;
ad6d620e 5818
22ab04e8
FM
5819 tgtdev_stripe->physical = physical_of_found;
5820 tgtdev_stripe->length =
5821 bbio->stripes[index_srcdev].length;
5822 tgtdev_stripe->dev = dev_replace->tgtdev;
5823 bbio->tgtdev_map[index_srcdev] = num_stripes;
ad6d620e 5824
22ab04e8
FM
5825 tgtdev_indexes++;
5826 num_stripes++;
ad6d620e 5827 }
472262f3
SB
5828 }
5829
de11cc12 5830 *bbio_ret = bbio;
10f11900 5831 bbio->map_type = map->type;
de11cc12
LZ
5832 bbio->num_stripes = num_stripes;
5833 bbio->max_errors = max_errors;
5834 bbio->mirror_num = mirror_num;
2c8cdd6e 5835 bbio->num_tgtdevs = tgtdev_indexes;
ad6d620e
SB
5836
5837 /*
5838 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5839 * mirror_num == num_stripes + 1 && dev_replace target drive is
5840 * available as a mirror
5841 */
5842 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5843 WARN_ON(num_stripes > 1);
5844 bbio->stripes[0].dev = dev_replace->tgtdev;
5845 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5846 bbio->mirror_num = map->num_stripes + 1;
5847 }
cea9e445 5848out:
73beece9
LB
5849 if (dev_replace_is_ongoing) {
5850 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5851 btrfs_dev_replace_unlock(dev_replace, 0);
5852 }
0b86a832 5853 free_extent_map(em);
de11cc12 5854 return ret;
0b86a832
CM
5855}
5856
3ec706c8 5857int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5858 u64 logical, u64 *length,
a1d3c478 5859 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5860{
3ec706c8 5861 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
8e5cfb55 5862 mirror_num, 0);
f2d8d74d
CM
5863}
5864
af8e2d1d
MX
5865/* For Scrub/replace */
5866int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5867 u64 logical, u64 *length,
5868 struct btrfs_bio **bbio_ret, int mirror_num,
8e5cfb55 5869 int need_raid_map)
af8e2d1d
MX
5870{
5871 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
8e5cfb55 5872 mirror_num, need_raid_map);
af8e2d1d
MX
5873}
5874
a512bbf8
YZ
5875int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5876 u64 chunk_start, u64 physical, u64 devid,
5877 u64 **logical, int *naddrs, int *stripe_len)
5878{
5879 struct extent_map_tree *em_tree = &map_tree->map_tree;
5880 struct extent_map *em;
5881 struct map_lookup *map;
5882 u64 *buf;
5883 u64 bytenr;
5884 u64 length;
5885 u64 stripe_nr;
53b381b3 5886 u64 rmap_len;
a512bbf8
YZ
5887 int i, j, nr = 0;
5888
890871be 5889 read_lock(&em_tree->lock);
a512bbf8 5890 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5891 read_unlock(&em_tree->lock);
a512bbf8 5892
835d974f 5893 if (!em) {
efe120a0 5894 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
835d974f
JB
5895 chunk_start);
5896 return -EIO;
5897 }
5898
5899 if (em->start != chunk_start) {
efe120a0 5900 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
835d974f
JB
5901 em->start, chunk_start);
5902 free_extent_map(em);
5903 return -EIO;
5904 }
95617d69 5905 map = em->map_lookup;
a512bbf8
YZ
5906
5907 length = em->len;
53b381b3
DW
5908 rmap_len = map->stripe_len;
5909
a512bbf8 5910 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 5911 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 5912 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 5913 length = div_u64(length, map->num_stripes);
ffe2d203 5914 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 5915 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
5916 rmap_len = map->stripe_len * nr_data_stripes(map);
5917 }
a512bbf8 5918
31e818fe 5919 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 5920 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5921
5922 for (i = 0; i < map->num_stripes; i++) {
5923 if (devid && map->stripes[i].dev->devid != devid)
5924 continue;
5925 if (map->stripes[i].physical > physical ||
5926 map->stripes[i].physical + length <= physical)
5927 continue;
5928
5929 stripe_nr = physical - map->stripes[i].physical;
b8b93add 5930 stripe_nr = div_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
5931
5932 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5933 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 5934 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
5935 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5936 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5937 } /* else if RAID[56], multiply by nr_data_stripes().
