Merge branch 'raid56-experimental' into for-linus-3.9
[deliverable/linux.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3
DW
28#include <linux/raid/pq.h>
29#include <asm/div64.h>
4b4e25f2 30#include "compat.h"
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
0b86a832 43
2b82032c
YZ
44static int init_first_rw_device(struct btrfs_trans_handle *trans,
45 struct btrfs_root *root,
46 struct btrfs_device *device);
47static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb
SB
48static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
49static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 50
8a4b83cc
CM
51static DEFINE_MUTEX(uuid_mutex);
52static LIST_HEAD(fs_uuids);
53
7d9eb12c
CM
54static void lock_chunks(struct btrfs_root *root)
55{
7d9eb12c
CM
56 mutex_lock(&root->fs_info->chunk_mutex);
57}
58
59static void unlock_chunks(struct btrfs_root *root)
60{
7d9eb12c
CM
61 mutex_unlock(&root->fs_info->chunk_mutex);
62}
63
e4404d6e
YZ
64static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
65{
66 struct btrfs_device *device;
67 WARN_ON(fs_devices->opened);
68 while (!list_empty(&fs_devices->devices)) {
69 device = list_entry(fs_devices->devices.next,
70 struct btrfs_device, dev_list);
71 list_del(&device->dev_list);
606686ee 72 rcu_string_free(device->name);
e4404d6e
YZ
73 kfree(device);
74 }
75 kfree(fs_devices);
76}
77
b8b8ff59
LC
78static void btrfs_kobject_uevent(struct block_device *bdev,
79 enum kobject_action action)
80{
81 int ret;
82
83 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
84 if (ret)
85 pr_warn("Sending event '%d' to kobject: '%s' (%p): failed\n",
86 action,
87 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
88 &disk_to_dev(bdev->bd_disk)->kobj);
89}
90
143bede5 91void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
92{
93 struct btrfs_fs_devices *fs_devices;
8a4b83cc 94
2b82032c
YZ
95 while (!list_empty(&fs_uuids)) {
96 fs_devices = list_entry(fs_uuids.next,
97 struct btrfs_fs_devices, list);
98 list_del(&fs_devices->list);
e4404d6e 99 free_fs_devices(fs_devices);
8a4b83cc 100 }
8a4b83cc
CM
101}
102
a1b32a59
CM
103static noinline struct btrfs_device *__find_device(struct list_head *head,
104 u64 devid, u8 *uuid)
8a4b83cc
CM
105{
106 struct btrfs_device *dev;
8a4b83cc 107
c6e30871 108 list_for_each_entry(dev, head, dev_list) {
a443755f 109 if (dev->devid == devid &&
8f18cf13 110 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 111 return dev;
a443755f 112 }
8a4b83cc
CM
113 }
114 return NULL;
115}
116
a1b32a59 117static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 118{
8a4b83cc
CM
119 struct btrfs_fs_devices *fs_devices;
120
c6e30871 121 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
122 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
123 return fs_devices;
124 }
125 return NULL;
126}
127
beaf8ab3
SB
128static int
129btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
130 int flush, struct block_device **bdev,
131 struct buffer_head **bh)
132{
133 int ret;
134
135 *bdev = blkdev_get_by_path(device_path, flags, holder);
136
137 if (IS_ERR(*bdev)) {
138 ret = PTR_ERR(*bdev);
139 printk(KERN_INFO "btrfs: open %s failed\n", device_path);
140 goto error;
141 }
142
143 if (flush)
144 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
145 ret = set_blocksize(*bdev, 4096);
146 if (ret) {
147 blkdev_put(*bdev, flags);
148 goto error;
149 }
150 invalidate_bdev(*bdev);
151 *bh = btrfs_read_dev_super(*bdev);
152 if (!*bh) {
153 ret = -EINVAL;
154 blkdev_put(*bdev, flags);
155 goto error;
156 }
157
158 return 0;
159
160error:
161 *bdev = NULL;
162 *bh = NULL;
163 return ret;
164}
165
ffbd517d
CM
166static void requeue_list(struct btrfs_pending_bios *pending_bios,
167 struct bio *head, struct bio *tail)
168{
169
170 struct bio *old_head;
171
172 old_head = pending_bios->head;
173 pending_bios->head = head;
174 if (pending_bios->tail)
175 tail->bi_next = old_head;
176 else
177 pending_bios->tail = tail;
178}
179
8b712842
CM
180/*
181 * we try to collect pending bios for a device so we don't get a large
182 * number of procs sending bios down to the same device. This greatly
183 * improves the schedulers ability to collect and merge the bios.
184 *
185 * But, it also turns into a long list of bios to process and that is sure
186 * to eventually make the worker thread block. The solution here is to
187 * make some progress and then put this work struct back at the end of
188 * the list if the block device is congested. This way, multiple devices
189 * can make progress from a single worker thread.
190 */
143bede5 191static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
192{
193 struct bio *pending;
194 struct backing_dev_info *bdi;
b64a2851 195 struct btrfs_fs_info *fs_info;
ffbd517d 196 struct btrfs_pending_bios *pending_bios;
8b712842
CM
197 struct bio *tail;
198 struct bio *cur;
199 int again = 0;
ffbd517d 200 unsigned long num_run;
d644d8a1 201 unsigned long batch_run = 0;
b64a2851 202 unsigned long limit;
b765ead5 203 unsigned long last_waited = 0;
d84275c9 204 int force_reg = 0;
0e588859 205 int sync_pending = 0;
211588ad
CM
206 struct blk_plug plug;
207
208 /*
209 * this function runs all the bios we've collected for
210 * a particular device. We don't want to wander off to
211 * another device without first sending all of these down.
212 * So, setup a plug here and finish it off before we return
213 */
214 blk_start_plug(&plug);
8b712842 215
bedf762b 216 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
217 fs_info = device->dev_root->fs_info;
218 limit = btrfs_async_submit_limit(fs_info);
219 limit = limit * 2 / 3;
220
8b712842
CM
221loop:
222 spin_lock(&device->io_lock);
223
a6837051 224loop_lock:
d84275c9 225 num_run = 0;
ffbd517d 226
8b712842
CM
227 /* take all the bios off the list at once and process them
228 * later on (without the lock held). But, remember the
229 * tail and other pointers so the bios can be properly reinserted
230 * into the list if we hit congestion
231 */
d84275c9 232 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 233 pending_bios = &device->pending_sync_bios;
d84275c9
CM
234 force_reg = 1;
235 } else {
ffbd517d 236 pending_bios = &device->pending_bios;
d84275c9
CM
237 force_reg = 0;
238 }
ffbd517d
CM
239
240 pending = pending_bios->head;
241 tail = pending_bios->tail;
8b712842 242 WARN_ON(pending && !tail);
8b712842
CM
243
244 /*
245 * if pending was null this time around, no bios need processing
246 * at all and we can stop. Otherwise it'll loop back up again
247 * and do an additional check so no bios are missed.
248 *
249 * device->running_pending is used to synchronize with the
250 * schedule_bio code.
251 */
ffbd517d
CM
252 if (device->pending_sync_bios.head == NULL &&
253 device->pending_bios.head == NULL) {
8b712842
CM
254 again = 0;
255 device->running_pending = 0;
ffbd517d
CM
256 } else {
257 again = 1;
258 device->running_pending = 1;
8b712842 259 }
ffbd517d
CM
260
261 pending_bios->head = NULL;
262 pending_bios->tail = NULL;
263
8b712842
CM
264 spin_unlock(&device->io_lock);
265
d397712b 266 while (pending) {
ffbd517d
CM
267
268 rmb();
d84275c9
CM
269 /* we want to work on both lists, but do more bios on the
270 * sync list than the regular list
271 */
272 if ((num_run > 32 &&
273 pending_bios != &device->pending_sync_bios &&
274 device->pending_sync_bios.head) ||
275 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
276 device->pending_bios.head)) {
ffbd517d
CM
277 spin_lock(&device->io_lock);
278 requeue_list(pending_bios, pending, tail);
279 goto loop_lock;
280 }
281
8b712842
CM
282 cur = pending;
283 pending = pending->bi_next;
284 cur->bi_next = NULL;
b64a2851 285
66657b31 286 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
287 waitqueue_active(&fs_info->async_submit_wait))
288 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
289
290 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 291
2ab1ba68
CM
292 /*
293 * if we're doing the sync list, record that our
294 * plug has some sync requests on it
295 *
296 * If we're doing the regular list and there are
297 * sync requests sitting around, unplug before
298 * we add more
299 */
300 if (pending_bios == &device->pending_sync_bios) {
301 sync_pending = 1;
302 } else if (sync_pending) {
303 blk_finish_plug(&plug);
304 blk_start_plug(&plug);
305 sync_pending = 0;
306 }
307
21adbd5c 308 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
309 num_run++;
310 batch_run++;
7eaceacc 311 if (need_resched())
ffbd517d 312 cond_resched();
8b712842
CM
313
314 /*
315 * we made progress, there is more work to do and the bdi
316 * is now congested. Back off and let other work structs
317 * run instead
318 */
57fd5a5f 319 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 320 fs_info->fs_devices->open_devices > 1) {
b765ead5 321 struct io_context *ioc;
8b712842 322
b765ead5
CM
323 ioc = current->io_context;
324
325 /*
326 * the main goal here is that we don't want to
327 * block if we're going to be able to submit
328 * more requests without blocking.
329 *
330 * This code does two great things, it pokes into
331 * the elevator code from a filesystem _and_
332 * it makes assumptions about how batching works.
333 */
334 if (ioc && ioc->nr_batch_requests > 0 &&
335 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
336 (last_waited == 0 ||
337 ioc->last_waited == last_waited)) {
338 /*
339 * we want to go through our batch of
340 * requests and stop. So, we copy out
341 * the ioc->last_waited time and test
342 * against it before looping
343 */
344 last_waited = ioc->last_waited;
7eaceacc 345 if (need_resched())
ffbd517d 346 cond_resched();
b765ead5
CM
347 continue;
348 }
8b712842 349 spin_lock(&device->io_lock);
ffbd517d 350 requeue_list(pending_bios, pending, tail);
a6837051 351 device->running_pending = 1;
8b712842
CM
352
353 spin_unlock(&device->io_lock);
354 btrfs_requeue_work(&device->work);
355 goto done;
356 }
d85c8a6f
CM
357 /* unplug every 64 requests just for good measure */
358 if (batch_run % 64 == 0) {
359 blk_finish_plug(&plug);
360 blk_start_plug(&plug);
361 sync_pending = 0;
362 }
8b712842 363 }
ffbd517d 364
51684082
CM
365 cond_resched();
366 if (again)
367 goto loop;
368
369 spin_lock(&device->io_lock);
370 if (device->pending_bios.head || device->pending_sync_bios.head)
371 goto loop_lock;
372 spin_unlock(&device->io_lock);
373
8b712842 374done:
211588ad 375 blk_finish_plug(&plug);
8b712842
CM
376}
377
b2950863 378static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
379{
380 struct btrfs_device *device;
381
382 device = container_of(work, struct btrfs_device, work);
383 run_scheduled_bios(device);
384}
385
a1b32a59 386static noinline int device_list_add(const char *path,
8a4b83cc
CM
387 struct btrfs_super_block *disk_super,
388 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
389{
390 struct btrfs_device *device;
391 struct btrfs_fs_devices *fs_devices;
606686ee 392 struct rcu_string *name;
8a4b83cc
CM
393 u64 found_transid = btrfs_super_generation(disk_super);
394
395 fs_devices = find_fsid(disk_super->fsid);
396 if (!fs_devices) {
515dc322 397 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
398 if (!fs_devices)
399 return -ENOMEM;
400 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 401 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
402 list_add(&fs_devices->list, &fs_uuids);
403 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
404 fs_devices->latest_devid = devid;
405 fs_devices->latest_trans = found_transid;
e5e9a520 406 mutex_init(&fs_devices->device_list_mutex);
8a4b83cc
CM
407 device = NULL;
408 } else {
a443755f
CM
409 device = __find_device(&fs_devices->devices, devid,
410 disk_super->dev_item.uuid);
8a4b83cc
CM
411 }
412 if (!device) {
2b82032c
YZ
413 if (fs_devices->opened)
414 return -EBUSY;
415
8a4b83cc
CM
416 device = kzalloc(sizeof(*device), GFP_NOFS);
417 if (!device) {
418 /* we can safely leave the fs_devices entry around */
419 return -ENOMEM;
420 }
421 device->devid = devid;
733f4fbb 422 device->dev_stats_valid = 0;
8b712842 423 device->work.func = pending_bios_fn;
a443755f
CM
424 memcpy(device->uuid, disk_super->dev_item.uuid,
425 BTRFS_UUID_SIZE);
b248a415 426 spin_lock_init(&device->io_lock);
606686ee
JB
427
428 name = rcu_string_strdup(path, GFP_NOFS);
429 if (!name) {
8a4b83cc
CM
430 kfree(device);
431 return -ENOMEM;
432 }
606686ee 433 rcu_assign_pointer(device->name, name);
2b82032c 434 INIT_LIST_HEAD(&device->dev_alloc_list);
e5e9a520 435
90519d66
AJ
436 /* init readahead state */
437 spin_lock_init(&device->reada_lock);
438 device->reada_curr_zone = NULL;
439 atomic_set(&device->reada_in_flight, 0);
440 device->reada_next = 0;
441 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
442 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
443
e5e9a520 444 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 445 list_add_rcu(&device->dev_list, &fs_devices->devices);
e5e9a520
CM
446 mutex_unlock(&fs_devices->device_list_mutex);
447
2b82032c 448 device->fs_devices = fs_devices;
8a4b83cc 449 fs_devices->num_devices++;
606686ee
JB
450 } else if (!device->name || strcmp(device->name->str, path)) {
451 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
452 if (!name)
453 return -ENOMEM;
606686ee
JB
454 rcu_string_free(device->name);
455 rcu_assign_pointer(device->name, name);
cd02dca5
CM
456 if (device->missing) {
457 fs_devices->missing_devices--;
458 device->missing = 0;
459 }
8a4b83cc
CM
460 }
461
462 if (found_transid > fs_devices->latest_trans) {
463 fs_devices->latest_devid = devid;
464 fs_devices->latest_trans = found_transid;
465 }
8a4b83cc
CM
466 *fs_devices_ret = fs_devices;
467 return 0;
468}
469
e4404d6e
YZ
470static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
471{
472 struct btrfs_fs_devices *fs_devices;
473 struct btrfs_device *device;
474 struct btrfs_device *orig_dev;
475
476 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
477 if (!fs_devices)
478 return ERR_PTR(-ENOMEM);
479
480 INIT_LIST_HEAD(&fs_devices->devices);
481 INIT_LIST_HEAD(&fs_devices->alloc_list);
482 INIT_LIST_HEAD(&fs_devices->list);
e5e9a520 483 mutex_init(&fs_devices->device_list_mutex);
e4404d6e
YZ
484 fs_devices->latest_devid = orig->latest_devid;
485 fs_devices->latest_trans = orig->latest_trans;
02db0844 486 fs_devices->total_devices = orig->total_devices;
e4404d6e
YZ
487 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
488
46224705 489 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 490 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
491 struct rcu_string *name;
492
e4404d6e
YZ
493 device = kzalloc(sizeof(*device), GFP_NOFS);
494 if (!device)
495 goto error;
496
606686ee
JB
497 /*
498 * This is ok to do without rcu read locked because we hold the
499 * uuid mutex so nothing we touch in here is going to disappear.
