Btrfs: rollback btrfs_device fields on umount
[deliverable/linux.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3 28#include <linux/raid/pq.h>
803b2f54 29#include <linux/semaphore.h>
53b381b3 30#include <asm/div64.h>
4b4e25f2 31#include "compat.h"
0b86a832
CM
32#include "ctree.h"
33#include "extent_map.h"
34#include "disk-io.h"
35#include "transaction.h"
36#include "print-tree.h"
37#include "volumes.h"
53b381b3 38#include "raid56.h"
8b712842 39#include "async-thread.h"
21adbd5c 40#include "check-integrity.h"
606686ee 41#include "rcu-string.h"
3fed40cc 42#include "math.h"
8dabb742 43#include "dev-replace.h"
0b86a832 44
2b82032c
YZ
45static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 49static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 50static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 51static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 52
8a4b83cc
CM
53static DEFINE_MUTEX(uuid_mutex);
54static LIST_HEAD(fs_uuids);
55
7d9eb12c
CM
56static void lock_chunks(struct btrfs_root *root)
57{
7d9eb12c
CM
58 mutex_lock(&root->fs_info->chunk_mutex);
59}
60
61static void unlock_chunks(struct btrfs_root *root)
62{
7d9eb12c
CM
63 mutex_unlock(&root->fs_info->chunk_mutex);
64}
65
2208a378
ID
66static struct btrfs_fs_devices *__alloc_fs_devices(void)
67{
68 struct btrfs_fs_devices *fs_devs;
69
70 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
71 if (!fs_devs)
72 return ERR_PTR(-ENOMEM);
73
74 mutex_init(&fs_devs->device_list_mutex);
75
76 INIT_LIST_HEAD(&fs_devs->devices);
77 INIT_LIST_HEAD(&fs_devs->alloc_list);
78 INIT_LIST_HEAD(&fs_devs->list);
79
80 return fs_devs;
81}
82
83/**
84 * alloc_fs_devices - allocate struct btrfs_fs_devices
85 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
86 * generated.
87 *
88 * Return: a pointer to a new &struct btrfs_fs_devices on success;
89 * ERR_PTR() on error. Returned struct is not linked onto any lists and
90 * can be destroyed with kfree() right away.
91 */
92static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
93{
94 struct btrfs_fs_devices *fs_devs;
95
96 fs_devs = __alloc_fs_devices();
97 if (IS_ERR(fs_devs))
98 return fs_devs;
99
100 if (fsid)
101 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
102 else
103 generate_random_uuid(fs_devs->fsid);
104
105 return fs_devs;
106}
107
e4404d6e
YZ
108static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
109{
110 struct btrfs_device *device;
111 WARN_ON(fs_devices->opened);
112 while (!list_empty(&fs_devices->devices)) {
113 device = list_entry(fs_devices->devices.next,
114 struct btrfs_device, dev_list);
115 list_del(&device->dev_list);
606686ee 116 rcu_string_free(device->name);
e4404d6e
YZ
117 kfree(device);
118 }
119 kfree(fs_devices);
120}
121
b8b8ff59
LC
122static void btrfs_kobject_uevent(struct block_device *bdev,
123 enum kobject_action action)
124{
125 int ret;
126
127 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
128 if (ret)
129 pr_warn("Sending event '%d' to kobject: '%s' (%p): failed\n",
130 action,
131 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
132 &disk_to_dev(bdev->bd_disk)->kobj);
133}
134
143bede5 135void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
136{
137 struct btrfs_fs_devices *fs_devices;
8a4b83cc 138
2b82032c
YZ
139 while (!list_empty(&fs_uuids)) {
140 fs_devices = list_entry(fs_uuids.next,
141 struct btrfs_fs_devices, list);
142 list_del(&fs_devices->list);
e4404d6e 143 free_fs_devices(fs_devices);
8a4b83cc 144 }
8a4b83cc
CM
145}
146
12bd2fc0
ID
147static struct btrfs_device *__alloc_device(void)
148{
149 struct btrfs_device *dev;
150
151 dev = kzalloc(sizeof(*dev), GFP_NOFS);
152 if (!dev)
153 return ERR_PTR(-ENOMEM);
154
155 INIT_LIST_HEAD(&dev->dev_list);
156 INIT_LIST_HEAD(&dev->dev_alloc_list);
157
158 spin_lock_init(&dev->io_lock);
159
160 spin_lock_init(&dev->reada_lock);
161 atomic_set(&dev->reada_in_flight, 0);
162 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
163 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
164
165 return dev;
166}
167
a1b32a59
CM
168static noinline struct btrfs_device *__find_device(struct list_head *head,
169 u64 devid, u8 *uuid)
8a4b83cc
CM
170{
171 struct btrfs_device *dev;
8a4b83cc 172
c6e30871 173 list_for_each_entry(dev, head, dev_list) {
a443755f 174 if (dev->devid == devid &&
8f18cf13 175 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 176 return dev;
a443755f 177 }
8a4b83cc
CM
178 }
179 return NULL;
180}
181
a1b32a59 182static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 183{
8a4b83cc
CM
184 struct btrfs_fs_devices *fs_devices;
185
c6e30871 186 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
187 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
188 return fs_devices;
189 }
190 return NULL;
191}
192
beaf8ab3
SB
193static int
194btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
195 int flush, struct block_device **bdev,
196 struct buffer_head **bh)
197{
198 int ret;
199
200 *bdev = blkdev_get_by_path(device_path, flags, holder);
201
202 if (IS_ERR(*bdev)) {
203 ret = PTR_ERR(*bdev);
204 printk(KERN_INFO "btrfs: open %s failed\n", device_path);
205 goto error;
206 }
207
208 if (flush)
209 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
210 ret = set_blocksize(*bdev, 4096);
211 if (ret) {
212 blkdev_put(*bdev, flags);
213 goto error;
214 }
215 invalidate_bdev(*bdev);
216 *bh = btrfs_read_dev_super(*bdev);
217 if (!*bh) {
218 ret = -EINVAL;
219 blkdev_put(*bdev, flags);
220 goto error;
221 }
222
223 return 0;
224
225error:
226 *bdev = NULL;
227 *bh = NULL;
228 return ret;
229}
230
ffbd517d
CM
231static void requeue_list(struct btrfs_pending_bios *pending_bios,
232 struct bio *head, struct bio *tail)
233{
234
235 struct bio *old_head;
236
237 old_head = pending_bios->head;
238 pending_bios->head = head;
239 if (pending_bios->tail)
240 tail->bi_next = old_head;
241 else
242 pending_bios->tail = tail;
243}
244
8b712842
CM
245/*
246 * we try to collect pending bios for a device so we don't get a large
247 * number of procs sending bios down to the same device. This greatly
248 * improves the schedulers ability to collect and merge the bios.
249 *
250 * But, it also turns into a long list of bios to process and that is sure
251 * to eventually make the worker thread block. The solution here is to
252 * make some progress and then put this work struct back at the end of
253 * the list if the block device is congested. This way, multiple devices
254 * can make progress from a single worker thread.
255 */
143bede5 256static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
257{
258 struct bio *pending;
259 struct backing_dev_info *bdi;
b64a2851 260 struct btrfs_fs_info *fs_info;
ffbd517d 261 struct btrfs_pending_bios *pending_bios;
8b712842
CM
262 struct bio *tail;
263 struct bio *cur;
264 int again = 0;
ffbd517d 265 unsigned long num_run;
d644d8a1 266 unsigned long batch_run = 0;
b64a2851 267 unsigned long limit;
b765ead5 268 unsigned long last_waited = 0;
d84275c9 269 int force_reg = 0;
0e588859 270 int sync_pending = 0;
211588ad
CM
271 struct blk_plug plug;
272
273 /*
274 * this function runs all the bios we've collected for
275 * a particular device. We don't want to wander off to
276 * another device without first sending all of these down.
277 * So, setup a plug here and finish it off before we return
278 */
279 blk_start_plug(&plug);
8b712842 280
bedf762b 281 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
282 fs_info = device->dev_root->fs_info;
283 limit = btrfs_async_submit_limit(fs_info);
284 limit = limit * 2 / 3;
285
8b712842
CM
286loop:
287 spin_lock(&device->io_lock);
288
a6837051 289loop_lock:
d84275c9 290 num_run = 0;
ffbd517d 291
8b712842
CM
292 /* take all the bios off the list at once and process them
293 * later on (without the lock held). But, remember the
294 * tail and other pointers so the bios can be properly reinserted
295 * into the list if we hit congestion
296 */
d84275c9 297 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 298 pending_bios = &device->pending_sync_bios;
d84275c9
CM
299 force_reg = 1;
300 } else {
ffbd517d 301 pending_bios = &device->pending_bios;
d84275c9
CM
302 force_reg = 0;
303 }
ffbd517d
CM
304
305 pending = pending_bios->head;
306 tail = pending_bios->tail;
8b712842 307 WARN_ON(pending && !tail);
8b712842
CM
308
309 /*
310 * if pending was null this time around, no bios need processing
311 * at all and we can stop. Otherwise it'll loop back up again
312 * and do an additional check so no bios are missed.
313 *
314 * device->running_pending is used to synchronize with the
315 * schedule_bio code.
316 */
ffbd517d
CM
317 if (device->pending_sync_bios.head == NULL &&
318 device->pending_bios.head == NULL) {
8b712842
CM
319 again = 0;
320 device->running_pending = 0;
ffbd517d
CM
321 } else {
322 again = 1;
323 device->running_pending = 1;
8b712842 324 }
ffbd517d
CM
325
326 pending_bios->head = NULL;
327 pending_bios->tail = NULL;
328
8b712842
CM
329 spin_unlock(&device->io_lock);
330
d397712b 331 while (pending) {
ffbd517d
CM
332
333 rmb();
d84275c9
CM
334 /* we want to work on both lists, but do more bios on the
335 * sync list than the regular list
336 */
337 if ((num_run > 32 &&
338 pending_bios != &device->pending_sync_bios &&
339 device->pending_sync_bios.head) ||
340 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
341 device->pending_bios.head)) {
ffbd517d
CM
342 spin_lock(&device->io_lock);
343 requeue_list(pending_bios, pending, tail);
344 goto loop_lock;
345 }
346
8b712842
CM
347 cur = pending;
348 pending = pending->bi_next;
349 cur->bi_next = NULL;
b64a2851 350
66657b31 351 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
352 waitqueue_active(&fs_info->async_submit_wait))
353 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
354
355 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 356
2ab1ba68
CM
357 /*
358 * if we're doing the sync list, record that our
359 * plug has some sync requests on it
360 *
361 * If we're doing the regular list and there are
362 * sync requests sitting around, unplug before
363 * we add more
364 */
365 if (pending_bios == &device->pending_sync_bios) {
366 sync_pending = 1;
367 } else if (sync_pending) {
368 blk_finish_plug(&plug);
369 blk_start_plug(&plug);
370 sync_pending = 0;
371 }
372
21adbd5c 373 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
374 num_run++;
375 batch_run++;
7eaceacc 376 if (need_resched())
ffbd517d 377 cond_resched();
8b712842
CM
378
379 /*
380 * we made progress, there is more work to do and the bdi
381 * is now congested. Back off and let other work structs
382 * run instead
383 */
57fd5a5f 384 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 385 fs_info->fs_devices->open_devices > 1) {
b765ead5 386 struct io_context *ioc;
8b712842 387
b765ead5
CM
388 ioc = current->io_context;
389
390 /*
391 * the main goal here is that we don't want to
392 * block if we're going to be able to submit
393 * more requests without blocking.
394 *
395 * This code does two great things, it pokes into
396 * the elevator code from a filesystem _and_
397 * it makes assumptions about how batching works.
398 */
399 if (ioc && ioc->nr_batch_requests > 0 &&
400 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
401 (last_waited == 0 ||
402 ioc->last_waited == last_waited)) {
403 /*
404 * we want to go through our batch of
405 * requests and stop. So, we copy out
406 * the ioc->last_waited time and test
407 * against it before looping
408 */
409 last_waited = ioc->last_waited;
7eaceacc 410 if (need_resched())
ffbd517d 411 cond_resched();
b765ead5
CM
412 continue;
413 }
8b712842 414 spin_lock(&device->io_lock);
ffbd517d 415 requeue_list(pending_bios, pending, tail);
a6837051 416 device->running_pending = 1;
8b712842
CM
417
418 spin_unlock(&device->io_lock);
419 btrfs_requeue_work(&device->work);
420 goto done;
421 }
d85c8a6f
CM
422 /* unplug every 64 requests just for good measure */
423 if (batch_run % 64 == 0) {
424 blk_finish_plug(&plug);
425 blk_start_plug(&plug);
426 sync_pending = 0;
427 }
8b712842 428 }
ffbd517d 429
51684082
CM
430 cond_resched();
431 if (again)
432 goto loop;
433
434 spin_lock(&device->io_lock);
435 if (device->pending_bios.head || device->pending_sync_bios.head)
436 goto loop_lock;
437 spin_unlock(&device->io_lock);
438
8b712842 439done:
211588ad 440 blk_finish_plug(&plug);
8b712842
CM
441}
442
b2950863 443static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
444{
445 struct btrfs_device *device;
446
447 device = container_of(work, struct btrfs_device, work);
448 run_scheduled_bios(device);
449}
450
a1b32a59 451static noinline int device_list_add(const char *path,
8a4b83cc
CM
452 struct btrfs_super_block *disk_super,
453 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
454{
455 struct btrfs_device *device;
456 struct btrfs_fs_devices *fs_devices;
606686ee 457 struct rcu_string *name;
8a4b83cc
CM
458 u64 found_transid = btrfs_super_generation(disk_super);
459
460 fs_devices = find_fsid(disk_super->fsid);
461 if (!fs_devices) {
2208a378
ID
462 fs_devices = alloc_fs_devices(disk_super->fsid);
463 if (IS_ERR(fs_devices))
464 return PTR_ERR(fs_devices);
465
8a4b83cc 466 list_add(&fs_devices->list, &fs_uuids);
8a4b83cc
CM
467 fs_devices->latest_devid = devid;
468 fs_devices->latest_trans = found_transid;
2208a378 469
8a4b83cc
CM
470 device = NULL;
471 } else {
a443755f
CM
472 device = __find_device(&fs_devices->devices, devid,
473 disk_super->dev_item.uuid);
8a4b83cc
CM
474 }
475 if (!device) {
2b82032c
YZ
476 if (fs_devices->opened)
477 return -EBUSY;
478
12bd2fc0
ID
479 device = btrfs_alloc_device(NULL, &devid,
480 disk_super->dev_item.uuid);
481 if (IS_ERR(device)) {
8a4b83cc 482 /* we can safely leave the fs_devices entry around */
12bd2fc0 483 return PTR_ERR(device);
8a4b83cc 484 }
606686ee
JB
485
486 name = rcu_string_strdup(path, GFP_NOFS);
487 if (!name) {
8a4b83cc
CM
488 kfree(device);
489 return -ENOMEM;
490 }
606686ee 491 rcu_assign_pointer(device->name, name);
90519d66 492
e5e9a520 493 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 494 list_add_rcu(&device->dev_list, &fs_devices->devices);
e5e9a520
CM
495 mutex_unlock(&fs_devices->device_list_mutex);
496
2b82032c 497 device->fs_devices = fs_devices;
8a4b83cc 498 fs_devices->num_devices++;
606686ee
JB
499 } else if (!device->name || strcmp(device->name->str, path)) {
500 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
501 if (!name)
502 return -ENOMEM;
606686ee
JB
503 rcu_string_free(device->name);
504 rcu_assign_pointer(device->name, name);
cd02dca5
CM
505 if (device->missing) {
506 fs_devices->missing_devices--;
507 device->missing = 0;
508 }
8a4b83cc
CM
509 }
510
511 if (found_transid > fs_devices->latest_trans) {
512 fs_devices->latest_devid = devid;
513 fs_devices->latest_trans = found_transid;
514 }
8a4b83cc
CM
515 *fs_devices_ret = fs_devices;
516 return 0;
517}
518
e4404d6e
YZ
519static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
520{
521 struct btrfs_fs_devices *fs_devices;
522 struct btrfs_device *device;
523 struct btrfs_device *orig_dev;
524
2208a378
ID
525 fs_devices = alloc_fs_devices(orig->fsid);
526 if (IS_ERR(fs_devices))
527 return fs_devices;
e4404d6e 528
e4404d6e
YZ
529 fs_devices->latest_devid = orig->latest_devid;
530 fs_devices->latest_trans = orig->latest_trans;
02db0844 531 fs_devices->total_devices = orig->total_devices;
e4404d6e 532
46224705 533 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 534 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
535 struct rcu_string *name;
536
12bd2fc0
ID
537 device = btrfs_alloc_device(NULL, &orig_dev->devid,
538 orig_dev->uuid);
539 if (IS_ERR(device))
e4404d6e
YZ
540 goto error;
541
606686ee
JB
542 /*
543 * This is ok to do without rcu read locked because we hold the
544 * uuid mutex so nothing we touch in here is going to disappear.
545 */
546 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
547 if (!name) {
fd2696f3 548 kfree(device);
e4404d6e 549 goto error;
fd2696f3 550 }
606686ee 551 rcu_assign_pointer(device->name, name);
e4404d6e 552
e4404d6e
YZ
553 list_add(&device->dev_list, &fs_devices->devices);
554 device->fs_devices = fs_devices;
555 fs_devices->num_devices++;
556 }
557 return fs_devices;
558error:
559 free_fs_devices(fs_devices);
560 return ERR_PTR(-ENOMEM);
561}
562
8dabb742
SB
563void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
564 struct btrfs_fs_devices *fs_devices, int step)
dfe25020 565{
c6e30871 566 struct btrfs_device *device, *next;
dfe25020 567
a6b0d5c8
CM
568 struct block_device *latest_bdev = NULL;
569 u64 latest_devid = 0;
570 u64 latest_transid = 0;
571
dfe25020
CM
572 mutex_lock(&uuid_mutex);
573again:
46224705 574 /* This is the initialized path, it is safe to release the devices. */
c6e30871 575 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 576 if (device->in_fs_metadata) {
63a212ab
SB
577 if (!device->is_tgtdev_for_dev_replace &&
578 (!latest_transid ||
579 device->generation > latest_transid)) {
a6b0d5c8
CM
580 latest_devid = device->devid;
581 latest_transid = device->generation;
582 latest_bdev = device->bdev;
583 }
2b82032c 584 continue;
a6b0d5c8 585 }
2b82032c 586
8dabb742
SB
587 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
588 /*
589 * In the first step, keep the device which has
590 * the correct fsid and the devid that is used
591 * for the dev_replace procedure.
592 * In the second step, the dev_replace state is
593 * read from the device tree and it is known
594 * whether the procedure is really active or
595 * not, which means whether this device is
596 * used or whether it should be removed.
597 */
598 if (step == 0 || device->is_tgtdev_for_dev_replace) {
599 continue;
600 }
601 }
2b82032c 602 if (device->bdev) {
d4d77629 603 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
604 device->bdev = NULL;
605 fs_devices->open_devices--;
606 }
607 if (device->writeable) {
608 list_del_init(&device->dev_alloc_list);
609 device->writeable = 0;
8dabb742
SB
610 if (!device->is_tgtdev_for_dev_replace)
611 fs_devices->rw_devices--;
2b82032c 612 }
e4404d6e
YZ
613 list_del_init(&device->dev_list);
614 fs_devices->num_devices--;
606686ee 615 rcu_string_free(device->name);
e4404d6e 616 kfree(device);
dfe25020 617 }
2b82032c
YZ
618
619 if (fs_devices->seed) {
620 fs_devices = fs_devices->seed;
2b82032c
YZ
621 goto again;
622 }
623
a6b0d5c8
CM
624 fs_devices->latest_bdev = latest_bdev;
625 fs_devices->latest_devid = latest_devid;
626 fs_devices->latest_trans = latest_transid;
627
dfe25020 628 mutex_unlock(&uuid_mutex);
dfe25020 629}
a0af469b 630
1f78160c
XG
631static void __free_device(struct work_struct *work)
632{
633 struct btrfs_device *device;
634
635 device = container_of(work, struct btrfs_device, rcu_work);
636
637 if (device->bdev)
638 blkdev_put(device->bdev, device->mode);
639
606686ee 640 rcu_string_free(device->name);
1f78160c
XG
641 kfree(device);
642}
643
644static void free_device(struct rcu_head *head)
645{
646 struct btrfs_device *device;
647
648 device = container_of(head, struct btrfs_device, rcu);
649
650 INIT_WORK(&device->rcu_work, __free_device);
651 schedule_work(&device->rcu_work);
652}
653
2b82032c 654static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 655{
8a4b83cc 656 struct btrfs_device *device;
e4404d6e 657
2b82032c
YZ
658 if (--fs_devices->opened > 0)
659 return 0;
8a4b83cc 660
c9513edb 661 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 662 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c 663 struct btrfs_device *new_device;
606686ee 664 struct rcu_string *name;
1f78160c
XG
665
666 if (device->bdev)
a0af469b 667 fs_devices->open_devices--;
1f78160c 668
8dabb742 669 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c
YZ
670 list_del_init(&device->dev_alloc_list);
671 fs_devices->rw_devices--;
672 }
673
d5e2003c
JB
674 if (device->can_discard)
675 fs_devices->num_can_discard--;
676
a1e8780a
ID
677 new_device = btrfs_alloc_device(NULL, &device->devid,
678 device->uuid);
679 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
606686ee
JB
680
681 /* Safe because we are under uuid_mutex */
99f5944b
JB
682 if (device->name) {
683 name = rcu_string_strdup(device->name->str, GFP_NOFS);
a1e8780a 684 BUG_ON(!name); /* -ENOMEM */
99f5944b
JB
685 rcu_assign_pointer(new_device->name, name);
686 }
a1e8780a 687
1f78160c 688 list_replace_rcu(&device->dev_list, &new_device->dev_list);
a1e8780a 689 new_device->fs_devices = device->fs_devices;
1f78160c
XG
690
691 call_rcu(&device->rcu, free_device);
8a4b83cc 692 }
c9513edb
XG
693 mutex_unlock(&fs_devices->device_list_mutex);
694
e4404d6e
YZ
695 WARN_ON(fs_devices->open_devices);
696 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
697 fs_devices->opened = 0;
698 fs_devices->seeding = 0;
2b82032c 699
8a4b83cc
CM
700 return 0;
701}
702
2b82032c
YZ
703int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
704{
e4404d6e 705 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
706 int ret;
707
708 mutex_lock(&uuid_mutex);
709 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
710 if (!fs_devices->opened) {
711 seed_devices = fs_devices->seed;
712 fs_devices->seed = NULL;
713 }
2b82032c 714 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
715
716 while (seed_devices) {
717 fs_devices = seed_devices;
718 seed_devices = fs_devices->seed;
719 __btrfs_close_devices(fs_devices);
720 free_fs_devices(fs_devices);
721 }
bc178622
ES
722 /*
723 * Wait for rcu kworkers under __btrfs_close_devices
724 * to finish all blkdev_puts so device is really
725 * free when umount is done.
726 */
727 rcu_barrier();
2b82032c
YZ
728 return ret;
729}
730
e4404d6e
YZ
731static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
732 fmode_t flags, void *holder)
8a4b83cc 733{
d5e2003c 734 struct request_queue *q;
8a4b83cc
CM
735 struct block_device *bdev;
736 struct list_head *head = &fs_devices->devices;
8a4b83cc 737 struct btrfs_device *device;
a0af469b
CM
738 struct block_device *latest_bdev = NULL;
739 struct buffer_head *bh;
740 struct btrfs_super_block *disk_super;
741 u64 latest_devid = 0;
742 u64 latest_transid = 0;
a0af469b 743 u64 devid;
2b82032c 744 int seeding = 1;
a0af469b 745 int ret = 0;
8a4b83cc 746
d4d77629
TH
747 flags |= FMODE_EXCL;
748
c6e30871 749 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
750 if (device->bdev)
751 continue;
dfe25020
CM
752 if (!device->name)
753 continue;
754
f63e0cca
ES
755 /* Just open everything we can; ignore failures here */
756 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
757 &bdev, &bh))
beaf8ab3 758 continue;
a0af469b
CM
759
760 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 761 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
762 if (devid != device->devid)
763 goto error_brelse;
764
2b82032c
YZ
765 if (memcmp(device->uuid, disk_super->dev_item.uuid,
766 BTRFS_UUID_SIZE))
767 goto error_brelse;
768
769 device->generation = btrfs_super_generation(disk_super);
770 if (!latest_transid || device->generation > latest_transid) {
a0af469b 771 latest_devid = devid;
2b82032c 772 latest_transid = device->generation;
a0af469b
CM
773 latest_bdev = bdev;
774 }
775
2b82032c
YZ
776 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
777 device->writeable = 0;
778 } else {
779 device->writeable = !bdev_read_only(bdev);
780 seeding = 0;
781 }
782
d5e2003c
JB
783 q = bdev_get_queue(bdev);
784 if (blk_queue_discard(q)) {
785 device->can_discard = 1;
786 fs_devices->num_can_discard++;
787 }
788
8a4b83cc 789 device->bdev = bdev;
dfe25020 790 device->in_fs_metadata = 0;
15916de8
CM
791 device->mode = flags;
792
c289811c
CM
793 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
794 fs_devices->rotating = 1;
795
a0af469b 796 fs_devices->open_devices++;
8dabb742 797 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c
YZ
798 fs_devices->rw_devices++;
799 list_add(&device->dev_alloc_list,
800 &fs_devices->alloc_list);
801 }
4f6c9328 802 brelse(bh);
a0af469b 803 continue;
a061fc8d 804
a0af469b
CM
805error_brelse:
806 brelse(bh);
d4d77629 807 blkdev_put(bdev, flags);
a0af469b 808 continue;
8a4b83cc 809 }
a0af469b 810 if (fs_devices->open_devices == 0) {
20bcd649 811 ret = -EINVAL;
a0af469b
CM
812 goto out;
813 }
2b82032c
YZ
814 fs_devices->seeding = seeding;
815 fs_devices->opened = 1;
a0af469b
CM
816 fs_devices->latest_bdev = latest_bdev;
817 fs_devices->latest_devid = latest_devid;
818 fs_devices->latest_trans = latest_transid;
2b82032c 819 fs_devices->total_rw_bytes = 0;
a0af469b 820out:
2b82032c
YZ
821 return ret;
822}
823
824int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 825 fmode_t flags, void *holder)
2b82032c
YZ
826{
827 int ret;
828
829 mutex_lock(&uuid_mutex);
830 if (fs_devices->opened) {
e4404d6e
YZ
831 fs_devices->opened++;
832 ret = 0;
2b82032c 833 } else {
15916de8 834 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 835 }
8a4b83cc 836 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
837 return ret;
838}
839
6f60cbd3
DS
840/*
841 * Look for a btrfs signature on a device. This may be called out of the mount path
842 * and we are not allowed to call set_blocksize during the scan. The superblock
843 * is read via pagecache
844 */
97288f2c 845int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
846 struct btrfs_fs_devices **fs_devices_ret)
847{
848 struct btrfs_super_block *disk_super;
849 struct block_device *bdev;
6f60cbd3
DS
850 struct page *page;
851 void *p;
852 int ret = -EINVAL;
8a4b83cc 853 u64 devid;
f2984462 854 u64 transid;
02db0844 855 u64 total_devices;
6f60cbd3
DS
856 u64 bytenr;
857 pgoff_t index;
8a4b83cc 858
6f60cbd3
DS
859 /*
860 * we would like to check all the supers, but that would make
861 * a btrfs mount succeed after a mkfs from a different FS.