5938 * Alternatively, just use rmap_len below instead of
5939 * map->stripe_len */
5940
5941 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5942 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5943 for (j = 0; j < nr; j++) {
5944 if (buf[j] == bytenr)
5945 break;
5946 }
934d375b
CM
5947 if (j == nr) {
5948 WARN_ON(nr >= map->num_stripes);
a512bbf8 5949 buf[nr++] = bytenr;
934d375b 5950 }
a512bbf8
YZ
5951 }
5952
a512bbf8
YZ
5953 *logical = buf;
5954 *naddrs = nr;
53b381b3 5955 *stripe_len = rmap_len;
a512bbf8
YZ
5956
5957 free_extent_map(em);
5958 return 0;
f2d8d74d
CM
5959}
5960
4246a0b6 5961static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 5962{
326e1dbb
MS
5963 bio->bi_private = bbio->private;
5964 bio->bi_end_io = bbio->end_io;
4246a0b6 5965 bio_endio(bio);
326e1dbb 5966
6e9606d2 5967 btrfs_put_bbio(bbio);
8408c716
MX
5968}
5969
4246a0b6 5970static void btrfs_end_bio(struct bio *bio)
8790d502 5971{
9be3395b 5972 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5973 int is_orig_bio = 0;
8790d502 5974
4246a0b6 5975 if (bio->bi_error) {
a1d3c478 5976 atomic_inc(&bbio->error);
4246a0b6 5977 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
442a4f63 5978 unsigned int stripe_index =
9be3395b 5979 btrfs_io_bio(bio)->stripe_index;
65f53338 5980 struct btrfs_device *dev;
442a4f63
SB
5981
5982 BUG_ON(stripe_index >= bbio->num_stripes);
5983 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5984 if (dev->bdev) {
5985 if (bio->bi_rw & WRITE)
5986 btrfs_dev_stat_inc(dev,
5987 BTRFS_DEV_STAT_WRITE_ERRS);
5988 else
5989 btrfs_dev_stat_inc(dev,
5990 BTRFS_DEV_STAT_READ_ERRS);
5991 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5992 btrfs_dev_stat_inc(dev,
5993 BTRFS_DEV_STAT_FLUSH_ERRS);
5994 btrfs_dev_stat_print_on_error(dev);
5995 }
442a4f63
SB
5996 }
5997 }
8790d502 5998
a1d3c478 5999 if (bio == bbio->orig_bio)
7d2b4daa
CM
6000 is_orig_bio = 1;
6001
c404e0dc
MX
6002 btrfs_bio_counter_dec(bbio->fs_info);
6003
a1d3c478 6004 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6005 if (!is_orig_bio) {
6006 bio_put(bio);
a1d3c478 6007 bio = bbio->orig_bio;
7d2b4daa 6008 }
c7b22bb1 6009
9be3395b 6010 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6011 /* only send an error to the higher layers if it is
53b381b3 6012 * beyond the tolerance of the btrfs bio
a236aed1 6013 */
a1d3c478 6014 if (atomic_read(&bbio->error) > bbio->max_errors) {
4246a0b6 6015 bio->bi_error = -EIO;
5dbc8fca 6016 } else {
1259ab75
CM
6017 /*
6018 * this bio is actually up to date, we didn't
6019 * go over the max number of errors
6020 */
4246a0b6 6021 bio->bi_error = 0;
1259ab75 6022 }
c55f1396 6023
4246a0b6 6024 btrfs_end_bbio(bbio, bio);
7d2b4daa 6025 } else if (!is_orig_bio) {
8790d502
CM
6026 bio_put(bio);
6027 }
8790d502
CM
6028}
6029
8b712842
CM
6030/*
6031 * see run_scheduled_bios for a description of why bios are collected for
6032 * async submit.
6033 *
6034 * This will add one bio to the pending list for a device and make sure
6035 * the work struct is scheduled.
6036 */
48a3b636
ES
6037static noinline void btrfs_schedule_bio(struct btrfs_root *root,
6038 struct btrfs_device *device,
6039 int rw, struct bio *bio)
8b712842
CM
6040{
6041 int should_queue = 1;
ffbd517d 6042 struct btrfs_pending_bios *pending_bios;
8b712842 6043
53b381b3 6044 if (device->missing || !device->bdev) {
4246a0b6 6045 bio_io_error(bio);
53b381b3
DW
6046 return;
6047 }
6048
8b712842 6049 /* don't bother with additional async steps for reads, right now */
7b6d91da 6050 if (!(rw & REQ_WRITE)) {
492bb6de 6051 bio_get(bio);
21adbd5c 6052 btrfsic_submit_bio(rw, bio);
492bb6de 6053 bio_put(bio);
143bede5 6054 return;
8b712842
CM
6055 }
6056
6057 /*
0986fe9e 6058 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
6059 * higher layers. Otherwise, the async bio makes it appear we have
6060 * made progress against dirty pages when we've really just put it
6061 * on a queue for later
6062 */
0986fe9e 6063 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 6064 WARN_ON(bio->bi_next);
8b712842
CM
6065 bio->bi_next = NULL;
6066 bio->bi_rw |= rw;
6067
6068 spin_lock(&device->io_lock);
7b6d91da 6069 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
6070 pending_bios = &device->pending_sync_bios;
6071 else
6072 pending_bios = &device->pending_bios;
8b712842 6073
ffbd517d
CM
6074 if (pending_bios->tail)
6075 pending_bios->tail->bi_next = bio;
8b712842 6076
ffbd517d
CM
6077 pending_bios->tail = bio;
6078 if (!pending_bios->head)
6079 pending_bios->head = bio;
8b712842
CM
6080 if (device->running_pending)
6081 should_queue = 0;
6082
6083 spin_unlock(&device->io_lock);
6084
6085 if (should_queue)
a8c93d4e
QW
6086 btrfs_queue_work(root->fs_info->submit_workers,
6087 &device->work);
8b712842
CM
6088}
6089
de1ee92a
JB
6090static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
6091 struct bio *bio, u64 physical, int dev_nr,
6092 int rw, int async)
6093{
6094 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6095
6096 bio->bi_private = bbio;
9be3395b 6097 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 6098 bio->bi_end_io = btrfs_end_bio;
4f024f37 6099 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
6100#ifdef DEBUG
6101 {
6102 struct rcu_string *name;
6103
6104 rcu_read_lock();
6105 name = rcu_dereference(dev->name);