500 */
501 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
502 if (!name) {
fd2696f3 503 kfree(device);
e4404d6e 504 goto error;
fd2696f3 505 }
606686ee 506 rcu_assign_pointer(device->name, name);
e4404d6e
YZ
507
508 device->devid = orig_dev->devid;
509 device->work.func = pending_bios_fn;
510 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
e4404d6e
YZ
511 spin_lock_init(&device->io_lock);
512 INIT_LIST_HEAD(&device->dev_list);
513 INIT_LIST_HEAD(&device->dev_alloc_list);
514
515 list_add(&device->dev_list, &fs_devices->devices);
516 device->fs_devices = fs_devices;
517 fs_devices->num_devices++;
518 }
519 return fs_devices;
520error:
521 free_fs_devices(fs_devices);
522 return ERR_PTR(-ENOMEM);
523}
524
8dabb742
SB
525void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
526 struct btrfs_fs_devices *fs_devices, int step)
dfe25020 527{
c6e30871 528 struct btrfs_device *device, *next;
dfe25020 529
a6b0d5c8
CM
530 struct block_device *latest_bdev = NULL;
531 u64 latest_devid = 0;
532 u64 latest_transid = 0;
533
dfe25020
CM
534 mutex_lock(&uuid_mutex);
535again:
46224705 536 /* This is the initialized path, it is safe to release the devices. */
c6e30871 537 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 538 if (device->in_fs_metadata) {
63a212ab
SB
539 if (!device->is_tgtdev_for_dev_replace &&
540 (!latest_transid ||
541 device->generation > latest_transid)) {
a6b0d5c8
CM
542 latest_devid = device->devid;
543 latest_transid = device->generation;
544 latest_bdev = device->bdev;
545 }
2b82032c 546 continue;
a6b0d5c8 547 }
2b82032c 548
8dabb742
SB
549 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
550 /*
551 * In the first step, keep the device which has
552 * the correct fsid and the devid that is used
553 * for the dev_replace procedure.
554 * In the second step, the dev_replace state is
555 * read from the device tree and it is known
556 * whether the procedure is really active or
557 * not, which means whether this device is
558 * used or whether it should be removed.
559 */
560 if (step == 0 || device->is_tgtdev_for_dev_replace) {
561 continue;
562 }
563 }
2b82032c 564 if (device->bdev) {
d4d77629 565 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
566 device->bdev = NULL;
567 fs_devices->open_devices--;
568 }
569 if (device->writeable) {
570 list_del_init(&device->dev_alloc_list);
571 device->writeable = 0;
8dabb742
SB
572 if (!device->is_tgtdev_for_dev_replace)
573 fs_devices->rw_devices--;
2b82032c 574 }
e4404d6e
YZ
575 list_del_init(&device->dev_list);
576 fs_devices->num_devices--;
606686ee 577 rcu_string_free(device->name);
e4404d6e 578 kfree(device);
dfe25020 579 }
2b82032c
YZ
580
581 if (fs_devices->seed) {
582 fs_devices = fs_devices->seed;
2b82032c
YZ
583 goto again;
584 }
585
a6b0d5c8
CM
586 fs_devices->latest_bdev = latest_bdev;
587 fs_devices->latest_devid = latest_devid;
588 fs_devices->latest_trans = latest_transid;
589
dfe25020 590 mutex_unlock(&uuid_mutex);
dfe25020 591}
a0af469b 592
1f78160c
XG
593static void __free_device(struct work_struct *work)
594{
595 struct btrfs_device *device;
596
597 device = container_of(work, struct btrfs_device, rcu_work);
598
599 if (device->bdev)
600 blkdev_put(device->bdev, device->mode);
601
606686ee 602 rcu_string_free(device->name);
1f78160c
XG
603 kfree(device);
604}
605
606static void free_device(struct rcu_head *head)
607{
608 struct btrfs_device *device;
609
610 device = container_of(head, struct btrfs_device, rcu);
611
612 INIT_WORK(&device->rcu_work, __free_device);
613 schedule_work(&device->rcu_work);
614}
615
2b82032c 616static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 617{
8a4b83cc 618 struct btrfs_device *device;
e4404d6e 619
2b82032c
YZ
620 if (--fs_devices->opened > 0)
621 return 0;
8a4b83cc 622
c9513edb 623 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 624 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c 625 struct btrfs_device *new_device;
606686ee 626 struct rcu_string *name;
1f78160c
XG
627
628 if (device->bdev)
a0af469b 629 fs_devices->open_devices--;
1f78160c 630
8dabb742 631 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c
YZ
632 list_del_init(&device->dev_alloc_list);
633 fs_devices->rw_devices--;
634 }
635
d5e2003c
JB
636 if (device->can_discard)
637 fs_devices->num_can_discard--;
638
1f78160c 639 new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
79787eaa 640 BUG_ON(!new_device); /* -ENOMEM */
1f78160c 641 memcpy(new_device, device, sizeof(*new_device));
606686ee
JB
642
643 /* Safe because we are under uuid_mutex */
99f5944b
JB
644 if (device->name) {
645 name = rcu_string_strdup(device->name->str, GFP_NOFS);
646 BUG_ON(device->name && !name); /* -ENOMEM */
647 rcu_assign_pointer(new_device->name, name);
648 }
1f78160c
XG
649 new_device->bdev = NULL;
650 new_device->writeable = 0;
651 new_device->in_fs_metadata = 0;
d5e2003c 652 new_device->can_discard = 0;
1f78160c
XG
653 list_replace_rcu(&device->dev_list, &new_device->dev_list);
654
655 call_rcu(&device->rcu, free_device);
8a4b83cc 656 }
c9513edb
XG
657 mutex_unlock(&fs_devices->device_list_mutex);
658
e4404d6e
YZ
659 WARN_ON(fs_devices->open_devices);
660 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
661 fs_devices->opened = 0;
662 fs_devices->seeding = 0;
2b82032c 663
8a4b83cc
CM
664 return 0;
665}
666
2b82032c
YZ
667int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
668{
e4404d6e 669 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
670 int ret;
671
672 mutex_lock(&uuid_mutex);
673 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
674 if (!fs_devices->opened) {
675 seed_devices = fs_devices->seed;
676 fs_devices->seed = NULL;
677 }
2b82032c 678 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
679
680 while (seed_devices) {
681 fs_devices = seed_devices;
682 seed_devices = fs_devices->seed;
683 __btrfs_close_devices(fs_devices);
684 free_fs_devices(fs_devices);
685 }
2b82032c
YZ
686 return ret;
687}
688
e4404d6e
YZ
689static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
690 fmode_t flags, void *holder)
8a4b83cc 691{
d5e2003c 692 struct request_queue *q;
8a4b83cc
CM
693 struct block_device *bdev;
694 struct list_head *head = &fs_devices->devices;
8a4b83cc 695 struct btrfs_device *device;
a0af469b
CM
696 struct block_device *latest_bdev = NULL;
697 struct buffer_head *bh;
698 struct btrfs_super_block *disk_super;
699 u64 latest_devid = 0;
700 u64 latest_transid = 0;
a0af469b 701 u64 devid;
2b82032c 702 int seeding = 1;
a0af469b 703 int ret = 0;
8a4b83cc 704
d4d77629
TH
705 flags |= FMODE_EXCL;
706
c6e30871 707 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
708 if (device->bdev)
709 continue;
dfe25020
CM
710 if (!device->name)
711 continue;
712
beaf8ab3
SB
713 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
714 &bdev, &bh);
715 if (ret)
716 continue;
a0af469b
CM
717
718 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 719 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
720 if (devid != device->devid)
721 goto error_brelse;
722
2b82032c
YZ
723 if (memcmp(device->uuid, disk_super->dev_item.uuid,
724 BTRFS_UUID_SIZE))
725 goto error_brelse;
726
727 device->generation = btrfs_super_generation(disk_super);
728 if (!latest_transid || device->generation > latest_transid) {
a0af469b 729 latest_devid = devid;
2b82032c 730 latest_transid = device->generation;
a0af469b
CM
731 latest_bdev = bdev;
732 }
733
2b82032c
YZ
734 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
735 device->writeable = 0;
736 } else {
737 device->writeable = !bdev_read_only(bdev);
738 seeding = 0;
739 }
740
d5e2003c
JB
741 q = bdev_get_queue(bdev);
742 if (blk_queue_discard(q)) {
743 device->can_discard = 1;
744 fs_devices->num_can_discard++;
745 }
746
8a4b83cc 747 device->bdev = bdev;
dfe25020 748 device->in_fs_metadata = 0;
15916de8
CM
749 device->mode = flags;
750
c289811c
CM
751 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
752 fs_devices->rotating = 1;
753
a0af469b 754 fs_devices->open_devices++;
8dabb742 755 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c
YZ
756 fs_devices->rw_devices++;
757 list_add(&device->dev_alloc_list,
758 &fs_devices->alloc_list);
759 }
4f6c9328 760 brelse(bh);
a0af469b 761 continue;
a061fc8d 762
a0af469b
CM
763error_brelse:
764 brelse(bh);
d4d77629 765 blkdev_put(bdev, flags);
a0af469b 766 continue;
8a4b83cc 767 }
a0af469b 768 if (fs_devices->open_devices == 0) {
20bcd649 769 ret = -EINVAL;
a0af469b
CM
770 goto out;
771 }
2b82032c
YZ
772 fs_devices->seeding = seeding;
773 fs_devices->opened = 1;
a0af469b
CM
774 fs_devices->latest_bdev = latest_bdev;
775 fs_devices->latest_devid = latest_devid;
776 fs_devices->latest_trans = latest_transid;
2b82032c 777 fs_devices->total_rw_bytes = 0;
a0af469b 778out:
2b82032c
YZ
779 return ret;
780}
781
782int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 783 fmode_t flags, void *holder)
2b82032c
YZ
784{
785 int ret;
786
787 mutex_lock(&uuid_mutex);
788 if (fs_devices->opened) {
e4404d6e
YZ
789 fs_devices->opened++;
790 ret = 0;
2b82032c 791 } else {
15916de8 792 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 793 }
8a4b83cc 794 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
795 return ret;
796}
797
6f60cbd3
DS
798/*
799 * Look for a btrfs signature on a device. This may be called out of the mount path
800 * and we are not allowed to call set_blocksize during the scan. The superblock
801 * is read via pagecache
802 */
97288f2c 803int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
804 struct btrfs_fs_devices **fs_devices_ret)
805{
806 struct btrfs_super_block *disk_super;
807 struct block_device *bdev;
6f60cbd3
DS
808 struct page *page;
809 void *p;
810 int ret = -EINVAL;
8a4b83cc 811 u64 devid;
f2984462 812 u64 transid;
02db0844 813 u64 total_devices;
6f60cbd3
DS
814 u64 bytenr;
815 pgoff_t index;
8a4b83cc 816
6f60cbd3
DS
817 /*
818 * we would like to check all the supers, but that would make
819 * a btrfs mount succeed after a mkfs from a different FS.
