btrfs: create helper btrfs_find_device_by_user_input()
[deliverable/linux.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3 28#include <linux/raid/pq.h>
803b2f54 29#include <linux/semaphore.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
af902047
ZL
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
8789f4fe 51 .tolerated_failures = 1,
af902047
ZL
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
8789f4fe 60 .tolerated_failures = 1,
af902047
ZL
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
8789f4fe 69 .tolerated_failures = 0,
af902047
ZL
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
8789f4fe 78 .tolerated_failures = 0,
af902047
ZL
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
8789f4fe 87 .tolerated_failures = 0,
af902047
ZL
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
8789f4fe 96 .tolerated_failures = 1,
af902047
ZL
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
8789f4fe 105 .tolerated_failures = 2,
af902047
ZL
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
fb75d857 111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
af902047
ZL
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
2b82032c
YZ
121static int init_first_rw_device(struct btrfs_trans_handle *trans,
122 struct btrfs_root *root,
123 struct btrfs_device *device);
124static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 125static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 126static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 127static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
87ad58c5 128static void btrfs_close_one_device(struct btrfs_device *device);
2b82032c 129
67a2c45e 130DEFINE_MUTEX(uuid_mutex);
8a4b83cc 131static LIST_HEAD(fs_uuids);
c73eccf7
AJ
132struct list_head *btrfs_get_fs_uuids(void)
133{
134 return &fs_uuids;
135}
8a4b83cc 136
2208a378
ID
137static struct btrfs_fs_devices *__alloc_fs_devices(void)
138{
139 struct btrfs_fs_devices *fs_devs;
140
78f2c9e6 141 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
142 if (!fs_devs)
143 return ERR_PTR(-ENOMEM);
144
145 mutex_init(&fs_devs->device_list_mutex);
146
147 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 148 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
149 INIT_LIST_HEAD(&fs_devs->alloc_list);
150 INIT_LIST_HEAD(&fs_devs->list);
151
152 return fs_devs;
153}
154
155/**
156 * alloc_fs_devices - allocate struct btrfs_fs_devices
157 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
158 * generated.
159 *
160 * Return: a pointer to a new &struct btrfs_fs_devices on success;
161 * ERR_PTR() on error. Returned struct is not linked onto any lists and
162 * can be destroyed with kfree() right away.
163 */
164static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
165{
166 struct btrfs_fs_devices *fs_devs;
167
168 fs_devs = __alloc_fs_devices();
169 if (IS_ERR(fs_devs))
170 return fs_devs;
171
172 if (fsid)
173 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
174 else
175 generate_random_uuid(fs_devs->fsid);
176
177 return fs_devs;
178}
179
e4404d6e
YZ
180static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
181{
182 struct btrfs_device *device;
183 WARN_ON(fs_devices->opened);
184 while (!list_empty(&fs_devices->devices)) {
185 device = list_entry(fs_devices->devices.next,
186 struct btrfs_device, dev_list);
187 list_del(&device->dev_list);
606686ee 188 rcu_string_free(device->name);
e4404d6e
YZ
189 kfree(device);
190 }
191 kfree(fs_devices);
192}
193
b8b8ff59
LC
194static void btrfs_kobject_uevent(struct block_device *bdev,
195 enum kobject_action action)
196{
197 int ret;
198
199 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
200 if (ret)
efe120a0 201 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
202 action,
203 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
204 &disk_to_dev(bdev->bd_disk)->kobj);
205}
206
143bede5 207void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
208{
209 struct btrfs_fs_devices *fs_devices;
8a4b83cc 210
2b82032c
YZ
211 while (!list_empty(&fs_uuids)) {
212 fs_devices = list_entry(fs_uuids.next,
213 struct btrfs_fs_devices, list);
214 list_del(&fs_devices->list);
e4404d6e 215 free_fs_devices(fs_devices);
8a4b83cc 216 }
8a4b83cc
CM
217}
218
12bd2fc0
ID
219static struct btrfs_device *__alloc_device(void)
220{
221 struct btrfs_device *dev;
222
78f2c9e6 223 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
224 if (!dev)
225 return ERR_PTR(-ENOMEM);
226
227 INIT_LIST_HEAD(&dev->dev_list);
228 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 229 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
230
231 spin_lock_init(&dev->io_lock);
232
233 spin_lock_init(&dev->reada_lock);
234 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 235 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 236 btrfs_device_data_ordered_init(dev);
d0164adc
MG
237 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
238 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
12bd2fc0
ID
239
240 return dev;
241}
242
a1b32a59
CM
243static noinline struct btrfs_device *__find_device(struct list_head *head,
244 u64 devid, u8 *uuid)
8a4b83cc
CM
245{
246 struct btrfs_device *dev;
8a4b83cc 247
c6e30871 248 list_for_each_entry(dev, head, dev_list) {
a443755f 249 if (dev->devid == devid &&
8f18cf13 250 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 251 return dev;
a443755f 252 }
8a4b83cc
CM
253 }
254 return NULL;
255}
256
a1b32a59 257static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 258{
8a4b83cc
CM
259 struct btrfs_fs_devices *fs_devices;
260
c6e30871 261 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
262 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
263 return fs_devices;
264 }
265 return NULL;
266}
267
beaf8ab3
SB
268static int
269btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
270 int flush, struct block_device **bdev,
271 struct buffer_head **bh)
272{
273 int ret;
274
275 *bdev = blkdev_get_by_path(device_path, flags, holder);
276
277 if (IS_ERR(*bdev)) {
278 ret = PTR_ERR(*bdev);
beaf8ab3
SB
279 goto error;
280 }
281
282 if (flush)
283 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
284 ret = set_blocksize(*bdev, 4096);
285 if (ret) {
286 blkdev_put(*bdev, flags);
287 goto error;
288 }
289 invalidate_bdev(*bdev);
290 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
291 if (IS_ERR(*bh)) {
292 ret = PTR_ERR(*bh);
beaf8ab3
SB
293 blkdev_put(*bdev, flags);
294 goto error;
295 }
296
297 return 0;
298
299error:
300 *bdev = NULL;
301 *bh = NULL;
302 return ret;
303}
304
ffbd517d
CM
305static void requeue_list(struct btrfs_pending_bios *pending_bios,
306 struct bio *head, struct bio *tail)
307{
308
309 struct bio *old_head;
310
311 old_head = pending_bios->head;
312 pending_bios->head = head;
313 if (pending_bios->tail)
314 tail->bi_next = old_head;
315 else
316 pending_bios->tail = tail;
317}
318
8b712842
CM
319/*
320 * we try to collect pending bios for a device so we don't get a large
321 * number of procs sending bios down to the same device. This greatly
322 * improves the schedulers ability to collect and merge the bios.
323 *
324 * But, it also turns into a long list of bios to process and that is sure
325 * to eventually make the worker thread block. The solution here is to
326 * make some progress and then put this work struct back at the end of
327 * the list if the block device is congested. This way, multiple devices
328 * can make progress from a single worker thread.
329 */
143bede5 330static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
331{
332 struct bio *pending;
333 struct backing_dev_info *bdi;
b64a2851 334 struct btrfs_fs_info *fs_info;
ffbd517d 335 struct btrfs_pending_bios *pending_bios;
8b712842
CM
336 struct bio *tail;
337 struct bio *cur;
338 int again = 0;
ffbd517d 339 unsigned long num_run;
d644d8a1 340 unsigned long batch_run = 0;
b64a2851 341 unsigned long limit;
b765ead5 342 unsigned long last_waited = 0;
d84275c9 343 int force_reg = 0;
0e588859 344 int sync_pending = 0;
211588ad
CM
345 struct blk_plug plug;
346
347 /*
348 * this function runs all the bios we've collected for
349 * a particular device. We don't want to wander off to
350 * another device without first sending all of these down.
351 * So, setup a plug here and finish it off before we return
352 */
353 blk_start_plug(&plug);
8b712842 354
bedf762b 355 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
356 fs_info = device->dev_root->fs_info;
357 limit = btrfs_async_submit_limit(fs_info);
358 limit = limit * 2 / 3;
359
8b712842
CM
360loop:
361 spin_lock(&device->io_lock);
362
a6837051 363loop_lock:
d84275c9 364 num_run = 0;
ffbd517d 365
8b712842
CM
366 /* take all the bios off the list at once and process them
367 * later on (without the lock held). But, remember the
368 * tail and other pointers so the bios can be properly reinserted
369 * into the list if we hit congestion
370 */
d84275c9 371 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 372 pending_bios = &device->pending_sync_bios;
d84275c9
CM
373 force_reg = 1;
374 } else {
ffbd517d 375 pending_bios = &device->pending_bios;
d84275c9
CM
376 force_reg = 0;
377 }
ffbd517d
CM
378
379 pending = pending_bios->head;
380 tail = pending_bios->tail;
8b712842 381 WARN_ON(pending && !tail);
8b712842
CM
382
383 /*
384 * if pending was null this time around, no bios need processing
385 * at all and we can stop. Otherwise it'll loop back up again
386 * and do an additional check so no bios are missed.
387 *
388 * device->running_pending is used to synchronize with the
389 * schedule_bio code.
390 */
ffbd517d
CM
391 if (device->pending_sync_bios.head == NULL &&
392 device->pending_bios.head == NULL) {
8b712842
CM
393 again = 0;
394 device->running_pending = 0;
ffbd517d
CM
395 } else {
396 again = 1;
397 device->running_pending = 1;
8b712842 398 }
ffbd517d
CM
399
400 pending_bios->head = NULL;
401 pending_bios->tail = NULL;
402
8b712842
CM
403 spin_unlock(&device->io_lock);
404
d397712b 405 while (pending) {
ffbd517d
CM
406
407 rmb();
d84275c9
CM
408 /* we want to work on both lists, but do more bios on the
409 * sync list than the regular list
410 */
411 if ((num_run > 32 &&
412 pending_bios != &device->pending_sync_bios &&
413 device->pending_sync_bios.head) ||
414 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
415 device->pending_bios.head)) {
ffbd517d
CM
416 spin_lock(&device->io_lock);
417 requeue_list(pending_bios, pending, tail);
418 goto loop_lock;
419 }
420
8b712842
CM
421 cur = pending;
422 pending = pending->bi_next;
423 cur->bi_next = NULL;
b64a2851 424
ee863954
DS
425 /*
426 * atomic_dec_return implies a barrier for waitqueue_active
427 */
66657b31 428 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
429 waitqueue_active(&fs_info->async_submit_wait))
430 wake_up(&fs_info->async_submit_wait);
492bb6de 431
dac56212 432 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 433
2ab1ba68
CM
434 /*
435 * if we're doing the sync list, record that our
436 * plug has some sync requests on it
437 *
438 * If we're doing the regular list and there are
439 * sync requests sitting around, unplug before
440 * we add more
441 */
442 if (pending_bios == &device->pending_sync_bios) {
443 sync_pending = 1;
444 } else if (sync_pending) {
445 blk_finish_plug(&plug);
446 blk_start_plug(&plug);
447 sync_pending = 0;
448 }
449
21adbd5c 450 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
451 num_run++;
452 batch_run++;
853d8ec4
DS
453
454 cond_resched();
8b712842
CM
455
456 /*
457 * we made progress, there is more work to do and the bdi
458 * is now congested. Back off and let other work structs
459 * run instead
460 */
57fd5a5f 461 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 462 fs_info->fs_devices->open_devices > 1) {
b765ead5 463 struct io_context *ioc;
8b712842 464
b765ead5
CM
465 ioc = current->io_context;
466
467 /*
468 * the main goal here is that we don't want to
469 * block if we're going to be able to submit
470 * more requests without blocking.
471 *
472 * This code does two great things, it pokes into
473 * the elevator code from a filesystem _and_
474 * it makes assumptions about how batching works.
475 */
476 if (ioc && ioc->nr_batch_requests > 0 &&
477 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
478 (last_waited == 0 ||
479 ioc->last_waited == last_waited)) {
480 /*
481 * we want to go through our batch of
482 * requests and stop. So, we copy out
483 * the ioc->last_waited time and test
484 * against it before looping
485 */
486 last_waited = ioc->last_waited;
853d8ec4 487 cond_resched();
b765ead5
CM
488 continue;
489 }
8b712842 490 spin_lock(&device->io_lock);
ffbd517d 491 requeue_list(pending_bios, pending, tail);
a6837051 492 device->running_pending = 1;
8b712842
CM
493
494 spin_unlock(&device->io_lock);
a8c93d4e
QW
495 btrfs_queue_work(fs_info->submit_workers,
496 &device->work);
8b712842
CM
497 goto done;
498 }
d85c8a6f
CM
499 /* unplug every 64 requests just for good measure */
500 if (batch_run % 64 == 0) {
501 blk_finish_plug(&plug);
502 blk_start_plug(&plug);
503 sync_pending = 0;
504 }
8b712842 505 }
ffbd517d 506
51684082
CM
507 cond_resched();
508 if (again)
509 goto loop;
510
511 spin_lock(&device->io_lock);
512 if (device->pending_bios.head || device->pending_sync_bios.head)
513 goto loop_lock;
514 spin_unlock(&device->io_lock);
515
8b712842 516done:
211588ad 517 blk_finish_plug(&plug);
8b712842
CM
518}
519
b2950863 520static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
521{
522 struct btrfs_device *device;
523
524 device = container_of(work, struct btrfs_device, work);
525 run_scheduled_bios(device);
526}
527
4fde46f0
AJ
528
529void btrfs_free_stale_device(struct btrfs_device *cur_dev)
530{
531 struct btrfs_fs_devices *fs_devs;
532 struct btrfs_device *dev;
533
534 if (!cur_dev->name)
535 return;
536
537 list_for_each_entry(fs_devs, &fs_uuids, list) {
538 int del = 1;
539
540 if (fs_devs->opened)
541 continue;
542 if (fs_devs->seeding)
543 continue;
544
545 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
546
547 if (dev == cur_dev)
548 continue;
549 if (!dev->name)
550 continue;
551
552 /*
553 * Todo: This won't be enough. What if the same device
554 * comes back (with new uuid and) with its mapper path?
555 * But for now, this does help as mostly an admin will
556 * either use mapper or non mapper path throughout.
557 */
558 rcu_read_lock();
559 del = strcmp(rcu_str_deref(dev->name),
560 rcu_str_deref(cur_dev->name));
561 rcu_read_unlock();
562 if (!del)
563 break;
564 }
565
566 if (!del) {
567 /* delete the stale device */
568 if (fs_devs->num_devices == 1) {
569 btrfs_sysfs_remove_fsid(fs_devs);
570 list_del(&fs_devs->list);
571 free_fs_devices(fs_devs);
572 } else {
573 fs_devs->num_devices--;
574 list_del(&dev->dev_list);
575 rcu_string_free(dev->name);
576 kfree(dev);
577 }
578 break;
579 }
580 }
581}
582
60999ca4
DS
583/*
584 * Add new device to list of registered devices
585 *
586 * Returns:
587 * 1 - first time device is seen
588 * 0 - device already known
589 * < 0 - error
590 */
a1b32a59 591static noinline int device_list_add(const char *path,
8a4b83cc
CM
592 struct btrfs_super_block *disk_super,
593 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
594{
595 struct btrfs_device *device;
596 struct btrfs_fs_devices *fs_devices;
606686ee 597 struct rcu_string *name;
60999ca4 598 int ret = 0;
8a4b83cc
CM
599 u64 found_transid = btrfs_super_generation(disk_super);
600
601 fs_devices = find_fsid(disk_super->fsid);
602 if (!fs_devices) {
2208a378
ID
603 fs_devices = alloc_fs_devices(disk_super->fsid);
604 if (IS_ERR(fs_devices))
605 return PTR_ERR(fs_devices);
606
8a4b83cc 607 list_add(&fs_devices->list, &fs_uuids);
2208a378 608
8a4b83cc
CM
609 device = NULL;
610 } else {
a443755f
CM
611 device = __find_device(&fs_devices->devices, devid,
612 disk_super->dev_item.uuid);
8a4b83cc 613 }
443f24fe 614
8a4b83cc 615 if (!device) {
2b82032c
YZ
616 if (fs_devices->opened)
617 return -EBUSY;
618
12bd2fc0
ID
619 device = btrfs_alloc_device(NULL, &devid,
620 disk_super->dev_item.uuid);
621 if (IS_ERR(device)) {
8a4b83cc 622 /* we can safely leave the fs_devices entry around */
12bd2fc0 623 return PTR_ERR(device);
8a4b83cc 624 }
606686ee
JB
625
626 name = rcu_string_strdup(path, GFP_NOFS);
627 if (!name) {
8a4b83cc
CM
628 kfree(device);
629 return -ENOMEM;
630 }
606686ee 631 rcu_assign_pointer(device->name, name);
90519d66 632
e5e9a520 633 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 634 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 635 fs_devices->num_devices++;
e5e9a520
CM
636 mutex_unlock(&fs_devices->device_list_mutex);
637
60999ca4 638 ret = 1;
2b82032c 639 device->fs_devices = fs_devices;
606686ee 640 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
641 /*
642 * When FS is already mounted.
643 * 1. If you are here and if the device->name is NULL that
644 * means this device was missing at time of FS mount.
645 * 2. If you are here and if the device->name is different
646 * from 'path' that means either
647 * a. The same device disappeared and reappeared with
648 * different name. or
649 * b. The missing-disk-which-was-replaced, has
650 * reappeared now.
651 *
652 * We must allow 1 and 2a above. But 2b would be a spurious
653 * and unintentional.
654 *
655 * Further in case of 1 and 2a above, the disk at 'path'
656 * would have missed some transaction when it was away and
657 * in case of 2a the stale bdev has to be updated as well.
658 * 2b must not be allowed at all time.
659 */
660
661 /*
0f23ae74
CM
662 * For now, we do allow update to btrfs_fs_device through the
663 * btrfs dev scan cli after FS has been mounted. We're still
664 * tracking a problem where systems fail mount by subvolume id
665 * when we reject replacement on a mounted FS.
b96de000 666 */
0f23ae74 667 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
668 /*
669 * That is if the FS is _not_ mounted and if you
670 * are here, that means there is more than one
671 * disk with same uuid and devid.We keep the one
672 * with larger generation number or the last-in if
673 * generation are equal.
674 */
0f23ae74 675 return -EEXIST;
77bdae4d 676 }
b96de000 677
606686ee 678 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
679 if (!name)
680 return -ENOMEM;
606686ee
JB
681 rcu_string_free(device->name);
682 rcu_assign_pointer(device->name, name);
cd02dca5
CM
683 if (device->missing) {
684 fs_devices->missing_devices--;
685 device->missing = 0;
686 }
8a4b83cc
CM
687 }
688
77bdae4d
AJ
689 /*
690 * Unmount does not free the btrfs_device struct but would zero
691 * generation along with most of the other members. So just update
692 * it back. We need it to pick the disk with largest generation
693 * (as above).
694 */
695 if (!fs_devices->opened)
696 device->generation = found_transid;
697
4fde46f0
AJ
698 /*
699 * if there is new btrfs on an already registered device,
700 * then remove the stale device entry.
701 */
702 btrfs_free_stale_device(device);
703
8a4b83cc 704 *fs_devices_ret = fs_devices;
60999ca4
DS
705
706 return ret;
8a4b83cc
CM
707}
708
e4404d6e
YZ
709static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
710{
711 struct btrfs_fs_devices *fs_devices;
712 struct btrfs_device *device;
713 struct btrfs_device *orig_dev;
714
2208a378
ID
715 fs_devices = alloc_fs_devices(orig->fsid);
716 if (IS_ERR(fs_devices))
717 return fs_devices;
e4404d6e 718
adbbb863 719 mutex_lock(&orig->device_list_mutex);
02db0844 720 fs_devices->total_devices = orig->total_devices;
e4404d6e 721
46224705 722 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 723 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
724 struct rcu_string *name;
725
12bd2fc0
ID
726 device = btrfs_alloc_device(NULL, &orig_dev->devid,
727 orig_dev->uuid);
728 if (IS_ERR(device))
e4404d6e
YZ
729 goto error;
730
606686ee
JB
731 /*
732 * This is ok to do without rcu read locked because we hold the
733 * uuid mutex so nothing we touch in here is going to disappear.
734 */
e755f780 735 if (orig_dev->name) {
78f2c9e6
DS
736 name = rcu_string_strdup(orig_dev->name->str,
737 GFP_KERNEL);
e755f780
AJ
738 if (!name) {
739 kfree(device);
740 goto error;
741 }
742 rcu_assign_pointer(device->name, name);
fd2696f3 743 }
e4404d6e 744
e4404d6e
YZ
745 list_add(&device->dev_list, &fs_devices->devices);
746 device->fs_devices = fs_devices;
747 fs_devices->num_devices++;
748 }
adbbb863 749 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
750 return fs_devices;
751error:
adbbb863 752 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
753 free_fs_devices(fs_devices);
754 return ERR_PTR(-ENOMEM);
755}
756
9eaed21e 757void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 758{
c6e30871 759 struct btrfs_device *device, *next;
443f24fe 760 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 761
dfe25020
CM
762 mutex_lock(&uuid_mutex);
763again:
46224705 764 /* This is the initialized path, it is safe to release the devices. */
c6e30871 765 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 766 if (device->in_fs_metadata) {
63a212ab 767 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
768 (!latest_dev ||
769 device->generation > latest_dev->generation)) {
770 latest_dev = device;
a6b0d5c8 771 }
2b82032c 772 continue;
a6b0d5c8 773 }
2b82032c 774
8dabb742
SB
775 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
776 /*
777 * In the first step, keep the device which has
778 * the correct fsid and the devid that is used
779 * for the dev_replace procedure.
780 * In the second step, the dev_replace state is
781 * read from the device tree and it is known
782 * whether the procedure is really active or
783 * not, which means whether this device is
784 * used or whether it should be removed.
785 */
786 if (step == 0 || device->is_tgtdev_for_dev_replace) {
787 continue;
788 }
789 }
2b82032c 790 if (device->bdev) {
d4d77629 791 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
792 device->bdev = NULL;
793 fs_devices->open_devices--;
794 }
795 if (device->writeable) {
796 list_del_init(&device->dev_alloc_list);
797 device->writeable = 0;
8dabb742
SB
798 if (!device->is_tgtdev_for_dev_replace)
799 fs_devices->rw_devices--;
2b82032c 800 }
e4404d6e
YZ
801 list_del_init(&device->dev_list);
802 fs_devices->num_devices--;
606686ee 803 rcu_string_free(device->name);
e4404d6e 804 kfree(device);
dfe25020 805 }
2b82032c
YZ
806
807 if (fs_devices->seed) {
808 fs_devices = fs_devices->seed;
2b82032c
YZ
809 goto again;
810 }
811
443f24fe 812 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 813
dfe25020 814 mutex_unlock(&uuid_mutex);
dfe25020 815}
a0af469b 816
1f78160c
XG
817static void __free_device(struct work_struct *work)
818{
819 struct btrfs_device *device;
820
821 device = container_of(work, struct btrfs_device, rcu_work);
822
823 if (device->bdev)
824 blkdev_put(device->bdev, device->mode);
825
606686ee 826 rcu_string_free(device->name);
1f78160c
XG
827 kfree(device);
828}
829
830static void free_device(struct rcu_head *head)
831{
832 struct btrfs_device *device;
833
834 device = container_of(head, struct btrfs_device, rcu);
835
836 INIT_WORK(&device->rcu_work, __free_device);
837 schedule_work(&device->rcu_work);
838}
839
2b82032c 840static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 841{
2037a093 842 struct btrfs_device *device, *tmp;
e4404d6e 843
2b82032c
YZ
844 if (--fs_devices->opened > 0)
845 return 0;
8a4b83cc 846
c9513edb 847 mutex_lock(&fs_devices->device_list_mutex);
2037a093 848 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
f190aa47 849 btrfs_close_one_device(device);
8a4b83cc 850 }
c9513edb
XG
851 mutex_unlock(&fs_devices->device_list_mutex);
852
e4404d6e
YZ
853 WARN_ON(fs_devices->open_devices);
854 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
855 fs_devices->opened = 0;
856 fs_devices->seeding = 0;
2b82032c 857
8a4b83cc
CM
858 return 0;
859}
860
2b82032c
YZ
861int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
862{
e4404d6e 863 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
864 int ret;
865
866 mutex_lock(&uuid_mutex);
867 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
868 if (!fs_devices->opened) {
869 seed_devices = fs_devices->seed;
870 fs_devices->seed = NULL;
871 }
2b82032c 872 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
873
874 while (seed_devices) {
875 fs_devices = seed_devices;
876 seed_devices = fs_devices->seed;
877 __btrfs_close_devices(fs_devices);
878 free_fs_devices(fs_devices);
879 }
bc178622
ES
880 /*
881 * Wait for rcu kworkers under __btrfs_close_devices
882 * to finish all blkdev_puts so device is really
883 * free when umount is done.
884 */
885 rcu_barrier();
2b82032c
YZ
886 return ret;
887}
888
e4404d6e
YZ
889static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
890 fmode_t flags, void *holder)
8a4b83cc 891{
d5e2003c 892 struct request_queue *q;
8a4b83cc
CM
893 struct block_device *bdev;
894 struct list_head *head = &fs_devices->devices;
8a4b83cc 895 struct btrfs_device *device;
443f24fe 896 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
897 struct buffer_head *bh;
898 struct btrfs_super_block *disk_super;
a0af469b 899 u64 devid;
2b82032c 900 int seeding = 1;
a0af469b 901 int ret = 0;
8a4b83cc 902
d4d77629
TH
903 flags |= FMODE_EXCL;
904
c6e30871 905 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
906 if (device->bdev)
907 continue;
dfe25020
CM
908 if (!device->name)
909 continue;
910
f63e0cca
ES
911 /* Just open everything we can; ignore failures here */
912 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
913 &bdev, &bh))
beaf8ab3 914 continue;
a0af469b
CM
915
916 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 917 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
918 if (devid != device->devid)
919 goto error_brelse;
920
2b82032c
YZ
921 if (memcmp(device->uuid, disk_super->dev_item.uuid,
922 BTRFS_UUID_SIZE))
923 goto error_brelse;
924
925 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
926 if (!latest_dev ||
927 device->generation > latest_dev->generation)
928 latest_dev = device;
a0af469b 929
2b82032c
YZ
930 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
931 device->writeable = 0;
932 } else {
933 device->writeable = !bdev_read_only(bdev);
934 seeding = 0;
935 }
936
d5e2003c 937 q = bdev_get_queue(bdev);
90180da4 938 if (blk_queue_discard(q))
d5e2003c 939 device->can_discard = 1;
d5e2003c 940
8a4b83cc 941 device->bdev = bdev;
dfe25020 942 device->in_fs_metadata = 0;
15916de8
CM
943 device->mode = flags;
944
c289811c
CM
945 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
946 fs_devices->rotating = 1;
947
a0af469b 948 fs_devices->open_devices++;
55e50e45
ID
949 if (device->writeable &&
950 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
951 fs_devices->rw_devices++;
952 list_add(&device->dev_alloc_list,
953 &fs_devices->alloc_list);
954 }
4f6c9328 955 brelse(bh);
a0af469b 956 continue;
a061fc8d 957
a0af469b
CM
958error_brelse:
959 brelse(bh);
d4d77629 960 blkdev_put(bdev, flags);
a0af469b 961 continue;
8a4b83cc 962 }
a0af469b 963 if (fs_devices->open_devices == 0) {
20bcd649 964 ret = -EINVAL;
a0af469b
CM
965 goto out;
966 }
2b82032c
YZ
967 fs_devices->seeding = seeding;
968 fs_devices->opened = 1;
443f24fe 969 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 970 fs_devices->total_rw_bytes = 0;
a0af469b 971out:
2b82032c
YZ
972 return ret;
973}
974
975int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 976 fmode_t flags, void *holder)
2b82032c
YZ
977{
978 int ret;
979
980 mutex_lock(&uuid_mutex);
981 if (fs_devices->opened) {
e4404d6e
YZ
982 fs_devices->opened++;
983 ret = 0;
2b82032c 984 } else {
15916de8 985 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 986 }
8a4b83cc 987 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
988 return ret;
989}
990
6cf86a00
AJ
991void btrfs_release_disk_super(struct page *page)
992{
993 kunmap(page);
994 put_page(page);
995}
996
997int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
998 struct page **page, struct btrfs_super_block **disk_super)
999{
1000 void *p;
1001 pgoff_t index;
1002
1003 /* make sure our super fits in the device */
1004 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1005 return 1;
1006
1007 /* make sure our super fits in the page */
1008 if (sizeof(**disk_super) > PAGE_SIZE)
1009 return 1;
1010
1011 /* make sure our super doesn't straddle pages on disk */
1012 index = bytenr >> PAGE_SHIFT;
1013 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1014 return 1;
1015
1016 /* pull in the page with our super */
1017 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1018 index, GFP_KERNEL);
1019
1020 if (IS_ERR_OR_NULL(*page))
1021 return 1;
1022
1023 p = kmap(*page);
1024
1025 /* align our pointer to the offset of the super block */
1026 *disk_super = p + (bytenr & ~PAGE_MASK);
1027
1028 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1029 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1030 btrfs_release_disk_super(*page);
1031 return 1;
1032 }
1033
1034 if ((*disk_super)->label[0] &&
1035 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1036 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1037
1038 return 0;
1039}
1040
6f60cbd3
DS
1041/*
1042 * Look for a btrfs signature on a device. This may be called out of the mount path
1043 * and we are not allowed to call set_blocksize during the scan. The superblock
1044 * is read via pagecache
1045 */
97288f2c 1046int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
1047 struct btrfs_fs_devices **fs_devices_ret)
1048{
1049 struct btrfs_super_block *disk_super;
1050 struct block_device *bdev;
6f60cbd3 1051 struct page *page;
6f60cbd3 1052 int ret = -EINVAL;
8a4b83cc 1053 u64 devid;
f2984462 1054 u64 transid;
02db0844 1055 u64 total_devices;
6f60cbd3 1056 u64 bytenr;
8a4b83cc 1057
6f60cbd3
DS
1058 /*
1059 * we would like to check all the supers, but that would make
1060 * a btrfs mount succeed after a mkfs from a different FS.