862 * So, we need to add a special mount option to scan for
863 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
864 */
865 bytenr = btrfs_sb_offset(0);
d4d77629 866 flags |= FMODE_EXCL;
10f6327b 867 mutex_lock(&uuid_mutex);
6f60cbd3
DS
868
869 bdev = blkdev_get_by_path(path, flags, holder);
870
871 if (IS_ERR(bdev)) {
872 ret = PTR_ERR(bdev);
beaf8ab3 873 goto error;
6f60cbd3
DS
874 }
875
876 /* make sure our super fits in the device */
877 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
878 goto error_bdev_put;
879
880 /* make sure our super fits in the page */
881 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
882 goto error_bdev_put;
883
884 /* make sure our super doesn't straddle pages on disk */
885 index = bytenr >> PAGE_CACHE_SHIFT;
886 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
887 goto error_bdev_put;
888
889 /* pull in the page with our super */
890 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
891 index, GFP_NOFS);
892
893 if (IS_ERR_OR_NULL(page))
894 goto error_bdev_put;
895
896 p = kmap(page);
897
898 /* align our pointer to the offset of the super block */
899 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
900
901 if (btrfs_super_bytenr(disk_super) != bytenr ||
3cae210f 902 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
6f60cbd3
DS
903 goto error_unmap;
904
a343832f 905 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 906 transid = btrfs_super_generation(disk_super);
02db0844 907 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 908
d03f918a
SB
909 if (disk_super->label[0]) {
910 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
911 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
d397712b 912 printk(KERN_INFO "device label %s ", disk_super->label);
d03f918a 913 } else {
22b63a29 914 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
d03f918a 915 }
6f60cbd3 916
119e10cf 917 printk(KERN_CONT "devid %llu transid %llu %s\n",
d397712b 918 (unsigned long long)devid, (unsigned long long)transid, path);
6f60cbd3 919
8a4b83cc 920 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
02db0844
JB
921 if (!ret && fs_devices_ret)
922 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3
DS
923
924error_unmap:
925 kunmap(page);
926 page_cache_release(page);
927
928error_bdev_put:
d4d77629 929 blkdev_put(bdev, flags);
8a4b83cc 930error:
beaf8ab3 931 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
932 return ret;
933}
0b86a832 934
6d07bcec
MX
935/* helper to account the used device space in the range */
936int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
937 u64 end, u64 *length)
938{
939 struct btrfs_key key;
940 struct btrfs_root *root = device->dev_root;
941 struct btrfs_dev_extent *dev_extent;
942 struct btrfs_path *path;
943 u64 extent_end;
944 int ret;
945 int slot;
946 struct extent_buffer *l;
947
948 *length = 0;
949
63a212ab 950 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
951 return 0;
952
953 path = btrfs_alloc_path();
954 if (!path)
955 return -ENOMEM;
956 path->reada = 2;
957
958 key.objectid = device->devid;
959 key.offset = start;
960 key.type = BTRFS_DEV_EXTENT_KEY;
961
962 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
963 if (ret < 0)
964 goto out;
965 if (ret > 0) {
966 ret = btrfs_previous_item(root, path, key.objectid, key.type);
967 if (ret < 0)
968 goto out;
969 }
970
971 while (1) {
972 l = path->nodes[0];
973 slot = path->slots[0];
974 if (slot >= btrfs_header_nritems(l)) {
975 ret = btrfs_next_leaf(root, path);
976 if (ret == 0)
977 continue;
978 if (ret < 0)
979 goto out;
980
981 break;
982 }
983 btrfs_item_key_to_cpu(l, &key, slot);
984
985 if (key.objectid < device->devid)
986 goto next;
987
988 if (key.objectid > device->devid)
989 break;
990
991 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
992 goto next;
993
994 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
995 extent_end = key.offset + btrfs_dev_extent_length(l,
996 dev_extent);
997 if (key.offset <= start && extent_end > end) {
998 *length = end - start + 1;
999 break;
1000 } else if (key.offset <= start && extent_end > start)
1001 *length += extent_end - start;
1002 else if (key.offset > start && extent_end <= end)
1003 *length += extent_end - key.offset;
1004 else if (key.offset > start && key.offset <= end) {
1005 *length += end - key.offset + 1;
1006 break;
1007 } else if (key.offset > end)
1008 break;
1009
1010next:
1011 path->slots[0]++;
1012 }
1013 ret = 0;
1014out:
1015 btrfs_free_path(path);
1016 return ret;
1017}
1018
6df9a95e
JB
1019static int contains_pending_extent(struct btrfs_trans_handle *trans,
1020 struct btrfs_device *device,
1021 u64 *start, u64 len)
1022{
1023 struct extent_map *em;
1024 int ret = 0;
1025
1026 list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1027 struct map_lookup *map;
1028 int i;
1029
1030 map = (struct map_lookup *)em->bdev;
1031 for (i = 0; i < map->num_stripes; i++) {
1032 if (map->stripes[i].dev != device)
1033 continue;
1034 if (map->stripes[i].physical >= *start + len ||
1035 map->stripes[i].physical + em->orig_block_len <=
1036 *start)
1037 continue;
1038 *start = map->stripes[i].physical +
1039 em->orig_block_len;
1040 ret = 1;
1041 }
1042 }
1043
1044 return ret;
1045}
1046
1047
0b86a832 1048/*
7bfc837d 1049 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
1050 * @device: the device which we search the free space in
1051 * @num_bytes: the size of the free space that we need
1052 * @start: store the start of the free space.
1053 * @len: the size of the free space. that we find, or the size of the max
1054 * free space if we don't find suitable free space
1055 *
0b86a832
CM
1056 * this uses a pretty simple search, the expectation is that it is
1057 * called very infrequently and that a given device has a small number
1058 * of extents
7bfc837d
MX
1059 *
1060 * @start is used to store the start of the free space if we find. But if we
1061 * don't find suitable free space, it will be used to store the start position
1062 * of the max free space.
1063 *
1064 * @len is used to store the size of the free space that we find.
1065 * But if we don't find suitable free space, it is used to store the size of
1066 * the max free space.
0b86a832 1067 */
6df9a95e
JB
1068int find_free_dev_extent(struct btrfs_trans_handle *trans,
1069 struct btrfs_device *device, u64 num_bytes,
7bfc837d 1070 u64 *start, u64 *len)
0b86a832
CM
1071{
1072 struct btrfs_key key;
1073 struct btrfs_root *root = device->dev_root;
7bfc837d 1074 struct btrfs_dev_extent *dev_extent;
2b82032c 1075 struct btrfs_path *path;
7bfc837d
MX
1076 u64 hole_size;
1077 u64 max_hole_start;
1078 u64 max_hole_size;
1079 u64 extent_end;
1080 u64 search_start;
0b86a832
CM
1081 u64 search_end = device->total_bytes;
1082 int ret;
7bfc837d 1083 int slot;
0b86a832
CM
1084 struct extent_buffer *l;
1085
0b86a832
CM
1086 /* FIXME use last free of some kind */
1087
8a4b83cc
CM
1088 /* we don't want to overwrite the superblock on the drive,
1089 * so we make sure to start at an offset of at least 1MB
1090 */
a9c9bf68 1091 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 1092
6df9a95e
JB
1093 path = btrfs_alloc_path();
1094 if (!path)
1095 return -ENOMEM;
1096again:
7bfc837d
MX
1097 max_hole_start = search_start;
1098 max_hole_size = 0;
38c01b96 1099 hole_size = 0;
7bfc837d 1100
63a212ab 1101 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1102 ret = -ENOSPC;
6df9a95e 1103 goto out;
7bfc837d
MX
1104 }
1105
7bfc837d 1106 path->reada = 2;
6df9a95e
JB
1107 path->search_commit_root = 1;
1108 path->skip_locking = 1;
7bfc837d 1109
0b86a832
CM
1110 key.objectid = device->devid;
1111 key.offset = search_start;
1112 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1113
125ccb0a 1114 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1115 if (ret < 0)
7bfc837d 1116 goto out;
1fcbac58
YZ
1117 if (ret > 0) {
1118 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1119 if (ret < 0)
7bfc837d 1120 goto out;
1fcbac58 1121 }
7bfc837d 1122
0b86a832
CM
1123 while (1) {
1124 l = path->nodes[0];
1125 slot = path->slots[0];
1126 if (slot >= btrfs_header_nritems(l)) {
1127 ret = btrfs_next_leaf(root, path);
1128 if (ret == 0)
1129 continue;
1130 if (ret < 0)
7bfc837d
MX
1131 goto out;
1132
1133 break;
0b86a832
CM
1134 }
1135 btrfs_item_key_to_cpu(l, &key, slot);
1136
1137 if (key.objectid < device->devid)
1138 goto next;
1139
1140 if (key.objectid > device->devid)
7bfc837d 1141 break;
0b86a832 1142
7bfc837d
MX
1143 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1144 goto next;
9779b72f 1145
7bfc837d
MX
1146 if (key.offset > search_start) {
1147 hole_size = key.offset - search_start;
9779b72f 1148
6df9a95e
JB
1149 /*
1150 * Have to check before we set max_hole_start, otherwise
1151 * we could end up sending back this offset anyway.
1152 */
1153 if (contains_pending_extent(trans, device,
1154 &search_start,
1155 hole_size))
1156 hole_size = 0;
1157
7bfc837d
MX
1158 if (hole_size > max_hole_size) {
1159 max_hole_start = search_start;
1160 max_hole_size = hole_size;
1161 }
9779b72f 1162
7bfc837d
MX
1163 /*
1164 * If this free space is greater than which we need,
1165 * it must be the max free space that we have found
1166 * until now, so max_hole_start must point to the start
1167 * of this free space and the length of this free space
1168 * is stored in max_hole_size. Thus, we return
1169 * max_hole_start and max_hole_size and go back to the
1170 * caller.
1171 */
1172 if (hole_size >= num_bytes) {
1173 ret = 0;
1174 goto out;
0b86a832
CM
1175 }
1176 }
0b86a832 1177
0b86a832 1178 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1179 extent_end = key.offset + btrfs_dev_extent_length(l,
1180 dev_extent);
1181 if (extent_end > search_start)
1182 search_start = extent_end;
0b86a832
CM
1183next:
1184 path->slots[0]++;
1185 cond_resched();
1186 }
0b86a832 1187
38c01b96 1188 /*
1189 * At this point, search_start should be the end of
1190 * allocated dev extents, and when shrinking the device,
1191 * search_end may be smaller than search_start.
1192 */
1193 if (search_end > search_start)
1194 hole_size = search_end - search_start;
1195
7bfc837d
MX
1196 if (hole_size > max_hole_size) {
1197 max_hole_start = search_start;
1198 max_hole_size = hole_size;
0b86a832 1199 }
0b86a832 1200
6df9a95e
JB
1201 if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1202 btrfs_release_path(path);
1203 goto again;
1204 }
1205
7bfc837d
MX
1206 /* See above. */
1207 if (hole_size < num_bytes)
1208 ret = -ENOSPC;
1209 else
1210 ret = 0;
1211
1212out:
2b82032c 1213 btrfs_free_path(path);
7bfc837d 1214 *start = max_hole_start;
b2117a39 1215 if (len)
7bfc837d 1216 *len = max_hole_size;
0b86a832
CM
1217 return ret;
1218}
1219
b2950863 1220static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
1221 struct btrfs_device *device,
1222 u64 start)
1223{
1224 int ret;
1225 struct btrfs_path *path;
1226 struct btrfs_root *root = device->dev_root;
1227 struct btrfs_key key;
a061fc8d
CM
1228 struct btrfs_key found_key;
1229 struct extent_buffer *leaf = NULL;
1230 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1231
1232 path = btrfs_alloc_path();
1233 if (!path)
1234 return -ENOMEM;
1235
1236 key.objectid = device->devid;
1237 key.offset = start;
1238 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1239again:
8f18cf13 1240 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1241 if (ret > 0) {
1242 ret = btrfs_previous_item(root, path, key.objectid,
1243 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1244 if (ret)
1245 goto out;
a061fc8d
CM
1246 leaf = path->nodes[0];
1247 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1248 extent = btrfs_item_ptr(leaf, path->slots[0],
1249 struct btrfs_dev_extent);
1250 BUG_ON(found_key.offset > start || found_key.offset +
1251 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1252 key = found_key;
1253 btrfs_release_path(path);
1254 goto again;
a061fc8d
CM
1255 } else if (ret == 0) {
1256 leaf = path->nodes[0];
1257 extent = btrfs_item_ptr(leaf, path->slots[0],
1258 struct btrfs_dev_extent);
79787eaa
JM
1259 } else {
1260 btrfs_error(root->fs_info, ret, "Slot search failed");
1261 goto out;
a061fc8d 1262 }
8f18cf13 1263
2bf64758
JB
1264 if (device->bytes_used > 0) {
1265 u64 len = btrfs_dev_extent_length(leaf, extent);
1266 device->bytes_used -= len;
1267 spin_lock(&root->fs_info->free_chunk_lock);
1268 root->fs_info->free_chunk_space += len;
1269 spin_unlock(&root->fs_info->free_chunk_lock);
1270 }
8f18cf13 1271 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1272 if (ret) {
1273 btrfs_error(root->fs_info, ret,
1274 "Failed to remove dev extent item");
1275 }
b0b802d7 1276out:
8f18cf13
CM
1277 btrfs_free_path(path);
1278 return ret;
1279}
1280
48a3b636
ES
1281static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1282 struct btrfs_device *device,
1283 u64 chunk_tree, u64 chunk_objectid,
1284 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1285{
1286 int ret;
1287 struct btrfs_path *path;
1288 struct btrfs_root *root = device->dev_root;
1289 struct btrfs_dev_extent *extent;
1290 struct extent_buffer *leaf;
1291 struct btrfs_key key;
1292
dfe25020 1293 WARN_ON(!device->in_fs_metadata);
63a212ab 1294 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1295 path = btrfs_alloc_path();
1296 if (!path)
1297 return -ENOMEM;
1298
0b86a832 1299 key.objectid = device->devid;
2b82032c 1300 key.offset = start;
0b86a832
CM
1301 key.type = BTRFS_DEV_EXTENT_KEY;
1302 ret = btrfs_insert_empty_item(trans, root, path, &key,
1303 sizeof(*extent));
2cdcecbc
MF
1304 if (ret)
1305 goto out;
0b86a832
CM
1306
1307 leaf = path->nodes[0];
1308 extent = btrfs_item_ptr(leaf, path->slots[0],
1309 struct btrfs_dev_extent);
e17cade2
CM
1310 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1311 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1312 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1313
1314 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1315 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1316 BTRFS_UUID_SIZE);
1317
0b86a832
CM
1318 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1319 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1320out:
0b86a832
CM
1321 btrfs_free_path(path);
1322 return ret;
1323}
1324
6df9a95e 1325static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1326{
6df9a95e
JB
1327 struct extent_map_tree *em_tree;
1328 struct extent_map *em;
1329 struct rb_node *n;
1330 u64 ret = 0;
0b86a832 1331
6df9a95e
JB
1332 em_tree = &fs_info->mapping_tree.map_tree;
1333 read_lock(&em_tree->lock);
1334 n = rb_last(&em_tree->map);
1335 if (n) {
1336 em = rb_entry(n, struct extent_map, rb_node);
1337 ret = em->start + em->len;
0b86a832 1338 }
6df9a95e
JB
1339 read_unlock(&em_tree->lock);
1340
0b86a832
CM
1341 return ret;
1342}
1343
53f10659
ID
1344static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1345 u64 *devid_ret)
0b86a832
CM
1346{
1347 int ret;
1348 struct btrfs_key key;
1349 struct btrfs_key found_key;
2b82032c
YZ
1350 struct btrfs_path *path;
1351
2b82032c
YZ
1352 path = btrfs_alloc_path();
1353 if (!path)
1354 return -ENOMEM;
0b86a832
CM
1355
1356 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1357 key.type = BTRFS_DEV_ITEM_KEY;
1358 key.offset = (u64)-1;
1359
53f10659 1360 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1361 if (ret < 0)
1362 goto error;
1363
79787eaa 1364 BUG_ON(ret == 0); /* Corruption */
0b86a832 1365
53f10659
ID
1366 ret = btrfs_previous_item(fs_info->chunk_root, path,
1367 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1368 BTRFS_DEV_ITEM_KEY);
1369 if (ret) {
53f10659 1370 *devid_ret = 1;
0b86a832
CM
1371 } else {
1372 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1373 path->slots[0]);
53f10659 1374 *devid_ret = found_key.offset + 1;
0b86a832
CM
1375 }
1376 ret = 0;
1377error:
2b82032c 1378 btrfs_free_path(path);
0b86a832
CM
1379 return ret;
1380}
1381
1382/*
1383 * the device information is stored in the chunk root
1384 * the btrfs_device struct should be fully filled in
1385 */
48a3b636
ES
1386static int btrfs_add_device(struct btrfs_trans_handle *trans,
1387 struct btrfs_root *root,
1388 struct btrfs_device *device)
0b86a832
CM
1389{
1390 int ret;
1391 struct btrfs_path *path;
1392 struct btrfs_dev_item *dev_item;
1393 struct extent_buffer *leaf;
1394 struct btrfs_key key;
1395 unsigned long ptr;
0b86a832
CM
1396
1397 root = root->fs_info->chunk_root;
1398
1399 path = btrfs_alloc_path();
1400 if (!path)
1401 return -ENOMEM;
1402
0b86a832
CM
1403 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1404 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1405 key.offset = device->devid;
0b86a832
CM
1406
1407 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1408 sizeof(*dev_item));
0b86a832
CM
1409 if (ret)
1410 goto out;
1411
1412 leaf = path->nodes[0];
1413 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1414
1415 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1416 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1417 btrfs_set_device_type(leaf, dev_item, device->type);
1418 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1419 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1420 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1421 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1422 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1423 btrfs_set_device_group(leaf, dev_item, 0);
1424 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1425 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1426 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1427
0b86a832 1428 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 1429 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2b82032c
YZ
1430 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1431 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1432 btrfs_mark_buffer_dirty(leaf);
0b86a832 1433
2b82032c 1434 ret = 0;
0b86a832
CM
1435out:
1436 btrfs_free_path(path);
1437 return ret;
1438}
8f18cf13 1439
a061fc8d
CM
1440static int btrfs_rm_dev_item(struct btrfs_root *root,
1441 struct btrfs_device *device)
1442{
1443 int ret;
1444 struct btrfs_path *path;
a061fc8d 1445 struct btrfs_key key;
a061fc8d
CM
1446 struct btrfs_trans_handle *trans;
1447
1448 root = root->fs_info->chunk_root;
1449
1450 path = btrfs_alloc_path();
1451 if (!path)
1452 return -ENOMEM;
1453
a22285a6 1454 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1455 if (IS_ERR(trans)) {
1456 btrfs_free_path(path);
1457 return PTR_ERR(trans);
1458 }
a061fc8d
CM
1459 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1460 key.type = BTRFS_DEV_ITEM_KEY;
1461 key.offset = device->devid;
7d9eb12c 1462 lock_chunks(root);
a061fc8d
CM
1463
1464 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1465 if (ret < 0)
1466 goto out;
1467
1468 if (ret > 0) {
1469 ret = -ENOENT;
1470 goto out;
1471 }
1472
1473 ret = btrfs_del_item(trans, root, path);
1474 if (ret)
1475 goto out;
a061fc8d
CM
1476out:
1477 btrfs_free_path(path);
7d9eb12c 1478 unlock_chunks(root);
a061fc8d
CM
1479 btrfs_commit_transaction(trans, root);
1480 return ret;
1481}
1482
1483int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1484{
1485 struct btrfs_device *device;
2b82032c 1486 struct btrfs_device *next_device;
a061fc8d 1487 struct block_device *bdev;
dfe25020 1488 struct buffer_head *bh = NULL;
a061fc8d 1489 struct btrfs_super_block *disk_super;
1f78160c 1490 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1491 u64 all_avail;
1492 u64 devid;
2b82032c
YZ
1493 u64 num_devices;
1494 u8 *dev_uuid;
de98ced9 1495 unsigned seq;
a061fc8d 1496 int ret = 0;
1f78160c 1497 bool clear_super = false;
a061fc8d 1498
a061fc8d
CM
1499 mutex_lock(&uuid_mutex);
1500
de98ced9
MX
1501 do {
1502 seq = read_seqbegin(&root->fs_info->profiles_lock);
1503
1504 all_avail = root->fs_info->avail_data_alloc_bits |
1505 root->fs_info->avail_system_alloc_bits |
1506 root->fs_info->avail_metadata_alloc_bits;
1507 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
a061fc8d 1508
8dabb742
SB
1509 num_devices = root->fs_info->fs_devices->num_devices;
1510 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1511 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1512 WARN_ON(num_devices < 1);
1513 num_devices--;
1514 }
1515 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1516
1517 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
183860f6 1518 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
a061fc8d
CM
1519 goto out;
1520 }
1521
8dabb742 1522 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
183860f6 1523 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
a061fc8d
CM
1524 goto out;
1525 }
1526
53b381b3
DW
1527 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1528 root->fs_info->fs_devices->rw_devices <= 2) {
183860f6 1529 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
53b381b3
DW
1530 goto out;
1531 }
1532 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1533 root->fs_info->fs_devices->rw_devices <= 3) {
183860f6 1534 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
53b381b3
DW
1535 goto out;
1536 }
1537
dfe25020 1538 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1539 struct list_head *devices;
1540 struct btrfs_device *tmp;
a061fc8d 1541
dfe25020
CM
1542 device = NULL;
1543 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1544 /*
1545 * It is safe to read the devices since the volume_mutex
1546 * is held.
1547 */
c6e30871 1548 list_for_each_entry(tmp, devices, dev_list) {
63a212ab
SB
1549 if (tmp->in_fs_metadata &&
1550 !tmp->is_tgtdev_for_dev_replace &&
1551 !tmp->bdev) {
dfe25020
CM
1552 device = tmp;
1553 break;
1554 }
1555 }
1556 bdev = NULL;
1557 bh = NULL;
1558 disk_super = NULL;
1559 if (!device) {
183860f6 1560 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
dfe25020
CM
1561 goto out;
1562 }
dfe25020 1563 } else {
beaf8ab3 1564 ret = btrfs_get_bdev_and_sb(device_path,
cc975eb4 1565 FMODE_WRITE | FMODE_EXCL,
beaf8ab3
SB
1566 root->fs_info->bdev_holder, 0,
1567 &bdev, &bh);
1568 if (ret)
dfe25020 1569 goto out;
dfe25020 1570 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1571 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c 1572 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1573 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2b82032c 1574 disk_super->fsid);
dfe25020
CM
1575 if (!device) {
1576 ret = -ENOENT;
1577 goto error_brelse;
1578 }
2b82032c 1579 }
dfe25020 1580
63a212ab 1581 if (device->is_tgtdev_for_dev_replace) {
183860f6 1582 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab
SB
1583 goto error_brelse;
1584 }
1585
2b82032c 1586 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1587 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c
YZ
1588 goto error_brelse;
1589 }
1590
1591 if (device->writeable) {
0c1daee0 1592 lock_chunks(root);
2b82032c 1593 list_del_init(&device->dev_alloc_list);
0c1daee0 1594 unlock_chunks(root);
2b82032c 1595 root->fs_info->fs_devices->rw_devices--;
1f78160c 1596 clear_super = true;
dfe25020 1597 }
a061fc8d 1598
d7901554 1599 mutex_unlock(&uuid_mutex);
a061fc8d 1600 ret = btrfs_shrink_device(device, 0);
d7901554 1601 mutex_lock(&uuid_mutex);
a061fc8d 1602 if (ret)
9b3517e9 1603 goto error_undo;
a061fc8d 1604
63a212ab
SB
1605 /*
1606 * TODO: the superblock still includes this device in its num_devices
1607 * counter although write_all_supers() is not locked out. This
1608 * could give a filesystem state which requires a degraded mount.