820 * So, we need to add a special mount option to scan for
821 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
822 */
823 bytenr = btrfs_sb_offset(0);
d4d77629 824 flags |= FMODE_EXCL;
10f6327b 825 mutex_lock(&uuid_mutex);
6f60cbd3
DS
826
827 bdev = blkdev_get_by_path(path, flags, holder);
828
829 if (IS_ERR(bdev)) {
830 ret = PTR_ERR(bdev);
831 printk(KERN_INFO "btrfs: open %s failed\n", path);
beaf8ab3 832 goto error;
6f60cbd3
DS
833 }
834
835 /* make sure our super fits in the device */
836 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
837 goto error_bdev_put;
838
839 /* make sure our super fits in the page */
840 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
841 goto error_bdev_put;
842
843 /* make sure our super doesn't straddle pages on disk */
844 index = bytenr >> PAGE_CACHE_SHIFT;
845 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
846 goto error_bdev_put;
847
848 /* pull in the page with our super */
849 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
850 index, GFP_NOFS);
851
852 if (IS_ERR_OR_NULL(page))
853 goto error_bdev_put;
854
855 p = kmap(page);
856
857 /* align our pointer to the offset of the super block */
858 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
859
860 if (btrfs_super_bytenr(disk_super) != bytenr ||
cdb4c574 861 disk_super->magic != cpu_to_le64(BTRFS_MAGIC))
6f60cbd3
DS
862 goto error_unmap;
863
a343832f 864 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 865 transid = btrfs_super_generation(disk_super);
02db0844 866 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 867
d03f918a
SB
868 if (disk_super->label[0]) {
869 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
870 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
d397712b 871 printk(KERN_INFO "device label %s ", disk_super->label);
d03f918a 872 } else {
22b63a29 873 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
d03f918a 874 }
6f60cbd3 875
119e10cf 876 printk(KERN_CONT "devid %llu transid %llu %s\n",
d397712b 877 (unsigned long long)devid, (unsigned long long)transid, path);
6f60cbd3 878
8a4b83cc 879 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
02db0844
JB
880 if (!ret && fs_devices_ret)
881 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3
DS
882
883error_unmap:
884 kunmap(page);
885 page_cache_release(page);
886
887error_bdev_put:
d4d77629 888 blkdev_put(bdev, flags);
8a4b83cc 889error:
beaf8ab3 890 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
891 return ret;
892}
0b86a832 893
6d07bcec
MX
894/* helper to account the used device space in the range */
895int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
896 u64 end, u64 *length)
897{
898 struct btrfs_key key;
899 struct btrfs_root *root = device->dev_root;
900 struct btrfs_dev_extent *dev_extent;
901 struct btrfs_path *path;
902 u64 extent_end;
903 int ret;
904 int slot;
905 struct extent_buffer *l;
906
907 *length = 0;
908
63a212ab 909 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
910 return 0;
911
912 path = btrfs_alloc_path();
913 if (!path)
914 return -ENOMEM;
915 path->reada = 2;
916
917 key.objectid = device->devid;
918 key.offset = start;
919 key.type = BTRFS_DEV_EXTENT_KEY;
920
921 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
922 if (ret < 0)
923 goto out;
924 if (ret > 0) {
925 ret = btrfs_previous_item(root, path, key.objectid, key.type);
926 if (ret < 0)
927 goto out;
928 }
929
930 while (1) {
931 l = path->nodes[0];
932 slot = path->slots[0];
933 if (slot >= btrfs_header_nritems(l)) {
934 ret = btrfs_next_leaf(root, path);
935 if (ret == 0)
936 continue;
937 if (ret < 0)
938 goto out;
939
940 break;
941 }
942 btrfs_item_key_to_cpu(l, &key, slot);
943
944 if (key.objectid < device->devid)
945 goto next;
946
947 if (key.objectid > device->devid)
948 break;
949
950 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
951 goto next;
952
953 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
954 extent_end = key.offset + btrfs_dev_extent_length(l,
955 dev_extent);
956 if (key.offset <= start && extent_end > end) {
957 *length = end - start + 1;
958 break;
959 } else if (key.offset <= start && extent_end > start)
960 *length += extent_end - start;
961 else if (key.offset > start && extent_end <= end)
962 *length += extent_end - key.offset;
963 else if (key.offset > start && key.offset <= end) {
964 *length += end - key.offset + 1;
965 break;
966 } else if (key.offset > end)
967 break;
968
969next:
970 path->slots[0]++;
971 }
972 ret = 0;
973out:
974 btrfs_free_path(path);
975 return ret;
976}
977
0b86a832 978/*
7bfc837d 979 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
980 * @device: the device which we search the free space in
981 * @num_bytes: the size of the free space that we need
982 * @start: store the start of the free space.
983 * @len: the size of the free space. that we find, or the size of the max
984 * free space if we don't find suitable free space
985 *
0b86a832
CM
986 * this uses a pretty simple search, the expectation is that it is
987 * called very infrequently and that a given device has a small number
988 * of extents
7bfc837d
MX
989 *
990 * @start is used to store the start of the free space if we find. But if we
991 * don't find suitable free space, it will be used to store the start position
992 * of the max free space.
993 *
994 * @len is used to store the size of the free space that we find.
995 * But if we don't find suitable free space, it is used to store the size of
996 * the max free space.
0b86a832 997 */
125ccb0a 998int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
7bfc837d 999 u64 *start, u64 *len)
0b86a832
CM
1000{
1001 struct btrfs_key key;
1002 struct btrfs_root *root = device->dev_root;
7bfc837d 1003 struct btrfs_dev_extent *dev_extent;
2b82032c 1004 struct btrfs_path *path;
7bfc837d
MX
1005 u64 hole_size;
1006 u64 max_hole_start;
1007 u64 max_hole_size;
1008 u64 extent_end;
1009 u64 search_start;
0b86a832
CM
1010 u64 search_end = device->total_bytes;
1011 int ret;
7bfc837d 1012 int slot;
0b86a832
CM
1013 struct extent_buffer *l;
1014
0b86a832
CM
1015 /* FIXME use last free of some kind */
1016
8a4b83cc
CM
1017 /* we don't want to overwrite the superblock on the drive,
1018 * so we make sure to start at an offset of at least 1MB
1019 */
a9c9bf68 1020 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 1021
7bfc837d
MX
1022 max_hole_start = search_start;
1023 max_hole_size = 0;
38c01b96 1024 hole_size = 0;
7bfc837d 1025
63a212ab 1026 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d
MX
1027 ret = -ENOSPC;
1028 goto error;
1029 }
1030
1031 path = btrfs_alloc_path();
1032 if (!path) {
1033 ret = -ENOMEM;
1034 goto error;
1035 }
1036 path->reada = 2;
1037
0b86a832
CM
1038 key.objectid = device->devid;
1039 key.offset = search_start;
1040 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1041
125ccb0a 1042 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1043 if (ret < 0)
7bfc837d 1044 goto out;
1fcbac58
YZ
1045 if (ret > 0) {
1046 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1047 if (ret < 0)
7bfc837d 1048 goto out;
1fcbac58 1049 }
7bfc837d 1050
0b86a832
CM
1051 while (1) {
1052 l = path->nodes[0];
1053 slot = path->slots[0];
1054 if (slot >= btrfs_header_nritems(l)) {
1055 ret = btrfs_next_leaf(root, path);
1056 if (ret == 0)
1057 continue;
1058 if (ret < 0)
7bfc837d
MX
1059 goto out;
1060
1061 break;
0b86a832
CM
1062 }
1063 btrfs_item_key_to_cpu(l, &key, slot);
1064
1065 if (key.objectid < device->devid)
1066 goto next;
1067
1068 if (key.objectid > device->devid)
7bfc837d 1069 break;
0b86a832 1070
7bfc837d
MX
1071 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1072 goto next;
9779b72f 1073
7bfc837d
MX
1074 if (key.offset > search_start) {
1075 hole_size = key.offset - search_start;
9779b72f 1076
7bfc837d
MX
1077 if (hole_size > max_hole_size) {
1078 max_hole_start = search_start;
1079 max_hole_size = hole_size;
1080 }
9779b72f 1081
7bfc837d
MX
1082 /*
1083 * If this free space is greater than which we need,
1084 * it must be the max free space that we have found
1085 * until now, so max_hole_start must point to the start
1086 * of this free space and the length of this free space
1087 * is stored in max_hole_size. Thus, we return
1088 * max_hole_start and max_hole_size and go back to the
1089 * caller.
1090 */
1091 if (hole_size >= num_bytes) {
1092 ret = 0;
1093 goto out;
0b86a832
CM
1094 }
1095 }
0b86a832 1096
0b86a832 1097 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1098 extent_end = key.offset + btrfs_dev_extent_length(l,
1099 dev_extent);
1100 if (extent_end > search_start)
1101 search_start = extent_end;
0b86a832
CM
1102next:
1103 path->slots[0]++;
1104 cond_resched();
1105 }
0b86a832 1106
38c01b96 1107 /*
1108 * At this point, search_start should be the end of
1109 * allocated dev extents, and when shrinking the device,
1110 * search_end may be smaller than search_start.
