Btrfs: fix race between removing a dev and writing sbs
[deliverable/linux.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3 28#include <linux/raid/pq.h>
803b2f54 29#include <linux/semaphore.h>
53b381b3 30#include <asm/div64.h>
4b4e25f2 31#include "compat.h"
0b86a832
CM
32#include "ctree.h"
33#include "extent_map.h"
34#include "disk-io.h"
35#include "transaction.h"
36#include "print-tree.h"
37#include "volumes.h"
53b381b3 38#include "raid56.h"
8b712842 39#include "async-thread.h"
21adbd5c 40#include "check-integrity.h"
606686ee 41#include "rcu-string.h"
3fed40cc 42#include "math.h"
8dabb742 43#include "dev-replace.h"
0b86a832 44
2b82032c
YZ
45static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 49static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 50static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 51static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 52
8a4b83cc
CM
53static DEFINE_MUTEX(uuid_mutex);
54static LIST_HEAD(fs_uuids);
55
7d9eb12c
CM
56static void lock_chunks(struct btrfs_root *root)
57{
7d9eb12c
CM
58 mutex_lock(&root->fs_info->chunk_mutex);
59}
60
61static void unlock_chunks(struct btrfs_root *root)
62{
7d9eb12c
CM
63 mutex_unlock(&root->fs_info->chunk_mutex);
64}
65
2208a378
ID
66static struct btrfs_fs_devices *__alloc_fs_devices(void)
67{
68 struct btrfs_fs_devices *fs_devs;
69
70 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
71 if (!fs_devs)
72 return ERR_PTR(-ENOMEM);
73
74 mutex_init(&fs_devs->device_list_mutex);
75
76 INIT_LIST_HEAD(&fs_devs->devices);
77 INIT_LIST_HEAD(&fs_devs->alloc_list);
78 INIT_LIST_HEAD(&fs_devs->list);
79
80 return fs_devs;
81}
82
83/**
84 * alloc_fs_devices - allocate struct btrfs_fs_devices
85 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
86 * generated.
87 *
88 * Return: a pointer to a new &struct btrfs_fs_devices on success;
89 * ERR_PTR() on error. Returned struct is not linked onto any lists and
90 * can be destroyed with kfree() right away.
91 */
92static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
93{
94 struct btrfs_fs_devices *fs_devs;
95
96 fs_devs = __alloc_fs_devices();
97 if (IS_ERR(fs_devs))
98 return fs_devs;
99
100 if (fsid)
101 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
102 else
103 generate_random_uuid(fs_devs->fsid);
104
105 return fs_devs;
106}
107
e4404d6e
YZ
108static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
109{
110 struct btrfs_device *device;
111 WARN_ON(fs_devices->opened);
112 while (!list_empty(&fs_devices->devices)) {
113 device = list_entry(fs_devices->devices.next,
114 struct btrfs_device, dev_list);
115 list_del(&device->dev_list);
606686ee 116 rcu_string_free(device->name);
e4404d6e
YZ
117 kfree(device);
118 }
119 kfree(fs_devices);
120}
121
b8b8ff59
LC
122static void btrfs_kobject_uevent(struct block_device *bdev,
123 enum kobject_action action)
124{
125 int ret;
126
127 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
128 if (ret)
129 pr_warn("Sending event '%d' to kobject: '%s' (%p): failed\n",
130 action,
131 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
132 &disk_to_dev(bdev->bd_disk)->kobj);
133}
134
143bede5 135void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
136{
137 struct btrfs_fs_devices *fs_devices;
8a4b83cc 138
2b82032c
YZ
139 while (!list_empty(&fs_uuids)) {
140 fs_devices = list_entry(fs_uuids.next,
141 struct btrfs_fs_devices, list);
142 list_del(&fs_devices->list);
e4404d6e 143 free_fs_devices(fs_devices);
8a4b83cc 144 }
8a4b83cc
CM
145}
146
12bd2fc0
ID
147static struct btrfs_device *__alloc_device(void)
148{
149 struct btrfs_device *dev;
150
151 dev = kzalloc(sizeof(*dev), GFP_NOFS);
152 if (!dev)
153 return ERR_PTR(-ENOMEM);
154
155 INIT_LIST_HEAD(&dev->dev_list);
156 INIT_LIST_HEAD(&dev->dev_alloc_list);
157
158 spin_lock_init(&dev->io_lock);
159
160 spin_lock_init(&dev->reada_lock);
161 atomic_set(&dev->reada_in_flight, 0);
162 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
163 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
164
165 return dev;
166}
167
a1b32a59
CM
168static noinline struct btrfs_device *__find_device(struct list_head *head,
169 u64 devid, u8 *uuid)
8a4b83cc
CM
170{
171 struct btrfs_device *dev;
8a4b83cc 172
c6e30871 173 list_for_each_entry(dev, head, dev_list) {
a443755f 174 if (dev->devid == devid &&
8f18cf13 175 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 176 return dev;
a443755f 177 }
8a4b83cc
CM
178 }
179 return NULL;
180}
181
a1b32a59 182static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 183{
8a4b83cc
CM
184 struct btrfs_fs_devices *fs_devices;
185
c6e30871 186 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
187 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
188 return fs_devices;
189 }
190 return NULL;
191}
192
beaf8ab3
SB
193static int
194btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
195 int flush, struct block_device **bdev,
196 struct buffer_head **bh)
197{
198 int ret;
199
200 *bdev = blkdev_get_by_path(device_path, flags, holder);
201
202 if (IS_ERR(*bdev)) {
203 ret = PTR_ERR(*bdev);
204 printk(KERN_INFO "btrfs: open %s failed\n", device_path);
205 goto error;
206 }
207
208 if (flush)
209 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
210 ret = set_blocksize(*bdev, 4096);
211 if (ret) {
212 blkdev_put(*bdev, flags);
213 goto error;
214 }
215 invalidate_bdev(*bdev);
216 *bh = btrfs_read_dev_super(*bdev);
217 if (!*bh) {
218 ret = -EINVAL;
219 blkdev_put(*bdev, flags);
220 goto error;
221 }
222
223 return 0;
224
225error:
226 *bdev = NULL;
227 *bh = NULL;
228 return ret;
229}
230
ffbd517d
CM
231static void requeue_list(struct btrfs_pending_bios *pending_bios,
232 struct bio *head, struct bio *tail)
233{
234
235 struct bio *old_head;
236
237 old_head = pending_bios->head;
238 pending_bios->head = head;
239 if (pending_bios->tail)
240 tail->bi_next = old_head;
241 else
242 pending_bios->tail = tail;
243}
244
8b712842
CM
245/*
246 * we try to collect pending bios for a device so we don't get a large
247 * number of procs sending bios down to the same device. This greatly
248 * improves the schedulers ability to collect and merge the bios.
249 *
250 * But, it also turns into a long list of bios to process and that is sure
251 * to eventually make the worker thread block. The solution here is to
252 * make some progress and then put this work struct back at the end of
253 * the list if the block device is congested. This way, multiple devices
254 * can make progress from a single worker thread.
255 */
143bede5 256static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
257{
258 struct bio *pending;
259 struct backing_dev_info *bdi;
b64a2851 260 struct btrfs_fs_info *fs_info;
ffbd517d 261 struct btrfs_pending_bios *pending_bios;
8b712842
CM
262 struct bio *tail;
263 struct bio *cur;
264 int again = 0;
ffbd517d 265 unsigned long num_run;
d644d8a1 266 unsigned long batch_run = 0;
b64a2851 267 unsigned long limit;
b765ead5 268 unsigned long last_waited = 0;
d84275c9 269 int force_reg = 0;
0e588859 270 int sync_pending = 0;
211588ad
CM
271 struct blk_plug plug;
272
273 /*
274 * this function runs all the bios we've collected for
275 * a particular device. We don't want to wander off to
276 * another device without first sending all of these down.
277 * So, setup a plug here and finish it off before we return
278 */
279 blk_start_plug(&plug);
8b712842 280
bedf762b 281 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
282 fs_info = device->dev_root->fs_info;
283 limit = btrfs_async_submit_limit(fs_info);
284 limit = limit * 2 / 3;
285
8b712842
CM
286loop:
287 spin_lock(&device->io_lock);
288
a6837051 289loop_lock:
d84275c9 290 num_run = 0;
ffbd517d 291
8b712842
CM
292 /* take all the bios off the list at once and process them
293 * later on (without the lock held). But, remember the
294 * tail and other pointers so the bios can be properly reinserted
295 * into the list if we hit congestion
296 */
d84275c9 297 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 298 pending_bios = &device->pending_sync_bios;
d84275c9
CM
299 force_reg = 1;
300 } else {
ffbd517d 301 pending_bios = &device->pending_bios;
d84275c9
CM
302 force_reg = 0;
303 }
ffbd517d
CM
304
305 pending = pending_bios->head;
306 tail = pending_bios->tail;
8b712842 307 WARN_ON(pending && !tail);
8b712842
CM
308
309 /*
310 * if pending was null this time around, no bios need processing
311 * at all and we can stop. Otherwise it'll loop back up again
312 * and do an additional check so no bios are missed.
313 *
314 * device->running_pending is used to synchronize with the
315 * schedule_bio code.
316 */
ffbd517d
CM
317 if (device->pending_sync_bios.head == NULL &&
318 device->pending_bios.head == NULL) {
8b712842
CM
319 again = 0;
320 device->running_pending = 0;
ffbd517d
CM
321 } else {
322 again = 1;
323 device->running_pending = 1;
8b712842 324 }
ffbd517d
CM
325
326 pending_bios->head = NULL;
327 pending_bios->tail = NULL;
328
8b712842
CM
329 spin_unlock(&device->io_lock);
330
d397712b 331 while (pending) {
ffbd517d
CM
332
333 rmb();
d84275c9
CM
334 /* we want to work on both lists, but do more bios on the
335 * sync list than the regular list
336 */
337 if ((num_run > 32 &&
338 pending_bios != &device->pending_sync_bios &&
339 device->pending_sync_bios.head) ||
340 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
341 device->pending_bios.head)) {
ffbd517d
CM
342 spin_lock(&device->io_lock);
343 requeue_list(pending_bios, pending, tail);
344 goto loop_lock;
345 }
346
8b712842
CM
347 cur = pending;
348 pending = pending->bi_next;
349 cur->bi_next = NULL;
b64a2851 350
66657b31 351 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
352 waitqueue_active(&fs_info->async_submit_wait))
353 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
354
355 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 356
2ab1ba68
CM
357 /*
358 * if we're doing the sync list, record that our
359 * plug has some sync requests on it
360 *
361 * If we're doing the regular list and there are
362 * sync requests sitting around, unplug before
363 * we add more
364 */
365 if (pending_bios == &device->pending_sync_bios) {
366 sync_pending = 1;
367 } else if (sync_pending) {
368 blk_finish_plug(&plug);
369 blk_start_plug(&plug);
370 sync_pending = 0;
371 }
372
21adbd5c 373 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
374 num_run++;
375 batch_run++;
7eaceacc 376 if (need_resched())
ffbd517d 377 cond_resched();
8b712842
CM
378
379 /*
380 * we made progress, there is more work to do and the bdi
381 * is now congested. Back off and let other work structs
382 * run instead
383 */
57fd5a5f 384 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 385 fs_info->fs_devices->open_devices > 1) {
b765ead5 386 struct io_context *ioc;
8b712842 387
b765ead5
CM
388 ioc = current->io_context;
389
390 /*
391 * the main goal here is that we don't want to
392 * block if we're going to be able to submit
393 * more requests without blocking.
394 *
395 * This code does two great things, it pokes into
396 * the elevator code from a filesystem _and_
397 * it makes assumptions about how batching works.
398 */
399 if (ioc && ioc->nr_batch_requests > 0 &&
400 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
401 (last_waited == 0 ||
402 ioc->last_waited == last_waited)) {
403 /*
404 * we want to go through our batch of
405 * requests and stop. So, we copy out
406 * the ioc->last_waited time and test
407 * against it before looping
408 */
409 last_waited = ioc->last_waited;
7eaceacc 410 if (need_resched())
ffbd517d 411 cond_resched();
b765ead5
CM
412 continue;
413 }
8b712842 414 spin_lock(&device->io_lock);
ffbd517d 415 requeue_list(pending_bios, pending, tail);
a6837051 416 device->running_pending = 1;
8b712842
CM
417
418 spin_unlock(&device->io_lock);
419 btrfs_requeue_work(&device->work);
420 goto done;
421 }
d85c8a6f
CM
422 /* unplug every 64 requests just for good measure */
423 if (batch_run % 64 == 0) {
424 blk_finish_plug(&plug);
425 blk_start_plug(&plug);
426 sync_pending = 0;
427 }
8b712842 428 }
ffbd517d 429
51684082
CM
430 cond_resched();
431 if (again)
432 goto loop;
433
434 spin_lock(&device->io_lock);
435 if (device->pending_bios.head || device->pending_sync_bios.head)
436 goto loop_lock;
437 spin_unlock(&device->io_lock);
438
8b712842 439done:
211588ad 440 blk_finish_plug(&plug);
8b712842
CM
441}
442
b2950863 443static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
444{
445 struct btrfs_device *device;
446
447 device = container_of(work, struct btrfs_device, work);
448 run_scheduled_bios(device);
449}
450
a1b32a59 451static noinline int device_list_add(const char *path,
8a4b83cc
CM
452 struct btrfs_super_block *disk_super,
453 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
454{
455 struct btrfs_device *device;
456 struct btrfs_fs_devices *fs_devices;
606686ee 457 struct rcu_string *name;
8a4b83cc
CM
458 u64 found_transid = btrfs_super_generation(disk_super);
459
460 fs_devices = find_fsid(disk_super->fsid);
461 if (!fs_devices) {
2208a378
ID
462 fs_devices = alloc_fs_devices(disk_super->fsid);
463 if (IS_ERR(fs_devices))
464 return PTR_ERR(fs_devices);
465
8a4b83cc 466 list_add(&fs_devices->list, &fs_uuids);
8a4b83cc
CM
467 fs_devices->latest_devid = devid;
468 fs_devices->latest_trans = found_transid;
2208a378 469
8a4b83cc
CM
470 device = NULL;
471 } else {
a443755f
CM
472 device = __find_device(&fs_devices->devices, devid,
473 disk_super->dev_item.uuid);
8a4b83cc
CM
474 }
475 if (!device) {
2b82032c
YZ
476 if (fs_devices->opened)
477 return -EBUSY;
478
12bd2fc0
ID
479 device = btrfs_alloc_device(NULL, &devid,
480 disk_super->dev_item.uuid);
481 if (IS_ERR(device)) {
8a4b83cc 482 /* we can safely leave the fs_devices entry around */
12bd2fc0 483 return PTR_ERR(device);
8a4b83cc 484 }
606686ee
JB
485
486 name = rcu_string_strdup(path, GFP_NOFS);
487 if (!name) {
8a4b83cc
CM
488 kfree(device);
489 return -ENOMEM;
490 }
606686ee 491 rcu_assign_pointer(device->name, name);
90519d66 492
e5e9a520 493 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 494 list_add_rcu(&device->dev_list, &fs_devices->devices);
e5e9a520
CM
495 mutex_unlock(&fs_devices->device_list_mutex);
496
2b82032c 497 device->fs_devices = fs_devices;
8a4b83cc 498 fs_devices->num_devices++;
606686ee
JB
499 } else if (!device->name || strcmp(device->name->str, path)) {
500 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
501 if (!name)
502 return -ENOMEM;
606686ee
JB
503 rcu_string_free(device->name);
504 rcu_assign_pointer(device->name, name);
cd02dca5
CM
505 if (device->missing) {
506 fs_devices->missing_devices--;
507 device->missing = 0;
508 }
8a4b83cc
CM
509 }
510
511 if (found_transid > fs_devices->latest_trans) {
512 fs_devices->latest_devid = devid;
513 fs_devices->latest_trans = found_transid;
514 }
8a4b83cc
CM
515 *fs_devices_ret = fs_devices;
516 return 0;
517}
518
e4404d6e
YZ
519static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
520{
521 struct btrfs_fs_devices *fs_devices;
522 struct btrfs_device *device;
523 struct btrfs_device *orig_dev;
524
2208a378
ID
525 fs_devices = alloc_fs_devices(orig->fsid);
526 if (IS_ERR(fs_devices))
527 return fs_devices;
e4404d6e 528
e4404d6e
YZ
529 fs_devices->latest_devid = orig->latest_devid;
530 fs_devices->latest_trans = orig->latest_trans;
02db0844 531 fs_devices->total_devices = orig->total_devices;
e4404d6e 532
46224705 533 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 534 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
535 struct rcu_string *name;
536
12bd2fc0
ID
537 device = btrfs_alloc_device(NULL, &orig_dev->devid,
538 orig_dev->uuid);
539 if (IS_ERR(device))
e4404d6e
YZ
540 goto error;
541
606686ee
JB
542 /*
543 * This is ok to do without rcu read locked because we hold the
544 * uuid mutex so nothing we touch in here is going to disappear.
545 */
546 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
547 if (!name) {
fd2696f3 548 kfree(device);
e4404d6e 549 goto error;
fd2696f3 550 }
606686ee 551 rcu_assign_pointer(device->name, name);
e4404d6e 552
e4404d6e
YZ
553 list_add(&device->dev_list, &fs_devices->devices);
554 device->fs_devices = fs_devices;
555 fs_devices->num_devices++;
556 }
557 return fs_devices;
558error:
559 free_fs_devices(fs_devices);
560 return ERR_PTR(-ENOMEM);
561}
562
8dabb742
SB
563void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
564 struct btrfs_fs_devices *fs_devices, int step)
dfe25020 565{
c6e30871 566 struct btrfs_device *device, *next;
dfe25020 567
a6b0d5c8
CM
568 struct block_device *latest_bdev = NULL;
569 u64 latest_devid = 0;
570 u64 latest_transid = 0;
571
dfe25020
CM
572 mutex_lock(&uuid_mutex);
573again:
46224705 574 /* This is the initialized path, it is safe to release the devices. */
c6e30871 575 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 576 if (device->in_fs_metadata) {
63a212ab
SB
577 if (!device->is_tgtdev_for_dev_replace &&
578 (!latest_transid ||
579 device->generation > latest_transid)) {
a6b0d5c8
CM
580 latest_devid = device->devid;
581 latest_transid = device->generation;
582 latest_bdev = device->bdev;
583 }
2b82032c 584 continue;
a6b0d5c8 585 }
2b82032c 586
8dabb742
SB
587 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
588 /*
589 * In the first step, keep the device which has
590 * the correct fsid and the devid that is used
591 * for the dev_replace procedure.
592 * In the second step, the dev_replace state is
593 * read from the device tree and it is known
594 * whether the procedure is really active or
595 * not, which means whether this device is
596 * used or whether it should be removed.
597 */
598 if (step == 0 || device->is_tgtdev_for_dev_replace) {
599 continue;
600 }
601 }
2b82032c 602 if (device->bdev) {
d4d77629 603 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
604 device->bdev = NULL;
605 fs_devices->open_devices--;
606 }
607 if (device->writeable) {
608 list_del_init(&device->dev_alloc_list);
609 device->writeable = 0;
8dabb742
SB
610 if (!device->is_tgtdev_for_dev_replace)
611 fs_devices->rw_devices--;
2b82032c 612 }
e4404d6e
YZ
613 list_del_init(&device->dev_list);
614 fs_devices->num_devices--;
606686ee 615 rcu_string_free(device->name);
e4404d6e 616 kfree(device);
dfe25020 617 }
2b82032c
YZ
618
619 if (fs_devices->seed) {
620 fs_devices = fs_devices->seed;
2b82032c
YZ
621 goto again;
622 }
623
a6b0d5c8
CM
624 fs_devices->latest_bdev = latest_bdev;
625 fs_devices->latest_devid = latest_devid;
626 fs_devices->latest_trans = latest_transid;
627
dfe25020 628 mutex_unlock(&uuid_mutex);
dfe25020 629}
a0af469b 630
1f78160c
XG
631static void __free_device(struct work_struct *work)
632{
633 struct btrfs_device *device;
634
635 device = container_of(work, struct btrfs_device, rcu_work);
636
637 if (device->bdev)
638 blkdev_put(device->bdev, device->mode);
639
606686ee 640 rcu_string_free(device->name);
1f78160c
XG
641 kfree(device);
642}
643
644static void free_device(struct rcu_head *head)
645{
646 struct btrfs_device *device;
647
648 device = container_of(head, struct btrfs_device, rcu);
649
650 INIT_WORK(&device->rcu_work, __free_device);
651 schedule_work(&device->rcu_work);
652}
653
2b82032c 654static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 655{
8a4b83cc 656 struct btrfs_device *device;
e4404d6e 657
2b82032c
YZ
658 if (--fs_devices->opened > 0)
659 return 0;
8a4b83cc 660
c9513edb 661 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 662 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c 663 struct btrfs_device *new_device;
606686ee 664 struct rcu_string *name;
1f78160c
XG
665
666 if (device->bdev)
a0af469b 667 fs_devices->open_devices--;
1f78160c 668
8dabb742 669 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c
YZ
670 list_del_init(&device->dev_alloc_list);
671 fs_devices->rw_devices--;
672 }
673
d5e2003c
JB
674 if (device->can_discard)
675 fs_devices->num_can_discard--;
676
a1e8780a
ID
677 new_device = btrfs_alloc_device(NULL, &device->devid,
678 device->uuid);
679 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
606686ee
JB
680
681 /* Safe because we are under uuid_mutex */
99f5944b
JB
682 if (device->name) {
683 name = rcu_string_strdup(device->name->str, GFP_NOFS);
a1e8780a 684 BUG_ON(!name); /* -ENOMEM */
99f5944b
JB
685 rcu_assign_pointer(new_device->name, name);
686 }
a1e8780a 687
1f78160c 688 list_replace_rcu(&device->dev_list, &new_device->dev_list);
a1e8780a 689 new_device->fs_devices = device->fs_devices;
1f78160c
XG
690
691 call_rcu(&device->rcu, free_device);
8a4b83cc 692 }
c9513edb
XG
693 mutex_unlock(&fs_devices->device_list_mutex);
694
e4404d6e
YZ
695 WARN_ON(fs_devices->open_devices);
696 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
697 fs_devices->opened = 0;
698 fs_devices->seeding = 0;
2b82032c 699
8a4b83cc
CM
700 return 0;
701}
702
2b82032c
YZ
703int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
704{
e4404d6e 705 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
706 int ret;
707
708 mutex_lock(&uuid_mutex);
709 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
710 if (!fs_devices->opened) {
711 seed_devices = fs_devices->seed;
712 fs_devices->seed = NULL;
713 }
2b82032c 714 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
715
716 while (seed_devices) {
717 fs_devices = seed_devices;
718 seed_devices = fs_devices->seed;
719 __btrfs_close_devices(fs_devices);
720 free_fs_devices(fs_devices);
721 }
bc178622
ES
722 /*
723 * Wait for rcu kworkers under __btrfs_close_devices
724 * to finish all blkdev_puts so device is really
725 * free when umount is done.
726 */
727 rcu_barrier();
2b82032c
YZ
728 return ret;
729}
730
e4404d6e
YZ
731static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
732 fmode_t flags, void *holder)
8a4b83cc 733{
d5e2003c 734 struct request_queue *q;
8a4b83cc
CM
735 struct block_device *bdev;
736 struct list_head *head = &fs_devices->devices;
8a4b83cc 737 struct btrfs_device *device;
a0af469b
CM
738 struct block_device *latest_bdev = NULL;
739 struct buffer_head *bh;
740 struct btrfs_super_block *disk_super;
741 u64 latest_devid = 0;
742 u64 latest_transid = 0;
a0af469b 743 u64 devid;
2b82032c 744 int seeding = 1;
a0af469b 745 int ret = 0;
8a4b83cc 746
d4d77629
TH
747 flags |= FMODE_EXCL;
748
c6e30871 749 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
750 if (device->bdev)
751 continue;
dfe25020
CM
752 if (!device->name)
753 continue;
754
f63e0cca
ES
755 /* Just open everything we can; ignore failures here */
756 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
757 &bdev, &bh))
beaf8ab3 758 continue;
a0af469b
CM
759
760 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 761 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
762 if (devid != device->devid)
763 goto error_brelse;
764
2b82032c
YZ
765 if (memcmp(device->uuid, disk_super->dev_item.uuid,
766 BTRFS_UUID_SIZE))
767 goto error_brelse;
768
769 device->generation = btrfs_super_generation(disk_super);
770 if (!latest_transid || device->generation > latest_transid) {
a0af469b 771 latest_devid = devid;
2b82032c 772 latest_transid = device->generation;
a0af469b
CM
773 latest_bdev = bdev;
774 }
775
2b82032c
YZ
776 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
777 device->writeable = 0;
778 } else {
779 device->writeable = !bdev_read_only(bdev);
780 seeding = 0;
781 }
782
d5e2003c
JB
783 q = bdev_get_queue(bdev);
784 if (blk_queue_discard(q)) {
785 device->can_discard = 1;
786 fs_devices->num_can_discard++;
787 }
788
8a4b83cc 789 device->bdev = bdev;
dfe25020 790 device->in_fs_metadata = 0;
15916de8
CM
791 device->mode = flags;
792
c289811c
CM
793 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
794 fs_devices->rotating = 1;
795
a0af469b 796 fs_devices->open_devices++;
8dabb742 797 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c
YZ
798 fs_devices->rw_devices++;
799 list_add(&device->dev_alloc_list,
800 &fs_devices->alloc_list);
801 }
4f6c9328 802 brelse(bh);
a0af469b 803 continue;
a061fc8d 804
a0af469b
CM
805error_brelse:
806 brelse(bh);
d4d77629 807 blkdev_put(bdev, flags);
a0af469b 808 continue;
8a4b83cc 809 }
a0af469b 810 if (fs_devices->open_devices == 0) {
20bcd649 811 ret = -EINVAL;
a0af469b
CM
812 goto out;
813 }
2b82032c
YZ
814 fs_devices->seeding = seeding;
815 fs_devices->opened = 1;
a0af469b
CM
816 fs_devices->latest_bdev = latest_bdev;
817 fs_devices->latest_devid = latest_devid;
818 fs_devices->latest_trans = latest_transid;
2b82032c 819 fs_devices->total_rw_bytes = 0;
a0af469b 820out:
2b82032c
YZ
821 return ret;
822}
823
824int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 825 fmode_t flags, void *holder)
2b82032c
YZ
826{
827 int ret;
828
829 mutex_lock(&uuid_mutex);
830 if (fs_devices->opened) {
e4404d6e
YZ
831 fs_devices->opened++;
832 ret = 0;
2b82032c 833 } else {
15916de8 834 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 835 }
8a4b83cc 836 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
837 return ret;
838}
839
6f60cbd3
DS
840/*
841 * Look for a btrfs signature on a device. This may be called out of the mount path
842 * and we are not allowed to call set_blocksize during the scan. The superblock
843 * is read via pagecache
844 */
97288f2c 845int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
846 struct btrfs_fs_devices **fs_devices_ret)
847{
848 struct btrfs_super_block *disk_super;
849 struct block_device *bdev;
6f60cbd3
DS
850 struct page *page;
851 void *p;
852 int ret = -EINVAL;
8a4b83cc 853 u64 devid;
f2984462 854 u64 transid;
02db0844 855 u64 total_devices;
6f60cbd3
DS
856 u64 bytenr;
857 pgoff_t index;
8a4b83cc 858
6f60cbd3
DS
859 /*
860 * we would like to check all the supers, but that would make
861 * a btrfs mount succeed after a mkfs from a different FS.
