Btrfs: introduce masks for chunk type and profile
[deliverable/linux.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
593060d7 26#include <asm/div64.h>
4b4e25f2 27#include "compat.h"
0b86a832
CM
28#include "ctree.h"
29#include "extent_map.h"
30#include "disk-io.h"
31#include "transaction.h"
32#include "print-tree.h"
33#include "volumes.h"
8b712842 34#include "async-thread.h"
0b86a832 35
2b82032c
YZ
36static int init_first_rw_device(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct btrfs_device *device);
39static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
40
8a4b83cc
CM
41static DEFINE_MUTEX(uuid_mutex);
42static LIST_HEAD(fs_uuids);
43
7d9eb12c
CM
44static void lock_chunks(struct btrfs_root *root)
45{
7d9eb12c
CM
46 mutex_lock(&root->fs_info->chunk_mutex);
47}
48
49static void unlock_chunks(struct btrfs_root *root)
50{
7d9eb12c
CM
51 mutex_unlock(&root->fs_info->chunk_mutex);
52}
53
e4404d6e
YZ
54static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
55{
56 struct btrfs_device *device;
57 WARN_ON(fs_devices->opened);
58 while (!list_empty(&fs_devices->devices)) {
59 device = list_entry(fs_devices->devices.next,
60 struct btrfs_device, dev_list);
61 list_del(&device->dev_list);
62 kfree(device->name);
63 kfree(device);
64 }
65 kfree(fs_devices);
66}
67
8a4b83cc
CM
68int btrfs_cleanup_fs_uuids(void)
69{
70 struct btrfs_fs_devices *fs_devices;
8a4b83cc 71
2b82032c
YZ
72 while (!list_empty(&fs_uuids)) {
73 fs_devices = list_entry(fs_uuids.next,
74 struct btrfs_fs_devices, list);
75 list_del(&fs_devices->list);
e4404d6e 76 free_fs_devices(fs_devices);
8a4b83cc
CM
77 }
78 return 0;
79}
80
a1b32a59
CM
81static noinline struct btrfs_device *__find_device(struct list_head *head,
82 u64 devid, u8 *uuid)
8a4b83cc
CM
83{
84 struct btrfs_device *dev;
8a4b83cc 85
c6e30871 86 list_for_each_entry(dev, head, dev_list) {
a443755f 87 if (dev->devid == devid &&
8f18cf13 88 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 89 return dev;
a443755f 90 }
8a4b83cc
CM
91 }
92 return NULL;
93}
94
a1b32a59 95static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 96{
8a4b83cc
CM
97 struct btrfs_fs_devices *fs_devices;
98
c6e30871 99 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
100 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
101 return fs_devices;
102 }
103 return NULL;
104}
105
ffbd517d
CM
106static void requeue_list(struct btrfs_pending_bios *pending_bios,
107 struct bio *head, struct bio *tail)
108{
109
110 struct bio *old_head;
111
112 old_head = pending_bios->head;
113 pending_bios->head = head;
114 if (pending_bios->tail)
115 tail->bi_next = old_head;
116 else
117 pending_bios->tail = tail;
118}
119
8b712842
CM
120/*
121 * we try to collect pending bios for a device so we don't get a large
122 * number of procs sending bios down to the same device. This greatly
123 * improves the schedulers ability to collect and merge the bios.
124 *
125 * But, it also turns into a long list of bios to process and that is sure
126 * to eventually make the worker thread block. The solution here is to
127 * make some progress and then put this work struct back at the end of
128 * the list if the block device is congested. This way, multiple devices
129 * can make progress from a single worker thread.
130 */
d397712b 131static noinline int run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
132{
133 struct bio *pending;
134 struct backing_dev_info *bdi;
b64a2851 135 struct btrfs_fs_info *fs_info;
ffbd517d 136 struct btrfs_pending_bios *pending_bios;
8b712842
CM
137 struct bio *tail;
138 struct bio *cur;
139 int again = 0;
ffbd517d 140 unsigned long num_run;
d644d8a1 141 unsigned long batch_run = 0;
b64a2851 142 unsigned long limit;
b765ead5 143 unsigned long last_waited = 0;
d84275c9 144 int force_reg = 0;
0e588859 145 int sync_pending = 0;
211588ad
CM
146 struct blk_plug plug;
147
148 /*
149 * this function runs all the bios we've collected for
150 * a particular device. We don't want to wander off to
151 * another device without first sending all of these down.
152 * So, setup a plug here and finish it off before we return
153 */
154 blk_start_plug(&plug);
8b712842 155
bedf762b 156 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
157 fs_info = device->dev_root->fs_info;
158 limit = btrfs_async_submit_limit(fs_info);
159 limit = limit * 2 / 3;
160
8b712842
CM
161loop:
162 spin_lock(&device->io_lock);
163
a6837051 164loop_lock:
d84275c9 165 num_run = 0;
ffbd517d 166
8b712842
CM
167 /* take all the bios off the list at once and process them
168 * later on (without the lock held). But, remember the
169 * tail and other pointers so the bios can be properly reinserted
170 * into the list if we hit congestion
171 */
d84275c9 172 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 173 pending_bios = &device->pending_sync_bios;
d84275c9
CM
174 force_reg = 1;
175 } else {
ffbd517d 176 pending_bios = &device->pending_bios;
d84275c9
CM
177 force_reg = 0;
178 }
ffbd517d
CM
179
180 pending = pending_bios->head;
181 tail = pending_bios->tail;
8b712842 182 WARN_ON(pending && !tail);
8b712842
CM
183
184 /*
185 * if pending was null this time around, no bios need processing
186 * at all and we can stop. Otherwise it'll loop back up again
187 * and do an additional check so no bios are missed.
188 *
189 * device->running_pending is used to synchronize with the
190 * schedule_bio code.
191 */
ffbd517d
CM
192 if (device->pending_sync_bios.head == NULL &&
193 device->pending_bios.head == NULL) {
8b712842
CM
194 again = 0;
195 device->running_pending = 0;
ffbd517d
CM
196 } else {
197 again = 1;
198 device->running_pending = 1;
8b712842 199 }
ffbd517d
CM
200
201 pending_bios->head = NULL;
202 pending_bios->tail = NULL;
203
8b712842
CM
204 spin_unlock(&device->io_lock);
205
d397712b 206 while (pending) {
ffbd517d
CM
207
208 rmb();
d84275c9
CM
209 /* we want to work on both lists, but do more bios on the
210 * sync list than the regular list
211 */
212 if ((num_run > 32 &&
213 pending_bios != &device->pending_sync_bios &&
214 device->pending_sync_bios.head) ||
215 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
216 device->pending_bios.head)) {
ffbd517d
CM
217 spin_lock(&device->io_lock);
218 requeue_list(pending_bios, pending, tail);
219 goto loop_lock;
220 }
221
8b712842
CM
222 cur = pending;
223 pending = pending->bi_next;
224 cur->bi_next = NULL;
b64a2851
CM
225 atomic_dec(&fs_info->nr_async_bios);
226
227 if (atomic_read(&fs_info->nr_async_bios) < limit &&
228 waitqueue_active(&fs_info->async_submit_wait))
229 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
230
231 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 232
2ab1ba68
CM
233 /*
234 * if we're doing the sync list, record that our
235 * plug has some sync requests on it
236 *
237 * If we're doing the regular list and there are
238 * sync requests sitting around, unplug before
239 * we add more
240 */
241 if (pending_bios == &device->pending_sync_bios) {
242 sync_pending = 1;
243 } else if (sync_pending) {
244 blk_finish_plug(&plug);
245 blk_start_plug(&plug);
246 sync_pending = 0;
247 }
248
5ff7ba3a
CM
249 submit_bio(cur->bi_rw, cur);
250 num_run++;
251 batch_run++;
7eaceacc 252 if (need_resched())
ffbd517d 253 cond_resched();
8b712842
CM
254
255 /*
256 * we made progress, there is more work to do and the bdi
257 * is now congested. Back off and let other work structs
258 * run instead
259 */
57fd5a5f 260 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 261 fs_info->fs_devices->open_devices > 1) {
b765ead5 262 struct io_context *ioc;
8b712842 263
b765ead5
CM
264 ioc = current->io_context;
265
266 /*
267 * the main goal here is that we don't want to
268 * block if we're going to be able to submit
269 * more requests without blocking.
270 *
271 * This code does two great things, it pokes into
272 * the elevator code from a filesystem _and_
273 * it makes assumptions about how batching works.
274 */
275 if (ioc && ioc->nr_batch_requests > 0 &&
276 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
277 (last_waited == 0 ||
278 ioc->last_waited == last_waited)) {
279 /*
280 * we want to go through our batch of
281 * requests and stop. So, we copy out
282 * the ioc->last_waited time and test
283 * against it before looping
284 */
285 last_waited = ioc->last_waited;
7eaceacc 286 if (need_resched())
ffbd517d 287 cond_resched();
b765ead5
CM
288 continue;
289 }
8b712842 290 spin_lock(&device->io_lock);
ffbd517d 291 requeue_list(pending_bios, pending, tail);
a6837051 292 device->running_pending = 1;
8b712842
CM
293
294 spin_unlock(&device->io_lock);
295 btrfs_requeue_work(&device->work);
296 goto done;
297 }
d85c8a6f
CM
298 /* unplug every 64 requests just for good measure */
299 if (batch_run % 64 == 0) {
300 blk_finish_plug(&plug);
301 blk_start_plug(&plug);
302 sync_pending = 0;
303 }
8b712842 304 }
ffbd517d 305
51684082
CM
306 cond_resched();
307 if (again)
308 goto loop;
309
310 spin_lock(&device->io_lock);
311 if (device->pending_bios.head || device->pending_sync_bios.head)
312 goto loop_lock;
313 spin_unlock(&device->io_lock);
314
8b712842 315done:
211588ad 316 blk_finish_plug(&plug);
8b712842
CM
317 return 0;
318}
319
b2950863 320static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
321{
322 struct btrfs_device *device;
323
324 device = container_of(work, struct btrfs_device, work);
325 run_scheduled_bios(device);
326}
327
a1b32a59 328static noinline int device_list_add(const char *path,
8a4b83cc
CM
329 struct btrfs_super_block *disk_super,
330 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
331{
332 struct btrfs_device *device;
333 struct btrfs_fs_devices *fs_devices;
334 u64 found_transid = btrfs_super_generation(disk_super);
3a0524dc 335 char *name;
8a4b83cc
CM
336
337 fs_devices = find_fsid(disk_super->fsid);
338 if (!fs_devices) {
515dc322 339 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
340 if (!fs_devices)
341 return -ENOMEM;
342 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 343 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
344 list_add(&fs_devices->list, &fs_uuids);
345 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
346 fs_devices->latest_devid = devid;
347 fs_devices->latest_trans = found_transid;
e5e9a520 348 mutex_init(&fs_devices->device_list_mutex);
8a4b83cc
CM
349 device = NULL;
350 } else {
a443755f
CM
351 device = __find_device(&fs_devices->devices, devid,
352 disk_super->dev_item.uuid);
8a4b83cc
CM
353 }
354 if (!device) {
2b82032c
YZ
355 if (fs_devices->opened)
356 return -EBUSY;
357
8a4b83cc
CM
358 device = kzalloc(sizeof(*device), GFP_NOFS);
359 if (!device) {
360 /* we can safely leave the fs_devices entry around */
361 return -ENOMEM;
362 }
363 device->devid = devid;
8b712842 364 device->work.func = pending_bios_fn;
a443755f
CM
365 memcpy(device->uuid, disk_super->dev_item.uuid,
366 BTRFS_UUID_SIZE);
b248a415 367 spin_lock_init(&device->io_lock);
8a4b83cc
CM
368 device->name = kstrdup(path, GFP_NOFS);
369 if (!device->name) {
370 kfree(device);
371 return -ENOMEM;
372 }
2b82032c 373 INIT_LIST_HEAD(&device->dev_alloc_list);
e5e9a520 374
90519d66
AJ
375 /* init readahead state */
376 spin_lock_init(&device->reada_lock);
377 device->reada_curr_zone = NULL;
378 atomic_set(&device->reada_in_flight, 0);
379 device->reada_next = 0;
380 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
381 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
382
e5e9a520 383 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 384 list_add_rcu(&device->dev_list, &fs_devices->devices);
e5e9a520
CM
385 mutex_unlock(&fs_devices->device_list_mutex);
386
2b82032c 387 device->fs_devices = fs_devices;
8a4b83cc 388 fs_devices->num_devices++;
cd02dca5 389 } else if (!device->name || strcmp(device->name, path)) {
3a0524dc
TH
390 name = kstrdup(path, GFP_NOFS);
391 if (!name)
392 return -ENOMEM;
393 kfree(device->name);
394 device->name = name;
cd02dca5
CM
395 if (device->missing) {
396 fs_devices->missing_devices--;
397 device->missing = 0;
398 }
8a4b83cc
CM
399 }
400
401 if (found_transid > fs_devices->latest_trans) {
402 fs_devices->latest_devid = devid;
403 fs_devices->latest_trans = found_transid;
404 }
8a4b83cc
CM
405 *fs_devices_ret = fs_devices;
406 return 0;
407}
408
e4404d6e
YZ
409static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
410{
411 struct btrfs_fs_devices *fs_devices;
412 struct btrfs_device *device;
413 struct btrfs_device *orig_dev;
414
415 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
416 if (!fs_devices)
417 return ERR_PTR(-ENOMEM);
418
419 INIT_LIST_HEAD(&fs_devices->devices);
420 INIT_LIST_HEAD(&fs_devices->alloc_list);
421 INIT_LIST_HEAD(&fs_devices->list);
e5e9a520 422 mutex_init(&fs_devices->device_list_mutex);
e4404d6e
YZ
423 fs_devices->latest_devid = orig->latest_devid;
424 fs_devices->latest_trans = orig->latest_trans;
425 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
426
46224705 427 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e
YZ
428 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
429 device = kzalloc(sizeof(*device), GFP_NOFS);
430 if (!device)
431 goto error;
432
433 device->name = kstrdup(orig_dev->name, GFP_NOFS);
fd2696f3
JL
434 if (!device->name) {
435 kfree(device);
e4404d6e 436 goto error;
fd2696f3 437 }
e4404d6e
YZ
438
439 device->devid = orig_dev->devid;
440 device->work.func = pending_bios_fn;
441 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
e4404d6e
YZ
442 spin_lock_init(&device->io_lock);
443 INIT_LIST_HEAD(&device->dev_list);
444 INIT_LIST_HEAD(&device->dev_alloc_list);
445
446 list_add(&device->dev_list, &fs_devices->devices);
447 device->fs_devices = fs_devices;
448 fs_devices->num_devices++;
449 }
450 return fs_devices;
451error:
452 free_fs_devices(fs_devices);
453 return ERR_PTR(-ENOMEM);
454}
455
dfe25020
CM
456int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
457{
c6e30871 458 struct btrfs_device *device, *next;
dfe25020
CM
459
460 mutex_lock(&uuid_mutex);
461again:
46224705 462 /* This is the initialized path, it is safe to release the devices. */
c6e30871 463 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2b82032c
YZ
464 if (device->in_fs_metadata)
465 continue;
466
467 if (device->bdev) {
d4d77629 468 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
469 device->bdev = NULL;
470 fs_devices->open_devices--;
471 }
472 if (device->writeable) {