d1423248 6106 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a 6107 "(%s id %llu), size=%u\n", rw,
1b6e4469
FF
6108 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
6109 name->str, dev->devid, bio->bi_iter.bi_size);
de1ee92a
JB
6110 rcu_read_unlock();
6111 }
6112#endif
6113 bio->bi_bdev = dev->bdev;
c404e0dc
MX
6114
6115 btrfs_bio_counter_inc_noblocked(root->fs_info);
6116
de1ee92a 6117 if (async)
53b381b3 6118 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
6119 else
6120 btrfsic_submit_bio(rw, bio);
6121}
6122
de1ee92a
JB
6123static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6124{
6125 atomic_inc(&bbio->error);
6126 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6127 /* Should be the original bio. */
8408c716
MX
6128 WARN_ON(bio != bbio->orig_bio);
6129
9be3395b 6130 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6131 bio->bi_iter.bi_sector = logical >> 9;
4246a0b6
CH
6132 bio->bi_error = -EIO;
6133 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6134 }
6135}
6136
f188591e 6137int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 6138 int mirror_num, int async_submit)
0b86a832 6139{
0b86a832 6140 struct btrfs_device *dev;
8790d502 6141 struct bio *first_bio = bio;
4f024f37 6142 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6143 u64 length = 0;
6144 u64 map_length;
0b86a832 6145 int ret;
08da757d
ZL
6146 int dev_nr;
6147 int total_devs;
a1d3c478 6148 struct btrfs_bio *bbio = NULL;
0b86a832 6149
4f024f37 6150 length = bio->bi_iter.bi_size;
0b86a832 6151 map_length = length;
cea9e445 6152
c404e0dc 6153 btrfs_bio_counter_inc_blocked(root->fs_info);
53b381b3 6154 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
8e5cfb55 6155 mirror_num, 1);
c404e0dc
MX
6156 if (ret) {
6157 btrfs_bio_counter_dec(root->fs_info);
79787eaa 6158 return ret;
c404e0dc 6159 }
cea9e445 6160
a1d3c478 6161 total_devs = bbio->num_stripes;
53b381b3
DW
6162 bbio->orig_bio = first_bio;
6163 bbio->private = first_bio->bi_private;
6164 bbio->end_io = first_bio->bi_end_io;
c404e0dc 6165 bbio->fs_info = root->fs_info;
53b381b3
DW
6166 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6167
ad1ba2a0
ZL
6168 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6169 ((rw & WRITE) || (mirror_num > 1))) {
53b381b3
DW
6170 /* In this case, map_length has been set to the length of
6171 a single stripe; not the whole write */
6172 if (rw & WRITE) {
8e5cfb55 6173 ret = raid56_parity_write(root, bio, bbio, map_length);
53b381b3 6174 } else {
8e5cfb55 6175 ret = raid56_parity_recover(root, bio, bbio, map_length,
4245215d 6176 mirror_num, 1);
53b381b3 6177 }
4245215d 6178
c404e0dc
MX
6179 btrfs_bio_counter_dec(root->fs_info);
6180 return ret;
53b381b3
DW
6181 }
6182
cea9e445 6183 if (map_length < length) {
c2cf52eb 6184 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 6185 logical, length, map_length);
cea9e445
CM
6186 BUG();
6187 }
a1d3c478 6188
08da757d 6189 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a
JB
6190 dev = bbio->stripes[dev_nr].dev;
6191 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6192 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6193 continue;
6194 }
6195
a1d3c478 6196 if (dev_nr < total_devs - 1) {
9be3395b 6197 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 6198 BUG_ON(!bio); /* -ENOMEM */
326e1dbb 6199 } else
a1d3c478 6200 bio = first_bio;
de1ee92a
JB
6201
6202 submit_stripe_bio(root, bbio, bio,
6203 bbio->stripes[dev_nr].physical, dev_nr, rw,
6204 async_submit);
8790d502 6205 }
c404e0dc 6206 btrfs_bio_counter_dec(root->fs_info);
0b86a832
CM
6207 return 0;
6208}
6209
aa1b8cd4 6210struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 6211 u8 *uuid, u8 *fsid)
0b86a832 6212{
2b82032c
YZ
6213 struct btrfs_device *device;
6214 struct btrfs_fs_devices *cur_devices;
6215
aa1b8cd4 6216 cur_devices = fs_info->fs_devices;
2b82032c
YZ
6217 while (cur_devices) {
6218 if (!fsid ||
6219 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6220 device = __find_device(&cur_devices->devices,
6221 devid, uuid);
6222 if (device)
6223 return device;
6224 }
6225 cur_devices = cur_devices->seed;
6226 }
6227 return NULL;
0b86a832
CM
6228}
6229
dfe25020 6230static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5f375835 6231 struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6232 u64 devid, u8 *dev_uuid)
6233{
6234 struct btrfs_device *device;
dfe25020 6235
12bd2fc0
ID
6236 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6237 if (IS_ERR(device))
7cbd8a83 6238 return NULL;
12bd2fc0
ID
6239
6240 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6241 device->fs_devices = fs_devices;
dfe25020 6242 fs_devices->num_devices++;
12bd2fc0
ID
6243
6244 device->missing = 1;
cd02dca5 6245 fs_devices->missing_devices++;
12bd2fc0 6246
dfe25020
CM
6247 return device;
6248}
6249
12bd2fc0
ID
6250/**
6251 * btrfs_alloc_device - allocate struct btrfs_device
6252 * @fs_info: used only for generating a new devid, can be NULL if
6253 * devid is provided (i.e. @devid != NULL).
6254 * @devid: a pointer to devid for this device. If NULL a new devid
6255 * is generated.
6256 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6257 * is generated.
6258 *
6259 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6260 * on error. Returned struct is not linked onto any lists and can be
6261 * destroyed with kfree() right away.