862 * So, we need to add a special mount option to scan for
863 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
864 */
865 bytenr = btrfs_sb_offset(0);
d4d77629 866 flags |= FMODE_EXCL;
10f6327b 867 mutex_lock(&uuid_mutex);
6f60cbd3
DS
868
869 bdev = blkdev_get_by_path(path, flags, holder);
870
871 if (IS_ERR(bdev)) {
872 ret = PTR_ERR(bdev);
beaf8ab3 873 goto error;
6f60cbd3
DS
874 }
875
876 /* make sure our super fits in the device */
877 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
878 goto error_bdev_put;
879
880 /* make sure our super fits in the page */
881 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
882 goto error_bdev_put;
883
884 /* make sure our super doesn't straddle pages on disk */
885 index = bytenr >> PAGE_CACHE_SHIFT;
886 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
887 goto error_bdev_put;
888
889 /* pull in the page with our super */
890 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
891 index, GFP_NOFS);
892
893 if (IS_ERR_OR_NULL(page))
894 goto error_bdev_put;
895
896 p = kmap(page);
897
898 /* align our pointer to the offset of the super block */
899 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
900
901 if (btrfs_super_bytenr(disk_super) != bytenr ||
3cae210f 902 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
6f60cbd3
DS
903 goto error_unmap;
904
a343832f 905 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 906 transid = btrfs_super_generation(disk_super);
02db0844 907 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 908
d03f918a
SB
909 if (disk_super->label[0]) {
910 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
911 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
d397712b 912 printk(KERN_INFO "device label %s ", disk_super->label);
d03f918a 913 } else {
22b63a29 914 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
d03f918a 915 }
6f60cbd3 916
c1c9ff7c 917 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
6f60cbd3 918
8a4b83cc 919 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
02db0844
JB
920 if (!ret && fs_devices_ret)
921 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3
DS
922
923error_unmap:
924 kunmap(page);
925 page_cache_release(page);
926
927error_bdev_put:
d4d77629 928 blkdev_put(bdev, flags);
8a4b83cc 929error:
beaf8ab3 930 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
931 return ret;
932}
0b86a832 933
6d07bcec
MX
934/* helper to account the used device space in the range */
935int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
936 u64 end, u64 *length)
937{
938 struct btrfs_key key;
939 struct btrfs_root *root = device->dev_root;
940 struct btrfs_dev_extent *dev_extent;
941 struct btrfs_path *path;
942 u64 extent_end;
943 int ret;
944 int slot;
945 struct extent_buffer *l;
946
947 *length = 0;
948
63a212ab 949 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
950 return 0;
951
952 path = btrfs_alloc_path();
953 if (!path)
954 return -ENOMEM;
955 path->reada = 2;
956
957 key.objectid = device->devid;
958 key.offset = start;
959 key.type = BTRFS_DEV_EXTENT_KEY;
960
961 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
962 if (ret < 0)
963 goto out;
964 if (ret > 0) {
965 ret = btrfs_previous_item(root, path, key.objectid, key.type);
966 if (ret < 0)
967 goto out;
968 }
969
970 while (1) {
971 l = path->nodes[0];
972 slot = path->slots[0];
973 if (slot >= btrfs_header_nritems(l)) {
974 ret = btrfs_next_leaf(root, path);
975 if (ret == 0)
976 continue;
977 if (ret < 0)
978 goto out;
979
980 break;
981 }
982 btrfs_item_key_to_cpu(l, &key, slot);
983
984 if (key.objectid < device->devid)
985 goto next;
986
987 if (key.objectid > device->devid)
988 break;
989
990 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
991 goto next;
992
993 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
994 extent_end = key.offset + btrfs_dev_extent_length(l,
995 dev_extent);
996 if (key.offset <= start && extent_end > end) {
997 *length = end - start + 1;
998 break;
999 } else if (key.offset <= start && extent_end > start)
1000 *length += extent_end - start;
1001 else if (key.offset > start && extent_end <= end)
1002 *length += extent_end - key.offset;
1003 else if (key.offset > start && key.offset <= end) {
1004 *length += end - key.offset + 1;
1005 break;
1006 } else if (key.offset > end)
1007 break;
1008
1009next:
1010 path->slots[0]++;
1011 }
1012 ret = 0;
1013out:
1014 btrfs_free_path(path);
1015 return ret;
1016}
1017
6df9a95e
JB
1018static int contains_pending_extent(struct btrfs_trans_handle *trans,
1019 struct btrfs_device *device,
1020 u64 *start, u64 len)
1021{
1022 struct extent_map *em;
1023 int ret = 0;
1024
1025 list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1026 struct map_lookup *map;
1027 int i;
1028
1029 map = (struct map_lookup *)em->bdev;
1030 for (i = 0; i < map->num_stripes; i++) {
1031 if (map->stripes[i].dev != device)
1032 continue;
1033 if (map->stripes[i].physical >= *start + len ||
1034 map->stripes[i].physical + em->orig_block_len <=
1035 *start)
1036 continue;
1037 *start = map->stripes[i].physical +
1038 em->orig_block_len;
1039 ret = 1;
1040 }
1041 }
1042
1043 return ret;
1044}
1045
1046
0b86a832 1047/*
7bfc837d 1048 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
1049 * @device: the device which we search the free space in
1050 * @num_bytes: the size of the free space that we need
1051 * @start: store the start of the free space.
1052 * @len: the size of the free space. that we find, or the size of the max
1053 * free space if we don't find suitable free space
1054 *
0b86a832
CM
1055 * this uses a pretty simple search, the expectation is that it is
1056 * called very infrequently and that a given device has a small number
1057 * of extents
7bfc837d
MX
1058 *
1059 * @start is used to store the start of the free space if we find. But if we
1060 * don't find suitable free space, it will be used to store the start position
1061 * of the max free space.
1062 *
1063 * @len is used to store the size of the free space that we find.
1064 * But if we don't find suitable free space, it is used to store the size of
1065 * the max free space.
0b86a832 1066 */
6df9a95e
JB
1067int find_free_dev_extent(struct btrfs_trans_handle *trans,
1068 struct btrfs_device *device, u64 num_bytes,
7bfc837d 1069 u64 *start, u64 *len)
0b86a832
CM
1070{
1071 struct btrfs_key key;
1072 struct btrfs_root *root = device->dev_root;
7bfc837d 1073 struct btrfs_dev_extent *dev_extent;
2b82032c 1074 struct btrfs_path *path;
7bfc837d
MX
1075 u64 hole_size;
1076 u64 max_hole_start;
1077 u64 max_hole_size;
1078 u64 extent_end;
1079 u64 search_start;
0b86a832
CM
1080 u64 search_end = device->total_bytes;
1081 int ret;
7bfc837d 1082 int slot;
0b86a832
CM
1083 struct extent_buffer *l;
1084
0b86a832
CM
1085 /* FIXME use last free of some kind */
1086
8a4b83cc
CM
1087 /* we don't want to overwrite the superblock on the drive,
1088 * so we make sure to start at an offset of at least 1MB
1089 */
a9c9bf68 1090 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 1091
6df9a95e
JB
1092 path = btrfs_alloc_path();
1093 if (!path)
1094 return -ENOMEM;
1095again:
7bfc837d
MX
1096 max_hole_start = search_start;
1097 max_hole_size = 0;
38c01b96 1098 hole_size = 0;
7bfc837d 1099
63a212ab 1100 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1101 ret = -ENOSPC;
6df9a95e 1102 goto out;
7bfc837d
MX
1103 }
1104
7bfc837d 1105 path->reada = 2;
6df9a95e
JB
1106 path->search_commit_root = 1;
1107 path->skip_locking = 1;
7bfc837d 1108
0b86a832
CM
1109 key.objectid = device->devid;
1110 key.offset = search_start;
1111 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1112
125ccb0a 1113 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1114 if (ret < 0)
7bfc837d 1115 goto out;
1fcbac58
YZ
1116 if (ret > 0) {
1117 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1118 if (ret < 0)
7bfc837d 1119 goto out;
1fcbac58 1120 }
7bfc837d 1121
0b86a832
CM
1122 while (1) {
1123 l = path->nodes[0];
1124 slot = path->slots[0];
1125 if (slot >= btrfs_header_nritems(l)) {
1126 ret = btrfs_next_leaf(root, path);
1127 if (ret == 0)
1128 continue;
1129 if (ret < 0)
7bfc837d
MX
1130 goto out;
1131
1132 break;
0b86a832
CM
1133 }
1134 btrfs_item_key_to_cpu(l, &key, slot);
1135
1136 if (key.objectid < device->devid)
1137 goto next;
1138
1139 if (key.objectid > device->devid)
7bfc837d 1140 break;
0b86a832 1141
7bfc837d
MX
1142 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1143 goto next;
9779b72f 1144
7bfc837d
MX
1145 if (key.offset > search_start) {
1146 hole_size = key.offset - search_start;
9779b72f 1147
6df9a95e
JB
1148 /*
1149 * Have to check before we set max_hole_start, otherwise
1150 * we could end up sending back this offset anyway.
1151 */
1152 if (contains_pending_extent(trans, device,
1153 &search_start,
1154 hole_size))
1155 hole_size = 0;
1156
7bfc837d
MX
1157 if (hole_size > max_hole_size) {
1158 max_hole_start = search_start;
1159 max_hole_size = hole_size;
1160 }
9779b72f 1161
7bfc837d
MX
1162 /*
1163 * If this free space is greater than which we need,
1164 * it must be the max free space that we have found
1165 * until now, so max_hole_start must point to the start
1166 * of this free space and the length of this free space
1167 * is stored in max_hole_size. Thus, we return
1168 * max_hole_start and max_hole_size and go back to the
1169 * caller.
1170 */
1171 if (hole_size >= num_bytes) {
1172 ret = 0;
1173 goto out;
0b86a832
CM
1174 }
1175 }
0b86a832 1176
0b86a832 1177 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1178 extent_end = key.offset + btrfs_dev_extent_length(l,
1179 dev_extent);
1180 if (extent_end > search_start)
1181 search_start = extent_end;
0b86a832
CM
1182next:
1183 path->slots[0]++;
1184 cond_resched();
1185 }
0b86a832 1186
38c01b96 1187 /*
1188 * At this point, search_start should be the end of
1189 * allocated dev extents, and when shrinking the device,
1190 * search_end may be smaller than search_start.
1191 */
1192 if (search_end > search_start)
1193 hole_size = search_end - search_start;
1194
7bfc837d
MX
1195 if (hole_size > max_hole_size) {
1196 max_hole_start = search_start;
1197 max_hole_size = hole_size;
0b86a832 1198 }
0b86a832 1199
6df9a95e
JB
1200 if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1201 btrfs_release_path(path);
1202 goto again;
1203 }
1204
7bfc837d
MX
1205 /* See above. */
1206 if (hole_size < num_bytes)
1207 ret = -ENOSPC;
1208 else
1209 ret = 0;
1210
1211out:
2b82032c 1212 btrfs_free_path(path);
7bfc837d 1213 *start = max_hole_start;
b2117a39 1214 if (len)
7bfc837d 1215 *len = max_hole_size;
0b86a832
CM
1216 return ret;
1217}
1218
b2950863 1219static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
1220 struct btrfs_device *device,
1221 u64 start)
1222{
1223 int ret;
1224 struct btrfs_path *path;
1225 struct btrfs_root *root = device->dev_root;
1226 struct btrfs_key key;
a061fc8d
CM
1227 struct btrfs_key found_key;
1228 struct extent_buffer *leaf = NULL;
1229 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1230
1231 path = btrfs_alloc_path();
1232 if (!path)
1233 return -ENOMEM;
1234
1235 key.objectid = device->devid;
1236 key.offset = start;
1237 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1238again:
8f18cf13 1239 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1240 if (ret > 0) {
1241 ret = btrfs_previous_item(root, path, key.objectid,
1242 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1243 if (ret)
1244 goto out;
a061fc8d
CM
1245 leaf = path->nodes[0];
1246 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1247 extent = btrfs_item_ptr(leaf, path->slots[0],
1248 struct btrfs_dev_extent);
1249 BUG_ON(found_key.offset > start || found_key.offset +
1250 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1251 key = found_key;
1252 btrfs_release_path(path);
1253 goto again;
a061fc8d
CM
1254 } else if (ret == 0) {
1255 leaf = path->nodes[0];
1256 extent = btrfs_item_ptr(leaf, path->slots[0],
1257 struct btrfs_dev_extent);
79787eaa
JM
1258 } else {
1259 btrfs_error(root->fs_info, ret, "Slot search failed");
1260 goto out;
a061fc8d 1261 }
8f18cf13 1262
2bf64758
JB
1263 if (device->bytes_used > 0) {
1264 u64 len = btrfs_dev_extent_length(leaf, extent);
1265 device->bytes_used -= len;
1266 spin_lock(&root->fs_info->free_chunk_lock);
1267 root->fs_info->free_chunk_space += len;
1268 spin_unlock(&root->fs_info->free_chunk_lock);
1269 }
8f18cf13 1270 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1271 if (ret) {
1272 btrfs_error(root->fs_info, ret,
1273 "Failed to remove dev extent item");
1274 }
b0b802d7 1275out:
8f18cf13
CM
1276 btrfs_free_path(path);
1277 return ret;
1278}
1279
48a3b636
ES
1280static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1281 struct btrfs_device *device,
1282 u64 chunk_tree, u64 chunk_objectid,
1283 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1284{
1285 int ret;
1286 struct btrfs_path *path;
1287 struct btrfs_root *root = device->dev_root;
1288 struct btrfs_dev_extent *extent;
1289 struct extent_buffer *leaf;
1290 struct btrfs_key key;
1291
dfe25020 1292 WARN_ON(!device->in_fs_metadata);
63a212ab 1293 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1294 path = btrfs_alloc_path();
1295 if (!path)
1296 return -ENOMEM;
1297
0b86a832 1298 key.objectid = device->devid;
2b82032c 1299 key.offset = start;
0b86a832
CM
1300 key.type = BTRFS_DEV_EXTENT_KEY;
1301 ret = btrfs_insert_empty_item(trans, root, path, &key,
1302 sizeof(*extent));
2cdcecbc
MF
1303 if (ret)
1304 goto out;
0b86a832
CM
1305
1306 leaf = path->nodes[0];
1307 extent = btrfs_item_ptr(leaf, path->slots[0],
1308 struct btrfs_dev_extent);
e17cade2
CM
1309 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1310 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1311 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1312
1313 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1314 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1315
0b86a832
CM
1316 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1317 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1318out:
0b86a832
CM
1319 btrfs_free_path(path);
1320 return ret;
1321}
1322
6df9a95e 1323static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1324{
6df9a95e
JB
1325 struct extent_map_tree *em_tree;
1326 struct extent_map *em;
1327 struct rb_node *n;
1328 u64 ret = 0;
0b86a832 1329
6df9a95e
JB
1330 em_tree = &fs_info->mapping_tree.map_tree;
1331 read_lock(&em_tree->lock);
1332 n = rb_last(&em_tree->map);
1333 if (n) {
1334 em = rb_entry(n, struct extent_map, rb_node);
1335 ret = em->start + em->len;
0b86a832 1336 }
6df9a95e
JB
1337 read_unlock(&em_tree->lock);
1338
0b86a832
CM
1339 return ret;
1340}
1341
53f10659
ID
1342static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1343 u64 *devid_ret)
0b86a832
CM
1344{
1345 int ret;
1346 struct btrfs_key key;
1347 struct btrfs_key found_key;
2b82032c
YZ
1348 struct btrfs_path *path;
1349
2b82032c
YZ
1350 path = btrfs_alloc_path();
1351 if (!path)
1352 return -ENOMEM;
0b86a832
CM
1353
1354 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1355 key.type = BTRFS_DEV_ITEM_KEY;
1356 key.offset = (u64)-1;
1357
53f10659 1358 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1359 if (ret < 0)
1360 goto error;
1361
79787eaa 1362 BUG_ON(ret == 0); /* Corruption */
0b86a832 1363
53f10659
ID
1364 ret = btrfs_previous_item(fs_info->chunk_root, path,
1365 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1366 BTRFS_DEV_ITEM_KEY);
1367 if (ret) {
53f10659 1368 *devid_ret = 1;
0b86a832
CM
1369 } else {
1370 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1371 path->slots[0]);
53f10659 1372 *devid_ret = found_key.offset + 1;
0b86a832
CM
1373 }
1374 ret = 0;
1375error:
2b82032c 1376 btrfs_free_path(path);
0b86a832
CM
1377 return ret;
1378}
1379
1380/*
1381 * the device information is stored in the chunk root
1382 * the btrfs_device struct should be fully filled in
1383 */
48a3b636
ES
1384static int btrfs_add_device(struct btrfs_trans_handle *trans,
1385 struct btrfs_root *root,
1386 struct btrfs_device *device)
0b86a832
CM
1387{
1388 int ret;
1389 struct btrfs_path *path;
1390 struct btrfs_dev_item *dev_item;
1391 struct extent_buffer *leaf;
1392 struct btrfs_key key;
1393 unsigned long ptr;
0b86a832
CM
1394
1395 root = root->fs_info->chunk_root;
1396
1397 path = btrfs_alloc_path();
1398 if (!path)
1399 return -ENOMEM;
1400
0b86a832
CM
1401 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1402 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1403 key.offset = device->devid;
0b86a832
CM
1404
1405 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1406 sizeof(*dev_item));
0b86a832
CM
1407 if (ret)
1408 goto out;
1409
1410 leaf = path->nodes[0];
1411 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1412
1413 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1414 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1415 btrfs_set_device_type(leaf, dev_item, device->type);
1416 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1417 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1418 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1419 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1420 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1421 btrfs_set_device_group(leaf, dev_item, 0);
1422 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1423 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1424 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1425
410ba3a2 1426 ptr = btrfs_device_uuid(dev_item);
e17cade2 1427 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1428 ptr = btrfs_device_fsid(dev_item);
2b82032c 1429 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1430 btrfs_mark_buffer_dirty(leaf);
0b86a832 1431
2b82032c 1432 ret = 0;
0b86a832
CM
1433out:
1434 btrfs_free_path(path);
1435 return ret;
1436}
8f18cf13 1437
a061fc8d
CM
1438static int btrfs_rm_dev_item(struct btrfs_root *root,
1439 struct btrfs_device *device)
1440{
1441 int ret;
1442 struct btrfs_path *path;
a061fc8d 1443 struct btrfs_key key;
a061fc8d
CM
1444 struct btrfs_trans_handle *trans;
1445
1446 root = root->fs_info->chunk_root;
1447
1448 path = btrfs_alloc_path();
1449 if (!path)
1450 return -ENOMEM;
1451
a22285a6 1452 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1453 if (IS_ERR(trans)) {
1454 btrfs_free_path(path);
1455 return PTR_ERR(trans);
1456 }
a061fc8d
CM
1457 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1458 key.type = BTRFS_DEV_ITEM_KEY;
1459 key.offset = device->devid;
7d9eb12c 1460 lock_chunks(root);
a061fc8d
CM
1461
1462 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1463 if (ret < 0)
1464 goto out;
1465
1466 if (ret > 0) {
1467 ret = -ENOENT;
1468 goto out;
1469 }
1470
1471 ret = btrfs_del_item(trans, root, path);
1472 if (ret)
1473 goto out;
a061fc8d
CM
1474out:
1475 btrfs_free_path(path);
7d9eb12c 1476 unlock_chunks(root);
a061fc8d
CM
1477 btrfs_commit_transaction(trans, root);
1478 return ret;
1479}
1480
1481int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1482{
1483 struct btrfs_device *device;
2b82032c 1484 struct btrfs_device *next_device;
a061fc8d 1485 struct block_device *bdev;
dfe25020 1486 struct buffer_head *bh = NULL;
a061fc8d 1487 struct btrfs_super_block *disk_super;
1f78160c 1488 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1489 u64 all_avail;
1490 u64 devid;
2b82032c
YZ
1491 u64 num_devices;
1492 u8 *dev_uuid;
de98ced9 1493 unsigned seq;
a061fc8d 1494 int ret = 0;
1f78160c 1495 bool clear_super = false;
a061fc8d 1496
a061fc8d
CM
1497 mutex_lock(&uuid_mutex);
1498
de98ced9
MX
1499 do {
1500 seq = read_seqbegin(&root->fs_info->profiles_lock);
1501
1502 all_avail = root->fs_info->avail_data_alloc_bits |
1503 root->fs_info->avail_system_alloc_bits |
1504 root->fs_info->avail_metadata_alloc_bits;
1505 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
a061fc8d 1506
8dabb742
SB
1507 num_devices = root->fs_info->fs_devices->num_devices;
1508 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1509 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1510 WARN_ON(num_devices < 1);
1511 num_devices--;
1512 }
1513 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1514
1515 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
183860f6 1516 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
a061fc8d
CM
1517 goto out;
1518 }
1519
8dabb742 1520 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
183860f6 1521 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
a061fc8d
CM
1522 goto out;
1523 }
1524
53b381b3
DW
1525 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1526 root->fs_info->fs_devices->rw_devices <= 2) {
183860f6 1527 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
53b381b3
DW
1528 goto out;
1529 }
1530 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1531 root->fs_info->fs_devices->rw_devices <= 3) {
183860f6 1532 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
53b381b3
DW
1533 goto out;
1534 }
1535
dfe25020 1536 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1537 struct list_head *devices;
1538 struct btrfs_device *tmp;
a061fc8d 1539
dfe25020
CM
1540 device = NULL;
1541 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1542 /*
1543 * It is safe to read the devices since the volume_mutex
1544 * is held.
1545 */
c6e30871 1546 list_for_each_entry(tmp, devices, dev_list) {
63a212ab
SB
1547 if (tmp->in_fs_metadata &&
1548 !tmp->is_tgtdev_for_dev_replace &&
1549 !tmp->bdev) {
dfe25020
CM
1550 device = tmp;
1551 break;
1552 }
1553 }
1554 bdev = NULL;
1555 bh = NULL;
1556 disk_super = NULL;
1557 if (!device) {
183860f6 1558 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
dfe25020
CM
1559 goto out;
1560 }
dfe25020 1561 } else {
beaf8ab3 1562 ret = btrfs_get_bdev_and_sb(device_path,
cc975eb4 1563 FMODE_WRITE | FMODE_EXCL,
beaf8ab3
SB
1564 root->fs_info->bdev_holder, 0,
1565 &bdev, &bh);
1566 if (ret)
dfe25020 1567 goto out;
dfe25020 1568 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1569 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c 1570 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1571 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2b82032c 1572 disk_super->fsid);
dfe25020
CM
1573 if (!device) {
1574 ret = -ENOENT;
1575 goto error_brelse;
1576 }
2b82032c 1577 }
dfe25020 1578
63a212ab 1579 if (device->is_tgtdev_for_dev_replace) {
183860f6 1580 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab
SB
1581 goto error_brelse;
1582 }
1583
2b82032c 1584 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1585 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c
YZ
1586 goto error_brelse;
1587 }
1588
1589 if (device->writeable) {
0c1daee0 1590 lock_chunks(root);
2b82032c 1591 list_del_init(&device->dev_alloc_list);
0c1daee0 1592 unlock_chunks(root);
2b82032c 1593 root->fs_info->fs_devices->rw_devices--;
1f78160c 1594 clear_super = true;
dfe25020 1595 }
a061fc8d 1596
d7901554 1597 mutex_unlock(&uuid_mutex);
a061fc8d 1598 ret = btrfs_shrink_device(device, 0);
d7901554 1599 mutex_lock(&uuid_mutex);
a061fc8d 1600 if (ret)
9b3517e9 1601 goto error_undo;
a061fc8d 1602
63a212ab
SB
1603 /*
1604 * TODO: the superblock still includes this device in its num_devices
1605 * counter although write_all_supers() is not locked out. This
1606 * could give a filesystem state which requires a degraded mount.