473 list_del_init(&device->dev_alloc_list);
474 device->writeable = 0;
475 fs_devices->rw_devices--;
476 }
e4404d6e
YZ
477 list_del_init(&device->dev_list);
478 fs_devices->num_devices--;
479 kfree(device->name);
480 kfree(device);
dfe25020 481 }
2b82032c
YZ
482
483 if (fs_devices->seed) {
484 fs_devices = fs_devices->seed;
2b82032c
YZ
485 goto again;
486 }
487
dfe25020
CM
488 mutex_unlock(&uuid_mutex);
489 return 0;
490}
a0af469b 491
1f78160c
XG
492static void __free_device(struct work_struct *work)
493{
494 struct btrfs_device *device;
495
496 device = container_of(work, struct btrfs_device, rcu_work);
497
498 if (device->bdev)
499 blkdev_put(device->bdev, device->mode);
500
501 kfree(device->name);
502 kfree(device);
503}
504
505static void free_device(struct rcu_head *head)
506{
507 struct btrfs_device *device;
508
509 device = container_of(head, struct btrfs_device, rcu);
510
511 INIT_WORK(&device->rcu_work, __free_device);
512 schedule_work(&device->rcu_work);
513}
514
2b82032c 515static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 516{
8a4b83cc 517 struct btrfs_device *device;
e4404d6e 518
2b82032c
YZ
519 if (--fs_devices->opened > 0)
520 return 0;
8a4b83cc 521
c9513edb 522 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 523 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c
XG
524 struct btrfs_device *new_device;
525
526 if (device->bdev)
a0af469b 527 fs_devices->open_devices--;
1f78160c 528
2b82032c
YZ
529 if (device->writeable) {
530 list_del_init(&device->dev_alloc_list);
531 fs_devices->rw_devices--;
532 }
533
d5e2003c
JB
534 if (device->can_discard)
535 fs_devices->num_can_discard--;
536
1f78160c
XG
537 new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
538 BUG_ON(!new_device);
539 memcpy(new_device, device, sizeof(*new_device));
540 new_device->name = kstrdup(device->name, GFP_NOFS);
5f3f302a 541 BUG_ON(device->name && !new_device->name);
1f78160c
XG
542 new_device->bdev = NULL;
543 new_device->writeable = 0;
544 new_device->in_fs_metadata = 0;
d5e2003c 545 new_device->can_discard = 0;
1f78160c
XG
546 list_replace_rcu(&device->dev_list, &new_device->dev_list);
547
548 call_rcu(&device->rcu, free_device);
8a4b83cc 549 }
c9513edb
XG
550 mutex_unlock(&fs_devices->device_list_mutex);
551
e4404d6e
YZ
552 WARN_ON(fs_devices->open_devices);
553 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
554 fs_devices->opened = 0;
555 fs_devices->seeding = 0;
2b82032c 556
8a4b83cc
CM
557 return 0;
558}
559
2b82032c
YZ
560int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
561{
e4404d6e 562 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
563 int ret;
564
565 mutex_lock(&uuid_mutex);
566 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
567 if (!fs_devices->opened) {
568 seed_devices = fs_devices->seed;
569 fs_devices->seed = NULL;
570 }
2b82032c 571 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
572
573 while (seed_devices) {
574 fs_devices = seed_devices;
575 seed_devices = fs_devices->seed;
576 __btrfs_close_devices(fs_devices);
577 free_fs_devices(fs_devices);
578 }
2b82032c
YZ
579 return ret;
580}
581
e4404d6e
YZ
582static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
583 fmode_t flags, void *holder)
8a4b83cc 584{
d5e2003c 585 struct request_queue *q;
8a4b83cc
CM
586 struct block_device *bdev;
587 struct list_head *head = &fs_devices->devices;
8a4b83cc 588 struct btrfs_device *device;
a0af469b
CM
589 struct block_device *latest_bdev = NULL;
590 struct buffer_head *bh;
591 struct btrfs_super_block *disk_super;
592 u64 latest_devid = 0;
593 u64 latest_transid = 0;
a0af469b 594 u64 devid;
2b82032c 595 int seeding = 1;
a0af469b 596 int ret = 0;
8a4b83cc 597
d4d77629
TH
598 flags |= FMODE_EXCL;
599
c6e30871 600 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
601 if (device->bdev)
602 continue;
dfe25020
CM
603 if (!device->name)
604 continue;
605
d4d77629 606 bdev = blkdev_get_by_path(device->name, flags, holder);
8a4b83cc 607 if (IS_ERR(bdev)) {
d397712b 608 printk(KERN_INFO "open %s failed\n", device->name);
a0af469b 609 goto error;
8a4b83cc 610 }
a061fc8d 611 set_blocksize(bdev, 4096);
a0af469b 612
a512bbf8 613 bh = btrfs_read_dev_super(bdev);
20bcd649 614 if (!bh)
a0af469b
CM
615 goto error_close;
616
617 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 618 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
619 if (devid != device->devid)
620 goto error_brelse;
621
2b82032c
YZ
622 if (memcmp(device->uuid, disk_super->dev_item.uuid,
623 BTRFS_UUID_SIZE))
624 goto error_brelse;
625
626 device->generation = btrfs_super_generation(disk_super);
627 if (!latest_transid || device->generation > latest_transid) {
a0af469b 628 latest_devid = devid;
2b82032c 629 latest_transid = device->generation;
a0af469b
CM
630 latest_bdev = bdev;
631 }
632
2b82032c
YZ
633 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
634 device->writeable = 0;
635 } else {
636 device->writeable = !bdev_read_only(bdev);
637 seeding = 0;
638 }
639
d5e2003c
JB
640 q = bdev_get_queue(bdev);
641 if (blk_queue_discard(q)) {
642 device->can_discard = 1;
643 fs_devices->num_can_discard++;
644 }
645
8a4b83cc 646 device->bdev = bdev;
dfe25020 647 device->in_fs_metadata = 0;
15916de8
CM
648 device->mode = flags;
649
c289811c
CM
650 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
651 fs_devices->rotating = 1;
652
a0af469b 653 fs_devices->open_devices++;
2b82032c
YZ
654 if (device->writeable) {
655 fs_devices->rw_devices++;
656 list_add(&device->dev_alloc_list,
657 &fs_devices->alloc_list);
658 }
4f6c9328 659 brelse(bh);
a0af469b 660 continue;
a061fc8d 661
a0af469b
CM
662error_brelse:
663 brelse(bh);
664error_close:
d4d77629 665 blkdev_put(bdev, flags);
a0af469b
CM
666error:
667 continue;
8a4b83cc 668 }
a0af469b 669 if (fs_devices->open_devices == 0) {
20bcd649 670 ret = -EINVAL;
a0af469b
CM
671 goto out;
672 }
2b82032c
YZ
673 fs_devices->seeding = seeding;
674 fs_devices->opened = 1;
a0af469b
CM
675 fs_devices->latest_bdev = latest_bdev;
676 fs_devices->latest_devid = latest_devid;
677 fs_devices->latest_trans = latest_transid;
2b82032c 678 fs_devices->total_rw_bytes = 0;
a0af469b 679out:
2b82032c
YZ
680 return ret;
681}
682
683int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 684 fmode_t flags, void *holder)
2b82032c
YZ
685{
686 int ret;
687
688 mutex_lock(&uuid_mutex);
689 if (fs_devices->opened) {
e4404d6e
YZ
690 fs_devices->opened++;
691 ret = 0;
2b82032c 692 } else {
15916de8 693 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 694 }
8a4b83cc 695 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
696 return ret;
697}
698
97288f2c 699int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
700 struct btrfs_fs_devices **fs_devices_ret)
701{
702 struct btrfs_super_block *disk_super;
703 struct block_device *bdev;
704 struct buffer_head *bh;
705 int ret;
706 u64 devid;
f2984462 707 u64 transid;
8a4b83cc
CM
708
709 mutex_lock(&uuid_mutex);
710
d4d77629
TH
711 flags |= FMODE_EXCL;
712 bdev = blkdev_get_by_path(path, flags, holder);
8a4b83cc
CM
713
714 if (IS_ERR(bdev)) {
8a4b83cc
CM
715 ret = PTR_ERR(bdev);
716 goto error;
717 }
718
719 ret = set_blocksize(bdev, 4096);
720 if (ret)
721 goto error_close;
a512bbf8 722 bh = btrfs_read_dev_super(bdev);
8a4b83cc 723 if (!bh) {
20b45077 724 ret = -EINVAL;
8a4b83cc
CM
725 goto error_close;
726 }
727 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 728 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 729 transid = btrfs_super_generation(disk_super);
7ae9c09d 730 if (disk_super->label[0])
d397712b 731 printk(KERN_INFO "device label %s ", disk_super->label);
22b63a29
ID
732 else
733 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
119e10cf 734 printk(KERN_CONT "devid %llu transid %llu %s\n",
d397712b 735 (unsigned long long)devid, (unsigned long long)transid, path);
8a4b83cc
CM
736 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
737
8a4b83cc
CM
738 brelse(bh);
739error_close:
d4d77629 740 blkdev_put(bdev, flags);
8a4b83cc
CM
741error:
742 mutex_unlock(&uuid_mutex);
743 return ret;
744}
0b86a832 745
6d07bcec
MX
746/* helper to account the used device space in the range */
747int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
748 u64 end, u64 *length)
749{
750 struct btrfs_key key;
751 struct btrfs_root *root = device->dev_root;
752 struct btrfs_dev_extent *dev_extent;
753 struct btrfs_path *path;
754 u64 extent_end;
755 int ret;
756 int slot;
757 struct extent_buffer *l;
758
759 *length = 0;
760
761 if (start >= device->total_bytes)
762 return 0;
763
764 path = btrfs_alloc_path();
765 if (!path)
766 return -ENOMEM;
767 path->reada = 2;
768
769 key.objectid = device->devid;
770 key.offset = start;
771 key.type = BTRFS_DEV_EXTENT_KEY;
772
773 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
774 if (ret < 0)
775 goto out;
776 if (ret > 0) {
777 ret = btrfs_previous_item(root, path, key.objectid, key.type);
778 if (ret < 0)
779 goto out;
780 }
781
782 while (1) {
783 l = path->nodes[0];
784 slot = path->slots[0];
785 if (slot >= btrfs_header_nritems(l)) {
786 ret = btrfs_next_leaf(root, path);
787 if (ret == 0)
788 continue;
789 if (ret < 0)
790 goto out;
791
792 break;
793 }
794 btrfs_item_key_to_cpu(l, &key, slot);
795
796 if (key.objectid < device->devid)
797 goto next;
798
799 if (key.objectid > device->devid)
800 break;
801
802 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
803 goto next;
804
805 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
806 extent_end = key.offset + btrfs_dev_extent_length(l,
807 dev_extent);
808 if (key.offset <= start && extent_end > end) {
809 *length = end - start + 1;
810 break;
811 } else if (key.offset <= start && extent_end > start)
812 *length += extent_end - start;
813 else if (key.offset > start && extent_end <= end)
814 *length += extent_end - key.offset;
815 else if (key.offset > start && key.offset <= end) {
816 *length += end - key.offset + 1;
817 break;
818 } else if (key.offset > end)
819 break;
820
821next:
822 path->slots[0]++;
823 }
824 ret = 0;
825out:
826 btrfs_free_path(path);
827 return ret;
828}
829
0b86a832 830/*
7bfc837d
MX
831 * find_free_dev_extent - find free space in the specified device
832 * @trans: transaction handler
833 * @device: the device which we search the free space in
834 * @num_bytes: the size of the free space that we need
835 * @start: store the start of the free space.
836 * @len: the size of the free space. that we find, or the size of the max
837 * free space if we don't find suitable free space
838 *
0b86a832
CM
839 * this uses a pretty simple search, the expectation is that it is
840 * called very infrequently and that a given device has a small number
841 * of extents
7bfc837d
MX
842 *
843 * @start is used to store the start of the free space if we find. But if we
844 * don't find suitable free space, it will be used to store the start position
845 * of the max free space.
846 *
847 * @len is used to store the size of the free space that we find.
848 * But if we don't find suitable free space, it is used to store the size of
849 * the max free space.
0b86a832 850 */
ba1bf481
JB
851int find_free_dev_extent(struct btrfs_trans_handle *trans,
852 struct btrfs_device *device, u64 num_bytes,
7bfc837d 853 u64 *start, u64 *len)
0b86a832
CM
854{
855 struct btrfs_key key;
856 struct btrfs_root *root = device->dev_root;
7bfc837d 857 struct btrfs_dev_extent *dev_extent;
2b82032c 858 struct btrfs_path *path;
7bfc837d
MX
859 u64 hole_size;
860 u64 max_hole_start;
861 u64 max_hole_size;
862 u64 extent_end;
863 u64 search_start;
0b86a832
CM
864 u64 search_end = device->total_bytes;
865 int ret;
7bfc837d 866 int slot;
0b86a832
CM
867 struct extent_buffer *l;
868
0b86a832
CM
869 /* FIXME use last free of some kind */
870
8a4b83cc
CM
871 /* we don't want to overwrite the superblock on the drive,
872 * so we make sure to start at an offset of at least 1MB
873 */
a9c9bf68 874 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 875
7bfc837d
MX
876 max_hole_start = search_start;
877 max_hole_size = 0;
38c01b96 878 hole_size = 0;
7bfc837d
MX
879
880 if (search_start >= search_end) {
881 ret = -ENOSPC;
882 goto error;
883 }
884
885 path = btrfs_alloc_path();
886 if (!path) {
887 ret = -ENOMEM;
888 goto error;
889 }
890 path->reada = 2;
891
0b86a832
CM
892 key.objectid = device->devid;
893 key.offset = search_start;
894 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 895
0b86a832
CM
896 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
897 if (ret < 0)
7bfc837d 898 goto out;
1fcbac58
YZ
899 if (ret > 0) {
900 ret = btrfs_previous_item(root, path, key.objectid, key.type);
901 if (ret < 0)
7bfc837d 902 goto out;
1fcbac58 903 }
7bfc837d 904
0b86a832
CM
905 while (1) {
906 l = path->nodes[0];
907 slot = path->slots[0];
908 if (slot >= btrfs_header_nritems(l)) {
909 ret = btrfs_next_leaf(root, path);
910 if (ret == 0)
911 continue;
912 if (ret < 0)
7bfc837d
MX
913 goto out;
914
915 break;
0b86a832
CM
916 }
917 btrfs_item_key_to_cpu(l, &key, slot);
918
919 if (key.objectid < device->devid)
920 goto next;
921
922 if (key.objectid > device->devid)
7bfc837d 923 break;
0b86a832 924
7bfc837d
MX
925 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
926 goto next;
9779b72f 927
7bfc837d
MX
928 if (key.offset > search_start) {
929 hole_size = key.offset - search_start;
9779b72f 930
7bfc837d
MX
931 if (hole_size > max_hole_size) {
932 max_hole_start = search_start;
933 max_hole_size = hole_size;
934 }
9779b72f 935
7bfc837d
MX
936 /*
937 * If this free space is greater than which we need,
938 * it must be the max free space that we have found
939 * until now, so max_hole_start must point to the start
940 * of this free space and the length of this free space
941 * is stored in max_hole_size. Thus, we return
942 * max_hole_start and max_hole_size and go back to the
943 * caller.
944 */
945 if (hole_size >= num_bytes) {
946 ret = 0;
947 goto out;
0b86a832
CM
948 }
949 }
0b86a832 950
0b86a832 951 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
952 extent_end = key.offset + btrfs_dev_extent_length(l,
953 dev_extent);
954 if (extent_end > search_start)
955 search_start = extent_end;
0b86a832
CM
956next:
957 path->slots[0]++;
958 cond_resched();
959 }
0b86a832 960
38c01b96 961 /*
962 * At this point, search_start should be the end of
963 * allocated dev extents, and when shrinking the device,
964 * search_end may be smaller than search_start.