6262 */
6263struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6264 const u64 *devid,
6265 const u8 *uuid)
6266{
6267 struct btrfs_device *dev;
6268 u64 tmp;
6269
fae7f21c 6270 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6271 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6272
6273 dev = __alloc_device();
6274 if (IS_ERR(dev))
6275 return dev;
6276
6277 if (devid)
6278 tmp = *devid;
6279 else {
6280 int ret;
6281
6282 ret = find_next_devid(fs_info, &tmp);
6283 if (ret) {
6284 kfree(dev);
6285 return ERR_PTR(ret);
6286 }
6287 }
6288 dev->devid = tmp;
6289
6290 if (uuid)
6291 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6292 else
6293 generate_random_uuid(dev->uuid);
6294
9e0af237
LB
6295 btrfs_init_work(&dev->work, btrfs_submit_helper,
6296 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6297
6298 return dev;
6299}
6300
e06cd3dd
LB
6301/* Return -EIO if any error, otherwise return 0. */
6302static int btrfs_check_chunk_valid(struct btrfs_root *root,
6303 struct extent_buffer *leaf,
6304 struct btrfs_chunk *chunk, u64 logical)
0b86a832 6305{
0b86a832 6306 u64 length;
f04b772b 6307 u64 stripe_len;
e06cd3dd
LB
6308 u16 num_stripes;
6309 u16 sub_stripes;
6310 u64 type;
0b86a832 6311
e17cade2 6312 length = btrfs_chunk_length(leaf, chunk);
f04b772b
QW
6313 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6314 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
e06cd3dd
LB
6315 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6316 type = btrfs_chunk_type(leaf, chunk);
6317
f04b772b
QW
6318 if (!num_stripes) {
6319 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6320 num_stripes);
6321 return -EIO;
6322 }
6323 if (!IS_ALIGNED(logical, root->sectorsize)) {
6324 btrfs_err(root->fs_info,
6325 "invalid chunk logical %llu", logical);
6326 return -EIO;
6327 }
e06cd3dd
LB
6328 if (btrfs_chunk_sector_size(leaf, chunk) != root->sectorsize) {
6329 btrfs_err(root->fs_info, "invalid chunk sectorsize %u",
6330 btrfs_chunk_sector_size(leaf, chunk));
6331 return -EIO;
6332 }
f04b772b
QW
6333 if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6334 btrfs_err(root->fs_info,
6335 "invalid chunk length %llu", length);
6336 return -EIO;
6337 }
3d8da678 6338 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
f04b772b
QW
6339 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6340 stripe_len);
6341 return -EIO;
6342 }
6343 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
e06cd3dd 6344 type) {
f04b772b
QW
6345 btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6346 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6347 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6348 btrfs_chunk_type(leaf, chunk));
6349 return -EIO;
6350 }
e06cd3dd
LB
6351 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6352 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6353 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6354 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6355 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6356 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6357 num_stripes != 1)) {
6358 btrfs_err(root->fs_info,
6359 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6360 num_stripes, sub_stripes,
6361 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6362 return -EIO;
6363 }
6364
6365 return 0;
6366}
6367
6368static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6369 struct extent_buffer *leaf,
6370 struct btrfs_chunk *chunk)
6371{
6372 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6373 struct map_lookup *map;
6374 struct extent_map *em;
6375 u64 logical;
6376 u64 length;
6377 u64 stripe_len;
6378 u64 devid;
6379 u8 uuid[BTRFS_UUID_SIZE];
6380 int num_stripes;
6381 int ret;
6382 int i;
6383
6384 logical = key->offset;
6385 length = btrfs_chunk_length(leaf, chunk);
6386 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6387 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6388
6389 ret = btrfs_check_chunk_valid(root, leaf, chunk, logical);
6390 if (ret)
6391 return ret;
a061fc8d 6392
890871be 6393 read_lock(&map_tree->map_tree.lock);
0b86a832 6394 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6395 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6396
6397 /* already mapped? */
6398 if (em && em->start <= logical && em->start + em->len > logical) {
6399 free_extent_map(em);
0b86a832
CM
6400 return 0;
6401 } else if (em) {
6402 free_extent_map(em);
6403 }
0b86a832 6404
172ddd60 6405 em = alloc_extent_map();
0b86a832
CM
6406 if (!em)
6407 return -ENOMEM;
593060d7 6408 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6409 if (!map) {
6410 free_extent_map(em);
6411 return -ENOMEM;
6412 }
6413
298a8f9c 6414 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6415 em->map_lookup = map;
0b86a832
CM
6416 em->start = logical;
6417 em->len = length;
70c8a91c 6418 em->orig_start = 0;
0b86a832 6419 em->block_start = 0;
c8b97818 6420 em->block_len = em->len;
0b86a832 6421
593060d7
CM
6422 map->num_stripes = num_stripes;
6423 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6424 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6425 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6426 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6427 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6428 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6429 for (i = 0; i < num_stripes; i++) {
6430 map->stripes[i].physical =
6431 btrfs_stripe_offset_nr(leaf, chunk, i);
6432 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6433 read_extent_buffer(leaf, uuid, (unsigned long)
6434 btrfs_stripe_dev_uuid_nr(chunk, i),
6435 BTRFS_UUID_SIZE);
aa1b8cd4
SB
6436 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6437 uuid, NULL);
dfe25020 6438 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
6439 free_extent_map(em);
6440 return -EIO;
6441 }
dfe25020
CM
6442 if (!map->stripes[i].dev) {
6443 map->stripes[i].dev =
5f375835
MX
6444 add_missing_dev(root, root->fs_info->fs_devices,
6445 devid, uuid);
dfe25020 6446 if (!map->stripes[i].dev) {
dfe25020
CM
6447 free_extent_map(em);
6448 return -EIO;
6449 }
816fcebe
AJ
6450 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6451 devid, uuid);
dfe25020
CM
6452 }
6453 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
6454 }
6455
890871be 6456 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6457 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6458 write_unlock(&map_tree->map_tree.lock);