1061 * So, we need to add a special mount option to scan for
1062 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1063 */
1064 bytenr = btrfs_sb_offset(0);
d4d77629 1065 flags |= FMODE_EXCL;
10f6327b 1066 mutex_lock(&uuid_mutex);
6f60cbd3
DS
1067
1068 bdev = blkdev_get_by_path(path, flags, holder);
6f60cbd3
DS
1069 if (IS_ERR(bdev)) {
1070 ret = PTR_ERR(bdev);
beaf8ab3 1071 goto error;
6f60cbd3
DS
1072 }
1073
6cf86a00 1074 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
6f60cbd3
DS
1075 goto error_bdev_put;
1076
a343832f 1077 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 1078 transid = btrfs_super_generation(disk_super);
02db0844 1079 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 1080
8a4b83cc 1081 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
1082 if (ret > 0) {
1083 if (disk_super->label[0]) {
60999ca4
DS
1084 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1085 } else {
1086 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1087 }
1088
1089 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1090 ret = 0;
1091 }
02db0844
JB
1092 if (!ret && fs_devices_ret)
1093 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3 1094
6cf86a00 1095 btrfs_release_disk_super(page);
6f60cbd3
DS
1096
1097error_bdev_put:
d4d77629 1098 blkdev_put(bdev, flags);
8a4b83cc 1099error:
beaf8ab3 1100 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1101 return ret;
1102}
0b86a832 1103
6d07bcec
MX
1104/* helper to account the used device space in the range */
1105int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1106 u64 end, u64 *length)
1107{
1108 struct btrfs_key key;
1109 struct btrfs_root *root = device->dev_root;
1110 struct btrfs_dev_extent *dev_extent;
1111 struct btrfs_path *path;
1112 u64 extent_end;
1113 int ret;
1114 int slot;
1115 struct extent_buffer *l;
1116
1117 *length = 0;
1118
63a212ab 1119 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1120 return 0;
1121
1122 path = btrfs_alloc_path();
1123 if (!path)
1124 return -ENOMEM;
e4058b54 1125 path->reada = READA_FORWARD;
6d07bcec
MX
1126
1127 key.objectid = device->devid;
1128 key.offset = start;
1129 key.type = BTRFS_DEV_EXTENT_KEY;
1130
1131 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1132 if (ret < 0)
1133 goto out;
1134 if (ret > 0) {
1135 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1136 if (ret < 0)
1137 goto out;
1138 }
1139
1140 while (1) {
1141 l = path->nodes[0];
1142 slot = path->slots[0];
1143 if (slot >= btrfs_header_nritems(l)) {
1144 ret = btrfs_next_leaf(root, path);
1145 if (ret == 0)
1146 continue;
1147 if (ret < 0)
1148 goto out;
1149
1150 break;
1151 }
1152 btrfs_item_key_to_cpu(l, &key, slot);
1153
1154 if (key.objectid < device->devid)
1155 goto next;
1156
1157 if (key.objectid > device->devid)
1158 break;
1159
962a298f 1160 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1161 goto next;
1162
1163 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1164 extent_end = key.offset + btrfs_dev_extent_length(l,
1165 dev_extent);
1166 if (key.offset <= start && extent_end > end) {
1167 *length = end - start + 1;
1168 break;
1169 } else if (key.offset <= start && extent_end > start)
1170 *length += extent_end - start;
1171 else if (key.offset > start && extent_end <= end)
1172 *length += extent_end - key.offset;
1173 else if (key.offset > start && key.offset <= end) {
1174 *length += end - key.offset + 1;
1175 break;
1176 } else if (key.offset > end)
1177 break;
1178
1179next:
1180 path->slots[0]++;
1181 }
1182 ret = 0;
1183out:
1184 btrfs_free_path(path);
1185 return ret;
1186}
1187
499f377f 1188static int contains_pending_extent(struct btrfs_transaction *transaction,
6df9a95e
JB
1189 struct btrfs_device *device,
1190 u64 *start, u64 len)
1191{
499f377f 1192 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
6df9a95e 1193 struct extent_map *em;
499f377f 1194 struct list_head *search_list = &fs_info->pinned_chunks;
6df9a95e 1195 int ret = 0;
1b984508 1196 u64 physical_start = *start;
6df9a95e 1197
499f377f
JM
1198 if (transaction)
1199 search_list = &transaction->pending_chunks;
04216820
FM
1200again:
1201 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1202 struct map_lookup *map;
1203 int i;
1204
95617d69 1205 map = em->map_lookup;
6df9a95e 1206 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1207 u64 end;
1208
6df9a95e
JB
1209 if (map->stripes[i].dev != device)
1210 continue;
1b984508 1211 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1212 map->stripes[i].physical + em->orig_block_len <=
1b984508 1213 physical_start)
6df9a95e 1214 continue;
c152b63e
FM
1215 /*
1216 * Make sure that while processing the pinned list we do
1217 * not override our *start with a lower value, because
1218 * we can have pinned chunks that fall within this
1219 * device hole and that have lower physical addresses
1220 * than the pending chunks we processed before. If we
1221 * do not take this special care we can end up getting
1222 * 2 pending chunks that start at the same physical
1223 * device offsets because the end offset of a pinned
1224 * chunk can be equal to the start offset of some
1225 * pending chunk.
1226 */
1227 end = map->stripes[i].physical + em->orig_block_len;
1228 if (end > *start) {
1229 *start = end;
1230 ret = 1;
1231 }
6df9a95e
JB
1232 }
1233 }
499f377f
JM
1234 if (search_list != &fs_info->pinned_chunks) {
1235 search_list = &fs_info->pinned_chunks;
04216820
FM
1236 goto again;
1237 }
6df9a95e
JB
1238
1239 return ret;
1240}
1241
1242
0b86a832 1243/*
499f377f
JM
1244 * find_free_dev_extent_start - find free space in the specified device
1245 * @device: the device which we search the free space in
1246 * @num_bytes: the size of the free space that we need
1247 * @search_start: the position from which to begin the search
1248 * @start: store the start of the free space.
1249 * @len: the size of the free space. that we find, or the size
1250 * of the max free space if we don't find suitable free space
7bfc837d 1251 *
0b86a832
CM
1252 * this uses a pretty simple search, the expectation is that it is
1253 * called very infrequently and that a given device has a small number
1254 * of extents
7bfc837d
MX
1255 *
1256 * @start is used to store the start of the free space if we find. But if we
1257 * don't find suitable free space, it will be used to store the start position
1258 * of the max free space.
1259 *
1260 * @len is used to store the size of the free space that we find.
1261 * But if we don't find suitable free space, it is used to store the size of
1262 * the max free space.
0b86a832 1263 */
499f377f
JM
1264int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1265 struct btrfs_device *device, u64 num_bytes,
1266 u64 search_start, u64 *start, u64 *len)
0b86a832
CM
1267{
1268 struct btrfs_key key;
1269 struct btrfs_root *root = device->dev_root;
7bfc837d 1270 struct btrfs_dev_extent *dev_extent;
2b82032c 1271 struct btrfs_path *path;
7bfc837d
MX
1272 u64 hole_size;
1273 u64 max_hole_start;
1274 u64 max_hole_size;
1275 u64 extent_end;
0b86a832
CM
1276 u64 search_end = device->total_bytes;
1277 int ret;
7bfc837d 1278 int slot;
0b86a832 1279 struct extent_buffer *l;
8cdc7c5b
FM
1280 u64 min_search_start;
1281
1282 /*
1283 * We don't want to overwrite the superblock on the drive nor any area
1284 * used by the boot loader (grub for example), so we make sure to start
1285 * at an offset of at least 1MB.
1286 */
1287 min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1288 search_start = max(search_start, min_search_start);
0b86a832 1289
6df9a95e
JB
1290 path = btrfs_alloc_path();
1291 if (!path)
1292 return -ENOMEM;
f2ab7618 1293
7bfc837d
MX
1294 max_hole_start = search_start;
1295 max_hole_size = 0;
1296
f2ab7618 1297again:
63a212ab 1298 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1299 ret = -ENOSPC;
6df9a95e 1300 goto out;
7bfc837d
MX
1301 }
1302
e4058b54 1303 path->reada = READA_FORWARD;
6df9a95e
JB
1304 path->search_commit_root = 1;
1305 path->skip_locking = 1;
7bfc837d 1306
0b86a832
CM
1307 key.objectid = device->devid;
1308 key.offset = search_start;
1309 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1310
125ccb0a 1311 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1312 if (ret < 0)
7bfc837d 1313 goto out;
1fcbac58
YZ
1314 if (ret > 0) {
1315 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1316 if (ret < 0)
7bfc837d 1317 goto out;
1fcbac58 1318 }
7bfc837d 1319
0b86a832
CM
1320 while (1) {
1321 l = path->nodes[0];
1322 slot = path->slots[0];
1323 if (slot >= btrfs_header_nritems(l)) {
1324 ret = btrfs_next_leaf(root, path);
1325 if (ret == 0)
1326 continue;
1327 if (ret < 0)
7bfc837d
MX
1328 goto out;
1329
1330 break;
0b86a832
CM
1331 }
1332 btrfs_item_key_to_cpu(l, &key, slot);
1333
1334 if (key.objectid < device->devid)
1335 goto next;
1336
1337 if (key.objectid > device->devid)
7bfc837d 1338 break;
0b86a832 1339
962a298f 1340 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1341 goto next;
9779b72f 1342
7bfc837d
MX
1343 if (key.offset > search_start) {
1344 hole_size = key.offset - search_start;
9779b72f 1345
6df9a95e
JB
1346 /*
1347 * Have to check before we set max_hole_start, otherwise
1348 * we could end up sending back this offset anyway.
1349 */
499f377f 1350 if (contains_pending_extent(transaction, device,
6df9a95e 1351 &search_start,
1b984508
FL
1352 hole_size)) {
1353 if (key.offset >= search_start) {
1354 hole_size = key.offset - search_start;
1355 } else {
1356 WARN_ON_ONCE(1);
1357 hole_size = 0;
1358 }
1359 }
6df9a95e 1360
7bfc837d
MX
1361 if (hole_size > max_hole_size) {
1362 max_hole_start = search_start;
1363 max_hole_size = hole_size;
1364 }
9779b72f 1365
7bfc837d
MX
1366 /*
1367 * If this free space is greater than which we need,
1368 * it must be the max free space that we have found
1369 * until now, so max_hole_start must point to the start
1370 * of this free space and the length of this free space
1371 * is stored in max_hole_size. Thus, we return
1372 * max_hole_start and max_hole_size and go back to the
1373 * caller.
1374 */
1375 if (hole_size >= num_bytes) {
1376 ret = 0;
1377 goto out;
0b86a832
CM
1378 }
1379 }
0b86a832 1380
0b86a832 1381 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1382 extent_end = key.offset + btrfs_dev_extent_length(l,
1383 dev_extent);
1384 if (extent_end > search_start)
1385 search_start = extent_end;
0b86a832
CM
1386next:
1387 path->slots[0]++;
1388 cond_resched();
1389 }
0b86a832 1390
38c01b96 1391 /*
1392 * At this point, search_start should be the end of
1393 * allocated dev extents, and when shrinking the device,
1394 * search_end may be smaller than search_start.
1395 */
f2ab7618 1396 if (search_end > search_start) {
38c01b96 1397 hole_size = search_end - search_start;
1398
499f377f 1399 if (contains_pending_extent(transaction, device, &search_start,
f2ab7618
ZL
1400 hole_size)) {
1401 btrfs_release_path(path);
1402 goto again;
1403 }
0b86a832 1404
f2ab7618
ZL
1405 if (hole_size > max_hole_size) {
1406 max_hole_start = search_start;
1407 max_hole_size = hole_size;
1408 }
6df9a95e
JB
1409 }
1410
7bfc837d 1411 /* See above. */
f2ab7618 1412 if (max_hole_size < num_bytes)
7bfc837d
MX
1413 ret = -ENOSPC;
1414 else
1415 ret = 0;
1416
1417out:
2b82032c 1418 btrfs_free_path(path);
7bfc837d 1419 *start = max_hole_start;
b2117a39 1420 if (len)
7bfc837d 1421 *len = max_hole_size;
0b86a832
CM
1422 return ret;
1423}
1424
499f377f
JM
1425int find_free_dev_extent(struct btrfs_trans_handle *trans,
1426 struct btrfs_device *device, u64 num_bytes,
1427 u64 *start, u64 *len)
1428{
499f377f 1429 /* FIXME use last free of some kind */
499f377f 1430 return find_free_dev_extent_start(trans->transaction, device,
8cdc7c5b 1431 num_bytes, 0, start, len);
499f377f
JM
1432}
1433
b2950863 1434static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1435 struct btrfs_device *device,
2196d6e8 1436 u64 start, u64 *dev_extent_len)
8f18cf13
CM
1437{
1438 int ret;
1439 struct btrfs_path *path;
1440 struct btrfs_root *root = device->dev_root;
1441 struct btrfs_key key;
a061fc8d
CM
1442 struct btrfs_key found_key;
1443 struct extent_buffer *leaf = NULL;
1444 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1445
1446 path = btrfs_alloc_path();
1447 if (!path)
1448 return -ENOMEM;
1449
1450 key.objectid = device->devid;
1451 key.offset = start;
1452 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1453again:
8f18cf13 1454 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1455 if (ret > 0) {
1456 ret = btrfs_previous_item(root, path, key.objectid,
1457 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1458 if (ret)
1459 goto out;
a061fc8d
CM
1460 leaf = path->nodes[0];
1461 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1462 extent = btrfs_item_ptr(leaf, path->slots[0],
1463 struct btrfs_dev_extent);
1464 BUG_ON(found_key.offset > start || found_key.offset +
1465 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1466 key = found_key;
1467 btrfs_release_path(path);
1468 goto again;
a061fc8d
CM
1469 } else if (ret == 0) {
1470 leaf = path->nodes[0];
1471 extent = btrfs_item_ptr(leaf, path->slots[0],
1472 struct btrfs_dev_extent);
79787eaa 1473 } else {
a4553fef 1474 btrfs_std_error(root->fs_info, ret, "Slot search failed");
79787eaa 1475 goto out;
a061fc8d 1476 }
8f18cf13 1477
2196d6e8
MX
1478 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1479
8f18cf13 1480 ret = btrfs_del_item(trans, root, path);
79787eaa 1481 if (ret) {
a4553fef 1482 btrfs_std_error(root->fs_info, ret,
79787eaa 1483 "Failed to remove dev extent item");
13212b54 1484 } else {
3204d33c 1485 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1486 }
b0b802d7 1487out:
8f18cf13
CM
1488 btrfs_free_path(path);
1489 return ret;
1490}
1491
48a3b636
ES
1492static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1493 struct btrfs_device *device,
1494 u64 chunk_tree, u64 chunk_objectid,
1495 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1496{
1497 int ret;
1498 struct btrfs_path *path;
1499 struct btrfs_root *root = device->dev_root;
1500 struct btrfs_dev_extent *extent;
1501 struct extent_buffer *leaf;
1502 struct btrfs_key key;
1503
dfe25020 1504 WARN_ON(!device->in_fs_metadata);
63a212ab 1505 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1506 path = btrfs_alloc_path();
1507 if (!path)
1508 return -ENOMEM;
1509
0b86a832 1510 key.objectid = device->devid;
2b82032c 1511 key.offset = start;
0b86a832
CM
1512 key.type = BTRFS_DEV_EXTENT_KEY;
1513 ret = btrfs_insert_empty_item(trans, root, path, &key,
1514 sizeof(*extent));
2cdcecbc
MF
1515 if (ret)
1516 goto out;
0b86a832
CM
1517
1518 leaf = path->nodes[0];
1519 extent = btrfs_item_ptr(leaf, path->slots[0],
1520 struct btrfs_dev_extent);
e17cade2
CM
1521 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1522 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1523 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1524
1525 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1526 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1527
0b86a832
CM
1528 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1529 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1530out:
0b86a832
CM
1531 btrfs_free_path(path);
1532 return ret;
1533}
1534
6df9a95e 1535static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1536{
6df9a95e
JB
1537 struct extent_map_tree *em_tree;
1538 struct extent_map *em;
1539 struct rb_node *n;
1540 u64 ret = 0;
0b86a832 1541
6df9a95e
JB
1542 em_tree = &fs_info->mapping_tree.map_tree;
1543 read_lock(&em_tree->lock);
1544 n = rb_last(&em_tree->map);
1545 if (n) {
1546 em = rb_entry(n, struct extent_map, rb_node);
1547 ret = em->start + em->len;
0b86a832 1548 }
6df9a95e
JB
1549 read_unlock(&em_tree->lock);
1550
0b86a832
CM
1551 return ret;
1552}
1553
53f10659
ID
1554static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1555 u64 *devid_ret)
0b86a832
CM
1556{
1557 int ret;
1558 struct btrfs_key key;
1559 struct btrfs_key found_key;
2b82032c
YZ
1560 struct btrfs_path *path;
1561
2b82032c
YZ
1562 path = btrfs_alloc_path();
1563 if (!path)
1564 return -ENOMEM;
0b86a832
CM
1565
1566 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1567 key.type = BTRFS_DEV_ITEM_KEY;
1568 key.offset = (u64)-1;
1569
53f10659 1570 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1571 if (ret < 0)
1572 goto error;
1573
79787eaa 1574 BUG_ON(ret == 0); /* Corruption */
0b86a832 1575
53f10659
ID
1576 ret = btrfs_previous_item(fs_info->chunk_root, path,
1577 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1578 BTRFS_DEV_ITEM_KEY);
1579 if (ret) {
53f10659 1580 *devid_ret = 1;
0b86a832
CM
1581 } else {
1582 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1583 path->slots[0]);
53f10659 1584 *devid_ret = found_key.offset + 1;
0b86a832
CM
1585 }
1586 ret = 0;
1587error:
2b82032c 1588 btrfs_free_path(path);
0b86a832
CM
1589 return ret;
1590}
1591
1592/*
1593 * the device information is stored in the chunk root
1594 * the btrfs_device struct should be fully filled in
1595 */
48a3b636
ES
1596static int btrfs_add_device(struct btrfs_trans_handle *trans,
1597 struct btrfs_root *root,
1598 struct btrfs_device *device)
0b86a832
CM
1599{
1600 int ret;
1601 struct btrfs_path *path;
1602 struct btrfs_dev_item *dev_item;
1603 struct extent_buffer *leaf;
1604 struct btrfs_key key;
1605 unsigned long ptr;
0b86a832
CM
1606
1607 root = root->fs_info->chunk_root;
1608
1609 path = btrfs_alloc_path();
1610 if (!path)
1611 return -ENOMEM;
1612
0b86a832
CM
1613 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1614 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1615 key.offset = device->devid;
0b86a832
CM
1616
1617 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1618 sizeof(*dev_item));
0b86a832
CM
1619 if (ret)
1620 goto out;
1621
1622 leaf = path->nodes[0];
1623 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1624
1625 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1626 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1627 btrfs_set_device_type(leaf, dev_item, device->type);
1628 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1629 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1630 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1631 btrfs_set_device_total_bytes(leaf, dev_item,
1632 btrfs_device_get_disk_total_bytes(device));
1633 btrfs_set_device_bytes_used(leaf, dev_item,
1634 btrfs_device_get_bytes_used(device));
e17cade2
CM
1635 btrfs_set_device_group(leaf, dev_item, 0);
1636 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1637 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1638 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1639
410ba3a2 1640 ptr = btrfs_device_uuid(dev_item);
e17cade2 1641 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1642 ptr = btrfs_device_fsid(dev_item);
2b82032c 1643 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1644 btrfs_mark_buffer_dirty(leaf);
0b86a832 1645
2b82032c 1646 ret = 0;
0b86a832
CM
1647out:
1648 btrfs_free_path(path);
1649 return ret;
1650}
8f18cf13 1651
5a1972bd
QW
1652/*
1653 * Function to update ctime/mtime for a given device path.
1654 * Mainly used for ctime/mtime based probe like libblkid.
1655 */
1656static void update_dev_time(char *path_name)
1657{
1658 struct file *filp;
1659
1660 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1661 if (IS_ERR(filp))
5a1972bd
QW
1662 return;
1663 file_update_time(filp);
1664 filp_close(filp, NULL);
5a1972bd
QW
1665}
1666
a061fc8d
CM
1667static int btrfs_rm_dev_item(struct btrfs_root *root,
1668 struct btrfs_device *device)
1669{
1670 int ret;
1671 struct btrfs_path *path;
a061fc8d 1672 struct btrfs_key key;
a061fc8d
CM
1673 struct btrfs_trans_handle *trans;
1674
1675 root = root->fs_info->chunk_root;
1676
1677 path = btrfs_alloc_path();
1678 if (!path)
1679 return -ENOMEM;
1680
a22285a6 1681 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1682 if (IS_ERR(trans)) {
1683 btrfs_free_path(path);
1684 return PTR_ERR(trans);
1685 }
a061fc8d
CM
1686 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1687 key.type = BTRFS_DEV_ITEM_KEY;
1688 key.offset = device->devid;
1689
1690 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1691 if (ret < 0)
1692 goto out;
1693
1694 if (ret > 0) {
1695 ret = -ENOENT;
1696 goto out;
1697 }
1698
1699 ret = btrfs_del_item(trans, root, path);
1700 if (ret)
1701 goto out;
a061fc8d
CM
1702out:
1703 btrfs_free_path(path);
1704 btrfs_commit_transaction(trans, root);
1705 return ret;
1706}
1707
bd45ffbc 1708static int __check_raid_min_devices(struct btrfs_fs_info *fs_info)
a061fc8d 1709{
a061fc8d 1710 u64 all_avail;
2b82032c 1711 u64 num_devices;
de98ced9 1712 unsigned seq;
a061fc8d 1713
bd45ffbc
AJ
1714 num_devices = fs_info->fs_devices->num_devices;
1715 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1716 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
f1fa7f26
AJ
1717 WARN_ON(num_devices < 1);
1718 num_devices--;
1719 }
bd45ffbc 1720 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
a061fc8d 1721
de98ced9 1722 do {
bd45ffbc 1723 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1724
bd45ffbc
AJ
1725 all_avail = fs_info->avail_data_alloc_bits |
1726 fs_info->avail_system_alloc_bits |
1727 fs_info->avail_metadata_alloc_bits;
1728 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1729
8dabb742 1730 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
bd45ffbc 1731 return BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
a061fc8d
CM
1732 }
1733
8dabb742 1734 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
bd45ffbc 1735 return BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
a061fc8d
CM
1736 }
1737
53b381b3 1738 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
bd45ffbc
AJ
1739 fs_info->fs_devices->rw_devices <= 2) {
1740 return BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
53b381b3 1741 }
bd45ffbc 1742
53b381b3 1743 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
bd45ffbc
AJ
1744 fs_info->fs_devices->rw_devices <= 3) {
1745 return BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
53b381b3
DW
1746 }
1747
bd45ffbc 1748 return 0;
f1fa7f26
AJ
1749}
1750
1751int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1752{
1753 struct btrfs_device *device;
1754 struct btrfs_device *next_device;
1755 struct block_device *bdev;
1756 struct buffer_head *bh = NULL;
1757 struct btrfs_super_block *disk_super;
1758 struct btrfs_fs_devices *cur_devices;
1759 u64 devid;
1760 u64 num_devices;
1761 u8 *dev_uuid;
1762 int ret = 0;
1763 bool clear_super = false;
1764
1765 mutex_lock(&uuid_mutex);
1766
bd45ffbc 1767 ret = __check_raid_min_devices(root->fs_info);
f1fa7f26
AJ
1768 if (ret)
1769 goto out;
1770
dfe25020 1771 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1772 struct list_head *devices;
1773 struct btrfs_device *tmp;
a061fc8d 1774
dfe25020
CM
1775 device = NULL;
1776 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1777 /*
1778 * It is safe to read the devices since the volume_mutex
1779 * is held.
1780 */
c6e30871 1781 list_for_each_entry(tmp, devices, dev_list) {
63a212ab
SB
1782 if (tmp->in_fs_metadata &&
1783 !tmp->is_tgtdev_for_dev_replace &&
1784 !tmp->bdev) {
dfe25020
CM
1785 device = tmp;
1786 break;
1787 }
1788 }
1789 bdev = NULL;
1790 bh = NULL;
1791 disk_super = NULL;
1792 if (!device) {
183860f6 1793 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
dfe25020
CM
1794 goto out;
1795 }
dfe25020 1796 } else {
beaf8ab3 1797 ret = btrfs_get_bdev_and_sb(device_path,
cc975eb4 1798 FMODE_WRITE | FMODE_EXCL,
beaf8ab3
SB
1799 root->fs_info->bdev_holder, 0,
1800 &bdev, &bh);
1801 if (ret)
dfe25020 1802 goto out;
dfe25020 1803 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1804 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c 1805 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1806 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2b82032c 1807 disk_super->fsid);
dfe25020
CM
1808 if (!device) {
1809 ret = -ENOENT;
1810 goto error_brelse;
1811 }
2b82032c 1812 }
dfe25020 1813
63a212ab 1814 if (device->is_tgtdev_for_dev_replace) {
183860f6 1815 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab
SB
1816 goto error_brelse;
1817 }
1818
2b82032c 1819 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1820 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c
YZ
1821 goto error_brelse;
1822 }
1823
1824 if (device->writeable) {
0c1daee0 1825 lock_chunks(root);
2b82032c 1826 list_del_init(&device->dev_alloc_list);
c3929c36 1827 device->fs_devices->rw_devices--;
0c1daee0 1828 unlock_chunks(root);
1f78160c 1829 clear_super = true;
dfe25020 1830 }
a061fc8d 1831
d7901554 1832 mutex_unlock(&uuid_mutex);
a061fc8d 1833 ret = btrfs_shrink_device(device, 0);
d7901554 1834 mutex_lock(&uuid_mutex);
a061fc8d 1835 if (ret)
9b3517e9 1836 goto error_undo;
a061fc8d 1837
63a212ab
SB
1838 /*
1839 * TODO: the superblock still includes this device in its num_devices
1840 * counter although write_all_supers() is not locked out. This
1841 * could give a filesystem state which requires a degraded mount.