1607 */
a061fc8d
CM
1608 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1609 if (ret)
9b3517e9 1610 goto error_undo;
a061fc8d 1611
2bf64758
JB
1612 spin_lock(&root->fs_info->free_chunk_lock);
1613 root->fs_info->free_chunk_space = device->total_bytes -
1614 device->bytes_used;
1615 spin_unlock(&root->fs_info->free_chunk_lock);
1616
2b82032c 1617 device->in_fs_metadata = 0;
aa1b8cd4 1618 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1619
1620 /*
1621 * the device list mutex makes sure that we don't change
1622 * the device list while someone else is writing out all
d7306801
FDBM
1623 * the device supers. Whoever is writing all supers, should
1624 * lock the device list mutex before getting the number of
1625 * devices in the super block (super_copy). Conversely,
1626 * whoever updates the number of devices in the super block
1627 * (super_copy) should hold the device list mutex.
e5e9a520 1628 */
1f78160c
XG
1629
1630 cur_devices = device->fs_devices;
e5e9a520 1631 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1632 list_del_rcu(&device->dev_list);
e5e9a520 1633
e4404d6e 1634 device->fs_devices->num_devices--;
02db0844 1635 device->fs_devices->total_devices--;
2b82032c 1636
cd02dca5
CM
1637 if (device->missing)
1638 root->fs_info->fs_devices->missing_devices--;
1639
2b82032c
YZ
1640 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1641 struct btrfs_device, dev_list);
1642 if (device->bdev == root->fs_info->sb->s_bdev)
1643 root->fs_info->sb->s_bdev = next_device->bdev;
1644 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1645 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1646
1f78160c 1647 if (device->bdev)
e4404d6e 1648 device->fs_devices->open_devices--;
1f78160c
XG
1649
1650 call_rcu(&device->rcu, free_device);
e4404d6e 1651
6c41761f
DS
1652 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1653 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
d7306801 1654 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c 1655
1f78160c 1656 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1657 struct btrfs_fs_devices *fs_devices;
1658 fs_devices = root->fs_info->fs_devices;
1659 while (fs_devices) {
1f78160c 1660 if (fs_devices->seed == cur_devices)
e4404d6e
YZ
1661 break;
1662 fs_devices = fs_devices->seed;
2b82032c 1663 }
1f78160c
XG
1664 fs_devices->seed = cur_devices->seed;
1665 cur_devices->seed = NULL;
0c1daee0 1666 lock_chunks(root);
1f78160c 1667 __btrfs_close_devices(cur_devices);
0c1daee0 1668 unlock_chunks(root);
1f78160c 1669 free_fs_devices(cur_devices);
2b82032c
YZ
1670 }
1671
5af3e8cc
SB
1672 root->fs_info->num_tolerated_disk_barrier_failures =
1673 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1674
2b82032c
YZ
1675 /*
1676 * at this point, the device is zero sized. We want to
1677 * remove it from the devices list and zero out the old super
1678 */
aa1b8cd4 1679 if (clear_super && disk_super) {
dfe25020
CM
1680 /* make sure this device isn't detected as part of
1681 * the FS anymore
1682 */
1683 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1684 set_buffer_dirty(bh);
1685 sync_dirty_buffer(bh);
dfe25020 1686 }
a061fc8d 1687
a061fc8d 1688 ret = 0;
a061fc8d 1689
b8b8ff59 1690 /* Notify udev that device has changed */
3c911608
ES
1691 if (bdev)
1692 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
b8b8ff59 1693
a061fc8d
CM
1694error_brelse:
1695 brelse(bh);
dfe25020 1696 if (bdev)
e525fd89 1697 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1698out:
1699 mutex_unlock(&uuid_mutex);
a061fc8d 1700 return ret;
9b3517e9
ID
1701error_undo:
1702 if (device->writeable) {
0c1daee0 1703 lock_chunks(root);
9b3517e9
ID
1704 list_add(&device->dev_alloc_list,
1705 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1706 unlock_chunks(root);
9b3517e9
ID
1707 root->fs_info->fs_devices->rw_devices++;
1708 }
1709 goto error_brelse;
a061fc8d
CM
1710}
1711
e93c89c1
SB
1712void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1713 struct btrfs_device *srcdev)
1714{
1715 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1716 list_del_rcu(&srcdev->dev_list);
1717 list_del_rcu(&srcdev->dev_alloc_list);
1718 fs_info->fs_devices->num_devices--;
1719 if (srcdev->missing) {
1720 fs_info->fs_devices->missing_devices--;
1721 fs_info->fs_devices->rw_devices++;
1722 }
1723 if (srcdev->can_discard)
1724 fs_info->fs_devices->num_can_discard--;
1725 if (srcdev->bdev)
1726 fs_info->fs_devices->open_devices--;
1727
1728 call_rcu(&srcdev->rcu, free_device);
1729}
1730
1731void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1732 struct btrfs_device *tgtdev)
1733{
1734 struct btrfs_device *next_device;
1735
1736 WARN_ON(!tgtdev);
1737 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1738 if (tgtdev->bdev) {
1739 btrfs_scratch_superblock(tgtdev);
1740 fs_info->fs_devices->open_devices--;
1741 }
1742 fs_info->fs_devices->num_devices--;
1743 if (tgtdev->can_discard)
1744 fs_info->fs_devices->num_can_discard++;
1745
1746 next_device = list_entry(fs_info->fs_devices->devices.next,
1747 struct btrfs_device, dev_list);
1748 if (tgtdev->bdev == fs_info->sb->s_bdev)
1749 fs_info->sb->s_bdev = next_device->bdev;
1750 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1751 fs_info->fs_devices->latest_bdev = next_device->bdev;
1752 list_del_rcu(&tgtdev->dev_list);
1753
1754 call_rcu(&tgtdev->rcu, free_device);
1755
1756 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1757}
1758
48a3b636
ES
1759static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1760 struct btrfs_device **device)
7ba15b7d
SB
1761{
1762 int ret = 0;
1763 struct btrfs_super_block *disk_super;
1764 u64 devid;
1765 u8 *dev_uuid;
1766 struct block_device *bdev;
1767 struct buffer_head *bh;
1768
1769 *device = NULL;
1770 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1771 root->fs_info->bdev_holder, 0, &bdev, &bh);
1772 if (ret)
1773 return ret;
1774 disk_super = (struct btrfs_super_block *)bh->b_data;
1775 devid = btrfs_stack_device_id(&disk_super->dev_item);
1776 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1777 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
1778 disk_super->fsid);
1779 brelse(bh);
1780 if (!*device)
1781 ret = -ENOENT;
1782 blkdev_put(bdev, FMODE_READ);
1783 return ret;
1784}
1785
1786int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1787 char *device_path,
1788 struct btrfs_device **device)
1789{
1790 *device = NULL;
1791 if (strcmp(device_path, "missing") == 0) {
1792 struct list_head *devices;
1793 struct btrfs_device *tmp;
1794
1795 devices = &root->fs_info->fs_devices->devices;
1796 /*
1797 * It is safe to read the devices since the volume_mutex
1798 * is held by the caller.
1799 */
1800 list_for_each_entry(tmp, devices, dev_list) {
1801 if (tmp->in_fs_metadata && !tmp->bdev) {
1802 *device = tmp;
1803 break;
1804 }
1805 }
1806
1807 if (!*device) {
1808 pr_err("btrfs: no missing device found\n");
1809 return -ENOENT;
1810 }
1811
1812 return 0;
1813 } else {
1814 return btrfs_find_device_by_path(root, device_path, device);
1815 }
1816}
1817
2b82032c
YZ
1818/*
1819 * does all the dirty work required for changing file system's UUID.
1820 */
125ccb0a 1821static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
1822{
1823 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1824 struct btrfs_fs_devices *old_devices;
e4404d6e 1825 struct btrfs_fs_devices *seed_devices;
6c41761f 1826 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1827 struct btrfs_device *device;
1828 u64 super_flags;
1829
1830 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1831 if (!fs_devices->seeding)
2b82032c
YZ
1832 return -EINVAL;
1833
2208a378
ID
1834 seed_devices = __alloc_fs_devices();
1835 if (IS_ERR(seed_devices))
1836 return PTR_ERR(seed_devices);
2b82032c 1837
e4404d6e
YZ
1838 old_devices = clone_fs_devices(fs_devices);
1839 if (IS_ERR(old_devices)) {
1840 kfree(seed_devices);
1841 return PTR_ERR(old_devices);
2b82032c 1842 }
e4404d6e 1843
2b82032c
YZ
1844 list_add(&old_devices->list, &fs_uuids);
1845
e4404d6e
YZ
1846 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1847 seed_devices->opened = 1;
1848 INIT_LIST_HEAD(&seed_devices->devices);
1849 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1850 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1851
1852 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1853 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1854 synchronize_rcu);
c9513edb
XG
1855 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1856
e4404d6e
YZ
1857 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1858 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1859 device->fs_devices = seed_devices;
1860 }
1861
2b82032c
YZ
1862 fs_devices->seeding = 0;
1863 fs_devices->num_devices = 0;
1864 fs_devices->open_devices = 0;
02db0844 1865 fs_devices->total_devices = 0;
e4404d6e 1866 fs_devices->seed = seed_devices;
2b82032c
YZ
1867
1868 generate_random_uuid(fs_devices->fsid);
1869 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1870 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1871 super_flags = btrfs_super_flags(disk_super) &
1872 ~BTRFS_SUPER_FLAG_SEEDING;
1873 btrfs_set_super_flags(disk_super, super_flags);
1874
1875 return 0;
1876}
1877
1878/*
1879 * strore the expected generation for seed devices in device items.
1880 */
1881static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1882 struct btrfs_root *root)
1883{
1884 struct btrfs_path *path;
1885 struct extent_buffer *leaf;
1886 struct btrfs_dev_item *dev_item;
1887 struct btrfs_device *device;
1888 struct btrfs_key key;
1889 u8 fs_uuid[BTRFS_UUID_SIZE];
1890 u8 dev_uuid[BTRFS_UUID_SIZE];
1891 u64 devid;
1892 int ret;
1893
1894 path = btrfs_alloc_path();
1895 if (!path)
1896 return -ENOMEM;
1897
1898 root = root->fs_info->chunk_root;
1899 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1900 key.offset = 0;
1901 key.type = BTRFS_DEV_ITEM_KEY;
1902
1903 while (1) {
1904 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1905 if (ret < 0)
1906 goto error;
1907
1908 leaf = path->nodes[0];
1909next_slot:
1910 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1911 ret = btrfs_next_leaf(root, path);
1912 if (ret > 0)
1913 break;
1914 if (ret < 0)
1915 goto error;
1916 leaf = path->nodes[0];
1917 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 1918 btrfs_release_path(path);
2b82032c
YZ
1919 continue;
1920 }
1921
1922 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1923 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1924 key.type != BTRFS_DEV_ITEM_KEY)
1925 break;
1926
1927 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1928 struct btrfs_dev_item);
1929 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 1930 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 1931 BTRFS_UUID_SIZE);
1473b24e 1932 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 1933 BTRFS_UUID_SIZE);
aa1b8cd4
SB
1934 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1935 fs_uuid);
79787eaa 1936 BUG_ON(!device); /* Logic error */
2b82032c
YZ
1937
1938 if (device->fs_devices->seeding) {
1939 btrfs_set_device_generation(leaf, dev_item,
1940 device->generation);
1941 btrfs_mark_buffer_dirty(leaf);
1942 }
1943
1944 path->slots[0]++;
1945 goto next_slot;
1946 }
1947 ret = 0;
1948error:
1949 btrfs_free_path(path);
1950 return ret;
1951}
1952
788f20eb
CM
1953int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1954{
d5e2003c 1955 struct request_queue *q;
788f20eb
CM
1956 struct btrfs_trans_handle *trans;
1957 struct btrfs_device *device;
1958 struct block_device *bdev;
788f20eb 1959 struct list_head *devices;
2b82032c 1960 struct super_block *sb = root->fs_info->sb;
606686ee 1961 struct rcu_string *name;
788f20eb 1962 u64 total_bytes;
2b82032c 1963 int seeding_dev = 0;
788f20eb
CM
1964 int ret = 0;
1965
2b82032c 1966 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 1967 return -EROFS;
788f20eb 1968
a5d16333 1969 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 1970 root->fs_info->bdev_holder);
7f59203a
JB
1971 if (IS_ERR(bdev))
1972 return PTR_ERR(bdev);
a2135011 1973
2b82032c
YZ
1974 if (root->fs_info->fs_devices->seeding) {
1975 seeding_dev = 1;
1976 down_write(&sb->s_umount);
1977 mutex_lock(&uuid_mutex);
1978 }
1979
8c8bee1d 1980 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 1981
788f20eb 1982 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
1983
1984 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 1985 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1986 if (device->bdev == bdev) {
1987 ret = -EEXIST;
d25628bd
LB
1988 mutex_unlock(
1989 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 1990 goto error;
788f20eb
CM
1991 }
1992 }
d25628bd 1993 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 1994
12bd2fc0
ID
1995 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
1996 if (IS_ERR(device)) {
788f20eb 1997 /* we can safely leave the fs_devices entry around */
12bd2fc0 1998 ret = PTR_ERR(device);
2b82032c 1999 goto error;
788f20eb
CM
2000 }
2001
606686ee
JB
2002 name = rcu_string_strdup(device_path, GFP_NOFS);
2003 if (!name) {
788f20eb 2004 kfree(device);
2b82032c
YZ
2005 ret = -ENOMEM;
2006 goto error;
788f20eb 2007 }
606686ee 2008 rcu_assign_pointer(device->name, name);
2b82032c 2009
a22285a6 2010 trans = btrfs_start_transaction(root, 0);
98d5dc13 2011 if (IS_ERR(trans)) {
606686ee 2012 rcu_string_free(device->name);
98d5dc13
TI
2013 kfree(device);
2014 ret = PTR_ERR(trans);
2015 goto error;
2016 }
2017
2b82032c
YZ
2018 lock_chunks(root);
2019
d5e2003c
JB
2020 q = bdev_get_queue(bdev);
2021 if (blk_queue_discard(q))
2022 device->can_discard = 1;
2b82032c 2023 device->writeable = 1;
2b82032c 2024 device->generation = trans->transid;
788f20eb
CM
2025 device->io_width = root->sectorsize;
2026 device->io_align = root->sectorsize;
2027 device->sector_size = root->sectorsize;
2028 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2029 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
2030 device->dev_root = root->fs_info->dev_root;
2031 device->bdev = bdev;
dfe25020 2032 device->in_fs_metadata = 1;
63a212ab 2033 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2034 device->mode = FMODE_EXCL;
2b82032c 2035 set_blocksize(device->bdev, 4096);
788f20eb 2036
2b82032c
YZ
2037 if (seeding_dev) {
2038 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2039 ret = btrfs_prepare_sprout(root);
79787eaa 2040 BUG_ON(ret); /* -ENOMEM */
2b82032c 2041 }
788f20eb 2042
2b82032c 2043 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2044
e5e9a520 2045 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 2046 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2047 list_add(&device->dev_alloc_list,
2048 &root->fs_info->fs_devices->alloc_list);
2049 root->fs_info->fs_devices->num_devices++;
2050 root->fs_info->fs_devices->open_devices++;
2051 root->fs_info->fs_devices->rw_devices++;
02db0844 2052 root->fs_info->fs_devices->total_devices++;
d5e2003c
JB
2053 if (device->can_discard)
2054 root->fs_info->fs_devices->num_can_discard++;
2b82032c 2055 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2056
2bf64758
JB
2057 spin_lock(&root->fs_info->free_chunk_lock);
2058 root->fs_info->free_chunk_space += device->total_bytes;
2059 spin_unlock(&root->fs_info->free_chunk_lock);
2060
c289811c
CM
2061 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2062 root->fs_info->fs_devices->rotating = 1;
2063
6c41761f
DS
2064 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2065 btrfs_set_super_total_bytes(root->fs_info->super_copy,
788f20eb
CM
2066 total_bytes + device->total_bytes);
2067
6c41761f
DS
2068 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2069 btrfs_set_super_num_devices(root->fs_info->super_copy,
788f20eb 2070 total_bytes + 1);
e5e9a520 2071 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2072
2b82032c
YZ
2073 if (seeding_dev) {
2074 ret = init_first_rw_device(trans, root, device);
005d6427
DS
2075 if (ret) {
2076 btrfs_abort_transaction(trans, root, ret);
79787eaa 2077 goto error_trans;
005d6427 2078 }
2b82032c 2079 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2080 if (ret) {
2081 btrfs_abort_transaction(trans, root, ret);
79787eaa 2082 goto error_trans;
005d6427 2083 }
2b82032c
YZ
2084 } else {
2085 ret = btrfs_add_device(trans, root, device);
005d6427
DS
2086 if (ret) {
2087 btrfs_abort_transaction(trans, root, ret);
79787eaa 2088 goto error_trans;
005d6427 2089 }
2b82032c
YZ
2090 }
2091
913d952e
CM
2092 /*
2093 * we've got more storage, clear any full flags on the space
2094 * infos
2095 */
2096 btrfs_clear_space_info_full(root->fs_info);
2097
7d9eb12c 2098 unlock_chunks(root);
5af3e8cc
SB
2099 root->fs_info->num_tolerated_disk_barrier_failures =
2100 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2101 ret = btrfs_commit_transaction(trans, root);
a2135011 2102
2b82032c
YZ
2103 if (seeding_dev) {
2104 mutex_unlock(&uuid_mutex);
2105 up_write(&sb->s_umount);
788f20eb 2106
79787eaa
JM
2107 if (ret) /* transaction commit */
2108 return ret;
2109
2b82032c 2110 ret = btrfs_relocate_sys_chunks(root);
79787eaa
JM
2111 if (ret < 0)
2112 btrfs_error(root->fs_info, ret,
2113 "Failed to relocate sys chunks after "
2114 "device initialization. This can be fixed "
2115 "using the \"btrfs balance\" command.");
671415b7
MX
2116 trans = btrfs_attach_transaction(root);
2117 if (IS_ERR(trans)) {
2118 if (PTR_ERR(trans) == -ENOENT)
2119 return 0;
2120 return PTR_ERR(trans);
2121 }
2122 ret = btrfs_commit_transaction(trans, root);
2b82032c 2123 }
c9e9f97b 2124
2b82032c 2125 return ret;
79787eaa
JM
2126
2127error_trans:
2128 unlock_chunks(root);
79787eaa 2129 btrfs_end_transaction(trans, root);
606686ee 2130 rcu_string_free(device->name);
79787eaa 2131 kfree(device);
2b82032c 2132error:
e525fd89 2133 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2134 if (seeding_dev) {
2135 mutex_unlock(&uuid_mutex);
2136 up_write(&sb->s_umount);
2137 }
c9e9f97b 2138 return ret;
788f20eb
CM
2139}
2140
e93c89c1
SB
2141int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2142 struct btrfs_device **device_out)
2143{
2144 struct request_queue *q;
2145 struct btrfs_device *device;
2146 struct block_device *bdev;
2147 struct btrfs_fs_info *fs_info = root->fs_info;
2148 struct list_head *devices;
2149 struct rcu_string *name;
12bd2fc0 2150 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2151 int ret = 0;
2152
2153 *device_out = NULL;
2154 if (fs_info->fs_devices->seeding)
2155 return -EINVAL;
2156
2157 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2158 fs_info->bdev_holder);
2159 if (IS_ERR(bdev))
2160 return PTR_ERR(bdev);
2161
2162 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2163
2164 devices = &fs_info->fs_devices->devices;
2165 list_for_each_entry(device, devices, dev_list) {
2166 if (device->bdev == bdev) {
2167 ret = -EEXIST;
2168 goto error;
2169 }
2170 }
2171
12bd2fc0
ID
2172 device = btrfs_alloc_device(NULL, &devid, NULL);
2173 if (IS_ERR(device)) {
2174 ret = PTR_ERR(device);
e93c89c1
SB
2175 goto error;
2176 }
2177
2178 name = rcu_string_strdup(device_path, GFP_NOFS);
2179 if (!name) {
2180 kfree(device);
2181 ret = -ENOMEM;
2182 goto error;
2183 }
2184 rcu_assign_pointer(device->name, name);
2185
2186 q = bdev_get_queue(bdev);
2187 if (blk_queue_discard(q))
2188 device->can_discard = 1;
2189 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2190 device->writeable = 1;
e93c89c1
SB
2191 device->generation = 0;
2192 device->io_width = root->sectorsize;
2193 device->io_align = root->sectorsize;
2194 device->sector_size = root->sectorsize;
2195 device->total_bytes = i_size_read(bdev->bd_inode);
2196 device->disk_total_bytes = device->total_bytes;
2197 device->dev_root = fs_info->dev_root;
2198 device->bdev = bdev;
2199 device->in_fs_metadata = 1;
2200 device->is_tgtdev_for_dev_replace = 1;
2201 device->mode = FMODE_EXCL;
2202 set_blocksize(device->bdev, 4096);
2203 device->fs_devices = fs_info->fs_devices;
2204 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2205 fs_info->fs_devices->num_devices++;
2206 fs_info->fs_devices->open_devices++;
2207 if (device->can_discard)
2208 fs_info->fs_devices->num_can_discard++;
2209 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2210
2211 *device_out = device;
2212 return ret;
2213
2214error:
2215 blkdev_put(bdev, FMODE_EXCL);
2216 return ret;
2217}
2218
2219void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2220 struct btrfs_device *tgtdev)
2221{
2222 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2223 tgtdev->io_width = fs_info->dev_root->sectorsize;
2224 tgtdev->io_align = fs_info->dev_root->sectorsize;
2225 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2226 tgtdev->dev_root = fs_info->dev_root;
2227 tgtdev->in_fs_metadata = 1;
2228}
2229
d397712b
CM
2230static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2231 struct btrfs_device *device)
0b86a832
CM
2232{
2233 int ret;
2234 struct btrfs_path *path;
2235 struct btrfs_root *root;
2236 struct btrfs_dev_item *dev_item;
2237 struct extent_buffer *leaf;
2238 struct btrfs_key key;
2239
2240 root = device->dev_root->fs_info->chunk_root;
2241
2242 path = btrfs_alloc_path();
2243 if (!path)
2244 return -ENOMEM;
2245
2246 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2247 key.type = BTRFS_DEV_ITEM_KEY;
2248 key.offset = device->devid;
2249
2250 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2251 if (ret < 0)
2252 goto out;
2253
2254 if (ret > 0) {
2255 ret = -ENOENT;
2256 goto out;
2257 }
2258
2259 leaf = path->nodes[0];
2260 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2261
2262 btrfs_set_device_id(leaf, dev_item, device->devid);
2263 btrfs_set_device_type(leaf, dev_item, device->type);
2264 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2265 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2266 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 2267 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
2268 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2269 btrfs_mark_buffer_dirty(leaf);
2270
2271out:
2272 btrfs_free_path(path);
2273 return ret;
2274}
2275
7d9eb12c 2276static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2277 struct btrfs_device *device, u64 new_size)
2278{
2279 struct btrfs_super_block *super_copy =
6c41761f 2280 device->dev_root->fs_info->super_copy;
8f18cf13
CM
2281 u64 old_total = btrfs_super_total_bytes(super_copy);
2282 u64 diff = new_size - device->total_bytes;
2283
2b82032c
YZ
2284 if (!device->writeable)
2285 return -EACCES;
63a212ab
SB
2286 if (new_size <= device->total_bytes ||
2287 device->is_tgtdev_for_dev_replace)
2b82032c
YZ
2288 return -EINVAL;
2289
8f18cf13 2290 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2291 device->fs_devices->total_rw_bytes += diff;
2292
2293 device->total_bytes = new_size;
9779b72f 2294 device->disk_total_bytes = new_size;
4184ea7f
CM
2295 btrfs_clear_space_info_full(device->dev_root->fs_info);
2296
8f18cf13
CM
2297 return btrfs_update_device(trans, device);
2298}
2299
7d9eb12c
CM
2300int btrfs_grow_device(struct btrfs_trans_handle *trans,
2301 struct btrfs_device *device, u64 new_size)
2302{
2303 int ret;
2304 lock_chunks(device->dev_root);
2305 ret = __btrfs_grow_device(trans, device, new_size);
2306 unlock_chunks(device->dev_root);
2307 return ret;
2308}
2309
8f18cf13
CM
2310static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2311 struct btrfs_root *root,
2312 u64 chunk_tree, u64 chunk_objectid,
2313 u64 chunk_offset)
2314{
2315 int ret;
2316 struct btrfs_path *path;
2317 struct btrfs_key key;
2318
2319 root = root->fs_info->chunk_root;
2320 path = btrfs_alloc_path();
2321 if (!path)
2322 return -ENOMEM;
2323
2324 key.objectid = chunk_objectid;
2325 key.offset = chunk_offset;
2326 key.type = BTRFS_CHUNK_ITEM_KEY;
2327
2328 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2329 if (ret < 0)