1609 */
a061fc8d
CM
1610 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1611 if (ret)
9b3517e9 1612 goto error_undo;
a061fc8d 1613
2bf64758
JB
1614 spin_lock(&root->fs_info->free_chunk_lock);
1615 root->fs_info->free_chunk_space = device->total_bytes -
1616 device->bytes_used;
1617 spin_unlock(&root->fs_info->free_chunk_lock);
1618
2b82032c 1619 device->in_fs_metadata = 0;
aa1b8cd4 1620 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1621
1622 /*
1623 * the device list mutex makes sure that we don't change
1624 * the device list while someone else is writing out all
1625 * the device supers.
1626 */
1f78160c
XG
1627
1628 cur_devices = device->fs_devices;
e5e9a520 1629 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1630 list_del_rcu(&device->dev_list);
e5e9a520 1631
e4404d6e 1632 device->fs_devices->num_devices--;
02db0844 1633 device->fs_devices->total_devices--;
2b82032c 1634
cd02dca5
CM
1635 if (device->missing)
1636 root->fs_info->fs_devices->missing_devices--;
1637
2b82032c
YZ
1638 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1639 struct btrfs_device, dev_list);
1640 if (device->bdev == root->fs_info->sb->s_bdev)
1641 root->fs_info->sb->s_bdev = next_device->bdev;
1642 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1643 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1644
1f78160c 1645 if (device->bdev)
e4404d6e 1646 device->fs_devices->open_devices--;
1f78160c
XG
1647
1648 call_rcu(&device->rcu, free_device);
1649 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
e4404d6e 1650
6c41761f
DS
1651 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1652 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
2b82032c 1653
1f78160c 1654 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1655 struct btrfs_fs_devices *fs_devices;
1656 fs_devices = root->fs_info->fs_devices;
1657 while (fs_devices) {
1f78160c 1658 if (fs_devices->seed == cur_devices)
e4404d6e
YZ
1659 break;
1660 fs_devices = fs_devices->seed;
2b82032c 1661 }
1f78160c
XG
1662 fs_devices->seed = cur_devices->seed;
1663 cur_devices->seed = NULL;
0c1daee0 1664 lock_chunks(root);
1f78160c 1665 __btrfs_close_devices(cur_devices);
0c1daee0 1666 unlock_chunks(root);
1f78160c 1667 free_fs_devices(cur_devices);
2b82032c
YZ
1668 }
1669
5af3e8cc
SB
1670 root->fs_info->num_tolerated_disk_barrier_failures =
1671 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1672
2b82032c
YZ
1673 /*
1674 * at this point, the device is zero sized. We want to
1675 * remove it from the devices list and zero out the old super
1676 */
aa1b8cd4 1677 if (clear_super && disk_super) {
dfe25020
CM
1678 /* make sure this device isn't detected as part of
1679 * the FS anymore
1680 */
1681 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1682 set_buffer_dirty(bh);
1683 sync_dirty_buffer(bh);
dfe25020 1684 }
a061fc8d 1685
a061fc8d 1686 ret = 0;
a061fc8d 1687
b8b8ff59 1688 /* Notify udev that device has changed */
3c911608
ES
1689 if (bdev)
1690 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
b8b8ff59 1691
a061fc8d
CM
1692error_brelse:
1693 brelse(bh);
dfe25020 1694 if (bdev)
e525fd89 1695 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1696out:
1697 mutex_unlock(&uuid_mutex);
a061fc8d 1698 return ret;
9b3517e9
ID
1699error_undo:
1700 if (device->writeable) {
0c1daee0 1701 lock_chunks(root);
9b3517e9
ID
1702 list_add(&device->dev_alloc_list,
1703 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1704 unlock_chunks(root);
9b3517e9
ID
1705 root->fs_info->fs_devices->rw_devices++;
1706 }
1707 goto error_brelse;
a061fc8d
CM
1708}
1709
e93c89c1
SB
1710void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1711 struct btrfs_device *srcdev)
1712{
1713 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1714 list_del_rcu(&srcdev->dev_list);
1715 list_del_rcu(&srcdev->dev_alloc_list);
1716 fs_info->fs_devices->num_devices--;
1717 if (srcdev->missing) {
1718 fs_info->fs_devices->missing_devices--;
1719 fs_info->fs_devices->rw_devices++;
1720 }
1721 if (srcdev->can_discard)
1722 fs_info->fs_devices->num_can_discard--;
1723 if (srcdev->bdev)
1724 fs_info->fs_devices->open_devices--;
1725
1726 call_rcu(&srcdev->rcu, free_device);
1727}
1728
1729void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1730 struct btrfs_device *tgtdev)
1731{
1732 struct btrfs_device *next_device;
1733
1734 WARN_ON(!tgtdev);
1735 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1736 if (tgtdev->bdev) {
1737 btrfs_scratch_superblock(tgtdev);
1738 fs_info->fs_devices->open_devices--;
1739 }
1740 fs_info->fs_devices->num_devices--;
1741 if (tgtdev->can_discard)
1742 fs_info->fs_devices->num_can_discard++;
1743
1744 next_device = list_entry(fs_info->fs_devices->devices.next,
1745 struct btrfs_device, dev_list);
1746 if (tgtdev->bdev == fs_info->sb->s_bdev)
1747 fs_info->sb->s_bdev = next_device->bdev;
1748 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1749 fs_info->fs_devices->latest_bdev = next_device->bdev;
1750 list_del_rcu(&tgtdev->dev_list);
1751
1752 call_rcu(&tgtdev->rcu, free_device);
1753
1754 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1755}
1756
48a3b636
ES
1757static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1758 struct btrfs_device **device)
7ba15b7d
SB
1759{
1760 int ret = 0;
1761 struct btrfs_super_block *disk_super;
1762 u64 devid;
1763 u8 *dev_uuid;
1764 struct block_device *bdev;
1765 struct buffer_head *bh;
1766
1767 *device = NULL;
1768 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1769 root->fs_info->bdev_holder, 0, &bdev, &bh);
1770 if (ret)
1771 return ret;
1772 disk_super = (struct btrfs_super_block *)bh->b_data;
1773 devid = btrfs_stack_device_id(&disk_super->dev_item);
1774 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1775 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
1776 disk_super->fsid);
1777 brelse(bh);
1778 if (!*device)
1779 ret = -ENOENT;
1780 blkdev_put(bdev, FMODE_READ);
1781 return ret;
1782}
1783
1784int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1785 char *device_path,
1786 struct btrfs_device **device)
1787{
1788 *device = NULL;
1789 if (strcmp(device_path, "missing") == 0) {
1790 struct list_head *devices;
1791 struct btrfs_device *tmp;
1792
1793 devices = &root->fs_info->fs_devices->devices;
1794 /*
1795 * It is safe to read the devices since the volume_mutex
1796 * is held by the caller.
1797 */
1798 list_for_each_entry(tmp, devices, dev_list) {
1799 if (tmp->in_fs_metadata && !tmp->bdev) {
1800 *device = tmp;
1801 break;
1802 }
1803 }
1804
1805 if (!*device) {
1806 pr_err("btrfs: no missing device found\n");
1807 return -ENOENT;
1808 }
1809
1810 return 0;
1811 } else {
1812 return btrfs_find_device_by_path(root, device_path, device);
1813 }
1814}
1815
2b82032c
YZ
1816/*
1817 * does all the dirty work required for changing file system's UUID.
1818 */
125ccb0a 1819static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
1820{
1821 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1822 struct btrfs_fs_devices *old_devices;
e4404d6e 1823 struct btrfs_fs_devices *seed_devices;
6c41761f 1824 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1825 struct btrfs_device *device;
1826 u64 super_flags;
1827
1828 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1829 if (!fs_devices->seeding)
2b82032c
YZ
1830 return -EINVAL;
1831
2208a378
ID
1832 seed_devices = __alloc_fs_devices();
1833 if (IS_ERR(seed_devices))
1834 return PTR_ERR(seed_devices);
2b82032c 1835
e4404d6e
YZ
1836 old_devices = clone_fs_devices(fs_devices);
1837 if (IS_ERR(old_devices)) {
1838 kfree(seed_devices);
1839 return PTR_ERR(old_devices);
2b82032c 1840 }
e4404d6e 1841
2b82032c
YZ
1842 list_add(&old_devices->list, &fs_uuids);
1843
e4404d6e
YZ
1844 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1845 seed_devices->opened = 1;
1846 INIT_LIST_HEAD(&seed_devices->devices);
1847 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1848 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1849
1850 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1851 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1852 synchronize_rcu);
c9513edb
XG
1853 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1854
e4404d6e
YZ
1855 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1856 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1857 device->fs_devices = seed_devices;
1858 }
1859
2b82032c
YZ
1860 fs_devices->seeding = 0;
1861 fs_devices->num_devices = 0;
1862 fs_devices->open_devices = 0;
02db0844 1863 fs_devices->total_devices = 0;
e4404d6e 1864 fs_devices->seed = seed_devices;
2b82032c
YZ
1865
1866 generate_random_uuid(fs_devices->fsid);
1867 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1868 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1869 super_flags = btrfs_super_flags(disk_super) &
1870 ~BTRFS_SUPER_FLAG_SEEDING;
1871 btrfs_set_super_flags(disk_super, super_flags);
1872
1873 return 0;
1874}
1875
1876/*
1877 * strore the expected generation for seed devices in device items.
1878 */
1879static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1880 struct btrfs_root *root)
1881{
1882 struct btrfs_path *path;
1883 struct extent_buffer *leaf;
1884 struct btrfs_dev_item *dev_item;
1885 struct btrfs_device *device;
1886 struct btrfs_key key;
1887 u8 fs_uuid[BTRFS_UUID_SIZE];
1888 u8 dev_uuid[BTRFS_UUID_SIZE];
1889 u64 devid;
1890 int ret;
1891
1892 path = btrfs_alloc_path();
1893 if (!path)
1894 return -ENOMEM;
1895
1896 root = root->fs_info->chunk_root;
1897 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1898 key.offset = 0;
1899 key.type = BTRFS_DEV_ITEM_KEY;
1900
1901 while (1) {
1902 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1903 if (ret < 0)
1904 goto error;
1905
1906 leaf = path->nodes[0];
1907next_slot:
1908 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1909 ret = btrfs_next_leaf(root, path);
1910 if (ret > 0)
1911 break;
1912 if (ret < 0)
1913 goto error;
1914 leaf = path->nodes[0];
1915 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 1916 btrfs_release_path(path);
2b82032c
YZ
1917 continue;
1918 }
1919
1920 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1921 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1922 key.type != BTRFS_DEV_ITEM_KEY)
1923 break;
1924
1925 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1926 struct btrfs_dev_item);
1927 devid = btrfs_device_id(leaf, dev_item);
1928 read_extent_buffer(leaf, dev_uuid,
1929 (unsigned long)btrfs_device_uuid(dev_item),
1930 BTRFS_UUID_SIZE);
1931 read_extent_buffer(leaf, fs_uuid,
1932 (unsigned long)btrfs_device_fsid(dev_item),
1933 BTRFS_UUID_SIZE);
aa1b8cd4
SB
1934 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1935 fs_uuid);
79787eaa 1936 BUG_ON(!device); /* Logic error */
2b82032c
YZ
1937
1938 if (device->fs_devices->seeding) {
1939 btrfs_set_device_generation(leaf, dev_item,
1940 device->generation);
1941 btrfs_mark_buffer_dirty(leaf);
1942 }
1943
1944 path->slots[0]++;
1945 goto next_slot;
1946 }
1947 ret = 0;
1948error:
1949 btrfs_free_path(path);
1950 return ret;
1951}
1952
788f20eb
CM
1953int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1954{
d5e2003c 1955 struct request_queue *q;
788f20eb
CM
1956 struct btrfs_trans_handle *trans;
1957 struct btrfs_device *device;
1958 struct block_device *bdev;
788f20eb 1959 struct list_head *devices;
2b82032c 1960 struct super_block *sb = root->fs_info->sb;
606686ee 1961 struct rcu_string *name;
788f20eb 1962 u64 total_bytes;
2b82032c 1963 int seeding_dev = 0;
788f20eb
CM
1964 int ret = 0;
1965
2b82032c 1966 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 1967 return -EROFS;
788f20eb 1968
a5d16333 1969 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 1970 root->fs_info->bdev_holder);
7f59203a
JB
1971 if (IS_ERR(bdev))
1972 return PTR_ERR(bdev);
a2135011 1973
2b82032c
YZ
1974 if (root->fs_info->fs_devices->seeding) {
1975 seeding_dev = 1;
1976 down_write(&sb->s_umount);
1977 mutex_lock(&uuid_mutex);
1978 }
1979
8c8bee1d 1980 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 1981
788f20eb 1982 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
1983
1984 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 1985 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1986 if (device->bdev == bdev) {
1987 ret = -EEXIST;
d25628bd
LB
1988 mutex_unlock(
1989 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 1990 goto error;
788f20eb
CM
1991 }
1992 }
d25628bd 1993 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 1994
12bd2fc0
ID
1995 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
1996 if (IS_ERR(device)) {
788f20eb 1997 /* we can safely leave the fs_devices entry around */
12bd2fc0 1998 ret = PTR_ERR(device);
2b82032c 1999 goto error;
788f20eb
CM
2000 }
2001
606686ee
JB
2002 name = rcu_string_strdup(device_path, GFP_NOFS);
2003 if (!name) {
788f20eb 2004 kfree(device);
2b82032c
YZ
2005 ret = -ENOMEM;
2006 goto error;
788f20eb 2007 }
606686ee 2008 rcu_assign_pointer(device->name, name);
2b82032c 2009
a22285a6 2010 trans = btrfs_start_transaction(root, 0);
98d5dc13 2011 if (IS_ERR(trans)) {
606686ee 2012 rcu_string_free(device->name);
98d5dc13
TI
2013 kfree(device);
2014 ret = PTR_ERR(trans);
2015 goto error;
2016 }
2017
2b82032c
YZ
2018 lock_chunks(root);
2019
d5e2003c
JB
2020 q = bdev_get_queue(bdev);
2021 if (blk_queue_discard(q))
2022 device->can_discard = 1;
2b82032c 2023 device->writeable = 1;
2b82032c 2024 device->generation = trans->transid;
788f20eb
CM
2025 device->io_width = root->sectorsize;
2026 device->io_align = root->sectorsize;
2027 device->sector_size = root->sectorsize;
2028 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2029 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
2030 device->dev_root = root->fs_info->dev_root;
2031 device->bdev = bdev;
dfe25020 2032 device->in_fs_metadata = 1;
63a212ab 2033 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2034 device->mode = FMODE_EXCL;
2b82032c 2035 set_blocksize(device->bdev, 4096);
788f20eb 2036
2b82032c
YZ
2037 if (seeding_dev) {
2038 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2039 ret = btrfs_prepare_sprout(root);
79787eaa 2040 BUG_ON(ret); /* -ENOMEM */
2b82032c 2041 }
788f20eb 2042
2b82032c 2043 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2044
e5e9a520 2045 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 2046 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2047 list_add(&device->dev_alloc_list,
2048 &root->fs_info->fs_devices->alloc_list);
2049 root->fs_info->fs_devices->num_devices++;
2050 root->fs_info->fs_devices->open_devices++;
2051 root->fs_info->fs_devices->rw_devices++;
02db0844 2052 root->fs_info->fs_devices->total_devices++;
d5e2003c
JB
2053 if (device->can_discard)
2054 root->fs_info->fs_devices->num_can_discard++;
2b82032c 2055 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2056
2bf64758
JB
2057 spin_lock(&root->fs_info->free_chunk_lock);
2058 root->fs_info->free_chunk_space += device->total_bytes;
2059 spin_unlock(&root->fs_info->free_chunk_lock);
2060
c289811c
CM
2061 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2062 root->fs_info->fs_devices->rotating = 1;
2063
6c41761f
DS
2064 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2065 btrfs_set_super_total_bytes(root->fs_info->super_copy,
788f20eb
CM
2066 total_bytes + device->total_bytes);
2067
6c41761f
DS
2068 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2069 btrfs_set_super_num_devices(root->fs_info->super_copy,
788f20eb 2070 total_bytes + 1);
e5e9a520 2071 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2072
2b82032c
YZ
2073 if (seeding_dev) {
2074 ret = init_first_rw_device(trans, root, device);
005d6427
DS
2075 if (ret) {
2076 btrfs_abort_transaction(trans, root, ret);
79787eaa 2077 goto error_trans;
005d6427 2078 }
2b82032c 2079 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2080 if (ret) {
2081 btrfs_abort_transaction(trans, root, ret);
79787eaa 2082 goto error_trans;
005d6427 2083 }
2b82032c
YZ
2084 } else {
2085 ret = btrfs_add_device(trans, root, device);
005d6427
DS
2086 if (ret) {
2087 btrfs_abort_transaction(trans, root, ret);
79787eaa 2088 goto error_trans;
005d6427 2089 }
2b82032c
YZ
2090 }
2091
913d952e
CM
2092 /*
2093 * we've got more storage, clear any full flags on the space
2094 * infos
2095 */
2096 btrfs_clear_space_info_full(root->fs_info);
2097
7d9eb12c 2098 unlock_chunks(root);
5af3e8cc
SB
2099 root->fs_info->num_tolerated_disk_barrier_failures =
2100 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2101 ret = btrfs_commit_transaction(trans, root);
a2135011 2102
2b82032c
YZ
2103 if (seeding_dev) {
2104 mutex_unlock(&uuid_mutex);
2105 up_write(&sb->s_umount);
788f20eb 2106
79787eaa
JM
2107 if (ret) /* transaction commit */
2108 return ret;
2109
2b82032c 2110 ret = btrfs_relocate_sys_chunks(root);
79787eaa
JM
2111 if (ret < 0)
2112 btrfs_error(root->fs_info, ret,
2113 "Failed to relocate sys chunks after "
2114 "device initialization. This can be fixed "
2115 "using the \"btrfs balance\" command.");
671415b7
MX
2116 trans = btrfs_attach_transaction(root);
2117 if (IS_ERR(trans)) {
2118 if (PTR_ERR(trans) == -ENOENT)
2119 return 0;
2120 return PTR_ERR(trans);
2121 }
2122 ret = btrfs_commit_transaction(trans, root);
2b82032c 2123 }
c9e9f97b 2124
2b82032c 2125 return ret;
79787eaa
JM
2126
2127error_trans:
2128 unlock_chunks(root);
79787eaa 2129 btrfs_end_transaction(trans, root);
606686ee 2130 rcu_string_free(device->name);
79787eaa 2131 kfree(device);
2b82032c 2132error:
e525fd89 2133 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2134 if (seeding_dev) {
2135 mutex_unlock(&uuid_mutex);
2136 up_write(&sb->s_umount);
2137 }
c9e9f97b 2138 return ret;
788f20eb
CM
2139}
2140
e93c89c1
SB
2141int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2142 struct btrfs_device **device_out)
2143{
2144 struct request_queue *q;
2145 struct btrfs_device *device;
2146 struct block_device *bdev;
2147 struct btrfs_fs_info *fs_info = root->fs_info;
2148 struct list_head *devices;
2149 struct rcu_string *name;
12bd2fc0 2150 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2151 int ret = 0;
2152
2153 *device_out = NULL;
2154 if (fs_info->fs_devices->seeding)
2155 return -EINVAL;
2156
2157 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2158 fs_info->bdev_holder);
2159 if (IS_ERR(bdev))
2160 return PTR_ERR(bdev);
2161
2162 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2163
2164 devices = &fs_info->fs_devices->devices;
2165 list_for_each_entry(device, devices, dev_list) {
2166 if (device->bdev == bdev) {
2167 ret = -EEXIST;
2168 goto error;
2169 }
2170 }
2171
12bd2fc0
ID
2172 device = btrfs_alloc_device(NULL, &devid, NULL);
2173 if (IS_ERR(device)) {
2174 ret = PTR_ERR(device);
e93c89c1
SB
2175 goto error;
2176 }
2177
2178 name = rcu_string_strdup(device_path, GFP_NOFS);
2179 if (!name) {
2180 kfree(device);
2181 ret = -ENOMEM;
2182 goto error;
2183 }
2184 rcu_assign_pointer(device->name, name);
2185
2186 q = bdev_get_queue(bdev);
2187 if (blk_queue_discard(q))
2188 device->can_discard = 1;
2189 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2190 device->writeable = 1;
e93c89c1
SB
2191 device->generation = 0;
2192 device->io_width = root->sectorsize;
2193 device->io_align = root->sectorsize;
2194 device->sector_size = root->sectorsize;
2195 device->total_bytes = i_size_read(bdev->bd_inode);
2196 device->disk_total_bytes = device->total_bytes;
2197 device->dev_root = fs_info->dev_root;
2198 device->bdev = bdev;
2199 device->in_fs_metadata = 1;
2200 device->is_tgtdev_for_dev_replace = 1;
2201 device->mode = FMODE_EXCL;
2202 set_blocksize(device->bdev, 4096);
2203 device->fs_devices = fs_info->fs_devices;
2204 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2205 fs_info->fs_devices->num_devices++;
2206 fs_info->fs_devices->open_devices++;
2207 if (device->can_discard)
2208 fs_info->fs_devices->num_can_discard++;
2209 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2210
2211 *device_out = device;
2212 return ret;
2213
2214error:
2215 blkdev_put(bdev, FMODE_EXCL);
2216 return ret;
2217}
2218
2219void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2220 struct btrfs_device *tgtdev)
2221{
2222 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2223 tgtdev->io_width = fs_info->dev_root->sectorsize;
2224 tgtdev->io_align = fs_info->dev_root->sectorsize;
2225 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2226 tgtdev->dev_root = fs_info->dev_root;
2227 tgtdev->in_fs_metadata = 1;
2228}
2229
d397712b
CM
2230static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2231 struct btrfs_device *device)
0b86a832
CM
2232{
2233 int ret;
2234 struct btrfs_path *path;
2235 struct btrfs_root *root;
2236 struct btrfs_dev_item *dev_item;
2237 struct extent_buffer *leaf;
2238 struct btrfs_key key;
2239
2240 root = device->dev_root->fs_info->chunk_root;
2241
2242 path = btrfs_alloc_path();
2243 if (!path)
2244 return -ENOMEM;
2245
2246 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2247 key.type = BTRFS_DEV_ITEM_KEY;
2248 key.offset = device->devid;
2249
2250 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2251 if (ret < 0)
2252 goto out;
2253
2254 if (ret > 0) {
2255 ret = -ENOENT;
2256 goto out;
2257 }
2258
2259 leaf = path->nodes[0];
2260 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2261
2262 btrfs_set_device_id(leaf, dev_item, device->devid);
2263 btrfs_set_device_type(leaf, dev_item, device->type);
2264 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2265 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2266 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 2267 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
2268 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2269 btrfs_mark_buffer_dirty(leaf);
2270
2271out:
2272 btrfs_free_path(path);
2273 return ret;
2274}
2275
7d9eb12c 2276static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2277 struct btrfs_device *device, u64 new_size)
2278{
2279 struct btrfs_super_block *super_copy =
6c41761f 2280 device->dev_root->fs_info->super_copy;
8f18cf13
CM
2281 u64 old_total = btrfs_super_total_bytes(super_copy);
2282 u64 diff = new_size - device->total_bytes;
2283
2b82032c
YZ
2284 if (!device->writeable)
2285 return -EACCES;
63a212ab
SB
2286 if (new_size <= device->total_bytes ||
2287 device->is_tgtdev_for_dev_replace)
2b82032c
YZ
2288 return -EINVAL;
2289
8f18cf13 2290 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2291 device->fs_devices->total_rw_bytes += diff;
2292
2293 device->total_bytes = new_size;
9779b72f 2294 device->disk_total_bytes = new_size;
4184ea7f
CM
2295 btrfs_clear_space_info_full(device->dev_root->fs_info);
2296
8f18cf13
CM
2297 return btrfs_update_device(trans, device);
2298}
2299
7d9eb12c
CM
2300int btrfs_grow_device(struct btrfs_trans_handle *trans,
2301 struct btrfs_device *device, u64 new_size)
2302{
2303 int ret;
2304 lock_chunks(device->dev_root);
2305 ret = __btrfs_grow_device(trans, device, new_size);
2306 unlock_chunks(device->dev_root);
2307 return ret;
2308}
2309
8f18cf13
CM
2310static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2311 struct btrfs_root *root,
2312 u64 chunk_tree, u64 chunk_objectid,
2313 u64 chunk_offset)
2314{
2315 int ret;
2316 struct btrfs_path *path;
2317 struct btrfs_key key;
2318
2319 root = root->fs_info->chunk_root;
2320 path = btrfs_alloc_path();
2321 if (!path)
2322 return -ENOMEM;
2323
2324 key.objectid = chunk_objectid;
2325 key.offset = chunk_offset;
2326 key.type = BTRFS_CHUNK_ITEM_KEY;
2327
2328 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2329 if (ret < 0)
2330 goto out;
2331 else if (ret > 0) { /* Logic error or corruption */
2332 btrfs_error(root->fs_info, -ENOENT,