1842 */
a061fc8d
CM
1843 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1844 if (ret)
9b3517e9 1845 goto error_undo;
a061fc8d 1846
2b82032c 1847 device->in_fs_metadata = 0;
aa1b8cd4 1848 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1849
1850 /*
1851 * the device list mutex makes sure that we don't change
1852 * the device list while someone else is writing out all
d7306801
FDBM
1853 * the device supers. Whoever is writing all supers, should
1854 * lock the device list mutex before getting the number of
1855 * devices in the super block (super_copy). Conversely,
1856 * whoever updates the number of devices in the super block
1857 * (super_copy) should hold the device list mutex.
e5e9a520 1858 */
1f78160c
XG
1859
1860 cur_devices = device->fs_devices;
e5e9a520 1861 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1862 list_del_rcu(&device->dev_list);
e5e9a520 1863
e4404d6e 1864 device->fs_devices->num_devices--;
02db0844 1865 device->fs_devices->total_devices--;
2b82032c 1866
cd02dca5 1867 if (device->missing)
3a7d55c8 1868 device->fs_devices->missing_devices--;
cd02dca5 1869
2b82032c
YZ
1870 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1871 struct btrfs_device, dev_list);
1872 if (device->bdev == root->fs_info->sb->s_bdev)
1873 root->fs_info->sb->s_bdev = next_device->bdev;
1874 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1875 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1876
0bfaa9c5 1877 if (device->bdev) {
e4404d6e 1878 device->fs_devices->open_devices--;
0bfaa9c5 1879 /* remove sysfs entry */
32576040 1880 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
0bfaa9c5 1881 }
99994cde 1882
1f78160c 1883 call_rcu(&device->rcu, free_device);
e4404d6e 1884
6c41761f
DS
1885 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1886 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
d7306801 1887 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c 1888
1f78160c 1889 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1890 struct btrfs_fs_devices *fs_devices;
1891 fs_devices = root->fs_info->fs_devices;
1892 while (fs_devices) {
8321cf25
RS
1893 if (fs_devices->seed == cur_devices) {
1894 fs_devices->seed = cur_devices->seed;
e4404d6e 1895 break;
8321cf25 1896 }
e4404d6e 1897 fs_devices = fs_devices->seed;
2b82032c 1898 }
1f78160c 1899 cur_devices->seed = NULL;
1f78160c 1900 __btrfs_close_devices(cur_devices);
1f78160c 1901 free_fs_devices(cur_devices);
2b82032c
YZ
1902 }
1903
5af3e8cc
SB
1904 root->fs_info->num_tolerated_disk_barrier_failures =
1905 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1906
2b82032c
YZ
1907 /*
1908 * at this point, the device is zero sized. We want to
1909 * remove it from the devices list and zero out the old super
1910 */
aa1b8cd4 1911 if (clear_super && disk_super) {
4d90d28b
AJ
1912 u64 bytenr;
1913 int i;
1914
dfe25020
CM
1915 /* make sure this device isn't detected as part of
1916 * the FS anymore
1917 */
1918 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1919 set_buffer_dirty(bh);
1920 sync_dirty_buffer(bh);
4d90d28b
AJ
1921
1922 /* clear the mirror copies of super block on the disk
1923 * being removed, 0th copy is been taken care above and
1924 * the below would take of the rest
1925 */
1926 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1927 bytenr = btrfs_sb_offset(i);
1928 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1929 i_size_read(bdev->bd_inode))
1930 break;
1931
1932 brelse(bh);
1933 bh = __bread(bdev, bytenr / 4096,
1934 BTRFS_SUPER_INFO_SIZE);
1935 if (!bh)
1936 continue;
1937
1938 disk_super = (struct btrfs_super_block *)bh->b_data;
1939
1940 if (btrfs_super_bytenr(disk_super) != bytenr ||
1941 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1942 continue;
1943 }
1944 memset(&disk_super->magic, 0,
1945 sizeof(disk_super->magic));
1946 set_buffer_dirty(bh);
1947 sync_dirty_buffer(bh);
1948 }
dfe25020 1949 }
a061fc8d 1950
a061fc8d 1951 ret = 0;
a061fc8d 1952
5a1972bd
QW
1953 if (bdev) {
1954 /* Notify udev that device has changed */
3c911608 1955 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
b8b8ff59 1956
5a1972bd
QW
1957 /* Update ctime/mtime for device path for libblkid */
1958 update_dev_time(device_path);
1959 }
1960
a061fc8d
CM
1961error_brelse:
1962 brelse(bh);
dfe25020 1963 if (bdev)
e525fd89 1964 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1965out:
1966 mutex_unlock(&uuid_mutex);
a061fc8d 1967 return ret;
9b3517e9
ID
1968error_undo:
1969 if (device->writeable) {
0c1daee0 1970 lock_chunks(root);
9b3517e9
ID
1971 list_add(&device->dev_alloc_list,
1972 &root->fs_info->fs_devices->alloc_list);
c3929c36 1973 device->fs_devices->rw_devices++;
0c1daee0 1974 unlock_chunks(root);
9b3517e9
ID
1975 }
1976 goto error_brelse;
a061fc8d
CM
1977}
1978
084b6e7c
QW
1979void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1980 struct btrfs_device *srcdev)
e93c89c1 1981{
d51908ce
AJ
1982 struct btrfs_fs_devices *fs_devices;
1983
e93c89c1 1984 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 1985
25e8e911
AJ
1986 /*
1987 * in case of fs with no seed, srcdev->fs_devices will point
1988 * to fs_devices of fs_info. However when the dev being replaced is
1989 * a seed dev it will point to the seed's local fs_devices. In short
1990 * srcdev will have its correct fs_devices in both the cases.
1991 */
1992 fs_devices = srcdev->fs_devices;
d51908ce 1993
e93c89c1
SB
1994 list_del_rcu(&srcdev->dev_list);
1995 list_del_rcu(&srcdev->dev_alloc_list);
d51908ce 1996 fs_devices->num_devices--;
82372bc8 1997 if (srcdev->missing)
d51908ce 1998 fs_devices->missing_devices--;
e93c89c1 1999
82372bc8
MX
2000 if (srcdev->writeable) {
2001 fs_devices->rw_devices--;
2002 /* zero out the old super if it is writable */
31388ab2 2003 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
1357272f
ID
2004 }
2005
82372bc8 2006 if (srcdev->bdev)
d51908ce 2007 fs_devices->open_devices--;
084b6e7c
QW
2008}
2009
2010void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2011 struct btrfs_device *srcdev)
2012{
2013 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1
SB
2014
2015 call_rcu(&srcdev->rcu, free_device);
94d5f0c2
AJ
2016
2017 /*
2018 * unless fs_devices is seed fs, num_devices shouldn't go
2019 * zero
2020 */
2021 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2022
2023 /* if this is no devs we rather delete the fs_devices */
2024 if (!fs_devices->num_devices) {
2025 struct btrfs_fs_devices *tmp_fs_devices;
2026
2027 tmp_fs_devices = fs_info->fs_devices;
2028 while (tmp_fs_devices) {
2029 if (tmp_fs_devices->seed == fs_devices) {
2030 tmp_fs_devices->seed = fs_devices->seed;
2031 break;
2032 }
2033 tmp_fs_devices = tmp_fs_devices->seed;
2034 }
2035 fs_devices->seed = NULL;
8bef8401
AJ
2036 __btrfs_close_devices(fs_devices);
2037 free_fs_devices(fs_devices);
94d5f0c2 2038 }
e93c89c1
SB
2039}
2040
2041void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2042 struct btrfs_device *tgtdev)
2043{
2044 struct btrfs_device *next_device;
2045
67a2c45e 2046 mutex_lock(&uuid_mutex);
e93c89c1
SB
2047 WARN_ON(!tgtdev);
2048 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d2ff1b20 2049
32576040 2050 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
d2ff1b20 2051
e93c89c1 2052 if (tgtdev->bdev) {
31388ab2 2053 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
e93c89c1
SB
2054 fs_info->fs_devices->open_devices--;
2055 }
2056 fs_info->fs_devices->num_devices--;
e93c89c1
SB
2057
2058 next_device = list_entry(fs_info->fs_devices->devices.next,
2059 struct btrfs_device, dev_list);
2060 if (tgtdev->bdev == fs_info->sb->s_bdev)
2061 fs_info->sb->s_bdev = next_device->bdev;
2062 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
2063 fs_info->fs_devices->latest_bdev = next_device->bdev;
2064 list_del_rcu(&tgtdev->dev_list);
2065
2066 call_rcu(&tgtdev->rcu, free_device);
2067
2068 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 2069 mutex_unlock(&uuid_mutex);
e93c89c1
SB
2070}
2071
48a3b636
ES
2072static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2073 struct btrfs_device **device)
7ba15b7d
SB
2074{
2075 int ret = 0;
2076 struct btrfs_super_block *disk_super;
2077 u64 devid;
2078 u8 *dev_uuid;
2079 struct block_device *bdev;
2080 struct buffer_head *bh;
2081
2082 *device = NULL;
2083 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2084 root->fs_info->bdev_holder, 0, &bdev, &bh);
2085 if (ret)
2086 return ret;
2087 disk_super = (struct btrfs_super_block *)bh->b_data;
2088 devid = btrfs_stack_device_id(&disk_super->dev_item);
2089 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 2090 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
2091 disk_super->fsid);
2092 brelse(bh);
2093 if (!*device)
2094 ret = -ENOENT;
2095 blkdev_put(bdev, FMODE_READ);
2096 return ret;
2097}
2098
2099int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2100 char *device_path,
2101 struct btrfs_device **device)
2102{
2103 *device = NULL;
2104 if (strcmp(device_path, "missing") == 0) {
2105 struct list_head *devices;
2106 struct btrfs_device *tmp;
2107
2108 devices = &root->fs_info->fs_devices->devices;
2109 /*
2110 * It is safe to read the devices since the volume_mutex
2111 * is held by the caller.
2112 */
2113 list_for_each_entry(tmp, devices, dev_list) {
2114 if (tmp->in_fs_metadata && !tmp->bdev) {
2115 *device = tmp;
2116 break;
2117 }
2118 }
2119
d74a6259
AJ
2120 if (!*device)
2121 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
7ba15b7d
SB
2122
2123 return 0;
2124 } else {
2125 return btrfs_find_device_by_path(root, device_path, device);
2126 }
2127}
2128
24e0474b
AJ
2129int btrfs_find_device_by_user_input(struct btrfs_root *root, u64 srcdevid,
2130 char *srcdev_name,
2131 struct btrfs_device **device)
2132{
2133 int ret;
2134
2135 if (srcdevid) {
2136 ret = 0;
2137 *device = btrfs_find_device(root->fs_info, srcdevid, NULL,
2138 NULL);
2139 if (!*device)
2140 ret = -ENOENT;
2141 } else {
2142 ret = btrfs_find_device_missing_or_by_path(root, srcdev_name,
2143 device);
2144 }
2145 return ret;
2146}
2147
2b82032c
YZ
2148/*
2149 * does all the dirty work required for changing file system's UUID.
2150 */
125ccb0a 2151static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
2152{
2153 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2154 struct btrfs_fs_devices *old_devices;
e4404d6e 2155 struct btrfs_fs_devices *seed_devices;
6c41761f 2156 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
2157 struct btrfs_device *device;
2158 u64 super_flags;
2159
2160 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 2161 if (!fs_devices->seeding)
2b82032c
YZ
2162 return -EINVAL;
2163
2208a378
ID
2164 seed_devices = __alloc_fs_devices();
2165 if (IS_ERR(seed_devices))
2166 return PTR_ERR(seed_devices);
2b82032c 2167
e4404d6e
YZ
2168 old_devices = clone_fs_devices(fs_devices);
2169 if (IS_ERR(old_devices)) {
2170 kfree(seed_devices);
2171 return PTR_ERR(old_devices);
2b82032c 2172 }
e4404d6e 2173
2b82032c
YZ
2174 list_add(&old_devices->list, &fs_uuids);
2175
e4404d6e
YZ
2176 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2177 seed_devices->opened = 1;
2178 INIT_LIST_HEAD(&seed_devices->devices);
2179 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2180 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
2181
2182 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2183 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2184 synchronize_rcu);
2196d6e8
MX
2185 list_for_each_entry(device, &seed_devices->devices, dev_list)
2186 device->fs_devices = seed_devices;
c9513edb 2187
2196d6e8 2188 lock_chunks(root);
e4404d6e 2189 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2196d6e8 2190 unlock_chunks(root);
e4404d6e 2191
2b82032c
YZ
2192 fs_devices->seeding = 0;
2193 fs_devices->num_devices = 0;
2194 fs_devices->open_devices = 0;
69611ac8 2195 fs_devices->missing_devices = 0;
69611ac8 2196 fs_devices->rotating = 0;
e4404d6e 2197 fs_devices->seed = seed_devices;
2b82032c
YZ
2198
2199 generate_random_uuid(fs_devices->fsid);
2200 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2201 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750
FDBM
2202 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2203
2b82032c
YZ
2204 super_flags = btrfs_super_flags(disk_super) &
2205 ~BTRFS_SUPER_FLAG_SEEDING;
2206 btrfs_set_super_flags(disk_super, super_flags);
2207
2208 return 0;
2209}
2210
2211/*
2212 * strore the expected generation for seed devices in device items.
2213 */
2214static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2215 struct btrfs_root *root)
2216{
2217 struct btrfs_path *path;
2218 struct extent_buffer *leaf;
2219 struct btrfs_dev_item *dev_item;
2220 struct btrfs_device *device;
2221 struct btrfs_key key;
2222 u8 fs_uuid[BTRFS_UUID_SIZE];
2223 u8 dev_uuid[BTRFS_UUID_SIZE];
2224 u64 devid;
2225 int ret;
2226
2227 path = btrfs_alloc_path();
2228 if (!path)
2229 return -ENOMEM;
2230
2231 root = root->fs_info->chunk_root;
2232 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2233 key.offset = 0;
2234 key.type = BTRFS_DEV_ITEM_KEY;
2235
2236 while (1) {
2237 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2238 if (ret < 0)
2239 goto error;
2240
2241 leaf = path->nodes[0];
2242next_slot:
2243 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2244 ret = btrfs_next_leaf(root, path);
2245 if (ret > 0)
2246 break;
2247 if (ret < 0)
2248 goto error;
2249 leaf = path->nodes[0];
2250 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2251 btrfs_release_path(path);
2b82032c
YZ
2252 continue;
2253 }
2254
2255 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2256 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2257 key.type != BTRFS_DEV_ITEM_KEY)
2258 break;
2259
2260 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2261 struct btrfs_dev_item);
2262 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2263 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2264 BTRFS_UUID_SIZE);
1473b24e 2265 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 2266 BTRFS_UUID_SIZE);
aa1b8cd4
SB
2267 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2268 fs_uuid);
79787eaa 2269 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2270
2271 if (device->fs_devices->seeding) {
2272 btrfs_set_device_generation(leaf, dev_item,
2273 device->generation);
2274 btrfs_mark_buffer_dirty(leaf);
2275 }
2276
2277 path->slots[0]++;
2278 goto next_slot;
2279 }
2280 ret = 0;
2281error:
2282 btrfs_free_path(path);
2283 return ret;
2284}
2285
788f20eb
CM
2286int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2287{
d5e2003c 2288 struct request_queue *q;
788f20eb
CM
2289 struct btrfs_trans_handle *trans;
2290 struct btrfs_device *device;
2291 struct block_device *bdev;
788f20eb 2292 struct list_head *devices;
2b82032c 2293 struct super_block *sb = root->fs_info->sb;
606686ee 2294 struct rcu_string *name;
3c1dbdf5 2295 u64 tmp;
2b82032c 2296 int seeding_dev = 0;
788f20eb
CM
2297 int ret = 0;
2298
2b82032c 2299 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 2300 return -EROFS;
788f20eb 2301
a5d16333 2302 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 2303 root->fs_info->bdev_holder);
7f59203a
JB
2304 if (IS_ERR(bdev))
2305 return PTR_ERR(bdev);
a2135011 2306
2b82032c
YZ
2307 if (root->fs_info->fs_devices->seeding) {
2308 seeding_dev = 1;
2309 down_write(&sb->s_umount);
2310 mutex_lock(&uuid_mutex);
2311 }
2312
8c8bee1d 2313 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2314
788f20eb 2315 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
2316
2317 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 2318 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2319 if (device->bdev == bdev) {
2320 ret = -EEXIST;
d25628bd
LB
2321 mutex_unlock(
2322 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 2323 goto error;
788f20eb
CM
2324 }
2325 }
d25628bd 2326 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2327
12bd2fc0
ID
2328 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2329 if (IS_ERR(device)) {
788f20eb 2330 /* we can safely leave the fs_devices entry around */
12bd2fc0 2331 ret = PTR_ERR(device);
2b82032c 2332 goto error;
788f20eb
CM
2333 }
2334
78f2c9e6 2335 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2336 if (!name) {
788f20eb 2337 kfree(device);
2b82032c
YZ
2338 ret = -ENOMEM;
2339 goto error;
788f20eb 2340 }
606686ee 2341 rcu_assign_pointer(device->name, name);
2b82032c 2342
a22285a6 2343 trans = btrfs_start_transaction(root, 0);
98d5dc13 2344 if (IS_ERR(trans)) {
606686ee 2345 rcu_string_free(device->name);
98d5dc13
TI
2346 kfree(device);
2347 ret = PTR_ERR(trans);
2348 goto error;
2349 }
2350
d5e2003c
JB
2351 q = bdev_get_queue(bdev);
2352 if (blk_queue_discard(q))
2353 device->can_discard = 1;
2b82032c 2354 device->writeable = 1;
2b82032c 2355 device->generation = trans->transid;
788f20eb
CM
2356 device->io_width = root->sectorsize;
2357 device->io_align = root->sectorsize;
2358 device->sector_size = root->sectorsize;
2359 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2360 device->disk_total_bytes = device->total_bytes;
935e5cc9 2361 device->commit_total_bytes = device->total_bytes;
788f20eb
CM
2362 device->dev_root = root->fs_info->dev_root;
2363 device->bdev = bdev;
dfe25020 2364 device->in_fs_metadata = 1;
63a212ab 2365 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2366 device->mode = FMODE_EXCL;
27087f37 2367 device->dev_stats_valid = 1;
2b82032c 2368 set_blocksize(device->bdev, 4096);
788f20eb 2369
2b82032c
YZ
2370 if (seeding_dev) {
2371 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2372 ret = btrfs_prepare_sprout(root);
79787eaa 2373 BUG_ON(ret); /* -ENOMEM */
2b82032c 2374 }
788f20eb 2375
2b82032c 2376 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2377
e5e9a520 2378 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2196d6e8 2379 lock_chunks(root);
1f78160c 2380 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2381 list_add(&device->dev_alloc_list,
2382 &root->fs_info->fs_devices->alloc_list);
2383 root->fs_info->fs_devices->num_devices++;
2384 root->fs_info->fs_devices->open_devices++;
2385 root->fs_info->fs_devices->rw_devices++;
02db0844 2386 root->fs_info->fs_devices->total_devices++;
2b82032c 2387 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2388
2bf64758
JB
2389 spin_lock(&root->fs_info->free_chunk_lock);
2390 root->fs_info->free_chunk_space += device->total_bytes;
2391 spin_unlock(&root->fs_info->free_chunk_lock);
2392
c289811c
CM
2393 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2394 root->fs_info->fs_devices->rotating = 1;
2395
3c1dbdf5 2396 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
6c41761f 2397 btrfs_set_super_total_bytes(root->fs_info->super_copy,
3c1dbdf5 2398 tmp + device->total_bytes);
788f20eb 2399
3c1dbdf5 2400 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
6c41761f 2401 btrfs_set_super_num_devices(root->fs_info->super_copy,
3c1dbdf5 2402 tmp + 1);
0d39376a
AJ
2403
2404 /* add sysfs device entry */
e3bd6973 2405 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
0d39376a 2406
2196d6e8
MX
2407 /*
2408 * we've got more storage, clear any full flags on the space
2409 * infos
2410 */
2411 btrfs_clear_space_info_full(root->fs_info);
2412
2413 unlock_chunks(root);
e5e9a520 2414 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2415
2b82032c 2416 if (seeding_dev) {
2196d6e8 2417 lock_chunks(root);
2b82032c 2418 ret = init_first_rw_device(trans, root, device);
2196d6e8 2419 unlock_chunks(root);
005d6427
DS
2420 if (ret) {
2421 btrfs_abort_transaction(trans, root, ret);
79787eaa 2422 goto error_trans;
005d6427 2423 }
2196d6e8
MX
2424 }
2425
2426 ret = btrfs_add_device(trans, root, device);
2427 if (ret) {
2428 btrfs_abort_transaction(trans, root, ret);
2429 goto error_trans;
2430 }
2431
2432 if (seeding_dev) {
2433 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2434
2b82032c 2435 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2436 if (ret) {
2437 btrfs_abort_transaction(trans, root, ret);
79787eaa 2438 goto error_trans;
005d6427 2439 }
b2373f25
AJ
2440
2441 /* Sprouting would change fsid of the mounted root,
2442 * so rename the fsid on the sysfs
2443 */
2444 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2445 root->fs_info->fsid);
c1b7e474 2446 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2e7910d6 2447 fsid_buf))
f14d104d
DS
2448 btrfs_warn(root->fs_info,
2449 "sysfs: failed to create fsid for sprout");
2b82032c
YZ
2450 }
2451
5af3e8cc
SB
2452 root->fs_info->num_tolerated_disk_barrier_failures =
2453 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2454 ret = btrfs_commit_transaction(trans, root);
a2135011 2455
2b82032c
YZ
2456 if (seeding_dev) {
2457 mutex_unlock(&uuid_mutex);
2458 up_write(&sb->s_umount);
788f20eb 2459
79787eaa
JM
2460 if (ret) /* transaction commit */
2461 return ret;
2462
2b82032c 2463 ret = btrfs_relocate_sys_chunks(root);
79787eaa 2464 if (ret < 0)
a4553fef 2465 btrfs_std_error(root->fs_info, ret,
79787eaa
JM
2466 "Failed to relocate sys chunks after "
2467 "device initialization. This can be fixed "
2468 "using the \"btrfs balance\" command.");
671415b7
MX
2469 trans = btrfs_attach_transaction(root);
2470 if (IS_ERR(trans)) {
2471 if (PTR_ERR(trans) == -ENOENT)
2472 return 0;
2473 return PTR_ERR(trans);
2474 }
2475 ret = btrfs_commit_transaction(trans, root);
2b82032c 2476 }
c9e9f97b 2477
5a1972bd
QW
2478 /* Update ctime/mtime for libblkid */
2479 update_dev_time(device_path);
2b82032c 2480 return ret;
79787eaa
JM
2481
2482error_trans:
79787eaa 2483 btrfs_end_transaction(trans, root);
606686ee 2484 rcu_string_free(device->name);
32576040 2485 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
79787eaa 2486 kfree(device);
2b82032c 2487error:
e525fd89 2488 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2489 if (seeding_dev) {
2490 mutex_unlock(&uuid_mutex);
2491 up_write(&sb->s_umount);
2492 }
c9e9f97b 2493 return ret;
788f20eb
CM
2494}
2495
e93c89c1 2496int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
1c43366d 2497 struct btrfs_device *srcdev,
e93c89c1
SB
2498 struct btrfs_device **device_out)
2499{
2500 struct request_queue *q;
2501 struct btrfs_device *device;
2502 struct block_device *bdev;
2503 struct btrfs_fs_info *fs_info = root->fs_info;
2504 struct list_head *devices;
2505 struct rcu_string *name;
12bd2fc0 2506 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2507 int ret = 0;
2508
2509 *device_out = NULL;
1c43366d
MX
2510 if (fs_info->fs_devices->seeding) {
2511 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2512 return -EINVAL;
1c43366d 2513 }
e93c89c1
SB
2514
2515 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2516 fs_info->bdev_holder);
1c43366d
MX
2517 if (IS_ERR(bdev)) {
2518 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2519 return PTR_ERR(bdev);
1c43366d 2520 }
e93c89c1
SB
2521
2522 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2523
2524 devices = &fs_info->fs_devices->devices;
2525 list_for_each_entry(device, devices, dev_list) {
2526 if (device->bdev == bdev) {
1c43366d 2527 btrfs_err(fs_info, "target device is in the filesystem!");
e93c89c1
SB
2528 ret = -EEXIST;
2529 goto error;
2530 }
2531 }
2532
1c43366d 2533
7cc8e58d
MX
2534 if (i_size_read(bdev->bd_inode) <
2535 btrfs_device_get_total_bytes(srcdev)) {
1c43366d
MX
2536 btrfs_err(fs_info, "target device is smaller than source device!");
2537 ret = -EINVAL;
2538 goto error;
2539 }
2540
2541
12bd2fc0
ID
2542 device = btrfs_alloc_device(NULL, &devid, NULL);
2543 if (IS_ERR(device)) {
2544 ret = PTR_ERR(device);
e93c89c1
SB
2545 goto error;
2546 }
2547
2548 name = rcu_string_strdup(device_path, GFP_NOFS);
2549 if (!name) {
2550 kfree(device);
2551 ret = -ENOMEM;
2552 goto error;
2553 }
2554 rcu_assign_pointer(device->name, name);
2555
2556 q = bdev_get_queue(bdev);
2557 if (blk_queue_discard(q))
2558 device->can_discard = 1;
2559 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2560 device->writeable = 1;
e93c89c1
SB
2561 device->generation = 0;
2562 device->io_width = root->sectorsize;
2563 device->io_align = root->sectorsize;
2564 device->sector_size = root->sectorsize;
7cc8e58d
MX
2565 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2566 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2567 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2568 ASSERT(list_empty(&srcdev->resized_list));
2569 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2570 device->commit_bytes_used = device->bytes_used;
e93c89c1
SB
2571 device->dev_root = fs_info->dev_root;
2572 device->bdev = bdev;
2573 device->in_fs_metadata = 1;
2574 device->is_tgtdev_for_dev_replace = 1;
2575 device->mode = FMODE_EXCL;
27087f37 2576 device->dev_stats_valid = 1;
e93c89c1
SB
2577 set_blocksize(device->bdev, 4096);
2578 device->fs_devices = fs_info->fs_devices;
2579 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2580 fs_info->fs_devices->num_devices++;
2581 fs_info->fs_devices->open_devices++;
e93c89c1
SB
2582 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2583
2584 *device_out = device;
2585 return ret;
2586
2587error:
2588 blkdev_put(bdev, FMODE_EXCL);
2589 return ret;
2590}
2591
2592void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2593 struct btrfs_device *tgtdev)
2594{
2595 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2596 tgtdev->io_width = fs_info->dev_root->sectorsize;
2597 tgtdev->io_align = fs_info->dev_root->sectorsize;
2598 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2599 tgtdev->dev_root = fs_info->dev_root;
2600 tgtdev->in_fs_metadata = 1;
2601}
2602
d397712b
CM
2603static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2604 struct btrfs_device *device)
0b86a832
CM
2605{
2606 int ret;
2607 struct btrfs_path *path;
2608 struct btrfs_root *root;
2609 struct btrfs_dev_item *dev_item;
2610 struct extent_buffer *leaf;
2611 struct btrfs_key key;
2612
2613 root = device->dev_root->fs_info->chunk_root;
2614
2615 path = btrfs_alloc_path();
2616 if (!path)
2617 return -ENOMEM;
2618
2619 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2620 key.type = BTRFS_DEV_ITEM_KEY;
2621 key.offset = device->devid;
2622
2623 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2624 if (ret < 0)
2625 goto out;
2626
2627 if (ret > 0) {
2628 ret = -ENOENT;
2629 goto out;
2630 }
2631
2632 leaf = path->nodes[0];
2633 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2634
2635 btrfs_set_device_id(leaf, dev_item, device->devid);
2636 btrfs_set_device_type(leaf, dev_item, device->type);
2637 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2638 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2639 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2640 btrfs_set_device_total_bytes(leaf, dev_item,
2641 btrfs_device_get_disk_total_bytes(device));
2642 btrfs_set_device_bytes_used(leaf, dev_item,
2643 btrfs_device_get_bytes_used(device));
0b86a832
CM
2644 btrfs_mark_buffer_dirty(leaf);
2645
2646out:
2647 btrfs_free_path(path);
2648 return ret;
2649}
2650
2196d6e8 2651int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2652 struct btrfs_device *device, u64 new_size)
2653{
2654 struct btrfs_super_block *super_copy =
6c41761f 2655 device->dev_root->fs_info->super_copy;
935e5cc9 2656 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2657 u64 old_total;
2658 u64 diff;
8f18cf13 2659
2b82032c
YZ
2660 if (!device->writeable)
2661 return -EACCES;
2196d6e8
MX
2662
2663 lock_chunks(device->dev_root);
2664 old_total = btrfs_super_total_bytes(super_copy);
2665 diff = new_size - device->total_bytes;
2666
63a212ab 2667 if (new_size <= device->total_bytes ||
2196d6e8
MX
2668 device->is_tgtdev_for_dev_replace) {
2669 unlock_chunks(device->dev_root);
2b82032c 2670 return -EINVAL;
2196d6e8 2671 }
2b82032c 2672
935e5cc9 2673 fs_devices = device->dev_root->fs_info->fs_devices;
2b82032c 2674
8f18cf13 2675 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2676 device->fs_devices->total_rw_bytes += diff;
2677
7cc8e58d
MX
2678 btrfs_device_set_total_bytes(device, new_size);
2679 btrfs_device_set_disk_total_bytes(device, new_size);
4184ea7f 2680 btrfs_clear_space_info_full(device->dev_root->fs_info);
935e5cc9
MX
2681 if (list_empty(&device->resized_list))
2682 list_add_tail(&device->resized_list,
2683 &fs_devices->resized_devices);
2196d6e8 2684 unlock_chunks(device->dev_root);
4184ea7f 2685
8f18cf13
CM
2686 return btrfs_update_device(trans, device);
2687}
2688
2689static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
a688a04a 2690 struct btrfs_root *root, u64 chunk_objectid,
8f18cf13
CM
2691 u64 chunk_offset)
2692{
2693 int ret;
2694 struct btrfs_path *path;
2695 struct btrfs_key key;
2696
2697 root = root->fs_info->chunk_root;
2698 path = btrfs_alloc_path();
2699 if (!path)
2700 return -ENOMEM;
2701
2702 key.objectid = chunk_objectid;
2703 key.offset = chunk_offset;
2704 key.type = BTRFS_CHUNK_ITEM_KEY;
2705
2706 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2707 if (ret < 0)
2708 goto out;
2709 else if (ret > 0) { /* Logic error or corruption */
a4553fef 2710 btrfs_std_error(root->fs_info, -ENOENT,
79787eaa
JM
2711 "Failed lookup while freeing chunk.");
2712 ret = -ENOENT;
2713 goto out;
2714 }
8f18cf13
CM
2715
2716 ret = btrfs_del_item(trans, root, path);
79787eaa 2717 if (ret < 0)
a4553fef 2718 btrfs_std_error(root->fs_info, ret,
79787eaa
JM
2719 "Failed to delete chunk item.");
2720out:
8f18cf13 2721 btrfs_free_path(path);
65a246c5 2722 return ret;
8f18cf13
CM
2723}
2724
b2950863 2725static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2726 chunk_offset)
2727{
6c41761f 2728 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2729 struct btrfs_disk_key *disk_key;
2730 struct btrfs_chunk *chunk;
2731 u8 *ptr;
2732 int ret = 0;
2733 u32 num_stripes;
2734 u32 array_size;
2735 u32 len = 0;
2736 u32 cur;
2737 struct btrfs_key key;
2738
2196d6e8 2739 lock_chunks(root);
8f18cf13
CM
2740 array_size = btrfs_super_sys_array_size(super_copy);
2741
2742 ptr = super_copy->sys_chunk_array;
2743 cur = 0;
2744
2745 while (cur < array_size) {
2746 disk_key = (struct btrfs_disk_key *)ptr;
2747 btrfs_disk_key_to_cpu(&key, disk_key);
2748
2749 len = sizeof(*disk_key);
2750
2751 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2752 chunk = (struct btrfs_chunk *)(ptr + len);
2753 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2754 len += btrfs_chunk_item_size(num_stripes);
2755 } else {
2756 ret = -EIO;
2757 break;
2758 }
2759 if (key.objectid == chunk_objectid &&
2760 key.offset == chunk_offset) {
2761 memmove(ptr, ptr + len, array_size - (cur + len));
2762 array_size -= len;
2763 btrfs_set_super_sys_array_size(super_copy, array_size);
2764 } else {
2765 ptr += len;
2766 cur += len;
2767 }
2768 }
2196d6e8 2769 unlock_chunks(root);
8f18cf13
CM
2770 return ret;
2771}
2772
47ab2a6c
JB
2773int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2774 struct btrfs_root *root, u64 chunk_offset)
8f18cf13
CM
2775{
2776 struct extent_map_tree *em_tree;
8f18cf13 2777 struct extent_map *em;
47ab2a6c 2778 struct btrfs_root *extent_root = root->fs_info->extent_root;
8f18cf13 2779 struct map_lookup *map;
2196d6e8 2780 u64 dev_extent_len = 0;
47ab2a6c 2781 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
47ab2a6c 2782 int i, ret = 0;
8f18cf13 2783
47ab2a6c 2784 /* Just in case */
8f18cf13 2785 root = root->fs_info->chunk_root;
8f18cf13
CM
2786 em_tree = &root->fs_info->mapping_tree.map_tree;
2787
890871be 2788 read_lock(&em_tree->lock);
8f18cf13 2789 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2790 read_unlock(&em_tree->lock);
8f18cf13 2791
47ab2a6c
JB
2792 if (!em || em->start > chunk_offset ||
2793 em->start + em->len < chunk_offset) {
2794 /*
2795 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2796 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2797 * do anything we still error out.