965 */
966 if (search_end > search_start)
967 hole_size = search_end - search_start;
968
7bfc837d
MX
969 if (hole_size > max_hole_size) {
970 max_hole_start = search_start;
971 max_hole_size = hole_size;
0b86a832 972 }
0b86a832 973
7bfc837d
MX
974 /* See above. */
975 if (hole_size < num_bytes)
976 ret = -ENOSPC;
977 else
978 ret = 0;
979
980out:
2b82032c 981 btrfs_free_path(path);
7bfc837d
MX
982error:
983 *start = max_hole_start;
b2117a39 984 if (len)
7bfc837d 985 *len = max_hole_size;
0b86a832
CM
986 return ret;
987}
988
b2950863 989static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
990 struct btrfs_device *device,
991 u64 start)
992{
993 int ret;
994 struct btrfs_path *path;
995 struct btrfs_root *root = device->dev_root;
996 struct btrfs_key key;
a061fc8d
CM
997 struct btrfs_key found_key;
998 struct extent_buffer *leaf = NULL;
999 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1000
1001 path = btrfs_alloc_path();
1002 if (!path)
1003 return -ENOMEM;
1004
1005 key.objectid = device->devid;
1006 key.offset = start;
1007 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1008again:
8f18cf13 1009 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1010 if (ret > 0) {
1011 ret = btrfs_previous_item(root, path, key.objectid,
1012 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1013 if (ret)
1014 goto out;
a061fc8d
CM
1015 leaf = path->nodes[0];
1016 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1017 extent = btrfs_item_ptr(leaf, path->slots[0],
1018 struct btrfs_dev_extent);
1019 BUG_ON(found_key.offset > start || found_key.offset +
1020 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1021 key = found_key;
1022 btrfs_release_path(path);
1023 goto again;
a061fc8d
CM
1024 } else if (ret == 0) {
1025 leaf = path->nodes[0];
1026 extent = btrfs_item_ptr(leaf, path->slots[0],
1027 struct btrfs_dev_extent);
1028 }
8f18cf13
CM
1029 BUG_ON(ret);
1030
2bf64758
JB
1031 if (device->bytes_used > 0) {
1032 u64 len = btrfs_dev_extent_length(leaf, extent);
1033 device->bytes_used -= len;
1034 spin_lock(&root->fs_info->free_chunk_lock);
1035 root->fs_info->free_chunk_space += len;
1036 spin_unlock(&root->fs_info->free_chunk_lock);
1037 }
8f18cf13 1038 ret = btrfs_del_item(trans, root, path);
8f18cf13 1039
b0b802d7 1040out:
8f18cf13
CM
1041 btrfs_free_path(path);
1042 return ret;
1043}
1044
2b82032c 1045int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
0b86a832 1046 struct btrfs_device *device,
e17cade2 1047 u64 chunk_tree, u64 chunk_objectid,
2b82032c 1048 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1049{
1050 int ret;
1051 struct btrfs_path *path;
1052 struct btrfs_root *root = device->dev_root;
1053 struct btrfs_dev_extent *extent;
1054 struct extent_buffer *leaf;
1055 struct btrfs_key key;
1056
dfe25020 1057 WARN_ON(!device->in_fs_metadata);
0b86a832
CM
1058 path = btrfs_alloc_path();
1059 if (!path)
1060 return -ENOMEM;
1061
0b86a832 1062 key.objectid = device->devid;
2b82032c 1063 key.offset = start;
0b86a832
CM
1064 key.type = BTRFS_DEV_EXTENT_KEY;
1065 ret = btrfs_insert_empty_item(trans, root, path, &key,
1066 sizeof(*extent));
1067 BUG_ON(ret);
1068
1069 leaf = path->nodes[0];
1070 extent = btrfs_item_ptr(leaf, path->slots[0],
1071 struct btrfs_dev_extent);
e17cade2
CM
1072 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1073 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1074 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1075
1076 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1077 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1078 BTRFS_UUID_SIZE);
1079
0b86a832
CM
1080 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1081 btrfs_mark_buffer_dirty(leaf);
0b86a832
CM
1082 btrfs_free_path(path);
1083 return ret;
1084}
1085
a1b32a59
CM
1086static noinline int find_next_chunk(struct btrfs_root *root,
1087 u64 objectid, u64 *offset)
0b86a832
CM
1088{
1089 struct btrfs_path *path;
1090 int ret;
1091 struct btrfs_key key;
e17cade2 1092 struct btrfs_chunk *chunk;
0b86a832
CM
1093 struct btrfs_key found_key;
1094
1095 path = btrfs_alloc_path();
92b8e897
MF
1096 if (!path)
1097 return -ENOMEM;
0b86a832 1098
e17cade2 1099 key.objectid = objectid;
0b86a832
CM
1100 key.offset = (u64)-1;
1101 key.type = BTRFS_CHUNK_ITEM_KEY;
1102
1103 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1104 if (ret < 0)
1105 goto error;
1106
1107 BUG_ON(ret == 0);
1108
1109 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1110 if (ret) {
e17cade2 1111 *offset = 0;
0b86a832
CM
1112 } else {
1113 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1114 path->slots[0]);
e17cade2
CM
1115 if (found_key.objectid != objectid)
1116 *offset = 0;
1117 else {
1118 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1119 struct btrfs_chunk);
1120 *offset = found_key.offset +
1121 btrfs_chunk_length(path->nodes[0], chunk);
1122 }
0b86a832
CM
1123 }
1124 ret = 0;
1125error:
1126 btrfs_free_path(path);
1127 return ret;
1128}
1129
2b82032c 1130static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
0b86a832
CM
1131{
1132 int ret;
1133 struct btrfs_key key;
1134 struct btrfs_key found_key;
2b82032c
YZ
1135 struct btrfs_path *path;
1136
1137 root = root->fs_info->chunk_root;
1138
1139 path = btrfs_alloc_path();
1140 if (!path)
1141 return -ENOMEM;
0b86a832
CM
1142
1143 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1144 key.type = BTRFS_DEV_ITEM_KEY;
1145 key.offset = (u64)-1;
1146
1147 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1148 if (ret < 0)
1149 goto error;
1150
1151 BUG_ON(ret == 0);
1152
1153 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1154 BTRFS_DEV_ITEM_KEY);
1155 if (ret) {
1156 *objectid = 1;
1157 } else {
1158 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1159 path->slots[0]);
1160 *objectid = found_key.offset + 1;
1161 }
1162 ret = 0;
1163error:
2b82032c 1164 btrfs_free_path(path);
0b86a832
CM
1165 return ret;
1166}
1167
1168/*
1169 * the device information is stored in the chunk root
1170 * the btrfs_device struct should be fully filled in
1171 */
1172int btrfs_add_device(struct btrfs_trans_handle *trans,
1173 struct btrfs_root *root,
1174 struct btrfs_device *device)
1175{
1176 int ret;
1177 struct btrfs_path *path;
1178 struct btrfs_dev_item *dev_item;
1179 struct extent_buffer *leaf;
1180 struct btrfs_key key;
1181 unsigned long ptr;
0b86a832
CM
1182
1183 root = root->fs_info->chunk_root;
1184
1185 path = btrfs_alloc_path();
1186 if (!path)
1187 return -ENOMEM;
1188
0b86a832
CM
1189 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1190 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1191 key.offset = device->devid;
0b86a832
CM
1192
1193 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1194 sizeof(*dev_item));
0b86a832
CM
1195 if (ret)
1196 goto out;
1197
1198 leaf = path->nodes[0];
1199 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1200
1201 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1202 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1203 btrfs_set_device_type(leaf, dev_item, device->type);
1204 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1205 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1206 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1207 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1208 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1209 btrfs_set_device_group(leaf, dev_item, 0);
1210 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1211 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1212 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1213
0b86a832 1214 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 1215 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2b82032c
YZ
1216 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1217 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1218 btrfs_mark_buffer_dirty(leaf);
0b86a832 1219
2b82032c 1220 ret = 0;
0b86a832
CM
1221out:
1222 btrfs_free_path(path);
1223 return ret;
1224}
8f18cf13 1225
a061fc8d
CM
1226static int btrfs_rm_dev_item(struct btrfs_root *root,
1227 struct btrfs_device *device)
1228{
1229 int ret;
1230 struct btrfs_path *path;
a061fc8d 1231 struct btrfs_key key;
a061fc8d
CM
1232 struct btrfs_trans_handle *trans;
1233
1234 root = root->fs_info->chunk_root;
1235
1236 path = btrfs_alloc_path();
1237 if (!path)
1238 return -ENOMEM;
1239
a22285a6 1240 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1241 if (IS_ERR(trans)) {
1242 btrfs_free_path(path);
1243 return PTR_ERR(trans);
1244 }
a061fc8d
CM
1245 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1246 key.type = BTRFS_DEV_ITEM_KEY;
1247 key.offset = device->devid;
7d9eb12c 1248 lock_chunks(root);
a061fc8d
CM
1249
1250 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1251 if (ret < 0)
1252 goto out;
1253
1254 if (ret > 0) {
1255 ret = -ENOENT;
1256 goto out;
1257 }
1258
1259 ret = btrfs_del_item(trans, root, path);
1260 if (ret)
1261 goto out;
a061fc8d
CM
1262out:
1263 btrfs_free_path(path);
7d9eb12c 1264 unlock_chunks(root);
a061fc8d
CM
1265 btrfs_commit_transaction(trans, root);
1266 return ret;
1267}
1268
1269int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1270{
1271 struct btrfs_device *device;
2b82032c 1272 struct btrfs_device *next_device;
a061fc8d 1273 struct block_device *bdev;
dfe25020 1274 struct buffer_head *bh = NULL;
a061fc8d 1275 struct btrfs_super_block *disk_super;
1f78160c 1276 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1277 u64 all_avail;
1278 u64 devid;
2b82032c
YZ
1279 u64 num_devices;
1280 u8 *dev_uuid;
a061fc8d 1281 int ret = 0;
1f78160c 1282 bool clear_super = false;
a061fc8d 1283
a061fc8d 1284 mutex_lock(&uuid_mutex);
7d9eb12c 1285 mutex_lock(&root->fs_info->volume_mutex);
a061fc8d
CM
1286
1287 all_avail = root->fs_info->avail_data_alloc_bits |
1288 root->fs_info->avail_system_alloc_bits |
1289 root->fs_info->avail_metadata_alloc_bits;
1290
1291 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
035fe03a 1292 root->fs_info->fs_devices->num_devices <= 4) {
d397712b
CM
1293 printk(KERN_ERR "btrfs: unable to go below four devices "
1294 "on raid10\n");
a061fc8d
CM
1295 ret = -EINVAL;
1296 goto out;
1297 }
1298
1299 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
035fe03a 1300 root->fs_info->fs_devices->num_devices <= 2) {
d397712b
CM
1301 printk(KERN_ERR "btrfs: unable to go below two "
1302 "devices on raid1\n");
a061fc8d
CM
1303 ret = -EINVAL;
1304 goto out;
1305 }
1306
dfe25020 1307 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1308 struct list_head *devices;
1309 struct btrfs_device *tmp;
a061fc8d 1310
dfe25020
CM
1311 device = NULL;
1312 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1313 /*
1314 * It is safe to read the devices since the volume_mutex
1315 * is held.
1316 */
c6e30871 1317 list_for_each_entry(tmp, devices, dev_list) {
dfe25020
CM
1318 if (tmp->in_fs_metadata && !tmp->bdev) {
1319 device = tmp;
1320 break;
1321 }
1322 }
1323 bdev = NULL;
1324 bh = NULL;
1325 disk_super = NULL;
1326 if (!device) {
d397712b
CM
1327 printk(KERN_ERR "btrfs: no missing devices found to "
1328 "remove\n");
dfe25020
CM
1329 goto out;
1330 }
dfe25020 1331 } else {
d4d77629
TH
1332 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1333 root->fs_info->bdev_holder);
dfe25020
CM
1334 if (IS_ERR(bdev)) {
1335 ret = PTR_ERR(bdev);
1336 goto out;
1337 }
a061fc8d 1338
2b82032c 1339 set_blocksize(bdev, 4096);
a512bbf8 1340 bh = btrfs_read_dev_super(bdev);
dfe25020 1341 if (!bh) {
20b45077 1342 ret = -EINVAL;
dfe25020
CM
1343 goto error_close;
1344 }
1345 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1346 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c
YZ
1347 dev_uuid = disk_super->dev_item.uuid;
1348 device = btrfs_find_device(root, devid, dev_uuid,
1349 disk_super->fsid);
dfe25020
CM
1350 if (!device) {
1351 ret = -ENOENT;
1352 goto error_brelse;
1353 }
2b82032c 1354 }
dfe25020 1355
2b82032c 1356 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
d397712b
CM
1357 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1358 "device\n");
2b82032c
YZ
1359 ret = -EINVAL;
1360 goto error_brelse;
1361 }
1362
1363 if (device->writeable) {
0c1daee0 1364 lock_chunks(root);
2b82032c 1365 list_del_init(&device->dev_alloc_list);
0c1daee0 1366 unlock_chunks(root);
2b82032c 1367 root->fs_info->fs_devices->rw_devices--;
1f78160c 1368 clear_super = true;
dfe25020 1369 }
a061fc8d
CM
1370
1371 ret = btrfs_shrink_device(device, 0);
1372 if (ret)
9b3517e9 1373 goto error_undo;
a061fc8d 1374
a061fc8d
CM
1375 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1376 if (ret)
9b3517e9 1377 goto error_undo;
a061fc8d 1378
2bf64758
JB
1379 spin_lock(&root->fs_info->free_chunk_lock);
1380 root->fs_info->free_chunk_space = device->total_bytes -
1381 device->bytes_used;
1382 spin_unlock(&root->fs_info->free_chunk_lock);
1383
2b82032c 1384 device->in_fs_metadata = 0;
a2de733c 1385 btrfs_scrub_cancel_dev(root, device);
e5e9a520
CM
1386
1387 /*
1388 * the device list mutex makes sure that we don't change
1389 * the device list while someone else is writing out all
1390 * the device supers.
1391 */
1f78160c
XG
1392
1393 cur_devices = device->fs_devices;
e5e9a520 1394 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1395 list_del_rcu(&device->dev_list);
e5e9a520 1396
e4404d6e 1397 device->fs_devices->num_devices--;
2b82032c 1398
cd02dca5
CM
1399 if (device->missing)
1400 root->fs_info->fs_devices->missing_devices--;
1401
2b82032c
YZ
1402 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1403 struct btrfs_device, dev_list);
1404 if (device->bdev == root->fs_info->sb->s_bdev)
1405 root->fs_info->sb->s_bdev = next_device->bdev;
1406 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1407 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1408
1f78160c 1409 if (device->bdev)
e4404d6e 1410 device->fs_devices->open_devices--;
1f78160c
XG
1411
1412 call_rcu(&device->rcu, free_device);
1413 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
e4404d6e 1414
6c41761f
DS
1415 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1416 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
2b82032c 1417
1f78160c 1418 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1419 struct btrfs_fs_devices *fs_devices;
1420 fs_devices = root->fs_info->fs_devices;
1421 while (fs_devices) {
1f78160c 1422 if (fs_devices->seed == cur_devices)
e4404d6e
YZ
1423 break;
1424 fs_devices = fs_devices->seed;
2b82032c 1425 }
1f78160c
XG
1426 fs_devices->seed = cur_devices->seed;
1427 cur_devices->seed = NULL;
0c1daee0 1428 lock_chunks(root);
1f78160c 1429 __btrfs_close_devices(cur_devices);
0c1daee0 1430 unlock_chunks(root);
1f78160c 1431 free_fs_devices(cur_devices);
2b82032c
YZ
1432 }
1433
1434 /*
1435 * at this point, the device is zero sized. We want to
1436 * remove it from the devices list and zero out the old super
1437 */
1f78160c 1438 if (clear_super) {
dfe25020
CM
1439 /* make sure this device isn't detected as part of
1440 * the FS anymore
1441 */
1442 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1443 set_buffer_dirty(bh);
1444 sync_dirty_buffer(bh);
dfe25020 1445 }
a061fc8d 1446
a061fc8d 1447 ret = 0;
a061fc8d
CM
1448
1449error_brelse:
1450 brelse(bh);
1451error_close:
dfe25020 1452 if (bdev)
e525fd89 1453 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d 1454out:
7d9eb12c 1455 mutex_unlock(&root->fs_info->volume_mutex);
a061fc8d 1456 mutex_unlock(&uuid_mutex);
a061fc8d 1457 return ret;
9b3517e9
ID
1458error_undo:
1459 if (device->writeable) {
0c1daee0 1460 lock_chunks(root);
9b3517e9
ID
1461 list_add(&device->dev_alloc_list,
1462 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1463 unlock_chunks(root);
9b3517e9
ID
1464 root->fs_info->fs_devices->rw_devices++;
1465 }
1466 goto error_brelse;
a061fc8d
CM
1467}
1468
2b82032c
YZ
1469/*
1470 * does all the dirty work required for changing file system's UUID.