2330 goto out;
2331 else if (ret > 0) { /* Logic error or corruption */
2332 btrfs_error(root->fs_info, -ENOENT,
2333 "Failed lookup while freeing chunk.");
2334 ret = -ENOENT;
2335 goto out;
2336 }
8f18cf13
CM
2337
2338 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
2339 if (ret < 0)
2340 btrfs_error(root->fs_info, ret,
2341 "Failed to delete chunk item.");
2342out:
8f18cf13 2343 btrfs_free_path(path);
65a246c5 2344 return ret;
8f18cf13
CM
2345}
2346
b2950863 2347static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2348 chunk_offset)
2349{
6c41761f 2350 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2351 struct btrfs_disk_key *disk_key;
2352 struct btrfs_chunk *chunk;
2353 u8 *ptr;
2354 int ret = 0;
2355 u32 num_stripes;
2356 u32 array_size;
2357 u32 len = 0;
2358 u32 cur;
2359 struct btrfs_key key;
2360
2361 array_size = btrfs_super_sys_array_size(super_copy);
2362
2363 ptr = super_copy->sys_chunk_array;
2364 cur = 0;
2365
2366 while (cur < array_size) {
2367 disk_key = (struct btrfs_disk_key *)ptr;
2368 btrfs_disk_key_to_cpu(&key, disk_key);
2369
2370 len = sizeof(*disk_key);
2371
2372 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2373 chunk = (struct btrfs_chunk *)(ptr + len);
2374 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2375 len += btrfs_chunk_item_size(num_stripes);
2376 } else {
2377 ret = -EIO;
2378 break;
2379 }
2380 if (key.objectid == chunk_objectid &&
2381 key.offset == chunk_offset) {
2382 memmove(ptr, ptr + len, array_size - (cur + len));
2383 array_size -= len;
2384 btrfs_set_super_sys_array_size(super_copy, array_size);
2385 } else {
2386 ptr += len;
2387 cur += len;
2388 }
2389 }
2390 return ret;
2391}
2392
b2950863 2393static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
2394 u64 chunk_tree, u64 chunk_objectid,
2395 u64 chunk_offset)
2396{
2397 struct extent_map_tree *em_tree;
2398 struct btrfs_root *extent_root;
2399 struct btrfs_trans_handle *trans;
2400 struct extent_map *em;
2401 struct map_lookup *map;
2402 int ret;
2403 int i;
2404
2405 root = root->fs_info->chunk_root;
2406 extent_root = root->fs_info->extent_root;
2407 em_tree = &root->fs_info->mapping_tree.map_tree;
2408
ba1bf481
JB
2409 ret = btrfs_can_relocate(extent_root, chunk_offset);
2410 if (ret)
2411 return -ENOSPC;
2412
8f18cf13 2413 /* step one, relocate all the extents inside this chunk */
1a40e23b 2414 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
2415 if (ret)
2416 return ret;
8f18cf13 2417
a22285a6 2418 trans = btrfs_start_transaction(root, 0);
0f788c58
LB
2419 if (IS_ERR(trans)) {
2420 ret = PTR_ERR(trans);
2421 btrfs_std_error(root->fs_info, ret);
2422 return ret;
2423 }
8f18cf13 2424
7d9eb12c
CM
2425 lock_chunks(root);
2426
8f18cf13
CM
2427 /*
2428 * step two, delete the device extents and the
2429 * chunk tree entries
2430 */
890871be 2431 read_lock(&em_tree->lock);
8f18cf13 2432 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2433 read_unlock(&em_tree->lock);
8f18cf13 2434
285190d9 2435 BUG_ON(!em || em->start > chunk_offset ||
a061fc8d 2436 em->start + em->len < chunk_offset);
8f18cf13
CM
2437 map = (struct map_lookup *)em->bdev;
2438
2439 for (i = 0; i < map->num_stripes; i++) {
2440 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2441 map->stripes[i].physical);
2442 BUG_ON(ret);
a061fc8d 2443
dfe25020
CM
2444 if (map->stripes[i].dev) {
2445 ret = btrfs_update_device(trans, map->stripes[i].dev);
2446 BUG_ON(ret);
2447 }
8f18cf13
CM
2448 }
2449 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2450 chunk_offset);
2451
2452 BUG_ON(ret);
2453
1abe9b8a 2454 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2455
8f18cf13
CM
2456 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2457 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2458 BUG_ON(ret);
8f18cf13
CM
2459 }
2460
2b82032c
YZ
2461 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2462 BUG_ON(ret);
2463
890871be 2464 write_lock(&em_tree->lock);
2b82032c 2465 remove_extent_mapping(em_tree, em);
890871be 2466 write_unlock(&em_tree->lock);
2b82032c
YZ
2467
2468 kfree(map);
2469 em->bdev = NULL;
2470
2471 /* once for the tree */
2472 free_extent_map(em);
2473 /* once for us */
2474 free_extent_map(em);
2475
2476 unlock_chunks(root);
2477 btrfs_end_transaction(trans, root);
2478 return 0;
2479}
2480
2481static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2482{
2483 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2484 struct btrfs_path *path;
2485 struct extent_buffer *leaf;
2486 struct btrfs_chunk *chunk;
2487 struct btrfs_key key;
2488 struct btrfs_key found_key;
2489 u64 chunk_tree = chunk_root->root_key.objectid;
2490 u64 chunk_type;
ba1bf481
JB
2491 bool retried = false;
2492 int failed = 0;
2b82032c
YZ
2493 int ret;
2494
2495 path = btrfs_alloc_path();
2496 if (!path)
2497 return -ENOMEM;
2498
ba1bf481 2499again:
2b82032c
YZ
2500 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2501 key.offset = (u64)-1;
2502 key.type = BTRFS_CHUNK_ITEM_KEY;
2503
2504 while (1) {
2505 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2506 if (ret < 0)
2507 goto error;
79787eaa 2508 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2509
2510 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2511 key.type);
2512 if (ret < 0)
2513 goto error;
2514 if (ret > 0)
2515 break;
1a40e23b 2516
2b82032c
YZ
2517 leaf = path->nodes[0];
2518 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2519
2b82032c
YZ
2520 chunk = btrfs_item_ptr(leaf, path->slots[0],
2521 struct btrfs_chunk);
2522 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2523 btrfs_release_path(path);
8f18cf13 2524
2b82032c
YZ
2525 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2526 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2527 found_key.objectid,
2528 found_key.offset);
ba1bf481
JB
2529 if (ret == -ENOSPC)
2530 failed++;
2531 else if (ret)
2532 BUG();
2b82032c 2533 }
8f18cf13 2534
2b82032c
YZ
2535 if (found_key.offset == 0)
2536 break;
2537 key.offset = found_key.offset - 1;
2538 }
2539 ret = 0;
ba1bf481
JB
2540 if (failed && !retried) {
2541 failed = 0;
2542 retried = true;
2543 goto again;
2544 } else if (failed && retried) {
2545 WARN_ON(1);
2546 ret = -ENOSPC;
2547 }
2b82032c
YZ
2548error:
2549 btrfs_free_path(path);
2550 return ret;
8f18cf13
CM
2551}
2552
0940ebf6
ID
2553static int insert_balance_item(struct btrfs_root *root,
2554 struct btrfs_balance_control *bctl)
2555{
2556 struct btrfs_trans_handle *trans;
2557 struct btrfs_balance_item *item;
2558 struct btrfs_disk_balance_args disk_bargs;
2559 struct btrfs_path *path;
2560 struct extent_buffer *leaf;
2561 struct btrfs_key key;
2562 int ret, err;
2563
2564 path = btrfs_alloc_path();
2565 if (!path)
2566 return -ENOMEM;
2567
2568 trans = btrfs_start_transaction(root, 0);
2569 if (IS_ERR(trans)) {
2570 btrfs_free_path(path);
2571 return PTR_ERR(trans);
2572 }
2573
2574 key.objectid = BTRFS_BALANCE_OBJECTID;
2575 key.type = BTRFS_BALANCE_ITEM_KEY;
2576 key.offset = 0;
2577
2578 ret = btrfs_insert_empty_item(trans, root, path, &key,
2579 sizeof(*item));
2580 if (ret)
2581 goto out;
2582
2583 leaf = path->nodes[0];
2584 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2585
2586 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2587
2588 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2589 btrfs_set_balance_data(leaf, item, &disk_bargs);
2590 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2591 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2592 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2593 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2594
2595 btrfs_set_balance_flags(leaf, item, bctl->flags);
2596
2597 btrfs_mark_buffer_dirty(leaf);
2598out:
2599 btrfs_free_path(path);
2600 err = btrfs_commit_transaction(trans, root);
2601 if (err && !ret)
2602 ret = err;
2603 return ret;
2604}
2605
2606static int del_balance_item(struct btrfs_root *root)
2607{
2608 struct btrfs_trans_handle *trans;
2609 struct btrfs_path *path;
2610 struct btrfs_key key;
2611 int ret, err;
2612
2613 path = btrfs_alloc_path();
2614 if (!path)
2615 return -ENOMEM;
2616
2617 trans = btrfs_start_transaction(root, 0);
2618 if (IS_ERR(trans)) {
2619 btrfs_free_path(path);
2620 return PTR_ERR(trans);
2621 }
2622
2623 key.objectid = BTRFS_BALANCE_OBJECTID;
2624 key.type = BTRFS_BALANCE_ITEM_KEY;
2625 key.offset = 0;
2626
2627 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2628 if (ret < 0)
2629 goto out;
2630 if (ret > 0) {
2631 ret = -ENOENT;
2632 goto out;
2633 }
2634
2635 ret = btrfs_del_item(trans, root, path);
2636out:
2637 btrfs_free_path(path);
2638 err = btrfs_commit_transaction(trans, root);
2639 if (err && !ret)
2640 ret = err;
2641 return ret;
2642}
2643
59641015
ID
2644/*
2645 * This is a heuristic used to reduce the number of chunks balanced on
2646 * resume after balance was interrupted.
2647 */
2648static void update_balance_args(struct btrfs_balance_control *bctl)
2649{
2650 /*
2651 * Turn on soft mode for chunk types that were being converted.
2652 */
2653 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2654 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2655 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2656 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2657 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2658 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2659
2660 /*
2661 * Turn on usage filter if is not already used. The idea is
2662 * that chunks that we have already balanced should be
2663 * reasonably full. Don't do it for chunks that are being
2664 * converted - that will keep us from relocating unconverted
2665 * (albeit full) chunks.
2666 */
2667 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2668 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2669 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2670 bctl->data.usage = 90;
2671 }
2672 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2673 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2674 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2675 bctl->sys.usage = 90;
2676 }
2677 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2678 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2679 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2680 bctl->meta.usage = 90;
2681 }
2682}
2683
c9e9f97b
ID
2684/*
2685 * Should be called with both balance and volume mutexes held to
2686 * serialize other volume operations (add_dev/rm_dev/resize) with
2687 * restriper. Same goes for unset_balance_control.
2688 */
2689static void set_balance_control(struct btrfs_balance_control *bctl)
2690{
2691 struct btrfs_fs_info *fs_info = bctl->fs_info;
2692
2693 BUG_ON(fs_info->balance_ctl);
2694
2695 spin_lock(&fs_info->balance_lock);
2696 fs_info->balance_ctl = bctl;
2697 spin_unlock(&fs_info->balance_lock);
2698}
2699
2700static void unset_balance_control(struct btrfs_fs_info *fs_info)
2701{
2702 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2703
2704 BUG_ON(!fs_info->balance_ctl);
2705
2706 spin_lock(&fs_info->balance_lock);
2707 fs_info->balance_ctl = NULL;
2708 spin_unlock(&fs_info->balance_lock);
2709
2710 kfree(bctl);
2711}
2712
ed25e9b2
ID
2713/*
2714 * Balance filters. Return 1 if chunk should be filtered out
2715 * (should not be balanced).
2716 */
899c81ea 2717static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
2718 struct btrfs_balance_args *bargs)
2719{
899c81ea
ID
2720 chunk_type = chunk_to_extended(chunk_type) &
2721 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 2722
899c81ea 2723 if (bargs->profiles & chunk_type)
ed25e9b2
ID
2724 return 0;
2725
2726 return 1;
2727}
2728
5ce5b3c0
ID
2729static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2730 struct btrfs_balance_args *bargs)
2731{
2732 struct btrfs_block_group_cache *cache;
2733 u64 chunk_used, user_thresh;
2734 int ret = 1;
2735
2736 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2737 chunk_used = btrfs_block_group_used(&cache->item);
2738
a105bb88 2739 if (bargs->usage == 0)
3e39cea6 2740 user_thresh = 1;
a105bb88
ID
2741 else if (bargs->usage > 100)
2742 user_thresh = cache->key.offset;
2743 else
2744 user_thresh = div_factor_fine(cache->key.offset,
2745 bargs->usage);
2746
5ce5b3c0
ID
2747 if (chunk_used < user_thresh)
2748 ret = 0;
2749
2750 btrfs_put_block_group(cache);
2751 return ret;
2752}
2753
409d404b
ID
2754static int chunk_devid_filter(struct extent_buffer *leaf,
2755 struct btrfs_chunk *chunk,
2756 struct btrfs_balance_args *bargs)
2757{
2758 struct btrfs_stripe *stripe;
2759 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2760 int i;
2761
2762 for (i = 0; i < num_stripes; i++) {
2763 stripe = btrfs_stripe_nr(chunk, i);
2764 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2765 return 0;
2766 }
2767
2768 return 1;
2769}
2770
94e60d5a
ID
2771/* [pstart, pend) */
2772static int chunk_drange_filter(struct extent_buffer *leaf,
2773 struct btrfs_chunk *chunk,
2774 u64 chunk_offset,
2775 struct btrfs_balance_args *bargs)
2776{
2777 struct btrfs_stripe *stripe;
2778 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2779 u64 stripe_offset;
2780 u64 stripe_length;
2781 int factor;
2782 int i;
2783
2784 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2785 return 0;
2786
2787 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
2788 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2789 factor = num_stripes / 2;
2790 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2791 factor = num_stripes - 1;
2792 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2793 factor = num_stripes - 2;
2794 } else {
2795 factor = num_stripes;
2796 }
94e60d5a
ID
2797
2798 for (i = 0; i < num_stripes; i++) {
2799 stripe = btrfs_stripe_nr(chunk, i);
2800 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2801 continue;
2802
2803 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2804 stripe_length = btrfs_chunk_length(leaf, chunk);
2805 do_div(stripe_length, factor);
2806
2807 if (stripe_offset < bargs->pend &&
2808 stripe_offset + stripe_length > bargs->pstart)
2809 return 0;
2810 }
2811
2812 return 1;
2813}
2814
ea67176a
ID
2815/* [vstart, vend) */
2816static int chunk_vrange_filter(struct extent_buffer *leaf,
2817 struct btrfs_chunk *chunk,
2818 u64 chunk_offset,
2819 struct btrfs_balance_args *bargs)
2820{
2821 if (chunk_offset < bargs->vend &&
2822 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2823 /* at least part of the chunk is inside this vrange */
2824 return 0;
2825
2826 return 1;
2827}
2828
899c81ea 2829static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
2830 struct btrfs_balance_args *bargs)
2831{
2832 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2833 return 0;
2834
899c81ea
ID
2835 chunk_type = chunk_to_extended(chunk_type) &
2836 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 2837
899c81ea 2838 if (bargs->target == chunk_type)
cfa4c961
ID
2839 return 1;
2840
2841 return 0;
2842}
2843
f43ffb60
ID
2844static int should_balance_chunk(struct btrfs_root *root,
2845 struct extent_buffer *leaf,
2846 struct btrfs_chunk *chunk, u64 chunk_offset)
2847{
2848 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2849 struct btrfs_balance_args *bargs = NULL;
2850 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2851
2852 /* type filter */
2853 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2854 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2855 return 0;
2856 }
2857
2858 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2859 bargs = &bctl->data;
2860 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2861 bargs = &bctl->sys;
2862 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2863 bargs = &bctl->meta;
2864
ed25e9b2
ID
2865 /* profiles filter */
2866 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2867 chunk_profiles_filter(chunk_type, bargs)) {
2868 return 0;
5ce5b3c0
ID
2869 }
2870
2871 /* usage filter */
2872 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2873 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2874 return 0;
409d404b
ID
2875 }
2876
2877 /* devid filter */
2878 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2879 chunk_devid_filter(leaf, chunk, bargs)) {
2880 return 0;
94e60d5a
ID
2881 }
2882
2883 /* drange filter, makes sense only with devid filter */
2884 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2885 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2886 return 0;
ea67176a
ID
2887 }
2888
2889 /* vrange filter */
2890 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2891 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2892 return 0;
ed25e9b2
ID
2893 }
2894
cfa4c961
ID
2895 /* soft profile changing mode */
2896 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2897 chunk_soft_convert_filter(chunk_type, bargs)) {
2898 return 0;
2899 }
2900
f43ffb60
ID
2901 return 1;
2902}
2903
c9e9f97b 2904static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 2905{
19a39dce 2906 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
2907 struct btrfs_root *chunk_root = fs_info->chunk_root;
2908 struct btrfs_root *dev_root = fs_info->dev_root;
2909 struct list_head *devices;
ec44a35c
CM
2910 struct btrfs_device *device;
2911 u64 old_size;
2912 u64 size_to_free;
f43ffb60 2913 struct btrfs_chunk *chunk;
ec44a35c
CM
2914 struct btrfs_path *path;
2915 struct btrfs_key key;
ec44a35c 2916 struct btrfs_key found_key;
c9e9f97b 2917 struct btrfs_trans_handle *trans;
f43ffb60
ID
2918 struct extent_buffer *leaf;
2919 int slot;
c9e9f97b
ID
2920 int ret;
2921 int enospc_errors = 0;
19a39dce 2922 bool counting = true;
ec44a35c 2923
ec44a35c 2924 /* step one make some room on all the devices */
c9e9f97b 2925 devices = &fs_info->fs_devices->devices;
c6e30871 2926 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2927 old_size = device->total_bytes;
2928 size_to_free = div_factor(old_size, 1);
2929 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c 2930 if (!device->writeable ||
63a212ab
SB
2931 device->total_bytes - device->bytes_used > size_to_free ||
2932 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
2933 continue;
2934
2935 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2936 if (ret == -ENOSPC)
2937 break;
ec44a35c
CM
2938 BUG_ON(ret);
2939
a22285a6 2940 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2941 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2942
2943 ret = btrfs_grow_device(trans, device, old_size);
2944 BUG_ON(ret);
2945
2946 btrfs_end_transaction(trans, dev_root);
2947 }
2948
2949 /* step two, relocate all the chunks */
2950 path = btrfs_alloc_path();
17e9f796
MF
2951 if (!path) {
2952 ret = -ENOMEM;
2953 goto error;
2954 }
19a39dce
ID
2955
2956 /* zero out stat counters */
2957 spin_lock(&fs_info->balance_lock);
2958 memset(&bctl->stat, 0, sizeof(bctl->stat));
2959 spin_unlock(&fs_info->balance_lock);
2960again:
ec44a35c
CM
2961 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2962 key.offset = (u64)-1;
2963 key.type = BTRFS_CHUNK_ITEM_KEY;
2964
d397712b 2965 while (1) {
19a39dce 2966 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 2967 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
2968 ret = -ECANCELED;
2969 goto error;
2970 }
2971
ec44a35c
CM
2972 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2973 if (ret < 0)
2974 goto error;
2975
2976 /*
2977 * this shouldn't happen, it means the last relocate
2978 * failed
2979 */
2980 if (ret == 0)
c9e9f97b 2981 BUG(); /* FIXME break ? */
ec44a35c
CM
2982
2983 ret = btrfs_previous_item(chunk_root, path, 0,
2984 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b
ID
2985 if (ret) {
2986 ret = 0;
ec44a35c 2987 break;
c9e9f97b 2988 }
7d9eb12c 2989
f43ffb60
ID
2990 leaf = path->nodes[0];
2991 slot = path->slots[0];
2992 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 2993
ec44a35c
CM
2994 if (found_key.objectid != key.objectid)
2995 break;
7d9eb12c 2996
ec44a35c 2997 /* chunk zero is special */
ba1bf481 2998 if (found_key.offset == 0)
ec44a35c
CM
2999 break;
3000
f43ffb60
ID
3001 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3002
19a39dce
ID
3003 if (!counting) {
3004 spin_lock(&fs_info->balance_lock);
3005 bctl->stat.considered++;
3006 spin_unlock(&fs_info->balance_lock);
3007 }
3008
f43ffb60
ID
3009 ret = should_balance_chunk(chunk_root, leaf, chunk,
3010 found_key.offset);
b3b4aa74 3011 btrfs_release_path(path);
f43ffb60
ID
3012 if (!ret)
3013 goto loop;
3014
19a39dce
ID
3015 if (counting) {
3016 spin_lock(&fs_info->balance_lock);
3017 bctl->stat.expected++;
3018 spin_unlock(&fs_info->balance_lock);
3019 goto loop;
3020 }
3021
ec44a35c
CM
3022 ret = btrfs_relocate_chunk(chunk_root,
3023 chunk_root->root_key.objectid,
3024 found_key.objectid,
3025 found_key.offset);
508794eb
JB
3026 if (ret && ret != -ENOSPC)
3027 goto error;
19a39dce 3028 if (ret == -ENOSPC) {
c9e9f97b 3029 enospc_errors++;
19a39dce
ID
3030 } else {
3031 spin_lock(&fs_info->balance_lock);
3032 bctl->stat.completed++;
3033 spin_unlock(&fs_info->balance_lock);
3034 }
f43ffb60 3035loop:
ba1bf481 3036 key.offset = found_key.offset - 1;
ec44a35c 3037 }
c9e9f97b 3038
19a39dce
ID
3039 if (counting) {
3040 btrfs_release_path(path);
3041 counting = false;
3042 goto again;
3043 }
ec44a35c
CM
3044error:
3045 btrfs_free_path(path);
c9e9f97b
ID
3046 if (enospc_errors) {
3047 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
3048 enospc_errors);
3049 if (!ret)
3050 ret = -ENOSPC;
3051 }
3052
ec44a35c
CM
3053 return ret;
3054}
3055
0c460c0d
ID
3056/**
3057 * alloc_profile_is_valid - see if a given profile is valid and reduced
3058 * @flags: profile to validate
3059 * @extended: if true @flags is treated as an extended profile
3060 */
3061static int alloc_profile_is_valid(u64 flags, int extended)
3062{
3063 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3064 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3065
3066 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3067
3068 /* 1) check that all other bits are zeroed */
3069 if (flags & ~mask)
3070 return 0;
3071
3072 /* 2) see if profile is reduced */
3073 if (flags == 0)
3074 return !extended; /* "0" is valid for usual profiles */
3075
3076 /* true if exactly one bit set */
3077 return (flags & (flags - 1)) == 0;
3078}
3079
837d5b6e
ID
3080static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3081{
a7e99c69
ID
3082 /* cancel requested || normal exit path */
3083 return atomic_read(&fs_info->balance_cancel_req) ||
3084 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3085 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3086}
3087
c9e9f97b
ID
3088static void __cancel_balance(struct btrfs_fs_info *fs_info)
3089{
0940ebf6
ID
3090 int ret;
3091
c9e9f97b 3092 unset_balance_control(fs_info);
0940ebf6 3093 ret = del_balance_item(fs_info->tree_root);
0f788c58
LB
3094 if (ret)
3095 btrfs_std_error(fs_info, ret);
ed0fb78f
ID
3096
3097 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3098}
3099
c9e9f97b
ID
3100/*
3101 * Should be called with both balance and volume mutexes held
3102 */
3103int btrfs_balance(struct btrfs_balance_control *bctl,
3104 struct btrfs_ioctl_balance_args *bargs)
3105{
3106 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3107 u64 allowed;
e4837f8f 3108 int mixed = 0;
c9e9f97b 3109 int ret;
8dabb742 3110 u64 num_devices;
de98ced9 3111 unsigned seq;
c9e9f97b 3112
837d5b6e 3113 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3114 atomic_read(&fs_info->balance_pause_req) ||
3115 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3116 ret = -EINVAL;
3117 goto out;
3118 }
3119
e4837f8f
ID
3120 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3121 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3122 mixed = 1;
3123
f43ffb60
ID
3124 /*
3125 * In case of mixed groups both data and meta should be picked,
3126 * and identical options should be given for both of them.