2798 */
2799 ASSERT(0);
2800 if (em)
2801 free_extent_map(em);
2802 return -EINVAL;
2803 }
95617d69 2804 map = em->map_lookup;
39c2d7fa 2805 lock_chunks(root->fs_info->chunk_root);
4617ea3a 2806 check_system_chunk(trans, extent_root, map->type);
39c2d7fa 2807 unlock_chunks(root->fs_info->chunk_root);
8f18cf13
CM
2808
2809 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2810 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2811 ret = btrfs_free_dev_extent(trans, device,
2812 map->stripes[i].physical,
2813 &dev_extent_len);
47ab2a6c
JB
2814 if (ret) {
2815 btrfs_abort_transaction(trans, root, ret);
2816 goto out;
2817 }
a061fc8d 2818
2196d6e8
MX
2819 if (device->bytes_used > 0) {
2820 lock_chunks(root);
2821 btrfs_device_set_bytes_used(device,
2822 device->bytes_used - dev_extent_len);
2823 spin_lock(&root->fs_info->free_chunk_lock);
2824 root->fs_info->free_chunk_space += dev_extent_len;
2825 spin_unlock(&root->fs_info->free_chunk_lock);
2826 btrfs_clear_space_info_full(root->fs_info);
2827 unlock_chunks(root);
2828 }
a061fc8d 2829
dfe25020
CM
2830 if (map->stripes[i].dev) {
2831 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c
JB
2832 if (ret) {
2833 btrfs_abort_transaction(trans, root, ret);
2834 goto out;
2835 }
dfe25020 2836 }
8f18cf13 2837 }
a688a04a 2838 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
47ab2a6c
JB
2839 if (ret) {
2840 btrfs_abort_transaction(trans, root, ret);
2841 goto out;
2842 }
8f18cf13 2843
1abe9b8a 2844 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2845
8f18cf13
CM
2846 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2847 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
47ab2a6c
JB
2848 if (ret) {
2849 btrfs_abort_transaction(trans, root, ret);
2850 goto out;
2851 }
8f18cf13
CM
2852 }
2853
04216820 2854 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
47ab2a6c
JB
2855 if (ret) {
2856 btrfs_abort_transaction(trans, extent_root, ret);
2857 goto out;
2858 }
2b82032c 2859
47ab2a6c 2860out:
2b82032c
YZ
2861 /* once for us */
2862 free_extent_map(em);
47ab2a6c
JB
2863 return ret;
2864}
2b82032c 2865
dc2ee4e2 2866static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
47ab2a6c
JB
2867{
2868 struct btrfs_root *extent_root;
2869 struct btrfs_trans_handle *trans;
2870 int ret;
2b82032c 2871
47ab2a6c
JB
2872 root = root->fs_info->chunk_root;
2873 extent_root = root->fs_info->extent_root;
2874
67c5e7d4
FM
2875 /*
2876 * Prevent races with automatic removal of unused block groups.
2877 * After we relocate and before we remove the chunk with offset
2878 * chunk_offset, automatic removal of the block group can kick in,
2879 * resulting in a failure when calling btrfs_remove_chunk() below.
2880 *
2881 * Make sure to acquire this mutex before doing a tree search (dev
2882 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2883 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2884 * we release the path used to search the chunk/dev tree and before
2885 * the current task acquires this mutex and calls us.
2886 */
2887 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2888
47ab2a6c
JB
2889 ret = btrfs_can_relocate(extent_root, chunk_offset);
2890 if (ret)
2891 return -ENOSPC;
2892
2893 /* step one, relocate all the extents inside this chunk */
55e3a601 2894 btrfs_scrub_pause(root);
47ab2a6c 2895 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
55e3a601 2896 btrfs_scrub_continue(root);
47ab2a6c
JB
2897 if (ret)
2898 return ret;
2899
7fd01182
FM
2900 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2901 chunk_offset);
47ab2a6c
JB
2902 if (IS_ERR(trans)) {
2903 ret = PTR_ERR(trans);
a4553fef 2904 btrfs_std_error(root->fs_info, ret, NULL);
47ab2a6c
JB
2905 return ret;
2906 }
2907
2908 /*
2909 * step two, delete the device extents and the
2910 * chunk tree entries
2911 */
2912 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2b82032c 2913 btrfs_end_transaction(trans, root);
47ab2a6c 2914 return ret;
2b82032c
YZ
2915}
2916
2917static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2918{
2919 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2920 struct btrfs_path *path;
2921 struct extent_buffer *leaf;
2922 struct btrfs_chunk *chunk;
2923 struct btrfs_key key;
2924 struct btrfs_key found_key;
2b82032c 2925 u64 chunk_type;
ba1bf481
JB
2926 bool retried = false;
2927 int failed = 0;
2b82032c
YZ
2928 int ret;
2929
2930 path = btrfs_alloc_path();
2931 if (!path)
2932 return -ENOMEM;
2933
ba1bf481 2934again:
2b82032c
YZ
2935 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2936 key.offset = (u64)-1;
2937 key.type = BTRFS_CHUNK_ITEM_KEY;
2938
2939 while (1) {
67c5e7d4 2940 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2941 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
2942 if (ret < 0) {
2943 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2944 goto error;
67c5e7d4 2945 }
79787eaa 2946 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2947
2948 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2949 key.type);
67c5e7d4
FM
2950 if (ret)
2951 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
2952 if (ret < 0)
2953 goto error;
2954 if (ret > 0)
2955 break;
1a40e23b 2956
2b82032c
YZ
2957 leaf = path->nodes[0];
2958 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2959
2b82032c
YZ
2960 chunk = btrfs_item_ptr(leaf, path->slots[0],
2961 struct btrfs_chunk);
2962 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2963 btrfs_release_path(path);
8f18cf13 2964
2b82032c 2965 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
a688a04a 2966 ret = btrfs_relocate_chunk(chunk_root,
2b82032c 2967 found_key.offset);
ba1bf481
JB
2968 if (ret == -ENOSPC)
2969 failed++;
14586651
HS
2970 else
2971 BUG_ON(ret);
2b82032c 2972 }
67c5e7d4 2973 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 2974
2b82032c
YZ
2975 if (found_key.offset == 0)
2976 break;
2977 key.offset = found_key.offset - 1;
2978 }
2979 ret = 0;
ba1bf481
JB
2980 if (failed && !retried) {
2981 failed = 0;
2982 retried = true;
2983 goto again;
fae7f21c 2984 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
2985 ret = -ENOSPC;
2986 }
2b82032c
YZ
2987error:
2988 btrfs_free_path(path);
2989 return ret;
8f18cf13
CM
2990}
2991
0940ebf6
ID
2992static int insert_balance_item(struct btrfs_root *root,
2993 struct btrfs_balance_control *bctl)
2994{
2995 struct btrfs_trans_handle *trans;
2996 struct btrfs_balance_item *item;
2997 struct btrfs_disk_balance_args disk_bargs;
2998 struct btrfs_path *path;
2999 struct extent_buffer *leaf;
3000 struct btrfs_key key;
3001 int ret, err;
3002
3003 path = btrfs_alloc_path();
3004 if (!path)
3005 return -ENOMEM;
3006
3007 trans = btrfs_start_transaction(root, 0);
3008 if (IS_ERR(trans)) {
3009 btrfs_free_path(path);
3010 return PTR_ERR(trans);
3011 }
3012
3013 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3014 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3015 key.offset = 0;
3016
3017 ret = btrfs_insert_empty_item(trans, root, path, &key,
3018 sizeof(*item));
3019 if (ret)
3020 goto out;
3021
3022 leaf = path->nodes[0];
3023 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3024
3025 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3026
3027 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3028 btrfs_set_balance_data(leaf, item, &disk_bargs);
3029 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3030 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3031 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3032 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3033
3034 btrfs_set_balance_flags(leaf, item, bctl->flags);
3035
3036 btrfs_mark_buffer_dirty(leaf);
3037out:
3038 btrfs_free_path(path);
3039 err = btrfs_commit_transaction(trans, root);
3040 if (err && !ret)
3041 ret = err;
3042 return ret;
3043}
3044
3045static int del_balance_item(struct btrfs_root *root)
3046{
3047 struct btrfs_trans_handle *trans;
3048 struct btrfs_path *path;
3049 struct btrfs_key key;
3050 int ret, err;
3051
3052 path = btrfs_alloc_path();
3053 if (!path)
3054 return -ENOMEM;
3055
3056 trans = btrfs_start_transaction(root, 0);
3057 if (IS_ERR(trans)) {
3058 btrfs_free_path(path);
3059 return PTR_ERR(trans);
3060 }
3061
3062 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3063 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3064 key.offset = 0;
3065
3066 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3067 if (ret < 0)
3068 goto out;
3069 if (ret > 0) {
3070 ret = -ENOENT;
3071 goto out;
3072 }
3073
3074 ret = btrfs_del_item(trans, root, path);
3075out:
3076 btrfs_free_path(path);
3077 err = btrfs_commit_transaction(trans, root);
3078 if (err && !ret)
3079 ret = err;
3080 return ret;
3081}
3082
59641015
ID
3083/*
3084 * This is a heuristic used to reduce the number of chunks balanced on
3085 * resume after balance was interrupted.
3086 */
3087static void update_balance_args(struct btrfs_balance_control *bctl)
3088{
3089 /*
3090 * Turn on soft mode for chunk types that were being converted.
3091 */
3092 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3093 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3094 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3095 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3096 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3097 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3098
3099 /*
3100 * Turn on usage filter if is not already used. The idea is
3101 * that chunks that we have already balanced should be
3102 * reasonably full. Don't do it for chunks that are being
3103 * converted - that will keep us from relocating unconverted
3104 * (albeit full) chunks.
3105 */
3106 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3107 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3108 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3109 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3110 bctl->data.usage = 90;
3111 }
3112 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3113 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3114 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3115 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3116 bctl->sys.usage = 90;
3117 }
3118 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3119 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3120 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3121 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3122 bctl->meta.usage = 90;
3123 }
3124}
3125
c9e9f97b
ID
3126/*
3127 * Should be called with both balance and volume mutexes held to
3128 * serialize other volume operations (add_dev/rm_dev/resize) with
3129 * restriper. Same goes for unset_balance_control.
3130 */
3131static void set_balance_control(struct btrfs_balance_control *bctl)
3132{
3133 struct btrfs_fs_info *fs_info = bctl->fs_info;
3134
3135 BUG_ON(fs_info->balance_ctl);
3136
3137 spin_lock(&fs_info->balance_lock);
3138 fs_info->balance_ctl = bctl;
3139 spin_unlock(&fs_info->balance_lock);
3140}
3141
3142static void unset_balance_control(struct btrfs_fs_info *fs_info)
3143{
3144 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3145
3146 BUG_ON(!fs_info->balance_ctl);
3147
3148 spin_lock(&fs_info->balance_lock);
3149 fs_info->balance_ctl = NULL;
3150 spin_unlock(&fs_info->balance_lock);
3151
3152 kfree(bctl);
3153}
3154
ed25e9b2
ID
3155/*
3156 * Balance filters. Return 1 if chunk should be filtered out
3157 * (should not be balanced).
3158 */
899c81ea 3159static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3160 struct btrfs_balance_args *bargs)
3161{
899c81ea
ID
3162 chunk_type = chunk_to_extended(chunk_type) &
3163 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3164
899c81ea 3165 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3166 return 0;
3167
3168 return 1;
3169}
3170
dba72cb3 3171static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3172 struct btrfs_balance_args *bargs)
bc309467
DS
3173{
3174 struct btrfs_block_group_cache *cache;
3175 u64 chunk_used;
3176 u64 user_thresh_min;
3177 u64 user_thresh_max;
3178 int ret = 1;
3179
3180 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3181 chunk_used = btrfs_block_group_used(&cache->item);
3182
3183 if (bargs->usage_min == 0)
3184 user_thresh_min = 0;
3185 else
3186 user_thresh_min = div_factor_fine(cache->key.offset,
3187 bargs->usage_min);
3188
3189 if (bargs->usage_max == 0)
3190 user_thresh_max = 1;
3191 else if (bargs->usage_max > 100)
3192 user_thresh_max = cache->key.offset;
3193 else
3194 user_thresh_max = div_factor_fine(cache->key.offset,
3195 bargs->usage_max);
3196
3197 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3198 ret = 0;
3199
3200 btrfs_put_block_group(cache);
3201 return ret;
3202}
3203
dba72cb3 3204static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3205 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0
ID
3206{
3207 struct btrfs_block_group_cache *cache;
3208 u64 chunk_used, user_thresh;
3209 int ret = 1;
3210
3211 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3212 chunk_used = btrfs_block_group_used(&cache->item);
3213
bc309467 3214 if (bargs->usage_min == 0)
3e39cea6 3215 user_thresh = 1;
a105bb88
ID
3216 else if (bargs->usage > 100)
3217 user_thresh = cache->key.offset;
3218 else
3219 user_thresh = div_factor_fine(cache->key.offset,
3220 bargs->usage);
3221
5ce5b3c0
ID
3222 if (chunk_used < user_thresh)
3223 ret = 0;
3224
3225 btrfs_put_block_group(cache);
3226 return ret;
3227}
3228
409d404b
ID
3229static int chunk_devid_filter(struct extent_buffer *leaf,
3230 struct btrfs_chunk *chunk,
3231 struct btrfs_balance_args *bargs)
3232{
3233 struct btrfs_stripe *stripe;
3234 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3235 int i;
3236
3237 for (i = 0; i < num_stripes; i++) {
3238 stripe = btrfs_stripe_nr(chunk, i);
3239 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3240 return 0;
3241 }
3242
3243 return 1;
3244}
3245
94e60d5a
ID
3246/* [pstart, pend) */
3247static int chunk_drange_filter(struct extent_buffer *leaf,
3248 struct btrfs_chunk *chunk,
3249 u64 chunk_offset,
3250 struct btrfs_balance_args *bargs)
3251{
3252 struct btrfs_stripe *stripe;
3253 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3254 u64 stripe_offset;
3255 u64 stripe_length;
3256 int factor;
3257 int i;
3258
3259 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3260 return 0;
3261
3262 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3263 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3264 factor = num_stripes / 2;
3265 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3266 factor = num_stripes - 1;
3267 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3268 factor = num_stripes - 2;
3269 } else {
3270 factor = num_stripes;
3271 }
94e60d5a
ID
3272
3273 for (i = 0; i < num_stripes; i++) {
3274 stripe = btrfs_stripe_nr(chunk, i);
3275 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3276 continue;
3277
3278 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3279 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3280 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3281
3282 if (stripe_offset < bargs->pend &&
3283 stripe_offset + stripe_length > bargs->pstart)
3284 return 0;
3285 }
3286
3287 return 1;
3288}
3289
ea67176a
ID
3290/* [vstart, vend) */
3291static int chunk_vrange_filter(struct extent_buffer *leaf,
3292 struct btrfs_chunk *chunk,
3293 u64 chunk_offset,
3294 struct btrfs_balance_args *bargs)
3295{
3296 if (chunk_offset < bargs->vend &&
3297 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3298 /* at least part of the chunk is inside this vrange */
3299 return 0;
3300
3301 return 1;
3302}
3303
dee32d0a
GAP
3304static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3305 struct btrfs_chunk *chunk,
3306 struct btrfs_balance_args *bargs)
3307{
3308 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3309
3310 if (bargs->stripes_min <= num_stripes
3311 && num_stripes <= bargs->stripes_max)
3312 return 0;
3313
3314 return 1;
3315}
3316
899c81ea 3317static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3318 struct btrfs_balance_args *bargs)
3319{
3320 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3321 return 0;
3322
899c81ea
ID
3323 chunk_type = chunk_to_extended(chunk_type) &
3324 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3325
899c81ea 3326 if (bargs->target == chunk_type)
cfa4c961
ID
3327 return 1;
3328
3329 return 0;
3330}
3331
f43ffb60
ID
3332static int should_balance_chunk(struct btrfs_root *root,
3333 struct extent_buffer *leaf,
3334 struct btrfs_chunk *chunk, u64 chunk_offset)
3335{
3336 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3337 struct btrfs_balance_args *bargs = NULL;
3338 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3339
3340 /* type filter */
3341 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3342 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3343 return 0;
3344 }
3345
3346 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3347 bargs = &bctl->data;
3348 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3349 bargs = &bctl->sys;
3350 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3351 bargs = &bctl->meta;
3352
ed25e9b2
ID
3353 /* profiles filter */
3354 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3355 chunk_profiles_filter(chunk_type, bargs)) {
3356 return 0;
5ce5b3c0
ID
3357 }
3358
3359 /* usage filter */
3360 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3361 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3362 return 0;
bc309467
DS
3363 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3364 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3365 return 0;
409d404b
ID
3366 }
3367
3368 /* devid filter */
3369 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3370 chunk_devid_filter(leaf, chunk, bargs)) {
3371 return 0;
94e60d5a
ID
3372 }
3373
3374 /* drange filter, makes sense only with devid filter */
3375 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3376 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3377 return 0;
ea67176a
ID
3378 }
3379
3380 /* vrange filter */
3381 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3382 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3383 return 0;
ed25e9b2
ID
3384 }
3385
dee32d0a
GAP
3386 /* stripes filter */
3387 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3388 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3389 return 0;
3390 }
3391
cfa4c961
ID
3392 /* soft profile changing mode */
3393 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3394 chunk_soft_convert_filter(chunk_type, bargs)) {
3395 return 0;
3396 }
3397
7d824b6f
DS
3398 /*
3399 * limited by count, must be the last filter
3400 */
3401 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3402 if (bargs->limit == 0)
3403 return 0;
3404 else
3405 bargs->limit--;
12907fc7
DS
3406 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3407 /*
3408 * Same logic as the 'limit' filter; the minimum cannot be
3409 * determined here because we do not have the global informatoin
3410 * about the count of all chunks that satisfy the filters.
3411 */
3412 if (bargs->limit_max == 0)
3413 return 0;
3414 else
3415 bargs->limit_max--;
7d824b6f
DS
3416 }
3417
f43ffb60
ID
3418 return 1;
3419}
3420
c9e9f97b 3421static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3422{
19a39dce 3423 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3424 struct btrfs_root *chunk_root = fs_info->chunk_root;
3425 struct btrfs_root *dev_root = fs_info->dev_root;
3426 struct list_head *devices;
ec44a35c
CM
3427 struct btrfs_device *device;
3428 u64 old_size;
3429 u64 size_to_free;
12907fc7 3430 u64 chunk_type;
f43ffb60 3431 struct btrfs_chunk *chunk;
ec44a35c
CM
3432 struct btrfs_path *path;
3433 struct btrfs_key key;
ec44a35c 3434 struct btrfs_key found_key;
c9e9f97b 3435 struct btrfs_trans_handle *trans;
f43ffb60
ID
3436 struct extent_buffer *leaf;
3437 int slot;
c9e9f97b
ID
3438 int ret;
3439 int enospc_errors = 0;
19a39dce 3440 bool counting = true;
12907fc7 3441 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3442 u64 limit_data = bctl->data.limit;
3443 u64 limit_meta = bctl->meta.limit;
3444 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3445 u32 count_data = 0;
3446 u32 count_meta = 0;
3447 u32 count_sys = 0;
2c9fe835 3448 int chunk_reserved = 0;
ec44a35c 3449
ec44a35c 3450 /* step one make some room on all the devices */
c9e9f97b 3451 devices = &fs_info->fs_devices->devices;
c6e30871 3452 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3453 old_size = btrfs_device_get_total_bytes(device);
ec44a35c 3454 size_to_free = div_factor(old_size, 1);
ee22184b 3455 size_to_free = min_t(u64, size_to_free, SZ_1M);
2b82032c 3456 if (!device->writeable ||
7cc8e58d
MX
3457 btrfs_device_get_total_bytes(device) -
3458 btrfs_device_get_bytes_used(device) > size_to_free ||
63a212ab 3459 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3460 continue;
3461
3462 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3463 if (ret == -ENOSPC)
3464 break;
ec44a35c
CM
3465 BUG_ON(ret);
3466
a22285a6 3467 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 3468 BUG_ON(IS_ERR(trans));
ec44a35c
CM
3469
3470 ret = btrfs_grow_device(trans, device, old_size);
3471 BUG_ON(ret);
3472
3473 btrfs_end_transaction(trans, dev_root);
3474 }
3475
3476 /* step two, relocate all the chunks */
3477 path = btrfs_alloc_path();
17e9f796
MF
3478 if (!path) {
3479 ret = -ENOMEM;
3480 goto error;
3481 }
19a39dce
ID
3482
3483 /* zero out stat counters */
3484 spin_lock(&fs_info->balance_lock);
3485 memset(&bctl->stat, 0, sizeof(bctl->stat));
3486 spin_unlock(&fs_info->balance_lock);
3487again:
7d824b6f 3488 if (!counting) {
12907fc7
DS
3489 /*
3490 * The single value limit and min/max limits use the same bytes
3491 * in the
3492 */
7d824b6f
DS
3493 bctl->data.limit = limit_data;
3494 bctl->meta.limit = limit_meta;
3495 bctl->sys.limit = limit_sys;
3496 }
ec44a35c
CM
3497 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3498 key.offset = (u64)-1;
3499 key.type = BTRFS_CHUNK_ITEM_KEY;
3500
d397712b 3501 while (1) {
19a39dce 3502 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3503 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3504 ret = -ECANCELED;
3505 goto error;
3506 }
3507
67c5e7d4 3508 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3509 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3510 if (ret < 0) {
3511 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3512 goto error;
67c5e7d4 3513 }
ec44a35c
CM
3514
3515 /*
3516 * this shouldn't happen, it means the last relocate
3517 * failed
3518 */
3519 if (ret == 0)
c9e9f97b 3520 BUG(); /* FIXME break ? */
ec44a35c
CM
3521
3522 ret = btrfs_previous_item(chunk_root, path, 0,
3523 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3524 if (ret) {
67c5e7d4 3525 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3526 ret = 0;
ec44a35c 3527 break;
c9e9f97b 3528 }
7d9eb12c 3529
f43ffb60
ID
3530 leaf = path->nodes[0];
3531 slot = path->slots[0];
3532 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3533
67c5e7d4
FM
3534 if (found_key.objectid != key.objectid) {
3535 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3536 break;
67c5e7d4 3537 }
7d9eb12c 3538
f43ffb60 3539 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3540 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3541
19a39dce
ID
3542 if (!counting) {
3543 spin_lock(&fs_info->balance_lock);
3544 bctl->stat.considered++;
3545 spin_unlock(&fs_info->balance_lock);
3546 }
3547
f43ffb60
ID
3548 ret = should_balance_chunk(chunk_root, leaf, chunk,
3549 found_key.offset);
2c9fe835 3550
b3b4aa74 3551 btrfs_release_path(path);
67c5e7d4
FM
3552 if (!ret) {
3553 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3554 goto loop;
67c5e7d4 3555 }
f43ffb60 3556
19a39dce 3557 if (counting) {
67c5e7d4 3558 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3559 spin_lock(&fs_info->balance_lock);
3560 bctl->stat.expected++;
3561 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3562
3563 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3564 count_data++;
3565 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3566 count_sys++;
3567 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3568 count_meta++;
3569
3570 goto loop;
3571 }
3572
3573 /*
3574 * Apply limit_min filter, no need to check if the LIMITS
3575 * filter is used, limit_min is 0 by default
3576 */
3577 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3578 count_data < bctl->data.limit_min)
3579 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3580 count_meta < bctl->meta.limit_min)
3581 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3582 count_sys < bctl->sys.limit_min)) {
3583 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3584 goto loop;
3585 }
3586
2c9fe835
ZL
3587 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && !chunk_reserved) {
3588 trans = btrfs_start_transaction(chunk_root, 0);
3589 if (IS_ERR(trans)) {
3590 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3591 ret = PTR_ERR(trans);
3592 goto error;
3593 }
3594
3595 ret = btrfs_force_chunk_alloc(trans, chunk_root,
3596 BTRFS_BLOCK_GROUP_DATA);
8a7d656f 3597 btrfs_end_transaction(trans, chunk_root);
2c9fe835
ZL
3598 if (ret < 0) {
3599 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3600 goto error;
3601 }
2c9fe835
ZL
3602 chunk_reserved = 1;
3603 }
3604
ec44a35c 3605 ret = btrfs_relocate_chunk(chunk_root,
ec44a35c 3606 found_key.offset);
67c5e7d4 3607 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3608 if (ret && ret != -ENOSPC)
3609 goto error;
19a39dce 3610 if (ret == -ENOSPC) {
c9e9f97b 3611 enospc_errors++;
19a39dce
ID
3612 } else {
3613 spin_lock(&fs_info->balance_lock);
3614 bctl->stat.completed++;
3615 spin_unlock(&fs_info->balance_lock);
3616 }
f43ffb60 3617loop:
795a3321
ID
3618 if (found_key.offset == 0)
3619 break;
ba1bf481 3620 key.offset = found_key.offset - 1;
ec44a35c 3621 }
c9e9f97b 3622
19a39dce
ID
3623 if (counting) {
3624 btrfs_release_path(path);
3625 counting = false;
3626 goto again;
3627 }
ec44a35c
CM
3628error:
3629 btrfs_free_path(path);
c9e9f97b 3630 if (enospc_errors) {
efe120a0 3631 btrfs_info(fs_info, "%d enospc errors during balance",
c9e9f97b
ID
3632 enospc_errors);
3633 if (!ret)
3634 ret = -ENOSPC;
3635 }
3636
ec44a35c
CM
3637 return ret;
3638}
3639
0c460c0d
ID
3640/**
3641 * alloc_profile_is_valid - see if a given profile is valid and reduced
3642 * @flags: profile to validate
3643 * @extended: if true @flags is treated as an extended profile
3644 */
3645static int alloc_profile_is_valid(u64 flags, int extended)
3646{
3647 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3648 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3649
3650 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3651
3652 /* 1) check that all other bits are zeroed */
3653 if (flags & ~mask)
3654 return 0;
3655
3656 /* 2) see if profile is reduced */
3657 if (flags == 0)
3658 return !extended; /* "0" is valid for usual profiles */
3659
3660 /* true if exactly one bit set */
3661 return (flags & (flags - 1)) == 0;
3662}
3663
837d5b6e
ID
3664static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3665{
a7e99c69
ID
3666 /* cancel requested || normal exit path */
3667 return atomic_read(&fs_info->balance_cancel_req) ||
3668 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3669 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3670}
3671
c9e9f97b
ID
3672static void __cancel_balance(struct btrfs_fs_info *fs_info)
3673{
0940ebf6
ID
3674 int ret;
3675
c9e9f97b 3676 unset_balance_control(fs_info);
0940ebf6 3677 ret = del_balance_item(fs_info->tree_root);
0f788c58 3678 if (ret)
a4553fef 3679 btrfs_std_error(fs_info, ret, NULL);
ed0fb78f
ID
3680
3681 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3682}
3683
bdcd3c97
AM
3684/* Non-zero return value signifies invalidity */
3685static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3686 u64 allowed)
3687{
3688 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3689 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3690 (bctl_arg->target & ~allowed)));
3691}
3692
c9e9f97b
ID
3693/*
3694 * Should be called with both balance and volume mutexes held
3695 */
3696int btrfs_balance(struct btrfs_balance_control *bctl,
3697 struct btrfs_ioctl_balance_args *bargs)
3698{
3699 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3700 u64 allowed;
e4837f8f 3701 int mixed = 0;
c9e9f97b 3702 int ret;
8dabb742 3703 u64 num_devices;
de98ced9 3704 unsigned seq;
c9e9f97b 3705
837d5b6e 3706 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3707 atomic_read(&fs_info->balance_pause_req) ||
3708 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3709 ret = -EINVAL;
3710 goto out;
3711 }
3712
e4837f8f
ID
3713 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3714 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3715 mixed = 1;
3716
f43ffb60
ID
3717 /*
3718 * In case of mixed groups both data and meta should be picked,
3719 * and identical options should be given for both of them.