1471 */
1472static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1473 struct btrfs_root *root)
1474{
1475 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1476 struct btrfs_fs_devices *old_devices;
e4404d6e 1477 struct btrfs_fs_devices *seed_devices;
6c41761f 1478 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1479 struct btrfs_device *device;
1480 u64 super_flags;
1481
1482 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1483 if (!fs_devices->seeding)
2b82032c
YZ
1484 return -EINVAL;
1485
e4404d6e
YZ
1486 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1487 if (!seed_devices)
2b82032c
YZ
1488 return -ENOMEM;
1489
e4404d6e
YZ
1490 old_devices = clone_fs_devices(fs_devices);
1491 if (IS_ERR(old_devices)) {
1492 kfree(seed_devices);
1493 return PTR_ERR(old_devices);
2b82032c 1494 }
e4404d6e 1495
2b82032c
YZ
1496 list_add(&old_devices->list, &fs_uuids);
1497
e4404d6e
YZ
1498 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1499 seed_devices->opened = 1;
1500 INIT_LIST_HEAD(&seed_devices->devices);
1501 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1502 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1503
1504 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1505 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1506 synchronize_rcu);
c9513edb
XG
1507 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1508
e4404d6e
YZ
1509 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1510 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1511 device->fs_devices = seed_devices;
1512 }
1513
2b82032c
YZ
1514 fs_devices->seeding = 0;
1515 fs_devices->num_devices = 0;
1516 fs_devices->open_devices = 0;
e4404d6e 1517 fs_devices->seed = seed_devices;
2b82032c
YZ
1518
1519 generate_random_uuid(fs_devices->fsid);
1520 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1521 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1522 super_flags = btrfs_super_flags(disk_super) &
1523 ~BTRFS_SUPER_FLAG_SEEDING;
1524 btrfs_set_super_flags(disk_super, super_flags);
1525
1526 return 0;
1527}
1528
1529/*
1530 * strore the expected generation for seed devices in device items.
1531 */
1532static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1533 struct btrfs_root *root)
1534{
1535 struct btrfs_path *path;
1536 struct extent_buffer *leaf;
1537 struct btrfs_dev_item *dev_item;
1538 struct btrfs_device *device;
1539 struct btrfs_key key;
1540 u8 fs_uuid[BTRFS_UUID_SIZE];
1541 u8 dev_uuid[BTRFS_UUID_SIZE];
1542 u64 devid;
1543 int ret;
1544
1545 path = btrfs_alloc_path();
1546 if (!path)
1547 return -ENOMEM;
1548
1549 root = root->fs_info->chunk_root;
1550 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1551 key.offset = 0;
1552 key.type = BTRFS_DEV_ITEM_KEY;
1553
1554 while (1) {
1555 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1556 if (ret < 0)
1557 goto error;
1558
1559 leaf = path->nodes[0];
1560next_slot:
1561 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1562 ret = btrfs_next_leaf(root, path);
1563 if (ret > 0)
1564 break;
1565 if (ret < 0)
1566 goto error;
1567 leaf = path->nodes[0];
1568 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 1569 btrfs_release_path(path);
2b82032c
YZ
1570 continue;
1571 }
1572
1573 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1574 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1575 key.type != BTRFS_DEV_ITEM_KEY)
1576 break;
1577
1578 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1579 struct btrfs_dev_item);
1580 devid = btrfs_device_id(leaf, dev_item);
1581 read_extent_buffer(leaf, dev_uuid,
1582 (unsigned long)btrfs_device_uuid(dev_item),
1583 BTRFS_UUID_SIZE);
1584 read_extent_buffer(leaf, fs_uuid,
1585 (unsigned long)btrfs_device_fsid(dev_item),
1586 BTRFS_UUID_SIZE);
1587 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1588 BUG_ON(!device);
1589
1590 if (device->fs_devices->seeding) {
1591 btrfs_set_device_generation(leaf, dev_item,
1592 device->generation);
1593 btrfs_mark_buffer_dirty(leaf);
1594 }
1595
1596 path->slots[0]++;
1597 goto next_slot;
1598 }
1599 ret = 0;
1600error:
1601 btrfs_free_path(path);
1602 return ret;
1603}
1604
788f20eb
CM
1605int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1606{
d5e2003c 1607 struct request_queue *q;
788f20eb
CM
1608 struct btrfs_trans_handle *trans;
1609 struct btrfs_device *device;
1610 struct block_device *bdev;
788f20eb 1611 struct list_head *devices;
2b82032c 1612 struct super_block *sb = root->fs_info->sb;
788f20eb 1613 u64 total_bytes;
2b82032c 1614 int seeding_dev = 0;
788f20eb
CM
1615 int ret = 0;
1616
2b82032c
YZ
1617 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1618 return -EINVAL;
788f20eb 1619
a5d16333 1620 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 1621 root->fs_info->bdev_holder);
7f59203a
JB
1622 if (IS_ERR(bdev))
1623 return PTR_ERR(bdev);
a2135011 1624
2b82032c
YZ
1625 if (root->fs_info->fs_devices->seeding) {
1626 seeding_dev = 1;
1627 down_write(&sb->s_umount);
1628 mutex_lock(&uuid_mutex);
1629 }
1630
8c8bee1d 1631 filemap_write_and_wait(bdev->bd_inode->i_mapping);
7d9eb12c 1632 mutex_lock(&root->fs_info->volume_mutex);
a2135011 1633
788f20eb 1634 devices = &root->fs_info->fs_devices->devices;
e5e9a520
CM
1635 /*
1636 * we have the volume lock, so we don't need the extra
1637 * device list mutex while reading the list here.
1638 */
c6e30871 1639 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1640 if (device->bdev == bdev) {
1641 ret = -EEXIST;
2b82032c 1642 goto error;
788f20eb
CM
1643 }
1644 }
1645
1646 device = kzalloc(sizeof(*device), GFP_NOFS);
1647 if (!device) {
1648 /* we can safely leave the fs_devices entry around */
1649 ret = -ENOMEM;
2b82032c 1650 goto error;
788f20eb
CM
1651 }
1652
788f20eb
CM
1653 device->name = kstrdup(device_path, GFP_NOFS);
1654 if (!device->name) {
1655 kfree(device);
2b82032c
YZ
1656 ret = -ENOMEM;
1657 goto error;
788f20eb 1658 }
2b82032c
YZ
1659
1660 ret = find_next_devid(root, &device->devid);
1661 if (ret) {
67100f25 1662 kfree(device->name);
2b82032c
YZ
1663 kfree(device);
1664 goto error;
1665 }
1666
a22285a6 1667 trans = btrfs_start_transaction(root, 0);
98d5dc13 1668 if (IS_ERR(trans)) {
67100f25 1669 kfree(device->name);
98d5dc13
TI
1670 kfree(device);
1671 ret = PTR_ERR(trans);
1672 goto error;
1673 }
1674
2b82032c
YZ
1675 lock_chunks(root);
1676
d5e2003c
JB
1677 q = bdev_get_queue(bdev);
1678 if (blk_queue_discard(q))
1679 device->can_discard = 1;
2b82032c
YZ
1680 device->writeable = 1;
1681 device->work.func = pending_bios_fn;
1682 generate_random_uuid(device->uuid);
1683 spin_lock_init(&device->io_lock);
1684 device->generation = trans->transid;
788f20eb
CM
1685 device->io_width = root->sectorsize;
1686 device->io_align = root->sectorsize;
1687 device->sector_size = root->sectorsize;
1688 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 1689 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
1690 device->dev_root = root->fs_info->dev_root;
1691 device->bdev = bdev;
dfe25020 1692 device->in_fs_metadata = 1;
fb01aa85 1693 device->mode = FMODE_EXCL;
2b82032c 1694 set_blocksize(device->bdev, 4096);
788f20eb 1695
2b82032c
YZ
1696 if (seeding_dev) {
1697 sb->s_flags &= ~MS_RDONLY;
1698 ret = btrfs_prepare_sprout(trans, root);
1699 BUG_ON(ret);
1700 }
788f20eb 1701
2b82032c 1702 device->fs_devices = root->fs_info->fs_devices;
e5e9a520
CM
1703
1704 /*
1705 * we don't want write_supers to jump in here with our device
1706 * half setup
1707 */
1708 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1709 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
1710 list_add(&device->dev_alloc_list,
1711 &root->fs_info->fs_devices->alloc_list);
1712 root->fs_info->fs_devices->num_devices++;
1713 root->fs_info->fs_devices->open_devices++;
1714 root->fs_info->fs_devices->rw_devices++;
d5e2003c
JB
1715 if (device->can_discard)
1716 root->fs_info->fs_devices->num_can_discard++;
2b82032c 1717 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 1718
2bf64758
JB
1719 spin_lock(&root->fs_info->free_chunk_lock);
1720 root->fs_info->free_chunk_space += device->total_bytes;
1721 spin_unlock(&root->fs_info->free_chunk_lock);
1722
c289811c
CM
1723 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1724 root->fs_info->fs_devices->rotating = 1;
1725
6c41761f
DS
1726 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
1727 btrfs_set_super_total_bytes(root->fs_info->super_copy,
788f20eb
CM
1728 total_bytes + device->total_bytes);
1729
6c41761f
DS
1730 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
1731 btrfs_set_super_num_devices(root->fs_info->super_copy,
788f20eb 1732 total_bytes + 1);
e5e9a520 1733 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 1734
2b82032c
YZ
1735 if (seeding_dev) {
1736 ret = init_first_rw_device(trans, root, device);
1737 BUG_ON(ret);
1738 ret = btrfs_finish_sprout(trans, root);
1739 BUG_ON(ret);
1740 } else {
1741 ret = btrfs_add_device(trans, root, device);
1742 }
1743
913d952e
CM
1744 /*
1745 * we've got more storage, clear any full flags on the space
1746 * infos
1747 */
1748 btrfs_clear_space_info_full(root->fs_info);
1749
7d9eb12c 1750 unlock_chunks(root);
2b82032c 1751 btrfs_commit_transaction(trans, root);
a2135011 1752
2b82032c
YZ
1753 if (seeding_dev) {
1754 mutex_unlock(&uuid_mutex);
1755 up_write(&sb->s_umount);
788f20eb 1756
2b82032c
YZ
1757 ret = btrfs_relocate_sys_chunks(root);
1758 BUG_ON(ret);
1759 }
1760out:
1761 mutex_unlock(&root->fs_info->volume_mutex);
1762 return ret;
1763error:
e525fd89 1764 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
1765 if (seeding_dev) {
1766 mutex_unlock(&uuid_mutex);
1767 up_write(&sb->s_umount);
1768 }
788f20eb
CM
1769 goto out;
1770}
1771
d397712b
CM
1772static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1773 struct btrfs_device *device)
0b86a832
CM
1774{
1775 int ret;
1776 struct btrfs_path *path;
1777 struct btrfs_root *root;
1778 struct btrfs_dev_item *dev_item;
1779 struct extent_buffer *leaf;
1780 struct btrfs_key key;
1781
1782 root = device->dev_root->fs_info->chunk_root;
1783
1784 path = btrfs_alloc_path();
1785 if (!path)
1786 return -ENOMEM;
1787
1788 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1789 key.type = BTRFS_DEV_ITEM_KEY;
1790 key.offset = device->devid;
1791
1792 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1793 if (ret < 0)
1794 goto out;
1795
1796 if (ret > 0) {
1797 ret = -ENOENT;
1798 goto out;
1799 }
1800
1801 leaf = path->nodes[0];
1802 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1803
1804 btrfs_set_device_id(leaf, dev_item, device->devid);
1805 btrfs_set_device_type(leaf, dev_item, device->type);
1806 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1807 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1808 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 1809 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
1810 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1811 btrfs_mark_buffer_dirty(leaf);
1812
1813out:
1814 btrfs_free_path(path);
1815 return ret;
1816}
1817
7d9eb12c 1818static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
1819 struct btrfs_device *device, u64 new_size)
1820{
1821 struct btrfs_super_block *super_copy =
6c41761f 1822 device->dev_root->fs_info->super_copy;
8f18cf13
CM
1823 u64 old_total = btrfs_super_total_bytes(super_copy);
1824 u64 diff = new_size - device->total_bytes;
1825
2b82032c
YZ
1826 if (!device->writeable)
1827 return -EACCES;
1828 if (new_size <= device->total_bytes)
1829 return -EINVAL;
1830
8f18cf13 1831 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
1832 device->fs_devices->total_rw_bytes += diff;
1833
1834 device->total_bytes = new_size;
9779b72f 1835 device->disk_total_bytes = new_size;
4184ea7f
CM
1836 btrfs_clear_space_info_full(device->dev_root->fs_info);
1837
8f18cf13
CM
1838 return btrfs_update_device(trans, device);
1839}
1840
7d9eb12c
CM
1841int btrfs_grow_device(struct btrfs_trans_handle *trans,
1842 struct btrfs_device *device, u64 new_size)
1843{
1844 int ret;
1845 lock_chunks(device->dev_root);
1846 ret = __btrfs_grow_device(trans, device, new_size);
1847 unlock_chunks(device->dev_root);
1848 return ret;
1849}
1850
8f18cf13
CM
1851static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1852 struct btrfs_root *root,
1853 u64 chunk_tree, u64 chunk_objectid,
1854 u64 chunk_offset)
1855{
1856 int ret;
1857 struct btrfs_path *path;
1858 struct btrfs_key key;
1859
1860 root = root->fs_info->chunk_root;
1861 path = btrfs_alloc_path();
1862 if (!path)
1863 return -ENOMEM;
1864
1865 key.objectid = chunk_objectid;
1866 key.offset = chunk_offset;
1867 key.type = BTRFS_CHUNK_ITEM_KEY;
1868
1869 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1870 BUG_ON(ret);
1871
1872 ret = btrfs_del_item(trans, root, path);
8f18cf13
CM
1873
1874 btrfs_free_path(path);
65a246c5 1875 return ret;
8f18cf13
CM
1876}
1877
b2950863 1878static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
1879 chunk_offset)
1880{
6c41761f 1881 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
1882 struct btrfs_disk_key *disk_key;
1883 struct btrfs_chunk *chunk;
1884 u8 *ptr;
1885 int ret = 0;
1886 u32 num_stripes;
1887 u32 array_size;
1888 u32 len = 0;
1889 u32 cur;
1890 struct btrfs_key key;
1891
1892 array_size = btrfs_super_sys_array_size(super_copy);
1893
1894 ptr = super_copy->sys_chunk_array;
1895 cur = 0;
1896
1897 while (cur < array_size) {
1898 disk_key = (struct btrfs_disk_key *)ptr;
1899 btrfs_disk_key_to_cpu(&key, disk_key);
1900
1901 len = sizeof(*disk_key);
1902
1903 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1904 chunk = (struct btrfs_chunk *)(ptr + len);
1905 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1906 len += btrfs_chunk_item_size(num_stripes);
1907 } else {
1908 ret = -EIO;
1909 break;
1910 }
1911 if (key.objectid == chunk_objectid &&
1912 key.offset == chunk_offset) {
1913 memmove(ptr, ptr + len, array_size - (cur + len));
1914 array_size -= len;
1915 btrfs_set_super_sys_array_size(super_copy, array_size);
1916 } else {
1917 ptr += len;
1918 cur += len;
1919 }
1920 }
1921 return ret;
1922}
1923
b2950863 1924static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
1925 u64 chunk_tree, u64 chunk_objectid,
1926 u64 chunk_offset)
1927{
1928 struct extent_map_tree *em_tree;
1929 struct btrfs_root *extent_root;
1930 struct btrfs_trans_handle *trans;
1931 struct extent_map *em;
1932 struct map_lookup *map;
1933 int ret;
1934 int i;
1935
1936 root = root->fs_info->chunk_root;
1937 extent_root = root->fs_info->extent_root;
1938 em_tree = &root->fs_info->mapping_tree.map_tree;
1939
ba1bf481
JB
1940 ret = btrfs_can_relocate(extent_root, chunk_offset);
1941 if (ret)
1942 return -ENOSPC;
1943
8f18cf13 1944 /* step one, relocate all the extents inside this chunk */
1a40e23b 1945 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
1946 if (ret)
1947 return ret;
8f18cf13 1948
a22285a6 1949 trans = btrfs_start_transaction(root, 0);
98d5dc13 1950 BUG_ON(IS_ERR(trans));
8f18cf13 1951
7d9eb12c
CM
1952 lock_chunks(root);
1953
8f18cf13
CM
1954 /*
1955 * step two, delete the device extents and the
1956 * chunk tree entries
1957 */
890871be 1958 read_lock(&em_tree->lock);
8f18cf13 1959 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 1960 read_unlock(&em_tree->lock);
8f18cf13 1961
a061fc8d
CM
1962 BUG_ON(em->start > chunk_offset ||
1963 em->start + em->len < chunk_offset);
8f18cf13
CM