79787eaa 6459 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6460 free_extent_map(em);
6461
6462 return 0;
6463}
6464
143bede5 6465static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6466 struct btrfs_dev_item *dev_item,
6467 struct btrfs_device *device)
6468{
6469 unsigned long ptr;
0b86a832
CM
6470
6471 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6472 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6473 device->total_bytes = device->disk_total_bytes;
935e5cc9 6474 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6475 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6476 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6477 device->type = btrfs_device_type(leaf, dev_item);
6478 device->io_align = btrfs_device_io_align(leaf, dev_item);
6479 device->io_width = btrfs_device_io_width(leaf, dev_item);
6480 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6481 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6482 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6483
410ba3a2 6484 ptr = btrfs_device_uuid(dev_item);
e17cade2 6485 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6486}
6487
5f375835
MX
6488static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6489 u8 *fsid)
2b82032c
YZ
6490{
6491 struct btrfs_fs_devices *fs_devices;
6492 int ret;
6493
b367e47f 6494 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
6495
6496 fs_devices = root->fs_info->fs_devices->seed;
6497 while (fs_devices) {
5f375835
MX
6498 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6499 return fs_devices;
6500
2b82032c
YZ
6501 fs_devices = fs_devices->seed;
6502 }
6503
6504 fs_devices = find_fsid(fsid);
6505 if (!fs_devices) {
5f375835
MX
6506 if (!btrfs_test_opt(root, DEGRADED))
6507 return ERR_PTR(-ENOENT);
6508
6509 fs_devices = alloc_fs_devices(fsid);
6510 if (IS_ERR(fs_devices))
6511 return fs_devices;
6512
6513 fs_devices->seeding = 1;
6514 fs_devices->opened = 1;
6515 return fs_devices;
2b82032c 6516 }
e4404d6e
YZ
6517
6518 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6519 if (IS_ERR(fs_devices))
6520 return fs_devices;
2b82032c 6521
97288f2c 6522 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 6523 root->fs_info->bdev_holder);
48d28232
JL
6524 if (ret) {
6525 free_fs_devices(fs_devices);
5f375835 6526 fs_devices = ERR_PTR(ret);
2b82032c 6527 goto out;
48d28232 6528 }
2b82032c
YZ
6529
6530 if (!fs_devices->seeding) {
6531 __btrfs_close_devices(fs_devices);
e4404d6e 6532 free_fs_devices(fs_devices);
5f375835 6533 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6534 goto out;
6535 }
6536
6537 fs_devices->seed = root->fs_info->fs_devices->seed;
6538 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 6539out:
5f375835 6540 return fs_devices;
2b82032c
YZ
6541}
6542
0d81ba5d 6543static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
6544 struct extent_buffer *leaf,
6545 struct btrfs_dev_item *dev_item)
6546{
5f375835 6547 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
0b86a832
CM
6548 struct btrfs_device *device;
6549 u64 devid;
6550 int ret;
2b82032c 6551 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
6552 u8 dev_uuid[BTRFS_UUID_SIZE];
6553
0b86a832 6554 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6555 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6556 BTRFS_UUID_SIZE);
1473b24e 6557 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
6558 BTRFS_UUID_SIZE);
6559
6560 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5f375835
MX
6561 fs_devices = open_seed_devices(root, fs_uuid);
6562 if (IS_ERR(fs_devices))
6563 return PTR_ERR(fs_devices);
2b82032c
YZ
6564 }
6565
aa1b8cd4 6566 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5f375835 6567 if (!device) {
e4404d6e 6568 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
6569 return -EIO;
6570
5f375835
MX
6571 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6572 if (!device)
6573 return -ENOMEM;
33b97e43
AJ
6574 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6575 devid, dev_uuid);
5f375835
MX
6576 } else {
6577 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6578 return -EIO;
6579
6580 if(!device->bdev && !device->missing) {
cd02dca5
CM
6581 /*
6582 * this happens when a device that was properly setup
6583 * in the device info lists suddenly goes bad.
6584 * device->bdev is NULL, and so we have to set
6585 * device->missing to one here
6586 */
5f375835 6587 device->fs_devices->missing_devices++;
cd02dca5 6588 device->missing = 1;
2b82032c 6589 }
5f375835
MX
6590
6591 /* Move the device to its own fs_devices */
6592 if (device->fs_devices != fs_devices) {
6593 ASSERT(device->missing);
6594
6595 list_move(&device->dev_list, &fs_devices->devices);
6596 device->fs_devices->num_devices--;
6597 fs_devices->num_devices++;
6598
6599 device->fs_devices->missing_devices--;
6600 fs_devices->missing_devices++;
6601
6602 device->fs_devices = fs_devices;
6603 }
2b82032c
YZ
6604 }
6605
6606 if (device->fs_devices != root->fs_info->fs_devices) {
6607 BUG_ON(device->writeable);
6608 if (device->generation !=
6609 btrfs_device_generation(leaf, dev_item))
6610 return -EINVAL;
6324fbf3 6611 }
0b86a832
CM
6612
6613 fill_device_from_item(leaf, dev_item, device);
dfe25020 6614 device->in_fs_metadata = 1;
63a212ab 6615 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6616 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
6617 spin_lock(&root->fs_info->free_chunk_lock);
6618 root->fs_info->free_chunk_space += device->total_bytes -
6619 device->bytes_used;
6620 spin_unlock(&root->fs_info->free_chunk_lock);
6621 }
0b86a832 6622 ret = 0;
0b86a832
CM
6623 return ret;
6624}
6625
e4404d6e 6626int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 6627{
6c41761f 6628 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 6629 struct extent_buffer *sb;
0b86a832 6630 struct btrfs_disk_key *disk_key;
0b86a832 6631 struct btrfs_chunk *chunk;
1ffb22cf
DS
6632 u8 *array_ptr;
6633 unsigned long sb_array_offset;
84eed90f 6634 int ret = 0;
0b86a832
CM
6635 u32 num_stripes;
6636 u32 array_size;
6637 u32 len = 0;
1ffb22cf 6638 u32 cur_offset;
e06cd3dd 6639 u64 type;
84eed90f 6640 struct btrfs_key key;
0b86a832 6641
a83fffb7
DS
6642 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6643 /*
6644 * This will create extent buffer of nodesize, superblock size is
6645 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6646 * overallocate but we can keep it as-is, only the first page is used.