1111 */
1112 if (search_end > search_start)
1113 hole_size = search_end - search_start;
1114
7bfc837d
MX
1115 if (hole_size > max_hole_size) {
1116 max_hole_start = search_start;
1117 max_hole_size = hole_size;
0b86a832 1118 }
0b86a832 1119
7bfc837d
MX
1120 /* See above. */
1121 if (hole_size < num_bytes)
1122 ret = -ENOSPC;
1123 else
1124 ret = 0;
1125
1126out:
2b82032c 1127 btrfs_free_path(path);
7bfc837d
MX
1128error:
1129 *start = max_hole_start;
b2117a39 1130 if (len)
7bfc837d 1131 *len = max_hole_size;
0b86a832
CM
1132 return ret;
1133}
1134
b2950863 1135static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
1136 struct btrfs_device *device,
1137 u64 start)
1138{
1139 int ret;
1140 struct btrfs_path *path;
1141 struct btrfs_root *root = device->dev_root;
1142 struct btrfs_key key;
a061fc8d
CM
1143 struct btrfs_key found_key;
1144 struct extent_buffer *leaf = NULL;
1145 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1146
1147 path = btrfs_alloc_path();
1148 if (!path)
1149 return -ENOMEM;
1150
1151 key.objectid = device->devid;
1152 key.offset = start;
1153 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1154again:
8f18cf13 1155 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1156 if (ret > 0) {
1157 ret = btrfs_previous_item(root, path, key.objectid,
1158 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1159 if (ret)
1160 goto out;
a061fc8d
CM
1161 leaf = path->nodes[0];
1162 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1163 extent = btrfs_item_ptr(leaf, path->slots[0],
1164 struct btrfs_dev_extent);
1165 BUG_ON(found_key.offset > start || found_key.offset +
1166 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1167 key = found_key;
1168 btrfs_release_path(path);
1169 goto again;
a061fc8d
CM
1170 } else if (ret == 0) {
1171 leaf = path->nodes[0];
1172 extent = btrfs_item_ptr(leaf, path->slots[0],
1173 struct btrfs_dev_extent);
79787eaa
JM
1174 } else {
1175 btrfs_error(root->fs_info, ret, "Slot search failed");
1176 goto out;
a061fc8d 1177 }
8f18cf13 1178
2bf64758
JB
1179 if (device->bytes_used > 0) {
1180 u64 len = btrfs_dev_extent_length(leaf, extent);
1181 device->bytes_used -= len;
1182 spin_lock(&root->fs_info->free_chunk_lock);
1183 root->fs_info->free_chunk_space += len;
1184 spin_unlock(&root->fs_info->free_chunk_lock);
1185 }
8f18cf13 1186 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1187 if (ret) {
1188 btrfs_error(root->fs_info, ret,
1189 "Failed to remove dev extent item");
1190 }
b0b802d7 1191out:
8f18cf13
CM
1192 btrfs_free_path(path);
1193 return ret;
1194}
1195
2b82032c 1196int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
0b86a832 1197 struct btrfs_device *device,
e17cade2 1198 u64 chunk_tree, u64 chunk_objectid,
2b82032c 1199 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1200{
1201 int ret;
1202 struct btrfs_path *path;
1203 struct btrfs_root *root = device->dev_root;
1204 struct btrfs_dev_extent *extent;
1205 struct extent_buffer *leaf;
1206 struct btrfs_key key;
1207
dfe25020 1208 WARN_ON(!device->in_fs_metadata);
63a212ab 1209 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1210 path = btrfs_alloc_path();
1211 if (!path)
1212 return -ENOMEM;
1213
0b86a832 1214 key.objectid = device->devid;
2b82032c 1215 key.offset = start;
0b86a832
CM
1216 key.type = BTRFS_DEV_EXTENT_KEY;
1217 ret = btrfs_insert_empty_item(trans, root, path, &key,
1218 sizeof(*extent));
2cdcecbc
MF
1219 if (ret)
1220 goto out;
0b86a832
CM
1221
1222 leaf = path->nodes[0];
1223 extent = btrfs_item_ptr(leaf, path->slots[0],
1224 struct btrfs_dev_extent);
e17cade2
CM
1225 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1226 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1227 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1228
1229 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1230 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1231 BTRFS_UUID_SIZE);
1232
0b86a832
CM
1233 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1234 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1235out:
0b86a832
CM
1236 btrfs_free_path(path);
1237 return ret;
1238}
1239
a1b32a59
CM
1240static noinline int find_next_chunk(struct btrfs_root *root,
1241 u64 objectid, u64 *offset)
0b86a832
CM
1242{
1243 struct btrfs_path *path;
1244 int ret;
1245 struct btrfs_key key;
e17cade2 1246 struct btrfs_chunk *chunk;
0b86a832
CM
1247 struct btrfs_key found_key;
1248
1249 path = btrfs_alloc_path();
92b8e897
MF
1250 if (!path)
1251 return -ENOMEM;
0b86a832 1252
e17cade2 1253 key.objectid = objectid;
0b86a832
CM
1254 key.offset = (u64)-1;
1255 key.type = BTRFS_CHUNK_ITEM_KEY;
1256
1257 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1258 if (ret < 0)
1259 goto error;
1260
79787eaa 1261 BUG_ON(ret == 0); /* Corruption */
0b86a832
CM
1262
1263 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1264 if (ret) {
e17cade2 1265 *offset = 0;
0b86a832
CM
1266 } else {
1267 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1268 path->slots[0]);
e17cade2
CM
1269 if (found_key.objectid != objectid)
1270 *offset = 0;
1271 else {
1272 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1273 struct btrfs_chunk);
1274 *offset = found_key.offset +
1275 btrfs_chunk_length(path->nodes[0], chunk);
1276 }
0b86a832
CM
1277 }
1278 ret = 0;
1279error:
1280 btrfs_free_path(path);
1281 return ret;
1282}
1283
2b82032c 1284static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
0b86a832
CM
1285{
1286 int ret;
1287 struct btrfs_key key;
1288 struct btrfs_key found_key;
2b82032c
YZ
1289 struct btrfs_path *path;
1290
1291 root = root->fs_info->chunk_root;
1292
1293 path = btrfs_alloc_path();
1294 if (!path)
1295 return -ENOMEM;
0b86a832
CM
1296
1297 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1298 key.type = BTRFS_DEV_ITEM_KEY;
1299 key.offset = (u64)-1;
1300
1301 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1302 if (ret < 0)
1303 goto error;
1304
79787eaa 1305 BUG_ON(ret == 0); /* Corruption */
0b86a832
CM
1306
1307 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1308 BTRFS_DEV_ITEM_KEY);
1309 if (ret) {
1310 *objectid = 1;
1311 } else {
1312 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1313 path->slots[0]);
1314 *objectid = found_key.offset + 1;
1315 }
1316 ret = 0;
1317error:
2b82032c 1318 btrfs_free_path(path);
0b86a832
CM
1319 return ret;
1320}
1321
1322/*
1323 * the device information is stored in the chunk root
1324 * the btrfs_device struct should be fully filled in
1325 */
1326int btrfs_add_device(struct btrfs_trans_handle *trans,
1327 struct btrfs_root *root,
1328 struct btrfs_device *device)
1329{
1330 int ret;
1331 struct btrfs_path *path;
1332 struct btrfs_dev_item *dev_item;
1333 struct extent_buffer *leaf;
1334 struct btrfs_key key;
1335 unsigned long ptr;
0b86a832
CM
1336
1337 root = root->fs_info->chunk_root;
1338
1339 path = btrfs_alloc_path();
1340 if (!path)
1341 return -ENOMEM;
1342
0b86a832
CM
1343 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1344 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1345 key.offset = device->devid;
0b86a832
CM
1346
1347 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1348 sizeof(*dev_item));
0b86a832
CM
1349 if (ret)
1350 goto out;
1351
1352 leaf = path->nodes[0];
1353 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1354
1355 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1356 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1357 btrfs_set_device_type(leaf, dev_item, device->type);
1358 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1359 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1360 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1361 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1362 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1363 btrfs_set_device_group(leaf, dev_item, 0);
1364 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1365 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1366 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1367
0b86a832 1368 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 1369 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2b82032c
YZ
1370 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1371 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1372 btrfs_mark_buffer_dirty(leaf);
0b86a832 1373
2b82032c 1374 ret = 0;
0b86a832
CM
1375out:
1376 btrfs_free_path(path);
1377 return ret;
1378}
8f18cf13 1379
a061fc8d
CM
1380static int btrfs_rm_dev_item(struct btrfs_root *root,
1381 struct btrfs_device *device)
1382{
1383 int ret;
1384 struct btrfs_path *path;
a061fc8d 1385 struct btrfs_key key;
a061fc8d
CM
1386 struct btrfs_trans_handle *trans;
1387
1388 root = root->fs_info->chunk_root;
1389
1390 path = btrfs_alloc_path();
1391 if (!path)
1392 return -ENOMEM;
1393
a22285a6 1394 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1395 if (IS_ERR(trans)) {
1396 btrfs_free_path(path);
1397 return PTR_ERR(trans);
1398 }
a061fc8d
CM
1399 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1400 key.type = BTRFS_DEV_ITEM_KEY;
1401 key.offset = device->devid;
7d9eb12c 1402 lock_chunks(root);
a061fc8d
CM
1403
1404 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1405 if (ret < 0)
1406 goto out;
1407
1408 if (ret > 0) {
1409 ret = -ENOENT;
1410 goto out;
1411 }
1412
1413 ret = btrfs_del_item(trans, root, path);
1414 if (ret)
1415 goto out;
a061fc8d
CM
1416out:
1417 btrfs_free_path(path);
7d9eb12c 1418 unlock_chunks(root);
a061fc8d
CM
1419 btrfs_commit_transaction(trans, root);
1420 return ret;
1421}
1422
1423int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1424{
1425 struct btrfs_device *device;
2b82032c 1426 struct btrfs_device *next_device;
a061fc8d 1427 struct block_device *bdev;
dfe25020 1428 struct buffer_head *bh = NULL;
a061fc8d 1429 struct btrfs_super_block *disk_super;
1f78160c 1430 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1431 u64 all_avail;
1432 u64 devid;
2b82032c
YZ
1433 u64 num_devices;
1434 u8 *dev_uuid;
de98ced9 1435 unsigned seq;
a061fc8d 1436 int ret = 0;
1f78160c 1437 bool clear_super = false;
a061fc8d 1438
a061fc8d
CM
1439 mutex_lock(&uuid_mutex);
1440
de98ced9
MX
1441 do {
1442 seq = read_seqbegin(&root->fs_info->profiles_lock);
1443
1444 all_avail = root->fs_info->avail_data_alloc_bits |
1445 root->fs_info->avail_system_alloc_bits |
1446 root->fs_info->avail_metadata_alloc_bits;
1447 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
a061fc8d 1448
8dabb742
SB
1449 num_devices = root->fs_info->fs_devices->num_devices;
1450 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1451 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1452 WARN_ON(num_devices < 1);
1453 num_devices--;
1454 }
1455 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1456
1457 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
d397712b
CM
1458 printk(KERN_ERR "btrfs: unable to go below four devices "
1459 "on raid10\n");
a061fc8d
CM
1460 ret = -EINVAL;
1461 goto out;
1462 }
1463
8dabb742 1464 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
d397712b
CM
1465 printk(KERN_ERR "btrfs: unable to go below two "
1466 "devices on raid1\n");
a061fc8d
CM
1467 ret = -EINVAL;
1468 goto out;
1469 }
1470
53b381b3
DW
1471 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1472 root->fs_info->fs_devices->rw_devices <= 2) {
1473 printk(KERN_ERR "btrfs: unable to go below two "
1474 "devices on raid5\n");
1475 ret = -EINVAL;
1476 goto out;
1477 }
1478 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1479 root->fs_info->fs_devices->rw_devices <= 3) {
1480 printk(KERN_ERR "btrfs: unable to go below three "
1481 "devices on raid6\n");
1482 ret = -EINVAL;
1483 goto out;
1484 }
1485
dfe25020 1486 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1487 struct list_head *devices;
1488 struct btrfs_device *tmp;
a061fc8d 1489
dfe25020
CM
1490 device = NULL;
1491 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1492 /*
1493 * It is safe to read the devices since the volume_mutex
1494 * is held.
1495 */
c6e30871 1496 list_for_each_entry(tmp, devices, dev_list) {
63a212ab
SB
1497 if (tmp->in_fs_metadata &&
1498 !tmp->is_tgtdev_for_dev_replace &&
1499 !tmp->bdev) {
dfe25020
CM
1500 device = tmp;
1501 break;
1502 }
1503 }
1504 bdev = NULL;
1505 bh = NULL;
1506 disk_super = NULL;
1507 if (!device) {
d397712b
CM
1508 printk(KERN_ERR "btrfs: no missing devices found to "
1509 "remove\n");
dfe25020
CM
1510 goto out;
1511 }
dfe25020 1512 } else {
beaf8ab3 1513 ret = btrfs_get_bdev_and_sb(device_path,
cc975eb4 1514 FMODE_WRITE | FMODE_EXCL,
beaf8ab3
SB
1515 root->fs_info->bdev_holder, 0,
1516 &bdev, &bh);
1517 if (ret)
dfe25020 1518 goto out;
dfe25020 1519 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1520 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c 1521 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1522 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2b82032c 1523 disk_super->fsid);
dfe25020
CM
1524 if (!device) {
1525 ret = -ENOENT;
1526 goto error_brelse;
1527 }
2b82032c 1528 }
dfe25020 1529
63a212ab
SB
1530 if (device->is_tgtdev_for_dev_replace) {
1531 pr_err("btrfs: unable to remove the dev_replace target dev\n");
1532 ret = -EINVAL;
1533 goto error_brelse;
1534 }
1535
2b82032c 1536 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
d397712b
CM
1537 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1538 "device\n");
2b82032c
YZ
1539 ret = -EINVAL;
1540 goto error_brelse;
1541 }
1542
1543 if (device->writeable) {
0c1daee0 1544 lock_chunks(root);
2b82032c 1545 list_del_init(&device->dev_alloc_list);
0c1daee0 1546 unlock_chunks(root);
2b82032c 1547 root->fs_info->fs_devices->rw_devices--;
1f78160c 1548 clear_super = true;
dfe25020 1549 }
a061fc8d
CM
1550
1551 ret = btrfs_shrink_device(device, 0);
1552 if (ret)
9b3517e9 1553 goto error_undo;
a061fc8d 1554
63a212ab
SB
1555 /*
1556 * TODO: the superblock still includes this device in its num_devices
1557 * counter although write_all_supers() is not locked out. This
1558 * could give a filesystem state which requires a degraded mount.
1559 */
a061fc8d
CM
1560 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1561 if (ret)
9b3517e9 1562 goto error_undo;
a061fc8d 1563
2bf64758
JB
1564 spin_lock(&root->fs_info->free_chunk_lock);
1565 root->fs_info->free_chunk_space = device->total_bytes -
1566 device->bytes_used;
1567 spin_unlock(&root->fs_info->free_chunk_lock);
1568
2b82032c 1569 device->in_fs_metadata = 0;
aa1b8cd4 1570 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1571
1572 /*
1573 * the device list mutex makes sure that we don't change
1574 * the device list while someone else is writing out all
1575 * the device supers.