2333 "Failed lookup while freeing chunk.");
2334 ret = -ENOENT;
2335 goto out;
2336 }
8f18cf13
CM
2337
2338 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
2339 if (ret < 0)
2340 btrfs_error(root->fs_info, ret,
2341 "Failed to delete chunk item.");
2342out:
8f18cf13 2343 btrfs_free_path(path);
65a246c5 2344 return ret;
8f18cf13
CM
2345}
2346
b2950863 2347static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2348 chunk_offset)
2349{
6c41761f 2350 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2351 struct btrfs_disk_key *disk_key;
2352 struct btrfs_chunk *chunk;
2353 u8 *ptr;
2354 int ret = 0;
2355 u32 num_stripes;
2356 u32 array_size;
2357 u32 len = 0;
2358 u32 cur;
2359 struct btrfs_key key;
2360
2361 array_size = btrfs_super_sys_array_size(super_copy);
2362
2363 ptr = super_copy->sys_chunk_array;
2364 cur = 0;
2365
2366 while (cur < array_size) {
2367 disk_key = (struct btrfs_disk_key *)ptr;
2368 btrfs_disk_key_to_cpu(&key, disk_key);
2369
2370 len = sizeof(*disk_key);
2371
2372 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2373 chunk = (struct btrfs_chunk *)(ptr + len);
2374 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2375 len += btrfs_chunk_item_size(num_stripes);
2376 } else {
2377 ret = -EIO;
2378 break;
2379 }
2380 if (key.objectid == chunk_objectid &&
2381 key.offset == chunk_offset) {
2382 memmove(ptr, ptr + len, array_size - (cur + len));
2383 array_size -= len;
2384 btrfs_set_super_sys_array_size(super_copy, array_size);
2385 } else {
2386 ptr += len;
2387 cur += len;
2388 }
2389 }
2390 return ret;
2391}
2392
b2950863 2393static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
2394 u64 chunk_tree, u64 chunk_objectid,
2395 u64 chunk_offset)
2396{
2397 struct extent_map_tree *em_tree;
2398 struct btrfs_root *extent_root;
2399 struct btrfs_trans_handle *trans;
2400 struct extent_map *em;
2401 struct map_lookup *map;
2402 int ret;
2403 int i;
2404
2405 root = root->fs_info->chunk_root;
2406 extent_root = root->fs_info->extent_root;
2407 em_tree = &root->fs_info->mapping_tree.map_tree;
2408
ba1bf481
JB
2409 ret = btrfs_can_relocate(extent_root, chunk_offset);
2410 if (ret)
2411 return -ENOSPC;
2412
8f18cf13 2413 /* step one, relocate all the extents inside this chunk */
1a40e23b 2414 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
2415 if (ret)
2416 return ret;
8f18cf13 2417
a22285a6 2418 trans = btrfs_start_transaction(root, 0);
0f788c58
LB
2419 if (IS_ERR(trans)) {
2420 ret = PTR_ERR(trans);
2421 btrfs_std_error(root->fs_info, ret);
2422 return ret;
2423 }
8f18cf13 2424
7d9eb12c
CM
2425 lock_chunks(root);
2426
8f18cf13
CM
2427 /*
2428 * step two, delete the device extents and the
2429 * chunk tree entries
2430 */
890871be 2431 read_lock(&em_tree->lock);
8f18cf13 2432 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2433 read_unlock(&em_tree->lock);
8f18cf13 2434
285190d9 2435 BUG_ON(!em || em->start > chunk_offset ||
a061fc8d 2436 em->start + em->len < chunk_offset);
8f18cf13
CM
2437 map = (struct map_lookup *)em->bdev;
2438
2439 for (i = 0; i < map->num_stripes; i++) {
2440 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2441 map->stripes[i].physical);
2442 BUG_ON(ret);
a061fc8d 2443
dfe25020
CM
2444 if (map->stripes[i].dev) {
2445 ret = btrfs_update_device(trans, map->stripes[i].dev);
2446 BUG_ON(ret);
2447 }
8f18cf13
CM
2448 }
2449 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2450 chunk_offset);
2451
2452 BUG_ON(ret);
2453
1abe9b8a 2454 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2455
8f18cf13
CM
2456 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2457 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2458 BUG_ON(ret);
8f18cf13
CM
2459 }
2460
2b82032c
YZ
2461 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2462 BUG_ON(ret);
2463
890871be 2464 write_lock(&em_tree->lock);
2b82032c 2465 remove_extent_mapping(em_tree, em);
890871be 2466 write_unlock(&em_tree->lock);
2b82032c
YZ
2467
2468 kfree(map);
2469 em->bdev = NULL;
2470
2471 /* once for the tree */
2472 free_extent_map(em);
2473 /* once for us */
2474 free_extent_map(em);
2475
2476 unlock_chunks(root);
2477 btrfs_end_transaction(trans, root);
2478 return 0;
2479}
2480
2481static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2482{
2483 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2484 struct btrfs_path *path;
2485 struct extent_buffer *leaf;
2486 struct btrfs_chunk *chunk;
2487 struct btrfs_key key;
2488 struct btrfs_key found_key;
2489 u64 chunk_tree = chunk_root->root_key.objectid;
2490 u64 chunk_type;
ba1bf481
JB
2491 bool retried = false;
2492 int failed = 0;
2b82032c
YZ
2493 int ret;
2494
2495 path = btrfs_alloc_path();
2496 if (!path)
2497 return -ENOMEM;
2498
ba1bf481 2499again:
2b82032c
YZ
2500 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2501 key.offset = (u64)-1;
2502 key.type = BTRFS_CHUNK_ITEM_KEY;
2503
2504 while (1) {
2505 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2506 if (ret < 0)
2507 goto error;
79787eaa 2508 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2509
2510 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2511 key.type);
2512 if (ret < 0)
2513 goto error;
2514 if (ret > 0)
2515 break;
1a40e23b 2516
2b82032c
YZ
2517 leaf = path->nodes[0];
2518 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2519
2b82032c
YZ
2520 chunk = btrfs_item_ptr(leaf, path->slots[0],
2521 struct btrfs_chunk);
2522 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2523 btrfs_release_path(path);
8f18cf13 2524
2b82032c
YZ
2525 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2526 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2527 found_key.objectid,
2528 found_key.offset);
ba1bf481
JB
2529 if (ret == -ENOSPC)
2530 failed++;
2531 else if (ret)
2532 BUG();
2b82032c 2533 }
8f18cf13 2534
2b82032c
YZ
2535 if (found_key.offset == 0)
2536 break;
2537 key.offset = found_key.offset - 1;
2538 }
2539 ret = 0;
ba1bf481
JB
2540 if (failed && !retried) {
2541 failed = 0;
2542 retried = true;
2543 goto again;
2544 } else if (failed && retried) {
2545 WARN_ON(1);
2546 ret = -ENOSPC;
2547 }
2b82032c
YZ
2548error:
2549 btrfs_free_path(path);
2550 return ret;
8f18cf13
CM
2551}
2552
0940ebf6
ID
2553static int insert_balance_item(struct btrfs_root *root,
2554 struct btrfs_balance_control *bctl)
2555{
2556 struct btrfs_trans_handle *trans;
2557 struct btrfs_balance_item *item;
2558 struct btrfs_disk_balance_args disk_bargs;
2559 struct btrfs_path *path;
2560 struct extent_buffer *leaf;
2561 struct btrfs_key key;
2562 int ret, err;
2563
2564 path = btrfs_alloc_path();
2565 if (!path)
2566 return -ENOMEM;
2567
2568 trans = btrfs_start_transaction(root, 0);
2569 if (IS_ERR(trans)) {
2570 btrfs_free_path(path);
2571 return PTR_ERR(trans);
2572 }
2573
2574 key.objectid = BTRFS_BALANCE_OBJECTID;
2575 key.type = BTRFS_BALANCE_ITEM_KEY;
2576 key.offset = 0;
2577
2578 ret = btrfs_insert_empty_item(trans, root, path, &key,
2579 sizeof(*item));
2580 if (ret)
2581 goto out;
2582
2583 leaf = path->nodes[0];
2584 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2585
2586 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2587
2588 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2589 btrfs_set_balance_data(leaf, item, &disk_bargs);
2590 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2591 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2592 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2593 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2594
2595 btrfs_set_balance_flags(leaf, item, bctl->flags);
2596
2597 btrfs_mark_buffer_dirty(leaf);
2598out:
2599 btrfs_free_path(path);
2600 err = btrfs_commit_transaction(trans, root);
2601 if (err && !ret)
2602 ret = err;
2603 return ret;
2604}
2605
2606static int del_balance_item(struct btrfs_root *root)
2607{
2608 struct btrfs_trans_handle *trans;
2609 struct btrfs_path *path;
2610 struct btrfs_key key;
2611 int ret, err;
2612
2613 path = btrfs_alloc_path();
2614 if (!path)
2615 return -ENOMEM;
2616
2617 trans = btrfs_start_transaction(root, 0);
2618 if (IS_ERR(trans)) {
2619 btrfs_free_path(path);
2620 return PTR_ERR(trans);
2621 }
2622
2623 key.objectid = BTRFS_BALANCE_OBJECTID;
2624 key.type = BTRFS_BALANCE_ITEM_KEY;
2625 key.offset = 0;
2626
2627 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2628 if (ret < 0)
2629 goto out;
2630 if (ret > 0) {
2631 ret = -ENOENT;
2632 goto out;
2633 }
2634
2635 ret = btrfs_del_item(trans, root, path);
2636out:
2637 btrfs_free_path(path);
2638 err = btrfs_commit_transaction(trans, root);
2639 if (err && !ret)
2640 ret = err;
2641 return ret;
2642}
2643
59641015
ID
2644/*
2645 * This is a heuristic used to reduce the number of chunks balanced on
2646 * resume after balance was interrupted.
2647 */
2648static void update_balance_args(struct btrfs_balance_control *bctl)
2649{
2650 /*
2651 * Turn on soft mode for chunk types that were being converted.
2652 */
2653 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2654 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2655 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2656 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2657 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2658 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2659
2660 /*
2661 * Turn on usage filter if is not already used. The idea is
2662 * that chunks that we have already balanced should be
2663 * reasonably full. Don't do it for chunks that are being
2664 * converted - that will keep us from relocating unconverted
2665 * (albeit full) chunks.
2666 */
2667 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2668 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2669 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2670 bctl->data.usage = 90;
2671 }
2672 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2673 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2674 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2675 bctl->sys.usage = 90;
2676 }
2677 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2678 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2679 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2680 bctl->meta.usage = 90;
2681 }
2682}
2683
c9e9f97b
ID
2684/*
2685 * Should be called with both balance and volume mutexes held to
2686 * serialize other volume operations (add_dev/rm_dev/resize) with
2687 * restriper. Same goes for unset_balance_control.
2688 */
2689static void set_balance_control(struct btrfs_balance_control *bctl)
2690{
2691 struct btrfs_fs_info *fs_info = bctl->fs_info;
2692
2693 BUG_ON(fs_info->balance_ctl);
2694
2695 spin_lock(&fs_info->balance_lock);
2696 fs_info->balance_ctl = bctl;
2697 spin_unlock(&fs_info->balance_lock);
2698}
2699
2700static void unset_balance_control(struct btrfs_fs_info *fs_info)
2701{
2702 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2703
2704 BUG_ON(!fs_info->balance_ctl);
2705
2706 spin_lock(&fs_info->balance_lock);
2707 fs_info->balance_ctl = NULL;
2708 spin_unlock(&fs_info->balance_lock);
2709
2710 kfree(bctl);
2711}
2712
ed25e9b2
ID
2713/*
2714 * Balance filters. Return 1 if chunk should be filtered out
2715 * (should not be balanced).
2716 */
899c81ea 2717static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
2718 struct btrfs_balance_args *bargs)
2719{
899c81ea
ID
2720 chunk_type = chunk_to_extended(chunk_type) &
2721 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 2722
899c81ea 2723 if (bargs->profiles & chunk_type)
ed25e9b2
ID
2724 return 0;
2725
2726 return 1;
2727}
2728
5ce5b3c0
ID
2729static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2730 struct btrfs_balance_args *bargs)
2731{
2732 struct btrfs_block_group_cache *cache;
2733 u64 chunk_used, user_thresh;
2734 int ret = 1;
2735
2736 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2737 chunk_used = btrfs_block_group_used(&cache->item);
2738
a105bb88 2739 if (bargs->usage == 0)
3e39cea6 2740 user_thresh = 1;
a105bb88
ID
2741 else if (bargs->usage > 100)
2742 user_thresh = cache->key.offset;
2743 else
2744 user_thresh = div_factor_fine(cache->key.offset,
2745 bargs->usage);
2746
5ce5b3c0
ID
2747 if (chunk_used < user_thresh)
2748 ret = 0;
2749
2750 btrfs_put_block_group(cache);
2751 return ret;
2752}
2753
409d404b
ID
2754static int chunk_devid_filter(struct extent_buffer *leaf,
2755 struct btrfs_chunk *chunk,
2756 struct btrfs_balance_args *bargs)
2757{
2758 struct btrfs_stripe *stripe;
2759 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2760 int i;
2761
2762 for (i = 0; i < num_stripes; i++) {
2763 stripe = btrfs_stripe_nr(chunk, i);
2764 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2765 return 0;
2766 }
2767
2768 return 1;
2769}
2770
94e60d5a
ID
2771/* [pstart, pend) */
2772static int chunk_drange_filter(struct extent_buffer *leaf,
2773 struct btrfs_chunk *chunk,
2774 u64 chunk_offset,
2775 struct btrfs_balance_args *bargs)
2776{
2777 struct btrfs_stripe *stripe;
2778 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2779 u64 stripe_offset;
2780 u64 stripe_length;
2781 int factor;
2782 int i;
2783
2784 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2785 return 0;
2786
2787 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
2788 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2789 factor = num_stripes / 2;
2790 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2791 factor = num_stripes - 1;
2792 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2793 factor = num_stripes - 2;
2794 } else {
2795 factor = num_stripes;
2796 }
94e60d5a
ID
2797
2798 for (i = 0; i < num_stripes; i++) {
2799 stripe = btrfs_stripe_nr(chunk, i);
2800 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2801 continue;
2802
2803 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2804 stripe_length = btrfs_chunk_length(leaf, chunk);
2805 do_div(stripe_length, factor);
2806
2807 if (stripe_offset < bargs->pend &&
2808 stripe_offset + stripe_length > bargs->pstart)
2809 return 0;
2810 }
2811
2812 return 1;
2813}
2814
ea67176a
ID
2815/* [vstart, vend) */
2816static int chunk_vrange_filter(struct extent_buffer *leaf,
2817 struct btrfs_chunk *chunk,
2818 u64 chunk_offset,
2819 struct btrfs_balance_args *bargs)
2820{
2821 if (chunk_offset < bargs->vend &&
2822 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2823 /* at least part of the chunk is inside this vrange */
2824 return 0;
2825
2826 return 1;
2827}
2828
899c81ea 2829static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
2830 struct btrfs_balance_args *bargs)
2831{
2832 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2833 return 0;
2834
899c81ea
ID
2835 chunk_type = chunk_to_extended(chunk_type) &
2836 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 2837
899c81ea 2838 if (bargs->target == chunk_type)
cfa4c961
ID
2839 return 1;
2840
2841 return 0;
2842}
2843
f43ffb60
ID
2844static int should_balance_chunk(struct btrfs_root *root,
2845 struct extent_buffer *leaf,
2846 struct btrfs_chunk *chunk, u64 chunk_offset)
2847{
2848 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2849 struct btrfs_balance_args *bargs = NULL;
2850 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2851
2852 /* type filter */
2853 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2854 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2855 return 0;
2856 }
2857
2858 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2859 bargs = &bctl->data;
2860 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2861 bargs = &bctl->sys;
2862 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2863 bargs = &bctl->meta;
2864
ed25e9b2
ID
2865 /* profiles filter */
2866 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2867 chunk_profiles_filter(chunk_type, bargs)) {
2868 return 0;
5ce5b3c0
ID
2869 }
2870
2871 /* usage filter */
2872 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2873 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2874 return 0;
409d404b
ID
2875 }
2876
2877 /* devid filter */
2878 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2879 chunk_devid_filter(leaf, chunk, bargs)) {
2880 return 0;
94e60d5a
ID
2881 }
2882
2883 /* drange filter, makes sense only with devid filter */
2884 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2885 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2886 return 0;
ea67176a
ID
2887 }
2888
2889 /* vrange filter */
2890 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2891 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2892 return 0;
ed25e9b2
ID
2893 }
2894
cfa4c961
ID
2895 /* soft profile changing mode */
2896 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2897 chunk_soft_convert_filter(chunk_type, bargs)) {
2898 return 0;
2899 }
2900
f43ffb60
ID
2901 return 1;
2902}
2903
c9e9f97b 2904static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 2905{
19a39dce 2906 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
2907 struct btrfs_root *chunk_root = fs_info->chunk_root;
2908 struct btrfs_root *dev_root = fs_info->dev_root;
2909 struct list_head *devices;
ec44a35c
CM
2910 struct btrfs_device *device;
2911 u64 old_size;
2912 u64 size_to_free;
f43ffb60 2913 struct btrfs_chunk *chunk;
ec44a35c
CM
2914 struct btrfs_path *path;
2915 struct btrfs_key key;
ec44a35c 2916 struct btrfs_key found_key;
c9e9f97b 2917 struct btrfs_trans_handle *trans;
f43ffb60
ID
2918 struct extent_buffer *leaf;
2919 int slot;
c9e9f97b
ID
2920 int ret;
2921 int enospc_errors = 0;
19a39dce 2922 bool counting = true;
ec44a35c 2923
ec44a35c 2924 /* step one make some room on all the devices */
c9e9f97b 2925 devices = &fs_info->fs_devices->devices;
c6e30871 2926 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2927 old_size = device->total_bytes;
2928 size_to_free = div_factor(old_size, 1);
2929 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c 2930 if (!device->writeable ||
63a212ab
SB
2931 device->total_bytes - device->bytes_used > size_to_free ||
2932 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
2933 continue;
2934
2935 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2936 if (ret == -ENOSPC)
2937 break;
ec44a35c
CM
2938 BUG_ON(ret);
2939
a22285a6 2940 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2941 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2942
2943 ret = btrfs_grow_device(trans, device, old_size);
2944 BUG_ON(ret);
2945
2946 btrfs_end_transaction(trans, dev_root);
2947 }
2948
2949 /* step two, relocate all the chunks */
2950 path = btrfs_alloc_path();
17e9f796
MF
2951 if (!path) {
2952 ret = -ENOMEM;
2953 goto error;
2954 }
19a39dce
ID
2955
2956 /* zero out stat counters */
2957 spin_lock(&fs_info->balance_lock);
2958 memset(&bctl->stat, 0, sizeof(bctl->stat));
2959 spin_unlock(&fs_info->balance_lock);
2960again:
ec44a35c
CM
2961 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2962 key.offset = (u64)-1;
2963 key.type = BTRFS_CHUNK_ITEM_KEY;
2964
d397712b 2965 while (1) {
19a39dce 2966 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 2967 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
2968 ret = -ECANCELED;
2969 goto error;
2970 }
2971
ec44a35c
CM
2972 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2973 if (ret < 0)
2974 goto error;
2975
2976 /*
2977 * this shouldn't happen, it means the last relocate
2978 * failed
2979 */
2980 if (ret == 0)
c9e9f97b 2981 BUG(); /* FIXME break ? */
ec44a35c
CM
2982
2983 ret = btrfs_previous_item(chunk_root, path, 0,
2984 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b
ID
2985 if (ret) {
2986 ret = 0;
ec44a35c 2987 break;
c9e9f97b 2988 }
7d9eb12c 2989
f43ffb60
ID
2990 leaf = path->nodes[0];
2991 slot = path->slots[0];
2992 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 2993
ec44a35c
CM
2994 if (found_key.objectid != key.objectid)
2995 break;
7d9eb12c 2996
ec44a35c 2997 /* chunk zero is special */
ba1bf481 2998 if (found_key.offset == 0)
ec44a35c
CM
2999 break;
3000
f43ffb60
ID
3001 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3002
19a39dce
ID
3003 if (!counting) {
3004 spin_lock(&fs_info->balance_lock);
3005 bctl->stat.considered++;
3006 spin_unlock(&fs_info->balance_lock);
3007 }
3008
f43ffb60
ID
3009 ret = should_balance_chunk(chunk_root, leaf, chunk,
3010 found_key.offset);
b3b4aa74 3011 btrfs_release_path(path);
f43ffb60
ID
3012 if (!ret)
3013 goto loop;
3014
19a39dce
ID
3015 if (counting) {
3016 spin_lock(&fs_info->balance_lock);
3017 bctl->stat.expected++;
3018 spin_unlock(&fs_info->balance_lock);
3019 goto loop;
3020 }
3021
ec44a35c
CM
3022 ret = btrfs_relocate_chunk(chunk_root,
3023 chunk_root->root_key.objectid,
3024 found_key.objectid,
3025 found_key.offset);
508794eb
JB
3026 if (ret && ret != -ENOSPC)
3027 goto error;
19a39dce 3028 if (ret == -ENOSPC) {
c9e9f97b 3029 enospc_errors++;
19a39dce
ID
3030 } else {
3031 spin_lock(&fs_info->balance_lock);
3032 bctl->stat.completed++;
3033 spin_unlock(&fs_info->balance_lock);
3034 }
f43ffb60 3035loop:
ba1bf481 3036 key.offset = found_key.offset - 1;
ec44a35c 3037 }
c9e9f97b 3038
19a39dce
ID
3039 if (counting) {
3040 btrfs_release_path(path);
3041 counting = false;
3042 goto again;
3043 }
ec44a35c
CM
3044error:
3045 btrfs_free_path(path);
c9e9f97b
ID
3046 if (enospc_errors) {
3047 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
3048 enospc_errors);
3049 if (!ret)
3050 ret = -ENOSPC;
3051 }
3052
ec44a35c
CM
3053 return ret;
3054}
3055
0c460c0d
ID
3056/**
3057 * alloc_profile_is_valid - see if a given profile is valid and reduced
3058 * @flags: profile to validate
3059 * @extended: if true @flags is treated as an extended profile
3060 */
3061static int alloc_profile_is_valid(u64 flags, int extended)
3062{
3063 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3064 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3065
3066 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3067
3068 /* 1) check that all other bits are zeroed */
3069 if (flags & ~mask)
3070 return 0;
3071
3072 /* 2) see if profile is reduced */
3073 if (flags == 0)
3074 return !extended; /* "0" is valid for usual profiles */
3075
3076 /* true if exactly one bit set */
3077 return (flags & (flags - 1)) == 0;
3078}
3079
837d5b6e
ID
3080static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3081{
a7e99c69
ID
3082 /* cancel requested || normal exit path */
3083 return atomic_read(&fs_info->balance_cancel_req) ||
3084 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3085 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3086}
3087
c9e9f97b
ID
3088static void __cancel_balance(struct btrfs_fs_info *fs_info)
3089{
0940ebf6
ID
3090 int ret;
3091
c9e9f97b 3092 unset_balance_control(fs_info);
0940ebf6 3093 ret = del_balance_item(fs_info->tree_root);
0f788c58
LB
3094 if (ret)
3095 btrfs_std_error(fs_info, ret);
ed0fb78f
ID
3096
3097 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3098}
3099
c9e9f97b
ID
3100/*
3101 * Should be called with both balance and volume mutexes held
3102 */
3103int btrfs_balance(struct btrfs_balance_control *bctl,
3104 struct btrfs_ioctl_balance_args *bargs)
3105{
3106 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3107 u64 allowed;
e4837f8f 3108 int mixed = 0;
c9e9f97b 3109 int ret;
8dabb742 3110 u64 num_devices;
de98ced9 3111 unsigned seq;
c9e9f97b 3112
837d5b6e 3113 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3114 atomic_read(&fs_info->balance_pause_req) ||
3115 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3116 ret = -EINVAL;
3117 goto out;
3118 }
3119
e4837f8f
ID
3120 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3121 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3122 mixed = 1;
3123
f43ffb60
ID
3124 /*
3125 * In case of mixed groups both data and meta should be picked,
3126 * and identical options should be given for both of them.