3720 */
e4837f8f
ID
3721 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3722 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3723 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3724 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3725 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
efe120a0
FH
3726 btrfs_err(fs_info, "with mixed groups data and "
3727 "metadata balance options must be the same");
f43ffb60
ID
3728 ret = -EINVAL;
3729 goto out;
3730 }
3731 }
3732
8dabb742 3733 num_devices = fs_info->fs_devices->num_devices;
73beece9 3734 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
8dabb742
SB
3735 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3736 BUG_ON(num_devices < 1);
3737 num_devices--;
3738 }
73beece9 3739 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
e4d8ec0f 3740 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3741 if (num_devices == 1)
e4d8ec0f 3742 allowed |= BTRFS_BLOCK_GROUP_DUP;
8250dabe 3743 else if (num_devices > 1)
e4d8ec0f 3744 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3745 if (num_devices > 2)
3746 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3747 if (num_devices > 3)
3748 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3749 BTRFS_BLOCK_GROUP_RAID6);
bdcd3c97 3750 if (validate_convert_profile(&bctl->data, allowed)) {
efe120a0
FH
3751 btrfs_err(fs_info, "unable to start balance with target "
3752 "data profile %llu",
c1c9ff7c 3753 bctl->data.target);
e4d8ec0f
ID
3754 ret = -EINVAL;
3755 goto out;
3756 }
bdcd3c97 3757 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0
FH
3758 btrfs_err(fs_info,
3759 "unable to start balance with target metadata profile %llu",
c1c9ff7c 3760 bctl->meta.target);
e4d8ec0f
ID
3761 ret = -EINVAL;
3762 goto out;
3763 }
bdcd3c97 3764 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0
FH
3765 btrfs_err(fs_info,
3766 "unable to start balance with target system profile %llu",
c1c9ff7c 3767 bctl->sys.target);
e4d8ec0f
ID
3768 ret = -EINVAL;
3769 goto out;
3770 }
3771
e4d8ec0f
ID
3772 /* allow to reduce meta or sys integrity only if force set */
3773 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3774 BTRFS_BLOCK_GROUP_RAID10 |
3775 BTRFS_BLOCK_GROUP_RAID5 |
3776 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3777 do {
3778 seq = read_seqbegin(&fs_info->profiles_lock);
3779
3780 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3781 (fs_info->avail_system_alloc_bits & allowed) &&
3782 !(bctl->sys.target & allowed)) ||
3783 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3784 (fs_info->avail_metadata_alloc_bits & allowed) &&
3785 !(bctl->meta.target & allowed))) {
3786 if (bctl->flags & BTRFS_BALANCE_FORCE) {
efe120a0 3787 btrfs_info(fs_info, "force reducing metadata integrity");
de98ced9 3788 } else {
efe120a0
FH
3789 btrfs_err(fs_info, "balance will reduce metadata "
3790 "integrity, use force if you want this");
de98ced9
MX
3791 ret = -EINVAL;
3792 goto out;
3793 }
e4d8ec0f 3794 }
de98ced9 3795 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3796
ee592d07
ST
3797 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3798 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3799 btrfs_warn(fs_info,
fedc0045 3800 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
ee592d07
ST
3801 bctl->meta.target, bctl->data.target);
3802 }
3803
5af3e8cc 3804 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
943c6e99
ZL
3805 fs_info->num_tolerated_disk_barrier_failures = min(
3806 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3807 btrfs_get_num_tolerated_disk_barrier_failures(
3808 bctl->sys.target));
5af3e8cc
SB
3809 }
3810
0940ebf6 3811 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3812 if (ret && ret != -EEXIST)
0940ebf6
ID
3813 goto out;
3814
59641015
ID
3815 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3816 BUG_ON(ret == -EEXIST);
3817 set_balance_control(bctl);
3818 } else {
3819 BUG_ON(ret != -EEXIST);
3820 spin_lock(&fs_info->balance_lock);
3821 update_balance_args(bctl);
3822 spin_unlock(&fs_info->balance_lock);
3823 }
c9e9f97b 3824
837d5b6e 3825 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3826 mutex_unlock(&fs_info->balance_mutex);
3827
3828 ret = __btrfs_balance(fs_info);
3829
3830 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3831 atomic_dec(&fs_info->balance_running);
c9e9f97b 3832
bf023ecf
ID
3833 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3834 fs_info->num_tolerated_disk_barrier_failures =
3835 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3836 }
3837
c9e9f97b
ID
3838 if (bargs) {
3839 memset(bargs, 0, sizeof(*bargs));
19a39dce 3840 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3841 }
3842
3a01aa7a
ID
3843 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3844 balance_need_close(fs_info)) {
3845 __cancel_balance(fs_info);
3846 }
3847
837d5b6e 3848 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3849
3850 return ret;
3851out:
59641015
ID
3852 if (bctl->flags & BTRFS_BALANCE_RESUME)
3853 __cancel_balance(fs_info);
ed0fb78f 3854 else {
59641015 3855 kfree(bctl);
ed0fb78f
ID
3856 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3857 }
59641015
ID
3858 return ret;
3859}
3860
3861static int balance_kthread(void *data)
3862{
2b6ba629 3863 struct btrfs_fs_info *fs_info = data;
9555c6c1 3864 int ret = 0;
59641015
ID
3865
3866 mutex_lock(&fs_info->volume_mutex);
3867 mutex_lock(&fs_info->balance_mutex);
3868
2b6ba629 3869 if (fs_info->balance_ctl) {
efe120a0 3870 btrfs_info(fs_info, "continuing balance");
2b6ba629 3871 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3872 }
59641015
ID
3873
3874 mutex_unlock(&fs_info->balance_mutex);
3875 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3876
59641015
ID
3877 return ret;
3878}
3879
2b6ba629
ID
3880int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3881{
3882 struct task_struct *tsk;
3883
3884 spin_lock(&fs_info->balance_lock);
3885 if (!fs_info->balance_ctl) {
3886 spin_unlock(&fs_info->balance_lock);
3887 return 0;
3888 }
3889 spin_unlock(&fs_info->balance_lock);
3890
3891 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
efe120a0 3892 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3893 return 0;
3894 }
3895
3896 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3897 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3898}
3899
68310a5e 3900int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3901{
59641015
ID
3902 struct btrfs_balance_control *bctl;
3903 struct btrfs_balance_item *item;
3904 struct btrfs_disk_balance_args disk_bargs;
3905 struct btrfs_path *path;
3906 struct extent_buffer *leaf;
3907 struct btrfs_key key;
3908 int ret;
3909
3910 path = btrfs_alloc_path();
3911 if (!path)
3912 return -ENOMEM;
3913
59641015 3914 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3915 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
3916 key.offset = 0;
3917
68310a5e 3918 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3919 if (ret < 0)
68310a5e 3920 goto out;
59641015
ID
3921 if (ret > 0) { /* ret = -ENOENT; */
3922 ret = 0;
68310a5e
ID
3923 goto out;
3924 }
3925
3926 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3927 if (!bctl) {
3928 ret = -ENOMEM;
3929 goto out;
59641015
ID
3930 }
3931
3932 leaf = path->nodes[0];
3933 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3934
68310a5e
ID
3935 bctl->fs_info = fs_info;
3936 bctl->flags = btrfs_balance_flags(leaf, item);
3937 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3938
3939 btrfs_balance_data(leaf, item, &disk_bargs);
3940 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3941 btrfs_balance_meta(leaf, item, &disk_bargs);
3942 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3943 btrfs_balance_sys(leaf, item, &disk_bargs);
3944 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3945
ed0fb78f
ID
3946 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3947
68310a5e
ID
3948 mutex_lock(&fs_info->volume_mutex);
3949 mutex_lock(&fs_info->balance_mutex);
59641015 3950
68310a5e
ID
3951 set_balance_control(bctl);
3952
3953 mutex_unlock(&fs_info->balance_mutex);
3954 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3955out:
3956 btrfs_free_path(path);
ec44a35c
CM
3957 return ret;
3958}
3959
837d5b6e
ID
3960int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3961{
3962 int ret = 0;
3963
3964 mutex_lock(&fs_info->balance_mutex);
3965 if (!fs_info->balance_ctl) {
3966 mutex_unlock(&fs_info->balance_mutex);
3967 return -ENOTCONN;
3968 }
3969
3970 if (atomic_read(&fs_info->balance_running)) {
3971 atomic_inc(&fs_info->balance_pause_req);
3972 mutex_unlock(&fs_info->balance_mutex);
3973
3974 wait_event(fs_info->balance_wait_q,
3975 atomic_read(&fs_info->balance_running) == 0);
3976
3977 mutex_lock(&fs_info->balance_mutex);
3978 /* we are good with balance_ctl ripped off from under us */
3979 BUG_ON(atomic_read(&fs_info->balance_running));
3980 atomic_dec(&fs_info->balance_pause_req);
3981 } else {
3982 ret = -ENOTCONN;
3983 }
3984
3985 mutex_unlock(&fs_info->balance_mutex);
3986 return ret;
3987}
3988
a7e99c69
ID
3989int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3990{
e649e587
ID
3991 if (fs_info->sb->s_flags & MS_RDONLY)
3992 return -EROFS;
3993
a7e99c69
ID
3994 mutex_lock(&fs_info->balance_mutex);
3995 if (!fs_info->balance_ctl) {
3996 mutex_unlock(&fs_info->balance_mutex);
3997 return -ENOTCONN;
3998 }
3999
4000 atomic_inc(&fs_info->balance_cancel_req);
4001 /*
4002 * if we are running just wait and return, balance item is
4003 * deleted in btrfs_balance in this case
4004 */
4005 if (atomic_read(&fs_info->balance_running)) {
4006 mutex_unlock(&fs_info->balance_mutex);
4007 wait_event(fs_info->balance_wait_q,
4008 atomic_read(&fs_info->balance_running) == 0);
4009 mutex_lock(&fs_info->balance_mutex);
4010 } else {
4011 /* __cancel_balance needs volume_mutex */
4012 mutex_unlock(&fs_info->balance_mutex);
4013 mutex_lock(&fs_info->volume_mutex);
4014 mutex_lock(&fs_info->balance_mutex);
4015
4016 if (fs_info->balance_ctl)
4017 __cancel_balance(fs_info);
4018
4019 mutex_unlock(&fs_info->volume_mutex);
4020 }
4021
4022 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4023 atomic_dec(&fs_info->balance_cancel_req);
4024 mutex_unlock(&fs_info->balance_mutex);
4025 return 0;
4026}
4027
803b2f54
SB
4028static int btrfs_uuid_scan_kthread(void *data)
4029{
4030 struct btrfs_fs_info *fs_info = data;
4031 struct btrfs_root *root = fs_info->tree_root;
4032 struct btrfs_key key;
4033 struct btrfs_key max_key;
4034 struct btrfs_path *path = NULL;
4035 int ret = 0;
4036 struct extent_buffer *eb;
4037 int slot;
4038 struct btrfs_root_item root_item;
4039 u32 item_size;
f45388f3 4040 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
4041
4042 path = btrfs_alloc_path();
4043 if (!path) {
4044 ret = -ENOMEM;
4045 goto out;
4046 }
4047
4048 key.objectid = 0;
4049 key.type = BTRFS_ROOT_ITEM_KEY;
4050 key.offset = 0;
4051
4052 max_key.objectid = (u64)-1;
4053 max_key.type = BTRFS_ROOT_ITEM_KEY;
4054 max_key.offset = (u64)-1;
4055
803b2f54 4056 while (1) {
6174d3cb 4057 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
4058 if (ret) {
4059 if (ret > 0)
4060 ret = 0;
4061 break;
4062 }
4063
4064 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4065 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4066 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4067 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4068 goto skip;
4069
4070 eb = path->nodes[0];
4071 slot = path->slots[0];
4072 item_size = btrfs_item_size_nr(eb, slot);
4073 if (item_size < sizeof(root_item))
4074 goto skip;
4075
803b2f54
SB
4076 read_extent_buffer(eb, &root_item,
4077 btrfs_item_ptr_offset(eb, slot),
4078 (int)sizeof(root_item));
4079 if (btrfs_root_refs(&root_item) == 0)
4080 goto skip;
f45388f3
FDBM
4081
4082 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4083 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4084 if (trans)
4085 goto update_tree;
4086
4087 btrfs_release_path(path);
803b2f54
SB
4088 /*
4089 * 1 - subvol uuid item
4090 * 1 - received_subvol uuid item
4091 */
4092 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4093 if (IS_ERR(trans)) {
4094 ret = PTR_ERR(trans);
4095 break;
4096 }
f45388f3
FDBM
4097 continue;
4098 } else {
4099 goto skip;
4100 }
4101update_tree:
4102 if (!btrfs_is_empty_uuid(root_item.uuid)) {
803b2f54
SB
4103 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4104 root_item.uuid,
4105 BTRFS_UUID_KEY_SUBVOL,
4106 key.objectid);
4107 if (ret < 0) {
efe120a0 4108 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4109 ret);
803b2f54
SB
4110 break;
4111 }
4112 }
4113
4114 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
803b2f54
SB
4115 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4116 root_item.received_uuid,
4117 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4118 key.objectid);
4119 if (ret < 0) {
efe120a0 4120 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4121 ret);
803b2f54
SB
4122 break;
4123 }
4124 }
4125
f45388f3 4126skip:
803b2f54
SB
4127 if (trans) {
4128 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
f45388f3 4129 trans = NULL;
803b2f54
SB
4130 if (ret)
4131 break;
4132 }
4133
803b2f54
SB
4134 btrfs_release_path(path);
4135 if (key.offset < (u64)-1) {
4136 key.offset++;
4137 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4138 key.offset = 0;
4139 key.type = BTRFS_ROOT_ITEM_KEY;
4140 } else if (key.objectid < (u64)-1) {
4141 key.offset = 0;
4142 key.type = BTRFS_ROOT_ITEM_KEY;
4143 key.objectid++;
4144 } else {
4145 break;
4146 }
4147 cond_resched();
4148 }
4149
4150out:
4151 btrfs_free_path(path);
f45388f3
FDBM
4152 if (trans && !IS_ERR(trans))
4153 btrfs_end_transaction(trans, fs_info->uuid_root);
803b2f54 4154 if (ret)
efe120a0 4155 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175
SB
4156 else
4157 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
4158 up(&fs_info->uuid_tree_rescan_sem);
4159 return 0;
4160}
4161
70f80175
SB
4162/*
4163 * Callback for btrfs_uuid_tree_iterate().
4164 * returns:
4165 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4166 * < 0 if an error occurred.
70f80175
SB
4167 * > 0 if the check failed, which means the caller shall remove the entry.
4168 */
4169static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4170 u8 *uuid, u8 type, u64 subid)
4171{
4172 struct btrfs_key key;
4173 int ret = 0;
4174 struct btrfs_root *subvol_root;
4175
4176 if (type != BTRFS_UUID_KEY_SUBVOL &&
4177 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4178 goto out;
4179
4180 key.objectid = subid;
4181 key.type = BTRFS_ROOT_ITEM_KEY;
4182 key.offset = (u64)-1;
4183 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4184 if (IS_ERR(subvol_root)) {
4185 ret = PTR_ERR(subvol_root);
4186 if (ret == -ENOENT)
4187 ret = 1;
4188 goto out;
4189 }
4190
4191 switch (type) {
4192 case BTRFS_UUID_KEY_SUBVOL:
4193 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4194 ret = 1;
4195 break;
4196 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4197 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4198 BTRFS_UUID_SIZE))
4199 ret = 1;
4200 break;
4201 }
4202
4203out:
4204 return ret;
4205}
4206
4207static int btrfs_uuid_rescan_kthread(void *data)
4208{
4209 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4210 int ret;
4211
4212 /*
4213 * 1st step is to iterate through the existing UUID tree and
4214 * to delete all entries that contain outdated data.
4215 * 2nd step is to add all missing entries to the UUID tree.
4216 */
4217 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4218 if (ret < 0) {
efe120a0 4219 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4220 up(&fs_info->uuid_tree_rescan_sem);
4221 return ret;
4222 }
4223 return btrfs_uuid_scan_kthread(data);
4224}
4225
f7a81ea4
SB
4226int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4227{
4228 struct btrfs_trans_handle *trans;
4229 struct btrfs_root *tree_root = fs_info->tree_root;
4230 struct btrfs_root *uuid_root;
803b2f54
SB
4231 struct task_struct *task;
4232 int ret;
f7a81ea4
SB
4233
4234 /*
4235 * 1 - root node
4236 * 1 - root item
4237 */
4238 trans = btrfs_start_transaction(tree_root, 2);
4239 if (IS_ERR(trans))
4240 return PTR_ERR(trans);
4241
4242 uuid_root = btrfs_create_tree(trans, fs_info,
4243 BTRFS_UUID_TREE_OBJECTID);
4244 if (IS_ERR(uuid_root)) {
6d13f549
DS
4245 ret = PTR_ERR(uuid_root);
4246 btrfs_abort_transaction(trans, tree_root, ret);
4247 return ret;
f7a81ea4
SB
4248 }
4249
4250 fs_info->uuid_root = uuid_root;
4251
803b2f54
SB
4252 ret = btrfs_commit_transaction(trans, tree_root);
4253 if (ret)
4254 return ret;
4255
4256 down(&fs_info->uuid_tree_rescan_sem);
4257 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4258 if (IS_ERR(task)) {
70f80175 4259 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4260 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4261 up(&fs_info->uuid_tree_rescan_sem);
4262 return PTR_ERR(task);
4263 }
4264
4265 return 0;
f7a81ea4 4266}
803b2f54 4267
70f80175
SB
4268int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4269{
4270 struct task_struct *task;
4271
4272 down(&fs_info->uuid_tree_rescan_sem);
4273 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4274 if (IS_ERR(task)) {
4275 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4276 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4277 up(&fs_info->uuid_tree_rescan_sem);
4278 return PTR_ERR(task);
4279 }
4280
4281 return 0;
4282}
4283
8f18cf13
CM
4284/*
4285 * shrinking a device means finding all of the device extents past
4286 * the new size, and then following the back refs to the chunks.
4287 * The chunk relocation code actually frees the device extent
4288 */
4289int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4290{
4291 struct btrfs_trans_handle *trans;
4292 struct btrfs_root *root = device->dev_root;
4293 struct btrfs_dev_extent *dev_extent = NULL;
4294 struct btrfs_path *path;
4295 u64 length;
8f18cf13
CM
4296 u64 chunk_offset;
4297 int ret;
4298 int slot;
ba1bf481
JB
4299 int failed = 0;
4300 bool retried = false;
53e489bc 4301 bool checked_pending_chunks = false;
8f18cf13
CM
4302 struct extent_buffer *l;
4303 struct btrfs_key key;
6c41761f 4304 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 4305 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d
MX
4306 u64 old_size = btrfs_device_get_total_bytes(device);
4307 u64 diff = old_size - new_size;
8f18cf13 4308
63a212ab
SB
4309 if (device->is_tgtdev_for_dev_replace)
4310 return -EINVAL;
4311
8f18cf13
CM
4312 path = btrfs_alloc_path();
4313 if (!path)
4314 return -ENOMEM;
4315
e4058b54 4316 path->reada = READA_FORWARD;
8f18cf13 4317
7d9eb12c
CM
4318 lock_chunks(root);
4319
7cc8e58d 4320 btrfs_device_set_total_bytes(device, new_size);
2bf64758 4321 if (device->writeable) {
2b82032c 4322 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
4323 spin_lock(&root->fs_info->free_chunk_lock);
4324 root->fs_info->free_chunk_space -= diff;
4325 spin_unlock(&root->fs_info->free_chunk_lock);
4326 }
7d9eb12c 4327 unlock_chunks(root);
8f18cf13 4328
ba1bf481 4329again:
8f18cf13
CM
4330 key.objectid = device->devid;
4331 key.offset = (u64)-1;
4332 key.type = BTRFS_DEV_EXTENT_KEY;
4333
213e64da 4334 do {
67c5e7d4 4335 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4336 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4
FM
4337 if (ret < 0) {
4338 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4339 goto done;
67c5e7d4 4340 }
8f18cf13
CM
4341
4342 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4
FM
4343 if (ret)
4344 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4345 if (ret < 0)
4346 goto done;
4347 if (ret) {
4348 ret = 0;
b3b4aa74 4349 btrfs_release_path(path);
bf1fb512 4350 break;
8f18cf13
CM
4351 }
4352
4353 l = path->nodes[0];
4354 slot = path->slots[0];
4355 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4356
ba1bf481 4357 if (key.objectid != device->devid) {
67c5e7d4 4358 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4359 btrfs_release_path(path);
bf1fb512 4360 break;
ba1bf481 4361 }
8f18cf13
CM
4362
4363 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4364 length = btrfs_dev_extent_length(l, dev_extent);
4365
ba1bf481 4366 if (key.offset + length <= new_size) {
67c5e7d4 4367 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4368 btrfs_release_path(path);
d6397bae 4369 break;
ba1bf481 4370 }
8f18cf13 4371
8f18cf13 4372 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4373 btrfs_release_path(path);
8f18cf13 4374
dc2ee4e2 4375 ret = btrfs_relocate_chunk(root, chunk_offset);
67c5e7d4 4376 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
ba1bf481 4377 if (ret && ret != -ENOSPC)
8f18cf13 4378 goto done;
ba1bf481
JB
4379 if (ret == -ENOSPC)
4380 failed++;
213e64da 4381 } while (key.offset-- > 0);
ba1bf481
JB
4382
4383 if (failed && !retried) {
4384 failed = 0;
4385 retried = true;
4386 goto again;
4387 } else if (failed && retried) {
4388 ret = -ENOSPC;
ba1bf481 4389 goto done;
8f18cf13
CM
4390 }
4391
d6397bae 4392 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4393 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4394 if (IS_ERR(trans)) {
4395 ret = PTR_ERR(trans);
4396 goto done;
4397 }
4398
d6397bae 4399 lock_chunks(root);
53e489bc
FM
4400
4401 /*
4402 * We checked in the above loop all device extents that were already in
4403 * the device tree. However before we have updated the device's
4404 * total_bytes to the new size, we might have had chunk allocations that
4405 * have not complete yet (new block groups attached to transaction
4406 * handles), and therefore their device extents were not yet in the
4407 * device tree and we missed them in the loop above. So if we have any
4408 * pending chunk using a device extent that overlaps the device range
4409 * that we can not use anymore, commit the current transaction and
4410 * repeat the search on the device tree - this way we guarantee we will
4411 * not have chunks using device extents that end beyond 'new_size'.
4412 */
4413 if (!checked_pending_chunks) {
4414 u64 start = new_size;
4415 u64 len = old_size - new_size;
4416
499f377f
JM
4417 if (contains_pending_extent(trans->transaction, device,
4418 &start, len)) {
53e489bc
FM
4419 unlock_chunks(root);
4420 checked_pending_chunks = true;
4421 failed = 0;
4422 retried = false;
4423 ret = btrfs_commit_transaction(trans, root);
4424 if (ret)
4425 goto done;
4426 goto again;
4427 }
4428 }
4429
7cc8e58d 4430 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4431 if (list_empty(&device->resized_list))
4432 list_add_tail(&device->resized_list,
4433 &root->fs_info->fs_devices->resized_devices);
d6397bae 4434
d6397bae
CB
4435 WARN_ON(diff > old_total);
4436 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4437 unlock_chunks(root);
2196d6e8
MX
4438
4439 /* Now btrfs_update_device() will change the on-disk size. */
4440 ret = btrfs_update_device(trans, device);
d6397bae 4441 btrfs_end_transaction(trans, root);
8f18cf13
CM
4442done:
4443 btrfs_free_path(path);
53e489bc
FM
4444 if (ret) {
4445 lock_chunks(root);
4446 btrfs_device_set_total_bytes(device, old_size);
4447 if (device->writeable)
4448 device->fs_devices->total_rw_bytes += diff;
4449 spin_lock(&root->fs_info->free_chunk_lock);
4450 root->fs_info->free_chunk_space += diff;
4451 spin_unlock(&root->fs_info->free_chunk_lock);
4452 unlock_chunks(root);
4453 }
8f18cf13
CM
4454 return ret;
4455}
4456
125ccb0a 4457static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
4458 struct btrfs_key *key,
4459 struct btrfs_chunk *chunk, int item_size)
4460{
6c41761f 4461 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
4462 struct btrfs_disk_key disk_key;
4463 u32 array_size;
4464 u8 *ptr;
4465
fe48a5c0 4466 lock_chunks(root);
0b86a832 4467 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4468 if (array_size + item_size + sizeof(disk_key)
fe48a5c0
MX
4469 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4470 unlock_chunks(root);
0b86a832 4471 return -EFBIG;
fe48a5c0 4472 }
0b86a832
CM
4473
4474 ptr = super_copy->sys_chunk_array + array_size;
4475 btrfs_cpu_key_to_disk(&disk_key, key);
4476 memcpy(ptr, &disk_key, sizeof(disk_key));
4477 ptr += sizeof(disk_key);
4478 memcpy(ptr, chunk, item_size);
4479 item_size += sizeof(disk_key);
4480 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0
MX
4481 unlock_chunks(root);
4482
0b86a832
CM
4483 return 0;
4484}
4485
73c5de00
AJ
4486/*
4487 * sort the devices in descending order by max_avail, total_avail
4488 */
4489static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4490{
73c5de00
AJ
4491 const struct btrfs_device_info *di_a = a;
4492 const struct btrfs_device_info *di_b = b;
9b3f68b9 4493
73c5de00 4494 if (di_a->max_avail > di_b->max_avail)
b2117a39 4495 return -1;
73c5de00 4496 if (di_a->max_avail < di_b->max_avail)
b2117a39 4497 return 1;
73c5de00
AJ
4498 if (di_a->total_avail > di_b->total_avail)
4499 return -1;
4500 if (di_a->total_avail < di_b->total_avail)
4501 return 1;
4502 return 0;
b2117a39 4503}
0b86a832 4504
53b381b3
DW
4505static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4506{
4507 /* TODO allow them to set a preferred stripe size */
ee22184b 4508 return SZ_64K;
53b381b3
DW
4509}
4510
4511static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4512{
ffe2d203 4513 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4514 return;
4515
ceda0864 4516 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4517}
4518
23f8f9b7
GH
4519#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4520 - sizeof(struct btrfs_item) \
4521 - sizeof(struct btrfs_chunk)) \
4522 / sizeof(struct btrfs_stripe) + 1)
4523
4524#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4525 - 2 * sizeof(struct btrfs_disk_key) \
4526 - 2 * sizeof(struct btrfs_chunk)) \
4527 / sizeof(struct btrfs_stripe) + 1)
4528
73c5de00 4529static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
4530 struct btrfs_root *extent_root, u64 start,
4531 u64 type)
b2117a39 4532{
73c5de00
AJ
4533 struct btrfs_fs_info *info = extent_root->fs_info;
4534 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4535 struct list_head *cur;
4536 struct map_lookup *map = NULL;
4537 struct extent_map_tree *em_tree;
4538 struct extent_map *em;
4539 struct btrfs_device_info *devices_info = NULL;
4540 u64 total_avail;
4541 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4542 int data_stripes; /* number of stripes that count for
4543 block group size */
73c5de00
AJ
4544 int sub_stripes; /* sub_stripes info for map */
4545 int dev_stripes; /* stripes per dev */
4546 int devs_max; /* max devs to use */
4547 int devs_min; /* min devs needed */
4548 int devs_increment; /* ndevs has to be a multiple of this */
4549 int ncopies; /* how many copies to data has */
4550 int ret;
4551 u64 max_stripe_size;
4552 u64 max_chunk_size;
4553 u64 stripe_size;
4554 u64 num_bytes;
53b381b3 4555 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4556 int ndevs;
4557 int i;
4558 int j;
31e50229 4559 int index;
593060d7 4560
0c460c0d 4561 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4562
73c5de00
AJ
4563 if (list_empty(&fs_devices->alloc_list))
4564 return -ENOSPC;
b2117a39 4565
31e50229 4566 index = __get_raid_index(type);
73c5de00 4567
31e50229
LB
4568 sub_stripes = btrfs_raid_array[index].sub_stripes;
4569 dev_stripes = btrfs_raid_array[index].dev_stripes;
4570 devs_max = btrfs_raid_array[index].devs_max;
4571 devs_min = btrfs_raid_array[index].devs_min;
4572 devs_increment = btrfs_raid_array[index].devs_increment;
4573 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4574
9b3f68b9 4575 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4576 max_stripe_size = SZ_1G;
73c5de00 4577 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4578 if (!devs_max)
4579 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4580 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4581 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4582 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4583 max_stripe_size = SZ_1G;
1100373f 4584 else
ee22184b 4585 max_stripe_size = SZ_256M;
73c5de00 4586 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4587 if (!devs_max)
4588 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4589 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4590 max_stripe_size = SZ_32M;
73c5de00 4591 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4592 if (!devs_max)
4593 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4594 } else {
351fd353 4595 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4596 type);
4597 BUG_ON(1);
9b3f68b9
CM
4598 }
4599
2b82032c
YZ
4600 /* we don't want a chunk larger than 10% of writeable space */
4601 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4602 max_chunk_size);
9b3f68b9 4603
31e818fe 4604 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4605 GFP_NOFS);
4606 if (!devices_info)
4607 return -ENOMEM;
0cad8a11 4608
73c5de00 4609 cur = fs_devices->alloc_list.next;
9b3f68b9 4610
9f680ce0 4611 /*
73c5de00
AJ
4612 * in the first pass through the devices list, we gather information
4613 * about the available holes on each device.