3127 */
e4837f8f
ID
3128 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3129 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3130 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3131 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3132 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3133 printk(KERN_ERR "btrfs: with mixed groups data and "
3134 "metadata balance options must be the same\n");
3135 ret = -EINVAL;
3136 goto out;
3137 }
3138 }
3139
8dabb742
SB
3140 num_devices = fs_info->fs_devices->num_devices;
3141 btrfs_dev_replace_lock(&fs_info->dev_replace);
3142 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3143 BUG_ON(num_devices < 1);
3144 num_devices--;
3145 }
3146 btrfs_dev_replace_unlock(&fs_info->dev_replace);
e4d8ec0f 3147 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3148 if (num_devices == 1)
e4d8ec0f 3149 allowed |= BTRFS_BLOCK_GROUP_DUP;
8250dabe 3150 else if (num_devices > 1)
e4d8ec0f 3151 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3152 if (num_devices > 2)
3153 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3154 if (num_devices > 3)
3155 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3156 BTRFS_BLOCK_GROUP_RAID6);
6728b198
ID
3157 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3158 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3159 (bctl->data.target & ~allowed))) {
e4d8ec0f
ID
3160 printk(KERN_ERR "btrfs: unable to start balance with target "
3161 "data profile %llu\n",
c1c9ff7c 3162 bctl->data.target);
e4d8ec0f
ID
3163 ret = -EINVAL;
3164 goto out;
3165 }
6728b198
ID
3166 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3167 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3168 (bctl->meta.target & ~allowed))) {
e4d8ec0f
ID
3169 printk(KERN_ERR "btrfs: unable to start balance with target "
3170 "metadata profile %llu\n",
c1c9ff7c 3171 bctl->meta.target);
e4d8ec0f
ID
3172 ret = -EINVAL;
3173 goto out;
3174 }
6728b198
ID
3175 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3176 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3177 (bctl->sys.target & ~allowed))) {
e4d8ec0f
ID
3178 printk(KERN_ERR "btrfs: unable to start balance with target "
3179 "system profile %llu\n",
c1c9ff7c 3180 bctl->sys.target);
e4d8ec0f
ID
3181 ret = -EINVAL;
3182 goto out;
3183 }
3184
e4837f8f
ID
3185 /* allow dup'ed data chunks only in mixed mode */
3186 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 3187 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
e4d8ec0f
ID
3188 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
3189 ret = -EINVAL;
3190 goto out;
3191 }
3192
3193 /* allow to reduce meta or sys integrity only if force set */
3194 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3195 BTRFS_BLOCK_GROUP_RAID10 |
3196 BTRFS_BLOCK_GROUP_RAID5 |
3197 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3198 do {
3199 seq = read_seqbegin(&fs_info->profiles_lock);
3200
3201 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3202 (fs_info->avail_system_alloc_bits & allowed) &&
3203 !(bctl->sys.target & allowed)) ||
3204 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3205 (fs_info->avail_metadata_alloc_bits & allowed) &&
3206 !(bctl->meta.target & allowed))) {
3207 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3208 printk(KERN_INFO "btrfs: force reducing metadata "
3209 "integrity\n");
3210 } else {
3211 printk(KERN_ERR "btrfs: balance will reduce metadata "
3212 "integrity, use force if you want this\n");
3213 ret = -EINVAL;
3214 goto out;
3215 }
e4d8ec0f 3216 }
de98ced9 3217 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3218
5af3e8cc
SB
3219 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3220 int num_tolerated_disk_barrier_failures;
3221 u64 target = bctl->sys.target;
3222
3223 num_tolerated_disk_barrier_failures =
3224 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3225 if (num_tolerated_disk_barrier_failures > 0 &&
3226 (target &
3227 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3228 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3229 num_tolerated_disk_barrier_failures = 0;
3230 else if (num_tolerated_disk_barrier_failures > 1 &&
3231 (target &
3232 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3233 num_tolerated_disk_barrier_failures = 1;
3234
3235 fs_info->num_tolerated_disk_barrier_failures =
3236 num_tolerated_disk_barrier_failures;
3237 }
3238
0940ebf6 3239 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3240 if (ret && ret != -EEXIST)
0940ebf6
ID
3241 goto out;
3242
59641015
ID
3243 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3244 BUG_ON(ret == -EEXIST);
3245 set_balance_control(bctl);
3246 } else {
3247 BUG_ON(ret != -EEXIST);
3248 spin_lock(&fs_info->balance_lock);
3249 update_balance_args(bctl);
3250 spin_unlock(&fs_info->balance_lock);
3251 }
c9e9f97b 3252
837d5b6e 3253 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3254 mutex_unlock(&fs_info->balance_mutex);
3255
3256 ret = __btrfs_balance(fs_info);
3257
3258 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3259 atomic_dec(&fs_info->balance_running);
c9e9f97b 3260
bf023ecf
ID
3261 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3262 fs_info->num_tolerated_disk_barrier_failures =
3263 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3264 }
3265
c9e9f97b
ID
3266 if (bargs) {
3267 memset(bargs, 0, sizeof(*bargs));
19a39dce 3268 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3269 }
3270
3a01aa7a
ID
3271 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3272 balance_need_close(fs_info)) {
3273 __cancel_balance(fs_info);
3274 }
3275
837d5b6e 3276 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3277
3278 return ret;
3279out:
59641015
ID
3280 if (bctl->flags & BTRFS_BALANCE_RESUME)
3281 __cancel_balance(fs_info);
ed0fb78f 3282 else {
59641015 3283 kfree(bctl);
ed0fb78f
ID
3284 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3285 }
59641015
ID
3286 return ret;
3287}
3288
3289static int balance_kthread(void *data)
3290{
2b6ba629 3291 struct btrfs_fs_info *fs_info = data;
9555c6c1 3292 int ret = 0;
59641015
ID
3293
3294 mutex_lock(&fs_info->volume_mutex);
3295 mutex_lock(&fs_info->balance_mutex);
3296
2b6ba629 3297 if (fs_info->balance_ctl) {
9555c6c1 3298 printk(KERN_INFO "btrfs: continuing balance\n");
2b6ba629 3299 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3300 }
59641015
ID
3301
3302 mutex_unlock(&fs_info->balance_mutex);
3303 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3304
59641015
ID
3305 return ret;
3306}
3307
2b6ba629
ID
3308int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3309{
3310 struct task_struct *tsk;
3311
3312 spin_lock(&fs_info->balance_lock);
3313 if (!fs_info->balance_ctl) {
3314 spin_unlock(&fs_info->balance_lock);
3315 return 0;
3316 }
3317 spin_unlock(&fs_info->balance_lock);
3318
3319 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3320 printk(KERN_INFO "btrfs: force skipping balance\n");
3321 return 0;
3322 }
3323
3324 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
97a184fe 3325 return PTR_RET(tsk);
2b6ba629
ID
3326}
3327
68310a5e 3328int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3329{
59641015
ID
3330 struct btrfs_balance_control *bctl;
3331 struct btrfs_balance_item *item;
3332 struct btrfs_disk_balance_args disk_bargs;
3333 struct btrfs_path *path;
3334 struct extent_buffer *leaf;
3335 struct btrfs_key key;
3336 int ret;
3337
3338 path = btrfs_alloc_path();
3339 if (!path)
3340 return -ENOMEM;
3341
59641015
ID
3342 key.objectid = BTRFS_BALANCE_OBJECTID;
3343 key.type = BTRFS_BALANCE_ITEM_KEY;
3344 key.offset = 0;
3345
68310a5e 3346 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3347 if (ret < 0)
68310a5e 3348 goto out;
59641015
ID
3349 if (ret > 0) { /* ret = -ENOENT; */
3350 ret = 0;
68310a5e
ID
3351 goto out;
3352 }
3353
3354 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3355 if (!bctl) {
3356 ret = -ENOMEM;
3357 goto out;
59641015
ID
3358 }
3359
3360 leaf = path->nodes[0];
3361 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3362
68310a5e
ID
3363 bctl->fs_info = fs_info;
3364 bctl->flags = btrfs_balance_flags(leaf, item);
3365 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3366
3367 btrfs_balance_data(leaf, item, &disk_bargs);
3368 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3369 btrfs_balance_meta(leaf, item, &disk_bargs);
3370 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3371 btrfs_balance_sys(leaf, item, &disk_bargs);
3372 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3373
ed0fb78f
ID
3374 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3375
68310a5e
ID
3376 mutex_lock(&fs_info->volume_mutex);
3377 mutex_lock(&fs_info->balance_mutex);
59641015 3378
68310a5e
ID
3379 set_balance_control(bctl);
3380
3381 mutex_unlock(&fs_info->balance_mutex);
3382 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3383out:
3384 btrfs_free_path(path);
ec44a35c
CM
3385 return ret;
3386}
3387
837d5b6e
ID
3388int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3389{
3390 int ret = 0;
3391
3392 mutex_lock(&fs_info->balance_mutex);
3393 if (!fs_info->balance_ctl) {
3394 mutex_unlock(&fs_info->balance_mutex);
3395 return -ENOTCONN;
3396 }
3397
3398 if (atomic_read(&fs_info->balance_running)) {
3399 atomic_inc(&fs_info->balance_pause_req);
3400 mutex_unlock(&fs_info->balance_mutex);
3401
3402 wait_event(fs_info->balance_wait_q,
3403 atomic_read(&fs_info->balance_running) == 0);
3404
3405 mutex_lock(&fs_info->balance_mutex);
3406 /* we are good with balance_ctl ripped off from under us */
3407 BUG_ON(atomic_read(&fs_info->balance_running));
3408 atomic_dec(&fs_info->balance_pause_req);
3409 } else {
3410 ret = -ENOTCONN;
3411 }
3412
3413 mutex_unlock(&fs_info->balance_mutex);
3414 return ret;
3415}
3416
a7e99c69
ID
3417int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3418{
3419 mutex_lock(&fs_info->balance_mutex);
3420 if (!fs_info->balance_ctl) {
3421 mutex_unlock(&fs_info->balance_mutex);
3422 return -ENOTCONN;
3423 }
3424
3425 atomic_inc(&fs_info->balance_cancel_req);
3426 /*
3427 * if we are running just wait and return, balance item is
3428 * deleted in btrfs_balance in this case
3429 */
3430 if (atomic_read(&fs_info->balance_running)) {
3431 mutex_unlock(&fs_info->balance_mutex);
3432 wait_event(fs_info->balance_wait_q,
3433 atomic_read(&fs_info->balance_running) == 0);
3434 mutex_lock(&fs_info->balance_mutex);
3435 } else {
3436 /* __cancel_balance needs volume_mutex */
3437 mutex_unlock(&fs_info->balance_mutex);
3438 mutex_lock(&fs_info->volume_mutex);
3439 mutex_lock(&fs_info->balance_mutex);
3440
3441 if (fs_info->balance_ctl)
3442 __cancel_balance(fs_info);
3443
3444 mutex_unlock(&fs_info->volume_mutex);
3445 }
3446
3447 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3448 atomic_dec(&fs_info->balance_cancel_req);
3449 mutex_unlock(&fs_info->balance_mutex);
3450 return 0;
3451}
3452
803b2f54
SB
3453static int btrfs_uuid_scan_kthread(void *data)
3454{
3455 struct btrfs_fs_info *fs_info = data;
3456 struct btrfs_root *root = fs_info->tree_root;
3457 struct btrfs_key key;
3458 struct btrfs_key max_key;
3459 struct btrfs_path *path = NULL;
3460 int ret = 0;
3461 struct extent_buffer *eb;
3462 int slot;
3463 struct btrfs_root_item root_item;
3464 u32 item_size;
3465 struct btrfs_trans_handle *trans;
3466
3467 path = btrfs_alloc_path();
3468 if (!path) {
3469 ret = -ENOMEM;
3470 goto out;
3471 }
3472
3473 key.objectid = 0;
3474 key.type = BTRFS_ROOT_ITEM_KEY;
3475 key.offset = 0;
3476
3477 max_key.objectid = (u64)-1;
3478 max_key.type = BTRFS_ROOT_ITEM_KEY;
3479 max_key.offset = (u64)-1;
3480
3481 path->keep_locks = 1;
3482
3483 while (1) {
3484 ret = btrfs_search_forward(root, &key, &max_key, path, 0);
3485 if (ret) {
3486 if (ret > 0)
3487 ret = 0;
3488 break;
3489 }
3490
3491 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3492 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3493 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3494 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3495 goto skip;
3496
3497 eb = path->nodes[0];
3498 slot = path->slots[0];
3499 item_size = btrfs_item_size_nr(eb, slot);
3500 if (item_size < sizeof(root_item))
3501 goto skip;
3502
3503 trans = NULL;
3504 read_extent_buffer(eb, &root_item,
3505 btrfs_item_ptr_offset(eb, slot),
3506 (int)sizeof(root_item));
3507 if (btrfs_root_refs(&root_item) == 0)
3508 goto skip;
3509 if (!btrfs_is_empty_uuid(root_item.uuid)) {
3510 /*
3511 * 1 - subvol uuid item
3512 * 1 - received_subvol uuid item
3513 */
3514 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3515 if (IS_ERR(trans)) {
3516 ret = PTR_ERR(trans);
3517 break;
3518 }
3519 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3520 root_item.uuid,
3521 BTRFS_UUID_KEY_SUBVOL,
3522 key.objectid);
3523 if (ret < 0) {
3524 pr_warn("btrfs: uuid_tree_add failed %d\n",
3525 ret);
3526 btrfs_end_transaction(trans,
3527 fs_info->uuid_root);
3528 break;
3529 }
3530 }
3531
3532 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3533 if (!trans) {
3534 /* 1 - received_subvol uuid item */
3535 trans = btrfs_start_transaction(
3536 fs_info->uuid_root, 1);
3537 if (IS_ERR(trans)) {
3538 ret = PTR_ERR(trans);
3539 break;
3540 }
3541 }
3542 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3543 root_item.received_uuid,
3544 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3545 key.objectid);
3546 if (ret < 0) {
3547 pr_warn("btrfs: uuid_tree_add failed %d\n",
3548 ret);
3549 btrfs_end_transaction(trans,
3550 fs_info->uuid_root);
3551 break;
3552 }
3553 }
3554
3555 if (trans) {
3556 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3557 if (ret)
3558 break;
3559 }
3560
3561skip:
3562 btrfs_release_path(path);
3563 if (key.offset < (u64)-1) {
3564 key.offset++;
3565 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3566 key.offset = 0;
3567 key.type = BTRFS_ROOT_ITEM_KEY;
3568 } else if (key.objectid < (u64)-1) {
3569 key.offset = 0;
3570 key.type = BTRFS_ROOT_ITEM_KEY;
3571 key.objectid++;
3572 } else {
3573 break;
3574 }
3575 cond_resched();
3576 }
3577
3578out:
3579 btrfs_free_path(path);
3580 if (ret)
3581 pr_warn("btrfs: btrfs_uuid_scan_kthread failed %d\n", ret);
70f80175
SB
3582 else
3583 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
3584 up(&fs_info->uuid_tree_rescan_sem);
3585 return 0;
3586}
3587
70f80175
SB
3588/*
3589 * Callback for btrfs_uuid_tree_iterate().
3590 * returns:
3591 * 0 check succeeded, the entry is not outdated.
3592 * < 0 if an error occured.
3593 * > 0 if the check failed, which means the caller shall remove the entry.
3594 */
3595static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3596 u8 *uuid, u8 type, u64 subid)
3597{
3598 struct btrfs_key key;
3599 int ret = 0;
3600 struct btrfs_root *subvol_root;
3601
3602 if (type != BTRFS_UUID_KEY_SUBVOL &&
3603 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3604 goto out;
3605
3606 key.objectid = subid;
3607 key.type = BTRFS_ROOT_ITEM_KEY;
3608 key.offset = (u64)-1;
3609 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3610 if (IS_ERR(subvol_root)) {
3611 ret = PTR_ERR(subvol_root);
3612 if (ret == -ENOENT)
3613 ret = 1;
3614 goto out;
3615 }
3616
3617 switch (type) {
3618 case BTRFS_UUID_KEY_SUBVOL:
3619 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3620 ret = 1;
3621 break;
3622 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3623 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3624 BTRFS_UUID_SIZE))
3625 ret = 1;
3626 break;
3627 }
3628
3629out:
3630 return ret;
3631}
3632
3633static int btrfs_uuid_rescan_kthread(void *data)
3634{
3635 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3636 int ret;
3637
3638 /*
3639 * 1st step is to iterate through the existing UUID tree and
3640 * to delete all entries that contain outdated data.
3641 * 2nd step is to add all missing entries to the UUID tree.
3642 */
3643 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3644 if (ret < 0) {
3645 pr_warn("btrfs: iterating uuid_tree failed %d\n", ret);
3646 up(&fs_info->uuid_tree_rescan_sem);
3647 return ret;
3648 }
3649 return btrfs_uuid_scan_kthread(data);
3650}
3651
f7a81ea4
SB
3652int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3653{
3654 struct btrfs_trans_handle *trans;
3655 struct btrfs_root *tree_root = fs_info->tree_root;
3656 struct btrfs_root *uuid_root;
803b2f54
SB
3657 struct task_struct *task;
3658 int ret;
f7a81ea4
SB
3659
3660 /*
3661 * 1 - root node
3662 * 1 - root item
3663 */
3664 trans = btrfs_start_transaction(tree_root, 2);
3665 if (IS_ERR(trans))
3666 return PTR_ERR(trans);
3667
3668 uuid_root = btrfs_create_tree(trans, fs_info,
3669 BTRFS_UUID_TREE_OBJECTID);
3670 if (IS_ERR(uuid_root)) {
3671 btrfs_abort_transaction(trans, tree_root,
3672 PTR_ERR(uuid_root));
3673 return PTR_ERR(uuid_root);
3674 }
3675
3676 fs_info->uuid_root = uuid_root;
3677
803b2f54
SB
3678 ret = btrfs_commit_transaction(trans, tree_root);
3679 if (ret)
3680 return ret;
3681
3682 down(&fs_info->uuid_tree_rescan_sem);
3683 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3684 if (IS_ERR(task)) {
70f80175 3685 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
803b2f54
SB
3686 pr_warn("btrfs: failed to start uuid_scan task\n");
3687 up(&fs_info->uuid_tree_rescan_sem);
3688 return PTR_ERR(task);
3689 }
3690
3691 return 0;
f7a81ea4 3692}
803b2f54 3693
70f80175
SB
3694int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3695{
3696 struct task_struct *task;
3697
3698 down(&fs_info->uuid_tree_rescan_sem);
3699 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3700 if (IS_ERR(task)) {
3701 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3702 pr_warn("btrfs: failed to start uuid_rescan task\n");
3703 up(&fs_info->uuid_tree_rescan_sem);
3704 return PTR_ERR(task);
3705 }
3706
3707 return 0;
3708}
3709
8f18cf13
CM
3710/*
3711 * shrinking a device means finding all of the device extents past
3712 * the new size, and then following the back refs to the chunks.
3713 * The chunk relocation code actually frees the device extent
3714 */
3715int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3716{
3717 struct btrfs_trans_handle *trans;
3718 struct btrfs_root *root = device->dev_root;
3719 struct btrfs_dev_extent *dev_extent = NULL;
3720 struct btrfs_path *path;
3721 u64 length;
3722 u64 chunk_tree;
3723 u64 chunk_objectid;
3724 u64 chunk_offset;
3725 int ret;
3726 int slot;
ba1bf481
JB
3727 int failed = 0;
3728 bool retried = false;
8f18cf13
CM
3729 struct extent_buffer *l;
3730 struct btrfs_key key;
6c41761f 3731 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 3732 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 3733 u64 old_size = device->total_bytes;
8f18cf13
CM
3734 u64 diff = device->total_bytes - new_size;
3735
63a212ab
SB
3736 if (device->is_tgtdev_for_dev_replace)
3737 return -EINVAL;
3738
8f18cf13
CM
3739 path = btrfs_alloc_path();
3740 if (!path)
3741 return -ENOMEM;
3742
8f18cf13
CM
3743 path->reada = 2;
3744
7d9eb12c
CM
3745 lock_chunks(root);
3746
8f18cf13 3747 device->total_bytes = new_size;
2bf64758 3748 if (device->writeable) {
2b82032c 3749 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
3750 spin_lock(&root->fs_info->free_chunk_lock);
3751 root->fs_info->free_chunk_space -= diff;
3752 spin_unlock(&root->fs_info->free_chunk_lock);
3753 }
7d9eb12c 3754 unlock_chunks(root);
8f18cf13 3755
ba1bf481 3756again:
8f18cf13
CM
3757 key.objectid = device->devid;
3758 key.offset = (u64)-1;
3759 key.type = BTRFS_DEV_EXTENT_KEY;
3760
213e64da 3761 do {
8f18cf13
CM
3762 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3763 if (ret < 0)
3764 goto done;
3765
3766 ret = btrfs_previous_item(root, path, 0, key.type);
3767 if (ret < 0)
3768 goto done;
3769 if (ret) {
3770 ret = 0;
b3b4aa74 3771 btrfs_release_path(path);
bf1fb512 3772 break;
8f18cf13
CM
3773 }
3774
3775 l = path->nodes[0];
3776 slot = path->slots[0];
3777 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3778
ba1bf481 3779 if (key.objectid != device->devid) {
b3b4aa74 3780 btrfs_release_path(path);
bf1fb512 3781 break;
ba1bf481 3782 }
8f18cf13
CM
3783
3784 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3785 length = btrfs_dev_extent_length(l, dev_extent);
3786
ba1bf481 3787 if (key.offset + length <= new_size) {
b3b4aa74 3788 btrfs_release_path(path);
d6397bae 3789 break;
ba1bf481 3790 }
8f18cf13
CM
3791
3792 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3793 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3794 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 3795 btrfs_release_path(path);
8f18cf13
CM
3796
3797 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3798 chunk_offset);
ba1bf481 3799 if (ret && ret != -ENOSPC)
8f18cf13 3800 goto done;
ba1bf481
JB
3801 if (ret == -ENOSPC)
3802 failed++;
213e64da 3803 } while (key.offset-- > 0);
ba1bf481
JB
3804
3805 if (failed && !retried) {
3806 failed = 0;
3807 retried = true;
3808 goto again;
3809 } else if (failed && retried) {
3810 ret = -ENOSPC;
3811 lock_chunks(root);
3812
3813 device->total_bytes = old_size;
3814 if (device->writeable)
3815 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
3816 spin_lock(&root->fs_info->free_chunk_lock);
3817 root->fs_info->free_chunk_space += diff;
3818 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
3819 unlock_chunks(root);
3820 goto done;
8f18cf13
CM
3821 }
3822
d6397bae 3823 /* Shrinking succeeded, else we would be at "done". */
a22285a6 3824 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
3825 if (IS_ERR(trans)) {
3826 ret = PTR_ERR(trans);
3827 goto done;
3828 }
3829
d6397bae
CB
3830 lock_chunks(root);
3831
3832 device->disk_total_bytes = new_size;
3833 /* Now btrfs_update_device() will change the on-disk size. */
3834 ret = btrfs_update_device(trans, device);
3835 if (ret) {
3836 unlock_chunks(root);
3837 btrfs_end_transaction(trans, root);
3838 goto done;
3839 }
3840 WARN_ON(diff > old_total);
3841 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3842 unlock_chunks(root);
3843 btrfs_end_transaction(trans, root);
8f18cf13
CM
3844done:
3845 btrfs_free_path(path);
3846 return ret;
3847}
3848
125ccb0a 3849static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
3850 struct btrfs_key *key,
3851 struct btrfs_chunk *chunk, int item_size)
3852{
6c41761f 3853 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
3854 struct btrfs_disk_key disk_key;
3855 u32 array_size;
3856 u8 *ptr;
3857
3858 array_size = btrfs_super_sys_array_size(super_copy);
3859 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3860 return -EFBIG;
3861
3862 ptr = super_copy->sys_chunk_array + array_size;
3863 btrfs_cpu_key_to_disk(&disk_key, key);
3864 memcpy(ptr, &disk_key, sizeof(disk_key));
3865 ptr += sizeof(disk_key);
3866 memcpy(ptr, chunk, item_size);
3867 item_size += sizeof(disk_key);
3868 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3869 return 0;
3870}
3871
73c5de00
AJ
3872/*
3873 * sort the devices in descending order by max_avail, total_avail
3874 */
3875static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 3876{
73c5de00
AJ
3877 const struct btrfs_device_info *di_a = a;
3878 const struct btrfs_device_info *di_b = b;
9b3f68b9 3879
73c5de00 3880 if (di_a->max_avail > di_b->max_avail)
b2117a39 3881 return -1;
73c5de00 3882 if (di_a->max_avail < di_b->max_avail)
b2117a39 3883 return 1;
73c5de00
AJ
3884 if (di_a->total_avail > di_b->total_avail)
3885 return -1;
3886 if (di_a->total_avail < di_b->total_avail)
3887 return 1;
3888 return 0;
b2117a39 3889}
0b86a832 3890
48a3b636 3891static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
e6ec716f
MX
3892 [BTRFS_RAID_RAID10] = {
3893 .sub_stripes = 2,
3894 .dev_stripes = 1,
3895 .devs_max = 0, /* 0 == as many as possible */
3896 .devs_min = 4,
3897 .devs_increment = 2,
3898 .ncopies = 2,
3899 },
3900 [BTRFS_RAID_RAID1] = {
3901 .sub_stripes = 1,
3902 .dev_stripes = 1,
3903 .devs_max = 2,
3904 .devs_min = 2,
3905 .devs_increment = 2,
3906 .ncopies = 2,
3907 },
3908 [BTRFS_RAID_DUP] = {
3909 .sub_stripes = 1,
3910 .dev_stripes = 2,
3911 .devs_max = 1,
3912 .devs_min = 1,
3913 .devs_increment = 1,
3914 .ncopies = 2,
3915 },
3916 [BTRFS_RAID_RAID0] = {
3917 .sub_stripes = 1,
3918 .dev_stripes = 1,
3919 .devs_max = 0,
3920 .devs_min = 2,
3921 .devs_increment = 1,
3922 .ncopies = 1,
3923 },
3924 [BTRFS_RAID_SINGLE] = {
3925 .sub_stripes = 1,
3926 .dev_stripes = 1,
3927 .devs_max = 1,
3928 .devs_min = 1,
3929 .devs_increment = 1,
3930 .ncopies = 1,
3931 },
e942f883
CM
3932 [BTRFS_RAID_RAID5] = {
3933 .sub_stripes = 1,
3934 .dev_stripes = 1,
3935 .devs_max = 0,
3936 .devs_min = 2,
3937 .devs_increment = 1,
3938 .ncopies = 2,
3939 },
3940 [BTRFS_RAID_RAID6] = {
3941 .sub_stripes = 1,
3942 .dev_stripes = 1,
3943 .devs_max = 0,
3944 .devs_min = 3,
3945 .devs_increment = 1,
3946 .ncopies = 3,
3947 },
31e50229
LB
3948};
3949
53b381b3
DW
3950static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
3951{
3952 /* TODO allow them to set a preferred stripe size */
3953 return 64 * 1024;
3954}
3955
3956static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
3957{
53b381b3
DW
3958 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
3959 return;
3960
ceda0864 3961 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
3962}
3963
73c5de00 3964static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
3965 struct btrfs_root *extent_root, u64 start,
3966 u64 type)
b2117a39 3967{
73c5de00
AJ
3968 struct btrfs_fs_info *info = extent_root->fs_info;
3969 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3970 struct list_head *cur;
3971 struct map_lookup *map = NULL;
3972 struct extent_map_tree *em_tree;
3973 struct extent_map *em;
3974 struct btrfs_device_info *devices_info = NULL;
3975 u64 total_avail;
3976 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
3977 int data_stripes; /* number of stripes that count for
3978 block group size */
73c5de00
AJ
3979 int sub_stripes; /* sub_stripes info for map */
3980 int dev_stripes; /* stripes per dev */
3981 int devs_max; /* max devs to use */
3982 int devs_min; /* min devs needed */
3983 int devs_increment; /* ndevs has to be a multiple of this */
3984 int ncopies; /* how many copies to data has */
3985 int ret;
3986 u64 max_stripe_size;
3987 u64 max_chunk_size;
3988 u64 stripe_size;
3989 u64 num_bytes;
53b381b3 3990 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
3991 int ndevs;
3992 int i;
3993 int j;
31e50229 3994 int index;
593060d7 3995
0c460c0d 3996 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 3997
73c5de00
AJ
3998 if (list_empty(&fs_devices->alloc_list))
3999 return -ENOSPC;
b2117a39 4000
31e50229 4001 index = __get_raid_index(type);
73c5de00 4002
31e50229
LB
4003 sub_stripes = btrfs_raid_array[index].sub_stripes;
4004 dev_stripes = btrfs_raid_array[index].dev_stripes;
4005 devs_max = btrfs_raid_array[index].devs_max;
4006 devs_min = btrfs_raid_array[index].devs_min;
4007 devs_increment = btrfs_raid_array[index].devs_increment;
4008 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4009
9b3f68b9 4010 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
4011 max_stripe_size = 1024 * 1024 * 1024;
4012 max_chunk_size = 10 * max_stripe_size;
9b3f68b9 4013 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
4014 /* for larger filesystems, use larger metadata chunks */
4015 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4016 max_stripe_size = 1024 * 1024 * 1024;
4017 else
4018 max_stripe_size = 256 * 1024 * 1024;
73c5de00 4019 max_chunk_size = max_stripe_size;
a40a90a0 4020 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 4021 max_stripe_size = 32 * 1024 * 1024;
73c5de00
AJ
4022 max_chunk_size = 2 * max_stripe_size;
4023 } else {
4024 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
4025 type);
4026 BUG_ON(1);
9b3f68b9
CM
4027 }
4028
2b82032c
YZ
4029 /* we don't want a chunk larger than 10% of writeable space */
4030 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4031 max_chunk_size);
9b3f68b9 4032
73c5de00
AJ
4033 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4034 GFP_NOFS);
4035 if (!devices_info)
4036 return -ENOMEM;
0cad8a11 4037
73c5de00 4038 cur = fs_devices->alloc_list.next;
9b3f68b9 4039
9f680ce0 4040 /*
73c5de00
AJ
4041 * in the first pass through the devices list, we gather information
4042 * about the available holes on each device.