1576 */
1f78160c
XG
1577
1578 cur_devices = device->fs_devices;
e5e9a520 1579 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1580 list_del_rcu(&device->dev_list);
e5e9a520 1581
e4404d6e 1582 device->fs_devices->num_devices--;
02db0844 1583 device->fs_devices->total_devices--;
2b82032c 1584
cd02dca5
CM
1585 if (device->missing)
1586 root->fs_info->fs_devices->missing_devices--;
1587
2b82032c
YZ
1588 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1589 struct btrfs_device, dev_list);
1590 if (device->bdev == root->fs_info->sb->s_bdev)
1591 root->fs_info->sb->s_bdev = next_device->bdev;
1592 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1593 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1594
1f78160c 1595 if (device->bdev)
e4404d6e 1596 device->fs_devices->open_devices--;
1f78160c
XG
1597
1598 call_rcu(&device->rcu, free_device);
1599 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
e4404d6e 1600
6c41761f
DS
1601 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1602 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
2b82032c 1603
1f78160c 1604 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1605 struct btrfs_fs_devices *fs_devices;
1606 fs_devices = root->fs_info->fs_devices;
1607 while (fs_devices) {
1f78160c 1608 if (fs_devices->seed == cur_devices)
e4404d6e
YZ
1609 break;
1610 fs_devices = fs_devices->seed;
2b82032c 1611 }
1f78160c
XG
1612 fs_devices->seed = cur_devices->seed;
1613 cur_devices->seed = NULL;
0c1daee0 1614 lock_chunks(root);
1f78160c 1615 __btrfs_close_devices(cur_devices);
0c1daee0 1616 unlock_chunks(root);
1f78160c 1617 free_fs_devices(cur_devices);
2b82032c
YZ
1618 }
1619
5af3e8cc
SB
1620 root->fs_info->num_tolerated_disk_barrier_failures =
1621 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1622
2b82032c
YZ
1623 /*
1624 * at this point, the device is zero sized. We want to
1625 * remove it from the devices list and zero out the old super
1626 */
aa1b8cd4 1627 if (clear_super && disk_super) {
dfe25020
CM
1628 /* make sure this device isn't detected as part of
1629 * the FS anymore
1630 */
1631 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1632 set_buffer_dirty(bh);
1633 sync_dirty_buffer(bh);
dfe25020 1634 }
a061fc8d 1635
a061fc8d 1636 ret = 0;
a061fc8d 1637
b8b8ff59 1638 /* Notify udev that device has changed */
3c911608
ES
1639 if (bdev)
1640 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
b8b8ff59 1641
a061fc8d
CM
1642error_brelse:
1643 brelse(bh);
dfe25020 1644 if (bdev)
e525fd89 1645 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1646out:
1647 mutex_unlock(&uuid_mutex);
a061fc8d 1648 return ret;
9b3517e9
ID
1649error_undo:
1650 if (device->writeable) {
0c1daee0 1651 lock_chunks(root);
9b3517e9
ID
1652 list_add(&device->dev_alloc_list,
1653 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1654 unlock_chunks(root);
9b3517e9
ID
1655 root->fs_info->fs_devices->rw_devices++;
1656 }
1657 goto error_brelse;
a061fc8d
CM
1658}
1659
e93c89c1
SB
1660void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1661 struct btrfs_device *srcdev)
1662{
1663 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1664 list_del_rcu(&srcdev->dev_list);
1665 list_del_rcu(&srcdev->dev_alloc_list);
1666 fs_info->fs_devices->num_devices--;
1667 if (srcdev->missing) {
1668 fs_info->fs_devices->missing_devices--;
1669 fs_info->fs_devices->rw_devices++;
1670 }
1671 if (srcdev->can_discard)
1672 fs_info->fs_devices->num_can_discard--;
1673 if (srcdev->bdev)
1674 fs_info->fs_devices->open_devices--;
1675
1676 call_rcu(&srcdev->rcu, free_device);
1677}
1678
1679void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1680 struct btrfs_device *tgtdev)
1681{
1682 struct btrfs_device *next_device;
1683
1684 WARN_ON(!tgtdev);
1685 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1686 if (tgtdev->bdev) {
1687 btrfs_scratch_superblock(tgtdev);
1688 fs_info->fs_devices->open_devices--;
1689 }
1690 fs_info->fs_devices->num_devices--;
1691 if (tgtdev->can_discard)
1692 fs_info->fs_devices->num_can_discard++;
1693
1694 next_device = list_entry(fs_info->fs_devices->devices.next,
1695 struct btrfs_device, dev_list);
1696 if (tgtdev->bdev == fs_info->sb->s_bdev)
1697 fs_info->sb->s_bdev = next_device->bdev;
1698 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1699 fs_info->fs_devices->latest_bdev = next_device->bdev;
1700 list_del_rcu(&tgtdev->dev_list);
1701
1702 call_rcu(&tgtdev->rcu, free_device);
1703
1704 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1705}
1706
7ba15b7d
SB
1707int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1708 struct btrfs_device **device)
1709{
1710 int ret = 0;
1711 struct btrfs_super_block *disk_super;
1712 u64 devid;
1713 u8 *dev_uuid;
1714 struct block_device *bdev;
1715 struct buffer_head *bh;
1716
1717 *device = NULL;
1718 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1719 root->fs_info->bdev_holder, 0, &bdev, &bh);
1720 if (ret)
1721 return ret;
1722 disk_super = (struct btrfs_super_block *)bh->b_data;
1723 devid = btrfs_stack_device_id(&disk_super->dev_item);
1724 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1725 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
1726 disk_super->fsid);
1727 brelse(bh);
1728 if (!*device)
1729 ret = -ENOENT;
1730 blkdev_put(bdev, FMODE_READ);
1731 return ret;
1732}
1733
1734int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1735 char *device_path,
1736 struct btrfs_device **device)
1737{
1738 *device = NULL;
1739 if (strcmp(device_path, "missing") == 0) {
1740 struct list_head *devices;
1741 struct btrfs_device *tmp;
1742
1743 devices = &root->fs_info->fs_devices->devices;
1744 /*
1745 * It is safe to read the devices since the volume_mutex
1746 * is held by the caller.
1747 */
1748 list_for_each_entry(tmp, devices, dev_list) {
1749 if (tmp->in_fs_metadata && !tmp->bdev) {
1750 *device = tmp;
1751 break;
1752 }
1753 }
1754
1755 if (!*device) {
1756 pr_err("btrfs: no missing device found\n");
1757 return -ENOENT;
1758 }
1759
1760 return 0;
1761 } else {
1762 return btrfs_find_device_by_path(root, device_path, device);
1763 }
1764}
1765
2b82032c
YZ
1766/*
1767 * does all the dirty work required for changing file system's UUID.
1768 */
125ccb0a 1769static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
1770{
1771 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1772 struct btrfs_fs_devices *old_devices;
e4404d6e 1773 struct btrfs_fs_devices *seed_devices;
6c41761f 1774 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1775 struct btrfs_device *device;
1776 u64 super_flags;
1777
1778 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1779 if (!fs_devices->seeding)
2b82032c
YZ
1780 return -EINVAL;
1781
e4404d6e
YZ
1782 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1783 if (!seed_devices)
2b82032c
YZ
1784 return -ENOMEM;
1785
e4404d6e
YZ
1786 old_devices = clone_fs_devices(fs_devices);
1787 if (IS_ERR(old_devices)) {
1788 kfree(seed_devices);
1789 return PTR_ERR(old_devices);
2b82032c 1790 }
e4404d6e 1791
2b82032c
YZ
1792 list_add(&old_devices->list, &fs_uuids);
1793
e4404d6e
YZ
1794 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1795 seed_devices->opened = 1;
1796 INIT_LIST_HEAD(&seed_devices->devices);
1797 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1798 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1799
1800 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1801 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1802 synchronize_rcu);
c9513edb
XG
1803 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1804
e4404d6e
YZ
1805 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1806 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1807 device->fs_devices = seed_devices;
1808 }
1809
2b82032c
YZ
1810 fs_devices->seeding = 0;
1811 fs_devices->num_devices = 0;
1812 fs_devices->open_devices = 0;
02db0844 1813 fs_devices->total_devices = 0;
e4404d6e 1814 fs_devices->seed = seed_devices;
2b82032c
YZ
1815
1816 generate_random_uuid(fs_devices->fsid);
1817 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1818 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1819 super_flags = btrfs_super_flags(disk_super) &
1820 ~BTRFS_SUPER_FLAG_SEEDING;
1821 btrfs_set_super_flags(disk_super, super_flags);
1822
1823 return 0;
1824}
1825
1826/*
1827 * strore the expected generation for seed devices in device items.
1828 */
1829static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1830 struct btrfs_root *root)
1831{
1832 struct btrfs_path *path;
1833 struct extent_buffer *leaf;
1834 struct btrfs_dev_item *dev_item;
1835 struct btrfs_device *device;
1836 struct btrfs_key key;
1837 u8 fs_uuid[BTRFS_UUID_SIZE];
1838 u8 dev_uuid[BTRFS_UUID_SIZE];
1839 u64 devid;
1840 int ret;
1841
1842 path = btrfs_alloc_path();
1843 if (!path)
1844 return -ENOMEM;
1845
1846 root = root->fs_info->chunk_root;
1847 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1848 key.offset = 0;
1849 key.type = BTRFS_DEV_ITEM_KEY;
1850
1851 while (1) {
1852 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1853 if (ret < 0)
1854 goto error;
1855
1856 leaf = path->nodes[0];
1857next_slot:
1858 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1859 ret = btrfs_next_leaf(root, path);
1860 if (ret > 0)
1861 break;
1862 if (ret < 0)
1863 goto error;
1864 leaf = path->nodes[0];
1865 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 1866 btrfs_release_path(path);
2b82032c
YZ
1867 continue;
1868 }
1869
1870 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1871 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1872 key.type != BTRFS_DEV_ITEM_KEY)
1873 break;
1874
1875 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1876 struct btrfs_dev_item);
1877 devid = btrfs_device_id(leaf, dev_item);
1878 read_extent_buffer(leaf, dev_uuid,
1879 (unsigned long)btrfs_device_uuid(dev_item),
1880 BTRFS_UUID_SIZE);
1881 read_extent_buffer(leaf, fs_uuid,
1882 (unsigned long)btrfs_device_fsid(dev_item),
1883 BTRFS_UUID_SIZE);
aa1b8cd4
SB
1884 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1885 fs_uuid);
79787eaa 1886 BUG_ON(!device); /* Logic error */
2b82032c
YZ
1887
1888 if (device->fs_devices->seeding) {
1889 btrfs_set_device_generation(leaf, dev_item,
1890 device->generation);
1891 btrfs_mark_buffer_dirty(leaf);
1892 }
1893
1894 path->slots[0]++;
1895 goto next_slot;
1896 }
1897 ret = 0;
1898error:
1899 btrfs_free_path(path);
1900 return ret;
1901}
1902
788f20eb
CM
1903int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1904{
d5e2003c 1905 struct request_queue *q;
788f20eb
CM
1906 struct btrfs_trans_handle *trans;
1907 struct btrfs_device *device;
1908 struct block_device *bdev;
788f20eb 1909 struct list_head *devices;
2b82032c 1910 struct super_block *sb = root->fs_info->sb;
606686ee 1911 struct rcu_string *name;
788f20eb 1912 u64 total_bytes;
2b82032c 1913 int seeding_dev = 0;
788f20eb
CM
1914 int ret = 0;
1915
2b82032c 1916 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 1917 return -EROFS;
788f20eb 1918
a5d16333 1919 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 1920 root->fs_info->bdev_holder);
7f59203a
JB
1921 if (IS_ERR(bdev))
1922 return PTR_ERR(bdev);
a2135011 1923
2b82032c
YZ
1924 if (root->fs_info->fs_devices->seeding) {
1925 seeding_dev = 1;
1926 down_write(&sb->s_umount);
1927 mutex_lock(&uuid_mutex);
1928 }
1929
8c8bee1d 1930 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 1931
788f20eb 1932 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