3127 */
e4837f8f
ID
3128 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3129 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3130 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3131 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3132 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3133 printk(KERN_ERR "btrfs: with mixed groups data and "
3134 "metadata balance options must be the same\n");
3135 ret = -EINVAL;
3136 goto out;
3137 }
3138 }
3139
8dabb742
SB
3140 num_devices = fs_info->fs_devices->num_devices;
3141 btrfs_dev_replace_lock(&fs_info->dev_replace);
3142 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3143 BUG_ON(num_devices < 1);
3144 num_devices--;
3145 }
3146 btrfs_dev_replace_unlock(&fs_info->dev_replace);
e4d8ec0f 3147 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3148 if (num_devices == 1)
e4d8ec0f 3149 allowed |= BTRFS_BLOCK_GROUP_DUP;
8250dabe 3150 else if (num_devices > 1)
e4d8ec0f 3151 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3152 if (num_devices > 2)
3153 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3154 if (num_devices > 3)
3155 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3156 BTRFS_BLOCK_GROUP_RAID6);
6728b198
ID
3157 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3158 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3159 (bctl->data.target & ~allowed))) {
e4d8ec0f
ID
3160 printk(KERN_ERR "btrfs: unable to start balance with target "
3161 "data profile %llu\n",
3162 (unsigned long long)bctl->data.target);
3163 ret = -EINVAL;
3164 goto out;
3165 }
6728b198
ID
3166 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3167 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3168 (bctl->meta.target & ~allowed))) {
e4d8ec0f
ID
3169 printk(KERN_ERR "btrfs: unable to start balance with target "
3170 "metadata profile %llu\n",
3171 (unsigned long long)bctl->meta.target);
3172 ret = -EINVAL;
3173 goto out;
3174 }
6728b198
ID
3175 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3176 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3177 (bctl->sys.target & ~allowed))) {
e4d8ec0f
ID
3178 printk(KERN_ERR "btrfs: unable to start balance with target "
3179 "system profile %llu\n",
3180 (unsigned long long)bctl->sys.target);
3181 ret = -EINVAL;
3182 goto out;
3183 }
3184
e4837f8f
ID
3185 /* allow dup'ed data chunks only in mixed mode */
3186 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 3187 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
e4d8ec0f
ID
3188 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
3189 ret = -EINVAL;
3190 goto out;
3191 }
3192
3193 /* allow to reduce meta or sys integrity only if force set */
3194 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3195 BTRFS_BLOCK_GROUP_RAID10 |
3196 BTRFS_BLOCK_GROUP_RAID5 |
3197 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3198 do {
3199 seq = read_seqbegin(&fs_info->profiles_lock);
3200
3201 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3202 (fs_info->avail_system_alloc_bits & allowed) &&
3203 !(bctl->sys.target & allowed)) ||
3204 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3205 (fs_info->avail_metadata_alloc_bits & allowed) &&
3206 !(bctl->meta.target & allowed))) {
3207 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3208 printk(KERN_INFO "btrfs: force reducing metadata "
3209 "integrity\n");
3210 } else {
3211 printk(KERN_ERR "btrfs: balance will reduce metadata "
3212 "integrity, use force if you want this\n");
3213 ret = -EINVAL;
3214 goto out;
3215 }
e4d8ec0f 3216 }
de98ced9 3217 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3218
5af3e8cc
SB
3219 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3220 int num_tolerated_disk_barrier_failures;
3221 u64 target = bctl->sys.target;
3222
3223 num_tolerated_disk_barrier_failures =
3224 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3225 if (num_tolerated_disk_barrier_failures > 0 &&
3226 (target &
3227 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3228 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3229 num_tolerated_disk_barrier_failures = 0;
3230 else if (num_tolerated_disk_barrier_failures > 1 &&
3231 (target &
3232 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3233 num_tolerated_disk_barrier_failures = 1;
3234
3235 fs_info->num_tolerated_disk_barrier_failures =
3236 num_tolerated_disk_barrier_failures;
3237 }
3238
0940ebf6 3239 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3240 if (ret && ret != -EEXIST)
0940ebf6
ID
3241 goto out;
3242
59641015
ID
3243 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3244 BUG_ON(ret == -EEXIST);
3245 set_balance_control(bctl);
3246 } else {
3247 BUG_ON(ret != -EEXIST);
3248 spin_lock(&fs_info->balance_lock);
3249 update_balance_args(bctl);
3250 spin_unlock(&fs_info->balance_lock);
3251 }
c9e9f97b 3252
837d5b6e 3253 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3254 mutex_unlock(&fs_info->balance_mutex);
3255
3256 ret = __btrfs_balance(fs_info);
3257
3258 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3259 atomic_dec(&fs_info->balance_running);
c9e9f97b 3260
bf023ecf
ID
3261 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3262 fs_info->num_tolerated_disk_barrier_failures =
3263 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3264 }
3265
c9e9f97b
ID
3266 if (bargs) {
3267 memset(bargs, 0, sizeof(*bargs));
19a39dce 3268 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3269 }
3270
3a01aa7a
ID
3271 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3272 balance_need_close(fs_info)) {
3273 __cancel_balance(fs_info);
3274 }
3275
837d5b6e 3276 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3277
3278 return ret;
3279out:
59641015
ID
3280 if (bctl->flags & BTRFS_BALANCE_RESUME)
3281 __cancel_balance(fs_info);
ed0fb78f 3282 else {
59641015 3283 kfree(bctl);
ed0fb78f
ID
3284 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3285 }
59641015
ID
3286 return ret;
3287}
3288
3289static int balance_kthread(void *data)
3290{
2b6ba629 3291 struct btrfs_fs_info *fs_info = data;
9555c6c1 3292 int ret = 0;
59641015
ID
3293
3294 mutex_lock(&fs_info->volume_mutex);
3295 mutex_lock(&fs_info->balance_mutex);
3296
2b6ba629 3297 if (fs_info->balance_ctl) {
9555c6c1 3298 printk(KERN_INFO "btrfs: continuing balance\n");
2b6ba629 3299 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3300 }
59641015
ID
3301
3302 mutex_unlock(&fs_info->balance_mutex);
3303 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3304
59641015
ID
3305 return ret;
3306}
3307
2b6ba629
ID
3308int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3309{
3310 struct task_struct *tsk;
3311
3312 spin_lock(&fs_info->balance_lock);
3313 if (!fs_info->balance_ctl) {
3314 spin_unlock(&fs_info->balance_lock);
3315 return 0;
3316 }
3317 spin_unlock(&fs_info->balance_lock);
3318
3319 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3320 printk(KERN_INFO "btrfs: force skipping balance\n");
3321 return 0;
3322 }
3323
3324 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
97a184fe 3325 return PTR_RET(tsk);
2b6ba629
ID
3326}
3327
68310a5e 3328int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3329{
59641015
ID
3330 struct btrfs_balance_control *bctl;
3331 struct btrfs_balance_item *item;
3332 struct btrfs_disk_balance_args disk_bargs;
3333 struct btrfs_path *path;
3334 struct extent_buffer *leaf;
3335 struct btrfs_key key;
3336 int ret;
3337
3338 path = btrfs_alloc_path();
3339 if (!path)
3340 return -ENOMEM;
3341
59641015
ID
3342 key.objectid = BTRFS_BALANCE_OBJECTID;
3343 key.type = BTRFS_BALANCE_ITEM_KEY;
3344 key.offset = 0;
3345
68310a5e 3346 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3347 if (ret < 0)
68310a5e 3348 goto out;
59641015
ID
3349 if (ret > 0) { /* ret = -ENOENT; */
3350 ret = 0;
68310a5e
ID
3351 goto out;
3352 }
3353
3354 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3355 if (!bctl) {
3356 ret = -ENOMEM;
3357 goto out;
59641015
ID
3358 }
3359
3360 leaf = path->nodes[0];
3361 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3362
68310a5e
ID
3363 bctl->fs_info = fs_info;
3364 bctl->flags = btrfs_balance_flags(leaf, item);
3365 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3366
3367 btrfs_balance_data(leaf, item, &disk_bargs);
3368 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3369 btrfs_balance_meta(leaf, item, &disk_bargs);
3370 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3371 btrfs_balance_sys(leaf, item, &disk_bargs);
3372 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3373
ed0fb78f
ID
3374 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3375
68310a5e
ID
3376 mutex_lock(&fs_info->volume_mutex);
3377 mutex_lock(&fs_info->balance_mutex);
59641015 3378
68310a5e
ID
3379 set_balance_control(bctl);
3380
3381 mutex_unlock(&fs_info->balance_mutex);
3382 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3383out:
3384 btrfs_free_path(path);
ec44a35c
CM
3385 return ret;
3386}
3387
837d5b6e
ID
3388int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3389{
3390 int ret = 0;
3391
3392 mutex_lock(&fs_info->balance_mutex);
3393 if (!fs_info->balance_ctl) {
3394 mutex_unlock(&fs_info->balance_mutex);
3395 return -ENOTCONN;
3396 }
3397
3398 if (atomic_read(&fs_info->balance_running)) {
3399 atomic_inc(&fs_info->balance_pause_req);
3400 mutex_unlock(&fs_info->balance_mutex);
3401
3402 wait_event(fs_info->balance_wait_q,
3403 atomic_read(&fs_info->balance_running) == 0);
3404
3405 mutex_lock(&fs_info->balance_mutex);
3406 /* we are good with balance_ctl ripped off from under us */
3407 BUG_ON(atomic_read(&fs_info->balance_running));
3408 atomic_dec(&fs_info->balance_pause_req);
3409 } else {
3410 ret = -ENOTCONN;
3411 }
3412
3413 mutex_unlock(&fs_info->balance_mutex);
3414 return ret;
3415}
3416
a7e99c69
ID
3417int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3418{
3419 mutex_lock(&fs_info->balance_mutex);
3420 if (!fs_info->balance_ctl) {
3421 mutex_unlock(&fs_info->balance_mutex);
3422 return -ENOTCONN;
3423 }
3424
3425 atomic_inc(&fs_info->balance_cancel_req);
3426 /*
3427 * if we are running just wait and return, balance item is
3428 * deleted in btrfs_balance in this case
3429 */
3430 if (atomic_read(&fs_info->balance_running)) {
3431 mutex_unlock(&fs_info->balance_mutex);
3432 wait_event(fs_info->balance_wait_q,
3433 atomic_read(&fs_info->balance_running) == 0);
3434 mutex_lock(&fs_info->balance_mutex);
3435 } else {
3436 /* __cancel_balance needs volume_mutex */
3437 mutex_unlock(&fs_info->balance_mutex);
3438 mutex_lock(&fs_info->volume_mutex);
3439 mutex_lock(&fs_info->balance_mutex);
3440
3441 if (fs_info->balance_ctl)
3442 __cancel_balance(fs_info);
3443
3444 mutex_unlock(&fs_info->volume_mutex);
3445 }
3446
3447 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3448 atomic_dec(&fs_info->balance_cancel_req);
3449 mutex_unlock(&fs_info->balance_mutex);
3450 return 0;
3451}
3452
803b2f54
SB
3453static int btrfs_uuid_scan_kthread(void *data)
3454{
3455 struct btrfs_fs_info *fs_info = data;
3456 struct btrfs_root *root = fs_info->tree_root;
3457 struct btrfs_key key;
3458 struct btrfs_key max_key;
3459 struct btrfs_path *path = NULL;
3460 int ret = 0;
3461 struct extent_buffer *eb;
3462 int slot;
3463 struct btrfs_root_item root_item;
3464 u32 item_size;
3465 struct btrfs_trans_handle *trans;
3466
3467 path = btrfs_alloc_path();
3468 if (!path) {
3469 ret = -ENOMEM;
3470 goto out;
3471 }
3472
3473 key.objectid = 0;
3474 key.type = BTRFS_ROOT_ITEM_KEY;
3475 key.offset = 0;
3476
3477 max_key.objectid = (u64)-1;
3478 max_key.type = BTRFS_ROOT_ITEM_KEY;
3479 max_key.offset = (u64)-1;
3480
3481 path->keep_locks = 1;
3482
3483 while (1) {
3484 ret = btrfs_search_forward(root, &key, &max_key, path, 0);
3485 if (ret) {
3486 if (ret > 0)
3487 ret = 0;
3488 break;
3489 }
3490
3491 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3492 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3493 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3494 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3495 goto skip;
3496
3497 eb = path->nodes[0];
3498 slot = path->slots[0];
3499 item_size = btrfs_item_size_nr(eb, slot);
3500 if (item_size < sizeof(root_item))
3501 goto skip;
3502
3503 trans = NULL;
3504 read_extent_buffer(eb, &root_item,
3505 btrfs_item_ptr_offset(eb, slot),
3506 (int)sizeof(root_item));
3507 if (btrfs_root_refs(&root_item) == 0)
3508 goto skip;
3509 if (!btrfs_is_empty_uuid(root_item.uuid)) {
3510 /*
3511 * 1 - subvol uuid item
3512 * 1 - received_subvol uuid item
3513 */
3514 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3515 if (IS_ERR(trans)) {
3516 ret = PTR_ERR(trans);
3517 break;
3518 }
3519 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3520 root_item.uuid,
3521 BTRFS_UUID_KEY_SUBVOL,
3522 key.objectid);
3523 if (ret < 0) {
3524 pr_warn("btrfs: uuid_tree_add failed %d\n",
3525 ret);
3526 btrfs_end_transaction(trans,
3527 fs_info->uuid_root);
3528 break;
3529 }
3530 }
3531
3532 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3533 if (!trans) {
3534 /* 1 - received_subvol uuid item */
3535 trans = btrfs_start_transaction(
3536 fs_info->uuid_root, 1);
3537 if (IS_ERR(trans)) {
3538 ret = PTR_ERR(trans);
3539 break;
3540 }
3541 }
3542 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3543 root_item.received_uuid,
3544 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3545 key.objectid);
3546 if (ret < 0) {
3547 pr_warn("btrfs: uuid_tree_add failed %d\n",
3548 ret);
3549 btrfs_end_transaction(trans,
3550 fs_info->uuid_root);
3551 break;
3552 }
3553 }
3554
3555 if (trans) {
3556 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3557 if (ret)
3558 break;
3559 }
3560
3561skip:
3562 btrfs_release_path(path);
3563 if (key.offset < (u64)-1) {
3564 key.offset++;
3565 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3566 key.offset = 0;
3567 key.type = BTRFS_ROOT_ITEM_KEY;
3568 } else if (key.objectid < (u64)-1) {
3569 key.offset = 0;
3570 key.type = BTRFS_ROOT_ITEM_KEY;
3571 key.objectid++;
3572 } else {
3573 break;
3574 }
3575 cond_resched();
3576 }
3577
3578out:
3579 btrfs_free_path(path);
3580 if (ret)
3581 pr_warn("btrfs: btrfs_uuid_scan_kthread failed %d\n", ret);
70f80175
SB
3582 else
3583 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
3584 up(&fs_info->uuid_tree_rescan_sem);
3585 return 0;
3586}
3587
70f80175
SB
3588/*
3589 * Callback for btrfs_uuid_tree_iterate().
3590 * returns:
3591 * 0 check succeeded, the entry is not outdated.
3592 * < 0 if an error occured.
3593 * > 0 if the check failed, which means the caller shall remove the entry.
3594 */
3595static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3596 u8 *uuid, u8 type, u64 subid)
3597{
3598 struct btrfs_key key;
3599 int ret = 0;
3600 struct btrfs_root *subvol_root;
3601
3602 if (type != BTRFS_UUID_KEY_SUBVOL &&
3603 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3604 goto out;
3605
3606 key.objectid = subid;
3607 key.type = BTRFS_ROOT_ITEM_KEY;
3608 key.offset = (u64)-1;
3609 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3610 if (IS_ERR(subvol_root)) {
3611 ret = PTR_ERR(subvol_root);
3612 if (ret == -ENOENT)
3613 ret = 1;
3614 goto out;
3615 }
3616
3617 switch (type) {
3618 case BTRFS_UUID_KEY_SUBVOL:
3619 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3620 ret = 1;
3621 break;
3622 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3623 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3624 BTRFS_UUID_SIZE))
3625 ret = 1;
3626 break;
3627 }
3628
3629out:
3630 return ret;
3631}
3632
3633static int btrfs_uuid_rescan_kthread(void *data)
3634{
3635 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3636 int ret;
3637
3638 /*
3639 * 1st step is to iterate through the existing UUID tree and
3640 * to delete all entries that contain outdated data.
3641 * 2nd step is to add all missing entries to the UUID tree.
3642 */
3643 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3644 if (ret < 0) {
3645 pr_warn("btrfs: iterating uuid_tree failed %d\n", ret);
3646 up(&fs_info->uuid_tree_rescan_sem);
3647 return ret;
3648 }
3649 return btrfs_uuid_scan_kthread(data);
3650}
3651
f7a81ea4
SB
3652int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3653{
3654 struct btrfs_trans_handle *trans;
3655 struct btrfs_root *tree_root = fs_info->tree_root;
3656 struct btrfs_root *uuid_root;
803b2f54
SB
3657 struct task_struct *task;
3658 int ret;
f7a81ea4
SB
3659
3660 /*
3661 * 1 - root node
3662 * 1 - root item
3663 */
3664 trans = btrfs_start_transaction(tree_root, 2);
3665 if (IS_ERR(trans))
3666 return PTR_ERR(trans);
3667
3668 uuid_root = btrfs_create_tree(trans, fs_info,
3669 BTRFS_UUID_TREE_OBJECTID);
3670 if (IS_ERR(uuid_root)) {
3671 btrfs_abort_transaction(trans, tree_root,
3672 PTR_ERR(uuid_root));
3673 return PTR_ERR(uuid_root);
3674 }
3675
3676 fs_info->uuid_root = uuid_root;
3677
803b2f54
SB
3678 ret = btrfs_commit_transaction(trans, tree_root);
3679 if (ret)
3680 return ret;
3681
3682 down(&fs_info->uuid_tree_rescan_sem);
3683 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3684 if (IS_ERR(task)) {
70f80175 3685 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
803b2f54
SB
3686 pr_warn("btrfs: failed to start uuid_scan task\n");
3687 up(&fs_info->uuid_tree_rescan_sem);
3688 return PTR_ERR(task);
3689 }
3690
3691 return 0;
f7a81ea4 3692}
803b2f54 3693
70f80175
SB
3694int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3695{
3696 struct task_struct *task;
3697
3698 down(&fs_info->uuid_tree_rescan_sem);
3699 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3700 if (IS_ERR(task)) {
3701 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3702 pr_warn("btrfs: failed to start uuid_rescan task\n");
3703 up(&fs_info->uuid_tree_rescan_sem);
3704 return PTR_ERR(task);
3705 }
3706
3707 return 0;
3708}
3709
8f18cf13
CM
3710/*
3711 * shrinking a device means finding all of the device extents past
3712 * the new size, and then following the back refs to the chunks.
3713 * The chunk relocation code actually frees the device extent
3714 */
3715int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3716{
3717 struct btrfs_trans_handle *trans;
3718 struct btrfs_root *root = device->dev_root;
3719 struct btrfs_dev_extent *dev_extent = NULL;
3720 struct btrfs_path *path;
3721 u64 length;
3722 u64 chunk_tree;
3723 u64 chunk_objectid;
3724 u64 chunk_offset;
3725 int ret;
3726 int slot;
ba1bf481
JB
3727 int failed = 0;
3728 bool retried = false;
8f18cf13
CM
3729 struct extent_buffer *l;
3730 struct btrfs_key key;
6c41761f 3731 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 3732 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 3733 u64 old_size = device->total_bytes;
8f18cf13
CM
3734 u64 diff = device->total_bytes - new_size;
3735
63a212ab
SB
3736 if (device->is_tgtdev_for_dev_replace)
3737 return -EINVAL;
3738
8f18cf13
CM
3739 path = btrfs_alloc_path();
3740 if (!path)
3741 return -ENOMEM;
3742
8f18cf13
CM
3743 path->reada = 2;
3744
7d9eb12c
CM
3745 lock_chunks(root);
3746
8f18cf13 3747 device->total_bytes = new_size;
2bf64758 3748 if (device->writeable) {
2b82032c 3749 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
3750 spin_lock(&root->fs_info->free_chunk_lock);
3751 root->fs_info->free_chunk_space -= diff;
3752 spin_unlock(&root->fs_info->free_chunk_lock);
3753 }
7d9eb12c 3754 unlock_chunks(root);
8f18cf13 3755
ba1bf481 3756again:
8f18cf13
CM
3757 key.objectid = device->devid;
3758 key.offset = (u64)-1;
3759 key.type = BTRFS_DEV_EXTENT_KEY;
3760
213e64da 3761 do {
8f18cf13
CM
3762 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3763 if (ret < 0)
3764 goto done;
3765
3766 ret = btrfs_previous_item(root, path, 0, key.type);
3767 if (ret < 0)
3768 goto done;
3769 if (ret) {
3770 ret = 0;
b3b4aa74 3771 btrfs_release_path(path);
bf1fb512 3772 break;
8f18cf13
CM
3773 }
3774
3775 l = path->nodes[0];
3776 slot = path->slots[0];
3777 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3778
ba1bf481 3779 if (key.objectid != device->devid) {
b3b4aa74 3780 btrfs_release_path(path);
bf1fb512 3781 break;
ba1bf481 3782 }
8f18cf13
CM
3783
3784 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3785 length = btrfs_dev_extent_length(l, dev_extent);
3786
ba1bf481 3787 if (key.offset + length <= new_size) {
b3b4aa74 3788 btrfs_release_path(path);
d6397bae 3789 break;
ba1bf481 3790 }
8f18cf13
CM
3791
3792 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3793 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3794 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 3795 btrfs_release_path(path);
8f18cf13
CM
3796
3797 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3798 chunk_offset);
ba1bf481 3799 if (ret && ret != -ENOSPC)
8f18cf13 3800 goto done;
ba1bf481
JB
3801 if (ret == -ENOSPC)
3802 failed++;
213e64da 3803 } while (key.offset-- > 0);
ba1bf481
JB
3804
3805 if (failed && !retried) {
3806 failed = 0;
3807 retried = true;
3808 goto again;
3809 } else if (failed && retried) {
3810 ret = -ENOSPC;
3811 lock_chunks(root);
3812
3813 device->total_bytes = old_size;
3814 if (device->writeable)
3815 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
3816 spin_lock(&root->fs_info->free_chunk_lock);
3817 root->fs_info->free_chunk_space += diff;
3818 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
3819 unlock_chunks(root);
3820 goto done;
8f18cf13
CM
3821 }
3822
d6397bae 3823 /* Shrinking succeeded, else we would be at "done". */
a22285a6 3824 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
3825 if (IS_ERR(trans)) {
3826 ret = PTR_ERR(trans);
3827 goto done;
3828 }
3829
d6397bae
CB
3830 lock_chunks(root);
3831
3832 device->disk_total_bytes = new_size;
3833 /* Now btrfs_update_device() will change the on-disk size. */
3834 ret = btrfs_update_device(trans, device);
3835 if (ret) {
3836 unlock_chunks(root);
3837 btrfs_end_transaction(trans, root);
3838 goto done;
3839 }
3840 WARN_ON(diff > old_total);
3841 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3842 unlock_chunks(root);
3843 btrfs_end_transaction(trans, root);
8f18cf13
CM
3844done:
3845 btrfs_free_path(path);
3846 return ret;
3847}
3848
125ccb0a 3849static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
3850 struct btrfs_key *key,
3851 struct btrfs_chunk *chunk, int item_size)
3852{
6c41761f 3853 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
3854 struct btrfs_disk_key disk_key;
3855 u32 array_size;
3856 u8 *ptr;
3857
3858 array_size = btrfs_super_sys_array_size(super_copy);
3859 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3860 return -EFBIG;
3861
3862 ptr = super_copy->sys_chunk_array + array_size;
3863 btrfs_cpu_key_to_disk(&disk_key, key);
3864 memcpy(ptr, &disk_key, sizeof(disk_key));
3865 ptr += sizeof(disk_key);
3866 memcpy(ptr, chunk, item_size);
3867 item_size += sizeof(disk_key);
3868 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3869 return 0;
3870}
3871
73c5de00
AJ
3872/*
3873 * sort the devices in descending order by max_avail, total_avail
3874 */
3875static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 3876{
73c5de00
AJ
3877 const struct btrfs_device_info *di_a = a;
3878 const struct btrfs_device_info *di_b = b;
9b3f68b9 3879
73c5de00 3880 if (di_a->max_avail > di_b->max_avail)
b2117a39 3881 return -1;
73c5de00 3882 if (di_a->max_avail < di_b->max_avail)
b2117a39 3883 return 1;
73c5de00
AJ
3884 if (di_a->total_avail > di_b->total_avail)
3885 return -1;
3886 if (di_a->total_avail < di_b->total_avail)
3887 return 1;
3888 return 0;
b2117a39 3889}
0b86a832 3890
48a3b636 3891static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
e6ec716f
MX
3892 [BTRFS_RAID_RAID10] = {
3893 .sub_stripes = 2,
3894 .dev_stripes = 1,
3895 .devs_max = 0, /* 0 == as many as possible */
3896 .devs_min = 4,
3897 .devs_increment = 2,
3898 .ncopies = 2,
3899 },
3900 [BTRFS_RAID_RAID1] = {
3901 .sub_stripes = 1,
3902 .dev_stripes = 1,
3903 .devs_max = 2,
3904 .devs_min = 2,
3905 .devs_increment = 2,
3906 .ncopies = 2,
3907 },
3908 [BTRFS_RAID_DUP] = {
3909 .sub_stripes = 1,
3910 .dev_stripes = 2,
3911 .devs_max = 1,
3912 .devs_min = 1,
3913 .devs_increment = 1,
3914 .ncopies = 2,
3915 },
3916 [BTRFS_RAID_RAID0] = {
3917 .sub_stripes = 1,
3918 .dev_stripes = 1,
3919 .devs_max = 0,
3920 .devs_min = 2,
3921 .devs_increment = 1,
3922 .ncopies = 1,
3923 },
3924 [BTRFS_RAID_SINGLE] = {
3925 .sub_stripes = 1,
3926 .dev_stripes = 1,
3927 .devs_max = 1,
3928 .devs_min = 1,
3929 .devs_increment = 1,
3930 .ncopies = 1,
3931 },
e942f883
CM
3932 [BTRFS_RAID_RAID5] = {
3933 .sub_stripes = 1,
3934 .dev_stripes = 1,
3935 .devs_max = 0,
3936 .devs_min = 2,
3937 .devs_increment = 1,
3938 .ncopies = 2,
3939 },
3940 [BTRFS_RAID_RAID6] = {
3941 .sub_stripes = 1,
3942 .dev_stripes = 1,
3943 .devs_max = 0,
3944 .devs_min = 3,
3945 .devs_increment = 1,
3946 .ncopies = 3,
3947 },
31e50229
LB
3948};
3949
53b381b3
DW
3950static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
3951{
3952 /* TODO allow them to set a preferred stripe size */
3953 return 64 * 1024;
3954}
3955
3956static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
3957{
53b381b3
DW
3958 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
3959 return;
3960
ceda0864 3961 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
3962}
3963
73c5de00 3964static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
3965 struct btrfs_root *extent_root, u64 start,
3966 u64 type)
b2117a39 3967{
73c5de00
AJ
3968 struct btrfs_fs_info *info = extent_root->fs_info;
3969 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3970 struct list_head *cur;
3971 struct map_lookup *map = NULL;
3972 struct extent_map_tree *em_tree;
3973 struct extent_map *em;
3974 struct btrfs_device_info *devices_info = NULL;
3975 u64 total_avail;
3976 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
3977 int data_stripes; /* number of stripes that count for
3978 block group size */
73c5de00
AJ
3979 int sub_stripes; /* sub_stripes info for map */
3980 int dev_stripes; /* stripes per dev */
3981 int devs_max; /* max devs to use */
3982 int devs_min; /* min devs needed */
3983 int devs_increment; /* ndevs has to be a multiple of this */
3984 int ncopies; /* how many copies to data has */
3985 int ret;
3986 u64 max_stripe_size;
3987 u64 max_chunk_size;
3988 u64 stripe_size;
3989 u64 num_bytes;
53b381b3 3990 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
3991 int ndevs;
3992 int i;
3993 int j;
31e50229 3994 int index;
593060d7 3995
0c460c0d 3996 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 3997
73c5de00
AJ
3998 if (list_empty(&fs_devices->alloc_list))
3999 return -ENOSPC;
b2117a39 4000
31e50229 4001 index = __get_raid_index(type);
73c5de00 4002
31e50229
LB
4003 sub_stripes = btrfs_raid_array[index].sub_stripes;
4004 dev_stripes = btrfs_raid_array[index].dev_stripes;
4005 devs_max = btrfs_raid_array[index].devs_max;
4006 devs_min = btrfs_raid_array[index].devs_min;
4007 devs_increment = btrfs_raid_array[index].devs_increment;
4008 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4009
9b3f68b9 4010 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
4011 max_stripe_size = 1024 * 1024 * 1024;
4012 max_chunk_size = 10 * max_stripe_size;
9b3f68b9 4013 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
4014 /* for larger filesystems, use larger metadata chunks */
4015 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4016 max_stripe_size = 1024 * 1024 * 1024;
4017 else
4018 max_stripe_size = 256 * 1024 * 1024;
73c5de00 4019 max_chunk_size = max_stripe_size;
a40a90a0 4020 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 4021 max_stripe_size = 32 * 1024 * 1024;
73c5de00
AJ
4022 max_chunk_size = 2 * max_stripe_size;
4023 } else {
4024 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
4025 type);
4026 BUG_ON(1);
9b3f68b9
CM
4027 }
4028
2b82032c
YZ
4029 /* we don't want a chunk larger than 10% of writeable space */
4030 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4031 max_chunk_size);
9b3f68b9 4032
73c5de00
AJ
4033 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4034 GFP_NOFS);
4035 if (!devices_info)
4036 return -ENOMEM;
0cad8a11 4037
73c5de00 4038 cur = fs_devices->alloc_list.next;
9b3f68b9 4039
9f680ce0 4040 /*
73c5de00
AJ
4041 * in the first pass through the devices list, we gather information
4042 * about the available holes on each device.