9f680ce0 4043 */
73c5de00
AJ
4044 ndevs = 0;
4045 while (cur != &fs_devices->alloc_list) {
4046 struct btrfs_device *device;
4047 u64 max_avail;
4048 u64 dev_offset;
b2117a39 4049
73c5de00 4050 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4051
73c5de00 4052 cur = cur->next;
b2117a39 4053
73c5de00 4054 if (!device->writeable) {
31b1a2bd 4055 WARN(1, KERN_ERR
73c5de00 4056 "btrfs: read-only device in alloc_list\n");
73c5de00
AJ
4057 continue;
4058 }
b2117a39 4059
63a212ab
SB
4060 if (!device->in_fs_metadata ||
4061 device->is_tgtdev_for_dev_replace)
73c5de00 4062 continue;
b2117a39 4063
73c5de00
AJ
4064 if (device->total_bytes > device->bytes_used)
4065 total_avail = device->total_bytes - device->bytes_used;
4066 else
4067 total_avail = 0;
38c01b96 4068
4069 /* If there is no space on this device, skip it. */
4070 if (total_avail == 0)
4071 continue;
b2117a39 4072
6df9a95e 4073 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4074 max_stripe_size * dev_stripes,
4075 &dev_offset, &max_avail);
4076 if (ret && ret != -ENOSPC)
4077 goto error;
b2117a39 4078
73c5de00
AJ
4079 if (ret == 0)
4080 max_avail = max_stripe_size * dev_stripes;
b2117a39 4081
73c5de00
AJ
4082 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4083 continue;
b2117a39 4084
063d006f
ES
4085 if (ndevs == fs_devices->rw_devices) {
4086 WARN(1, "%s: found more than %llu devices\n",
4087 __func__, fs_devices->rw_devices);
4088 break;
4089 }
73c5de00
AJ
4090 devices_info[ndevs].dev_offset = dev_offset;
4091 devices_info[ndevs].max_avail = max_avail;
4092 devices_info[ndevs].total_avail = total_avail;
4093 devices_info[ndevs].dev = device;
4094 ++ndevs;
4095 }
b2117a39 4096
73c5de00
AJ
4097 /*
4098 * now sort the devices by hole size / available space
4099 */
4100 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4101 btrfs_cmp_device_info, NULL);
b2117a39 4102
73c5de00
AJ
4103 /* round down to number of usable stripes */
4104 ndevs -= ndevs % devs_increment;
b2117a39 4105
73c5de00
AJ
4106 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4107 ret = -ENOSPC;
4108 goto error;
b2117a39 4109 }
9f680ce0 4110
73c5de00
AJ
4111 if (devs_max && ndevs > devs_max)
4112 ndevs = devs_max;
4113 /*
4114 * the primary goal is to maximize the number of stripes, so use as many
4115 * devices as possible, even if the stripes are not maximum sized.
4116 */
4117 stripe_size = devices_info[ndevs-1].max_avail;
4118 num_stripes = ndevs * dev_stripes;
b2117a39 4119
53b381b3
DW
4120 /*
4121 * this will have to be fixed for RAID1 and RAID10 over
4122 * more drives
4123 */
4124 data_stripes = num_stripes / ncopies;
4125
53b381b3
DW
4126 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4127 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4128 btrfs_super_stripesize(info->super_copy));
4129 data_stripes = num_stripes - 1;
4130 }
4131 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4132 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4133 btrfs_super_stripesize(info->super_copy));
4134 data_stripes = num_stripes - 2;
4135 }
86db2578
CM
4136
4137 /*
4138 * Use the number of data stripes to figure out how big this chunk
4139 * is really going to be in terms of logical address space,
4140 * and compare that answer with the max chunk size
4141 */
4142 if (stripe_size * data_stripes > max_chunk_size) {
4143 u64 mask = (1ULL << 24) - 1;
4144 stripe_size = max_chunk_size;
4145 do_div(stripe_size, data_stripes);
4146
4147 /* bump the answer up to a 16MB boundary */
4148 stripe_size = (stripe_size + mask) & ~mask;
4149
4150 /* but don't go higher than the limits we found
4151 * while searching for free extents
4152 */
4153 if (stripe_size > devices_info[ndevs-1].max_avail)
4154 stripe_size = devices_info[ndevs-1].max_avail;
4155 }
4156
73c5de00 4157 do_div(stripe_size, dev_stripes);
37db63a4
ID
4158
4159 /* align to BTRFS_STRIPE_LEN */
53b381b3
DW
4160 do_div(stripe_size, raid_stripe_len);
4161 stripe_size *= raid_stripe_len;
b2117a39
MX
4162
4163 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4164 if (!map) {
4165 ret = -ENOMEM;
4166 goto error;
4167 }
4168 map->num_stripes = num_stripes;
9b3f68b9 4169
73c5de00
AJ
4170 for (i = 0; i < ndevs; ++i) {
4171 for (j = 0; j < dev_stripes; ++j) {
4172 int s = i * dev_stripes + j;
4173 map->stripes[s].dev = devices_info[i].dev;
4174 map->stripes[s].physical = devices_info[i].dev_offset +
4175 j * stripe_size;
6324fbf3 4176 }
6324fbf3 4177 }
2b82032c 4178 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4179 map->stripe_len = raid_stripe_len;
4180 map->io_align = raid_stripe_len;
4181 map->io_width = raid_stripe_len;
2b82032c 4182 map->type = type;
2b82032c 4183 map->sub_stripes = sub_stripes;
0b86a832 4184
53b381b3 4185 num_bytes = stripe_size * data_stripes;
0b86a832 4186
73c5de00 4187 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4188
172ddd60 4189 em = alloc_extent_map();
2b82032c 4190 if (!em) {
b2117a39
MX
4191 ret = -ENOMEM;
4192 goto error;
593060d7 4193 }
2b82032c
YZ
4194 em->bdev = (struct block_device *)map;
4195 em->start = start;
73c5de00 4196 em->len = num_bytes;
2b82032c
YZ
4197 em->block_start = 0;
4198 em->block_len = em->len;
6df9a95e 4199 em->orig_block_len = stripe_size;
593060d7 4200
2b82032c 4201 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4202 write_lock(&em_tree->lock);
09a2a8f9 4203 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4204 if (!ret) {
4205 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4206 atomic_inc(&em->refs);
4207 }
890871be 4208 write_unlock(&em_tree->lock);
0f5d42b2
JB
4209 if (ret) {
4210 free_extent_map(em);
1dd4602f 4211 goto error;
0f5d42b2 4212 }
0b86a832 4213
04487488
JB
4214 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4215 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4216 start, num_bytes);
6df9a95e
JB
4217 if (ret)
4218 goto error_del_extent;
2b82032c 4219
0f5d42b2 4220 free_extent_map(em);
53b381b3
DW
4221 check_raid56_incompat_flag(extent_root->fs_info, type);
4222
b2117a39 4223 kfree(devices_info);
2b82032c 4224 return 0;
b2117a39 4225
6df9a95e 4226error_del_extent:
0f5d42b2
JB
4227 write_lock(&em_tree->lock);
4228 remove_extent_mapping(em_tree, em);
4229 write_unlock(&em_tree->lock);
4230
4231 /* One for our allocation */
4232 free_extent_map(em);
4233 /* One for the tree reference */
4234 free_extent_map(em);
b2117a39
MX
4235error:
4236 kfree(map);
4237 kfree(devices_info);
4238 return ret;
2b82032c
YZ
4239}
4240
6df9a95e 4241int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4242 struct btrfs_root *extent_root,
6df9a95e 4243 u64 chunk_offset, u64 chunk_size)
2b82032c 4244{
2b82032c
YZ
4245 struct btrfs_key key;
4246 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4247 struct btrfs_device *device;
4248 struct btrfs_chunk *chunk;
4249 struct btrfs_stripe *stripe;
6df9a95e
JB
4250 struct extent_map_tree *em_tree;
4251 struct extent_map *em;
4252 struct map_lookup *map;
4253 size_t item_size;
4254 u64 dev_offset;
4255 u64 stripe_size;
4256 int i = 0;
2b82032c
YZ
4257 int ret;
4258
6df9a95e
JB
4259 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4260 read_lock(&em_tree->lock);
4261 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4262 read_unlock(&em_tree->lock);
4263
4264 if (!em) {
4265 btrfs_crit(extent_root->fs_info, "unable to find logical "
4266 "%Lu len %Lu", chunk_offset, chunk_size);
4267 return -EINVAL;
4268 }
4269
4270 if (em->start != chunk_offset || em->len != chunk_size) {
4271 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4272 " %Lu-%Lu, found %Lu-%Lu\n", chunk_offset,
4273 chunk_size, em->start, em->len);
4274 free_extent_map(em);
4275 return -EINVAL;
4276 }
4277
4278 map = (struct map_lookup *)em->bdev;
4279 item_size = btrfs_chunk_item_size(map->num_stripes);
4280 stripe_size = em->orig_block_len;
4281
2b82032c 4282 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4283 if (!chunk) {
4284 ret = -ENOMEM;
4285 goto out;
4286 }
4287
4288 for (i = 0; i < map->num_stripes; i++) {
4289 device = map->stripes[i].dev;
4290 dev_offset = map->stripes[i].physical;
2b82032c 4291
2b82032c 4292 device->bytes_used += stripe_size;
0b86a832 4293 ret = btrfs_update_device(trans, device);
3acd3953 4294 if (ret)
6df9a95e
JB
4295 goto out;
4296 ret = btrfs_alloc_dev_extent(trans, device,
4297 chunk_root->root_key.objectid,
4298 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4299 chunk_offset, dev_offset,
4300 stripe_size);
4301 if (ret)
4302 goto out;
2b82032c
YZ
4303 }
4304
2bf64758
JB
4305 spin_lock(&extent_root->fs_info->free_chunk_lock);
4306 extent_root->fs_info->free_chunk_space -= (stripe_size *
4307 map->num_stripes);
4308 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4309
2b82032c 4310 stripe = &chunk->stripe;
6df9a95e
JB
4311 for (i = 0; i < map->num_stripes; i++) {
4312 device = map->stripes[i].dev;
4313 dev_offset = map->stripes[i].physical;
0b86a832 4314
e17cade2
CM
4315 btrfs_set_stack_stripe_devid(stripe, device->devid);
4316 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4317 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4318 stripe++;
0b86a832
CM
4319 }
4320
2b82032c 4321 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4322 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4323 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4324 btrfs_set_stack_chunk_type(chunk, map->type);
4325 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4326 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4327 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4328 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4329 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4330
2b82032c
YZ
4331 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4332 key.type = BTRFS_CHUNK_ITEM_KEY;
4333 key.offset = chunk_offset;
0b86a832 4334
2b82032c 4335 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4336 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4337 /*
4338 * TODO: Cleanup of inserted chunk root in case of
4339 * failure.
4340 */
125ccb0a 4341 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4342 item_size);
8f18cf13 4343 }
1abe9b8a 4344
6df9a95e 4345out:
0b86a832 4346 kfree(chunk);
6df9a95e 4347 free_extent_map(em);
4ed1d16e 4348 return ret;
2b82032c 4349}
0b86a832 4350
2b82032c
YZ
4351/*
4352 * Chunk allocation falls into two parts. The first part does works
4353 * that make the new allocated chunk useable, but not do any operation
4354 * that modifies the chunk tree. The second part does the works that
4355 * require modifying the chunk tree. This division is important for the
4356 * bootstrap process of adding storage to a seed btrfs.
4357 */
4358int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4359 struct btrfs_root *extent_root, u64 type)
4360{
4361 u64 chunk_offset;
2b82032c 4362
6df9a95e
JB
4363 chunk_offset = find_next_chunk(extent_root->fs_info);
4364 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4365}
4366
d397712b 4367static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4368 struct btrfs_root *root,
4369 struct btrfs_device *device)
4370{
4371 u64 chunk_offset;
4372 u64 sys_chunk_offset;
2b82032c 4373 u64 alloc_profile;
2b82032c
YZ
4374 struct btrfs_fs_info *fs_info = root->fs_info;
4375 struct btrfs_root *extent_root = fs_info->extent_root;
4376 int ret;
4377
6df9a95e 4378 chunk_offset = find_next_chunk(fs_info);
de98ced9 4379 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
4380 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4381 alloc_profile);
79787eaa
JM
4382 if (ret)
4383 return ret;
2b82032c 4384
6df9a95e 4385 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 4386 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
4387 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4388 alloc_profile);
005d6427
DS
4389 if (ret) {
4390 btrfs_abort_transaction(trans, root, ret);
4391 goto out;
4392 }
2b82032c
YZ
4393
4394 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
79787eaa 4395 if (ret)
005d6427 4396 btrfs_abort_transaction(trans, root, ret);
005d6427 4397out:
79787eaa 4398 return ret;
2b82032c
YZ
4399}
4400
4401int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4402{
4403 struct extent_map *em;
4404 struct map_lookup *map;
4405 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4406 int readonly = 0;
4407 int i;
4408
890871be 4409 read_lock(&map_tree->map_tree.lock);
2b82032c 4410 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 4411 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
4412 if (!em)
4413 return 1;
4414
f48b9075
JB
4415 if (btrfs_test_opt(root, DEGRADED)) {
4416 free_extent_map(em);
4417 return 0;
4418 }
4419
2b82032c
YZ
4420 map = (struct map_lookup *)em->bdev;
4421 for (i = 0; i < map->num_stripes; i++) {
4422 if (!map->stripes[i].dev->writeable) {
4423 readonly = 1;
4424 break;
4425 }
4426 }
0b86a832 4427 free_extent_map(em);
2b82032c 4428 return readonly;
0b86a832
CM
4429}
4430
4431void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4432{
a8067e02 4433 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
4434}
4435
4436void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4437{
4438 struct extent_map *em;
4439
d397712b 4440 while (1) {
890871be 4441 write_lock(&tree->map_tree.lock);
0b86a832
CM
4442 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4443 if (em)
4444 remove_extent_mapping(&tree->map_tree, em);
890871be 4445 write_unlock(&tree->map_tree.lock);
0b86a832
CM
4446 if (!em)
4447 break;
4448 kfree(em->bdev);
4449 /* once for us */
4450 free_extent_map(em);
4451 /* once for the tree */
4452 free_extent_map(em);
4453 }
4454}
4455
5d964051 4456int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 4457{
5d964051 4458 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
4459 struct extent_map *em;
4460 struct map_lookup *map;
4461 struct extent_map_tree *em_tree = &map_tree->map_tree;
4462 int ret;
4463
890871be 4464 read_lock(&em_tree->lock);
f188591e 4465 em = lookup_extent_mapping(em_tree, logical, len);
890871be 4466 read_unlock(&em_tree->lock);
f188591e 4467
fb7669b5
JB
4468 /*
4469 * We could return errors for these cases, but that could get ugly and
4470 * we'd probably do the same thing which is just not do anything else
4471 * and exit, so return 1 so the callers don't try to use other copies.
4472 */
4473 if (!em) {
ccf39f92 4474 btrfs_crit(fs_info, "No mapping for %Lu-%Lu\n", logical,
fb7669b5
JB
4475 logical+len);
4476 return 1;
4477 }
4478
4479 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 4480 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
fb7669b5
JB
4481 "%Lu-%Lu\n", logical, logical+len, em->start,
4482 em->start + em->len);
4483 return 1;
4484 }
4485
f188591e
CM
4486 map = (struct map_lookup *)em->bdev;
4487 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4488 ret = map->num_stripes;
321aecc6
CM
4489 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4490 ret = map->sub_stripes;
53b381b3
DW
4491 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4492 ret = 2;
4493 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4494 ret = 3;
f188591e
CM
4495 else
4496 ret = 1;
4497 free_extent_map(em);
ad6d620e
SB
4498
4499 btrfs_dev_replace_lock(&fs_info->dev_replace);
4500 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4501 ret++;
4502 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4503
f188591e
CM
4504 return ret;
4505}
4506
53b381b3
DW
4507unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4508 struct btrfs_mapping_tree *map_tree,
4509 u64 logical)
4510{
4511 struct extent_map *em;
4512 struct map_lookup *map;
4513 struct extent_map_tree *em_tree = &map_tree->map_tree;
4514 unsigned long len = root->sectorsize;
4515
4516 read_lock(&em_tree->lock);
4517 em = lookup_extent_mapping(em_tree, logical, len);
4518 read_unlock(&em_tree->lock);
4519 BUG_ON(!em);
4520
4521 BUG_ON(em->start > logical || em->start + em->len < logical);
4522 map = (struct map_lookup *)em->bdev;
4523 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4524 BTRFS_BLOCK_GROUP_RAID6)) {
4525 len = map->stripe_len * nr_data_stripes(map);
4526 }
4527 free_extent_map(em);
4528 return len;
4529}
4530
4531int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4532 u64 logical, u64 len, int mirror_num)
4533{
4534 struct extent_map *em;
4535 struct map_lookup *map;
4536 struct extent_map_tree *em_tree = &map_tree->map_tree;
4537 int ret = 0;
4538
4539 read_lock(&em_tree->lock);
4540 em = lookup_extent_mapping(em_tree, logical, len);
4541 read_unlock(&em_tree->lock);
4542 BUG_ON(!em);
4543
4544 BUG_ON(em->start > logical || em->start + em->len < logical);
4545 map = (struct map_lookup *)em->bdev;
4546 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4547 BTRFS_BLOCK_GROUP_RAID6))
4548 ret = 1;
4549 free_extent_map(em);
4550 return ret;
4551}
4552
30d9861f
SB
4553static int find_live_mirror(struct btrfs_fs_info *fs_info,
4554 struct map_lookup *map, int first, int num,
4555 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
4556{
4557 int i;
30d9861f
SB
4558 int tolerance;
4559 struct btrfs_device *srcdev;
4560
4561 if (dev_replace_is_ongoing &&
4562 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4563 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4564 srcdev = fs_info->dev_replace.srcdev;
4565 else
4566 srcdev = NULL;
4567
4568 /*
4569 * try to avoid the drive that is the source drive for a
4570 * dev-replace procedure, only choose it if no other non-missing
4571 * mirror is available
4572 */
4573 for (tolerance = 0; tolerance < 2; tolerance++) {
4574 if (map->stripes[optimal].dev->bdev &&
4575 (tolerance || map->stripes[optimal].dev != srcdev))
4576 return optimal;
4577 for (i = first; i < first + num; i++) {
4578 if (map->stripes[i].dev->bdev &&
4579 (tolerance || map->stripes[i].dev != srcdev))
4580 return i;
4581 }
dfe25020 4582 }
30d9861f 4583
dfe25020
CM
4584 /* we couldn't find one that doesn't fail. Just return something
4585 * and the io error handling code will clean up eventually
4586 */
4587 return optimal;
4588}
4589
53b381b3
DW
4590static inline int parity_smaller(u64 a, u64 b)
4591{
4592 return a > b;
4593}
4594
4595/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4596static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4597{
4598 struct btrfs_bio_stripe s;
4599 int i;
4600 u64 l;
4601 int again = 1;
4602
4603 while (again) {
4604 again = 0;
4605 for (i = 0; i < bbio->num_stripes - 1; i++) {
4606 if (parity_smaller(raid_map[i], raid_map[i+1])) {
4607 s = bbio->stripes[i];
4608 l = raid_map[i];
4609 bbio->stripes[i] = bbio->stripes[i+1];
4610 raid_map[i] = raid_map[i+1];
4611 bbio->stripes[i+1] = s;
4612 raid_map[i+1] = l;
4613 again = 1;
4614 }
4615 }
4616 }
4617}
4618
3ec706c8 4619static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 4620 u64 logical, u64 *length,
a1d3c478 4621 struct btrfs_bio **bbio_ret,
53b381b3 4622 int mirror_num, u64 **raid_map_ret)
0b86a832
CM
4623{
4624 struct extent_map *em;
4625 struct map_lookup *map;
3ec706c8 4626 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
4627 struct extent_map_tree *em_tree = &map_tree->map_tree;
4628 u64 offset;
593060d7 4629 u64 stripe_offset;
fce3bb9a 4630 u64 stripe_end_offset;
593060d7 4631 u64 stripe_nr;
fce3bb9a
LD
4632 u64 stripe_nr_orig;
4633 u64 stripe_nr_end;
53b381b3
DW
4634 u64 stripe_len;
4635 u64 *raid_map = NULL;
593060d7 4636 int stripe_index;
cea9e445 4637 int i;
de11cc12 4638 int ret = 0;
f2d8d74d 4639 int num_stripes;
a236aed1 4640 int max_errors = 0;
a1d3c478 4641 struct btrfs_bio *bbio = NULL;
472262f3
SB
4642 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4643 int dev_replace_is_ongoing = 0;
4644 int num_alloc_stripes;
ad6d620e
SB
4645 int patch_the_first_stripe_for_dev_replace = 0;
4646 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 4647 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 4648
890871be 4649 read_lock(&em_tree->lock);
0b86a832 4650 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 4651 read_unlock(&em_tree->lock);
f2d8d74d 4652
3b951516 4653 if (!em) {
c2cf52eb 4654 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 4655 logical, *length);
9bb91873
JB
4656 return -EINVAL;
4657 }
4658
4659 if (em->start > logical || em->start + em->len < logical) {
4660 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4661 "found %Lu-%Lu\n", logical, em->start,
4662 em->start + em->len);
4663 return -EINVAL;
3b951516 4664 }
0b86a832 4665
0b86a832
CM
4666 map = (struct map_lookup *)em->bdev;
4667 offset = logical - em->start;
593060d7 4668
53b381b3 4669 stripe_len = map->stripe_len;
593060d7
CM
4670 stripe_nr = offset;
4671 /*
4672 * stripe_nr counts the total number of stripes we have to stride
4673 * to get to this block
4674 */
53b381b3 4675 do_div(stripe_nr, stripe_len);
593060d7 4676
53b381b3 4677 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
4678 BUG_ON(offset < stripe_offset);
4679
4680 /* stripe_offset is the offset of this block in its stripe*/
4681 stripe_offset = offset - stripe_offset;
4682
53b381b3
DW
4683 /* if we're here for raid56, we need to know the stripe aligned start */
4684 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4685 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4686 raid56_full_stripe_start = offset;
4687
4688 /* allow a write of a full stripe, but make sure we don't
4689 * allow straddling of stripes
4690 */
4691 do_div(raid56_full_stripe_start, full_stripe_len);
4692 raid56_full_stripe_start *= full_stripe_len;
4693 }
4694
4695 if (rw & REQ_DISCARD) {
4696 /* we don't discard raid56 yet */
4697 if (map->type &
4698 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4699 ret = -EOPNOTSUPP;
4700 goto out;
4701 }
fce3bb9a 4702 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
4703 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4704 u64 max_len;
4705 /* For writes to RAID[56], allow a full stripeset across all disks.
4706 For other RAID types and for RAID[56] reads, just allow a single
4707 stripe (on a single disk). */
4708 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4709 (rw & REQ_WRITE)) {
4710 max_len = stripe_len * nr_data_stripes(map) -
4711 (offset - raid56_full_stripe_start);
4712 } else {
4713 /* we limit the length of each bio to what fits in a stripe */
4714 max_len = stripe_len - stripe_offset;
4715 }
4716 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
4717 } else {
4718 *length = em->len - offset;
4719 }
f2d8d74d 4720
53b381b3
DW
4721 /* This is for when we're called from btrfs_merge_bio_hook() and all
4722 it cares about is the length */
a1d3c478 4723 if (!bbio_ret)
cea9e445
CM
4724 goto out;
4725
472262f3
SB
4726 btrfs_dev_replace_lock(dev_replace);
4727 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4728 if (!dev_replace_is_ongoing)
4729 btrfs_dev_replace_unlock(dev_replace);
4730
ad6d620e
SB
4731 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4732 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4733 dev_replace->tgtdev != NULL) {
4734 /*
4735 * in dev-replace case, for repair case (that's the only
4736 * case where the mirror is selected explicitly when
4737 * calling btrfs_map_block), blocks left of the left cursor
4738 * can also be read from the target drive.