1964 map = (struct map_lookup *)em->bdev;
1965
1966 for (i = 0; i < map->num_stripes; i++) {
1967 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1968 map->stripes[i].physical);
1969 BUG_ON(ret);
a061fc8d 1970
dfe25020
CM
1971 if (map->stripes[i].dev) {
1972 ret = btrfs_update_device(trans, map->stripes[i].dev);
1973 BUG_ON(ret);
1974 }
8f18cf13
CM
1975 }
1976 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1977 chunk_offset);
1978
1979 BUG_ON(ret);
1980
1abe9b8a 1981 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
1982
8f18cf13
CM
1983 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1984 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1985 BUG_ON(ret);
8f18cf13
CM
1986 }
1987
2b82032c
YZ
1988 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1989 BUG_ON(ret);
1990
890871be 1991 write_lock(&em_tree->lock);
2b82032c 1992 remove_extent_mapping(em_tree, em);
890871be 1993 write_unlock(&em_tree->lock);
2b82032c
YZ
1994
1995 kfree(map);
1996 em->bdev = NULL;
1997
1998 /* once for the tree */
1999 free_extent_map(em);
2000 /* once for us */
2001 free_extent_map(em);
2002
2003 unlock_chunks(root);
2004 btrfs_end_transaction(trans, root);
2005 return 0;
2006}
2007
2008static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2009{
2010 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2011 struct btrfs_path *path;
2012 struct extent_buffer *leaf;
2013 struct btrfs_chunk *chunk;
2014 struct btrfs_key key;
2015 struct btrfs_key found_key;
2016 u64 chunk_tree = chunk_root->root_key.objectid;
2017 u64 chunk_type;
ba1bf481
JB
2018 bool retried = false;
2019 int failed = 0;
2b82032c
YZ
2020 int ret;
2021
2022 path = btrfs_alloc_path();
2023 if (!path)
2024 return -ENOMEM;
2025
ba1bf481 2026again:
2b82032c
YZ
2027 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2028 key.offset = (u64)-1;
2029 key.type = BTRFS_CHUNK_ITEM_KEY;
2030
2031 while (1) {
2032 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2033 if (ret < 0)
2034 goto error;
2035 BUG_ON(ret == 0);
2036
2037 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2038 key.type);
2039 if (ret < 0)
2040 goto error;
2041 if (ret > 0)
2042 break;
1a40e23b 2043
2b82032c
YZ
2044 leaf = path->nodes[0];
2045 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2046
2b82032c
YZ
2047 chunk = btrfs_item_ptr(leaf, path->slots[0],
2048 struct btrfs_chunk);
2049 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2050 btrfs_release_path(path);
8f18cf13 2051
2b82032c
YZ
2052 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2053 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2054 found_key.objectid,
2055 found_key.offset);
ba1bf481
JB
2056 if (ret == -ENOSPC)
2057 failed++;
2058 else if (ret)
2059 BUG();
2b82032c 2060 }
8f18cf13 2061
2b82032c
YZ
2062 if (found_key.offset == 0)
2063 break;
2064 key.offset = found_key.offset - 1;
2065 }
2066 ret = 0;
ba1bf481
JB
2067 if (failed && !retried) {
2068 failed = 0;
2069 retried = true;
2070 goto again;
2071 } else if (failed && retried) {
2072 WARN_ON(1);
2073 ret = -ENOSPC;
2074 }
2b82032c
YZ
2075error:
2076 btrfs_free_path(path);
2077 return ret;
8f18cf13
CM
2078}
2079
ec44a35c
CM
2080static u64 div_factor(u64 num, int factor)
2081{
2082 if (factor == 10)
2083 return num;
2084 num *= factor;
2085 do_div(num, 10);
2086 return num;
2087}
2088
ec44a35c
CM
2089int btrfs_balance(struct btrfs_root *dev_root)
2090{
2091 int ret;
ec44a35c
CM
2092 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
2093 struct btrfs_device *device;
2094 u64 old_size;
2095 u64 size_to_free;
2096 struct btrfs_path *path;
2097 struct btrfs_key key;
ec44a35c
CM
2098 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
2099 struct btrfs_trans_handle *trans;
2100 struct btrfs_key found_key;
2101
2b82032c
YZ
2102 if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
2103 return -EROFS;
ec44a35c 2104
6f88a440
BH
2105 if (!capable(CAP_SYS_ADMIN))
2106 return -EPERM;
2107
7d9eb12c 2108 mutex_lock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
2109 dev_root = dev_root->fs_info->dev_root;
2110
ec44a35c 2111 /* step one make some room on all the devices */
c6e30871 2112 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2113 old_size = device->total_bytes;
2114 size_to_free = div_factor(old_size, 1);
2115 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c
YZ
2116 if (!device->writeable ||
2117 device->total_bytes - device->bytes_used > size_to_free)
ec44a35c
CM
2118 continue;
2119
2120 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2121 if (ret == -ENOSPC)
2122 break;
ec44a35c
CM
2123 BUG_ON(ret);
2124
a22285a6 2125 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2126 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2127
2128 ret = btrfs_grow_device(trans, device, old_size);
2129 BUG_ON(ret);
2130
2131 btrfs_end_transaction(trans, dev_root);
2132 }
2133
2134 /* step two, relocate all the chunks */
2135 path = btrfs_alloc_path();
17e9f796
MF
2136 if (!path) {
2137 ret = -ENOMEM;
2138 goto error;
2139 }
ec44a35c
CM
2140 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2141 key.offset = (u64)-1;
2142 key.type = BTRFS_CHUNK_ITEM_KEY;
2143
d397712b 2144 while (1) {
ec44a35c
CM
2145 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2146 if (ret < 0)
2147 goto error;
2148
2149 /*
2150 * this shouldn't happen, it means the last relocate
2151 * failed
2152 */
2153 if (ret == 0)
2154 break;
2155
2156 ret = btrfs_previous_item(chunk_root, path, 0,
2157 BTRFS_CHUNK_ITEM_KEY);
7d9eb12c 2158 if (ret)
ec44a35c 2159 break;
7d9eb12c 2160
ec44a35c
CM
2161 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2162 path->slots[0]);
2163 if (found_key.objectid != key.objectid)
2164 break;
7d9eb12c 2165
ec44a35c 2166 /* chunk zero is special */
ba1bf481 2167 if (found_key.offset == 0)
ec44a35c
CM
2168 break;
2169
b3b4aa74 2170 btrfs_release_path(path);
ec44a35c
CM
2171 ret = btrfs_relocate_chunk(chunk_root,
2172 chunk_root->root_key.objectid,
2173 found_key.objectid,
2174 found_key.offset);
508794eb
JB
2175 if (ret && ret != -ENOSPC)
2176 goto error;
ba1bf481 2177 key.offset = found_key.offset - 1;
ec44a35c
CM
2178 }
2179 ret = 0;
2180error:
2181 btrfs_free_path(path);
7d9eb12c 2182 mutex_unlock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
2183 return ret;
2184}
2185
8f18cf13
CM
2186/*
2187 * shrinking a device means finding all of the device extents past
2188 * the new size, and then following the back refs to the chunks.
2189 * The chunk relocation code actually frees the device extent
2190 */
2191int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2192{
2193 struct btrfs_trans_handle *trans;
2194 struct btrfs_root *root = device->dev_root;
2195 struct btrfs_dev_extent *dev_extent = NULL;
2196 struct btrfs_path *path;
2197 u64 length;
2198 u64 chunk_tree;
2199 u64 chunk_objectid;
2200 u64 chunk_offset;
2201 int ret;
2202 int slot;
ba1bf481
JB
2203 int failed = 0;
2204 bool retried = false;
8f18cf13
CM
2205 struct extent_buffer *l;
2206 struct btrfs_key key;
6c41761f 2207 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 2208 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 2209 u64 old_size = device->total_bytes;
8f18cf13
CM
2210 u64 diff = device->total_bytes - new_size;
2211
2b82032c
YZ
2212 if (new_size >= device->total_bytes)
2213 return -EINVAL;
8f18cf13
CM
2214
2215 path = btrfs_alloc_path();
2216 if (!path)
2217 return -ENOMEM;
2218
8f18cf13
CM
2219 path->reada = 2;
2220
7d9eb12c
CM
2221 lock_chunks(root);
2222
8f18cf13 2223 device->total_bytes = new_size;
2bf64758 2224 if (device->writeable) {
2b82032c 2225 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
2226 spin_lock(&root->fs_info->free_chunk_lock);
2227 root->fs_info->free_chunk_space -= diff;
2228 spin_unlock(&root->fs_info->free_chunk_lock);
2229 }
7d9eb12c 2230 unlock_chunks(root);
8f18cf13 2231
ba1bf481 2232again:
8f18cf13
CM
2233 key.objectid = device->devid;
2234 key.offset = (u64)-1;
2235 key.type = BTRFS_DEV_EXTENT_KEY;
2236
2237 while (1) {
2238 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2239 if (ret < 0)
2240 goto done;
2241
2242 ret = btrfs_previous_item(root, path, 0, key.type);
2243 if (ret < 0)
2244 goto done;
2245 if (ret) {
2246 ret = 0;
b3b4aa74 2247 btrfs_release_path(path);
bf1fb512 2248 break;
8f18cf13
CM
2249 }
2250
2251 l = path->nodes[0];
2252 slot = path->slots[0];
2253 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2254
ba1bf481 2255 if (key.objectid != device->devid) {
b3b4aa74 2256 btrfs_release_path(path);
bf1fb512 2257 break;
ba1bf481 2258 }
8f18cf13
CM
2259
2260 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2261 length = btrfs_dev_extent_length(l, dev_extent);
2262
ba1bf481 2263 if (key.offset + length <= new_size) {
b3b4aa74 2264 btrfs_release_path(path);
d6397bae 2265 break;
ba1bf481 2266 }
8f18cf13
CM
2267
2268 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2269 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2270 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 2271 btrfs_release_path(path);
8f18cf13
CM
2272
2273 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2274 chunk_offset);
ba1bf481 2275 if (ret && ret != -ENOSPC)
8f18cf13 2276 goto done;
ba1bf481
JB
2277 if (ret == -ENOSPC)
2278 failed++;
2279 key.offset -= 1;
2280 }
2281
2282 if (failed && !retried) {
2283 failed = 0;
2284 retried = true;
2285 goto again;
2286 } else if (failed && retried) {
2287 ret = -ENOSPC;
2288 lock_chunks(root);
2289
2290 device->total_bytes = old_size;
2291 if (device->writeable)
2292 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
2293 spin_lock(&root->fs_info->free_chunk_lock);
2294 root->fs_info->free_chunk_space += diff;
2295 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
2296 unlock_chunks(root);
2297 goto done;
8f18cf13
CM
2298 }
2299
d6397bae 2300 /* Shrinking succeeded, else we would be at "done". */
a22285a6 2301 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
2302 if (IS_ERR(trans)) {
2303 ret = PTR_ERR(trans);
2304 goto done;
2305 }
2306
d6397bae
CB
2307 lock_chunks(root);
2308
2309 device->disk_total_bytes = new_size;
2310 /* Now btrfs_update_device() will change the on-disk size. */
2311 ret = btrfs_update_device(trans, device);
2312 if (ret) {
2313 unlock_chunks(root);
2314 btrfs_end_transaction(trans, root);
2315 goto done;
2316 }
2317 WARN_ON(diff > old_total);
2318 btrfs_set_super_total_bytes(super_copy, old_total - diff);
2319 unlock_chunks(root);
2320 btrfs_end_transaction(trans, root);
8f18cf13
CM
2321done:
2322 btrfs_free_path(path);
2323 return ret;
2324}
2325
b2950863 2326static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
0b86a832
CM
2327 struct btrfs_root *root,
2328 struct btrfs_key *key,
2329 struct btrfs_chunk *chunk, int item_size)
2330{
6c41761f 2331 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
2332 struct btrfs_disk_key disk_key;
2333 u32 array_size;
2334 u8 *ptr;
2335
2336 array_size = btrfs_super_sys_array_size(super_copy);
2337 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2338 return -EFBIG;
2339
2340 ptr = super_copy->sys_chunk_array + array_size;
2341 btrfs_cpu_key_to_disk(&disk_key, key);
2342 memcpy(ptr, &disk_key, sizeof(disk_key));
2343 ptr += sizeof(disk_key);
2344 memcpy(ptr, chunk, item_size);
2345 item_size += sizeof(disk_key);
2346 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2347 return 0;
2348}
2349
73c5de00
AJ
2350/*
2351 * sort the devices in descending order by max_avail, total_avail
2352 */
2353static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 2354{
73c5de00
AJ
2355 const struct btrfs_device_info *di_a = a;
2356 const struct btrfs_device_info *di_b = b;
9b3f68b9 2357
73c5de00 2358 if (di_a->max_avail > di_b->max_avail)
b2117a39 2359 return -1;
73c5de00 2360 if (di_a->max_avail < di_b->max_avail)
b2117a39 2361 return 1;
73c5de00
AJ
2362 if (di_a->total_avail > di_b->total_avail)
2363 return -1;
2364 if (di_a->total_avail < di_b->total_avail)
2365 return 1;
2366 return 0;
b2117a39 2367}
0b86a832 2368
73c5de00
AJ
2369static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2370 struct btrfs_root *extent_root,
2371 struct map_lookup **map_ret,
2372 u64 *num_bytes_out, u64 *stripe_size_out,
2373 u64 start, u64 type)
b2117a39 2374{
73c5de00
AJ
2375 struct btrfs_fs_info *info = extent_root->fs_info;
2376 struct btrfs_fs_devices *fs_devices = info->fs_devices;
2377 struct list_head *cur;
2378 struct map_lookup *map = NULL;
2379 struct extent_map_tree *em_tree;
2380 struct extent_map *em;
2381 struct btrfs_device_info *devices_info = NULL;
2382 u64 total_avail;
2383 int num_stripes; /* total number of stripes to allocate */
2384 int sub_stripes; /* sub_stripes info for map */
2385 int dev_stripes; /* stripes per dev */
2386 int devs_max; /* max devs to use */
2387 int devs_min; /* min devs needed */
2388 int devs_increment; /* ndevs has to be a multiple of this */
2389 int ncopies; /* how many copies to data has */
2390 int ret;
2391 u64 max_stripe_size;
2392 u64 max_chunk_size;
2393 u64 stripe_size;
2394 u64 num_bytes;
2395 int ndevs;
2396 int i;
2397 int j;
593060d7 2398
73c5de00
AJ
2399 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2400 (type & BTRFS_BLOCK_GROUP_DUP)) {
2401 WARN_ON(1);
2402 type &= ~BTRFS_BLOCK_GROUP_DUP;
321aecc6 2403 }
9b3f68b9 2404
73c5de00
AJ
2405 if (list_empty(&fs_devices->alloc_list))
2406 return -ENOSPC;
b2117a39 2407
73c5de00
AJ
2408 sub_stripes = 1;
2409 dev_stripes = 1;
2410 devs_increment = 1;
2411 ncopies = 1;
2412 devs_max = 0; /* 0 == as many as possible */
2413 devs_min = 1;
2414
2415 /*
2416 * define the properties of each RAID type.
2417 * FIXME: move this to a global table and use it in all RAID
2418 * calculation code
2419 */
2420 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2421 dev_stripes = 2;
b2117a39 2422 ncopies = 2;
73c5de00
AJ
2423 devs_max = 1;
2424 } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2425 devs_min = 2;
2426 } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2427 devs_increment = 2;
b2117a39 2428 ncopies = 2;
73c5de00
AJ
2429 devs_max = 2;
2430 devs_min = 2;
2431 } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2432 sub_stripes = 2;
2433 devs_increment = 2;
2434 ncopies = 2;
2435 devs_min = 4;
2436 } else {
2437 devs_max = 1;
2438 }
b2117a39 2439
9b3f68b9 2440 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
2441 max_stripe_size = 1024 * 1024 * 1024;
2442 max_chunk_size = 10 * max_stripe_size;
9b3f68b9 2443 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
73c5de00
AJ
2444 max_stripe_size = 256 * 1024 * 1024;
2445 max_chunk_size = max_stripe_size;
a40a90a0 2446 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
73c5de00
AJ
2447 max_stripe_size = 8 * 1024 * 1024;
2448 max_chunk_size = 2 * max_stripe_size;
2449 } else {
2450 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
2451 type);
2452 BUG_ON(1);
9b3f68b9
CM
2453 }
2454
2b82032c
YZ
2455 /* we don't want a chunk larger than 10% of writeable space */
2456 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2457 max_chunk_size);
9b3f68b9 2458
73c5de00
AJ
2459 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
2460 GFP_NOFS);
2461 if (!devices_info)
2462 return -ENOMEM;
0cad8a11 2463
73c5de00 2464 cur = fs_devices->alloc_list.next;
9b3f68b9 2465
9f680ce0 2466 /*
73c5de00
AJ
2467 * in the first pass through the devices list, we gather information
2468 * about the available holes on each device.