6647 */
6648 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
c871b0f2
LB
6649 if (IS_ERR(sb))
6650 return PTR_ERR(sb);
4db8c528 6651 set_extent_buffer_uptodate(sb);
85d4e461 6652 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426 6653 /*
01327610 6654 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 6655 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
6656 * pages up-to-date when the page is larger: extent does not cover the
6657 * whole page and consequently check_page_uptodate does not find all
6658 * the page's extents up-to-date (the hole beyond sb),
6659 * write_extent_buffer then triggers a WARN_ON.
6660 *
6661 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6662 * but sb spans only this function. Add an explicit SetPageUptodate call
6663 * to silence the warning eg. on PowerPC 64.
6664 */
09cbfeaf 6665 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6666 SetPageUptodate(sb->pages[0]);
4008c04a 6667
a061fc8d 6668 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6669 array_size = btrfs_super_sys_array_size(super_copy);
6670
1ffb22cf
DS
6671 array_ptr = super_copy->sys_chunk_array;
6672 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6673 cur_offset = 0;
0b86a832 6674
1ffb22cf
DS
6675 while (cur_offset < array_size) {
6676 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6677 len = sizeof(*disk_key);
6678 if (cur_offset + len > array_size)
6679 goto out_short_read;
6680
0b86a832
CM
6681 btrfs_disk_key_to_cpu(&key, disk_key);
6682
1ffb22cf
DS
6683 array_ptr += len;
6684 sb_array_offset += len;
6685 cur_offset += len;
0b86a832 6686
0d81ba5d 6687 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6688 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6689 /*
6690 * At least one btrfs_chunk with one stripe must be
6691 * present, exact stripe count check comes afterwards
6692 */
6693 len = btrfs_chunk_item_size(1);
6694 if (cur_offset + len > array_size)
6695 goto out_short_read;
6696
6697 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
f5cdedd7
DS
6698 if (!num_stripes) {
6699 printk(KERN_ERR
6700 "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6701 num_stripes, cur_offset);
6702 ret = -EIO;
6703 break;
6704 }
6705
e06cd3dd
LB
6706 type = btrfs_chunk_type(sb, chunk);
6707 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6708 btrfs_err(root->fs_info,
6709 "invalid chunk type %llu in sys_array at offset %u",
6710 type, cur_offset);
6711 ret = -EIO;
6712 break;
6713 }
6714
e3540eab
DS
6715 len = btrfs_chunk_item_size(num_stripes);
6716 if (cur_offset + len > array_size)
6717 goto out_short_read;
6718
0d81ba5d 6719 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
6720 if (ret)
6721 break;
0b86a832 6722 } else {
93a3d467
DS
6723 printk(KERN_ERR
6724 "BTRFS: unexpected item type %u in sys_array at offset %u\n",
6725 (u32)key.type, cur_offset);
84eed90f
CM
6726 ret = -EIO;
6727 break;
0b86a832 6728 }
1ffb22cf
DS
6729 array_ptr += len;
6730 sb_array_offset += len;
6731 cur_offset += len;
0b86a832 6732 }
d865177a 6733 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6734 free_extent_buffer_stale(sb);
84eed90f 6735 return ret;
e3540eab
DS
6736
6737out_short_read:
6738 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6739 len, cur_offset);
d865177a 6740 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6741 free_extent_buffer_stale(sb);
e3540eab 6742 return -EIO;
0b86a832
CM
6743}
6744
6745int btrfs_read_chunk_tree(struct btrfs_root *root)
6746{
6747 struct btrfs_path *path;
6748 struct extent_buffer *leaf;
6749 struct btrfs_key key;
6750 struct btrfs_key found_key;
6751 int ret;
6752 int slot;
99e3ecfc 6753 u64 total_dev = 0;
0b86a832
CM
6754
6755 root = root->fs_info->chunk_root;
6756
6757 path = btrfs_alloc_path();
6758 if (!path)
6759 return -ENOMEM;
6760
b367e47f
LZ
6761 mutex_lock(&uuid_mutex);
6762 lock_chunks(root);
6763
395927a9
FDBM
6764 /*
6765 * Read all device items, and then all the chunk items. All
6766 * device items are found before any chunk item (their object id
6767 * is smaller than the lowest possible object id for a chunk
6768 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6769 */
6770 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6771 key.offset = 0;
6772 key.type = 0;
0b86a832 6773 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6774 if (ret < 0)
6775 goto error;
d397712b 6776 while (1) {
0b86a832
CM
6777 leaf = path->nodes[0];
6778 slot = path->slots[0];
6779 if (slot >= btrfs_header_nritems(leaf)) {
6780 ret = btrfs_next_leaf(root, path);
6781 if (ret == 0)
6782 continue;
6783 if (ret < 0)
6784 goto error;
6785 break;
6786 }
6787 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6788 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6789 struct btrfs_dev_item *dev_item;
6790 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6791 struct btrfs_dev_item);
395927a9
FDBM
6792 ret = read_one_dev(root, leaf, dev_item);
6793 if (ret)
6794 goto error;
99e3ecfc 6795 total_dev++;
0b86a832
CM
6796 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6797 struct btrfs_chunk *chunk;
6798 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6799 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6800 if (ret)
6801 goto error;
0b86a832
CM
6802 }
6803 path->slots[0]++;
6804 }
99e3ecfc
LB
6805
6806 /*
6807 * After loading chunk tree, we've got all device information,
6808 * do another round of validation checks.