9f680ce0 4614 */
73c5de00
AJ
4615 ndevs = 0;
4616 while (cur != &fs_devices->alloc_list) {
4617 struct btrfs_device *device;
4618 u64 max_avail;
4619 u64 dev_offset;
b2117a39 4620
73c5de00 4621 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4622
73c5de00 4623 cur = cur->next;
b2117a39 4624
73c5de00 4625 if (!device->writeable) {
31b1a2bd 4626 WARN(1, KERN_ERR
efe120a0 4627 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4628 continue;
4629 }
b2117a39 4630
63a212ab
SB
4631 if (!device->in_fs_metadata ||
4632 device->is_tgtdev_for_dev_replace)
73c5de00 4633 continue;
b2117a39 4634
73c5de00
AJ
4635 if (device->total_bytes > device->bytes_used)
4636 total_avail = device->total_bytes - device->bytes_used;
4637 else
4638 total_avail = 0;
38c01b96 4639
4640 /* If there is no space on this device, skip it. */
4641 if (total_avail == 0)
4642 continue;
b2117a39 4643
6df9a95e 4644 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4645 max_stripe_size * dev_stripes,
4646 &dev_offset, &max_avail);
4647 if (ret && ret != -ENOSPC)
4648 goto error;
b2117a39 4649
73c5de00
AJ
4650 if (ret == 0)
4651 max_avail = max_stripe_size * dev_stripes;
b2117a39 4652
73c5de00
AJ
4653 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4654 continue;
b2117a39 4655
063d006f
ES
4656 if (ndevs == fs_devices->rw_devices) {
4657 WARN(1, "%s: found more than %llu devices\n",
4658 __func__, fs_devices->rw_devices);
4659 break;
4660 }
73c5de00
AJ
4661 devices_info[ndevs].dev_offset = dev_offset;
4662 devices_info[ndevs].max_avail = max_avail;
4663 devices_info[ndevs].total_avail = total_avail;
4664 devices_info[ndevs].dev = device;
4665 ++ndevs;
4666 }
b2117a39 4667
73c5de00
AJ
4668 /*
4669 * now sort the devices by hole size / available space
4670 */
4671 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4672 btrfs_cmp_device_info, NULL);
b2117a39 4673
73c5de00
AJ
4674 /* round down to number of usable stripes */
4675 ndevs -= ndevs % devs_increment;
b2117a39 4676
73c5de00
AJ
4677 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4678 ret = -ENOSPC;
4679 goto error;
b2117a39 4680 }
9f680ce0 4681
73c5de00
AJ
4682 if (devs_max && ndevs > devs_max)
4683 ndevs = devs_max;
4684 /*
4685 * the primary goal is to maximize the number of stripes, so use as many
4686 * devices as possible, even if the stripes are not maximum sized.
4687 */
4688 stripe_size = devices_info[ndevs-1].max_avail;
4689 num_stripes = ndevs * dev_stripes;
b2117a39 4690
53b381b3
DW
4691 /*
4692 * this will have to be fixed for RAID1 and RAID10 over
4693 * more drives
4694 */
4695 data_stripes = num_stripes / ncopies;
4696
53b381b3
DW
4697 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4698 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4699 btrfs_super_stripesize(info->super_copy));
4700 data_stripes = num_stripes - 1;
4701 }
4702 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4703 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4704 btrfs_super_stripesize(info->super_copy));
4705 data_stripes = num_stripes - 2;
4706 }
86db2578
CM
4707
4708 /*
4709 * Use the number of data stripes to figure out how big this chunk
4710 * is really going to be in terms of logical address space,
4711 * and compare that answer with the max chunk size
4712 */
4713 if (stripe_size * data_stripes > max_chunk_size) {
4714 u64 mask = (1ULL << 24) - 1;
b8b93add
DS
4715
4716 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4717
4718 /* bump the answer up to a 16MB boundary */
4719 stripe_size = (stripe_size + mask) & ~mask;
4720
4721 /* but don't go higher than the limits we found
4722 * while searching for free extents
4723 */
4724 if (stripe_size > devices_info[ndevs-1].max_avail)
4725 stripe_size = devices_info[ndevs-1].max_avail;
4726 }
4727
b8b93add 4728 stripe_size = div_u64(stripe_size, dev_stripes);
37db63a4
ID
4729
4730 /* align to BTRFS_STRIPE_LEN */
b8b93add 4731 stripe_size = div_u64(stripe_size, raid_stripe_len);
53b381b3 4732 stripe_size *= raid_stripe_len;
b2117a39
MX
4733
4734 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4735 if (!map) {
4736 ret = -ENOMEM;
4737 goto error;
4738 }
4739 map->num_stripes = num_stripes;
9b3f68b9 4740
73c5de00
AJ
4741 for (i = 0; i < ndevs; ++i) {
4742 for (j = 0; j < dev_stripes; ++j) {
4743 int s = i * dev_stripes + j;
4744 map->stripes[s].dev = devices_info[i].dev;
4745 map->stripes[s].physical = devices_info[i].dev_offset +
4746 j * stripe_size;
6324fbf3 4747 }
6324fbf3 4748 }
2b82032c 4749 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4750 map->stripe_len = raid_stripe_len;
4751 map->io_align = raid_stripe_len;
4752 map->io_width = raid_stripe_len;
2b82032c 4753 map->type = type;
2b82032c 4754 map->sub_stripes = sub_stripes;
0b86a832 4755
53b381b3 4756 num_bytes = stripe_size * data_stripes;
0b86a832 4757
73c5de00 4758 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4759
172ddd60 4760 em = alloc_extent_map();
2b82032c 4761 if (!em) {
298a8f9c 4762 kfree(map);
b2117a39
MX
4763 ret = -ENOMEM;
4764 goto error;
593060d7 4765 }
298a8f9c 4766 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 4767 em->map_lookup = map;
2b82032c 4768 em->start = start;
73c5de00 4769 em->len = num_bytes;
2b82032c
YZ
4770 em->block_start = 0;
4771 em->block_len = em->len;
6df9a95e 4772 em->orig_block_len = stripe_size;
593060d7 4773
2b82032c 4774 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4775 write_lock(&em_tree->lock);
09a2a8f9 4776 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4777 if (!ret) {
4778 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4779 atomic_inc(&em->refs);
4780 }
890871be 4781 write_unlock(&em_tree->lock);
0f5d42b2
JB
4782 if (ret) {
4783 free_extent_map(em);
1dd4602f 4784 goto error;
0f5d42b2 4785 }
0b86a832 4786
04487488
JB
4787 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4788 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4789 start, num_bytes);
6df9a95e
JB
4790 if (ret)
4791 goto error_del_extent;
2b82032c 4792
7cc8e58d
MX
4793 for (i = 0; i < map->num_stripes; i++) {
4794 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4795 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4796 }
43530c46 4797
1c116187
MX
4798 spin_lock(&extent_root->fs_info->free_chunk_lock);
4799 extent_root->fs_info->free_chunk_space -= (stripe_size *
4800 map->num_stripes);
4801 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4802
0f5d42b2 4803 free_extent_map(em);
53b381b3
DW
4804 check_raid56_incompat_flag(extent_root->fs_info, type);
4805
b2117a39 4806 kfree(devices_info);
2b82032c 4807 return 0;
b2117a39 4808
6df9a95e 4809error_del_extent:
0f5d42b2
JB
4810 write_lock(&em_tree->lock);
4811 remove_extent_mapping(em_tree, em);
4812 write_unlock(&em_tree->lock);
4813
4814 /* One for our allocation */
4815 free_extent_map(em);
4816 /* One for the tree reference */
4817 free_extent_map(em);
495e64f4
FM
4818 /* One for the pending_chunks list reference */
4819 free_extent_map(em);
b2117a39 4820error:
b2117a39
MX
4821 kfree(devices_info);
4822 return ret;
2b82032c
YZ
4823}
4824
6df9a95e 4825int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4826 struct btrfs_root *extent_root,
6df9a95e 4827 u64 chunk_offset, u64 chunk_size)
2b82032c 4828{
2b82032c
YZ
4829 struct btrfs_key key;
4830 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4831 struct btrfs_device *device;
4832 struct btrfs_chunk *chunk;
4833 struct btrfs_stripe *stripe;
6df9a95e
JB
4834 struct extent_map_tree *em_tree;
4835 struct extent_map *em;
4836 struct map_lookup *map;
4837 size_t item_size;
4838 u64 dev_offset;
4839 u64 stripe_size;
4840 int i = 0;
140e639f 4841 int ret = 0;
2b82032c 4842
6df9a95e
JB
4843 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4844 read_lock(&em_tree->lock);
4845 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4846 read_unlock(&em_tree->lock);
4847
4848 if (!em) {
4849 btrfs_crit(extent_root->fs_info, "unable to find logical "
4850 "%Lu len %Lu", chunk_offset, chunk_size);
4851 return -EINVAL;
4852 }
4853
4854 if (em->start != chunk_offset || em->len != chunk_size) {
4855 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
351fd353 4856 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
6df9a95e
JB
4857 chunk_size, em->start, em->len);
4858 free_extent_map(em);
4859 return -EINVAL;
4860 }
4861
95617d69 4862 map = em->map_lookup;
6df9a95e
JB
4863 item_size = btrfs_chunk_item_size(map->num_stripes);
4864 stripe_size = em->orig_block_len;
4865
2b82032c 4866 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4867 if (!chunk) {
4868 ret = -ENOMEM;
4869 goto out;
4870 }
4871
50460e37
FM
4872 /*
4873 * Take the device list mutex to prevent races with the final phase of
4874 * a device replace operation that replaces the device object associated
4875 * with the map's stripes, because the device object's id can change
4876 * at any time during that final phase of the device replace operation
4877 * (dev-replace.c:btrfs_dev_replace_finishing()).
4878 */
4879 mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
4880 for (i = 0; i < map->num_stripes; i++) {
4881 device = map->stripes[i].dev;
4882 dev_offset = map->stripes[i].physical;
2b82032c 4883
0b86a832 4884 ret = btrfs_update_device(trans, device);
3acd3953 4885 if (ret)
50460e37 4886 break;
6df9a95e
JB
4887 ret = btrfs_alloc_dev_extent(trans, device,
4888 chunk_root->root_key.objectid,
4889 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4890 chunk_offset, dev_offset,
4891 stripe_size);
4892 if (ret)
50460e37
FM
4893 break;
4894 }
4895 if (ret) {
4896 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4897 goto out;
2b82032c
YZ
4898 }
4899
2b82032c 4900 stripe = &chunk->stripe;
6df9a95e
JB
4901 for (i = 0; i < map->num_stripes; i++) {
4902 device = map->stripes[i].dev;
4903 dev_offset = map->stripes[i].physical;
0b86a832 4904
e17cade2
CM
4905 btrfs_set_stack_stripe_devid(stripe, device->devid);
4906 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4907 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4908 stripe++;
0b86a832 4909 }
50460e37 4910 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
0b86a832 4911
2b82032c 4912 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4913 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4914 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4915 btrfs_set_stack_chunk_type(chunk, map->type);
4916 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4917 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4918 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4919 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4920 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4921
2b82032c
YZ
4922 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4923 key.type = BTRFS_CHUNK_ITEM_KEY;
4924 key.offset = chunk_offset;
0b86a832 4925
2b82032c 4926 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4927 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4928 /*
4929 * TODO: Cleanup of inserted chunk root in case of
4930 * failure.
4931 */
125ccb0a 4932 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4933 item_size);
8f18cf13 4934 }
1abe9b8a 4935
6df9a95e 4936out:
0b86a832 4937 kfree(chunk);
6df9a95e 4938 free_extent_map(em);
4ed1d16e 4939 return ret;
2b82032c 4940}
0b86a832 4941
2b82032c
YZ
4942/*
4943 * Chunk allocation falls into two parts. The first part does works
4944 * that make the new allocated chunk useable, but not do any operation
4945 * that modifies the chunk tree. The second part does the works that
4946 * require modifying the chunk tree. This division is important for the
4947 * bootstrap process of adding storage to a seed btrfs.
4948 */
4949int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4950 struct btrfs_root *extent_root, u64 type)
4951{
4952 u64 chunk_offset;
2b82032c 4953
a9629596 4954 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
6df9a95e
JB
4955 chunk_offset = find_next_chunk(extent_root->fs_info);
4956 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4957}
4958
d397712b 4959static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4960 struct btrfs_root *root,
4961 struct btrfs_device *device)
4962{
4963 u64 chunk_offset;
4964 u64 sys_chunk_offset;
2b82032c 4965 u64 alloc_profile;
2b82032c
YZ
4966 struct btrfs_fs_info *fs_info = root->fs_info;
4967 struct btrfs_root *extent_root = fs_info->extent_root;
4968 int ret;
4969
6df9a95e 4970 chunk_offset = find_next_chunk(fs_info);
de98ced9 4971 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
4972 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4973 alloc_profile);
79787eaa
JM
4974 if (ret)
4975 return ret;
2b82032c 4976
6df9a95e 4977 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 4978 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
4979 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4980 alloc_profile);
79787eaa 4981 return ret;
2b82032c
YZ
4982}
4983
d20983b4
MX
4984static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4985{
4986 int max_errors;
4987
4988 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4989 BTRFS_BLOCK_GROUP_RAID10 |
4990 BTRFS_BLOCK_GROUP_RAID5 |
4991 BTRFS_BLOCK_GROUP_DUP)) {
4992 max_errors = 1;
4993 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4994 max_errors = 2;
4995 } else {
4996 max_errors = 0;
005d6427 4997 }
2b82032c 4998
d20983b4 4999 return max_errors;
2b82032c
YZ
5000}
5001
5002int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
5003{
5004 struct extent_map *em;
5005 struct map_lookup *map;
5006 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5007 int readonly = 0;
d20983b4 5008 int miss_ndevs = 0;
2b82032c
YZ
5009 int i;
5010
890871be 5011 read_lock(&map_tree->map_tree.lock);
2b82032c 5012 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 5013 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
5014 if (!em)
5015 return 1;
5016
95617d69 5017 map = em->map_lookup;
2b82032c 5018 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
5019 if (map->stripes[i].dev->missing) {
5020 miss_ndevs++;
5021 continue;
5022 }
5023
2b82032c
YZ
5024 if (!map->stripes[i].dev->writeable) {
5025 readonly = 1;
d20983b4 5026 goto end;
2b82032c
YZ
5027 }
5028 }
d20983b4
MX
5029
5030 /*
5031 * If the number of missing devices is larger than max errors,
5032 * we can not write the data into that chunk successfully, so
5033 * set it readonly.
5034 */
5035 if (miss_ndevs > btrfs_chunk_max_errors(map))
5036 readonly = 1;
5037end:
0b86a832 5038 free_extent_map(em);
2b82032c 5039 return readonly;
0b86a832
CM
5040}
5041
5042void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5043{
a8067e02 5044 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
5045}
5046
5047void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5048{
5049 struct extent_map *em;
5050
d397712b 5051 while (1) {
890871be 5052 write_lock(&tree->map_tree.lock);
0b86a832
CM
5053 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5054 if (em)
5055 remove_extent_mapping(&tree->map_tree, em);
890871be 5056 write_unlock(&tree->map_tree.lock);
0b86a832
CM
5057 if (!em)
5058 break;
0b86a832
CM
5059 /* once for us */
5060 free_extent_map(em);
5061 /* once for the tree */
5062 free_extent_map(em);
5063 }
5064}
5065
5d964051 5066int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 5067{
5d964051 5068 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
5069 struct extent_map *em;
5070 struct map_lookup *map;
5071 struct extent_map_tree *em_tree = &map_tree->map_tree;
5072 int ret;
5073
890871be 5074 read_lock(&em_tree->lock);
f188591e 5075 em = lookup_extent_mapping(em_tree, logical, len);
890871be 5076 read_unlock(&em_tree->lock);
f188591e 5077
fb7669b5
JB
5078 /*
5079 * We could return errors for these cases, but that could get ugly and
5080 * we'd probably do the same thing which is just not do anything else
5081 * and exit, so return 1 so the callers don't try to use other copies.
5082 */
5083 if (!em) {
351fd353 5084 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
fb7669b5
JB
5085 logical+len);
5086 return 1;
5087 }
5088
5089 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 5090 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
351fd353 5091 "%Lu-%Lu", logical, logical+len, em->start,
fb7669b5 5092 em->start + em->len);
7d3d1744 5093 free_extent_map(em);
fb7669b5
JB
5094 return 1;
5095 }
5096
95617d69 5097 map = em->map_lookup;
f188591e
CM
5098 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5099 ret = map->num_stripes;
321aecc6
CM
5100 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5101 ret = map->sub_stripes;
53b381b3
DW
5102 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5103 ret = 2;
5104 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5105 ret = 3;
f188591e
CM
5106 else
5107 ret = 1;
5108 free_extent_map(em);
ad6d620e 5109
73beece9 5110 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
ad6d620e
SB
5111 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5112 ret++;
73beece9 5113 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
ad6d620e 5114
f188591e
CM
5115 return ret;
5116}
5117
53b381b3
DW
5118unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5119 struct btrfs_mapping_tree *map_tree,
5120 u64 logical)
5121{
5122 struct extent_map *em;
5123 struct map_lookup *map;
5124 struct extent_map_tree *em_tree = &map_tree->map_tree;
5125 unsigned long len = root->sectorsize;
5126
5127 read_lock(&em_tree->lock);
5128 em = lookup_extent_mapping(em_tree, logical, len);
5129 read_unlock(&em_tree->lock);
5130 BUG_ON(!em);
5131
5132 BUG_ON(em->start > logical || em->start + em->len < logical);
95617d69 5133 map = em->map_lookup;
ffe2d203 5134 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3 5135 len = map->stripe_len * nr_data_stripes(map);
53b381b3
DW
5136 free_extent_map(em);
5137 return len;
5138}
5139
5140int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5141 u64 logical, u64 len, int mirror_num)
5142{
5143 struct extent_map *em;
5144 struct map_lookup *map;
5145 struct extent_map_tree *em_tree = &map_tree->map_tree;
5146 int ret = 0;
5147
5148 read_lock(&em_tree->lock);
5149 em = lookup_extent_mapping(em_tree, logical, len);
5150 read_unlock(&em_tree->lock);
5151 BUG_ON(!em);
5152
5153 BUG_ON(em->start > logical || em->start + em->len < logical);
95617d69 5154 map = em->map_lookup;
ffe2d203 5155 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
5156 ret = 1;
5157 free_extent_map(em);
5158 return ret;
5159}
5160
30d9861f
SB
5161static int find_live_mirror(struct btrfs_fs_info *fs_info,
5162 struct map_lookup *map, int first, int num,
5163 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
5164{
5165 int i;
30d9861f
SB
5166 int tolerance;
5167 struct btrfs_device *srcdev;
5168
5169 if (dev_replace_is_ongoing &&
5170 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5171 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5172 srcdev = fs_info->dev_replace.srcdev;
5173 else
5174 srcdev = NULL;
5175
5176 /*
5177 * try to avoid the drive that is the source drive for a
5178 * dev-replace procedure, only choose it if no other non-missing
5179 * mirror is available
5180 */
5181 for (tolerance = 0; tolerance < 2; tolerance++) {
5182 if (map->stripes[optimal].dev->bdev &&
5183 (tolerance || map->stripes[optimal].dev != srcdev))
5184 return optimal;
5185 for (i = first; i < first + num; i++) {
5186 if (map->stripes[i].dev->bdev &&
5187 (tolerance || map->stripes[i].dev != srcdev))
5188 return i;
5189 }
dfe25020 5190 }
30d9861f 5191
dfe25020
CM
5192 /* we couldn't find one that doesn't fail. Just return something
5193 * and the io error handling code will clean up eventually
5194 */
5195 return optimal;
5196}
5197
53b381b3
DW
5198static inline int parity_smaller(u64 a, u64 b)
5199{
5200 return a > b;
5201}
5202
5203/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5204static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5205{
5206 struct btrfs_bio_stripe s;
5207 int i;
5208 u64 l;
5209 int again = 1;
5210
5211 while (again) {
5212 again = 0;
cc7539ed 5213 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5214 if (parity_smaller(bbio->raid_map[i],
5215 bbio->raid_map[i+1])) {
53b381b3 5216 s = bbio->stripes[i];
8e5cfb55 5217 l = bbio->raid_map[i];
53b381b3 5218 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5219 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5220 bbio->stripes[i+1] = s;
8e5cfb55 5221 bbio->raid_map[i+1] = l;
2c8cdd6e 5222
53b381b3
DW
5223 again = 1;
5224 }
5225 }
5226 }
5227}
5228
6e9606d2
ZL
5229static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5230{
5231 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5232 /* the size of the btrfs_bio */
6e9606d2 5233 sizeof(struct btrfs_bio) +
e57cf21e 5234 /* plus the variable array for the stripes */
6e9606d2 5235 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5236 /* plus the variable array for the tgt dev */
6e9606d2 5237 sizeof(int) * (real_stripes) +
e57cf21e
CM
5238 /*
5239 * plus the raid_map, which includes both the tgt dev
5240 * and the stripes
5241 */
5242 sizeof(u64) * (total_stripes),
277fb5fc 5243 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5244
5245 atomic_set(&bbio->error, 0);
5246 atomic_set(&bbio->refs, 1);
5247
5248 return bbio;
5249}
5250
5251void btrfs_get_bbio(struct btrfs_bio *bbio)
5252{
5253 WARN_ON(!atomic_read(&bbio->refs));
5254 atomic_inc(&bbio->refs);
5255}
5256
5257void btrfs_put_bbio(struct btrfs_bio *bbio)
5258{
5259 if (!bbio)
5260 return;
5261 if (atomic_dec_and_test(&bbio->refs))
5262 kfree(bbio);
5263}
5264
3ec706c8 5265static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5266 u64 logical, u64 *length,
a1d3c478 5267 struct btrfs_bio **bbio_ret,
8e5cfb55 5268 int mirror_num, int need_raid_map)
0b86a832
CM
5269{
5270 struct extent_map *em;
5271 struct map_lookup *map;
3ec706c8 5272 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
5273 struct extent_map_tree *em_tree = &map_tree->map_tree;
5274 u64 offset;
593060d7 5275 u64 stripe_offset;
fce3bb9a 5276 u64 stripe_end_offset;
593060d7 5277 u64 stripe_nr;
fce3bb9a
LD
5278 u64 stripe_nr_orig;
5279 u64 stripe_nr_end;
53b381b3 5280 u64 stripe_len;
9d644a62 5281 u32 stripe_index;
cea9e445 5282 int i;
de11cc12 5283 int ret = 0;
f2d8d74d 5284 int num_stripes;
a236aed1 5285 int max_errors = 0;
2c8cdd6e 5286 int tgtdev_indexes = 0;
a1d3c478 5287 struct btrfs_bio *bbio = NULL;
472262f3
SB
5288 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5289 int dev_replace_is_ongoing = 0;
5290 int num_alloc_stripes;
ad6d620e
SB
5291 int patch_the_first_stripe_for_dev_replace = 0;
5292 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5293 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5294
890871be 5295 read_lock(&em_tree->lock);
0b86a832 5296 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 5297 read_unlock(&em_tree->lock);
f2d8d74d 5298
3b951516 5299 if (!em) {
c2cf52eb 5300 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 5301 logical, *length);
9bb91873
JB
5302 return -EINVAL;
5303 }
5304
5305 if (em->start > logical || em->start + em->len < logical) {
5306 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
351fd353 5307 "found %Lu-%Lu", logical, em->start,
9bb91873 5308 em->start + em->len);
7d3d1744 5309 free_extent_map(em);
9bb91873 5310 return -EINVAL;
3b951516 5311 }
0b86a832 5312
95617d69 5313 map = em->map_lookup;
0b86a832 5314 offset = logical - em->start;
593060d7 5315
53b381b3 5316 stripe_len = map->stripe_len;
593060d7
CM
5317 stripe_nr = offset;
5318 /*
5319 * stripe_nr counts the total number of stripes we have to stride
5320 * to get to this block
5321 */
47c5713f 5322 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5323
53b381b3 5324 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
5325 BUG_ON(offset < stripe_offset);
5326
5327 /* stripe_offset is the offset of this block in its stripe*/
5328 stripe_offset = offset - stripe_offset;
5329
53b381b3 5330 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5331 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5332 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5333 raid56_full_stripe_start = offset;
5334
5335 /* allow a write of a full stripe, but make sure we don't
5336 * allow straddling of stripes
5337 */
47c5713f
DS
5338 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5339 full_stripe_len);
53b381b3
DW
5340 raid56_full_stripe_start *= full_stripe_len;
5341 }
5342
5343 if (rw & REQ_DISCARD) {
5344 /* we don't discard raid56 yet */
ffe2d203 5345 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5346 ret = -EOPNOTSUPP;
5347 goto out;
5348 }
fce3bb9a 5349 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
5350 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5351 u64 max_len;
5352 /* For writes to RAID[56], allow a full stripeset across all disks.
5353 For other RAID types and for RAID[56] reads, just allow a single
5354 stripe (on a single disk). */
ffe2d203 5355 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
53b381b3
DW
5356 (rw & REQ_WRITE)) {
5357 max_len = stripe_len * nr_data_stripes(map) -
5358 (offset - raid56_full_stripe_start);
5359 } else {
5360 /* we limit the length of each bio to what fits in a stripe */
5361 max_len = stripe_len - stripe_offset;
5362 }
5363 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5364 } else {
5365 *length = em->len - offset;
5366 }
f2d8d74d 5367
53b381b3
DW
5368 /* This is for when we're called from btrfs_merge_bio_hook() and all
5369 it cares about is the length */
a1d3c478 5370 if (!bbio_ret)
cea9e445
CM
5371 goto out;
5372
73beece9 5373 btrfs_dev_replace_lock(dev_replace, 0);
472262f3
SB
5374 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5375 if (!dev_replace_is_ongoing)
73beece9
LB
5376 btrfs_dev_replace_unlock(dev_replace, 0);
5377 else
5378 btrfs_dev_replace_set_lock_blocking(dev_replace);
472262f3 5379
ad6d620e
SB
5380 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5381 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5382 dev_replace->tgtdev != NULL) {
5383 /*
5384 * in dev-replace case, for repair case (that's the only
5385 * case where the mirror is selected explicitly when
5386 * calling btrfs_map_block), blocks left of the left cursor
5387 * can also be read from the target drive.