9f680ce0 2469 */
73c5de00
AJ
2470 ndevs = 0;
2471 while (cur != &fs_devices->alloc_list) {
2472 struct btrfs_device *device;
2473 u64 max_avail;
2474 u64 dev_offset;
b2117a39 2475
73c5de00 2476 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 2477
73c5de00 2478 cur = cur->next;
b2117a39 2479
73c5de00
AJ
2480 if (!device->writeable) {
2481 printk(KERN_ERR
2482 "btrfs: read-only device in alloc_list\n");
2483 WARN_ON(1);
2484 continue;
2485 }
b2117a39 2486
73c5de00
AJ
2487 if (!device->in_fs_metadata)
2488 continue;
b2117a39 2489
73c5de00
AJ
2490 if (device->total_bytes > device->bytes_used)
2491 total_avail = device->total_bytes - device->bytes_used;
2492 else
2493 total_avail = 0;
38c01b96 2494
2495 /* If there is no space on this device, skip it. */
2496 if (total_avail == 0)
2497 continue;
b2117a39 2498
73c5de00
AJ
2499 ret = find_free_dev_extent(trans, device,
2500 max_stripe_size * dev_stripes,
2501 &dev_offset, &max_avail);
2502 if (ret && ret != -ENOSPC)
2503 goto error;
b2117a39 2504
73c5de00
AJ
2505 if (ret == 0)
2506 max_avail = max_stripe_size * dev_stripes;
b2117a39 2507
73c5de00
AJ
2508 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
2509 continue;
b2117a39 2510
73c5de00
AJ
2511 devices_info[ndevs].dev_offset = dev_offset;
2512 devices_info[ndevs].max_avail = max_avail;
2513 devices_info[ndevs].total_avail = total_avail;
2514 devices_info[ndevs].dev = device;
2515 ++ndevs;
2516 }
b2117a39 2517
73c5de00
AJ
2518 /*
2519 * now sort the devices by hole size / available space
2520 */
2521 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
2522 btrfs_cmp_device_info, NULL);
b2117a39 2523
73c5de00
AJ
2524 /* round down to number of usable stripes */
2525 ndevs -= ndevs % devs_increment;
b2117a39 2526
73c5de00
AJ
2527 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
2528 ret = -ENOSPC;
2529 goto error;
b2117a39 2530 }
9f680ce0 2531
73c5de00
AJ
2532 if (devs_max && ndevs > devs_max)
2533 ndevs = devs_max;
2534 /*
2535 * the primary goal is to maximize the number of stripes, so use as many
2536 * devices as possible, even if the stripes are not maximum sized.
2537 */
2538 stripe_size = devices_info[ndevs-1].max_avail;
2539 num_stripes = ndevs * dev_stripes;
b2117a39 2540
73c5de00
AJ
2541 if (stripe_size * num_stripes > max_chunk_size * ncopies) {
2542 stripe_size = max_chunk_size * ncopies;
2543 do_div(stripe_size, num_stripes);
b2117a39 2544 }
b2117a39 2545
73c5de00
AJ
2546 do_div(stripe_size, dev_stripes);
2547 do_div(stripe_size, BTRFS_STRIPE_LEN);
2548 stripe_size *= BTRFS_STRIPE_LEN;
b2117a39
MX
2549
2550 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2551 if (!map) {
2552 ret = -ENOMEM;
2553 goto error;
2554 }
2555 map->num_stripes = num_stripes;
9b3f68b9 2556
73c5de00
AJ
2557 for (i = 0; i < ndevs; ++i) {
2558 for (j = 0; j < dev_stripes; ++j) {
2559 int s = i * dev_stripes + j;
2560 map->stripes[s].dev = devices_info[i].dev;
2561 map->stripes[s].physical = devices_info[i].dev_offset +
2562 j * stripe_size;
6324fbf3 2563 }
6324fbf3 2564 }
2b82032c 2565 map->sector_size = extent_root->sectorsize;
b2117a39
MX
2566 map->stripe_len = BTRFS_STRIPE_LEN;
2567 map->io_align = BTRFS_STRIPE_LEN;
2568 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 2569 map->type = type;
2b82032c 2570 map->sub_stripes = sub_stripes;
0b86a832 2571
2b82032c 2572 *map_ret = map;
73c5de00 2573 num_bytes = stripe_size * (num_stripes / ncopies);
0b86a832 2574
73c5de00
AJ
2575 *stripe_size_out = stripe_size;
2576 *num_bytes_out = num_bytes;
0b86a832 2577
73c5de00 2578 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 2579
172ddd60 2580 em = alloc_extent_map();
2b82032c 2581 if (!em) {
b2117a39
MX
2582 ret = -ENOMEM;
2583 goto error;
593060d7 2584 }
2b82032c
YZ
2585 em->bdev = (struct block_device *)map;
2586 em->start = start;
73c5de00 2587 em->len = num_bytes;
2b82032c
YZ
2588 em->block_start = 0;
2589 em->block_len = em->len;
593060d7 2590
2b82032c 2591 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 2592 write_lock(&em_tree->lock);
2b82032c 2593 ret = add_extent_mapping(em_tree, em);
890871be 2594 write_unlock(&em_tree->lock);
2b82032c
YZ
2595 BUG_ON(ret);
2596 free_extent_map(em);
0b86a832 2597
2b82032c
YZ
2598 ret = btrfs_make_block_group(trans, extent_root, 0, type,
2599 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
73c5de00 2600 start, num_bytes);
2b82032c 2601 BUG_ON(ret);
611f0e00 2602
73c5de00
AJ
2603 for (i = 0; i < map->num_stripes; ++i) {
2604 struct btrfs_device *device;
2605 u64 dev_offset;
2606
2607 device = map->stripes[i].dev;
2608 dev_offset = map->stripes[i].physical;
0b86a832
CM
2609
2610 ret = btrfs_alloc_dev_extent(trans, device,
2b82032c
YZ
2611 info->chunk_root->root_key.objectid,
2612 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
73c5de00 2613 start, dev_offset, stripe_size);
0b86a832 2614 BUG_ON(ret);
2b82032c
YZ
2615 }
2616
b2117a39 2617 kfree(devices_info);
2b82032c 2618 return 0;
b2117a39
MX
2619
2620error:
2621 kfree(map);
2622 kfree(devices_info);
2623 return ret;
2b82032c
YZ
2624}
2625
2626static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2627 struct btrfs_root *extent_root,
2628 struct map_lookup *map, u64 chunk_offset,
2629 u64 chunk_size, u64 stripe_size)
2630{
2631 u64 dev_offset;
2632 struct btrfs_key key;
2633 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2634 struct btrfs_device *device;
2635 struct btrfs_chunk *chunk;
2636 struct btrfs_stripe *stripe;
2637 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2638 int index = 0;
2639 int ret;
2640
2641 chunk = kzalloc(item_size, GFP_NOFS);
2642 if (!chunk)
2643 return -ENOMEM;
2644
2645 index = 0;
2646 while (index < map->num_stripes) {
2647 device = map->stripes[index].dev;
2648 device->bytes_used += stripe_size;
0b86a832
CM
2649 ret = btrfs_update_device(trans, device);
2650 BUG_ON(ret);
2b82032c
YZ
2651 index++;
2652 }
2653
2bf64758
JB
2654 spin_lock(&extent_root->fs_info->free_chunk_lock);
2655 extent_root->fs_info->free_chunk_space -= (stripe_size *
2656 map->num_stripes);
2657 spin_unlock(&extent_root->fs_info->free_chunk_lock);
2658
2b82032c
YZ
2659 index = 0;
2660 stripe = &chunk->stripe;
2661 while (index < map->num_stripes) {
2662 device = map->stripes[index].dev;
2663 dev_offset = map->stripes[index].physical;
0b86a832 2664
e17cade2
CM
2665 btrfs_set_stack_stripe_devid(stripe, device->devid);
2666 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2667 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 2668 stripe++;
0b86a832
CM
2669 index++;
2670 }
2671
2b82032c 2672 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 2673 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
2674 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2675 btrfs_set_stack_chunk_type(chunk, map->type);
2676 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2677 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2678 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 2679 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 2680 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 2681
2b82032c
YZ
2682 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2683 key.type = BTRFS_CHUNK_ITEM_KEY;
2684 key.offset = chunk_offset;
0b86a832 2685
2b82032c
YZ
2686 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2687 BUG_ON(ret);
0b86a832 2688
2b82032c
YZ
2689 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2690 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2691 item_size);
8f18cf13
CM
2692 BUG_ON(ret);
2693 }
1abe9b8a 2694
0b86a832 2695 kfree(chunk);
2b82032c
YZ
2696 return 0;
2697}
0b86a832 2698
2b82032c
YZ
2699/*
2700 * Chunk allocation falls into two parts. The first part does works
2701 * that make the new allocated chunk useable, but not do any operation
2702 * that modifies the chunk tree. The second part does the works that
2703 * require modifying the chunk tree. This division is important for the
2704 * bootstrap process of adding storage to a seed btrfs.
2705 */
2706int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2707 struct btrfs_root *extent_root, u64 type)
2708{
2709 u64 chunk_offset;
2710 u64 chunk_size;
2711 u64 stripe_size;
2712 struct map_lookup *map;
2713 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2714 int ret;
2715
2716 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2717 &chunk_offset);
2718 if (ret)
2719 return ret;
2720
2721 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2722 &stripe_size, chunk_offset, type);
2723 if (ret)
2724 return ret;
2725
2726 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2727 chunk_size, stripe_size);
2728 BUG_ON(ret);
2729 return 0;
2730}
2731
d397712b 2732static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
2733 struct btrfs_root *root,
2734 struct btrfs_device *device)
2735{
2736 u64 chunk_offset;
2737 u64 sys_chunk_offset;
2738 u64 chunk_size;
2739 u64 sys_chunk_size;
2740 u64 stripe_size;
2741 u64 sys_stripe_size;
2742 u64 alloc_profile;
2743 struct map_lookup *map;
2744 struct map_lookup *sys_map;
2745 struct btrfs_fs_info *fs_info = root->fs_info;
2746 struct btrfs_root *extent_root = fs_info->extent_root;
2747 int ret;
2748
2749 ret = find_next_chunk(fs_info->chunk_root,
2750 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
92b8e897
MF
2751 if (ret)
2752 return ret;
2b82032c
YZ
2753
2754 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
6fef8df1 2755 fs_info->avail_metadata_alloc_bits;
2b82032c
YZ
2756 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2757
2758 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2759 &stripe_size, chunk_offset, alloc_profile);
2760 BUG_ON(ret);
2761
2762 sys_chunk_offset = chunk_offset + chunk_size;
2763
2764 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
6fef8df1 2765 fs_info->avail_system_alloc_bits;
2b82032c
YZ
2766 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2767
2768 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2769 &sys_chunk_size, &sys_stripe_size,
2770 sys_chunk_offset, alloc_profile);
2771 BUG_ON(ret);
2772
2773 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2774 BUG_ON(ret);
2775
2776 /*
2777 * Modifying chunk tree needs allocating new blocks from both
2778 * system block group and metadata block group. So we only can
2779 * do operations require modifying the chunk tree after both
2780 * block groups were created.