9f680ce0 4043 */
73c5de00
AJ
4044 ndevs = 0;
4045 while (cur != &fs_devices->alloc_list) {
4046 struct btrfs_device *device;
4047 u64 max_avail;
4048 u64 dev_offset;
b2117a39 4049
73c5de00 4050 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4051
73c5de00 4052 cur = cur->next;
b2117a39 4053
73c5de00 4054 if (!device->writeable) {
31b1a2bd 4055 WARN(1, KERN_ERR
73c5de00 4056 "btrfs: read-only device in alloc_list\n");
73c5de00
AJ
4057 continue;
4058 }
b2117a39 4059
63a212ab
SB
4060 if (!device->in_fs_metadata ||
4061 device->is_tgtdev_for_dev_replace)
73c5de00 4062 continue;
b2117a39 4063
73c5de00
AJ
4064 if (device->total_bytes > device->bytes_used)
4065 total_avail = device->total_bytes - device->bytes_used;
4066 else
4067 total_avail = 0;
38c01b96 4068
4069 /* If there is no space on this device, skip it. */
4070 if (total_avail == 0)
4071 continue;
b2117a39 4072
6df9a95e 4073 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4074 max_stripe_size * dev_stripes,
4075 &dev_offset, &max_avail);
4076 if (ret && ret != -ENOSPC)
4077 goto error;
b2117a39 4078
73c5de00
AJ
4079 if (ret == 0)
4080 max_avail = max_stripe_size * dev_stripes;
b2117a39 4081
73c5de00
AJ
4082 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4083 continue;
b2117a39 4084
063d006f
ES
4085 if (ndevs == fs_devices->rw_devices) {
4086 WARN(1, "%s: found more than %llu devices\n",
4087 __func__, fs_devices->rw_devices);
4088 break;
4089 }
73c5de00
AJ
4090 devices_info[ndevs].dev_offset = dev_offset;
4091 devices_info[ndevs].max_avail = max_avail;
4092 devices_info[ndevs].total_avail = total_avail;
4093 devices_info[ndevs].dev = device;
4094 ++ndevs;
4095 }
b2117a39 4096
73c5de00
AJ
4097 /*
4098 * now sort the devices by hole size / available space
4099 */
4100 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4101 btrfs_cmp_device_info, NULL);
b2117a39 4102
73c5de00
AJ
4103 /* round down to number of usable stripes */
4104 ndevs -= ndevs % devs_increment;
b2117a39 4105
73c5de00
AJ
4106 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4107 ret = -ENOSPC;
4108 goto error;
b2117a39 4109 }
9f680ce0 4110
73c5de00
AJ
4111 if (devs_max && ndevs > devs_max)
4112 ndevs = devs_max;
4113 /*
4114 * the primary goal is to maximize the number of stripes, so use as many
4115 * devices as possible, even if the stripes are not maximum sized.
4116 */
4117 stripe_size = devices_info[ndevs-1].max_avail;
4118 num_stripes = ndevs * dev_stripes;
b2117a39 4119
53b381b3
DW
4120 /*
4121 * this will have to be fixed for RAID1 and RAID10 over
4122 * more drives
4123 */
4124 data_stripes = num_stripes / ncopies;
4125
53b381b3
DW
4126 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4127 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4128 btrfs_super_stripesize(info->super_copy));
4129 data_stripes = num_stripes - 1;
4130 }
4131 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4132 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4133 btrfs_super_stripesize(info->super_copy));
4134 data_stripes = num_stripes - 2;
4135 }
86db2578
CM
4136
4137 /*
4138 * Use the number of data stripes to figure out how big this chunk
4139 * is really going to be in terms of logical address space,
4140 * and compare that answer with the max chunk size
4141 */
4142 if (stripe_size * data_stripes > max_chunk_size) {
4143 u64 mask = (1ULL << 24) - 1;
4144 stripe_size = max_chunk_size;
4145 do_div(stripe_size, data_stripes);
4146
4147 /* bump the answer up to a 16MB boundary */
4148 stripe_size = (stripe_size + mask) & ~mask;
4149
4150 /* but don't go higher than the limits we found
4151 * while searching for free extents
4152 */
4153 if (stripe_size > devices_info[ndevs-1].max_avail)
4154 stripe_size = devices_info[ndevs-1].max_avail;
4155 }
4156
73c5de00 4157 do_div(stripe_size, dev_stripes);
37db63a4
ID
4158
4159 /* align to BTRFS_STRIPE_LEN */
53b381b3
DW
4160 do_div(stripe_size, raid_stripe_len);
4161 stripe_size *= raid_stripe_len;
b2117a39
MX
4162
4163 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4164 if (!map) {
4165 ret = -ENOMEM;
4166 goto error;
4167 }
4168 map->num_stripes = num_stripes;
9b3f68b9 4169
73c5de00
AJ
4170 for (i = 0; i < ndevs; ++i) {
4171 for (j = 0; j < dev_stripes; ++j) {
4172 int s = i * dev_stripes + j;
4173 map->stripes[s].dev = devices_info[i].dev;
4174 map->stripes[s].physical = devices_info[i].dev_offset +
4175 j * stripe_size;
6324fbf3 4176 }
6324fbf3 4177 }
2b82032c 4178 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4179 map->stripe_len = raid_stripe_len;
4180 map->io_align = raid_stripe_len;
4181 map->io_width = raid_stripe_len;
2b82032c 4182 map->type = type;
2b82032c 4183 map->sub_stripes = sub_stripes;
0b86a832 4184
53b381b3 4185 num_bytes = stripe_size * data_stripes;
0b86a832 4186
73c5de00 4187 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4188
172ddd60 4189 em = alloc_extent_map();
2b82032c 4190 if (!em) {
b2117a39
MX
4191 ret = -ENOMEM;
4192 goto error;
593060d7 4193 }
2b82032c
YZ
4194 em->bdev = (struct block_device *)map;
4195 em->start = start;
73c5de00 4196 em->len = num_bytes;
2b82032c
YZ
4197 em->block_start = 0;
4198 em->block_len = em->len;
6df9a95e 4199 em->orig_block_len = stripe_size;
593060d7 4200
2b82032c 4201 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4202 write_lock(&em_tree->lock);
09a2a8f9 4203 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4204 if (!ret) {
4205 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4206 atomic_inc(&em->refs);
4207 }
890871be 4208 write_unlock(&em_tree->lock);
0f5d42b2
JB
4209 if (ret) {
4210 free_extent_map(em);
1dd4602f 4211 goto error;
0f5d42b2 4212 }
0b86a832 4213
04487488
JB
4214 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4215 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4216 start, num_bytes);
6df9a95e
JB
4217 if (ret)
4218 goto error_del_extent;
2b82032c 4219
0f5d42b2 4220 free_extent_map(em);
53b381b3
DW
4221 check_raid56_incompat_flag(extent_root->fs_info, type);
4222
b2117a39 4223 kfree(devices_info);
2b82032c 4224 return 0;
b2117a39 4225
6df9a95e 4226error_del_extent:
0f5d42b2
JB
4227 write_lock(&em_tree->lock);
4228 remove_extent_mapping(em_tree, em);
4229 write_unlock(&em_tree->lock);
4230
4231 /* One for our allocation */
4232 free_extent_map(em);
4233 /* One for the tree reference */
4234 free_extent_map(em);
b2117a39
MX
4235error:
4236 kfree(map);
4237 kfree(devices_info);
4238 return ret;
2b82032c
YZ
4239}
4240
6df9a95e 4241int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4242 struct btrfs_root *extent_root,
6df9a95e 4243 u64 chunk_offset, u64 chunk_size)
2b82032c 4244{
2b82032c
YZ
4245 struct btrfs_key key;
4246 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4247 struct btrfs_device *device;
4248 struct btrfs_chunk *chunk;
4249 struct btrfs_stripe *stripe;
6df9a95e
JB
4250 struct extent_map_tree *em_tree;
4251 struct extent_map *em;
4252 struct map_lookup *map;
4253 size_t item_size;
4254 u64 dev_offset;
4255 u64 stripe_size;
4256 int i = 0;
2b82032c
YZ
4257 int ret;
4258
6df9a95e
JB
4259 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4260 read_lock(&em_tree->lock);
4261 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4262 read_unlock(&em_tree->lock);
4263
4264 if (!em) {
4265 btrfs_crit(extent_root->fs_info, "unable to find logical "
4266 "%Lu len %Lu", chunk_offset, chunk_size);
4267 return -EINVAL;
4268 }
4269
4270 if (em->start != chunk_offset || em->len != chunk_size) {
4271 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4272 " %Lu-%Lu, found %Lu-%Lu\n", chunk_offset,
4273 chunk_size, em->start, em->len);
4274 free_extent_map(em);
4275 return -EINVAL;
4276 }
4277
4278 map = (struct map_lookup *)em->bdev;
4279 item_size = btrfs_chunk_item_size(map->num_stripes);
4280 stripe_size = em->orig_block_len;
4281
2b82032c 4282 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4283 if (!chunk) {
4284 ret = -ENOMEM;
4285 goto out;
4286 }
4287
4288 for (i = 0; i < map->num_stripes; i++) {
4289 device = map->stripes[i].dev;
4290 dev_offset = map->stripes[i].physical;
2b82032c 4291
2b82032c 4292 device->bytes_used += stripe_size;
0b86a832 4293 ret = btrfs_update_device(trans, device);
3acd3953 4294 if (ret)
6df9a95e
JB
4295 goto out;
4296 ret = btrfs_alloc_dev_extent(trans, device,
4297 chunk_root->root_key.objectid,
4298 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4299 chunk_offset, dev_offset,
4300 stripe_size);
4301 if (ret)
4302 goto out;
2b82032c
YZ
4303 }
4304
2bf64758
JB
4305 spin_lock(&extent_root->fs_info->free_chunk_lock);
4306 extent_root->fs_info->free_chunk_space -= (stripe_size *
4307 map->num_stripes);
4308 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4309
2b82032c 4310 stripe = &chunk->stripe;
6df9a95e
JB
4311 for (i = 0; i < map->num_stripes; i++) {
4312 device = map->stripes[i].dev;
4313 dev_offset = map->stripes[i].physical;
0b86a832 4314
e17cade2
CM
4315 btrfs_set_stack_stripe_devid(stripe, device->devid);
4316 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4317 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4318 stripe++;
0b86a832
CM
4319 }
4320
2b82032c 4321 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4322 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4323 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4324 btrfs_set_stack_chunk_type(chunk, map->type);
4325 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4326 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4327 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4328 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4329 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4330
2b82032c
YZ
4331 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4332 key.type = BTRFS_CHUNK_ITEM_KEY;
4333 key.offset = chunk_offset;
0b86a832 4334
2b82032c 4335 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4336 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4337 /*
4338 * TODO: Cleanup of inserted chunk root in case of
4339 * failure.
4340 */
125ccb0a 4341 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4342 item_size);
8f18cf13 4343 }
1abe9b8a 4344
6df9a95e 4345out:
0b86a832 4346 kfree(chunk);
6df9a95e 4347 free_extent_map(em);
4ed1d16e 4348 return ret;
2b82032c 4349}
0b86a832 4350
2b82032c
YZ
4351/*
4352 * Chunk allocation falls into two parts. The first part does works
4353 * that make the new allocated chunk useable, but not do any operation
4354 * that modifies the chunk tree. The second part does the works that
4355 * require modifying the chunk tree. This division is important for the
4356 * bootstrap process of adding storage to a seed btrfs.
4357 */
4358int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4359 struct btrfs_root *extent_root, u64 type)
4360{
4361 u64 chunk_offset;
2b82032c 4362
6df9a95e
JB
4363 chunk_offset = find_next_chunk(extent_root->fs_info);
4364 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4365}
4366
d397712b 4367static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4368 struct btrfs_root *root,
4369 struct btrfs_device *device)
4370{
4371 u64 chunk_offset;
4372 u64 sys_chunk_offset;
2b82032c 4373 u64 alloc_profile;
2b82032c
YZ
4374 struct btrfs_fs_info *fs_info = root->fs_info;
4375 struct btrfs_root *extent_root = fs_info->extent_root;
4376 int ret;
4377
6df9a95e 4378 chunk_offset = find_next_chunk(fs_info);
de98ced9 4379 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
4380 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4381 alloc_profile);
79787eaa
JM
4382 if (ret)
4383 return ret;
2b82032c 4384
6df9a95e 4385 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 4386 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
4387 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4388 alloc_profile);
005d6427
DS
4389 if (ret) {
4390 btrfs_abort_transaction(trans, root, ret);
4391 goto out;
4392 }
2b82032c
YZ
4393
4394 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
79787eaa 4395 if (ret)
005d6427 4396 btrfs_abort_transaction(trans, root, ret);
005d6427 4397out:
79787eaa 4398 return ret;
2b82032c
YZ
4399}
4400
4401int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4402{
4403 struct extent_map *em;
4404 struct map_lookup *map;
4405 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4406 int readonly = 0;
4407 int i;
4408
890871be 4409 read_lock(&map_tree->map_tree.lock);
2b82032c 4410 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 4411 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
4412 if (!em)
4413 return 1;
4414
f48b9075
JB
4415 if (btrfs_test_opt(root, DEGRADED)) {
4416 free_extent_map(em);
4417 return 0;
4418 }
4419
2b82032c
YZ
4420 map = (struct map_lookup *)em->bdev;
4421 for (i = 0; i < map->num_stripes; i++) {
4422 if (!map->stripes[i].dev->writeable) {
4423 readonly = 1;
4424 break;
4425 }
4426 }
0b86a832 4427 free_extent_map(em);
2b82032c 4428 return readonly;
0b86a832
CM
4429}
4430
4431void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4432{
a8067e02 4433 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
4434}
4435
4436void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4437{
4438 struct extent_map *em;
4439
d397712b 4440 while (1) {
890871be 4441 write_lock(&tree->map_tree.lock);
0b86a832
CM
4442 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4443 if (em)
4444 remove_extent_mapping(&tree->map_tree, em);
890871be 4445 write_unlock(&tree->map_tree.lock);
0b86a832
CM
4446 if (!em)
4447 break;
4448 kfree(em->bdev);
4449 /* once for us */
4450 free_extent_map(em);
4451 /* once for the tree */
4452 free_extent_map(em);
4453 }
4454}
4455
5d964051 4456int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 4457{
5d964051 4458 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
4459 struct extent_map *em;
4460 struct map_lookup *map;
4461 struct extent_map_tree *em_tree = &map_tree->map_tree;
4462 int ret;
4463
890871be 4464 read_lock(&em_tree->lock);
f188591e 4465 em = lookup_extent_mapping(em_tree, logical, len);
890871be 4466 read_unlock(&em_tree->lock);
f188591e 4467
fb7669b5
JB
4468 /*
4469 * We could return errors for these cases, but that could get ugly and
4470 * we'd probably do the same thing which is just not do anything else
4471 * and exit, so return 1 so the callers don't try to use other copies.
4472 */
4473 if (!em) {
ccf39f92 4474 btrfs_crit(fs_info, "No mapping for %Lu-%Lu\n", logical,
fb7669b5
JB
4475 logical+len);
4476 return 1;
4477 }
4478
4479 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 4480 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
fb7669b5
JB
4481 "%Lu-%Lu\n", logical, logical+len, em->start,
4482 em->start + em->len);
4483 return 1;
4484 }
4485
f188591e
CM
4486 map = (struct map_lookup *)em->bdev;
4487 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4488 ret = map->num_stripes;
321aecc6
CM
4489 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4490 ret = map->sub_stripes;
53b381b3
DW
4491 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4492 ret = 2;
4493 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4494 ret = 3;
f188591e
CM
4495 else
4496 ret = 1;
4497 free_extent_map(em);
ad6d620e
SB
4498
4499 btrfs_dev_replace_lock(&fs_info->dev_replace);
4500 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4501 ret++;
4502 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4503
f188591e
CM
4504 return ret;
4505}
4506
53b381b3
DW
4507unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4508 struct btrfs_mapping_tree *map_tree,
4509 u64 logical)
4510{
4511 struct extent_map *em;
4512 struct map_lookup *map;
4513 struct extent_map_tree *em_tree = &map_tree->map_tree;
4514 unsigned long len = root->sectorsize;
4515
4516 read_lock(&em_tree->lock);
4517 em = lookup_extent_mapping(em_tree, logical, len);
4518 read_unlock(&em_tree->lock);
4519 BUG_ON(!em);
4520
4521 BUG_ON(em->start > logical || em->start + em->len < logical);
4522 map = (struct map_lookup *)em->bdev;
4523 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4524 BTRFS_BLOCK_GROUP_RAID6)) {
4525 len = map->stripe_len * nr_data_stripes(map);
4526 }
4527 free_extent_map(em);
4528 return len;
4529}
4530
4531int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4532 u64 logical, u64 len, int mirror_num)
4533{
4534 struct extent_map *em;
4535 struct map_lookup *map;
4536 struct extent_map_tree *em_tree = &map_tree->map_tree;
4537 int ret = 0;
4538
4539 read_lock(&em_tree->lock);
4540 em = lookup_extent_mapping(em_tree, logical, len);
4541 read_unlock(&em_tree->lock);
4542 BUG_ON(!em);
4543
4544 BUG_ON(em->start > logical || em->start + em->len < logical);
4545 map = (struct map_lookup *)em->bdev;
4546 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4547 BTRFS_BLOCK_GROUP_RAID6))
4548 ret = 1;
4549 free_extent_map(em);
4550 return ret;
4551}
4552
30d9861f
SB
4553static int find_live_mirror(struct btrfs_fs_info *fs_info,
4554 struct map_lookup *map, int first, int num,
4555 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
4556{
4557 int i;
30d9861f
SB
4558 int tolerance;
4559 struct btrfs_device *srcdev;
4560
4561 if (dev_replace_is_ongoing &&
4562 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4563 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4564 srcdev = fs_info->dev_replace.srcdev;
4565 else
4566 srcdev = NULL;
4567
4568 /*
4569 * try to avoid the drive that is the source drive for a
4570 * dev-replace procedure, only choose it if no other non-missing
4571 * mirror is available
4572 */
4573 for (tolerance = 0; tolerance < 2; tolerance++) {
4574 if (map->stripes[optimal].dev->bdev &&
4575 (tolerance || map->stripes[optimal].dev != srcdev))
4576 return optimal;
4577 for (i = first; i < first + num; i++) {
4578 if (map->stripes[i].dev->bdev &&
4579 (tolerance || map->stripes[i].dev != srcdev))
4580 return i;
4581 }
dfe25020 4582 }
30d9861f 4583
dfe25020
CM
4584 /* we couldn't find one that doesn't fail. Just return something
4585 * and the io error handling code will clean up eventually
4586 */
4587 return optimal;
4588}
4589
53b381b3
DW
4590static inline int parity_smaller(u64 a, u64 b)
4591{
4592 return a > b;
4593}
4594
4595/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4596static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4597{
4598 struct btrfs_bio_stripe s;
4599 int i;
4600 u64 l;
4601 int again = 1;
4602
4603 while (again) {
4604 again = 0;
4605 for (i = 0; i < bbio->num_stripes - 1; i++) {
4606 if (parity_smaller(raid_map[i], raid_map[i+1])) {
4607 s = bbio->stripes[i];
4608 l = raid_map[i];
4609 bbio->stripes[i] = bbio->stripes[i+1];
4610 raid_map[i] = raid_map[i+1];
4611 bbio->stripes[i+1] = s;
4612 raid_map[i+1] = l;
4613 again = 1;
4614 }
4615 }
4616 }
4617}
4618
3ec706c8 4619static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 4620 u64 logical, u64 *length,
a1d3c478 4621 struct btrfs_bio **bbio_ret,
53b381b3 4622 int mirror_num, u64 **raid_map_ret)
0b86a832
CM
4623{
4624 struct extent_map *em;
4625 struct map_lookup *map;
3ec706c8 4626 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
4627 struct extent_map_tree *em_tree = &map_tree->map_tree;
4628 u64 offset;
593060d7 4629 u64 stripe_offset;
fce3bb9a 4630 u64 stripe_end_offset;
593060d7 4631 u64 stripe_nr;
fce3bb9a
LD
4632 u64 stripe_nr_orig;
4633 u64 stripe_nr_end;
53b381b3
DW
4634 u64 stripe_len;
4635 u64 *raid_map = NULL;
593060d7 4636 int stripe_index;
cea9e445 4637 int i;
de11cc12 4638 int ret = 0;
f2d8d74d 4639 int num_stripes;
a236aed1 4640 int max_errors = 0;
a1d3c478 4641 struct btrfs_bio *bbio = NULL;
472262f3
SB
4642 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4643 int dev_replace_is_ongoing = 0;
4644 int num_alloc_stripes;
ad6d620e
SB
4645 int patch_the_first_stripe_for_dev_replace = 0;
4646 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 4647 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 4648
890871be 4649 read_lock(&em_tree->lock);
0b86a832 4650 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 4651 read_unlock(&em_tree->lock);
f2d8d74d 4652
3b951516 4653 if (!em) {
c2cf52eb
SK
4654 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4655 (unsigned long long)logical,
4656 (unsigned long long)*length);
9bb91873
JB
4657 return -EINVAL;
4658 }
4659
4660 if (em->start > logical || em->start + em->len < logical) {
4661 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4662 "found %Lu-%Lu\n", logical, em->start,
4663 em->start + em->len);
4664 return -EINVAL;
3b951516 4665 }
0b86a832 4666
0b86a832
CM
4667 map = (struct map_lookup *)em->bdev;
4668 offset = logical - em->start;
593060d7 4669
53b381b3 4670 stripe_len = map->stripe_len;
593060d7
CM
4671 stripe_nr = offset;
4672 /*
4673 * stripe_nr counts the total number of stripes we have to stride
4674 * to get to this block
4675 */
53b381b3 4676 do_div(stripe_nr, stripe_len);
593060d7 4677
53b381b3 4678 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
4679 BUG_ON(offset < stripe_offset);
4680
4681 /* stripe_offset is the offset of this block in its stripe*/
4682 stripe_offset = offset - stripe_offset;
4683
53b381b3
DW
4684 /* if we're here for raid56, we need to know the stripe aligned start */
4685 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4686 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4687 raid56_full_stripe_start = offset;
4688
4689 /* allow a write of a full stripe, but make sure we don't
4690 * allow straddling of stripes
4691 */
4692 do_div(raid56_full_stripe_start, full_stripe_len);
4693 raid56_full_stripe_start *= full_stripe_len;
4694 }
4695
4696 if (rw & REQ_DISCARD) {
4697 /* we don't discard raid56 yet */
4698 if (map->type &
4699 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4700 ret = -EOPNOTSUPP;
4701 goto out;
4702 }
fce3bb9a 4703 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
4704 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4705 u64 max_len;
4706 /* For writes to RAID[56], allow a full stripeset across all disks.
4707 For other RAID types and for RAID[56] reads, just allow a single
4708 stripe (on a single disk). */
4709 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4710 (rw & REQ_WRITE)) {
4711 max_len = stripe_len * nr_data_stripes(map) -
4712 (offset - raid56_full_stripe_start);
4713 } else {
4714 /* we limit the length of each bio to what fits in a stripe */
4715 max_len = stripe_len - stripe_offset;
4716 }
4717 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
4718 } else {
4719 *length = em->len - offset;
4720 }
f2d8d74d 4721
53b381b3
DW
4722 /* This is for when we're called from btrfs_merge_bio_hook() and all
4723 it cares about is the length */
a1d3c478 4724 if (!bbio_ret)
cea9e445
CM
4725 goto out;
4726
472262f3
SB
4727 btrfs_dev_replace_lock(dev_replace);
4728 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4729 if (!dev_replace_is_ongoing)
4730 btrfs_dev_replace_unlock(dev_replace);
4731
ad6d620e
SB
4732 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4733 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4734 dev_replace->tgtdev != NULL) {
4735 /*
4736 * in dev-replace case, for repair case (that's the only
4737 * case where the mirror is selected explicitly when
4738 * calling btrfs_map_block), blocks left of the left cursor
4739 * can also be read from the target drive.