4739 * For REQ_GET_READ_MIRRORS, the target drive is added as
4740 * the last one to the array of stripes. For READ, it also
4741 * needs to be supported using the same mirror number.
4742 * If the requested block is not left of the left cursor,
4743 * EIO is returned. This can happen because btrfs_num_copies()
4744 * returns one more in the dev-replace case.
4745 */
4746 u64 tmp_length = *length;
4747 struct btrfs_bio *tmp_bbio = NULL;
4748 int tmp_num_stripes;
4749 u64 srcdev_devid = dev_replace->srcdev->devid;
4750 int index_srcdev = 0;
4751 int found = 0;
4752 u64 physical_of_found = 0;
4753
4754 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
53b381b3 4755 logical, &tmp_length, &tmp_bbio, 0, NULL);
ad6d620e
SB
4756 if (ret) {
4757 WARN_ON(tmp_bbio != NULL);
4758 goto out;
4759 }
4760
4761 tmp_num_stripes = tmp_bbio->num_stripes;
4762 if (mirror_num > tmp_num_stripes) {
4763 /*
4764 * REQ_GET_READ_MIRRORS does not contain this
4765 * mirror, that means that the requested area
4766 * is not left of the left cursor
4767 */
4768 ret = -EIO;
4769 kfree(tmp_bbio);
4770 goto out;
4771 }
4772
4773 /*
4774 * process the rest of the function using the mirror_num
4775 * of the source drive. Therefore look it up first.
4776 * At the end, patch the device pointer to the one of the
4777 * target drive.
4778 */
4779 for (i = 0; i < tmp_num_stripes; i++) {
4780 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4781 /*
4782 * In case of DUP, in order to keep it
4783 * simple, only add the mirror with the
4784 * lowest physical address
4785 */
4786 if (found &&
4787 physical_of_found <=
4788 tmp_bbio->stripes[i].physical)
4789 continue;
4790 index_srcdev = i;
4791 found = 1;
4792 physical_of_found =
4793 tmp_bbio->stripes[i].physical;
4794 }
4795 }
4796
4797 if (found) {
4798 mirror_num = index_srcdev + 1;
4799 patch_the_first_stripe_for_dev_replace = 1;
4800 physical_to_patch_in_first_stripe = physical_of_found;
4801 } else {
4802 WARN_ON(1);
4803 ret = -EIO;
4804 kfree(tmp_bbio);
4805 goto out;
4806 }
4807
4808 kfree(tmp_bbio);
4809 } else if (mirror_num > map->num_stripes) {
4810 mirror_num = 0;
4811 }
4812
f2d8d74d 4813 num_stripes = 1;
cea9e445 4814 stripe_index = 0;
fce3bb9a 4815 stripe_nr_orig = stripe_nr;
fda2832f 4816 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
fce3bb9a
LD
4817 do_div(stripe_nr_end, map->stripe_len);
4818 stripe_end_offset = stripe_nr_end * map->stripe_len -
4819 (offset + *length);
53b381b3 4820
fce3bb9a
LD
4821 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4822 if (rw & REQ_DISCARD)
4823 num_stripes = min_t(u64, map->num_stripes,
4824 stripe_nr_end - stripe_nr_orig);
4825 stripe_index = do_div(stripe_nr, map->num_stripes);
4826 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 4827 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 4828 num_stripes = map->num_stripes;
2fff734f 4829 else if (mirror_num)
f188591e 4830 stripe_index = mirror_num - 1;
dfe25020 4831 else {
30d9861f 4832 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 4833 map->num_stripes,
30d9861f
SB
4834 current->pid % map->num_stripes,
4835 dev_replace_is_ongoing);
a1d3c478 4836 mirror_num = stripe_index + 1;
dfe25020 4837 }
2fff734f 4838
611f0e00 4839 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 4840 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 4841 num_stripes = map->num_stripes;
a1d3c478 4842 } else if (mirror_num) {
f188591e 4843 stripe_index = mirror_num - 1;
a1d3c478
JS
4844 } else {
4845 mirror_num = 1;
4846 }
2fff734f 4847
321aecc6
CM
4848 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4849 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
4850
4851 stripe_index = do_div(stripe_nr, factor);
4852 stripe_index *= map->sub_stripes;
4853
29a8d9a0 4854 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 4855 num_stripes = map->sub_stripes;
fce3bb9a
LD
4856 else if (rw & REQ_DISCARD)
4857 num_stripes = min_t(u64, map->sub_stripes *
4858 (stripe_nr_end - stripe_nr_orig),
4859 map->num_stripes);
321aecc6
CM
4860 else if (mirror_num)
4861 stripe_index += mirror_num - 1;
dfe25020 4862 else {
3e74317a 4863 int old_stripe_index = stripe_index;
30d9861f
SB
4864 stripe_index = find_live_mirror(fs_info, map,
4865 stripe_index,
dfe25020 4866 map->sub_stripes, stripe_index +
30d9861f
SB
4867 current->pid % map->sub_stripes,
4868 dev_replace_is_ongoing);
3e74317a 4869 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 4870 }
53b381b3
DW
4871
4872 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4873 BTRFS_BLOCK_GROUP_RAID6)) {
4874 u64 tmp;
4875
4876 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4877 && raid_map_ret) {
4878 int i, rot;
4879
4880 /* push stripe_nr back to the start of the full stripe */
4881 stripe_nr = raid56_full_stripe_start;
4882 do_div(stripe_nr, stripe_len);
4883
4884 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4885
4886 /* RAID[56] write or recovery. Return all stripes */
4887 num_stripes = map->num_stripes;
4888 max_errors = nr_parity_stripes(map);
4889
4890 raid_map = kmalloc(sizeof(u64) * num_stripes,
4891 GFP_NOFS);
4892 if (!raid_map) {
4893 ret = -ENOMEM;
4894 goto out;
4895 }
4896
4897 /* Work out the disk rotation on this stripe-set */
4898 tmp = stripe_nr;
4899 rot = do_div(tmp, num_stripes);
4900
4901 /* Fill in the logical address of each stripe */
4902 tmp = stripe_nr * nr_data_stripes(map);
4903 for (i = 0; i < nr_data_stripes(map); i++)
4904 raid_map[(i+rot) % num_stripes] =
4905 em->start + (tmp + i) * map->stripe_len;
4906
4907 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
4908 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4909 raid_map[(i+rot+1) % num_stripes] =
4910 RAID6_Q_STRIPE;
4911
4912 *length = map->stripe_len;
4913 stripe_index = 0;
4914 stripe_offset = 0;
4915 } else {
4916 /*
4917 * Mirror #0 or #1 means the original data block.
4918 * Mirror #2 is RAID5 parity block.
4919 * Mirror #3 is RAID6 Q block.
4920 */
4921 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4922 if (mirror_num > 1)
4923 stripe_index = nr_data_stripes(map) +
4924 mirror_num - 2;
4925
4926 /* We distribute the parity blocks across stripes */
4927 tmp = stripe_nr + stripe_index;
4928 stripe_index = do_div(tmp, map->num_stripes);
4929 }
8790d502
CM
4930 } else {
4931 /*
4932 * after this do_div call, stripe_nr is the number of stripes
4933 * on this device we have to walk to find the data, and
4934 * stripe_index is the number of our device in the stripe array
4935 */
4936 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 4937 mirror_num = stripe_index + 1;
8790d502 4938 }
593060d7 4939 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 4940
472262f3 4941 num_alloc_stripes = num_stripes;
ad6d620e
SB
4942 if (dev_replace_is_ongoing) {
4943 if (rw & (REQ_WRITE | REQ_DISCARD))
4944 num_alloc_stripes <<= 1;
4945 if (rw & REQ_GET_READ_MIRRORS)
4946 num_alloc_stripes++;
4947 }
472262f3 4948 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
de11cc12 4949 if (!bbio) {
eb2067f7 4950 kfree(raid_map);
de11cc12
LZ
4951 ret = -ENOMEM;
4952 goto out;
4953 }
4954 atomic_set(&bbio->error, 0);
4955
fce3bb9a 4956 if (rw & REQ_DISCARD) {
ec9ef7a1
LZ
4957 int factor = 0;
4958 int sub_stripes = 0;
4959 u64 stripes_per_dev = 0;
4960 u32 remaining_stripes = 0;
b89203f7 4961 u32 last_stripe = 0;
ec9ef7a1
LZ
4962
4963 if (map->type &
4964 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
4965 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4966 sub_stripes = 1;
4967 else
4968 sub_stripes = map->sub_stripes;
4969
4970 factor = map->num_stripes / sub_stripes;
4971 stripes_per_dev = div_u64_rem(stripe_nr_end -
4972 stripe_nr_orig,
4973 factor,
4974 &remaining_stripes);
b89203f7
LB
4975 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
4976 last_stripe *= sub_stripes;
ec9ef7a1
LZ
4977 }
4978
fce3bb9a 4979 for (i = 0; i < num_stripes; i++) {
a1d3c478 4980 bbio->stripes[i].physical =
f2d8d74d
CM
4981 map->stripes[stripe_index].physical +
4982 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 4983 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 4984
ec9ef7a1
LZ
4985 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
4986 BTRFS_BLOCK_GROUP_RAID10)) {
4987 bbio->stripes[i].length = stripes_per_dev *
4988 map->stripe_len;
b89203f7 4989
ec9ef7a1
LZ
4990 if (i / sub_stripes < remaining_stripes)
4991 bbio->stripes[i].length +=
4992 map->stripe_len;
b89203f7
LB
4993
4994 /*
4995 * Special for the first stripe and
4996 * the last stripe:
4997 *
4998 * |-------|...|-------|
4999 * |----------|
5000 * off end_off
5001 */
ec9ef7a1 5002 if (i < sub_stripes)
a1d3c478 5003 bbio->stripes[i].length -=
fce3bb9a 5004 stripe_offset;
b89203f7
LB
5005
5006 if (stripe_index >= last_stripe &&
5007 stripe_index <= (last_stripe +
5008 sub_stripes - 1))
a1d3c478 5009 bbio->stripes[i].length -=
fce3bb9a 5010 stripe_end_offset;
b89203f7 5011
ec9ef7a1
LZ
5012 if (i == sub_stripes - 1)
5013 stripe_offset = 0;
fce3bb9a 5014 } else
a1d3c478 5015 bbio->stripes[i].length = *length;
fce3bb9a
LD
5016
5017 stripe_index++;
5018 if (stripe_index == map->num_stripes) {
5019 /* This could only happen for RAID0/10 */
5020 stripe_index = 0;
5021 stripe_nr++;
5022 }
5023 }
5024 } else {
5025 for (i = 0; i < num_stripes; i++) {
a1d3c478 5026 bbio->stripes[i].physical =
212a17ab
LT
5027 map->stripes[stripe_index].physical +
5028 stripe_offset +
5029 stripe_nr * map->stripe_len;
a1d3c478 5030 bbio->stripes[i].dev =
212a17ab 5031 map->stripes[stripe_index].dev;
fce3bb9a 5032 stripe_index++;
f2d8d74d 5033 }
593060d7 5034 }
de11cc12 5035
29a8d9a0 5036 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
de11cc12
LZ
5037 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5038 BTRFS_BLOCK_GROUP_RAID10 |
53b381b3 5039 BTRFS_BLOCK_GROUP_RAID5 |
de11cc12
LZ
5040 BTRFS_BLOCK_GROUP_DUP)) {
5041 max_errors = 1;
53b381b3
DW
5042 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5043 max_errors = 2;
de11cc12 5044 }
f2d8d74d 5045 }
de11cc12 5046
472262f3
SB
5047 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5048 dev_replace->tgtdev != NULL) {
5049 int index_where_to_add;
5050 u64 srcdev_devid = dev_replace->srcdev->devid;
5051
5052 /*
5053 * duplicate the write operations while the dev replace
5054 * procedure is running. Since the copying of the old disk
5055 * to the new disk takes place at run time while the
5056 * filesystem is mounted writable, the regular write
5057 * operations to the old disk have to be duplicated to go
5058 * to the new disk as well.
5059 * Note that device->missing is handled by the caller, and
5060 * that the write to the old disk is already set up in the
5061 * stripes array.
5062 */
5063 index_where_to_add = num_stripes;
5064 for (i = 0; i < num_stripes; i++) {
5065 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5066 /* write to new disk, too */
5067 struct btrfs_bio_stripe *new =
5068 bbio->stripes + index_where_to_add;
5069 struct btrfs_bio_stripe *old =
5070 bbio->stripes + i;
5071
5072 new->physical = old->physical;
5073 new->length = old->length;
5074 new->dev = dev_replace->tgtdev;
5075 index_where_to_add++;
5076 max_errors++;
5077 }
5078 }
5079 num_stripes = index_where_to_add;
ad6d620e
SB
5080 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5081 dev_replace->tgtdev != NULL) {
5082 u64 srcdev_devid = dev_replace->srcdev->devid;
5083 int index_srcdev = 0;
5084 int found = 0;
5085 u64 physical_of_found = 0;
5086
5087 /*
5088 * During the dev-replace procedure, the target drive can
5089 * also be used to read data in case it is needed to repair
5090 * a corrupt block elsewhere. This is possible if the
5091 * requested area is left of the left cursor. In this area,
5092 * the target drive is a full copy of the source drive.
5093 */
5094 for (i = 0; i < num_stripes; i++) {
5095 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5096 /*
5097 * In case of DUP, in order to keep it
5098 * simple, only add the mirror with the
5099 * lowest physical address
5100 */
5101 if (found &&
5102 physical_of_found <=
5103 bbio->stripes[i].physical)
5104 continue;
5105 index_srcdev = i;
5106 found = 1;
5107 physical_of_found = bbio->stripes[i].physical;
5108 }
5109 }
5110 if (found) {
5111 u64 length = map->stripe_len;
5112
5113 if (physical_of_found + length <=
5114 dev_replace->cursor_left) {
5115 struct btrfs_bio_stripe *tgtdev_stripe =
5116 bbio->stripes + num_stripes;
5117
5118 tgtdev_stripe->physical = physical_of_found;
5119 tgtdev_stripe->length =
5120 bbio->stripes[index_srcdev].length;
5121 tgtdev_stripe->dev = dev_replace->tgtdev;
5122
5123 num_stripes++;
5124 }
5125 }
472262f3
SB
5126 }
5127
de11cc12
LZ
5128 *bbio_ret = bbio;
5129 bbio->num_stripes = num_stripes;
5130 bbio->max_errors = max_errors;
5131 bbio->mirror_num = mirror_num;
ad6d620e
SB
5132
5133 /*
5134 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5135 * mirror_num == num_stripes + 1 && dev_replace target drive is
5136 * available as a mirror
5137 */
5138 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5139 WARN_ON(num_stripes > 1);
5140 bbio->stripes[0].dev = dev_replace->tgtdev;
5141 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5142 bbio->mirror_num = map->num_stripes + 1;
5143 }
53b381b3
DW
5144 if (raid_map) {
5145 sort_parity_stripes(bbio, raid_map);
5146 *raid_map_ret = raid_map;
5147 }
cea9e445 5148out:
472262f3
SB
5149 if (dev_replace_is_ongoing)
5150 btrfs_dev_replace_unlock(dev_replace);
0b86a832 5151 free_extent_map(em);
de11cc12 5152 return ret;
0b86a832
CM
5153}
5154
3ec706c8 5155int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5156 u64 logical, u64 *length,
a1d3c478 5157 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5158{
3ec706c8 5159 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
53b381b3 5160 mirror_num, NULL);
f2d8d74d
CM
5161}
5162
a512bbf8
YZ
5163int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5164 u64 chunk_start, u64 physical, u64 devid,
5165 u64 **logical, int *naddrs, int *stripe_len)
5166{
5167 struct extent_map_tree *em_tree = &map_tree->map_tree;
5168 struct extent_map *em;
5169 struct map_lookup *map;
5170 u64 *buf;
5171 u64 bytenr;
5172 u64 length;
5173 u64 stripe_nr;
53b381b3 5174 u64 rmap_len;
a512bbf8
YZ
5175 int i, j, nr = 0;
5176
890871be 5177 read_lock(&em_tree->lock);
a512bbf8 5178 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5179 read_unlock(&em_tree->lock);
a512bbf8 5180
835d974f
JB
5181 if (!em) {
5182 printk(KERN_ERR "btrfs: couldn't find em for chunk %Lu\n",
5183 chunk_start);
5184 return -EIO;
5185 }
5186
5187 if (em->start != chunk_start) {
5188 printk(KERN_ERR "btrfs: bad chunk start, em=%Lu, wanted=%Lu\n",
5189 em->start, chunk_start);
5190 free_extent_map(em);
5191 return -EIO;
5192 }
a512bbf8
YZ
5193 map = (struct map_lookup *)em->bdev;
5194
5195 length = em->len;
53b381b3
DW
5196 rmap_len = map->stripe_len;
5197
a512bbf8
YZ
5198 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5199 do_div(length, map->num_stripes / map->sub_stripes);
5200 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5201 do_div(length, map->num_stripes);
53b381b3
DW
5202 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5203 BTRFS_BLOCK_GROUP_RAID6)) {
5204 do_div(length, nr_data_stripes(map));
5205 rmap_len = map->stripe_len * nr_data_stripes(map);
5206 }
a512bbf8
YZ
5207
5208 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
79787eaa 5209 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5210
5211 for (i = 0; i < map->num_stripes; i++) {
5212 if (devid && map->stripes[i].dev->devid != devid)
5213 continue;
5214 if (map->stripes[i].physical > physical ||
5215 map->stripes[i].physical + length <= physical)
5216 continue;
5217
5218 stripe_nr = physical - map->stripes[i].physical;
5219 do_div(stripe_nr, map->stripe_len);
5220
5221 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5222 stripe_nr = stripe_nr * map->num_stripes + i;
5223 do_div(stripe_nr, map->sub_stripes);
5224 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5225 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5226 } /* else if RAID[56], multiply by nr_data_stripes().
5227 * Alternatively, just use rmap_len below instead of
5228 * map->stripe_len */
5229
5230 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5231 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5232 for (j = 0; j < nr; j++) {
5233 if (buf[j] == bytenr)
5234 break;
5235 }
934d375b
CM
5236 if (j == nr) {
5237 WARN_ON(nr >= map->num_stripes);
a512bbf8 5238 buf[nr++] = bytenr;
934d375b 5239 }
a512bbf8
YZ
5240 }
5241
a512bbf8
YZ
5242 *logical = buf;
5243 *naddrs = nr;
53b381b3 5244 *stripe_len = rmap_len;
a512bbf8
YZ
5245
5246 free_extent_map(em);
5247 return 0;
f2d8d74d
CM
5248}
5249
a1d3c478 5250static void btrfs_end_bio(struct bio *bio, int err)
8790d502 5251{
9be3395b 5252 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5253 int is_orig_bio = 0;
8790d502 5254
442a4f63 5255 if (err) {
a1d3c478 5256 atomic_inc(&bbio->error);
442a4f63
SB
5257 if (err == -EIO || err == -EREMOTEIO) {
5258 unsigned int stripe_index =
9be3395b 5259 btrfs_io_bio(bio)->stripe_index;
442a4f63
SB
5260 struct btrfs_device *dev;
5261
5262 BUG_ON(stripe_index >= bbio->num_stripes);
5263 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5264 if (dev->bdev) {
5265 if (bio->bi_rw & WRITE)
5266 btrfs_dev_stat_inc(dev,
5267 BTRFS_DEV_STAT_WRITE_ERRS);
5268 else
5269 btrfs_dev_stat_inc(dev,
5270 BTRFS_DEV_STAT_READ_ERRS);
5271 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5272 btrfs_dev_stat_inc(dev,
5273 BTRFS_DEV_STAT_FLUSH_ERRS);
5274 btrfs_dev_stat_print_on_error(dev);
5275 }
442a4f63
SB
5276 }
5277 }
8790d502 5278
a1d3c478 5279 if (bio == bbio->orig_bio)
7d2b4daa
CM
5280 is_orig_bio = 1;
5281
a1d3c478 5282 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5283 if (!is_orig_bio) {
5284 bio_put(bio);
a1d3c478 5285 bio = bbio->orig_bio;
7d2b4daa 5286 }
a1d3c478
JS
5287 bio->bi_private = bbio->private;
5288 bio->bi_end_io = bbio->end_io;
9be3395b 5289 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 5290 /* only send an error to the higher layers if it is
53b381b3 5291 * beyond the tolerance of the btrfs bio
a236aed1 5292 */
a1d3c478 5293 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 5294 err = -EIO;
5dbc8fca 5295 } else {
1259ab75
CM
5296 /*
5297 * this bio is actually up to date, we didn't
5298 * go over the max number of errors
5299 */
5300 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 5301 err = 0;
1259ab75 5302 }
a1d3c478 5303 kfree(bbio);
8790d502
CM
5304
5305 bio_endio(bio, err);
7d2b4daa 5306 } else if (!is_orig_bio) {
8790d502
CM
5307 bio_put(bio);
5308 }
8790d502
CM
5309}
5310
8b712842
CM
5311struct async_sched {
5312 struct bio *bio;
5313 int rw;
5314 struct btrfs_fs_info *info;
5315 struct btrfs_work work;
5316};
5317
5318/*
5319 * see run_scheduled_bios for a description of why bios are collected for
5320 * async submit.
5321 *
5322 * This will add one bio to the pending list for a device and make sure
5323 * the work struct is scheduled.
5324 */
48a3b636
ES
5325static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5326 struct btrfs_device *device,
5327 int rw, struct bio *bio)
8b712842
CM
5328{
5329 int should_queue = 1;
ffbd517d 5330 struct btrfs_pending_bios *pending_bios;
8b712842 5331
53b381b3
DW
5332 if (device->missing || !device->bdev) {
5333 bio_endio(bio, -EIO);
5334 return;
5335 }
5336
8b712842 5337 /* don't bother with additional async steps for reads, right now */
7b6d91da 5338 if (!(rw & REQ_WRITE)) {
492bb6de 5339 bio_get(bio);
21adbd5c 5340 btrfsic_submit_bio(rw, bio);
492bb6de 5341 bio_put(bio);
143bede5 5342 return;
8b712842
CM
5343 }
5344
5345 /*
0986fe9e 5346 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
5347 * higher layers. Otherwise, the async bio makes it appear we have
5348 * made progress against dirty pages when we've really just put it
5349 * on a queue for later
5350 */
0986fe9e 5351 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 5352 WARN_ON(bio->bi_next);
8b712842
CM
5353 bio->bi_next = NULL;
5354 bio->bi_rw |= rw;
5355
5356 spin_lock(&device->io_lock);
7b6d91da 5357 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
5358 pending_bios = &device->pending_sync_bios;
5359 else
5360 pending_bios = &device->pending_bios;
8b712842 5361
ffbd517d
CM
5362 if (pending_bios->tail)
5363 pending_bios->tail->bi_next = bio;
8b712842 5364
ffbd517d
CM
5365 pending_bios->tail = bio;
5366 if (!pending_bios->head)
5367 pending_bios->head = bio;
8b712842
CM
5368 if (device->running_pending)
5369 should_queue = 0;
5370
5371 spin_unlock(&device->io_lock);
5372
5373 if (should_queue)
1cc127b5
CM
5374 btrfs_queue_worker(&root->fs_info->submit_workers,
5375 &device->work);
8b712842
CM
5376}
5377
de1ee92a
JB
5378static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5379 sector_t sector)
5380{
5381 struct bio_vec *prev;
5382 struct request_queue *q = bdev_get_queue(bdev);
5383 unsigned short max_sectors = queue_max_sectors(q);
5384 struct bvec_merge_data bvm = {
5385 .bi_bdev = bdev,
5386 .bi_sector = sector,
5387 .bi_rw = bio->bi_rw,
5388 };
5389
5390 if (bio->bi_vcnt == 0) {
5391 WARN_ON(1);
5392 return 1;
5393 }
5394
5395 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
aa8b57aa 5396 if (bio_sectors(bio) > max_sectors)
de1ee92a
JB
5397 return 0;
5398
5399 if (!q->merge_bvec_fn)
5400 return 1;
5401
5402 bvm.bi_size = bio->bi_size - prev->bv_len;
5403 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5404 return 0;
5405 return 1;
5406}
5407
5408static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5409 struct bio *bio, u64 physical, int dev_nr,
5410 int rw, int async)
5411{
5412 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5413
5414 bio->bi_private = bbio;
9be3395b 5415 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a
JB
5416 bio->bi_end_io = btrfs_end_bio;
5417 bio->bi_sector = physical >> 9;
5418#ifdef DEBUG
5419 {
5420 struct rcu_string *name;
5421
5422 rcu_read_lock();
5423 name = rcu_dereference(dev->name);
d1423248 5424 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a
JB
5425 "(%s id %llu), size=%u\n", rw,
5426 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5427 name->str, dev->devid, bio->bi_size);
5428 rcu_read_unlock();
5429 }
5430#endif
5431 bio->bi_bdev = dev->bdev;
5432 if (async)
53b381b3 5433 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
5434 else
5435 btrfsic_submit_bio(rw, bio);
5436}
5437
5438static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5439 struct bio *first_bio, struct btrfs_device *dev,
5440 int dev_nr, int rw, int async)
5441{
5442 struct bio_vec *bvec = first_bio->bi_io_vec;
5443 struct bio *bio;
5444 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5445 u64 physical = bbio->stripes[dev_nr].physical;
5446
5447again:
5448 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5449 if (!bio)
5450 return -ENOMEM;
5451
5452 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5453 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5454 bvec->bv_offset) < bvec->bv_len) {
5455 u64 len = bio->bi_size;
5456
5457 atomic_inc(&bbio->stripes_pending);
5458 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5459 rw, async);
5460 physical += len;
5461 goto again;
5462 }
5463 bvec++;
5464 }
5465
5466 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5467 return 0;
5468}
5469
5470static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5471{
5472 atomic_inc(&bbio->error);
5473 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5474 bio->bi_private = bbio->private;
5475 bio->bi_end_io = bbio->end_io;
9be3395b 5476 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
de1ee92a
JB
5477 bio->bi_sector = logical >> 9;
5478 kfree(bbio);
5479 bio_endio(bio, -EIO);
5480 }
5481}
5482
f188591e 5483int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 5484 int mirror_num, int async_submit)
0b86a832 5485{
0b86a832 5486 struct btrfs_device *dev;
8790d502 5487 struct bio *first_bio = bio;
a62b9401 5488 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
5489 u64 length = 0;
5490 u64 map_length;
53b381b3 5491 u64 *raid_map = NULL;
0b86a832 5492 int ret;
8790d502
CM
5493 int dev_nr = 0;
5494 int total_devs = 1;
a1d3c478 5495 struct btrfs_bio *bbio = NULL;
0b86a832 5496
f2d8d74d 5497 length = bio->bi_size;
0b86a832 5498 map_length = length;
cea9e445 5499
53b381b3
DW
5500 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5501 mirror_num, &raid_map);
5502 if (ret) /* -ENOMEM */
79787eaa 5503 return ret;
cea9e445 5504
a1d3c478 5505 total_devs = bbio->num_stripes;
53b381b3
DW
5506 bbio->orig_bio = first_bio;
5507 bbio->private = first_bio->bi_private;
5508 bbio->end_io = first_bio->bi_end_io;
5509 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5510
5511 if (raid_map) {
5512 /* In this case, map_length has been set to the length of
5513 a single stripe; not the whole write */
5514 if (rw & WRITE) {
5515 return raid56_parity_write(root, bio, bbio,
5516 raid_map, map_length);
5517 } else {
5518 return raid56_parity_recover(root, bio, bbio,
5519 raid_map, map_length,
5520 mirror_num);
5521 }
5522 }
5523
cea9e445 5524 if (map_length < length) {
c2cf52eb 5525 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 5526 logical, length, map_length);
cea9e445
CM
5527 BUG();
5528 }
a1d3c478 5529
d397712b 5530 while (dev_nr < total_devs) {
de1ee92a
JB
5531 dev = bbio->stripes[dev_nr].dev;
5532 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5533 bbio_error(bbio, first_bio, logical);
5534 dev_nr++;
5535 continue;
5536 }
5537
5538 /*
5539 * Check and see if we're ok with this bio based on it's size
5540 * and offset with the given device.