2781 */
2782 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2783 chunk_size, stripe_size);
2784 BUG_ON(ret);
2785
2786 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2787 sys_chunk_offset, sys_chunk_size,
2788 sys_stripe_size);
b248a415 2789 BUG_ON(ret);
2b82032c
YZ
2790 return 0;
2791}
2792
2793int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2794{
2795 struct extent_map *em;
2796 struct map_lookup *map;
2797 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2798 int readonly = 0;
2799 int i;
2800
890871be 2801 read_lock(&map_tree->map_tree.lock);
2b82032c 2802 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 2803 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
2804 if (!em)
2805 return 1;
2806
f48b9075
JB
2807 if (btrfs_test_opt(root, DEGRADED)) {
2808 free_extent_map(em);
2809 return 0;
2810 }
2811
2b82032c
YZ
2812 map = (struct map_lookup *)em->bdev;
2813 for (i = 0; i < map->num_stripes; i++) {
2814 if (!map->stripes[i].dev->writeable) {
2815 readonly = 1;
2816 break;
2817 }
2818 }
0b86a832 2819 free_extent_map(em);
2b82032c 2820 return readonly;
0b86a832
CM
2821}
2822
2823void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2824{
a8067e02 2825 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
2826}
2827
2828void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2829{
2830 struct extent_map *em;
2831
d397712b 2832 while (1) {
890871be 2833 write_lock(&tree->map_tree.lock);
0b86a832
CM
2834 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2835 if (em)
2836 remove_extent_mapping(&tree->map_tree, em);
890871be 2837 write_unlock(&tree->map_tree.lock);
0b86a832
CM
2838 if (!em)
2839 break;
2840 kfree(em->bdev);
2841 /* once for us */
2842 free_extent_map(em);
2843 /* once for the tree */
2844 free_extent_map(em);
2845 }
2846}
2847
f188591e
CM
2848int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2849{
2850 struct extent_map *em;
2851 struct map_lookup *map;
2852 struct extent_map_tree *em_tree = &map_tree->map_tree;
2853 int ret;
2854
890871be 2855 read_lock(&em_tree->lock);
f188591e 2856 em = lookup_extent_mapping(em_tree, logical, len);
890871be 2857 read_unlock(&em_tree->lock);
f188591e
CM
2858 BUG_ON(!em);
2859
2860 BUG_ON(em->start > logical || em->start + em->len < logical);
2861 map = (struct map_lookup *)em->bdev;
2862 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2863 ret = map->num_stripes;
321aecc6
CM
2864 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2865 ret = map->sub_stripes;
f188591e
CM
2866 else
2867 ret = 1;
2868 free_extent_map(em);
f188591e
CM
2869 return ret;
2870}
2871
dfe25020
CM
2872static int find_live_mirror(struct map_lookup *map, int first, int num,
2873 int optimal)
2874{
2875 int i;
2876 if (map->stripes[optimal].dev->bdev)
2877 return optimal;
2878 for (i = first; i < first + num; i++) {
2879 if (map->stripes[i].dev->bdev)
2880 return i;
2881 }
2882 /* we couldn't find one that doesn't fail. Just return something
2883 * and the io error handling code will clean up eventually
2884 */
2885 return optimal;
2886}
2887
f2d8d74d
CM
2888static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2889 u64 logical, u64 *length,
a1d3c478 2890 struct btrfs_bio **bbio_ret,
7eaceacc 2891 int mirror_num)
0b86a832
CM
2892{
2893 struct extent_map *em;
2894 struct map_lookup *map;
2895 struct extent_map_tree *em_tree = &map_tree->map_tree;
2896 u64 offset;
593060d7 2897 u64 stripe_offset;
fce3bb9a 2898 u64 stripe_end_offset;
593060d7 2899 u64 stripe_nr;
fce3bb9a
LD
2900 u64 stripe_nr_orig;
2901 u64 stripe_nr_end;
cea9e445 2902 int stripes_allocated = 8;
321aecc6 2903 int stripes_required = 1;
593060d7 2904 int stripe_index;
cea9e445 2905 int i;
f2d8d74d 2906 int num_stripes;
a236aed1 2907 int max_errors = 0;
a1d3c478 2908 struct btrfs_bio *bbio = NULL;
0b86a832 2909
a1d3c478 2910 if (bbio_ret && !(rw & (REQ_WRITE | REQ_DISCARD)))
cea9e445 2911 stripes_allocated = 1;
cea9e445 2912again:
a1d3c478
JS
2913 if (bbio_ret) {
2914 bbio = kzalloc(btrfs_bio_size(stripes_allocated),
cea9e445 2915 GFP_NOFS);
a1d3c478 2916 if (!bbio)
cea9e445 2917 return -ENOMEM;
a236aed1 2918
a1d3c478 2919 atomic_set(&bbio->error, 0);
cea9e445 2920 }
0b86a832 2921
890871be 2922 read_lock(&em_tree->lock);
0b86a832 2923 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 2924 read_unlock(&em_tree->lock);
f2d8d74d 2925
3b951516 2926 if (!em) {
d397712b
CM
2927 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2928 (unsigned long long)logical,
2929 (unsigned long long)*length);
f2d8d74d 2930 BUG();
3b951516 2931 }
0b86a832
CM
2932
2933 BUG_ON(em->start > logical || em->start + em->len < logical);
2934 map = (struct map_lookup *)em->bdev;
2935 offset = logical - em->start;
593060d7 2936
f188591e
CM
2937 if (mirror_num > map->num_stripes)
2938 mirror_num = 0;
2939
a1d3c478 2940 /* if our btrfs_bio struct is too small, back off and try again */
7b6d91da 2941 if (rw & REQ_WRITE) {
321aecc6
CM
2942 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2943 BTRFS_BLOCK_GROUP_DUP)) {
2944 stripes_required = map->num_stripes;
a236aed1 2945 max_errors = 1;
321aecc6
CM
2946 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2947 stripes_required = map->sub_stripes;
a236aed1 2948 max_errors = 1;
321aecc6
CM
2949 }
2950 }
fce3bb9a 2951 if (rw & REQ_DISCARD) {
52ba6929 2952 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK)
fce3bb9a 2953 stripes_required = map->num_stripes;
fce3bb9a 2954 }
a1d3c478 2955 if (bbio_ret && (rw & (REQ_WRITE | REQ_DISCARD)) &&
321aecc6 2956 stripes_allocated < stripes_required) {
cea9e445 2957 stripes_allocated = map->num_stripes;
cea9e445 2958 free_extent_map(em);
a1d3c478 2959 kfree(bbio);
cea9e445
CM
2960 goto again;
2961 }
593060d7
CM
2962 stripe_nr = offset;
2963 /*
2964 * stripe_nr counts the total number of stripes we have to stride
2965 * to get to this block
2966 */
2967 do_div(stripe_nr, map->stripe_len);
2968
2969 stripe_offset = stripe_nr * map->stripe_len;
2970 BUG_ON(offset < stripe_offset);
2971
2972 /* stripe_offset is the offset of this block in its stripe*/
2973 stripe_offset = offset - stripe_offset;
2974
fce3bb9a
LD
2975 if (rw & REQ_DISCARD)
2976 *length = min_t(u64, em->len - offset, *length);
52ba6929 2977 else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
cea9e445
CM
2978 /* we limit the length of each bio to what fits in a stripe */
2979 *length = min_t(u64, em->len - offset,
fce3bb9a 2980 map->stripe_len - stripe_offset);
cea9e445
CM
2981 } else {
2982 *length = em->len - offset;
2983 }
f2d8d74d 2984
a1d3c478 2985 if (!bbio_ret)
cea9e445
CM
2986 goto out;
2987
f2d8d74d 2988 num_stripes = 1;
cea9e445 2989 stripe_index = 0;
fce3bb9a
LD
2990 stripe_nr_orig = stripe_nr;
2991 stripe_nr_end = (offset + *length + map->stripe_len - 1) &
2992 (~(map->stripe_len - 1));
2993 do_div(stripe_nr_end, map->stripe_len);
2994 stripe_end_offset = stripe_nr_end * map->stripe_len -
2995 (offset + *length);
2996 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2997 if (rw & REQ_DISCARD)
2998 num_stripes = min_t(u64, map->num_stripes,
2999 stripe_nr_end - stripe_nr_orig);
3000 stripe_index = do_div(stripe_nr, map->num_stripes);
3001 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
212a17ab 3002 if (rw & (REQ_WRITE | REQ_DISCARD))
f2d8d74d 3003 num_stripes = map->num_stripes;
2fff734f 3004 else if (mirror_num)
f188591e 3005 stripe_index = mirror_num - 1;
dfe25020
CM
3006 else {
3007 stripe_index = find_live_mirror(map, 0,
3008 map->num_stripes,
3009 current->pid % map->num_stripes);
a1d3c478 3010 mirror_num = stripe_index + 1;
dfe25020 3011 }
2fff734f 3012
611f0e00 3013 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
a1d3c478 3014 if (rw & (REQ_WRITE | REQ_DISCARD)) {
f2d8d74d 3015 num_stripes = map->num_stripes;
a1d3c478 3016 } else if (mirror_num) {
f188591e 3017 stripe_index = mirror_num - 1;
a1d3c478
JS
3018 } else {
3019 mirror_num = 1;
3020 }
2fff734f 3021
321aecc6
CM
3022 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3023 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
3024
3025 stripe_index = do_div(stripe_nr, factor);
3026 stripe_index *= map->sub_stripes;
3027
7eaceacc 3028 if (rw & REQ_WRITE)
f2d8d74d 3029 num_stripes = map->sub_stripes;
fce3bb9a
LD
3030 else if (rw & REQ_DISCARD)
3031 num_stripes = min_t(u64, map->sub_stripes *
3032 (stripe_nr_end - stripe_nr_orig),
3033 map->num_stripes);
321aecc6
CM
3034 else if (mirror_num)
3035 stripe_index += mirror_num - 1;
dfe25020
CM
3036 else {
3037 stripe_index = find_live_mirror(map, stripe_index,
3038 map->sub_stripes, stripe_index +
3039 current->pid % map->sub_stripes);
a1d3c478 3040 mirror_num = stripe_index + 1;
dfe25020 3041 }
8790d502
CM
3042 } else {
3043 /*
3044 * after this do_div call, stripe_nr is the number of stripes
3045 * on this device we have to walk to find the data, and
3046 * stripe_index is the number of our device in the stripe array
3047 */
3048 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 3049 mirror_num = stripe_index + 1;
8790d502 3050 }
593060d7 3051 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 3052
fce3bb9a
LD
3053 if (rw & REQ_DISCARD) {
3054 for (i = 0; i < num_stripes; i++) {
a1d3c478 3055 bbio->stripes[i].physical =
f2d8d74d
CM
3056 map->stripes[stripe_index].physical +
3057 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 3058 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a
LD
3059
3060 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3061 u64 stripes;
d9d04879 3062 u32 last_stripe = 0;
fce3bb9a
LD
3063 int j;
3064
d9d04879
CM
3065 div_u64_rem(stripe_nr_end - 1,
3066 map->num_stripes,
3067 &last_stripe);
3068
fce3bb9a 3069 for (j = 0; j < map->num_stripes; j++) {
d9d04879
CM
3070 u32 test;
3071
3072 div_u64_rem(stripe_nr_end - 1 - j,
3073 map->num_stripes, &test);
3074 if (test == stripe_index)
fce3bb9a
LD
3075 break;
3076 }
3077 stripes = stripe_nr_end - 1 - j;
3078 do_div(stripes, map->num_stripes);
a1d3c478 3079 bbio->stripes[i].length = map->stripe_len *
fce3bb9a
LD
3080 (stripes - stripe_nr + 1);
3081
3082 if (i == 0) {
a1d3c478 3083 bbio->stripes[i].length -=
fce3bb9a
LD
3084 stripe_offset;
3085 stripe_offset = 0;
3086 }
3087 if (stripe_index == last_stripe)
a1d3c478 3088 bbio->stripes[i].length -=
fce3bb9a
LD
3089 stripe_end_offset;
3090 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3091 u64 stripes;
3092 int j;
3093 int factor = map->num_stripes /
3094 map->sub_stripes;
d9d04879
CM
3095 u32 last_stripe = 0;
3096
3097 div_u64_rem(stripe_nr_end - 1,
3098 factor, &last_stripe);
fce3bb9a
LD
3099 last_stripe *= map->sub_stripes;
3100
3101 for (j = 0; j < factor; j++) {
d9d04879
CM
3102 u32 test;
3103
3104 div_u64_rem(stripe_nr_end - 1 - j,
3105 factor, &test);
3106
3107 if (test ==
fce3bb9a
LD
3108 stripe_index / map->sub_stripes)
3109 break;
3110 }
3111 stripes = stripe_nr_end - 1 - j;
3112 do_div(stripes, factor);
a1d3c478 3113 bbio->stripes[i].length = map->stripe_len *
fce3bb9a
LD
3114 (stripes - stripe_nr + 1);
3115
3116 if (i < map->sub_stripes) {
a1d3c478 3117 bbio->stripes[i].length -=
fce3bb9a
LD
3118 stripe_offset;
3119 if (i == map->sub_stripes - 1)
3120 stripe_offset = 0;
3121 }
3122 if (stripe_index >= last_stripe &&
3123 stripe_index <= (last_stripe +
3124 map->sub_stripes - 1)) {
a1d3c478 3125 bbio->stripes[i].length -=
fce3bb9a
LD
3126 stripe_end_offset;
3127 }
3128 } else
a1d3c478 3129 bbio->stripes[i].length = *length;
fce3bb9a
LD
3130
3131 stripe_index++;
3132 if (stripe_index == map->num_stripes) {
3133 /* This could only happen for RAID0/10 */
3134 stripe_index = 0;
3135 stripe_nr++;
3136 }
3137 }
3138 } else {
3139 for (i = 0; i < num_stripes; i++) {
a1d3c478 3140 bbio->stripes[i].physical =
212a17ab
LT
3141 map->stripes[stripe_index].physical +
3142 stripe_offset +
3143 stripe_nr * map->stripe_len;
a1d3c478 3144 bbio->stripes[i].dev =
212a17ab 3145 map->stripes[stripe_index].dev;
fce3bb9a 3146 stripe_index++;
f2d8d74d 3147 }
593060d7 3148 }
a1d3c478
JS
3149 if (bbio_ret) {
3150 *bbio_ret = bbio;
3151 bbio->num_stripes = num_stripes;
3152 bbio->max_errors = max_errors;
3153 bbio->mirror_num = mirror_num;
f2d8d74d 3154 }
cea9e445 3155out:
0b86a832 3156 free_extent_map(em);
0b86a832
CM
3157 return 0;
3158}
3159
f2d8d74d
CM
3160int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3161 u64 logical, u64 *length,
a1d3c478 3162 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 3163{
a1d3c478 3164 return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
7eaceacc 3165 mirror_num);
f2d8d74d
CM
3166}
3167
a512bbf8
YZ
3168int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3169 u64 chunk_start, u64 physical, u64 devid,
3170 u64 **logical, int *naddrs, int *stripe_len)
3171{
3172 struct extent_map_tree *em_tree = &map_tree->map_tree;
3173 struct extent_map *em;
3174 struct map_lookup *map;
3175 u64 *buf;
3176 u64 bytenr;
3177 u64 length;
3178 u64 stripe_nr;
3179 int i, j, nr = 0;
3180
890871be 3181 read_lock(&em_tree->lock);
a512bbf8 3182 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 3183 read_unlock(&em_tree->lock);
a512bbf8
YZ
3184
3185 BUG_ON(!em || em->start != chunk_start);
3186 map = (struct map_lookup *)em->bdev;
3187
3188 length = em->len;
3189 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3190 do_div(length, map->num_stripes / map->sub_stripes);
3191 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3192 do_div(length, map->num_stripes);
3193
3194 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3195 BUG_ON(!buf);
3196
3197 for (i = 0; i < map->num_stripes; i++) {
3198 if (devid && map->stripes[i].dev->devid != devid)
3199 continue;
3200 if (map->stripes[i].physical > physical ||
3201 map->stripes[i].physical + length <= physical)
3202 continue;
3203
3204 stripe_nr = physical - map->stripes[i].physical;
3205 do_div(stripe_nr, map->stripe_len);
3206
3207 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3208 stripe_nr = stripe_nr * map->num_stripes + i;
3209 do_div(stripe_nr, map->sub_stripes);
3210 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3211 stripe_nr = stripe_nr * map->num_stripes + i;
3212 }
3213 bytenr = chunk_start + stripe_nr * map->stripe_len;
934d375b 3214 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
3215 for (j = 0; j < nr; j++) {
3216 if (buf[j] == bytenr)
3217 break;
3218 }
934d375b
CM
3219 if (j == nr) {
3220 WARN_ON(nr >= map->num_stripes);
a512bbf8 3221 buf[nr++] = bytenr;
934d375b 3222 }
a512bbf8
YZ
3223 }
3224
a512bbf8
YZ
3225 *logical = buf;
3226 *naddrs = nr;
3227 *stripe_len = map->stripe_len;
3228
3229 free_extent_map(em);
3230 return 0;
f2d8d74d
CM
3231}
3232
a1d3c478 3233static void btrfs_end_bio(struct bio *bio, int err)
8790d502 3234{
a1d3c478 3235 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 3236 int is_orig_bio = 0;
8790d502 3237
8790d502 3238 if (err)
a1d3c478 3239 atomic_inc(&bbio->error);
8790d502 3240
a1d3c478 3241 if (bio == bbio->orig_bio)
7d2b4daa
CM
3242 is_orig_bio = 1;
3243
a1d3c478 3244 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
3245 if (!is_orig_bio) {
3246 bio_put(bio);
a1d3c478 3247 bio = bbio->orig_bio;
7d2b4daa 3248 }
a1d3c478
JS
3249 bio->bi_private = bbio->private;
3250 bio->bi_end_io = bbio->end_io;
2774b2ca
JS
3251 bio->bi_bdev = (struct block_device *)
3252 (unsigned long)bbio->mirror_num;
a236aed1
CM
3253 /* only send an error to the higher layers if it is
3254 * beyond the tolerance of the multi-bio
3255 */
a1d3c478 3256 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 3257 err = -EIO;
5dbc8fca 3258 } else {
1259ab75
CM
3259 /*
3260 * this bio is actually up to date, we didn't
3261 * go over the max number of errors
3262 */
3263 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 3264 err = 0;
1259ab75 3265 }
a1d3c478 3266 kfree(bbio);
8790d502
CM
3267
3268 bio_endio(bio, err);
7d2b4daa 3269 } else if (!is_orig_bio) {
8790d502
CM
3270 bio_put(bio);
3271 }
8790d502
CM
3272}
3273
8b712842
CM
3274struct async_sched {
3275 struct bio *bio;
3276 int rw;
3277 struct btrfs_fs_info *info;
3278 struct btrfs_work work;
3279};
3280
3281/*
3282 * see run_scheduled_bios for a description of why bios are collected for
3283 * async submit.
3284 *
3285 * This will add one bio to the pending list for a device and make sure
3286 * the work struct is scheduled.