4740 * For REQ_GET_READ_MIRRORS, the target drive is added as
4741 * the last one to the array of stripes. For READ, it also
4742 * needs to be supported using the same mirror number.
4743 * If the requested block is not left of the left cursor,
4744 * EIO is returned. This can happen because btrfs_num_copies()
4745 * returns one more in the dev-replace case.
4746 */
4747 u64 tmp_length = *length;
4748 struct btrfs_bio *tmp_bbio = NULL;
4749 int tmp_num_stripes;
4750 u64 srcdev_devid = dev_replace->srcdev->devid;
4751 int index_srcdev = 0;
4752 int found = 0;
4753 u64 physical_of_found = 0;
4754
4755 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
53b381b3 4756 logical, &tmp_length, &tmp_bbio, 0, NULL);
ad6d620e
SB
4757 if (ret) {
4758 WARN_ON(tmp_bbio != NULL);
4759 goto out;
4760 }
4761
4762 tmp_num_stripes = tmp_bbio->num_stripes;
4763 if (mirror_num > tmp_num_stripes) {
4764 /*
4765 * REQ_GET_READ_MIRRORS does not contain this
4766 * mirror, that means that the requested area
4767 * is not left of the left cursor
4768 */
4769 ret = -EIO;
4770 kfree(tmp_bbio);
4771 goto out;
4772 }
4773
4774 /*
4775 * process the rest of the function using the mirror_num
4776 * of the source drive. Therefore look it up first.
4777 * At the end, patch the device pointer to the one of the
4778 * target drive.
4779 */
4780 for (i = 0; i < tmp_num_stripes; i++) {
4781 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4782 /*
4783 * In case of DUP, in order to keep it
4784 * simple, only add the mirror with the
4785 * lowest physical address
4786 */
4787 if (found &&
4788 physical_of_found <=
4789 tmp_bbio->stripes[i].physical)
4790 continue;
4791 index_srcdev = i;
4792 found = 1;
4793 physical_of_found =
4794 tmp_bbio->stripes[i].physical;
4795 }
4796 }
4797
4798 if (found) {
4799 mirror_num = index_srcdev + 1;
4800 patch_the_first_stripe_for_dev_replace = 1;
4801 physical_to_patch_in_first_stripe = physical_of_found;
4802 } else {
4803 WARN_ON(1);
4804 ret = -EIO;
4805 kfree(tmp_bbio);
4806 goto out;
4807 }
4808
4809 kfree(tmp_bbio);
4810 } else if (mirror_num > map->num_stripes) {
4811 mirror_num = 0;
4812 }
4813
f2d8d74d 4814 num_stripes = 1;
cea9e445 4815 stripe_index = 0;
fce3bb9a 4816 stripe_nr_orig = stripe_nr;
fda2832f 4817 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
fce3bb9a
LD
4818 do_div(stripe_nr_end, map->stripe_len);
4819 stripe_end_offset = stripe_nr_end * map->stripe_len -
4820 (offset + *length);
53b381b3 4821
fce3bb9a
LD
4822 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4823 if (rw & REQ_DISCARD)
4824 num_stripes = min_t(u64, map->num_stripes,
4825 stripe_nr_end - stripe_nr_orig);
4826 stripe_index = do_div(stripe_nr, map->num_stripes);
4827 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 4828 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 4829 num_stripes = map->num_stripes;
2fff734f 4830 else if (mirror_num)
f188591e 4831 stripe_index = mirror_num - 1;
dfe25020 4832 else {
30d9861f 4833 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 4834 map->num_stripes,
30d9861f
SB
4835 current->pid % map->num_stripes,
4836 dev_replace_is_ongoing);
a1d3c478 4837 mirror_num = stripe_index + 1;
dfe25020 4838 }
2fff734f 4839
611f0e00 4840 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 4841 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 4842 num_stripes = map->num_stripes;
a1d3c478 4843 } else if (mirror_num) {
f188591e 4844 stripe_index = mirror_num - 1;
a1d3c478
JS
4845 } else {
4846 mirror_num = 1;
4847 }
2fff734f 4848
321aecc6
CM
4849 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4850 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
4851
4852 stripe_index = do_div(stripe_nr, factor);
4853 stripe_index *= map->sub_stripes;
4854
29a8d9a0 4855 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 4856 num_stripes = map->sub_stripes;
fce3bb9a
LD
4857 else if (rw & REQ_DISCARD)
4858 num_stripes = min_t(u64, map->sub_stripes *
4859 (stripe_nr_end - stripe_nr_orig),
4860 map->num_stripes);
321aecc6
CM
4861 else if (mirror_num)
4862 stripe_index += mirror_num - 1;
dfe25020 4863 else {
3e74317a 4864 int old_stripe_index = stripe_index;
30d9861f
SB
4865 stripe_index = find_live_mirror(fs_info, map,
4866 stripe_index,
dfe25020 4867 map->sub_stripes, stripe_index +
30d9861f
SB
4868 current->pid % map->sub_stripes,
4869 dev_replace_is_ongoing);
3e74317a 4870 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 4871 }
53b381b3
DW
4872
4873 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4874 BTRFS_BLOCK_GROUP_RAID6)) {
4875 u64 tmp;
4876
4877 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4878 && raid_map_ret) {
4879 int i, rot;
4880
4881 /* push stripe_nr back to the start of the full stripe */
4882 stripe_nr = raid56_full_stripe_start;
4883 do_div(stripe_nr, stripe_len);
4884
4885 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4886
4887 /* RAID[56] write or recovery. Return all stripes */
4888 num_stripes = map->num_stripes;
4889 max_errors = nr_parity_stripes(map);
4890
4891 raid_map = kmalloc(sizeof(u64) * num_stripes,
4892 GFP_NOFS);
4893 if (!raid_map) {
4894 ret = -ENOMEM;
4895 goto out;
4896 }
4897
4898 /* Work out the disk rotation on this stripe-set */
4899 tmp = stripe_nr;
4900 rot = do_div(tmp, num_stripes);
4901
4902 /* Fill in the logical address of each stripe */
4903 tmp = stripe_nr * nr_data_stripes(map);
4904 for (i = 0; i < nr_data_stripes(map); i++)
4905 raid_map[(i+rot) % num_stripes] =
4906 em->start + (tmp + i) * map->stripe_len;
4907
4908 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
4909 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4910 raid_map[(i+rot+1) % num_stripes] =
4911 RAID6_Q_STRIPE;
4912
4913 *length = map->stripe_len;
4914 stripe_index = 0;
4915 stripe_offset = 0;
4916 } else {
4917 /*
4918 * Mirror #0 or #1 means the original data block.
4919 * Mirror #2 is RAID5 parity block.
4920 * Mirror #3 is RAID6 Q block.
4921 */
4922 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4923 if (mirror_num > 1)
4924 stripe_index = nr_data_stripes(map) +
4925 mirror_num - 2;
4926
4927 /* We distribute the parity blocks across stripes */
4928 tmp = stripe_nr + stripe_index;
4929 stripe_index = do_div(tmp, map->num_stripes);
4930 }
8790d502
CM
4931 } else {
4932 /*
4933 * after this do_div call, stripe_nr is the number of stripes
4934 * on this device we have to walk to find the data, and
4935 * stripe_index is the number of our device in the stripe array
4936 */
4937 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 4938 mirror_num = stripe_index + 1;
8790d502 4939 }
593060d7 4940 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 4941
472262f3 4942 num_alloc_stripes = num_stripes;
ad6d620e
SB
4943 if (dev_replace_is_ongoing) {
4944 if (rw & (REQ_WRITE | REQ_DISCARD))
4945 num_alloc_stripes <<= 1;
4946 if (rw & REQ_GET_READ_MIRRORS)
4947 num_alloc_stripes++;
4948 }
472262f3 4949 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
de11cc12 4950 if (!bbio) {
eb2067f7 4951 kfree(raid_map);
de11cc12
LZ
4952 ret = -ENOMEM;
4953 goto out;
4954 }
4955 atomic_set(&bbio->error, 0);
4956
fce3bb9a 4957 if (rw & REQ_DISCARD) {
ec9ef7a1
LZ
4958 int factor = 0;
4959 int sub_stripes = 0;
4960 u64 stripes_per_dev = 0;
4961 u32 remaining_stripes = 0;
b89203f7 4962 u32 last_stripe = 0;
ec9ef7a1
LZ
4963
4964 if (map->type &
4965 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
4966 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4967 sub_stripes = 1;
4968 else
4969 sub_stripes = map->sub_stripes;
4970
4971 factor = map->num_stripes / sub_stripes;
4972 stripes_per_dev = div_u64_rem(stripe_nr_end -
4973 stripe_nr_orig,
4974 factor,
4975 &remaining_stripes);
b89203f7
LB
4976 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
4977 last_stripe *= sub_stripes;
ec9ef7a1
LZ
4978 }
4979
fce3bb9a 4980 for (i = 0; i < num_stripes; i++) {
a1d3c478 4981 bbio->stripes[i].physical =
f2d8d74d
CM
4982 map->stripes[stripe_index].physical +
4983 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 4984 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 4985
ec9ef7a1
LZ
4986 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
4987 BTRFS_BLOCK_GROUP_RAID10)) {
4988 bbio->stripes[i].length = stripes_per_dev *
4989 map->stripe_len;
b89203f7 4990
ec9ef7a1
LZ
4991 if (i / sub_stripes < remaining_stripes)
4992 bbio->stripes[i].length +=
4993 map->stripe_len;
b89203f7
LB
4994
4995 /*
4996 * Special for the first stripe and
4997 * the last stripe:
4998 *
4999 * |-------|...|-------|
5000 * |----------|
5001 * off end_off
5002 */
ec9ef7a1 5003 if (i < sub_stripes)
a1d3c478 5004 bbio->stripes[i].length -=
fce3bb9a 5005 stripe_offset;
b89203f7
LB
5006
5007 if (stripe_index >= last_stripe &&
5008 stripe_index <= (last_stripe +
5009 sub_stripes - 1))
a1d3c478 5010 bbio->stripes[i].length -=
fce3bb9a 5011 stripe_end_offset;
b89203f7 5012
ec9ef7a1
LZ
5013 if (i == sub_stripes - 1)
5014 stripe_offset = 0;
fce3bb9a 5015 } else
a1d3c478 5016 bbio->stripes[i].length = *length;
fce3bb9a
LD
5017
5018 stripe_index++;
5019 if (stripe_index == map->num_stripes) {
5020 /* This could only happen for RAID0/10 */
5021 stripe_index = 0;
5022 stripe_nr++;
5023 }
5024 }
5025 } else {
5026 for (i = 0; i < num_stripes; i++) {
a1d3c478 5027 bbio->stripes[i].physical =
212a17ab
LT
5028 map->stripes[stripe_index].physical +
5029 stripe_offset +
5030 stripe_nr * map->stripe_len;
a1d3c478 5031 bbio->stripes[i].dev =
212a17ab 5032 map->stripes[stripe_index].dev;
fce3bb9a 5033 stripe_index++;
f2d8d74d 5034 }
593060d7 5035 }
de11cc12 5036
29a8d9a0 5037 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
de11cc12
LZ
5038 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5039 BTRFS_BLOCK_GROUP_RAID10 |
53b381b3 5040 BTRFS_BLOCK_GROUP_RAID5 |
de11cc12
LZ
5041 BTRFS_BLOCK_GROUP_DUP)) {
5042 max_errors = 1;
53b381b3
DW
5043 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5044 max_errors = 2;
de11cc12 5045 }
f2d8d74d 5046 }
de11cc12 5047
472262f3
SB
5048 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5049 dev_replace->tgtdev != NULL) {
5050 int index_where_to_add;
5051 u64 srcdev_devid = dev_replace->srcdev->devid;
5052
5053 /*
5054 * duplicate the write operations while the dev replace
5055 * procedure is running. Since the copying of the old disk
5056 * to the new disk takes place at run time while the
5057 * filesystem is mounted writable, the regular write
5058 * operations to the old disk have to be duplicated to go
5059 * to the new disk as well.
5060 * Note that device->missing is handled by the caller, and
5061 * that the write to the old disk is already set up in the
5062 * stripes array.
5063 */
5064 index_where_to_add = num_stripes;
5065 for (i = 0; i < num_stripes; i++) {
5066 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5067 /* write to new disk, too */
5068 struct btrfs_bio_stripe *new =
5069 bbio->stripes + index_where_to_add;
5070 struct btrfs_bio_stripe *old =
5071 bbio->stripes + i;
5072
5073 new->physical = old->physical;
5074 new->length = old->length;
5075 new->dev = dev_replace->tgtdev;
5076 index_where_to_add++;
5077 max_errors++;
5078 }
5079 }
5080 num_stripes = index_where_to_add;
ad6d620e
SB
5081 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5082 dev_replace->tgtdev != NULL) {
5083 u64 srcdev_devid = dev_replace->srcdev->devid;
5084 int index_srcdev = 0;
5085 int found = 0;
5086 u64 physical_of_found = 0;
5087
5088 /*
5089 * During the dev-replace procedure, the target drive can
5090 * also be used to read data in case it is needed to repair
5091 * a corrupt block elsewhere. This is possible if the
5092 * requested area is left of the left cursor. In this area,
5093 * the target drive is a full copy of the source drive.
5094 */
5095 for (i = 0; i < num_stripes; i++) {
5096 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5097 /*
5098 * In case of DUP, in order to keep it
5099 * simple, only add the mirror with the
5100 * lowest physical address
5101 */
5102 if (found &&
5103 physical_of_found <=
5104 bbio->stripes[i].physical)
5105 continue;
5106 index_srcdev = i;
5107 found = 1;
5108 physical_of_found = bbio->stripes[i].physical;
5109 }
5110 }
5111 if (found) {
5112 u64 length = map->stripe_len;
5113
5114 if (physical_of_found + length <=
5115 dev_replace->cursor_left) {
5116 struct btrfs_bio_stripe *tgtdev_stripe =
5117 bbio->stripes + num_stripes;
5118
5119 tgtdev_stripe->physical = physical_of_found;
5120 tgtdev_stripe->length =
5121 bbio->stripes[index_srcdev].length;
5122 tgtdev_stripe->dev = dev_replace->tgtdev;
5123
5124 num_stripes++;
5125 }
5126 }
472262f3
SB
5127 }
5128
de11cc12
LZ
5129 *bbio_ret = bbio;
5130 bbio->num_stripes = num_stripes;
5131 bbio->max_errors = max_errors;
5132 bbio->mirror_num = mirror_num;
ad6d620e
SB
5133
5134 /*
5135 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5136 * mirror_num == num_stripes + 1 && dev_replace target drive is
5137 * available as a mirror
5138 */
5139 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5140 WARN_ON(num_stripes > 1);
5141 bbio->stripes[0].dev = dev_replace->tgtdev;
5142 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5143 bbio->mirror_num = map->num_stripes + 1;
5144 }
53b381b3
DW
5145 if (raid_map) {
5146 sort_parity_stripes(bbio, raid_map);
5147 *raid_map_ret = raid_map;
5148 }
cea9e445 5149out:
472262f3
SB
5150 if (dev_replace_is_ongoing)
5151 btrfs_dev_replace_unlock(dev_replace);
0b86a832 5152 free_extent_map(em);
de11cc12 5153 return ret;
0b86a832
CM
5154}
5155
3ec706c8 5156int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5157 u64 logical, u64 *length,
a1d3c478 5158 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5159{
3ec706c8 5160 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
53b381b3 5161 mirror_num, NULL);
f2d8d74d
CM
5162}
5163
a512bbf8
YZ
5164int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5165 u64 chunk_start, u64 physical, u64 devid,
5166 u64 **logical, int *naddrs, int *stripe_len)
5167{
5168 struct extent_map_tree *em_tree = &map_tree->map_tree;
5169 struct extent_map *em;
5170 struct map_lookup *map;
5171 u64 *buf;
5172 u64 bytenr;
5173 u64 length;
5174 u64 stripe_nr;
53b381b3 5175 u64 rmap_len;
a512bbf8
YZ
5176 int i, j, nr = 0;
5177
890871be 5178 read_lock(&em_tree->lock);
a512bbf8 5179 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5180 read_unlock(&em_tree->lock);
a512bbf8 5181
835d974f
JB
5182 if (!em) {
5183 printk(KERN_ERR "btrfs: couldn't find em for chunk %Lu\n",
5184 chunk_start);
5185 return -EIO;
5186 }
5187
5188 if (em->start != chunk_start) {
5189 printk(KERN_ERR "btrfs: bad chunk start, em=%Lu, wanted=%Lu\n",
5190 em->start, chunk_start);
5191 free_extent_map(em);
5192 return -EIO;
5193 }
a512bbf8
YZ
5194 map = (struct map_lookup *)em->bdev;
5195
5196 length = em->len;
53b381b3
DW
5197 rmap_len = map->stripe_len;
5198
a512bbf8
YZ
5199 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5200 do_div(length, map->num_stripes / map->sub_stripes);
5201 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5202 do_div(length, map->num_stripes);
53b381b3
DW
5203 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5204 BTRFS_BLOCK_GROUP_RAID6)) {
5205 do_div(length, nr_data_stripes(map));
5206 rmap_len = map->stripe_len * nr_data_stripes(map);
5207 }
a512bbf8
YZ
5208
5209 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
79787eaa 5210 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5211
5212 for (i = 0; i < map->num_stripes; i++) {
5213 if (devid && map->stripes[i].dev->devid != devid)
5214 continue;
5215 if (map->stripes[i].physical > physical ||
5216 map->stripes[i].physical + length <= physical)
5217 continue;
5218
5219 stripe_nr = physical - map->stripes[i].physical;
5220 do_div(stripe_nr, map->stripe_len);
5221
5222 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5223 stripe_nr = stripe_nr * map->num_stripes + i;
5224 do_div(stripe_nr, map->sub_stripes);
5225 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5226 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5227 } /* else if RAID[56], multiply by nr_data_stripes().
5228 * Alternatively, just use rmap_len below instead of
5229 * map->stripe_len */
5230
5231 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5232 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5233 for (j = 0; j < nr; j++) {
5234 if (buf[j] == bytenr)
5235 break;
5236 }
934d375b
CM
5237 if (j == nr) {
5238 WARN_ON(nr >= map->num_stripes);
a512bbf8 5239 buf[nr++] = bytenr;
934d375b 5240 }
a512bbf8
YZ
5241 }
5242
a512bbf8
YZ
5243 *logical = buf;
5244 *naddrs = nr;
53b381b3 5245 *stripe_len = rmap_len;
a512bbf8
YZ
5246
5247 free_extent_map(em);
5248 return 0;
f2d8d74d
CM
5249}
5250
a1d3c478 5251static void btrfs_end_bio(struct bio *bio, int err)
8790d502 5252{
9be3395b 5253 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5254 int is_orig_bio = 0;
8790d502 5255
442a4f63 5256 if (err) {
a1d3c478 5257 atomic_inc(&bbio->error);
442a4f63
SB
5258 if (err == -EIO || err == -EREMOTEIO) {
5259 unsigned int stripe_index =
9be3395b 5260 btrfs_io_bio(bio)->stripe_index;
442a4f63
SB
5261 struct btrfs_device *dev;
5262
5263 BUG_ON(stripe_index >= bbio->num_stripes);
5264 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5265 if (dev->bdev) {
5266 if (bio->bi_rw & WRITE)
5267 btrfs_dev_stat_inc(dev,
5268 BTRFS_DEV_STAT_WRITE_ERRS);
5269 else
5270 btrfs_dev_stat_inc(dev,
5271 BTRFS_DEV_STAT_READ_ERRS);
5272 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5273 btrfs_dev_stat_inc(dev,
5274 BTRFS_DEV_STAT_FLUSH_ERRS);
5275 btrfs_dev_stat_print_on_error(dev);
5276 }
442a4f63
SB
5277 }
5278 }
8790d502 5279
a1d3c478 5280 if (bio == bbio->orig_bio)
7d2b4daa
CM
5281 is_orig_bio = 1;
5282
a1d3c478 5283 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5284 if (!is_orig_bio) {
5285 bio_put(bio);
a1d3c478 5286 bio = bbio->orig_bio;
7d2b4daa 5287 }
a1d3c478
JS
5288 bio->bi_private = bbio->private;
5289 bio->bi_end_io = bbio->end_io;
9be3395b 5290 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 5291 /* only send an error to the higher layers if it is
53b381b3 5292 * beyond the tolerance of the btrfs bio
a236aed1 5293 */
a1d3c478 5294 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 5295 err = -EIO;
5dbc8fca 5296 } else {
1259ab75
CM
5297 /*
5298 * this bio is actually up to date, we didn't
5299 * go over the max number of errors
5300 */
5301 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 5302 err = 0;
1259ab75 5303 }
a1d3c478 5304 kfree(bbio);
8790d502
CM
5305
5306 bio_endio(bio, err);
7d2b4daa 5307 } else if (!is_orig_bio) {
8790d502
CM
5308 bio_put(bio);
5309 }
8790d502
CM
5310}
5311
8b712842
CM
5312struct async_sched {
5313 struct bio *bio;
5314 int rw;
5315 struct btrfs_fs_info *info;
5316 struct btrfs_work work;
5317};
5318
5319/*
5320 * see run_scheduled_bios for a description of why bios are collected for
5321 * async submit.
5322 *
5323 * This will add one bio to the pending list for a device and make sure
5324 * the work struct is scheduled.
5325 */
48a3b636
ES
5326static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5327 struct btrfs_device *device,
5328 int rw, struct bio *bio)
8b712842
CM
5329{
5330 int should_queue = 1;
ffbd517d 5331 struct btrfs_pending_bios *pending_bios;
8b712842 5332
53b381b3
DW
5333 if (device->missing || !device->bdev) {
5334 bio_endio(bio, -EIO);
5335 return;
5336 }
5337
8b712842 5338 /* don't bother with additional async steps for reads, right now */
7b6d91da 5339 if (!(rw & REQ_WRITE)) {
492bb6de 5340 bio_get(bio);
21adbd5c 5341 btrfsic_submit_bio(rw, bio);
492bb6de 5342 bio_put(bio);
143bede5 5343 return;
8b712842
CM
5344 }
5345
5346 /*
0986fe9e 5347 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
5348 * higher layers. Otherwise, the async bio makes it appear we have
5349 * made progress against dirty pages when we've really just put it
5350 * on a queue for later
5351 */
0986fe9e 5352 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 5353 WARN_ON(bio->bi_next);
8b712842
CM
5354 bio->bi_next = NULL;
5355 bio->bi_rw |= rw;
5356
5357 spin_lock(&device->io_lock);
7b6d91da 5358 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
5359 pending_bios = &device->pending_sync_bios;
5360 else
5361 pending_bios = &device->pending_bios;
8b712842 5362
ffbd517d
CM
5363 if (pending_bios->tail)
5364 pending_bios->tail->bi_next = bio;
8b712842 5365
ffbd517d
CM
5366 pending_bios->tail = bio;
5367 if (!pending_bios->head)
5368 pending_bios->head = bio;
8b712842
CM
5369 if (device->running_pending)
5370 should_queue = 0;
5371
5372 spin_unlock(&device->io_lock);
5373
5374 if (should_queue)
1cc127b5
CM
5375 btrfs_queue_worker(&root->fs_info->submit_workers,
5376 &device->work);
8b712842
CM
5377}
5378
de1ee92a
JB
5379static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5380 sector_t sector)
5381{
5382 struct bio_vec *prev;
5383 struct request_queue *q = bdev_get_queue(bdev);
5384 unsigned short max_sectors = queue_max_sectors(q);
5385 struct bvec_merge_data bvm = {
5386 .bi_bdev = bdev,
5387 .bi_sector = sector,
5388 .bi_rw = bio->bi_rw,
5389 };
5390
5391 if (bio->bi_vcnt == 0) {
5392 WARN_ON(1);
5393 return 1;
5394 }
5395
5396 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
aa8b57aa 5397 if (bio_sectors(bio) > max_sectors)
de1ee92a
JB
5398 return 0;
5399
5400 if (!q->merge_bvec_fn)
5401 return 1;
5402
5403 bvm.bi_size = bio->bi_size - prev->bv_len;
5404 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5405 return 0;
5406 return 1;
5407}
5408
5409static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5410 struct bio *bio, u64 physical, int dev_nr,
5411 int rw, int async)
5412{
5413 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5414
5415 bio->bi_private = bbio;
9be3395b 5416 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a
JB
5417 bio->bi_end_io = btrfs_end_bio;
5418 bio->bi_sector = physical >> 9;
5419#ifdef DEBUG
5420 {
5421 struct rcu_string *name;
5422
5423 rcu_read_lock();
5424 name = rcu_dereference(dev->name);
d1423248 5425 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a
JB
5426 "(%s id %llu), size=%u\n", rw,
5427 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5428 name->str, dev->devid, bio->bi_size);
5429 rcu_read_unlock();
5430 }
5431#endif
5432 bio->bi_bdev = dev->bdev;
5433 if (async)
53b381b3 5434 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
5435 else
5436 btrfsic_submit_bio(rw, bio);
5437}
5438
5439static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5440 struct bio *first_bio, struct btrfs_device *dev,
5441 int dev_nr, int rw, int async)
5442{
5443 struct bio_vec *bvec = first_bio->bi_io_vec;
5444 struct bio *bio;
5445 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5446 u64 physical = bbio->stripes[dev_nr].physical;
5447
5448again:
5449 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5450 if (!bio)
5451 return -ENOMEM;
5452
5453 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5454 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5455 bvec->bv_offset) < bvec->bv_len) {
5456 u64 len = bio->bi_size;
5457
5458 atomic_inc(&bbio->stripes_pending);
5459 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5460 rw, async);
5461 physical += len;
5462 goto again;
5463 }
5464 bvec++;
5465 }
5466
5467 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5468 return 0;
5469}
5470
5471static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5472{
5473 atomic_inc(&bbio->error);
5474 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5475 bio->bi_private = bbio->private;
5476 bio->bi_end_io = bbio->end_io;
9be3395b 5477 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
de1ee92a
JB
5478 bio->bi_sector = logical >> 9;
5479 kfree(bbio);
5480 bio_endio(bio, -EIO);
5481 }
5482}
5483
f188591e 5484int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 5485 int mirror_num, int async_submit)
0b86a832 5486{
0b86a832 5487 struct btrfs_device *dev;
8790d502 5488 struct bio *first_bio = bio;
a62b9401 5489 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
5490 u64 length = 0;
5491 u64 map_length;
53b381b3 5492 u64 *raid_map = NULL;
0b86a832 5493 int ret;
8790d502
CM
5494 int dev_nr = 0;
5495 int total_devs = 1;
a1d3c478 5496 struct btrfs_bio *bbio = NULL;
0b86a832 5497
f2d8d74d 5498 length = bio->bi_size;
0b86a832 5499 map_length = length;
cea9e445 5500
53b381b3
DW
5501 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5502 mirror_num, &raid_map);
5503 if (ret) /* -ENOMEM */
79787eaa 5504 return ret;
cea9e445 5505
a1d3c478 5506 total_devs = bbio->num_stripes;
53b381b3
DW
5507 bbio->orig_bio = first_bio;
5508 bbio->private = first_bio->bi_private;
5509 bbio->end_io = first_bio->bi_end_io;
5510 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5511
5512 if (raid_map) {
5513 /* In this case, map_length has been set to the length of
5514 a single stripe; not the whole write */
5515 if (rw & WRITE) {
5516 return raid56_parity_write(root, bio, bbio,
5517 raid_map, map_length);
5518 } else {
5519 return raid56_parity_recover(root, bio, bbio,
5520 raid_map, map_length,
5521 mirror_num);
5522 }
5523 }
5524
cea9e445 5525 if (map_length < length) {
c2cf52eb
SK
5526 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5527 (unsigned long long)logical,
5528 (unsigned long long)length,
5529 (unsigned long long)map_length);
cea9e445
CM
5530 BUG();
5531 }
a1d3c478 5532
d397712b 5533 while (dev_nr < total_devs) {
de1ee92a
JB
5534 dev = bbio->stripes[dev_nr].dev;
5535 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5536 bbio_error(bbio, first_bio, logical);
5537 dev_nr++;
5538 continue;
5539 }
5540
5541 /*
5542 * Check and see if we're ok with this bio based on it's size
5543 * and offset with the given device.