1933
1934 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 1935 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1936 if (device->bdev == bdev) {
1937 ret = -EEXIST;
d25628bd
LB
1938 mutex_unlock(
1939 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 1940 goto error;
788f20eb
CM
1941 }
1942 }
d25628bd 1943 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb
CM
1944
1945 device = kzalloc(sizeof(*device), GFP_NOFS);
1946 if (!device) {
1947 /* we can safely leave the fs_devices entry around */
1948 ret = -ENOMEM;
2b82032c 1949 goto error;
788f20eb
CM
1950 }
1951
606686ee
JB
1952 name = rcu_string_strdup(device_path, GFP_NOFS);
1953 if (!name) {
788f20eb 1954 kfree(device);
2b82032c
YZ
1955 ret = -ENOMEM;
1956 goto error;
788f20eb 1957 }
606686ee 1958 rcu_assign_pointer(device->name, name);
2b82032c
YZ
1959
1960 ret = find_next_devid(root, &device->devid);
1961 if (ret) {
606686ee 1962 rcu_string_free(device->name);
2b82032c
YZ
1963 kfree(device);
1964 goto error;
1965 }
1966
a22285a6 1967 trans = btrfs_start_transaction(root, 0);
98d5dc13 1968 if (IS_ERR(trans)) {
606686ee 1969 rcu_string_free(device->name);
98d5dc13
TI
1970 kfree(device);
1971 ret = PTR_ERR(trans);
1972 goto error;
1973 }
1974
2b82032c
YZ
1975 lock_chunks(root);
1976
d5e2003c
JB
1977 q = bdev_get_queue(bdev);
1978 if (blk_queue_discard(q))
1979 device->can_discard = 1;
2b82032c
YZ
1980 device->writeable = 1;
1981 device->work.func = pending_bios_fn;
1982 generate_random_uuid(device->uuid);
1983 spin_lock_init(&device->io_lock);
1984 device->generation = trans->transid;
788f20eb
CM
1985 device->io_width = root->sectorsize;
1986 device->io_align = root->sectorsize;
1987 device->sector_size = root->sectorsize;
1988 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 1989 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
1990 device->dev_root = root->fs_info->dev_root;
1991 device->bdev = bdev;
dfe25020 1992 device->in_fs_metadata = 1;
63a212ab 1993 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 1994 device->mode = FMODE_EXCL;
2b82032c 1995 set_blocksize(device->bdev, 4096);
788f20eb 1996
2b82032c
YZ
1997 if (seeding_dev) {
1998 sb->s_flags &= ~MS_RDONLY;
125ccb0a 1999 ret = btrfs_prepare_sprout(root);
79787eaa 2000 BUG_ON(ret); /* -ENOMEM */
2b82032c 2001 }
788f20eb 2002
2b82032c 2003 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2004
e5e9a520 2005 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 2006 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2007 list_add(&device->dev_alloc_list,
2008 &root->fs_info->fs_devices->alloc_list);
2009 root->fs_info->fs_devices->num_devices++;
2010 root->fs_info->fs_devices->open_devices++;
2011 root->fs_info->fs_devices->rw_devices++;
02db0844 2012 root->fs_info->fs_devices->total_devices++;
d5e2003c
JB
2013 if (device->can_discard)
2014 root->fs_info->fs_devices->num_can_discard++;
2b82032c 2015 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2016
2bf64758
JB
2017 spin_lock(&root->fs_info->free_chunk_lock);
2018 root->fs_info->free_chunk_space += device->total_bytes;
2019 spin_unlock(&root->fs_info->free_chunk_lock);
2020
c289811c
CM
2021 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2022 root->fs_info->fs_devices->rotating = 1;
2023
6c41761f
DS
2024 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2025 btrfs_set_super_total_bytes(root->fs_info->super_copy,
788f20eb
CM
2026 total_bytes + device->total_bytes);
2027
6c41761f
DS
2028 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2029 btrfs_set_super_num_devices(root->fs_info->super_copy,
788f20eb 2030 total_bytes + 1);
e5e9a520 2031 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2032
2b82032c
YZ
2033 if (seeding_dev) {
2034 ret = init_first_rw_device(trans, root, device);
005d6427
DS
2035 if (ret) {
2036 btrfs_abort_transaction(trans, root, ret);
79787eaa 2037 goto error_trans;
005d6427 2038 }
2b82032c 2039 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2040 if (ret) {
2041 btrfs_abort_transaction(trans, root, ret);
79787eaa 2042 goto error_trans;
005d6427 2043 }
2b82032c
YZ
2044 } else {
2045 ret = btrfs_add_device(trans, root, device);
005d6427
DS
2046 if (ret) {
2047 btrfs_abort_transaction(trans, root, ret);
79787eaa 2048 goto error_trans;
005d6427 2049 }
2b82032c
YZ
2050 }
2051
913d952e
CM
2052 /*
2053 * we've got more storage, clear any full flags on the space
2054 * infos
2055 */
2056 btrfs_clear_space_info_full(root->fs_info);
2057
7d9eb12c 2058 unlock_chunks(root);
5af3e8cc
SB
2059 root->fs_info->num_tolerated_disk_barrier_failures =
2060 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2061 ret = btrfs_commit_transaction(trans, root);
a2135011 2062
2b82032c
YZ
2063 if (seeding_dev) {
2064 mutex_unlock(&uuid_mutex);
2065 up_write(&sb->s_umount);
788f20eb 2066
79787eaa
JM
2067 if (ret) /* transaction commit */
2068 return ret;
2069
2b82032c 2070 ret = btrfs_relocate_sys_chunks(root);
79787eaa
JM
2071 if (ret < 0)
2072 btrfs_error(root->fs_info, ret,
2073 "Failed to relocate sys chunks after "
2074 "device initialization. This can be fixed "
2075 "using the \"btrfs balance\" command.");
671415b7
MX
2076 trans = btrfs_attach_transaction(root);
2077 if (IS_ERR(trans)) {
2078 if (PTR_ERR(trans) == -ENOENT)
2079 return 0;
2080 return PTR_ERR(trans);
2081 }
2082 ret = btrfs_commit_transaction(trans, root);
2b82032c 2083 }
c9e9f97b 2084
2b82032c 2085 return ret;
79787eaa
JM
2086
2087error_trans:
2088 unlock_chunks(root);
79787eaa 2089 btrfs_end_transaction(trans, root);
606686ee 2090 rcu_string_free(device->name);
79787eaa 2091 kfree(device);
2b82032c 2092error:
e525fd89 2093 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2094 if (seeding_dev) {
2095 mutex_unlock(&uuid_mutex);
2096 up_write(&sb->s_umount);
2097 }
c9e9f97b 2098 return ret;
788f20eb
CM
2099}
2100
e93c89c1
SB
2101int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2102 struct btrfs_device **device_out)
2103{
2104 struct request_queue *q;
2105 struct btrfs_device *device;
2106 struct block_device *bdev;
2107 struct btrfs_fs_info *fs_info = root->fs_info;
2108 struct list_head *devices;
2109 struct rcu_string *name;
2110 int ret = 0;
2111
2112 *device_out = NULL;
2113 if (fs_info->fs_devices->seeding)
2114 return -EINVAL;
2115
2116 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2117 fs_info->bdev_holder);
2118 if (IS_ERR(bdev))
2119 return PTR_ERR(bdev);
2120
2121 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2122
2123 devices = &fs_info->fs_devices->devices;
2124 list_for_each_entry(device, devices, dev_list) {
2125 if (device->bdev == bdev) {
2126 ret = -EEXIST;
2127 goto error;
2128 }
2129 }
2130
2131 device = kzalloc(sizeof(*device), GFP_NOFS);
2132 if (!device) {
2133 ret = -ENOMEM;
2134 goto error;
2135 }
2136
2137 name = rcu_string_strdup(device_path, GFP_NOFS);
2138 if (!name) {
2139 kfree(device);
2140 ret = -ENOMEM;
2141 goto error;
2142 }
2143 rcu_assign_pointer(device->name, name);
2144
2145 q = bdev_get_queue(bdev);
2146 if (blk_queue_discard(q))
2147 device->can_discard = 1;
2148 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2149 device->writeable = 1;
2150 device->work.func = pending_bios_fn;
2151 generate_random_uuid(device->uuid);
2152 device->devid = BTRFS_DEV_REPLACE_DEVID;
2153 spin_lock_init(&device->io_lock);
2154 device->generation = 0;
2155 device->io_width = root->sectorsize;
2156 device->io_align = root->sectorsize;
2157 device->sector_size = root->sectorsize;
2158 device->total_bytes = i_size_read(bdev->bd_inode);
2159 device->disk_total_bytes = device->total_bytes;
2160 device->dev_root = fs_info->dev_root;
2161 device->bdev = bdev;
2162 device->in_fs_metadata = 1;
2163 device->is_tgtdev_for_dev_replace = 1;
2164 device->mode = FMODE_EXCL;
2165 set_blocksize(device->bdev, 4096);
2166 device->fs_devices = fs_info->fs_devices;
2167 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2168 fs_info->fs_devices->num_devices++;
2169 fs_info->fs_devices->open_devices++;
2170 if (device->can_discard)
2171 fs_info->fs_devices->num_can_discard++;
2172 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2173
2174 *device_out = device;
2175 return ret;
2176
2177error:
2178 blkdev_put(bdev, FMODE_EXCL);
2179 return ret;
2180}
2181
2182void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2183 struct btrfs_device *tgtdev)
2184{
2185 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2186 tgtdev->io_width = fs_info->dev_root->sectorsize;
2187 tgtdev->io_align = fs_info->dev_root->sectorsize;
2188 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2189 tgtdev->dev_root = fs_info->dev_root;
2190 tgtdev->in_fs_metadata = 1;
2191}
2192
d397712b
CM
2193static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2194 struct btrfs_device *device)
0b86a832
CM
2195{
2196 int ret;
2197 struct btrfs_path *path;
2198 struct btrfs_root *root;
2199 struct btrfs_dev_item *dev_item;
2200 struct extent_buffer *leaf;
2201 struct btrfs_key key;
2202
2203 root = device->dev_root->fs_info->chunk_root;
2204
2205 path = btrfs_alloc_path();
2206 if (!path)
2207 return -ENOMEM;
2208
2209 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2210 key.type = BTRFS_DEV_ITEM_KEY;
2211 key.offset = device->devid;
2212
2213 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2214 if (ret < 0)
2215 goto out;
2216
2217 if (ret > 0) {
2218 ret = -ENOENT;
2219 goto out;
2220 }
2221
2222 leaf = path->nodes[0];
2223 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2224
2225 btrfs_set_device_id(leaf, dev_item, device->devid);
2226 btrfs_set_device_type(leaf, dev_item, device->type);
2227 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2228 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2229 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 2230 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
2231 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2232 btrfs_mark_buffer_dirty(leaf);
2233
2234out:
2235 btrfs_free_path(path);
2236 return ret;
2237}
2238
7d9eb12c 2239static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2240 struct btrfs_device *device, u64 new_size)
2241{
2242 struct btrfs_super_block *super_copy =
6c41761f 2243 device->dev_root->fs_info->super_copy;
8f18cf13
CM
2244 u64 old_total = btrfs_super_total_bytes(super_copy);
2245 u64 diff = new_size - device->total_bytes;
2246
2b82032c
YZ
2247 if (!device->writeable)
2248 return -EACCES;
63a212ab
SB
2249 if (new_size <= device->total_bytes ||
2250 device->is_tgtdev_for_dev_replace)
2b82032c
YZ
2251 return -EINVAL;
2252
8f18cf13 2253 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2254 device->fs_devices->total_rw_bytes += diff;
2255
2256 device->total_bytes = new_size;
9779b72f 2257 device->disk_total_bytes = new_size;
4184ea7f
CM
2258 btrfs_clear_space_info_full(device->dev_root->fs_info);
2259
8f18cf13
CM
2260 return btrfs_update_device(trans, device);
2261}
2262
7d9eb12c
CM
2263int btrfs_grow_device(struct btrfs_trans_handle *trans,
2264 struct btrfs_device *device, u64 new_size)
2265{
2266 int ret;
2267 lock_chunks(device->dev_root);
2268 ret = __btrfs_grow_device(trans, device, new_size);
2269 unlock_chunks(device->dev_root);
2270 return ret;
2271}
2272
8f18cf13
CM
2273static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2274 struct btrfs_root *root,
2275 u64 chunk_tree, u64 chunk_objectid,
2276 u64 chunk_offset)
2277{
2278 int ret;
2279 struct btrfs_path *path;
2280 struct btrfs_key key;
2281