6809 */
6810 if (total_dev != root->fs_info->fs_devices->total_devices) {
6811 btrfs_err(root->fs_info,
6812 "super_num_devices %llu mismatch with num_devices %llu found here",
6813 btrfs_super_num_devices(root->fs_info->super_copy),
6814 total_dev);
6815 ret = -EINVAL;
6816 goto error;
6817 }
6818 if (btrfs_super_total_bytes(root->fs_info->super_copy) <
6819 root->fs_info->fs_devices->total_rw_bytes) {
6820 btrfs_err(root->fs_info,
6821 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6822 btrfs_super_total_bytes(root->fs_info->super_copy),
6823 root->fs_info->fs_devices->total_rw_bytes);
6824 ret = -EINVAL;
6825 goto error;
6826 }
0b86a832
CM
6827 ret = 0;
6828error:
b367e47f
LZ
6829 unlock_chunks(root);
6830 mutex_unlock(&uuid_mutex);
6831
2b82032c 6832 btrfs_free_path(path);
0b86a832
CM
6833 return ret;
6834}
442a4f63 6835
cb517eab
MX
6836void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6837{
6838 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6839 struct btrfs_device *device;
6840
29cc83f6
LB
6841 while (fs_devices) {
6842 mutex_lock(&fs_devices->device_list_mutex);
6843 list_for_each_entry(device, &fs_devices->devices, dev_list)
6844 device->dev_root = fs_info->dev_root;
6845 mutex_unlock(&fs_devices->device_list_mutex);
6846
6847 fs_devices = fs_devices->seed;
6848 }
cb517eab
MX
6849}
6850
733f4fbb
SB
6851static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6852{
6853 int i;
6854
6855 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6856 btrfs_dev_stat_reset(dev, i);
6857}
6858
6859int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6860{
6861 struct btrfs_key key;
6862 struct btrfs_key found_key;
6863 struct btrfs_root *dev_root = fs_info->dev_root;
6864 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6865 struct extent_buffer *eb;
6866 int slot;
6867 int ret = 0;
6868 struct btrfs_device *device;
6869 struct btrfs_path *path = NULL;
6870 int i;
6871
6872 path = btrfs_alloc_path();
6873 if (!path) {
6874 ret = -ENOMEM;
6875 goto out;
6876 }
6877
6878 mutex_lock(&fs_devices->device_list_mutex);
6879 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6880 int item_size;
6881 struct btrfs_dev_stats_item *ptr;
6882
242e2956
DS
6883 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6884 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6885 key.offset = device->devid;
6886 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6887 if (ret) {
733f4fbb
SB
6888 __btrfs_reset_dev_stats(device);
6889 device->dev_stats_valid = 1;
6890 btrfs_release_path(path);
6891 continue;
6892 }
6893 slot = path->slots[0];
6894 eb = path->nodes[0];
6895 btrfs_item_key_to_cpu(eb, &found_key, slot);
6896 item_size = btrfs_item_size_nr(eb, slot);
6897
6898 ptr = btrfs_item_ptr(eb, slot,
6899 struct btrfs_dev_stats_item);
6900
6901 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6902 if (item_size >= (1 + i) * sizeof(__le64))
6903 btrfs_dev_stat_set(device, i,
6904 btrfs_dev_stats_value(eb, ptr, i));
6905 else
6906 btrfs_dev_stat_reset(device, i);
6907 }
6908
6909 device->dev_stats_valid = 1;
6910 btrfs_dev_stat_print_on_load(device);
6911 btrfs_release_path(path);
6912 }
6913 mutex_unlock(&fs_devices->device_list_mutex);
6914
6915out:
6916 btrfs_free_path(path);
6917 return ret < 0 ? ret : 0;
6918}
6919
6920static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6921 struct btrfs_root *dev_root,
6922 struct btrfs_device *device)
6923{
6924 struct btrfs_path *path;
6925 struct btrfs_key key;
6926 struct extent_buffer *eb;
6927 struct btrfs_dev_stats_item *ptr;
6928 int ret;
6929 int i;
6930
242e2956
DS
6931 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6932 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6933 key.offset = device->devid;
6934
6935 path = btrfs_alloc_path();
6936 BUG_ON(!path);
6937 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6938 if (ret < 0) {
ecaeb14b
DS
6939 btrfs_warn_in_rcu(dev_root->fs_info,
6940 "error %d while searching for dev_stats item for device %s",
606686ee 6941 ret, rcu_str_deref(device->name));
733f4fbb
SB
6942 goto out;
6943 }
6944
6945 if (ret == 0 &&
6946 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6947 /* need to delete old one and insert a new one */
6948 ret = btrfs_del_item(trans, dev_root, path);
6949 if (ret != 0) {
ecaeb14b
DS
6950 btrfs_warn_in_rcu(dev_root->fs_info,
6951 "delete too small dev_stats item for device %s failed %d",
606686ee 6952 rcu_str_deref(device->name), ret);
733f4fbb
SB
6953 goto out;
6954 }
6955 ret = 1;
6956 }
6957
6958 if (ret == 1) {
6959 /* need to insert a new item */
6960 btrfs_release_path(path);
6961 ret = btrfs_insert_empty_item(trans, dev_root, path,
6962 &key, sizeof(*ptr));
6963 if (ret < 0) {
ecaeb14b
DS
6964 btrfs_warn_in_rcu(dev_root->fs_info,
6965 "insert dev_stats item for device %s failed %d",
6966 rcu_str_deref(device->name), ret);
733f4fbb
SB
6967 goto out;
6968 }
6969 }
6970
6971 eb = path->nodes[0];
6972 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6973 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6974 btrfs_set_dev_stats_value(eb, ptr, i,
6975 btrfs_dev_stat_read(device, i));
6976 btrfs_mark_buffer_dirty(eb);
6977
6978out:
6979 btrfs_free_path(path);
6980 return ret;
6981}
6982
6983/*
6984 * called from commit_transaction. Writes all changed device stats to disk.