5541 */
5542 if (!bio_size_ok(dev->bdev, first_bio,
5543 bbio->stripes[dev_nr].physical >> 9)) {
5544 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5545 dev_nr, rw, async_submit);
5546 BUG_ON(ret);
5547 dev_nr++;
5548 continue;
5549 }
5550
a1d3c478 5551 if (dev_nr < total_devs - 1) {
9be3395b 5552 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 5553 BUG_ON(!bio); /* -ENOMEM */
a1d3c478
JS
5554 } else {
5555 bio = first_bio;
8790d502 5556 }
de1ee92a
JB
5557
5558 submit_stripe_bio(root, bbio, bio,
5559 bbio->stripes[dev_nr].physical, dev_nr, rw,
5560 async_submit);
8790d502
CM
5561 dev_nr++;
5562 }
0b86a832
CM
5563 return 0;
5564}
5565
aa1b8cd4 5566struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 5567 u8 *uuid, u8 *fsid)
0b86a832 5568{
2b82032c
YZ
5569 struct btrfs_device *device;
5570 struct btrfs_fs_devices *cur_devices;
5571
aa1b8cd4 5572 cur_devices = fs_info->fs_devices;
2b82032c
YZ
5573 while (cur_devices) {
5574 if (!fsid ||
5575 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5576 device = __find_device(&cur_devices->devices,
5577 devid, uuid);
5578 if (device)
5579 return device;
5580 }
5581 cur_devices = cur_devices->seed;
5582 }
5583 return NULL;
0b86a832
CM
5584}
5585
dfe25020
CM
5586static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5587 u64 devid, u8 *dev_uuid)
5588{
5589 struct btrfs_device *device;
5590 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5591
12bd2fc0
ID
5592 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5593 if (IS_ERR(device))
7cbd8a83 5594 return NULL;
12bd2fc0
ID
5595
5596 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 5597 device->fs_devices = fs_devices;
dfe25020 5598 fs_devices->num_devices++;
12bd2fc0
ID
5599
5600 device->missing = 1;
cd02dca5 5601 fs_devices->missing_devices++;
12bd2fc0 5602
dfe25020
CM
5603 return device;
5604}
5605
12bd2fc0
ID
5606/**
5607 * btrfs_alloc_device - allocate struct btrfs_device
5608 * @fs_info: used only for generating a new devid, can be NULL if
5609 * devid is provided (i.e. @devid != NULL).
5610 * @devid: a pointer to devid for this device. If NULL a new devid
5611 * is generated.
5612 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5613 * is generated.
5614 *
5615 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5616 * on error. Returned struct is not linked onto any lists and can be
5617 * destroyed with kfree() right away.
5618 */
5619struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5620 const u64 *devid,
5621 const u8 *uuid)
5622{
5623 struct btrfs_device *dev;
5624 u64 tmp;
5625
5626 if (!devid && !fs_info) {
5627 WARN_ON(1);
5628 return ERR_PTR(-EINVAL);
5629 }
5630
5631 dev = __alloc_device();
5632 if (IS_ERR(dev))
5633 return dev;
5634
5635 if (devid)
5636 tmp = *devid;
5637 else {
5638 int ret;
5639
5640 ret = find_next_devid(fs_info, &tmp);
5641 if (ret) {
5642 kfree(dev);
5643 return ERR_PTR(ret);
5644 }
5645 }
5646 dev->devid = tmp;
5647
5648 if (uuid)
5649 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5650 else
5651 generate_random_uuid(dev->uuid);
5652
5653 dev->work.func = pending_bios_fn;
5654
5655 return dev;
5656}
5657
0b86a832
CM
5658static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5659 struct extent_buffer *leaf,
5660 struct btrfs_chunk *chunk)
5661{
5662 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5663 struct map_lookup *map;
5664 struct extent_map *em;
5665 u64 logical;
5666 u64 length;
5667 u64 devid;
a443755f 5668 u8 uuid[BTRFS_UUID_SIZE];
593060d7 5669 int num_stripes;
0b86a832 5670 int ret;
593060d7 5671 int i;
0b86a832 5672
e17cade2
CM
5673 logical = key->offset;
5674 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 5675
890871be 5676 read_lock(&map_tree->map_tree.lock);
0b86a832 5677 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 5678 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
5679
5680 /* already mapped? */
5681 if (em && em->start <= logical && em->start + em->len > logical) {
5682 free_extent_map(em);
0b86a832
CM
5683 return 0;
5684 } else if (em) {
5685 free_extent_map(em);
5686 }
0b86a832 5687
172ddd60 5688 em = alloc_extent_map();
0b86a832
CM
5689 if (!em)
5690 return -ENOMEM;
593060d7
CM
5691 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5692 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
5693 if (!map) {
5694 free_extent_map(em);
5695 return -ENOMEM;
5696 }
5697
5698 em->bdev = (struct block_device *)map;
5699 em->start = logical;
5700 em->len = length;
70c8a91c 5701 em->orig_start = 0;
0b86a832 5702 em->block_start = 0;
c8b97818 5703 em->block_len = em->len;
0b86a832 5704
593060d7
CM
5705 map->num_stripes = num_stripes;
5706 map->io_width = btrfs_chunk_io_width(leaf, chunk);
5707 map->io_align = btrfs_chunk_io_align(leaf, chunk);
5708 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5709 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5710 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 5711 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
5712 for (i = 0; i < num_stripes; i++) {
5713 map->stripes[i].physical =
5714 btrfs_stripe_offset_nr(leaf, chunk, i);
5715 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
5716 read_extent_buffer(leaf, uuid, (unsigned long)
5717 btrfs_stripe_dev_uuid_nr(chunk, i),
5718 BTRFS_UUID_SIZE);
aa1b8cd4
SB
5719 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5720 uuid, NULL);
dfe25020 5721 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
5722 kfree(map);
5723 free_extent_map(em);
5724 return -EIO;
5725 }
dfe25020
CM
5726 if (!map->stripes[i].dev) {
5727 map->stripes[i].dev =
5728 add_missing_dev(root, devid, uuid);
5729 if (!map->stripes[i].dev) {
5730 kfree(map);
5731 free_extent_map(em);
5732 return -EIO;
5733 }
5734 }
5735 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
5736 }
5737
890871be 5738 write_lock(&map_tree->map_tree.lock);
09a2a8f9 5739 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 5740 write_unlock(&map_tree->map_tree.lock);
79787eaa 5741 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
5742 free_extent_map(em);
5743
5744 return 0;
5745}
5746
143bede5 5747static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
5748 struct btrfs_dev_item *dev_item,
5749 struct btrfs_device *device)
5750{
5751 unsigned long ptr;
0b86a832
CM
5752
5753 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
5754 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5755 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
5756 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5757 device->type = btrfs_device_type(leaf, dev_item);
5758 device->io_align = btrfs_device_io_align(leaf, dev_item);
5759 device->io_width = btrfs_device_io_width(leaf, dev_item);
5760 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 5761 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 5762 device->is_tgtdev_for_dev_replace = 0;
0b86a832 5763
410ba3a2 5764 ptr = btrfs_device_uuid(dev_item);
e17cade2 5765 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
5766}
5767
2b82032c
YZ
5768static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5769{
5770 struct btrfs_fs_devices *fs_devices;
5771 int ret;
5772
b367e47f 5773 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
5774
5775 fs_devices = root->fs_info->fs_devices->seed;
5776 while (fs_devices) {
5777 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5778 ret = 0;
5779 goto out;
5780 }
5781 fs_devices = fs_devices->seed;
5782 }
5783
5784 fs_devices = find_fsid(fsid);
5785 if (!fs_devices) {
5786 ret = -ENOENT;
5787 goto out;
5788 }
e4404d6e
YZ
5789
5790 fs_devices = clone_fs_devices(fs_devices);
5791 if (IS_ERR(fs_devices)) {
5792 ret = PTR_ERR(fs_devices);
2b82032c
YZ
5793 goto out;
5794 }
5795
97288f2c 5796 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 5797 root->fs_info->bdev_holder);
48d28232
JL
5798 if (ret) {
5799 free_fs_devices(fs_devices);
2b82032c 5800 goto out;
48d28232 5801 }
2b82032c
YZ
5802
5803 if (!fs_devices->seeding) {
5804 __btrfs_close_devices(fs_devices);
e4404d6e 5805 free_fs_devices(fs_devices);
2b82032c
YZ
5806 ret = -EINVAL;
5807 goto out;
5808 }
5809
5810 fs_devices->seed = root->fs_info->fs_devices->seed;
5811 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 5812out:
2b82032c
YZ
5813 return ret;
5814}
5815
0d81ba5d 5816static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
5817 struct extent_buffer *leaf,
5818 struct btrfs_dev_item *dev_item)
5819{
5820 struct btrfs_device *device;
5821 u64 devid;
5822 int ret;
2b82032c 5823 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
5824 u8 dev_uuid[BTRFS_UUID_SIZE];
5825
0b86a832 5826 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 5827 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 5828 BTRFS_UUID_SIZE);
1473b24e 5829 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
5830 BTRFS_UUID_SIZE);
5831
5832 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5833 ret = open_seed_devices(root, fs_uuid);
e4404d6e 5834 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 5835 return ret;
2b82032c
YZ
5836 }
5837
aa1b8cd4 5838 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
2b82032c 5839 if (!device || !device->bdev) {
e4404d6e 5840 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
5841 return -EIO;
5842
5843 if (!device) {
c1c9ff7c 5844 btrfs_warn(root->fs_info, "devid %llu missing", devid);
2b82032c
YZ
5845 device = add_missing_dev(root, devid, dev_uuid);
5846 if (!device)
5847 return -ENOMEM;
cd02dca5
CM
5848 } else if (!device->missing) {
5849 /*
5850 * this happens when a device that was properly setup
5851 * in the device info lists suddenly goes bad.
5852 * device->bdev is NULL, and so we have to set
5853 * device->missing to one here
5854 */
5855 root->fs_info->fs_devices->missing_devices++;
5856 device->missing = 1;
2b82032c
YZ
5857 }
5858 }
5859
5860 if (device->fs_devices != root->fs_info->fs_devices) {
5861 BUG_ON(device->writeable);
5862 if (device->generation !=
5863 btrfs_device_generation(leaf, dev_item))
5864 return -EINVAL;
6324fbf3 5865 }
0b86a832
CM
5866
5867 fill_device_from_item(leaf, dev_item, device);
dfe25020 5868 device->in_fs_metadata = 1;
63a212ab 5869 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 5870 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
5871 spin_lock(&root->fs_info->free_chunk_lock);
5872 root->fs_info->free_chunk_space += device->total_bytes -
5873 device->bytes_used;
5874 spin_unlock(&root->fs_info->free_chunk_lock);
5875 }
0b86a832 5876 ret = 0;
0b86a832
CM
5877 return ret;
5878}
5879
e4404d6e 5880int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 5881{
6c41761f 5882 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 5883 struct extent_buffer *sb;
0b86a832 5884 struct btrfs_disk_key *disk_key;
0b86a832 5885 struct btrfs_chunk *chunk;
84eed90f
CM
5886 u8 *ptr;
5887 unsigned long sb_ptr;
5888 int ret = 0;
0b86a832
CM
5889 u32 num_stripes;
5890 u32 array_size;
5891 u32 len = 0;
0b86a832 5892 u32 cur;
84eed90f 5893 struct btrfs_key key;
0b86a832 5894
e4404d6e 5895 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
5896 BTRFS_SUPER_INFO_SIZE);
5897 if (!sb)
5898 return -ENOMEM;
5899 btrfs_set_buffer_uptodate(sb);
85d4e461 5900 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
5901 /*
5902 * The sb extent buffer is artifical and just used to read the system array.
5903 * btrfs_set_buffer_uptodate() call does not properly mark all it's
5904 * pages up-to-date when the page is larger: extent does not cover the
5905 * whole page and consequently check_page_uptodate does not find all
5906 * the page's extents up-to-date (the hole beyond sb),
5907 * write_extent_buffer then triggers a WARN_ON.
5908 *
5909 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
5910 * but sb spans only this function. Add an explicit SetPageUptodate call
5911 * to silence the warning eg. on PowerPC 64.
5912 */
5913 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 5914 SetPageUptodate(sb->pages[0]);
4008c04a 5915
a061fc8d 5916 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
5917 array_size = btrfs_super_sys_array_size(super_copy);
5918
0b86a832
CM
5919 ptr = super_copy->sys_chunk_array;
5920 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
5921 cur = 0;
5922
5923 while (cur < array_size) {
5924 disk_key = (struct btrfs_disk_key *)ptr;
5925 btrfs_disk_key_to_cpu(&key, disk_key);
5926
a061fc8d 5927 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
5928 sb_ptr += len;
5929 cur += len;
5930
0d81ba5d 5931 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 5932 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 5933 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
5934 if (ret)
5935 break;
0b86a832
CM
5936 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
5937 len = btrfs_chunk_item_size(num_stripes);
5938 } else {
84eed90f
CM
5939 ret = -EIO;
5940 break;
0b86a832
CM
5941 }
5942 ptr += len;
5943 sb_ptr += len;
5944 cur += len;
5945 }
a061fc8d 5946 free_extent_buffer(sb);
84eed90f 5947 return ret;
0b86a832
CM
5948}
5949
5950int btrfs_read_chunk_tree(struct btrfs_root *root)
5951{
5952 struct btrfs_path *path;
5953 struct extent_buffer *leaf;
5954 struct btrfs_key key;
5955 struct btrfs_key found_key;
5956 int ret;
5957 int slot;
5958
5959 root = root->fs_info->chunk_root;
5960
5961 path = btrfs_alloc_path();
5962 if (!path)
5963 return -ENOMEM;
5964
b367e47f
LZ
5965 mutex_lock(&uuid_mutex);
5966 lock_chunks(root);
5967
395927a9
FDBM
5968 /*
5969 * Read all device items, and then all the chunk items. All
5970 * device items are found before any chunk item (their object id
5971 * is smaller than the lowest possible object id for a chunk
5972 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
5973 */
5974 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
5975 key.offset = 0;
5976 key.type = 0;
0b86a832 5977 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
5978 if (ret < 0)
5979 goto error;
d397712b 5980 while (1) {
0b86a832
CM
5981 leaf = path->nodes[0];
5982 slot = path->slots[0];
5983 if (slot >= btrfs_header_nritems(leaf)) {
5984 ret = btrfs_next_leaf(root, path);
5985 if (ret == 0)
5986 continue;
5987 if (ret < 0)
5988 goto error;
5989 break;
5990 }
5991 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
5992 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
5993 struct btrfs_dev_item *dev_item;
5994 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 5995 struct btrfs_dev_item);
395927a9
FDBM
5996 ret = read_one_dev(root, leaf, dev_item);
5997 if (ret)
5998 goto error;
0b86a832
CM
5999 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6000 struct btrfs_chunk *chunk;
6001 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6002 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6003 if (ret)
6004 goto error;
0b86a832
CM
6005 }
6006 path->slots[0]++;
6007 }
0b86a832
CM
6008 ret = 0;
6009error:
b367e47f
LZ
6010 unlock_chunks(root);
6011 mutex_unlock(&uuid_mutex);
6012
2b82032c 6013 btrfs_free_path(path);
0b86a832
CM
6014 return ret;
6015}
442a4f63 6016
cb517eab
MX
6017void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6018{
6019 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6020 struct btrfs_device *device;
6021
6022 mutex_lock(&fs_devices->device_list_mutex);
6023 list_for_each_entry(device, &fs_devices->devices, dev_list)
6024 device->dev_root = fs_info->dev_root;
6025 mutex_unlock(&fs_devices->device_list_mutex);
6026}
6027
733f4fbb
SB
6028static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6029{
6030 int i;
6031
6032 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6033 btrfs_dev_stat_reset(dev, i);
6034}
6035
6036int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6037{
6038 struct btrfs_key key;
6039 struct btrfs_key found_key;
6040 struct btrfs_root *dev_root = fs_info->dev_root;
6041 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6042 struct extent_buffer *eb;
6043 int slot;
6044 int ret = 0;
6045 struct btrfs_device *device;
6046 struct btrfs_path *path = NULL;
6047 int i;
6048
6049 path = btrfs_alloc_path();
6050 if (!path) {
6051 ret = -ENOMEM;
6052 goto out;
6053 }
6054
6055 mutex_lock(&fs_devices->device_list_mutex);
6056 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6057 int item_size;
6058 struct btrfs_dev_stats_item *ptr;
6059
6060 key.objectid = 0;
6061 key.type = BTRFS_DEV_STATS_KEY;
6062 key.offset = device->devid;
6063 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6064 if (ret) {
733f4fbb
SB
6065 __btrfs_reset_dev_stats(device);
6066 device->dev_stats_valid = 1;
6067 btrfs_release_path(path);
6068 continue;
6069 }
6070 slot = path->slots[0];
6071 eb = path->nodes[0];
6072 btrfs_item_key_to_cpu(eb, &found_key, slot);
6073 item_size = btrfs_item_size_nr(eb, slot);
6074
6075 ptr = btrfs_item_ptr(eb, slot,
6076 struct btrfs_dev_stats_item);
6077
6078 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6079 if (item_size >= (1 + i) * sizeof(__le64))
6080 btrfs_dev_stat_set(device, i,
6081 btrfs_dev_stats_value(eb, ptr, i));
6082 else
6083 btrfs_dev_stat_reset(device, i);
6084 }
6085
6086 device->dev_stats_valid = 1;
6087 btrfs_dev_stat_print_on_load(device);
6088 btrfs_release_path(path);
6089 }
6090 mutex_unlock(&fs_devices->device_list_mutex);
6091
6092out:
6093 btrfs_free_path(path);
6094 return ret < 0 ? ret : 0;
6095}
6096
6097static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6098 struct btrfs_root *dev_root,
6099 struct btrfs_device *device)
6100{
6101 struct btrfs_path *path;
6102 struct btrfs_key key;
6103 struct extent_buffer *eb;
6104 struct btrfs_dev_stats_item *ptr;
6105 int ret;
6106 int i;
6107
6108 key.objectid = 0;
6109 key.type = BTRFS_DEV_STATS_KEY;
6110 key.offset = device->devid;
6111
6112 path = btrfs_alloc_path();
6113 BUG_ON(!path);
6114 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6115 if (ret < 0) {
606686ee
JB
6116 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
6117 ret, rcu_str_deref(device->name));
733f4fbb
SB
6118 goto out;
6119 }
6120
6121 if (ret == 0 &&
6122 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6123 /* need to delete old one and insert a new one */
6124 ret = btrfs_del_item(trans, dev_root, path);
6125 if (ret != 0) {
606686ee
JB
6126 printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
6127 rcu_str_deref(device->name), ret);
733f4fbb
SB
6128 goto out;
6129 }
6130 ret = 1;
6131 }
6132
6133 if (ret == 1) {
6134 /* need to insert a new item */
6135 btrfs_release_path(path);
6136 ret = btrfs_insert_empty_item(trans, dev_root, path,
6137 &key, sizeof(*ptr));
6138 if (ret < 0) {
606686ee
JB
6139 printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
6140 rcu_str_deref(device->name), ret);
733f4fbb
SB
6141 goto out;
6142 }
6143 }
6144
6145 eb = path->nodes[0];
6146 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6147 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6148 btrfs_set_dev_stats_value(eb, ptr, i,
6149 btrfs_dev_stat_read(device, i));
6150 btrfs_mark_buffer_dirty(eb);
6151
6152out:
6153 btrfs_free_path(path);
6154 return ret;
6155}
6156
6157/*
6158 * called from commit_transaction. Writes all changed device stats to disk.
6159 */
6160int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6161 struct btrfs_fs_info *fs_info)
6162{
6163 struct btrfs_root *dev_root = fs_info->dev_root;
6164 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6165 struct btrfs_device *device;
6166 int ret = 0;
6167
6168 mutex_lock(&fs_devices->device_list_mutex);
6169 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6170 if (!device->dev_stats_valid || !device->dev_stats_dirty)
6171 continue;
6172
6173 ret = update_dev_stat_item(trans, dev_root, device);
6174 if (!ret)
6175 device->dev_stats_dirty = 0;
6176 }
6177 mutex_unlock(&fs_devices->device_list_mutex);
6178
6179 return ret;
6180}
6181
442a4f63
SB
6182void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6183{
6184 btrfs_dev_stat_inc(dev, index);
6185 btrfs_dev_stat_print_on_error(dev);
6186}
6187
48a3b636 6188static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 6189{
733f4fbb
SB
6190 if (!dev->dev_stats_valid)
6191 return;
606686ee 6192 printk_ratelimited_in_rcu(KERN_ERR
442a4f63 6193 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6194 rcu_str_deref(dev->name),
442a4f63
SB
6195 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6196 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6197 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6198 btrfs_dev_stat_read(dev,
6199 BTRFS_DEV_STAT_CORRUPTION_ERRS),
6200 btrfs_dev_stat_read(dev,
6201 BTRFS_DEV_STAT_GENERATION_ERRS));
6202}
c11d2c23 6203
733f4fbb
SB
6204static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6205{
a98cdb85
SB
6206 int i;
6207
6208 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6209 if (btrfs_dev_stat_read(dev, i) != 0)
6210 break;
6211 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6212 return; /* all values == 0, suppress message */
6213
606686ee
JB
6214 printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6215 rcu_str_deref(dev->name),
733f4fbb
SB
6216 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6217 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6218 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6219 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6220 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6221}
6222
c11d2c23 6223int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 6224 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
6225{
6226 struct btrfs_device *dev;
6227 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6228 int i;
6229
6230 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 6231 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
6232 mutex_unlock(&fs_devices->device_list_mutex);
6233
6234 if (!dev) {
6235 printk(KERN_WARNING
6236 "btrfs: get dev_stats failed, device not found\n");
6237 return -ENODEV;
733f4fbb
SB
6238 } else if (!dev->dev_stats_valid) {
6239 printk(KERN_WARNING
6240 "btrfs: get dev_stats failed, not yet valid\n");
6241 return -ENODEV;
b27f7c0c 6242 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
6243 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6244 if (stats->nr_items > i)
6245 stats->values[i] =
6246 btrfs_dev_stat_read_and_reset(dev, i);
6247 else
6248 btrfs_dev_stat_reset(dev, i);
6249 }
6250 } else {
6251 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6252 if (stats->nr_items > i)
6253 stats->values[i] = btrfs_dev_stat_read(dev, i);
6254 }
6255 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6256 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6257 return 0;
6258}
a8a6dab7
SB
6259
6260int btrfs_scratch_superblock(struct btrfs_device *device)
6261{
6262 struct buffer_head *bh;
6263 struct btrfs_super_block *disk_super;
6264
6265 bh = btrfs_read_dev_super(device->bdev);
6266 if (!bh)
6267 return -EINVAL;
6268 disk_super = (struct btrfs_super_block *)bh->b_data;
6269
6270 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6271 set_buffer_dirty(bh);
6272 sync_dirty_buffer(bh);
6273 brelse(bh);
6274
6275 return 0;
6276}
This page took 0.616424 seconds and 5 git commands to generate.