2282 root = root->fs_info->chunk_root;
2283 path = btrfs_alloc_path();
2284 if (!path)
2285 return -ENOMEM;
2286
2287 key.objectid = chunk_objectid;
2288 key.offset = chunk_offset;
2289 key.type = BTRFS_CHUNK_ITEM_KEY;
2290
2291 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2292 if (ret < 0)
2293 goto out;
2294 else if (ret > 0) { /* Logic error or corruption */
2295 btrfs_error(root->fs_info, -ENOENT,
2296 "Failed lookup while freeing chunk.");
2297 ret = -ENOENT;
2298 goto out;
2299 }
8f18cf13
CM
2300
2301 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
2302 if (ret < 0)
2303 btrfs_error(root->fs_info, ret,
2304 "Failed to delete chunk item.");
2305out:
8f18cf13 2306 btrfs_free_path(path);
65a246c5 2307 return ret;
8f18cf13
CM
2308}
2309
b2950863 2310static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2311 chunk_offset)
2312{
6c41761f 2313 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2314 struct btrfs_disk_key *disk_key;
2315 struct btrfs_chunk *chunk;
2316 u8 *ptr;
2317 int ret = 0;
2318 u32 num_stripes;
2319 u32 array_size;
2320 u32 len = 0;
2321 u32 cur;
2322 struct btrfs_key key;
2323
2324 array_size = btrfs_super_sys_array_size(super_copy);
2325
2326 ptr = super_copy->sys_chunk_array;
2327 cur = 0;
2328
2329 while (cur < array_size) {
2330 disk_key = (struct btrfs_disk_key *)ptr;
2331 btrfs_disk_key_to_cpu(&key, disk_key);
2332
2333 len = sizeof(*disk_key);
2334
2335 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2336 chunk = (struct btrfs_chunk *)(ptr + len);
2337 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2338 len += btrfs_chunk_item_size(num_stripes);
2339 } else {
2340 ret = -EIO;
2341 break;
2342 }
2343 if (key.objectid == chunk_objectid &&
2344 key.offset == chunk_offset) {
2345 memmove(ptr, ptr + len, array_size - (cur + len));
2346 array_size -= len;
2347 btrfs_set_super_sys_array_size(super_copy, array_size);
2348 } else {
2349 ptr += len;
2350 cur += len;
2351 }
2352 }
2353 return ret;
2354}
2355
b2950863 2356static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
2357 u64 chunk_tree, u64 chunk_objectid,
2358 u64 chunk_offset)
2359{
2360 struct extent_map_tree *em_tree;
2361 struct btrfs_root *extent_root;
2362 struct btrfs_trans_handle *trans;
2363 struct extent_map *em;
2364 struct map_lookup *map;
2365 int ret;
2366 int i;
2367
2368 root = root->fs_info->chunk_root;
2369 extent_root = root->fs_info->extent_root;
2370 em_tree = &root->fs_info->mapping_tree.map_tree;
2371
ba1bf481
JB
2372 ret = btrfs_can_relocate(extent_root, chunk_offset);
2373 if (ret)
2374 return -ENOSPC;
2375
8f18cf13 2376 /* step one, relocate all the extents inside this chunk */
1a40e23b 2377 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
2378 if (ret)
2379 return ret;
8f18cf13 2380
a22285a6 2381 trans = btrfs_start_transaction(root, 0);
98d5dc13 2382 BUG_ON(IS_ERR(trans));
8f18cf13 2383
7d9eb12c
CM
2384 lock_chunks(root);
2385
8f18cf13
CM
2386 /*
2387 * step two, delete the device extents and the
2388 * chunk tree entries
2389 */
890871be 2390 read_lock(&em_tree->lock);
8f18cf13 2391 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2392 read_unlock(&em_tree->lock);
8f18cf13 2393
285190d9 2394 BUG_ON(!em || em->start > chunk_offset ||
a061fc8d 2395 em->start + em->len < chunk_offset);
8f18cf13
CM
2396 map = (struct map_lookup *)em->bdev;
2397
2398 for (i = 0; i < map->num_stripes; i++) {
2399 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2400 map->stripes[i].physical);
2401 BUG_ON(ret);
a061fc8d 2402
dfe25020
CM
2403 if (map->stripes[i].dev) {
2404 ret = btrfs_update_device(trans, map->stripes[i].dev);
2405 BUG_ON(ret);
2406 }
8f18cf13
CM
2407 }
2408 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2409 chunk_offset);
2410
2411 BUG_ON(ret);
2412
1abe9b8a 2413 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2414
8f18cf13
CM
2415 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2416 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2417 BUG_ON(ret);
8f18cf13
CM
2418 }
2419
2b82032c
YZ
2420 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2421 BUG_ON(ret);
2422
890871be 2423 write_lock(&em_tree->lock);
2b82032c 2424 remove_extent_mapping(em_tree, em);
890871be 2425 write_unlock(&em_tree->lock);
2b82032c
YZ
2426
2427 kfree(map);
2428 em->bdev = NULL;
2429
2430 /* once for the tree */
2431 free_extent_map(em);
2432 /* once for us */
2433 free_extent_map(em);
2434
2435 unlock_chunks(root);
2436 btrfs_end_transaction(trans, root);
2437 return 0;
2438}
2439
2440static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2441{
2442 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2443 struct btrfs_path *path;
2444 struct extent_buffer *leaf;
2445 struct btrfs_chunk *chunk;
2446 struct btrfs_key key;
2447 struct btrfs_key found_key;
2448 u64 chunk_tree = chunk_root->root_key.objectid;
2449 u64 chunk_type;
ba1bf481
JB
2450 bool retried = false;
2451 int failed = 0;
2b82032c
YZ
2452 int ret;
2453
2454 path = btrfs_alloc_path();
2455 if (!path)
2456 return -ENOMEM;
2457
ba1bf481 2458again:
2b82032c
YZ
2459 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2460 key.offset = (u64)-1;
2461 key.type = BTRFS_CHUNK_ITEM_KEY;
2462
2463 while (1) {
2464 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2465 if (ret < 0)
2466 goto error;
79787eaa 2467 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2468
2469 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2470 key.type);
2471 if (ret < 0)
2472 goto error;
2473 if (ret > 0)
2474 break;
1a40e23b 2475
2b82032c
YZ
2476 leaf = path->nodes[0];
2477 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2478
2b82032c
YZ
2479 chunk = btrfs_item_ptr(leaf, path->slots[0],
2480 struct btrfs_chunk);
2481 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2482 btrfs_release_path(path);
8f18cf13 2483
2b82032c
YZ
2484 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2485 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2486 found_key.objectid,
2487 found_key.offset);
ba1bf481
JB
2488 if (ret == -ENOSPC)
2489 failed++;
2490 else if (ret)
2491 BUG();
2b82032c 2492 }
8f18cf13 2493
2b82032c
YZ
2494 if (found_key.offset == 0)
2495 break;
2496 key.offset = found_key.offset - 1;
2497 }
2498 ret = 0;
ba1bf481
JB
2499 if (failed && !retried) {
2500 failed = 0;
2501 retried = true;
2502 goto again;
2503 } else if (failed && retried) {
2504 WARN_ON(1);
2505 ret = -ENOSPC;
2506 }
2b82032c
YZ
2507error:
2508 btrfs_free_path(path);
2509 return ret;
8f18cf13
CM
2510}
2511
0940ebf6
ID
2512static int insert_balance_item(struct btrfs_root *root,
2513 struct btrfs_balance_control *bctl)
2514{
2515 struct btrfs_trans_handle *trans;
2516 struct btrfs_balance_item *item;
2517 struct btrfs_disk_balance_args disk_bargs;
2518 struct btrfs_path *path;
2519 struct extent_buffer *leaf;
2520 struct btrfs_key key;
2521 int ret, err;
2522
2523 path = btrfs_alloc_path();
2524 if (!path)
2525 return -ENOMEM;
2526
2527 trans = btrfs_start_transaction(root, 0);
2528 if (IS_ERR(trans)) {
2529 btrfs_free_path(path);
2530 return PTR_ERR(trans);
2531 }
2532
2533 key.objectid = BTRFS_BALANCE_OBJECTID;
2534 key.type = BTRFS_BALANCE_ITEM_KEY;
2535 key.offset = 0;
2536
2537 ret = btrfs_insert_empty_item(trans, root, path, &key,
2538 sizeof(*item));
2539 if (ret)
2540 goto out;
2541
2542 leaf = path->nodes[0];
2543 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2544
2545 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2546
2547 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2548 btrfs_set_balance_data(leaf, item, &disk_bargs);
2549 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2550 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2551 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2552 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2553
2554 btrfs_set_balance_flags(leaf, item, bctl->flags);
2555
2556 btrfs_mark_buffer_dirty(leaf);
2557out:
2558 btrfs_free_path(path);
2559 err = btrfs_commit_transaction(trans, root);
2560 if (err && !ret)
2561 ret = err;
2562 return ret;
2563}
2564
2565static int del_balance_item(struct btrfs_root *root)
2566{
2567 struct btrfs_trans_handle *trans;
2568 struct btrfs_path *path;
2569 struct btrfs_key key;
2570 int ret, err;
2571
2572 path = btrfs_alloc_path();
2573 if (!path)
2574 return -ENOMEM;
2575
2576 trans = btrfs_start_transaction(root, 0);
2577 if (IS_ERR(trans)) {
2578 btrfs_free_path(path);
2579 return PTR_ERR(trans);
2580 }
2581
2582 key.objectid = BTRFS_BALANCE_OBJECTID;
2583 key.type = BTRFS_BALANCE_ITEM_KEY;
2584 key.offset = 0;
2585
2586 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2587 if (ret < 0)
2588 goto out;
2589 if (ret > 0) {
2590 ret = -ENOENT;
2591 goto out;
2592 }
2593
2594 ret = btrfs_del_item(trans, root, path);
2595out:
2596 btrfs_free_path(path);
2597 err = btrfs_commit_transaction(trans, root);
2598 if (err && !ret)
2599 ret = err;
2600 return ret;
2601}
2602
59641015
ID
2603/*
2604 * This is a heuristic used to reduce the number of chunks balanced on
2605 * resume after balance was interrupted.
2606 */
2607static void update_balance_args(struct btrfs_balance_control *bctl)
2608{
2609 /*
2610 * Turn on soft mode for chunk types that were being converted.
2611 */
2612 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2613 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2614 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2615 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2616 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2617 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2618
2619 /*
2620 * Turn on usage filter if is not already used. The idea is
2621 * that chunks that we have already balanced should be
2622 * reasonably full. Don't do it for chunks that are being
2623 * converted - that will keep us from relocating unconverted
2624 * (albeit full) chunks.
2625 */
2626 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2627 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2628 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2629 bctl->data.usage = 90;
2630 }
2631 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2632 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2633 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2634 bctl->sys.usage = 90;
2635 }
2636 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2637 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2638 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2639 bctl->meta.usage = 90;
2640 }
2641}
2642
c9e9f97b
ID
2643/*
2644 * Should be called with both balance and volume mutexes held to
2645 * serialize other volume operations (add_dev/rm_dev/resize) with
2646 * restriper. Same goes for unset_balance_control.
2647 */
2648static void set_balance_control(struct btrfs_balance_control *bctl)
2649{
2650 struct btrfs_fs_info *fs_info = bctl->fs_info;
2651
2652 BUG_ON(fs_info->balance_ctl);
2653
2654 spin_lock(&fs_info->balance_lock);
2655 fs_info->balance_ctl = bctl;
2656 spin_unlock(&fs_info->balance_lock);
2657}
2658
2659static void unset_balance_control(struct btrfs_fs_info *fs_info)
2660{
2661 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2662
2663 BUG_ON(!fs_info->balance_ctl);
2664
2665 spin_lock(&fs_info->balance_lock);
2666 fs_info->balance_ctl = NULL;
2667 spin_unlock(&fs_info->balance_lock);
2668
2669 kfree(bctl);
2670}
2671
ed25e9b2
ID
2672/*
2673 * Balance filters. Return 1 if chunk should be filtered out
2674 * (should not be balanced).