5544 */
5545 if (!bio_size_ok(dev->bdev, first_bio,
5546 bbio->stripes[dev_nr].physical >> 9)) {
5547 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5548 dev_nr, rw, async_submit);
5549 BUG_ON(ret);
5550 dev_nr++;
5551 continue;
5552 }
5553
a1d3c478 5554 if (dev_nr < total_devs - 1) {
9be3395b 5555 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 5556 BUG_ON(!bio); /* -ENOMEM */
a1d3c478
JS
5557 } else {
5558 bio = first_bio;
8790d502 5559 }
de1ee92a
JB
5560
5561 submit_stripe_bio(root, bbio, bio,
5562 bbio->stripes[dev_nr].physical, dev_nr, rw,
5563 async_submit);
8790d502
CM
5564 dev_nr++;
5565 }
0b86a832
CM
5566 return 0;
5567}
5568
aa1b8cd4 5569struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 5570 u8 *uuid, u8 *fsid)
0b86a832 5571{
2b82032c
YZ
5572 struct btrfs_device *device;
5573 struct btrfs_fs_devices *cur_devices;
5574
aa1b8cd4 5575 cur_devices = fs_info->fs_devices;
2b82032c
YZ
5576 while (cur_devices) {
5577 if (!fsid ||
5578 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5579 device = __find_device(&cur_devices->devices,
5580 devid, uuid);
5581 if (device)
5582 return device;
5583 }
5584 cur_devices = cur_devices->seed;
5585 }
5586 return NULL;
0b86a832
CM
5587}
5588
dfe25020
CM
5589static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5590 u64 devid, u8 *dev_uuid)
5591{
5592 struct btrfs_device *device;
5593 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5594
12bd2fc0
ID
5595 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5596 if (IS_ERR(device))
7cbd8a83 5597 return NULL;
12bd2fc0
ID
5598
5599 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 5600 device->fs_devices = fs_devices;
dfe25020 5601 fs_devices->num_devices++;
12bd2fc0
ID
5602
5603 device->missing = 1;
cd02dca5 5604 fs_devices->missing_devices++;
12bd2fc0 5605
dfe25020
CM
5606 return device;
5607}
5608
12bd2fc0
ID
5609/**
5610 * btrfs_alloc_device - allocate struct btrfs_device
5611 * @fs_info: used only for generating a new devid, can be NULL if
5612 * devid is provided (i.e. @devid != NULL).
5613 * @devid: a pointer to devid for this device. If NULL a new devid
5614 * is generated.
5615 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5616 * is generated.
5617 *
5618 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5619 * on error. Returned struct is not linked onto any lists and can be
5620 * destroyed with kfree() right away.
5621 */
5622struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5623 const u64 *devid,
5624 const u8 *uuid)
5625{
5626 struct btrfs_device *dev;
5627 u64 tmp;
5628
5629 if (!devid && !fs_info) {
5630 WARN_ON(1);
5631 return ERR_PTR(-EINVAL);
5632 }
5633
5634 dev = __alloc_device();
5635 if (IS_ERR(dev))
5636 return dev;
5637
5638 if (devid)
5639 tmp = *devid;
5640 else {
5641 int ret;
5642
5643 ret = find_next_devid(fs_info, &tmp);
5644 if (ret) {
5645 kfree(dev);
5646 return ERR_PTR(ret);
5647 }
5648 }
5649 dev->devid = tmp;
5650
5651 if (uuid)
5652 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5653 else
5654 generate_random_uuid(dev->uuid);
5655
5656 dev->work.func = pending_bios_fn;
5657
5658 return dev;
5659}
5660
0b86a832
CM
5661static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5662 struct extent_buffer *leaf,
5663 struct btrfs_chunk *chunk)
5664{
5665 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5666 struct map_lookup *map;
5667 struct extent_map *em;
5668 u64 logical;
5669 u64 length;
5670 u64 devid;
a443755f 5671 u8 uuid[BTRFS_UUID_SIZE];
593060d7 5672 int num_stripes;
0b86a832 5673 int ret;
593060d7 5674 int i;
0b86a832 5675
e17cade2
CM
5676 logical = key->offset;
5677 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 5678
890871be 5679 read_lock(&map_tree->map_tree.lock);
0b86a832 5680 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 5681 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
5682
5683 /* already mapped? */
5684 if (em && em->start <= logical && em->start + em->len > logical) {
5685 free_extent_map(em);
0b86a832
CM
5686 return 0;
5687 } else if (em) {
5688 free_extent_map(em);
5689 }
0b86a832 5690
172ddd60 5691 em = alloc_extent_map();
0b86a832
CM
5692 if (!em)
5693 return -ENOMEM;
593060d7
CM
5694 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5695 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
5696 if (!map) {
5697 free_extent_map(em);
5698 return -ENOMEM;
5699 }
5700
5701 em->bdev = (struct block_device *)map;
5702 em->start = logical;
5703 em->len = length;
70c8a91c 5704 em->orig_start = 0;
0b86a832 5705 em->block_start = 0;
c8b97818 5706 em->block_len = em->len;
0b86a832 5707
593060d7
CM
5708 map->num_stripes = num_stripes;
5709 map->io_width = btrfs_chunk_io_width(leaf, chunk);
5710 map->io_align = btrfs_chunk_io_align(leaf, chunk);
5711 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5712 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5713 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 5714 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
5715 for (i = 0; i < num_stripes; i++) {
5716 map->stripes[i].physical =
5717 btrfs_stripe_offset_nr(leaf, chunk, i);
5718 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
5719 read_extent_buffer(leaf, uuid, (unsigned long)
5720 btrfs_stripe_dev_uuid_nr(chunk, i),
5721 BTRFS_UUID_SIZE);
aa1b8cd4
SB
5722 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5723 uuid, NULL);
dfe25020 5724 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
5725 kfree(map);
5726 free_extent_map(em);
5727 return -EIO;
5728 }
dfe25020
CM
5729 if (!map->stripes[i].dev) {
5730 map->stripes[i].dev =
5731 add_missing_dev(root, devid, uuid);
5732 if (!map->stripes[i].dev) {
5733 kfree(map);
5734 free_extent_map(em);
5735 return -EIO;
5736 }
5737 }
5738 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
5739 }
5740
890871be 5741 write_lock(&map_tree->map_tree.lock);
09a2a8f9 5742 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 5743 write_unlock(&map_tree->map_tree.lock);
79787eaa 5744 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
5745 free_extent_map(em);
5746
5747 return 0;
5748}
5749
143bede5 5750static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
5751 struct btrfs_dev_item *dev_item,
5752 struct btrfs_device *device)
5753{
5754 unsigned long ptr;
0b86a832
CM
5755
5756 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
5757 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5758 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
5759 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5760 device->type = btrfs_device_type(leaf, dev_item);
5761 device->io_align = btrfs_device_io_align(leaf, dev_item);
5762 device->io_width = btrfs_device_io_width(leaf, dev_item);
5763 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 5764 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 5765 device->is_tgtdev_for_dev_replace = 0;
0b86a832
CM
5766
5767 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 5768 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
5769}
5770
2b82032c
YZ
5771static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5772{
5773 struct btrfs_fs_devices *fs_devices;
5774 int ret;
5775
b367e47f 5776 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
5777
5778 fs_devices = root->fs_info->fs_devices->seed;
5779 while (fs_devices) {
5780 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5781 ret = 0;
5782 goto out;
5783 }
5784 fs_devices = fs_devices->seed;
5785 }
5786
5787 fs_devices = find_fsid(fsid);
5788 if (!fs_devices) {
5789 ret = -ENOENT;
5790 goto out;
5791 }
e4404d6e
YZ
5792
5793 fs_devices = clone_fs_devices(fs_devices);
5794 if (IS_ERR(fs_devices)) {
5795 ret = PTR_ERR(fs_devices);
2b82032c
YZ
5796 goto out;
5797 }
5798
97288f2c 5799 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 5800 root->fs_info->bdev_holder);
48d28232
JL
5801 if (ret) {
5802 free_fs_devices(fs_devices);
2b82032c 5803 goto out;
48d28232 5804 }
2b82032c
YZ
5805
5806 if (!fs_devices->seeding) {
5807 __btrfs_close_devices(fs_devices);
e4404d6e 5808 free_fs_devices(fs_devices);
2b82032c
YZ
5809 ret = -EINVAL;
5810 goto out;
5811 }
5812
5813 fs_devices->seed = root->fs_info->fs_devices->seed;
5814 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 5815out:
2b82032c
YZ
5816 return ret;
5817}
5818
0d81ba5d 5819static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
5820 struct extent_buffer *leaf,
5821 struct btrfs_dev_item *dev_item)
5822{
5823 struct btrfs_device *device;
5824 u64 devid;
5825 int ret;
2b82032c 5826 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
5827 u8 dev_uuid[BTRFS_UUID_SIZE];
5828
0b86a832 5829 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
5830 read_extent_buffer(leaf, dev_uuid,
5831 (unsigned long)btrfs_device_uuid(dev_item),
5832 BTRFS_UUID_SIZE);
2b82032c
YZ
5833 read_extent_buffer(leaf, fs_uuid,
5834 (unsigned long)btrfs_device_fsid(dev_item),
5835 BTRFS_UUID_SIZE);
5836
5837 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5838 ret = open_seed_devices(root, fs_uuid);
e4404d6e 5839 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 5840 return ret;
2b82032c
YZ
5841 }
5842
aa1b8cd4 5843 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
2b82032c 5844 if (!device || !device->bdev) {
e4404d6e 5845 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
5846 return -EIO;
5847
5848 if (!device) {
c2cf52eb
SK
5849 btrfs_warn(root->fs_info, "devid %llu missing",
5850 (unsigned long long)devid);
2b82032c
YZ
5851 device = add_missing_dev(root, devid, dev_uuid);
5852 if (!device)
5853 return -ENOMEM;
cd02dca5
CM
5854 } else if (!device->missing) {
5855 /*
5856 * this happens when a device that was properly setup
5857 * in the device info lists suddenly goes bad.
5858 * device->bdev is NULL, and so we have to set
5859 * device->missing to one here
5860 */
5861 root->fs_info->fs_devices->missing_devices++;
5862 device->missing = 1;
2b82032c
YZ
5863 }
5864 }
5865
5866 if (device->fs_devices != root->fs_info->fs_devices) {
5867 BUG_ON(device->writeable);
5868 if (device->generation !=
5869 btrfs_device_generation(leaf, dev_item))
5870 return -EINVAL;
6324fbf3 5871 }
0b86a832
CM
5872
5873 fill_device_from_item(leaf, dev_item, device);
dfe25020 5874 device->in_fs_metadata = 1;
63a212ab 5875 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 5876 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
5877 spin_lock(&root->fs_info->free_chunk_lock);
5878 root->fs_info->free_chunk_space += device->total_bytes -
5879 device->bytes_used;
5880 spin_unlock(&root->fs_info->free_chunk_lock);
5881 }
0b86a832 5882 ret = 0;
0b86a832
CM
5883 return ret;
5884}
5885
e4404d6e 5886int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 5887{
6c41761f 5888 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 5889 struct extent_buffer *sb;
0b86a832 5890 struct btrfs_disk_key *disk_key;
0b86a832 5891 struct btrfs_chunk *chunk;
84eed90f
CM
5892 u8 *ptr;
5893 unsigned long sb_ptr;
5894 int ret = 0;
0b86a832
CM
5895 u32 num_stripes;
5896 u32 array_size;
5897 u32 len = 0;
0b86a832 5898 u32 cur;
84eed90f 5899 struct btrfs_key key;
0b86a832 5900
e4404d6e 5901 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
5902 BTRFS_SUPER_INFO_SIZE);
5903 if (!sb)
5904 return -ENOMEM;
5905 btrfs_set_buffer_uptodate(sb);
85d4e461 5906 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
5907 /*
5908 * The sb extent buffer is artifical and just used to read the system array.
5909 * btrfs_set_buffer_uptodate() call does not properly mark all it's
5910 * pages up-to-date when the page is larger: extent does not cover the
5911 * whole page and consequently check_page_uptodate does not find all
5912 * the page's extents up-to-date (the hole beyond sb),
5913 * write_extent_buffer then triggers a WARN_ON.
5914 *
5915 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
5916 * but sb spans only this function. Add an explicit SetPageUptodate call
5917 * to silence the warning eg. on PowerPC 64.
5918 */
5919 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 5920 SetPageUptodate(sb->pages[0]);
4008c04a 5921
a061fc8d 5922 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
5923 array_size = btrfs_super_sys_array_size(super_copy);
5924
0b86a832
CM
5925 ptr = super_copy->sys_chunk_array;
5926 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
5927 cur = 0;
5928
5929 while (cur < array_size) {
5930 disk_key = (struct btrfs_disk_key *)ptr;
5931 btrfs_disk_key_to_cpu(&key, disk_key);
5932
a061fc8d 5933 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
5934 sb_ptr += len;
5935 cur += len;
5936
0d81ba5d 5937 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 5938 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 5939 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
5940 if (ret)
5941 break;
0b86a832
CM
5942 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
5943 len = btrfs_chunk_item_size(num_stripes);
5944 } else {
84eed90f
CM
5945 ret = -EIO;
5946 break;
0b86a832
CM
5947 }
5948 ptr += len;
5949 sb_ptr += len;
5950 cur += len;
5951 }
a061fc8d 5952 free_extent_buffer(sb);
84eed90f 5953 return ret;
0b86a832
CM
5954}
5955
5956int btrfs_read_chunk_tree(struct btrfs_root *root)
5957{
5958 struct btrfs_path *path;
5959 struct extent_buffer *leaf;
5960 struct btrfs_key key;
5961 struct btrfs_key found_key;
5962 int ret;
5963 int slot;
5964
5965 root = root->fs_info->chunk_root;
5966
5967 path = btrfs_alloc_path();
5968 if (!path)
5969 return -ENOMEM;
5970
b367e47f
LZ
5971 mutex_lock(&uuid_mutex);
5972 lock_chunks(root);
5973
395927a9
FDBM
5974 /*
5975 * Read all device items, and then all the chunk items. All
5976 * device items are found before any chunk item (their object id
5977 * is smaller than the lowest possible object id for a chunk
5978 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
5979 */
5980 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
5981 key.offset = 0;
5982 key.type = 0;
0b86a832 5983 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
5984 if (ret < 0)
5985 goto error;
d397712b 5986 while (1) {
0b86a832
CM
5987 leaf = path->nodes[0];
5988 slot = path->slots[0];
5989 if (slot >= btrfs_header_nritems(leaf)) {
5990 ret = btrfs_next_leaf(root, path);
5991 if (ret == 0)
5992 continue;
5993 if (ret < 0)
5994 goto error;
5995 break;
5996 }
5997 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
5998 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
5999 struct btrfs_dev_item *dev_item;
6000 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6001 struct btrfs_dev_item);
395927a9
FDBM
6002 ret = read_one_dev(root, leaf, dev_item);
6003 if (ret)
6004 goto error;
0b86a832
CM
6005 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6006 struct btrfs_chunk *chunk;
6007 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6008 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6009 if (ret)
6010 goto error;
0b86a832
CM
6011 }
6012 path->slots[0]++;
6013 }
0b86a832
CM
6014 ret = 0;
6015error:
b367e47f
LZ
6016 unlock_chunks(root);
6017 mutex_unlock(&uuid_mutex);
6018
2b82032c 6019 btrfs_free_path(path);
0b86a832
CM
6020 return ret;
6021}
442a4f63 6022
cb517eab
MX
6023void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6024{
6025 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6026 struct btrfs_device *device;
6027
6028 mutex_lock(&fs_devices->device_list_mutex);
6029 list_for_each_entry(device, &fs_devices->devices, dev_list)
6030 device->dev_root = fs_info->dev_root;
6031 mutex_unlock(&fs_devices->device_list_mutex);
6032}
6033
733f4fbb
SB
6034static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6035{
6036 int i;
6037
6038 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6039 btrfs_dev_stat_reset(dev, i);
6040}
6041
6042int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6043{
6044 struct btrfs_key key;
6045 struct btrfs_key found_key;
6046 struct btrfs_root *dev_root = fs_info->dev_root;
6047 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6048 struct extent_buffer *eb;
6049 int slot;
6050 int ret = 0;
6051 struct btrfs_device *device;
6052 struct btrfs_path *path = NULL;
6053 int i;
6054
6055 path = btrfs_alloc_path();
6056 if (!path) {
6057 ret = -ENOMEM;
6058 goto out;
6059 }
6060
6061 mutex_lock(&fs_devices->device_list_mutex);
6062 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6063 int item_size;
6064 struct btrfs_dev_stats_item *ptr;
6065
6066 key.objectid = 0;
6067 key.type = BTRFS_DEV_STATS_KEY;
6068 key.offset = device->devid;
6069 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6070 if (ret) {
733f4fbb
SB
6071 __btrfs_reset_dev_stats(device);
6072 device->dev_stats_valid = 1;
6073 btrfs_release_path(path);
6074 continue;
6075 }
6076 slot = path->slots[0];
6077 eb = path->nodes[0];
6078 btrfs_item_key_to_cpu(eb, &found_key, slot);
6079 item_size = btrfs_item_size_nr(eb, slot);
6080
6081 ptr = btrfs_item_ptr(eb, slot,
6082 struct btrfs_dev_stats_item);
6083
6084 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6085 if (item_size >= (1 + i) * sizeof(__le64))
6086 btrfs_dev_stat_set(device, i,
6087 btrfs_dev_stats_value(eb, ptr, i));
6088 else
6089 btrfs_dev_stat_reset(device, i);
6090 }
6091
6092 device->dev_stats_valid = 1;
6093 btrfs_dev_stat_print_on_load(device);
6094 btrfs_release_path(path);
6095 }
6096 mutex_unlock(&fs_devices->device_list_mutex);
6097
6098out:
6099 btrfs_free_path(path);
6100 return ret < 0 ? ret : 0;
6101}
6102
6103static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6104 struct btrfs_root *dev_root,
6105 struct btrfs_device *device)
6106{
6107 struct btrfs_path *path;
6108 struct btrfs_key key;
6109 struct extent_buffer *eb;
6110 struct btrfs_dev_stats_item *ptr;
6111 int ret;
6112 int i;
6113
6114 key.objectid = 0;
6115 key.type = BTRFS_DEV_STATS_KEY;
6116 key.offset = device->devid;
6117
6118 path = btrfs_alloc_path();
6119 BUG_ON(!path);
6120 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6121 if (ret < 0) {
606686ee
JB
6122 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
6123 ret, rcu_str_deref(device->name));
733f4fbb
SB
6124 goto out;
6125 }
6126
6127 if (ret == 0 &&
6128 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6129 /* need to delete old one and insert a new one */
6130 ret = btrfs_del_item(trans, dev_root, path);
6131 if (ret != 0) {
606686ee
JB
6132 printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
6133 rcu_str_deref(device->name), ret);
733f4fbb
SB
6134 goto out;
6135 }
6136 ret = 1;
6137 }
6138
6139 if (ret == 1) {
6140 /* need to insert a new item */
6141 btrfs_release_path(path);
6142 ret = btrfs_insert_empty_item(trans, dev_root, path,
6143 &key, sizeof(*ptr));
6144 if (ret < 0) {
606686ee
JB
6145 printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
6146 rcu_str_deref(device->name), ret);
733f4fbb
SB
6147 goto out;
6148 }
6149 }
6150
6151 eb = path->nodes[0];
6152 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6153 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6154 btrfs_set_dev_stats_value(eb, ptr, i,
6155 btrfs_dev_stat_read(device, i));
6156 btrfs_mark_buffer_dirty(eb);
6157
6158out:
6159 btrfs_free_path(path);
6160 return ret;
6161}
6162
6163/*
6164 * called from commit_transaction. Writes all changed device stats to disk.
6165 */
6166int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6167 struct btrfs_fs_info *fs_info)
6168{
6169 struct btrfs_root *dev_root = fs_info->dev_root;
6170 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6171 struct btrfs_device *device;
6172 int ret = 0;
6173
6174 mutex_lock(&fs_devices->device_list_mutex);
6175 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6176 if (!device->dev_stats_valid || !device->dev_stats_dirty)
6177 continue;
6178
6179 ret = update_dev_stat_item(trans, dev_root, device);
6180 if (!ret)
6181 device->dev_stats_dirty = 0;
6182 }
6183 mutex_unlock(&fs_devices->device_list_mutex);
6184
6185 return ret;
6186}
6187
442a4f63
SB
6188void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6189{
6190 btrfs_dev_stat_inc(dev, index);
6191 btrfs_dev_stat_print_on_error(dev);
6192}
6193
48a3b636 6194static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 6195{
733f4fbb
SB
6196 if (!dev->dev_stats_valid)
6197 return;
606686ee 6198 printk_ratelimited_in_rcu(KERN_ERR
442a4f63 6199 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6200 rcu_str_deref(dev->name),
442a4f63
SB
6201 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6202 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6203 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6204 btrfs_dev_stat_read(dev,
6205 BTRFS_DEV_STAT_CORRUPTION_ERRS),
6206 btrfs_dev_stat_read(dev,
6207 BTRFS_DEV_STAT_GENERATION_ERRS));
6208}
c11d2c23 6209
733f4fbb
SB
6210static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6211{
a98cdb85
SB
6212 int i;
6213
6214 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6215 if (btrfs_dev_stat_read(dev, i) != 0)
6216 break;
6217 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6218 return; /* all values == 0, suppress message */
6219
606686ee
JB
6220 printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6221 rcu_str_deref(dev->name),
733f4fbb
SB
6222 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6223 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6224 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6225 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6226 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6227}
6228
c11d2c23 6229int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 6230 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
6231{
6232 struct btrfs_device *dev;
6233 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6234 int i;
6235
6236 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 6237 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
6238 mutex_unlock(&fs_devices->device_list_mutex);
6239
6240 if (!dev) {
6241 printk(KERN_WARNING
6242 "btrfs: get dev_stats failed, device not found\n");
6243 return -ENODEV;
733f4fbb
SB
6244 } else if (!dev->dev_stats_valid) {
6245 printk(KERN_WARNING
6246 "btrfs: get dev_stats failed, not yet valid\n");
6247 return -ENODEV;
b27f7c0c 6248 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
6249 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6250 if (stats->nr_items > i)
6251 stats->values[i] =
6252 btrfs_dev_stat_read_and_reset(dev, i);
6253 else
6254 btrfs_dev_stat_reset(dev, i);
6255 }
6256 } else {
6257 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6258 if (stats->nr_items > i)
6259 stats->values[i] = btrfs_dev_stat_read(dev, i);
6260 }
6261 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6262 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6263 return 0;
6264}
a8a6dab7
SB
6265
6266int btrfs_scratch_superblock(struct btrfs_device *device)
6267{
6268 struct buffer_head *bh;
6269 struct btrfs_super_block *disk_super;
6270
6271 bh = btrfs_read_dev_super(device->bdev);
6272 if (!bh)
6273 return -EINVAL;
6274 disk_super = (struct btrfs_super_block *)bh->b_data;
6275
6276 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6277 set_buffer_dirty(bh);
6278 sync_dirty_buffer(bh);
6279 brelse(bh);
6280
6281 return 0;
6282}
This page took 0.96687 seconds and 5 git commands to generate.