6985 */
6986int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6987 struct btrfs_fs_info *fs_info)
6988{
6989 struct btrfs_root *dev_root = fs_info->dev_root;
6990 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6991 struct btrfs_device *device;
addc3fa7 6992 int stats_cnt;
733f4fbb
SB
6993 int ret = 0;
6994
6995 mutex_lock(&fs_devices->device_list_mutex);
6996 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 6997 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
6998 continue;
6999
addc3fa7 7000 stats_cnt = atomic_read(&device->dev_stats_ccnt);
733f4fbb
SB
7001 ret = update_dev_stat_item(trans, dev_root, device);
7002 if (!ret)
addc3fa7 7003 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7004 }
7005 mutex_unlock(&fs_devices->device_list_mutex);
7006
7007 return ret;
7008}
7009
442a4f63
SB
7010void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7011{
7012 btrfs_dev_stat_inc(dev, index);
7013 btrfs_dev_stat_print_on_error(dev);
7014}
7015
48a3b636 7016static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7017{
733f4fbb
SB
7018 if (!dev->dev_stats_valid)
7019 return;
b14af3b4
DS
7020 btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
7021 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7022 rcu_str_deref(dev->name),
442a4f63
SB
7023 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7024 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7025 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7026 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7027 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7028}
c11d2c23 7029
733f4fbb
SB
7030static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7031{
a98cdb85
SB
7032 int i;
7033
7034 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7035 if (btrfs_dev_stat_read(dev, i) != 0)
7036 break;
7037 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7038 return; /* all values == 0, suppress message */
7039
ecaeb14b
DS
7040 btrfs_info_in_rcu(dev->dev_root->fs_info,
7041 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7042 rcu_str_deref(dev->name),
733f4fbb
SB
7043 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7044 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7045 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7046 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7047 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7048}
7049
c11d2c23 7050int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 7051 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
7052{
7053 struct btrfs_device *dev;
7054 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7055 int i;
7056
7057 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 7058 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
7059 mutex_unlock(&fs_devices->device_list_mutex);
7060
7061 if (!dev) {
efe120a0 7062 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
c11d2c23 7063 return -ENODEV;
733f4fbb 7064 } else if (!dev->dev_stats_valid) {
efe120a0 7065 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7066 return -ENODEV;
b27f7c0c 7067 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7068 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7069 if (stats->nr_items > i)
7070 stats->values[i] =
7071 btrfs_dev_stat_read_and_reset(dev, i);
7072 else
7073 btrfs_dev_stat_reset(dev, i);
7074 }
7075 } else {
7076 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7077 if (stats->nr_items > i)
7078 stats->values[i] = btrfs_dev_stat_read(dev, i);
7079 }
7080 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7081 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7082 return 0;
7083}
a8a6dab7 7084
12b1c263 7085void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
a8a6dab7
SB
7086{
7087 struct buffer_head *bh;
7088 struct btrfs_super_block *disk_super;
12b1c263 7089 int copy_num;
a8a6dab7 7090
12b1c263
AJ
7091 if (!bdev)
7092 return;
a8a6dab7 7093
12b1c263
AJ
7094 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7095 copy_num++) {
a8a6dab7 7096
12b1c263
AJ
7097 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7098 continue;
7099
7100 disk_super = (struct btrfs_super_block *)bh->b_data;
7101
7102 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7103 set_buffer_dirty(bh);
7104 sync_dirty_buffer(bh);
7105 brelse(bh);
7106 }
7107
7108 /* Notify udev that device has changed */
7109 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7110
7111 /* Update ctime/mtime for device path for libblkid */
7112 update_dev_time(device_path);
a8a6dab7 7113}
935e5cc9
MX
7114
7115/*
7116 * Update the size of all devices, which is used for writing out the
7117 * super blocks.
7118 */
7119void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7120{
7121 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7122 struct btrfs_device *curr, *next;
7123
7124 if (list_empty(&fs_devices->resized_devices))
7125 return;
7126
7127 mutex_lock(&fs_devices->device_list_mutex);
7128 lock_chunks(fs_info->dev_root);
7129 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7130 resized_list) {
7131 list_del_init(&curr->resized_list);
7132 curr->commit_total_bytes = curr->disk_total_bytes;
7133 }
7134 unlock_chunks(fs_info->dev_root);
7135 mutex_unlock(&fs_devices->device_list_mutex);
7136}
ce7213c7
MX
7137
7138/* Must be invoked during the transaction commit */
7139void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
7140 struct btrfs_transaction *transaction)
7141{
7142 struct extent_map *em;
7143 struct map_lookup *map;
7144 struct btrfs_device *dev;
7145 int i;
7146
7147 if (list_empty(&transaction->pending_chunks))
7148 return;
7149
7150 /* In order to kick the device replace finish process */
7151 lock_chunks(root);
7152 list_for_each_entry(em, &transaction->pending_chunks, list) {
95617d69 7153 map = em->map_lookup;
ce7213c7
MX
7154
7155 for (i = 0; i < map->num_stripes; i++) {
7156 dev = map->stripes[i].dev;
7157 dev->commit_bytes_used = dev->bytes_used;
7158 }
7159 }
7160 unlock_chunks(root);
7161}
5a13f430
AJ
7162
7163void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7164{
7165 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7166 while (fs_devices) {
7167 fs_devices->fs_info = fs_info;
7168 fs_devices = fs_devices->seed;
7169 }
7170}
7171
7172void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7173{
7174 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7175 while (fs_devices) {
7176 fs_devices->fs_info = NULL;
7177 fs_devices = fs_devices->seed;
7178 }
7179}
This page took 0.983286 seconds and 5 git commands to generate.