5388 * For REQ_GET_READ_MIRRORS, the target drive is added as
5389 * the last one to the array of stripes. For READ, it also
5390 * needs to be supported using the same mirror number.
5391 * If the requested block is not left of the left cursor,
5392 * EIO is returned. This can happen because btrfs_num_copies()
5393 * returns one more in the dev-replace case.
5394 */
5395 u64 tmp_length = *length;
5396 struct btrfs_bio *tmp_bbio = NULL;
5397 int tmp_num_stripes;
5398 u64 srcdev_devid = dev_replace->srcdev->devid;
5399 int index_srcdev = 0;
5400 int found = 0;
5401 u64 physical_of_found = 0;
5402
5403 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
8e5cfb55 5404 logical, &tmp_length, &tmp_bbio, 0, 0);
ad6d620e
SB
5405 if (ret) {
5406 WARN_ON(tmp_bbio != NULL);
5407 goto out;
5408 }
5409
5410 tmp_num_stripes = tmp_bbio->num_stripes;
5411 if (mirror_num > tmp_num_stripes) {
5412 /*
5413 * REQ_GET_READ_MIRRORS does not contain this
5414 * mirror, that means that the requested area
5415 * is not left of the left cursor
5416 */
5417 ret = -EIO;
6e9606d2 5418 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5419 goto out;
5420 }
5421
5422 /*
5423 * process the rest of the function using the mirror_num
5424 * of the source drive. Therefore look it up first.
5425 * At the end, patch the device pointer to the one of the
5426 * target drive.
5427 */
5428 for (i = 0; i < tmp_num_stripes; i++) {
94a97dfe
ZL
5429 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5430 continue;
5431
5432 /*
5433 * In case of DUP, in order to keep it simple, only add
5434 * the mirror with the lowest physical address
5435 */
5436 if (found &&
5437 physical_of_found <= tmp_bbio->stripes[i].physical)
5438 continue;
5439
5440 index_srcdev = i;
5441 found = 1;
5442 physical_of_found = tmp_bbio->stripes[i].physical;
ad6d620e
SB
5443 }
5444
94a97dfe
ZL
5445 btrfs_put_bbio(tmp_bbio);
5446
5447 if (!found) {
ad6d620e
SB
5448 WARN_ON(1);
5449 ret = -EIO;
ad6d620e
SB
5450 goto out;
5451 }
5452
94a97dfe
ZL
5453 mirror_num = index_srcdev + 1;
5454 patch_the_first_stripe_for_dev_replace = 1;
5455 physical_to_patch_in_first_stripe = physical_of_found;
ad6d620e
SB
5456 } else if (mirror_num > map->num_stripes) {
5457 mirror_num = 0;
5458 }
5459
f2d8d74d 5460 num_stripes = 1;
cea9e445 5461 stripe_index = 0;
fce3bb9a 5462 stripe_nr_orig = stripe_nr;
fda2832f 5463 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
b8b93add 5464 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
fce3bb9a
LD
5465 stripe_end_offset = stripe_nr_end * map->stripe_len -
5466 (offset + *length);
53b381b3 5467
fce3bb9a
LD
5468 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5469 if (rw & REQ_DISCARD)
5470 num_stripes = min_t(u64, map->num_stripes,
5471 stripe_nr_end - stripe_nr_orig);
47c5713f
DS
5472 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5473 &stripe_index);
28e1cc7d
MX
5474 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5475 mirror_num = 1;
fce3bb9a 5476 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 5477 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 5478 num_stripes = map->num_stripes;
2fff734f 5479 else if (mirror_num)
f188591e 5480 stripe_index = mirror_num - 1;
dfe25020 5481 else {
30d9861f 5482 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5483 map->num_stripes,
30d9861f
SB
5484 current->pid % map->num_stripes,
5485 dev_replace_is_ongoing);
a1d3c478 5486 mirror_num = stripe_index + 1;
dfe25020 5487 }
2fff734f 5488
611f0e00 5489 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 5490 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 5491 num_stripes = map->num_stripes;
a1d3c478 5492 } else if (mirror_num) {
f188591e 5493 stripe_index = mirror_num - 1;
a1d3c478
JS
5494 } else {
5495 mirror_num = 1;
5496 }
2fff734f 5497
321aecc6 5498 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5499 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5500
47c5713f 5501 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5502 stripe_index *= map->sub_stripes;
5503
29a8d9a0 5504 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 5505 num_stripes = map->sub_stripes;
fce3bb9a
LD
5506 else if (rw & REQ_DISCARD)
5507 num_stripes = min_t(u64, map->sub_stripes *
5508 (stripe_nr_end - stripe_nr_orig),
5509 map->num_stripes);
321aecc6
CM
5510 else if (mirror_num)
5511 stripe_index += mirror_num - 1;
dfe25020 5512 else {
3e74317a 5513 int old_stripe_index = stripe_index;
30d9861f
SB
5514 stripe_index = find_live_mirror(fs_info, map,
5515 stripe_index,
dfe25020 5516 map->sub_stripes, stripe_index +
30d9861f
SB
5517 current->pid % map->sub_stripes,
5518 dev_replace_is_ongoing);
3e74317a 5519 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5520 }
53b381b3 5521
ffe2d203 5522 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8e5cfb55 5523 if (need_raid_map &&
af8e2d1d
MX
5524 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5525 mirror_num > 1)) {
53b381b3 5526 /* push stripe_nr back to the start of the full stripe */
b8b93add
DS
5527 stripe_nr = div_u64(raid56_full_stripe_start,
5528 stripe_len * nr_data_stripes(map));
53b381b3
DW
5529
5530 /* RAID[56] write or recovery. Return all stripes */
5531 num_stripes = map->num_stripes;
5532 max_errors = nr_parity_stripes(map);
5533
53b381b3
DW
5534 *length = map->stripe_len;
5535 stripe_index = 0;
5536 stripe_offset = 0;
5537 } else {
5538 /*
5539 * Mirror #0 or #1 means the original data block.
5540 * Mirror #2 is RAID5 parity block.
5541 * Mirror #3 is RAID6 Q block.
5542 */
47c5713f
DS
5543 stripe_nr = div_u64_rem(stripe_nr,
5544 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5545 if (mirror_num > 1)
5546 stripe_index = nr_data_stripes(map) +
5547 mirror_num - 2;
5548
5549 /* We distribute the parity blocks across stripes */
47c5713f
DS
5550 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5551 &stripe_index);
28e1cc7d
MX
5552 if (!(rw & (REQ_WRITE | REQ_DISCARD |
5553 REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5554 mirror_num = 1;
53b381b3 5555 }
8790d502
CM
5556 } else {
5557 /*
47c5713f
DS
5558 * after this, stripe_nr is the number of stripes on this
5559 * device we have to walk to find the data, and stripe_index is
5560 * the number of our device in the stripe array
8790d502 5561 */
47c5713f
DS
5562 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5563 &stripe_index);
a1d3c478 5564 mirror_num = stripe_index + 1;
8790d502 5565 }
593060d7 5566 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 5567
472262f3 5568 num_alloc_stripes = num_stripes;
ad6d620e
SB
5569 if (dev_replace_is_ongoing) {
5570 if (rw & (REQ_WRITE | REQ_DISCARD))
5571 num_alloc_stripes <<= 1;
5572 if (rw & REQ_GET_READ_MIRRORS)
5573 num_alloc_stripes++;
2c8cdd6e 5574 tgtdev_indexes = num_stripes;
ad6d620e 5575 }
2c8cdd6e 5576
6e9606d2 5577 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5578 if (!bbio) {
5579 ret = -ENOMEM;
5580 goto out;
5581 }
2c8cdd6e
MX
5582 if (dev_replace_is_ongoing)
5583 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5584
8e5cfb55 5585 /* build raid_map */
ffe2d203 5586 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
8e5cfb55
ZL
5587 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5588 mirror_num > 1)) {
5589 u64 tmp;
9d644a62 5590 unsigned rot;
8e5cfb55
ZL
5591
5592 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5593 sizeof(struct btrfs_bio_stripe) *
5594 num_alloc_stripes +
5595 sizeof(int) * tgtdev_indexes);
5596
5597 /* Work out the disk rotation on this stripe-set */
47c5713f 5598 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5599
5600 /* Fill in the logical address of each stripe */
5601 tmp = stripe_nr * nr_data_stripes(map);
5602 for (i = 0; i < nr_data_stripes(map); i++)
5603 bbio->raid_map[(i+rot) % num_stripes] =
5604 em->start + (tmp + i) * map->stripe_len;
5605
5606 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5607 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5608 bbio->raid_map[(i+rot+1) % num_stripes] =
5609 RAID6_Q_STRIPE;
5610 }
5611
fce3bb9a 5612 if (rw & REQ_DISCARD) {
9d644a62
DS
5613 u32 factor = 0;
5614 u32 sub_stripes = 0;
ec9ef7a1
LZ
5615 u64 stripes_per_dev = 0;
5616 u32 remaining_stripes = 0;
b89203f7 5617 u32 last_stripe = 0;
ec9ef7a1
LZ
5618
5619 if (map->type &
5620 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5621 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5622 sub_stripes = 1;
5623 else
5624 sub_stripes = map->sub_stripes;
5625
5626 factor = map->num_stripes / sub_stripes;
5627 stripes_per_dev = div_u64_rem(stripe_nr_end -
5628 stripe_nr_orig,
5629 factor,
5630 &remaining_stripes);
b89203f7
LB
5631 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5632 last_stripe *= sub_stripes;
ec9ef7a1
LZ
5633 }
5634
fce3bb9a 5635 for (i = 0; i < num_stripes; i++) {
a1d3c478 5636 bbio->stripes[i].physical =
f2d8d74d
CM
5637 map->stripes[stripe_index].physical +
5638 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 5639 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 5640
ec9ef7a1
LZ
5641 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5642 BTRFS_BLOCK_GROUP_RAID10)) {
5643 bbio->stripes[i].length = stripes_per_dev *
5644 map->stripe_len;
b89203f7 5645
ec9ef7a1
LZ
5646 if (i / sub_stripes < remaining_stripes)
5647 bbio->stripes[i].length +=
5648 map->stripe_len;
b89203f7
LB
5649
5650 /*
5651 * Special for the first stripe and
5652 * the last stripe:
5653 *
5654 * |-------|...|-------|
5655 * |----------|
5656 * off end_off
5657 */
ec9ef7a1 5658 if (i < sub_stripes)
a1d3c478 5659 bbio->stripes[i].length -=
fce3bb9a 5660 stripe_offset;
b89203f7
LB
5661
5662 if (stripe_index >= last_stripe &&
5663 stripe_index <= (last_stripe +
5664 sub_stripes - 1))
a1d3c478 5665 bbio->stripes[i].length -=
fce3bb9a 5666 stripe_end_offset;
b89203f7 5667
ec9ef7a1
LZ
5668 if (i == sub_stripes - 1)
5669 stripe_offset = 0;
fce3bb9a 5670 } else
a1d3c478 5671 bbio->stripes[i].length = *length;
fce3bb9a
LD
5672
5673 stripe_index++;
5674 if (stripe_index == map->num_stripes) {
5675 /* This could only happen for RAID0/10 */
5676 stripe_index = 0;
5677 stripe_nr++;
5678 }
5679 }
5680 } else {
5681 for (i = 0; i < num_stripes; i++) {
a1d3c478 5682 bbio->stripes[i].physical =
212a17ab
LT
5683 map->stripes[stripe_index].physical +
5684 stripe_offset +
5685 stripe_nr * map->stripe_len;
a1d3c478 5686 bbio->stripes[i].dev =
212a17ab 5687 map->stripes[stripe_index].dev;
fce3bb9a 5688 stripe_index++;
f2d8d74d 5689 }
593060d7 5690 }
de11cc12 5691
d20983b4
MX
5692 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5693 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5694
8e5cfb55
ZL
5695 if (bbio->raid_map)
5696 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5697
2c8cdd6e 5698 tgtdev_indexes = 0;
472262f3
SB
5699 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5700 dev_replace->tgtdev != NULL) {
5701 int index_where_to_add;
5702 u64 srcdev_devid = dev_replace->srcdev->devid;
5703
5704 /*
5705 * duplicate the write operations while the dev replace
5706 * procedure is running. Since the copying of the old disk
5707 * to the new disk takes place at run time while the
5708 * filesystem is mounted writable, the regular write
5709 * operations to the old disk have to be duplicated to go
5710 * to the new disk as well.
5711 * Note that device->missing is handled by the caller, and
5712 * that the write to the old disk is already set up in the
5713 * stripes array.
5714 */
5715 index_where_to_add = num_stripes;
5716 for (i = 0; i < num_stripes; i++) {
5717 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5718 /* write to new disk, too */
5719 struct btrfs_bio_stripe *new =
5720 bbio->stripes + index_where_to_add;
5721 struct btrfs_bio_stripe *old =
5722 bbio->stripes + i;
5723
5724 new->physical = old->physical;
5725 new->length = old->length;
5726 new->dev = dev_replace->tgtdev;
2c8cdd6e 5727 bbio->tgtdev_map[i] = index_where_to_add;
472262f3
SB
5728 index_where_to_add++;
5729 max_errors++;
2c8cdd6e 5730 tgtdev_indexes++;
472262f3
SB
5731 }
5732 }
5733 num_stripes = index_where_to_add;
ad6d620e
SB
5734 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5735 dev_replace->tgtdev != NULL) {
5736 u64 srcdev_devid = dev_replace->srcdev->devid;
5737 int index_srcdev = 0;
5738 int found = 0;
5739 u64 physical_of_found = 0;
5740
5741 /*
5742 * During the dev-replace procedure, the target drive can
5743 * also be used to read data in case it is needed to repair
5744 * a corrupt block elsewhere. This is possible if the
5745 * requested area is left of the left cursor. In this area,
5746 * the target drive is a full copy of the source drive.
5747 */
5748 for (i = 0; i < num_stripes; i++) {
5749 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5750 /*
5751 * In case of DUP, in order to keep it
5752 * simple, only add the mirror with the
5753 * lowest physical address
5754 */
5755 if (found &&
5756 physical_of_found <=
5757 bbio->stripes[i].physical)
5758 continue;
5759 index_srcdev = i;
5760 found = 1;
5761 physical_of_found = bbio->stripes[i].physical;
5762 }
5763 }
5764 if (found) {
258ece02 5765 if (physical_of_found + map->stripe_len <=
ad6d620e
SB
5766 dev_replace->cursor_left) {
5767 struct btrfs_bio_stripe *tgtdev_stripe =
5768 bbio->stripes + num_stripes;
5769
5770 tgtdev_stripe->physical = physical_of_found;
5771 tgtdev_stripe->length =
5772 bbio->stripes[index_srcdev].length;
5773 tgtdev_stripe->dev = dev_replace->tgtdev;
2c8cdd6e 5774 bbio->tgtdev_map[index_srcdev] = num_stripes;
ad6d620e 5775
2c8cdd6e 5776 tgtdev_indexes++;
ad6d620e
SB
5777 num_stripes++;
5778 }
5779 }
472262f3
SB
5780 }
5781
de11cc12 5782 *bbio_ret = bbio;
10f11900 5783 bbio->map_type = map->type;
de11cc12
LZ
5784 bbio->num_stripes = num_stripes;
5785 bbio->max_errors = max_errors;
5786 bbio->mirror_num = mirror_num;
2c8cdd6e 5787 bbio->num_tgtdevs = tgtdev_indexes;
ad6d620e
SB
5788
5789 /*
5790 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5791 * mirror_num == num_stripes + 1 && dev_replace target drive is
5792 * available as a mirror
5793 */
5794 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5795 WARN_ON(num_stripes > 1);
5796 bbio->stripes[0].dev = dev_replace->tgtdev;
5797 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5798 bbio->mirror_num = map->num_stripes + 1;
5799 }
cea9e445 5800out:
73beece9
LB
5801 if (dev_replace_is_ongoing) {
5802 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5803 btrfs_dev_replace_unlock(dev_replace, 0);
5804 }
0b86a832 5805 free_extent_map(em);
de11cc12 5806 return ret;
0b86a832
CM
5807}
5808
3ec706c8 5809int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5810 u64 logical, u64 *length,
a1d3c478 5811 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5812{
3ec706c8 5813 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
8e5cfb55 5814 mirror_num, 0);
f2d8d74d
CM
5815}
5816
af8e2d1d
MX
5817/* For Scrub/replace */
5818int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5819 u64 logical, u64 *length,
5820 struct btrfs_bio **bbio_ret, int mirror_num,
8e5cfb55 5821 int need_raid_map)
af8e2d1d
MX
5822{
5823 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
8e5cfb55 5824 mirror_num, need_raid_map);
af8e2d1d
MX
5825}
5826
a512bbf8
YZ
5827int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5828 u64 chunk_start, u64 physical, u64 devid,
5829 u64 **logical, int *naddrs, int *stripe_len)
5830{
5831 struct extent_map_tree *em_tree = &map_tree->map_tree;
5832 struct extent_map *em;
5833 struct map_lookup *map;
5834 u64 *buf;
5835 u64 bytenr;
5836 u64 length;
5837 u64 stripe_nr;
53b381b3 5838 u64 rmap_len;
a512bbf8
YZ
5839 int i, j, nr = 0;
5840
890871be 5841 read_lock(&em_tree->lock);
a512bbf8 5842 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5843 read_unlock(&em_tree->lock);
a512bbf8 5844
835d974f 5845 if (!em) {
efe120a0 5846 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
835d974f
JB
5847 chunk_start);
5848 return -EIO;
5849 }
5850
5851 if (em->start != chunk_start) {
efe120a0 5852 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
835d974f
JB
5853 em->start, chunk_start);
5854 free_extent_map(em);
5855 return -EIO;
5856 }
95617d69 5857 map = em->map_lookup;
a512bbf8
YZ
5858
5859 length = em->len;
53b381b3
DW
5860 rmap_len = map->stripe_len;
5861
a512bbf8 5862 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 5863 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 5864 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 5865 length = div_u64(length, map->num_stripes);
ffe2d203 5866 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 5867 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
5868 rmap_len = map->stripe_len * nr_data_stripes(map);
5869 }
a512bbf8 5870
31e818fe 5871 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 5872 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5873
5874 for (i = 0; i < map->num_stripes; i++) {
5875 if (devid && map->stripes[i].dev->devid != devid)
5876 continue;
5877 if (map->stripes[i].physical > physical ||
5878 map->stripes[i].physical + length <= physical)
5879 continue;
5880
5881 stripe_nr = physical - map->stripes[i].physical;
b8b93add 5882 stripe_nr = div_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
5883
5884 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5885 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 5886 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
5887 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5888 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5889 } /* else if RAID[56], multiply by nr_data_stripes().
5890 * Alternatively, just use rmap_len below instead of
5891 * map->stripe_len */
5892
5893 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5894 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5895 for (j = 0; j < nr; j++) {
5896 if (buf[j] == bytenr)
5897 break;
5898 }
934d375b
CM
5899 if (j == nr) {
5900 WARN_ON(nr >= map->num_stripes);
a512bbf8 5901 buf[nr++] = bytenr;
934d375b 5902 }
a512bbf8
YZ
5903 }
5904
a512bbf8
YZ
5905 *logical = buf;
5906 *naddrs = nr;
53b381b3 5907 *stripe_len = rmap_len;
a512bbf8
YZ
5908
5909 free_extent_map(em);
5910 return 0;
f2d8d74d
CM
5911}
5912
4246a0b6 5913static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 5914{
326e1dbb
MS
5915 bio->bi_private = bbio->private;
5916 bio->bi_end_io = bbio->end_io;
4246a0b6 5917 bio_endio(bio);
326e1dbb 5918
6e9606d2 5919 btrfs_put_bbio(bbio);
8408c716
MX
5920}
5921
4246a0b6 5922static void btrfs_end_bio(struct bio *bio)
8790d502 5923{
9be3395b 5924 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5925 int is_orig_bio = 0;
8790d502 5926
4246a0b6 5927 if (bio->bi_error) {
a1d3c478 5928 atomic_inc(&bbio->error);
4246a0b6 5929 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
442a4f63 5930 unsigned int stripe_index =
9be3395b 5931 btrfs_io_bio(bio)->stripe_index;
65f53338 5932 struct btrfs_device *dev;
442a4f63
SB
5933
5934 BUG_ON(stripe_index >= bbio->num_stripes);
5935 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5936 if (dev->bdev) {
5937 if (bio->bi_rw & WRITE)
5938 btrfs_dev_stat_inc(dev,
5939 BTRFS_DEV_STAT_WRITE_ERRS);
5940 else
5941 btrfs_dev_stat_inc(dev,
5942 BTRFS_DEV_STAT_READ_ERRS);
5943 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5944 btrfs_dev_stat_inc(dev,
5945 BTRFS_DEV_STAT_FLUSH_ERRS);
5946 btrfs_dev_stat_print_on_error(dev);
5947 }
442a4f63
SB
5948 }
5949 }
8790d502 5950
a1d3c478 5951 if (bio == bbio->orig_bio)
7d2b4daa
CM
5952 is_orig_bio = 1;
5953
c404e0dc
MX
5954 btrfs_bio_counter_dec(bbio->fs_info);
5955
a1d3c478 5956 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5957 if (!is_orig_bio) {
5958 bio_put(bio);
a1d3c478 5959 bio = bbio->orig_bio;
7d2b4daa 5960 }
c7b22bb1 5961
9be3395b 5962 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 5963 /* only send an error to the higher layers if it is
53b381b3 5964 * beyond the tolerance of the btrfs bio
a236aed1 5965 */
a1d3c478 5966 if (atomic_read(&bbio->error) > bbio->max_errors) {
4246a0b6 5967 bio->bi_error = -EIO;
5dbc8fca 5968 } else {
1259ab75
CM
5969 /*
5970 * this bio is actually up to date, we didn't
5971 * go over the max number of errors
5972 */
4246a0b6 5973 bio->bi_error = 0;
1259ab75 5974 }
c55f1396 5975
4246a0b6 5976 btrfs_end_bbio(bbio, bio);
7d2b4daa 5977 } else if (!is_orig_bio) {
8790d502
CM
5978 bio_put(bio);
5979 }
8790d502
CM
5980}
5981
8b712842
CM
5982/*
5983 * see run_scheduled_bios for a description of why bios are collected for
5984 * async submit.
5985 *
5986 * This will add one bio to the pending list for a device and make sure
5987 * the work struct is scheduled.
5988 */
48a3b636
ES
5989static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5990 struct btrfs_device *device,
5991 int rw, struct bio *bio)
8b712842
CM
5992{
5993 int should_queue = 1;
ffbd517d 5994 struct btrfs_pending_bios *pending_bios;
8b712842 5995
53b381b3 5996 if (device->missing || !device->bdev) {
4246a0b6 5997 bio_io_error(bio);
53b381b3
DW
5998 return;
5999 }
6000
8b712842 6001 /* don't bother with additional async steps for reads, right now */
7b6d91da 6002 if (!(rw & REQ_WRITE)) {
492bb6de 6003 bio_get(bio);
21adbd5c 6004 btrfsic_submit_bio(rw, bio);
492bb6de 6005 bio_put(bio);
143bede5 6006 return;
8b712842
CM
6007 }
6008
6009 /*
0986fe9e 6010 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
6011 * higher layers. Otherwise, the async bio makes it appear we have
6012 * made progress against dirty pages when we've really just put it
6013 * on a queue for later
6014 */
0986fe9e 6015 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 6016 WARN_ON(bio->bi_next);
8b712842
CM
6017 bio->bi_next = NULL;
6018 bio->bi_rw |= rw;
6019
6020 spin_lock(&device->io_lock);
7b6d91da 6021 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
6022 pending_bios = &device->pending_sync_bios;
6023 else
6024 pending_bios = &device->pending_bios;
8b712842 6025
ffbd517d
CM
6026 if (pending_bios->tail)
6027 pending_bios->tail->bi_next = bio;
8b712842 6028
ffbd517d
CM
6029 pending_bios->tail = bio;
6030 if (!pending_bios->head)
6031 pending_bios->head = bio;
8b712842
CM
6032 if (device->running_pending)
6033 should_queue = 0;
6034
6035 spin_unlock(&device->io_lock);
6036
6037 if (should_queue)
a8c93d4e
QW
6038 btrfs_queue_work(root->fs_info->submit_workers,
6039 &device->work);
8b712842
CM
6040}
6041
de1ee92a
JB
6042static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
6043 struct bio *bio, u64 physical, int dev_nr,
6044 int rw, int async)
6045{
6046 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6047
6048 bio->bi_private = bbio;
9be3395b 6049 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 6050 bio->bi_end_io = btrfs_end_bio;
4f024f37 6051 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
6052#ifdef DEBUG
6053 {
6054 struct rcu_string *name;
6055
6056 rcu_read_lock();
6057 name = rcu_dereference(dev->name);
d1423248 6058 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a 6059 "(%s id %llu), size=%u\n", rw,
1b6e4469
FF
6060 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
6061 name->str, dev->devid, bio->bi_iter.bi_size);
de1ee92a
JB
6062 rcu_read_unlock();
6063 }
6064#endif
6065 bio->bi_bdev = dev->bdev;
c404e0dc
MX
6066
6067 btrfs_bio_counter_inc_noblocked(root->fs_info);
6068
de1ee92a 6069 if (async)
53b381b3 6070 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
6071 else
6072 btrfsic_submit_bio(rw, bio);
6073}
6074
de1ee92a
JB
6075static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6076{
6077 atomic_inc(&bbio->error);
6078 if (atomic_dec_and_test(&bbio->stripes_pending)) {
8408c716
MX
6079 /* Shoud be the original bio. */
6080 WARN_ON(bio != bbio->orig_bio);
6081
9be3395b 6082 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6083 bio->bi_iter.bi_sector = logical >> 9;
4246a0b6
CH
6084 bio->bi_error = -EIO;
6085 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6086 }
6087}
6088
f188591e 6089int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 6090 int mirror_num, int async_submit)
0b86a832 6091{
0b86a832 6092 struct btrfs_device *dev;
8790d502 6093 struct bio *first_bio = bio;
4f024f37 6094 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6095 u64 length = 0;
6096 u64 map_length;
0b86a832 6097 int ret;
08da757d
ZL
6098 int dev_nr;
6099 int total_devs;
a1d3c478 6100 struct btrfs_bio *bbio = NULL;
0b86a832 6101
4f024f37 6102 length = bio->bi_iter.bi_size;
0b86a832 6103 map_length = length;
cea9e445 6104
c404e0dc 6105 btrfs_bio_counter_inc_blocked(root->fs_info);
53b381b3 6106 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
8e5cfb55 6107 mirror_num, 1);
c404e0dc
MX
6108 if (ret) {
6109 btrfs_bio_counter_dec(root->fs_info);
79787eaa 6110 return ret;
c404e0dc 6111 }
cea9e445 6112
a1d3c478 6113 total_devs = bbio->num_stripes;
53b381b3
DW
6114 bbio->orig_bio = first_bio;
6115 bbio->private = first_bio->bi_private;
6116 bbio->end_io = first_bio->bi_end_io;
c404e0dc 6117 bbio->fs_info = root->fs_info;
53b381b3
DW
6118 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6119
ad1ba2a0
ZL
6120 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6121 ((rw & WRITE) || (mirror_num > 1))) {
53b381b3
DW
6122 /* In this case, map_length has been set to the length of
6123 a single stripe; not the whole write */
6124 if (rw & WRITE) {
8e5cfb55 6125 ret = raid56_parity_write(root, bio, bbio, map_length);
53b381b3 6126 } else {
8e5cfb55 6127 ret = raid56_parity_recover(root, bio, bbio, map_length,
4245215d 6128 mirror_num, 1);
53b381b3 6129 }
4245215d 6130
c404e0dc
MX
6131 btrfs_bio_counter_dec(root->fs_info);
6132 return ret;
53b381b3
DW
6133 }
6134
cea9e445 6135 if (map_length < length) {
c2cf52eb 6136 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 6137 logical, length, map_length);
cea9e445
CM
6138 BUG();
6139 }
a1d3c478 6140
08da757d 6141 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a
JB
6142 dev = bbio->stripes[dev_nr].dev;
6143 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6144 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6145 continue;
6146 }
6147
a1d3c478 6148 if (dev_nr < total_devs - 1) {
9be3395b 6149 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 6150 BUG_ON(!bio); /* -ENOMEM */
326e1dbb 6151 } else
a1d3c478 6152 bio = first_bio;
de1ee92a
JB
6153
6154 submit_stripe_bio(root, bbio, bio,
6155 bbio->stripes[dev_nr].physical, dev_nr, rw,
6156 async_submit);
8790d502 6157 }
c404e0dc 6158 btrfs_bio_counter_dec(root->fs_info);
0b86a832
CM
6159 return 0;
6160}
6161
aa1b8cd4 6162struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 6163 u8 *uuid, u8 *fsid)
0b86a832 6164{
2b82032c
YZ
6165 struct btrfs_device *device;
6166 struct btrfs_fs_devices *cur_devices;
6167
aa1b8cd4 6168 cur_devices = fs_info->fs_devices;
2b82032c
YZ
6169 while (cur_devices) {
6170 if (!fsid ||
6171 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6172 device = __find_device(&cur_devices->devices,
6173 devid, uuid);
6174 if (device)
6175 return device;
6176 }
6177 cur_devices = cur_devices->seed;
6178 }
6179 return NULL;
0b86a832
CM
6180}
6181
dfe25020 6182static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5f375835 6183 struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6184 u64 devid, u8 *dev_uuid)
6185{
6186 struct btrfs_device *device;
dfe25020 6187
12bd2fc0
ID
6188 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6189 if (IS_ERR(device))
7cbd8a83 6190 return NULL;
12bd2fc0
ID
6191
6192 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6193 device->fs_devices = fs_devices;
dfe25020 6194 fs_devices->num_devices++;
12bd2fc0
ID
6195
6196 device->missing = 1;
cd02dca5 6197 fs_devices->missing_devices++;
12bd2fc0 6198
dfe25020
CM
6199 return device;
6200}
6201
12bd2fc0
ID
6202/**
6203 * btrfs_alloc_device - allocate struct btrfs_device
6204 * @fs_info: used only for generating a new devid, can be NULL if
6205 * devid is provided (i.e. @devid != NULL).