3287 */
d397712b 3288static noinline int schedule_bio(struct btrfs_root *root,
a1b32a59
CM
3289 struct btrfs_device *device,
3290 int rw, struct bio *bio)
8b712842
CM
3291{
3292 int should_queue = 1;
ffbd517d 3293 struct btrfs_pending_bios *pending_bios;
8b712842
CM
3294
3295 /* don't bother with additional async steps for reads, right now */
7b6d91da 3296 if (!(rw & REQ_WRITE)) {
492bb6de 3297 bio_get(bio);
8b712842 3298 submit_bio(rw, bio);
492bb6de 3299 bio_put(bio);
8b712842
CM
3300 return 0;
3301 }
3302
3303 /*
0986fe9e 3304 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
3305 * higher layers. Otherwise, the async bio makes it appear we have
3306 * made progress against dirty pages when we've really just put it
3307 * on a queue for later
3308 */
0986fe9e 3309 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 3310 WARN_ON(bio->bi_next);
8b712842
CM
3311 bio->bi_next = NULL;
3312 bio->bi_rw |= rw;
3313
3314 spin_lock(&device->io_lock);
7b6d91da 3315 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
3316 pending_bios = &device->pending_sync_bios;
3317 else
3318 pending_bios = &device->pending_bios;
8b712842 3319
ffbd517d
CM
3320 if (pending_bios->tail)
3321 pending_bios->tail->bi_next = bio;
8b712842 3322
ffbd517d
CM
3323 pending_bios->tail = bio;
3324 if (!pending_bios->head)
3325 pending_bios->head = bio;
8b712842
CM
3326 if (device->running_pending)
3327 should_queue = 0;
3328
3329 spin_unlock(&device->io_lock);
3330
3331 if (should_queue)
1cc127b5
CM
3332 btrfs_queue_worker(&root->fs_info->submit_workers,
3333 &device->work);
8b712842
CM
3334 return 0;
3335}
3336
f188591e 3337int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 3338 int mirror_num, int async_submit)
0b86a832
CM
3339{
3340 struct btrfs_mapping_tree *map_tree;
3341 struct btrfs_device *dev;
8790d502 3342 struct bio *first_bio = bio;
a62b9401 3343 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
3344 u64 length = 0;
3345 u64 map_length;
0b86a832 3346 int ret;
8790d502
CM
3347 int dev_nr = 0;
3348 int total_devs = 1;
a1d3c478 3349 struct btrfs_bio *bbio = NULL;
0b86a832 3350
f2d8d74d 3351 length = bio->bi_size;
0b86a832
CM
3352 map_tree = &root->fs_info->mapping_tree;
3353 map_length = length;
cea9e445 3354
a1d3c478 3355 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
f188591e 3356 mirror_num);
cea9e445
CM
3357 BUG_ON(ret);
3358
a1d3c478 3359 total_devs = bbio->num_stripes;
cea9e445 3360 if (map_length < length) {
d397712b
CM
3361 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3362 "len %llu\n", (unsigned long long)logical,
3363 (unsigned long long)length,
3364 (unsigned long long)map_length);
cea9e445
CM
3365 BUG();
3366 }
a1d3c478
JS
3367
3368 bbio->orig_bio = first_bio;
3369 bbio->private = first_bio->bi_private;
3370 bbio->end_io = first_bio->bi_end_io;
3371 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
cea9e445 3372
d397712b 3373 while (dev_nr < total_devs) {
a1d3c478
JS
3374 if (dev_nr < total_devs - 1) {
3375 bio = bio_clone(first_bio, GFP_NOFS);
3376 BUG_ON(!bio);
3377 } else {
3378 bio = first_bio;
8790d502 3379 }
a1d3c478
JS
3380 bio->bi_private = bbio;
3381 bio->bi_end_io = btrfs_end_bio;
3382 bio->bi_sector = bbio->stripes[dev_nr].physical >> 9;
3383 dev = bbio->stripes[dev_nr].dev;
18e503d6 3384 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
a1d3c478
JS
3385 pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
3386 "(%s id %llu), size=%u\n", rw,
3387 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
3388 dev->name, dev->devid, bio->bi_size);
dfe25020 3389 bio->bi_bdev = dev->bdev;
8b712842
CM
3390 if (async_submit)
3391 schedule_bio(root, dev, rw, bio);
3392 else
3393 submit_bio(rw, bio);
dfe25020
CM
3394 } else {
3395 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3396 bio->bi_sector = logical >> 9;
dfe25020 3397 bio_endio(bio, -EIO);
dfe25020 3398 }
8790d502
CM
3399 dev_nr++;
3400 }
0b86a832
CM
3401 return 0;
3402}
3403
a443755f 3404struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2b82032c 3405 u8 *uuid, u8 *fsid)
0b86a832 3406{
2b82032c
YZ
3407 struct btrfs_device *device;
3408 struct btrfs_fs_devices *cur_devices;
3409
3410 cur_devices = root->fs_info->fs_devices;
3411 while (cur_devices) {
3412 if (!fsid ||
3413 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3414 device = __find_device(&cur_devices->devices,
3415 devid, uuid);
3416 if (device)
3417 return device;
3418 }
3419 cur_devices = cur_devices->seed;
3420 }
3421 return NULL;
0b86a832
CM
3422}
3423
dfe25020
CM
3424static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3425 u64 devid, u8 *dev_uuid)
3426{
3427 struct btrfs_device *device;
3428 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3429
3430 device = kzalloc(sizeof(*device), GFP_NOFS);
7cbd8a83 3431 if (!device)
3432 return NULL;
dfe25020
CM
3433 list_add(&device->dev_list,
3434 &fs_devices->devices);
dfe25020
CM
3435 device->dev_root = root->fs_info->dev_root;
3436 device->devid = devid;
8b712842 3437 device->work.func = pending_bios_fn;
e4404d6e 3438 device->fs_devices = fs_devices;
cd02dca5 3439 device->missing = 1;
dfe25020 3440 fs_devices->num_devices++;
cd02dca5 3441 fs_devices->missing_devices++;
dfe25020 3442 spin_lock_init(&device->io_lock);
d20f7043 3443 INIT_LIST_HEAD(&device->dev_alloc_list);
dfe25020
CM
3444 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3445 return device;
3446}
3447
0b86a832
CM
3448static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3449 struct extent_buffer *leaf,
3450 struct btrfs_chunk *chunk)
3451{
3452 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3453 struct map_lookup *map;
3454 struct extent_map *em;
3455 u64 logical;
3456 u64 length;
3457 u64 devid;
a443755f 3458 u8 uuid[BTRFS_UUID_SIZE];
593060d7 3459 int num_stripes;
0b86a832 3460 int ret;
593060d7 3461 int i;
0b86a832 3462
e17cade2
CM
3463 logical = key->offset;
3464 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 3465
890871be 3466 read_lock(&map_tree->map_tree.lock);
0b86a832 3467 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 3468 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
3469
3470 /* already mapped? */
3471 if (em && em->start <= logical && em->start + em->len > logical) {
3472 free_extent_map(em);
0b86a832
CM
3473 return 0;
3474 } else if (em) {
3475 free_extent_map(em);
3476 }
0b86a832 3477
172ddd60 3478 em = alloc_extent_map();
0b86a832
CM
3479 if (!em)
3480 return -ENOMEM;
593060d7
CM
3481 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3482 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
3483 if (!map) {
3484 free_extent_map(em);
3485 return -ENOMEM;
3486 }
3487
3488 em->bdev = (struct block_device *)map;
3489 em->start = logical;
3490 em->len = length;
3491 em->block_start = 0;
c8b97818 3492 em->block_len = em->len;
0b86a832 3493
593060d7
CM
3494 map->num_stripes = num_stripes;
3495 map->io_width = btrfs_chunk_io_width(leaf, chunk);
3496 map->io_align = btrfs_chunk_io_align(leaf, chunk);
3497 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3498 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3499 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 3500 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
3501 for (i = 0; i < num_stripes; i++) {
3502 map->stripes[i].physical =
3503 btrfs_stripe_offset_nr(leaf, chunk, i);
3504 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
3505 read_extent_buffer(leaf, uuid, (unsigned long)
3506 btrfs_stripe_dev_uuid_nr(chunk, i),
3507 BTRFS_UUID_SIZE);
2b82032c
YZ
3508 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3509 NULL);
dfe25020 3510 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
3511 kfree(map);
3512 free_extent_map(em);
3513 return -EIO;
3514 }
dfe25020
CM
3515 if (!map->stripes[i].dev) {
3516 map->stripes[i].dev =
3517 add_missing_dev(root, devid, uuid);
3518 if (!map->stripes[i].dev) {
3519 kfree(map);
3520 free_extent_map(em);
3521 return -EIO;
3522 }
3523 }
3524 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
3525 }
3526
890871be 3527 write_lock(&map_tree->map_tree.lock);
0b86a832 3528 ret = add_extent_mapping(&map_tree->map_tree, em);
890871be 3529 write_unlock(&map_tree->map_tree.lock);
b248a415 3530 BUG_ON(ret);
0b86a832
CM
3531 free_extent_map(em);
3532
3533 return 0;
3534}
3535
3536static int fill_device_from_item(struct extent_buffer *leaf,
3537 struct btrfs_dev_item *dev_item,
3538 struct btrfs_device *device)
3539{
3540 unsigned long ptr;
0b86a832
CM
3541
3542 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
3543 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3544 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
3545 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3546 device->type = btrfs_device_type(leaf, dev_item);
3547 device->io_align = btrfs_device_io_align(leaf, dev_item);
3548 device->io_width = btrfs_device_io_width(leaf, dev_item);
3549 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
3550
3551 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 3552 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832 3553
0b86a832
CM
3554 return 0;
3555}
3556
2b82032c
YZ
3557static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3558{
3559 struct btrfs_fs_devices *fs_devices;
3560 int ret;
3561
3562 mutex_lock(&uuid_mutex);
3563
3564 fs_devices = root->fs_info->fs_devices->seed;
3565 while (fs_devices) {
3566 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3567 ret = 0;
3568 goto out;
3569 }
3570 fs_devices = fs_devices->seed;
3571 }
3572
3573 fs_devices = find_fsid(fsid);
3574 if (!fs_devices) {
3575 ret = -ENOENT;
3576 goto out;
3577 }
e4404d6e
YZ
3578
3579 fs_devices = clone_fs_devices(fs_devices);
3580 if (IS_ERR(fs_devices)) {
3581 ret = PTR_ERR(fs_devices);
2b82032c
YZ
3582 goto out;
3583 }
3584
97288f2c 3585 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 3586 root->fs_info->bdev_holder);
2b82032c
YZ
3587 if (ret)
3588 goto out;
3589
3590 if (!fs_devices->seeding) {
3591 __btrfs_close_devices(fs_devices);
e4404d6e 3592 free_fs_devices(fs_devices);
2b82032c
YZ
3593 ret = -EINVAL;
3594 goto out;
3595 }
3596
3597 fs_devices->seed = root->fs_info->fs_devices->seed;
3598 root->fs_info->fs_devices->seed = fs_devices;
2b82032c
YZ
3599out:
3600 mutex_unlock(&uuid_mutex);
3601 return ret;
3602}
3603
0d81ba5d 3604static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
3605 struct extent_buffer *leaf,
3606 struct btrfs_dev_item *dev_item)
3607{
3608 struct btrfs_device *device;
3609 u64 devid;
3610 int ret;
2b82032c 3611 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
3612 u8 dev_uuid[BTRFS_UUID_SIZE];
3613
0b86a832 3614 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
3615 read_extent_buffer(leaf, dev_uuid,
3616 (unsigned long)btrfs_device_uuid(dev_item),
3617 BTRFS_UUID_SIZE);
2b82032c
YZ
3618 read_extent_buffer(leaf, fs_uuid,
3619 (unsigned long)btrfs_device_fsid(dev_item),
3620 BTRFS_UUID_SIZE);
3621
3622 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3623 ret = open_seed_devices(root, fs_uuid);
e4404d6e 3624 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 3625 return ret;
2b82032c
YZ
3626 }
3627
3628 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3629 if (!device || !device->bdev) {
e4404d6e 3630 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
3631 return -EIO;
3632
3633 if (!device) {
d397712b
CM
3634 printk(KERN_WARNING "warning devid %llu missing\n",
3635 (unsigned long long)devid);
2b82032c
YZ
3636 device = add_missing_dev(root, devid, dev_uuid);
3637 if (!device)
3638 return -ENOMEM;
cd02dca5
CM
3639 } else if (!device->missing) {
3640 /*
3641 * this happens when a device that was properly setup
3642 * in the device info lists suddenly goes bad.
3643 * device->bdev is NULL, and so we have to set
3644 * device->missing to one here
3645 */
3646 root->fs_info->fs_devices->missing_devices++;
3647 device->missing = 1;
2b82032c
YZ
3648 }
3649 }
3650
3651 if (device->fs_devices != root->fs_info->fs_devices) {
3652 BUG_ON(device->writeable);
3653 if (device->generation !=
3654 btrfs_device_generation(leaf, dev_item))
3655 return -EINVAL;
6324fbf3 3656 }
0b86a832
CM
3657
3658 fill_device_from_item(leaf, dev_item, device);
3659 device->dev_root = root->fs_info->dev_root;
dfe25020 3660 device->in_fs_metadata = 1;
2bf64758 3661 if (device->writeable) {
2b82032c 3662 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
3663 spin_lock(&root->fs_info->free_chunk_lock);
3664 root->fs_info->free_chunk_space += device->total_bytes -
3665 device->bytes_used;
3666 spin_unlock(&root->fs_info->free_chunk_lock);
3667 }
0b86a832 3668 ret = 0;
0b86a832
CM
3669 return ret;
3670}
3671
e4404d6e 3672int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 3673{
6c41761f 3674 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 3675 struct extent_buffer *sb;
0b86a832 3676 struct btrfs_disk_key *disk_key;
0b86a832 3677 struct btrfs_chunk *chunk;
84eed90f
CM
3678 u8 *ptr;
3679 unsigned long sb_ptr;
3680 int ret = 0;
0b86a832
CM
3681 u32 num_stripes;
3682 u32 array_size;
3683 u32 len = 0;
0b86a832 3684 u32 cur;
84eed90f 3685 struct btrfs_key key;
0b86a832 3686
e4404d6e 3687 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
3688 BTRFS_SUPER_INFO_SIZE);
3689 if (!sb)
3690 return -ENOMEM;
3691 btrfs_set_buffer_uptodate(sb);
85d4e461 3692 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
4008c04a 3693
a061fc8d 3694 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
3695 array_size = btrfs_super_sys_array_size(super_copy);
3696
0b86a832
CM
3697 ptr = super_copy->sys_chunk_array;
3698 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3699 cur = 0;
3700
3701 while (cur < array_size) {
3702 disk_key = (struct btrfs_disk_key *)ptr;
3703 btrfs_disk_key_to_cpu(&key, disk_key);
3704
a061fc8d 3705 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
3706 sb_ptr += len;
3707 cur += len;
3708
0d81ba5d 3709 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 3710 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 3711 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
3712 if (ret)
3713 break;
0b86a832
CM
3714 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3715 len = btrfs_chunk_item_size(num_stripes);
3716 } else {
84eed90f
CM
3717 ret = -EIO;
3718 break;
0b86a832
CM
3719 }
3720 ptr += len;
3721 sb_ptr += len;
3722 cur += len;
3723 }
a061fc8d 3724 free_extent_buffer(sb);
84eed90f 3725 return ret;
0b86a832
CM
3726}
3727
3728int btrfs_read_chunk_tree(struct btrfs_root *root)
3729{
3730 struct btrfs_path *path;
3731 struct extent_buffer *leaf;
3732 struct btrfs_key key;
3733 struct btrfs_key found_key;
3734 int ret;
3735 int slot;
3736
3737 root = root->fs_info->chunk_root;
3738
3739 path = btrfs_alloc_path();
3740 if (!path)
3741 return -ENOMEM;
3742
3743 /* first we search for all of the device items, and then we
3744 * read in all of the chunk items. This way we can create chunk
3745 * mappings that reference all of the devices that are afound
3746 */
3747 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3748 key.offset = 0;
3749 key.type = 0;
3750again:
3751 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
3752 if (ret < 0)
3753 goto error;
d397712b 3754 while (1) {
0b86a832
CM
3755 leaf = path->nodes[0];
3756 slot = path->slots[0];
3757 if (slot >= btrfs_header_nritems(leaf)) {
3758 ret = btrfs_next_leaf(root, path);
3759 if (ret == 0)
3760 continue;
3761 if (ret < 0)
3762 goto error;
3763 break;
3764 }
3765 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3766 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3767 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3768 break;
3769 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3770 struct btrfs_dev_item *dev_item;
3771 dev_item = btrfs_item_ptr(leaf, slot,
3772 struct btrfs_dev_item);
0d81ba5d 3773 ret = read_one_dev(root, leaf, dev_item);
2b82032c
YZ
3774 if (ret)
3775 goto error;
0b86a832
CM
3776 }
3777 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3778 struct btrfs_chunk *chunk;
3779 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3780 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
3781 if (ret)
3782 goto error;
0b86a832
CM
3783 }
3784 path->slots[0]++;
3785 }
3786 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3787 key.objectid = 0;
b3b4aa74 3788 btrfs_release_path(path);
0b86a832
CM
3789 goto again;
3790 }
0b86a832
CM
3791 ret = 0;
3792error:
2b82032c 3793 btrfs_free_path(path);
0b86a832
CM
3794 return ret;
3795}
This page took 0.412736 seconds and 5 git commands to generate.