6206 * @devid: a pointer to devid for this device. If NULL a new devid
6207 * is generated.
6208 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6209 * is generated.
6210 *
6211 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6212 * on error. Returned struct is not linked onto any lists and can be
6213 * destroyed with kfree() right away.
6214 */
6215struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6216 const u64 *devid,
6217 const u8 *uuid)
6218{
6219 struct btrfs_device *dev;
6220 u64 tmp;
6221
fae7f21c 6222 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6223 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6224
6225 dev = __alloc_device();
6226 if (IS_ERR(dev))
6227 return dev;
6228
6229 if (devid)
6230 tmp = *devid;
6231 else {
6232 int ret;
6233
6234 ret = find_next_devid(fs_info, &tmp);
6235 if (ret) {
6236 kfree(dev);
6237 return ERR_PTR(ret);
6238 }
6239 }
6240 dev->devid = tmp;
6241
6242 if (uuid)
6243 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6244 else
6245 generate_random_uuid(dev->uuid);
6246
9e0af237
LB
6247 btrfs_init_work(&dev->work, btrfs_submit_helper,
6248 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6249
6250 return dev;
6251}
6252
0b86a832
CM
6253static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6254 struct extent_buffer *leaf,
6255 struct btrfs_chunk *chunk)
6256{
6257 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6258 struct map_lookup *map;
6259 struct extent_map *em;
6260 u64 logical;
6261 u64 length;
f04b772b 6262 u64 stripe_len;
0b86a832 6263 u64 devid;
a443755f 6264 u8 uuid[BTRFS_UUID_SIZE];
593060d7 6265 int num_stripes;
0b86a832 6266 int ret;
593060d7 6267 int i;
0b86a832 6268
e17cade2
CM
6269 logical = key->offset;
6270 length = btrfs_chunk_length(leaf, chunk);
f04b772b
QW
6271 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6272 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6273 /* Validation check */
6274 if (!num_stripes) {
6275 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6276 num_stripes);
6277 return -EIO;
6278 }
6279 if (!IS_ALIGNED(logical, root->sectorsize)) {
6280 btrfs_err(root->fs_info,
6281 "invalid chunk logical %llu", logical);
6282 return -EIO;
6283 }
6284 if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6285 btrfs_err(root->fs_info,
6286 "invalid chunk length %llu", length);
6287 return -EIO;
6288 }
6289 if (!is_power_of_2(stripe_len)) {
6290 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6291 stripe_len);
6292 return -EIO;
6293 }
6294 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6295 btrfs_chunk_type(leaf, chunk)) {
6296 btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6297 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6298 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6299 btrfs_chunk_type(leaf, chunk));
6300 return -EIO;
6301 }
a061fc8d 6302
890871be 6303 read_lock(&map_tree->map_tree.lock);
0b86a832 6304 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6305 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6306
6307 /* already mapped? */
6308 if (em && em->start <= logical && em->start + em->len > logical) {
6309 free_extent_map(em);
0b86a832
CM
6310 return 0;
6311 } else if (em) {
6312 free_extent_map(em);
6313 }
0b86a832 6314
172ddd60 6315 em = alloc_extent_map();
0b86a832
CM
6316 if (!em)
6317 return -ENOMEM;
593060d7 6318 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6319 if (!map) {
6320 free_extent_map(em);
6321 return -ENOMEM;
6322 }
6323
298a8f9c 6324 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6325 em->map_lookup = map;
0b86a832
CM
6326 em->start = logical;
6327 em->len = length;
70c8a91c 6328 em->orig_start = 0;
0b86a832 6329 em->block_start = 0;
c8b97818 6330 em->block_len = em->len;
0b86a832 6331
593060d7
CM
6332 map->num_stripes = num_stripes;
6333 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6334 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6335 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6336 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6337 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6338 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6339 for (i = 0; i < num_stripes; i++) {
6340 map->stripes[i].physical =
6341 btrfs_stripe_offset_nr(leaf, chunk, i);
6342 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6343 read_extent_buffer(leaf, uuid, (unsigned long)
6344 btrfs_stripe_dev_uuid_nr(chunk, i),
6345 BTRFS_UUID_SIZE);
aa1b8cd4
SB
6346 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6347 uuid, NULL);
dfe25020 6348 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
6349 free_extent_map(em);
6350 return -EIO;
6351 }
dfe25020
CM
6352 if (!map->stripes[i].dev) {
6353 map->stripes[i].dev =
5f375835
MX
6354 add_missing_dev(root, root->fs_info->fs_devices,
6355 devid, uuid);
dfe25020 6356 if (!map->stripes[i].dev) {
dfe25020
CM
6357 free_extent_map(em);
6358 return -EIO;
6359 }
816fcebe
AJ
6360 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6361 devid, uuid);
dfe25020
CM
6362 }
6363 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
6364 }
6365
890871be 6366 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6367 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6368 write_unlock(&map_tree->map_tree.lock);
79787eaa 6369 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6370 free_extent_map(em);
6371
6372 return 0;
6373}
6374
143bede5 6375static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6376 struct btrfs_dev_item *dev_item,
6377 struct btrfs_device *device)
6378{
6379 unsigned long ptr;
0b86a832
CM
6380
6381 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6382 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6383 device->total_bytes = device->disk_total_bytes;
935e5cc9 6384 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6385 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6386 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6387 device->type = btrfs_device_type(leaf, dev_item);
6388 device->io_align = btrfs_device_io_align(leaf, dev_item);
6389 device->io_width = btrfs_device_io_width(leaf, dev_item);
6390 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6391 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6392 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6393
410ba3a2 6394 ptr = btrfs_device_uuid(dev_item);
e17cade2 6395 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6396}
6397
5f375835
MX
6398static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6399 u8 *fsid)
2b82032c
YZ
6400{
6401 struct btrfs_fs_devices *fs_devices;
6402 int ret;
6403
b367e47f 6404 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
6405
6406 fs_devices = root->fs_info->fs_devices->seed;
6407 while (fs_devices) {
5f375835
MX
6408 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6409 return fs_devices;
6410
2b82032c
YZ
6411 fs_devices = fs_devices->seed;
6412 }
6413
6414 fs_devices = find_fsid(fsid);
6415 if (!fs_devices) {
5f375835
MX
6416 if (!btrfs_test_opt(root, DEGRADED))
6417 return ERR_PTR(-ENOENT);
6418
6419 fs_devices = alloc_fs_devices(fsid);
6420 if (IS_ERR(fs_devices))
6421 return fs_devices;
6422
6423 fs_devices->seeding = 1;
6424 fs_devices->opened = 1;
6425 return fs_devices;
2b82032c 6426 }
e4404d6e
YZ
6427
6428 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6429 if (IS_ERR(fs_devices))
6430 return fs_devices;
2b82032c 6431
97288f2c 6432 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 6433 root->fs_info->bdev_holder);
48d28232
JL
6434 if (ret) {
6435 free_fs_devices(fs_devices);
5f375835 6436 fs_devices = ERR_PTR(ret);
2b82032c 6437 goto out;
48d28232 6438 }
2b82032c
YZ
6439
6440 if (!fs_devices->seeding) {
6441 __btrfs_close_devices(fs_devices);
e4404d6e 6442 free_fs_devices(fs_devices);
5f375835 6443 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6444 goto out;
6445 }
6446
6447 fs_devices->seed = root->fs_info->fs_devices->seed;
6448 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 6449out:
5f375835 6450 return fs_devices;
2b82032c
YZ
6451}
6452
0d81ba5d 6453static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
6454 struct extent_buffer *leaf,
6455 struct btrfs_dev_item *dev_item)
6456{
5f375835 6457 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
0b86a832
CM
6458 struct btrfs_device *device;
6459 u64 devid;
6460 int ret;
2b82032c 6461 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
6462 u8 dev_uuid[BTRFS_UUID_SIZE];
6463
0b86a832 6464 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6465 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6466 BTRFS_UUID_SIZE);
1473b24e 6467 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
6468 BTRFS_UUID_SIZE);
6469
6470 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5f375835
MX
6471 fs_devices = open_seed_devices(root, fs_uuid);
6472 if (IS_ERR(fs_devices))
6473 return PTR_ERR(fs_devices);
2b82032c
YZ
6474 }
6475
aa1b8cd4 6476 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5f375835 6477 if (!device) {
e4404d6e 6478 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
6479 return -EIO;
6480
5f375835
MX
6481 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6482 if (!device)
6483 return -ENOMEM;
33b97e43
AJ
6484 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6485 devid, dev_uuid);
5f375835
MX
6486 } else {
6487 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6488 return -EIO;
6489
6490 if(!device->bdev && !device->missing) {
cd02dca5
CM
6491 /*
6492 * this happens when a device that was properly setup
6493 * in the device info lists suddenly goes bad.
6494 * device->bdev is NULL, and so we have to set
6495 * device->missing to one here
6496 */
5f375835 6497 device->fs_devices->missing_devices++;
cd02dca5 6498 device->missing = 1;
2b82032c 6499 }
5f375835
MX
6500
6501 /* Move the device to its own fs_devices */
6502 if (device->fs_devices != fs_devices) {
6503 ASSERT(device->missing);
6504
6505 list_move(&device->dev_list, &fs_devices->devices);
6506 device->fs_devices->num_devices--;
6507 fs_devices->num_devices++;
6508
6509 device->fs_devices->missing_devices--;
6510 fs_devices->missing_devices++;
6511
6512 device->fs_devices = fs_devices;
6513 }
2b82032c
YZ
6514 }
6515
6516 if (device->fs_devices != root->fs_info->fs_devices) {
6517 BUG_ON(device->writeable);
6518 if (device->generation !=
6519 btrfs_device_generation(leaf, dev_item))
6520 return -EINVAL;
6324fbf3 6521 }
0b86a832
CM
6522
6523 fill_device_from_item(leaf, dev_item, device);
dfe25020 6524 device->in_fs_metadata = 1;
63a212ab 6525 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6526 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
6527 spin_lock(&root->fs_info->free_chunk_lock);
6528 root->fs_info->free_chunk_space += device->total_bytes -
6529 device->bytes_used;
6530 spin_unlock(&root->fs_info->free_chunk_lock);
6531 }
0b86a832 6532 ret = 0;
0b86a832
CM
6533 return ret;
6534}
6535
e4404d6e 6536int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 6537{
6c41761f 6538 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 6539 struct extent_buffer *sb;
0b86a832 6540 struct btrfs_disk_key *disk_key;
0b86a832 6541 struct btrfs_chunk *chunk;
1ffb22cf
DS
6542 u8 *array_ptr;
6543 unsigned long sb_array_offset;
84eed90f 6544 int ret = 0;
0b86a832
CM
6545 u32 num_stripes;
6546 u32 array_size;
6547 u32 len = 0;
1ffb22cf 6548 u32 cur_offset;
84eed90f 6549 struct btrfs_key key;
0b86a832 6550
a83fffb7
DS
6551 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6552 /*
6553 * This will create extent buffer of nodesize, superblock size is
6554 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6555 * overallocate but we can keep it as-is, only the first page is used.
6556 */
6557 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
a061fc8d
CM
6558 if (!sb)
6559 return -ENOMEM;
4db8c528 6560 set_extent_buffer_uptodate(sb);
85d4e461 6561 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
6562 /*
6563 * The sb extent buffer is artifical and just used to read the system array.
4db8c528 6564 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
6565 * pages up-to-date when the page is larger: extent does not cover the
6566 * whole page and consequently check_page_uptodate does not find all
6567 * the page's extents up-to-date (the hole beyond sb),
6568 * write_extent_buffer then triggers a WARN_ON.
6569 *
6570 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6571 * but sb spans only this function. Add an explicit SetPageUptodate call
6572 * to silence the warning eg. on PowerPC 64.
6573 */
09cbfeaf 6574 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6575 SetPageUptodate(sb->pages[0]);
4008c04a 6576
a061fc8d 6577 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6578 array_size = btrfs_super_sys_array_size(super_copy);
6579
1ffb22cf
DS
6580 array_ptr = super_copy->sys_chunk_array;
6581 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6582 cur_offset = 0;
0b86a832 6583
1ffb22cf
DS
6584 while (cur_offset < array_size) {
6585 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6586 len = sizeof(*disk_key);
6587 if (cur_offset + len > array_size)
6588 goto out_short_read;
6589
0b86a832
CM
6590 btrfs_disk_key_to_cpu(&key, disk_key);
6591
1ffb22cf
DS
6592 array_ptr += len;
6593 sb_array_offset += len;
6594 cur_offset += len;
0b86a832 6595
0d81ba5d 6596 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6597 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6598 /*
6599 * At least one btrfs_chunk with one stripe must be
6600 * present, exact stripe count check comes afterwards
6601 */
6602 len = btrfs_chunk_item_size(1);
6603 if (cur_offset + len > array_size)
6604 goto out_short_read;
6605
6606 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
f5cdedd7
DS
6607 if (!num_stripes) {
6608 printk(KERN_ERR
6609 "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6610 num_stripes, cur_offset);
6611 ret = -EIO;
6612 break;
6613 }
6614
e3540eab
DS
6615 len = btrfs_chunk_item_size(num_stripes);
6616 if (cur_offset + len > array_size)
6617 goto out_short_read;
6618
0d81ba5d 6619 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
6620 if (ret)
6621 break;
0b86a832 6622 } else {
93a3d467
DS
6623 printk(KERN_ERR
6624 "BTRFS: unexpected item type %u in sys_array at offset %u\n",
6625 (u32)key.type, cur_offset);
84eed90f
CM
6626 ret = -EIO;
6627 break;
0b86a832 6628 }
1ffb22cf
DS
6629 array_ptr += len;
6630 sb_array_offset += len;
6631 cur_offset += len;
0b86a832 6632 }
a061fc8d 6633 free_extent_buffer(sb);
84eed90f 6634 return ret;
e3540eab
DS
6635
6636out_short_read:
6637 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6638 len, cur_offset);
6639 free_extent_buffer(sb);
6640 return -EIO;
0b86a832
CM
6641}
6642
6643int btrfs_read_chunk_tree(struct btrfs_root *root)
6644{
6645 struct btrfs_path *path;
6646 struct extent_buffer *leaf;
6647 struct btrfs_key key;
6648 struct btrfs_key found_key;
6649 int ret;
6650 int slot;
6651
6652 root = root->fs_info->chunk_root;
6653
6654 path = btrfs_alloc_path();
6655 if (!path)
6656 return -ENOMEM;
6657
b367e47f
LZ
6658 mutex_lock(&uuid_mutex);
6659 lock_chunks(root);
6660
395927a9
FDBM
6661 /*
6662 * Read all device items, and then all the chunk items. All
6663 * device items are found before any chunk item (their object id
6664 * is smaller than the lowest possible object id for a chunk
6665 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6666 */
6667 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6668 key.offset = 0;
6669 key.type = 0;
0b86a832 6670 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6671 if (ret < 0)
6672 goto error;
d397712b 6673 while (1) {
0b86a832
CM
6674 leaf = path->nodes[0];
6675 slot = path->slots[0];
6676 if (slot >= btrfs_header_nritems(leaf)) {
6677 ret = btrfs_next_leaf(root, path);
6678 if (ret == 0)
6679 continue;
6680 if (ret < 0)
6681 goto error;
6682 break;
6683 }
6684 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6685 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6686 struct btrfs_dev_item *dev_item;
6687 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6688 struct btrfs_dev_item);
395927a9
FDBM
6689 ret = read_one_dev(root, leaf, dev_item);
6690 if (ret)
6691 goto error;
0b86a832
CM
6692 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6693 struct btrfs_chunk *chunk;
6694 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6695 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6696 if (ret)
6697 goto error;
0b86a832
CM
6698 }
6699 path->slots[0]++;
6700 }
0b86a832
CM
6701 ret = 0;
6702error:
b367e47f
LZ
6703 unlock_chunks(root);
6704 mutex_unlock(&uuid_mutex);
6705
2b82032c 6706 btrfs_free_path(path);
0b86a832
CM
6707 return ret;
6708}
442a4f63 6709
cb517eab
MX
6710void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6711{
6712 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6713 struct btrfs_device *device;
6714
29cc83f6
LB
6715 while (fs_devices) {
6716 mutex_lock(&fs_devices->device_list_mutex);
6717 list_for_each_entry(device, &fs_devices->devices, dev_list)
6718 device->dev_root = fs_info->dev_root;
6719 mutex_unlock(&fs_devices->device_list_mutex);
6720
6721 fs_devices = fs_devices->seed;
6722 }
cb517eab
MX
6723}
6724
733f4fbb
SB
6725static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6726{
6727 int i;
6728
6729 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6730 btrfs_dev_stat_reset(dev, i);
6731}
6732
6733int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6734{
6735 struct btrfs_key key;
6736 struct btrfs_key found_key;
6737 struct btrfs_root *dev_root = fs_info->dev_root;
6738 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6739 struct extent_buffer *eb;
6740 int slot;
6741 int ret = 0;
6742 struct btrfs_device *device;
6743 struct btrfs_path *path = NULL;
6744 int i;
6745
6746 path = btrfs_alloc_path();
6747 if (!path) {
6748 ret = -ENOMEM;
6749 goto out;
6750 }
6751
6752 mutex_lock(&fs_devices->device_list_mutex);
6753 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6754 int item_size;
6755 struct btrfs_dev_stats_item *ptr;
6756
242e2956
DS
6757 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6758 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6759 key.offset = device->devid;
6760 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6761 if (ret) {
733f4fbb
SB
6762 __btrfs_reset_dev_stats(device);
6763 device->dev_stats_valid = 1;
6764 btrfs_release_path(path);
6765 continue;
6766 }
6767 slot = path->slots[0];
6768 eb = path->nodes[0];
6769 btrfs_item_key_to_cpu(eb, &found_key, slot);
6770 item_size = btrfs_item_size_nr(eb, slot);
6771
6772 ptr = btrfs_item_ptr(eb, slot,
6773 struct btrfs_dev_stats_item);
6774
6775 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6776 if (item_size >= (1 + i) * sizeof(__le64))
6777 btrfs_dev_stat_set(device, i,
6778 btrfs_dev_stats_value(eb, ptr, i));
6779 else
6780 btrfs_dev_stat_reset(device, i);
6781 }
6782
6783 device->dev_stats_valid = 1;
6784 btrfs_dev_stat_print_on_load(device);
6785 btrfs_release_path(path);
6786 }
6787 mutex_unlock(&fs_devices->device_list_mutex);
6788
6789out:
6790 btrfs_free_path(path);
6791 return ret < 0 ? ret : 0;
6792}
6793
6794static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6795 struct btrfs_root *dev_root,
6796 struct btrfs_device *device)
6797{
6798 struct btrfs_path *path;
6799 struct btrfs_key key;
6800 struct extent_buffer *eb;
6801 struct btrfs_dev_stats_item *ptr;
6802 int ret;
6803 int i;
6804
242e2956
DS
6805 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6806 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6807 key.offset = device->devid;
6808
6809 path = btrfs_alloc_path();
6810 BUG_ON(!path);
6811 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6812 if (ret < 0) {
ecaeb14b
DS
6813 btrfs_warn_in_rcu(dev_root->fs_info,
6814 "error %d while searching for dev_stats item for device %s",
606686ee 6815 ret, rcu_str_deref(device->name));
733f4fbb
SB
6816 goto out;
6817 }
6818
6819 if (ret == 0 &&
6820 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6821 /* need to delete old one and insert a new one */
6822 ret = btrfs_del_item(trans, dev_root, path);
6823 if (ret != 0) {
ecaeb14b
DS
6824 btrfs_warn_in_rcu(dev_root->fs_info,
6825 "delete too small dev_stats item for device %s failed %d",
606686ee 6826 rcu_str_deref(device->name), ret);
733f4fbb
SB
6827 goto out;
6828 }
6829 ret = 1;
6830 }
6831
6832 if (ret == 1) {
6833 /* need to insert a new item */
6834 btrfs_release_path(path);
6835 ret = btrfs_insert_empty_item(trans, dev_root, path,
6836 &key, sizeof(*ptr));
6837 if (ret < 0) {
ecaeb14b
DS
6838 btrfs_warn_in_rcu(dev_root->fs_info,
6839 "insert dev_stats item for device %s failed %d",
6840 rcu_str_deref(device->name), ret);
733f4fbb
SB
6841 goto out;
6842 }
6843 }
6844
6845 eb = path->nodes[0];
6846 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6847 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6848 btrfs_set_dev_stats_value(eb, ptr, i,
6849 btrfs_dev_stat_read(device, i));
6850 btrfs_mark_buffer_dirty(eb);
6851
6852out:
6853 btrfs_free_path(path);
6854 return ret;
6855}
6856
6857/*
6858 * called from commit_transaction. Writes all changed device stats to disk.
6859 */
6860int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6861 struct btrfs_fs_info *fs_info)
6862{
6863 struct btrfs_root *dev_root = fs_info->dev_root;
6864 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6865 struct btrfs_device *device;
addc3fa7 6866 int stats_cnt;
733f4fbb
SB
6867 int ret = 0;
6868
6869 mutex_lock(&fs_devices->device_list_mutex);
6870 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 6871 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
6872 continue;
6873
addc3fa7 6874 stats_cnt = atomic_read(&device->dev_stats_ccnt);
733f4fbb
SB
6875 ret = update_dev_stat_item(trans, dev_root, device);
6876 if (!ret)
addc3fa7 6877 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
6878 }
6879 mutex_unlock(&fs_devices->device_list_mutex);
6880
6881 return ret;
6882}
6883
442a4f63
SB
6884void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6885{
6886 btrfs_dev_stat_inc(dev, index);
6887 btrfs_dev_stat_print_on_error(dev);
6888}
6889
48a3b636 6890static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 6891{
733f4fbb
SB
6892 if (!dev->dev_stats_valid)
6893 return;
b14af3b4
DS
6894 btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
6895 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 6896 rcu_str_deref(dev->name),
442a4f63
SB
6897 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6898 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6899 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
6900 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6901 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 6902}
c11d2c23 6903
733f4fbb
SB
6904static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6905{
a98cdb85
SB
6906 int i;
6907
6908 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6909 if (btrfs_dev_stat_read(dev, i) != 0)
6910 break;
6911 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6912 return; /* all values == 0, suppress message */
6913
ecaeb14b
DS
6914 btrfs_info_in_rcu(dev->dev_root->fs_info,
6915 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 6916 rcu_str_deref(dev->name),
733f4fbb
SB
6917 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6918 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6919 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6920 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6921 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6922}
6923
c11d2c23 6924int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 6925 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
6926{
6927 struct btrfs_device *dev;
6928 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6929 int i;
6930
6931 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 6932 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
6933 mutex_unlock(&fs_devices->device_list_mutex);
6934
6935 if (!dev) {
efe120a0 6936 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
c11d2c23 6937 return -ENODEV;
733f4fbb 6938 } else if (!dev->dev_stats_valid) {
efe120a0 6939 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
733f4fbb 6940 return -ENODEV;
b27f7c0c 6941 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
6942 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6943 if (stats->nr_items > i)
6944 stats->values[i] =
6945 btrfs_dev_stat_read_and_reset(dev, i);
6946 else
6947 btrfs_dev_stat_reset(dev, i);
6948 }
6949 } else {
6950 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6951 if (stats->nr_items > i)
6952 stats->values[i] = btrfs_dev_stat_read(dev, i);
6953 }
6954 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6955 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6956 return 0;
6957}
a8a6dab7 6958
12b1c263 6959void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
a8a6dab7
SB
6960{
6961 struct buffer_head *bh;
6962 struct btrfs_super_block *disk_super;
12b1c263 6963 int copy_num;
a8a6dab7 6964
12b1c263
AJ
6965 if (!bdev)
6966 return;
a8a6dab7 6967
12b1c263
AJ
6968 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
6969 copy_num++) {
a8a6dab7 6970
12b1c263
AJ
6971 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
6972 continue;
6973
6974 disk_super = (struct btrfs_super_block *)bh->b_data;
6975
6976 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6977 set_buffer_dirty(bh);
6978 sync_dirty_buffer(bh);
6979 brelse(bh);
6980 }
6981
6982 /* Notify udev that device has changed */
6983 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
6984
6985 /* Update ctime/mtime for device path for libblkid */
6986 update_dev_time(device_path);
a8a6dab7 6987}
935e5cc9
MX
6988
6989/*
6990 * Update the size of all devices, which is used for writing out the
6991 * super blocks.
6992 */
6993void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6994{
6995 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6996 struct btrfs_device *curr, *next;
6997
6998 if (list_empty(&fs_devices->resized_devices))
6999 return;
7000
7001 mutex_lock(&fs_devices->device_list_mutex);
7002 lock_chunks(fs_info->dev_root);
7003 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7004 resized_list) {
7005 list_del_init(&curr->resized_list);
7006 curr->commit_total_bytes = curr->disk_total_bytes;
7007 }
7008 unlock_chunks(fs_info->dev_root);
7009 mutex_unlock(&fs_devices->device_list_mutex);
7010}
ce7213c7
MX
7011
7012/* Must be invoked during the transaction commit */
7013void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
7014 struct btrfs_transaction *transaction)
7015{
7016 struct extent_map *em;
7017 struct map_lookup *map;
7018 struct btrfs_device *dev;
7019 int i;
7020
7021 if (list_empty(&transaction->pending_chunks))
7022 return;
7023
7024 /* In order to kick the device replace finish process */
7025 lock_chunks(root);
7026 list_for_each_entry(em, &transaction->pending_chunks, list) {
95617d69 7027 map = em->map_lookup;
ce7213c7
MX
7028
7029 for (i = 0; i < map->num_stripes; i++) {
7030 dev = map->stripes[i].dev;
7031 dev->commit_bytes_used = dev->bytes_used;
7032 }
7033 }
7034 unlock_chunks(root);
7035}
5a13f430
AJ
7036
7037void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7038{
7039 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7040 while (fs_devices) {
7041 fs_devices->fs_info = fs_info;
7042 fs_devices = fs_devices->seed;
7043 }
7044}
7045
7046void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7047{
7048 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7049 while (fs_devices) {
7050 fs_devices->fs_info = NULL;
7051 fs_devices = fs_devices->seed;
7052 }
7053}
f190aa47 7054
87ad58c5 7055static void btrfs_close_one_device(struct btrfs_device *device)
f190aa47
AJ
7056{
7057 struct btrfs_fs_devices *fs_devices = device->fs_devices;
7058 struct btrfs_device *new_device;
7059 struct rcu_string *name;
7060
7061 if (device->bdev)
7062 fs_devices->open_devices--;
7063
7064 if (device->writeable &&
7065 device->devid != BTRFS_DEV_REPLACE_DEVID) {
7066 list_del_init(&device->dev_alloc_list);
7067 fs_devices->rw_devices--;
7068 }
7069
7070 if (device->missing)
7071 fs_devices->missing_devices--;
7072
7073 new_device = btrfs_alloc_device(NULL, &device->devid,
7074 device->uuid);
7075 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
7076
7077 /* Safe because we are under uuid_mutex */
7078 if (device->name) {
7079 name = rcu_string_strdup(device->name->str, GFP_NOFS);
7080 BUG_ON(!name); /* -ENOMEM */
7081 rcu_assign_pointer(new_device->name, name);
7082 }
7083
7084 list_replace_rcu(&device->dev_list, &new_device->dev_list);
7085 new_device->fs_devices = device->fs_devices;
7086
7087 call_rcu(&device->rcu, free_device);
7088}
This page took 0.933835 seconds and 5 git commands to generate.