2675 */
899c81ea 2676static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
2677 struct btrfs_balance_args *bargs)
2678{
899c81ea
ID
2679 chunk_type = chunk_to_extended(chunk_type) &
2680 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 2681
899c81ea 2682 if (bargs->profiles & chunk_type)
ed25e9b2
ID
2683 return 0;
2684
2685 return 1;
2686}
2687
5ce5b3c0
ID
2688static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2689 struct btrfs_balance_args *bargs)
2690{
2691 struct btrfs_block_group_cache *cache;
2692 u64 chunk_used, user_thresh;
2693 int ret = 1;
2694
2695 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2696 chunk_used = btrfs_block_group_used(&cache->item);
2697
a105bb88 2698 if (bargs->usage == 0)
3e39cea6 2699 user_thresh = 1;
a105bb88
ID
2700 else if (bargs->usage > 100)
2701 user_thresh = cache->key.offset;
2702 else
2703 user_thresh = div_factor_fine(cache->key.offset,
2704 bargs->usage);
2705
5ce5b3c0
ID
2706 if (chunk_used < user_thresh)
2707 ret = 0;
2708
2709 btrfs_put_block_group(cache);
2710 return ret;
2711}
2712
409d404b
ID
2713static int chunk_devid_filter(struct extent_buffer *leaf,
2714 struct btrfs_chunk *chunk,
2715 struct btrfs_balance_args *bargs)
2716{
2717 struct btrfs_stripe *stripe;
2718 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2719 int i;
2720
2721 for (i = 0; i < num_stripes; i++) {
2722 stripe = btrfs_stripe_nr(chunk, i);
2723 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2724 return 0;
2725 }
2726
2727 return 1;
2728}
2729
94e60d5a
ID
2730/* [pstart, pend) */
2731static int chunk_drange_filter(struct extent_buffer *leaf,
2732 struct btrfs_chunk *chunk,
2733 u64 chunk_offset,
2734 struct btrfs_balance_args *bargs)
2735{
2736 struct btrfs_stripe *stripe;
2737 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2738 u64 stripe_offset;
2739 u64 stripe_length;
2740 int factor;
2741 int i;
2742
2743 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2744 return 0;
2745
2746 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
2747 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2748 factor = num_stripes / 2;
2749 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2750 factor = num_stripes - 1;
2751 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2752 factor = num_stripes - 2;
2753 } else {
2754 factor = num_stripes;
2755 }
94e60d5a
ID
2756
2757 for (i = 0; i < num_stripes; i++) {
2758 stripe = btrfs_stripe_nr(chunk, i);
2759 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2760 continue;
2761
2762 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2763 stripe_length = btrfs_chunk_length(leaf, chunk);
2764 do_div(stripe_length, factor);
2765
2766 if (stripe_offset < bargs->pend &&
2767 stripe_offset + stripe_length > bargs->pstart)
2768 return 0;
2769 }
2770
2771 return 1;
2772}
2773
ea67176a
ID
2774/* [vstart, vend) */
2775static int chunk_vrange_filter(struct extent_buffer *leaf,
2776 struct btrfs_chunk *chunk,
2777 u64 chunk_offset,
2778 struct btrfs_balance_args *bargs)
2779{
2780 if (chunk_offset < bargs->vend &&
2781 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2782 /* at least part of the chunk is inside this vrange */
2783 return 0;
2784
2785 return 1;
2786}
2787
899c81ea 2788static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
2789 struct btrfs_balance_args *bargs)
2790{
2791 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2792 return 0;
2793
899c81ea
ID
2794 chunk_type = chunk_to_extended(chunk_type) &
2795 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 2796
899c81ea 2797 if (bargs->target == chunk_type)
cfa4c961
ID
2798 return 1;
2799
2800 return 0;
2801}
2802
f43ffb60
ID
2803static int should_balance_chunk(struct btrfs_root *root,
2804 struct extent_buffer *leaf,
2805 struct btrfs_chunk *chunk, u64 chunk_offset)
2806{
2807 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2808 struct btrfs_balance_args *bargs = NULL;
2809 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2810
2811 /* type filter */
2812 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2813 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2814 return 0;
2815 }
2816
2817 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2818 bargs = &bctl->data;
2819 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2820 bargs = &bctl->sys;
2821 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2822 bargs = &bctl->meta;
2823
ed25e9b2
ID
2824 /* profiles filter */
2825 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2826 chunk_profiles_filter(chunk_type, bargs)) {
2827 return 0;
5ce5b3c0
ID
2828 }
2829
2830 /* usage filter */
2831 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2832 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2833 return 0;
409d404b
ID
2834 }
2835
2836 /* devid filter */
2837 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2838 chunk_devid_filter(leaf, chunk, bargs)) {
2839 return 0;
94e60d5a
ID
2840 }
2841
2842 /* drange filter, makes sense only with devid filter */
2843 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2844 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2845 return 0;
ea67176a
ID
2846 }
2847
2848 /* vrange filter */
2849 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2850 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2851 return 0;
ed25e9b2
ID
2852 }
2853
cfa4c961
ID
2854 /* soft profile changing mode */
2855 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2856 chunk_soft_convert_filter(chunk_type, bargs)) {
2857 return 0;
2858 }
2859
f43ffb60
ID
2860 return 1;
2861}
2862
c9e9f97b 2863static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 2864{
19a39dce 2865 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
2866 struct btrfs_root *chunk_root = fs_info->chunk_root;
2867 struct btrfs_root *dev_root = fs_info->dev_root;
2868 struct list_head *devices;
ec44a35c
CM
2869 struct btrfs_device *device;
2870 u64 old_size;
2871 u64 size_to_free;
f43ffb60 2872 struct btrfs_chunk *chunk;
ec44a35c
CM
2873 struct btrfs_path *path;
2874 struct btrfs_key key;
ec44a35c 2875 struct btrfs_key found_key;
c9e9f97b 2876 struct btrfs_trans_handle *trans;
f43ffb60
ID
2877 struct extent_buffer *leaf;
2878 int slot;
c9e9f97b
ID
2879 int ret;
2880 int enospc_errors = 0;
19a39dce 2881 bool counting = true;
ec44a35c 2882
ec44a35c 2883 /* step one make some room on all the devices */
c9e9f97b 2884 devices = &fs_info->fs_devices->devices;
c6e30871 2885 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2886 old_size = device->total_bytes;
2887 size_to_free = div_factor(old_size, 1);
2888 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c 2889 if (!device->writeable ||
63a212ab
SB
2890 device->total_bytes - device->bytes_used > size_to_free ||
2891 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
2892 continue;
2893
2894 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2895 if (ret == -ENOSPC)
2896 break;
ec44a35c
CM
2897 BUG_ON(ret);
2898
a22285a6 2899 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2900 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2901
2902 ret = btrfs_grow_device(trans, device, old_size);
2903 BUG_ON(ret);
2904
2905 btrfs_end_transaction(trans, dev_root);
2906 }
2907
2908 /* step two, relocate all the chunks */
2909 path = btrfs_alloc_path();
17e9f796
MF
2910 if (!path) {
2911 ret = -ENOMEM;
2912 goto error;
2913 }
19a39dce
ID
2914
2915 /* zero out stat counters */
2916 spin_lock(&fs_info->balance_lock);
2917 memset(&bctl->stat, 0, sizeof(bctl->stat));
2918 spin_unlock(&fs_info->balance_lock);
2919again:
ec44a35c
CM
2920 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2921 key.offset = (u64)-1;
2922 key.type = BTRFS_CHUNK_ITEM_KEY;
2923
d397712b 2924 while (1) {
19a39dce 2925 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 2926 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
2927 ret = -ECANCELED;
2928 goto error;
2929 }
2930
ec44a35c
CM
2931 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2932 if (ret < 0)
2933 goto error;
2934
2935 /*
2936 * this shouldn't happen, it means the last relocate
2937 * failed
2938 */
2939 if (ret == 0)
c9e9f97b 2940 BUG(); /* FIXME break ? */
ec44a35c
CM
2941
2942 ret = btrfs_previous_item(chunk_root, path, 0,
2943 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b
ID
2944 if (ret) {
2945 ret = 0;
ec44a35c 2946 break;
c9e9f97b 2947 }
7d9eb12c 2948
f43ffb60
ID
2949 leaf = path->nodes[0];
2950 slot = path->slots[0];
2951 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 2952
ec44a35c
CM
2953 if (found_key.objectid != key.objectid)
2954 break;
7d9eb12c 2955
ec44a35c 2956 /* chunk zero is special */
ba1bf481 2957 if (found_key.offset == 0)
ec44a35c
CM
2958 break;
2959
f43ffb60
ID
2960 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2961
19a39dce
ID
2962 if (!counting) {
2963 spin_lock(&fs_info->balance_lock);
2964 bctl->stat.considered++;
2965 spin_unlock(&fs_info->balance_lock);
2966 }
2967
f43ffb60
ID
2968 ret = should_balance_chunk(chunk_root, leaf, chunk,
2969 found_key.offset);
b3b4aa74 2970 btrfs_release_path(path);
f43ffb60
ID
2971 if (!ret)
2972 goto loop;
2973
19a39dce
ID
2974 if (counting) {
2975 spin_lock(&fs_info->balance_lock);
2976 bctl->stat.expected++;
2977 spin_unlock(&fs_info->balance_lock);
2978 goto loop;
2979 }
2980
ec44a35c
CM
2981 ret = btrfs_relocate_chunk(chunk_root,
2982 chunk_root->root_key.objectid,
2983 found_key.objectid,
2984 found_key.offset);
508794eb
JB
2985 if (ret && ret != -ENOSPC)
2986 goto error;
19a39dce 2987 if (ret == -ENOSPC) {
c9e9f97b 2988 enospc_errors++;
19a39dce
ID
2989 } else {
2990 spin_lock(&fs_info->balance_lock);
2991 bctl->stat.completed++;
2992 spin_unlock(&fs_info->balance_lock);
2993 }
f43ffb60 2994loop:
ba1bf481 2995 key.offset = found_key.offset - 1;
ec44a35c 2996 }
c9e9f97b 2997
19a39dce
ID
2998 if (counting) {
2999 btrfs_release_path(path);
3000 counting = false;
3001 goto again;
3002 }
ec44a35c
CM
3003error:
3004 btrfs_free_path(path);
c9e9f97b
ID
3005 if (enospc_errors) {
3006 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
3007 enospc_errors);
3008 if (!ret)
3009 ret = -ENOSPC;
3010 }
3011
ec44a35c
CM
3012 return ret;
3013}
3014
0c460c0d
ID
3015/**
3016 * alloc_profile_is_valid - see if a given profile is valid and reduced
3017 * @flags: profile to validate
3018 * @extended: if true @flags is treated as an extended profile
3019 */
3020static int alloc_profile_is_valid(u64 flags, int extended)
3021{
3022 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3023 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3024
3025 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3026
3027 /* 1) check that all other bits are zeroed */
3028 if (flags & ~mask)
3029 return 0;
3030
3031 /* 2) see if profile is reduced */
3032 if (flags == 0)
3033 return !extended; /* "0" is valid for usual profiles */
3034
3035 /* true if exactly one bit set */
3036 return (flags & (flags - 1)) == 0;
3037}
3038
837d5b6e
ID
3039static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3040{
a7e99c69
ID
3041 /* cancel requested || normal exit path */
3042 return atomic_read(&fs_info->balance_cancel_req) ||
3043 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3044 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3045}
3046
c9e9f97b
ID
3047static void __cancel_balance(struct btrfs_fs_info *fs_info)
3048{
0940ebf6
ID
3049 int ret;
3050
c9e9f97b 3051 unset_balance_control(fs_info);
0940ebf6
ID
3052 ret = del_balance_item(fs_info->tree_root);
3053 BUG_ON(ret);
ed0fb78f
ID
3054
3055 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3056}
3057
19a39dce 3058void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
c9e9f97b
ID
3059 struct btrfs_ioctl_balance_args *bargs);
3060
3061/*
3062 * Should be called with both balance and volume mutexes held
3063 */
3064int btrfs_balance(struct btrfs_balance_control *bctl,
3065 struct btrfs_ioctl_balance_args *bargs)
3066{
3067 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3068 u64 allowed;
e4837f8f 3069 int mixed = 0;
c9e9f97b 3070 int ret;
8dabb742 3071 u64 num_devices;
de98ced9 3072 unsigned seq;
c9e9f97b 3073
837d5b6e 3074 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3075 atomic_read(&fs_info->balance_pause_req) ||
3076 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3077 ret = -EINVAL;
3078 goto out;
3079 }
3080
e4837f8f
ID
3081 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3082 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3083 mixed = 1;
3084
f43ffb60
ID
3085 /*
3086 * In case of mixed groups both data and meta should be picked,
3087 * and identical options should be given for both of them.
3088 */
e4837f8f
ID
3089 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3090 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3091 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3092 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3093 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3094 printk(KERN_ERR "btrfs: with mixed groups data and "
3095 "metadata balance options must be the same\n");
3096 ret = -EINVAL;
3097 goto out;
3098 }
3099 }
3100
8dabb742
SB
3101 num_devices = fs_info->fs_devices->num_devices;
3102 btrfs_dev_replace_lock(&fs_info->dev_replace);
3103 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3104 BUG_ON(num_devices < 1);
3105 num_devices--;
3106 }
3107 btrfs_dev_replace_unlock(&fs_info->dev_replace);
e4d8ec0f 3108 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3109 if (num_devices == 1)
e4d8ec0f 3110 allowed |= BTRFS_BLOCK_GROUP_DUP;
8dabb742 3111 else if (num_devices < 4)
e4d8ec0f
ID
3112 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3113 else
3114 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3115 BTRFS_BLOCK_GROUP_RAID10 |
3116 BTRFS_BLOCK_GROUP_RAID5 |
3117 BTRFS_BLOCK_GROUP_RAID6);
e4d8ec0f 3118
6728b198
ID
3119 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3120 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3121 (bctl->data.target & ~allowed))) {
e4d8ec0f
ID
3122 printk(KERN_ERR "btrfs: unable to start balance with target "
3123 "data profile %llu\n",
3124 (unsigned long long)bctl->data.target);
3125 ret = -EINVAL;
3126 goto out;
3127 }
6728b198
ID
3128 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3129 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3130 (bctl->meta.target & ~allowed))) {
e4d8ec0f
ID
3131 printk(KERN_ERR "btrfs: unable to start balance with target "
3132 "metadata profile %llu\n",
3133 (unsigned long long)bctl->meta.target);
3134 ret = -EINVAL;
3135 goto out;
3136 }
6728b198
ID
3137 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3138 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3139 (bctl->sys.target & ~allowed))) {
e4d8ec0f
ID
3140 printk(KERN_ERR "btrfs: unable to start balance with target "
3141 "system profile %llu\n",
3142 (unsigned long long)bctl->sys.target);
3143 ret = -EINVAL;
3144 goto out;
3145 }
3146
e4837f8f
ID
3147 /* allow dup'ed data chunks only in mixed mode */
3148 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 3149 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
e4d8ec0f
ID
3150 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
3151 ret = -EINVAL;
3152 goto out;
3153 }
3154
3155 /* allow to reduce meta or sys integrity only if force set */
3156 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3157 BTRFS_BLOCK_GROUP_RAID10 |
3158 BTRFS_BLOCK_GROUP_RAID5 |
3159 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3160 do {
3161 seq = read_seqbegin(&fs_info->profiles_lock);
3162
3163 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3164 (fs_info->avail_system_alloc_bits & allowed) &&
3165 !(bctl->sys.target & allowed)) ||
3166 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3167 (fs_info->avail_metadata_alloc_bits & allowed) &&
3168 !(bctl->meta.target & allowed))) {
3169 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3170 printk(KERN_INFO "btrfs: force reducing metadata "
3171 "integrity\n");
3172 } else {
3173 printk(KERN_ERR "btrfs: balance will reduce metadata "
3174 "integrity, use force if you want this\n");
3175 ret = -EINVAL;
3176 goto out;
3177 }
e4d8ec0f 3178 }
de98ced9 3179 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3180
5af3e8cc
SB
3181 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3182 int num_tolerated_disk_barrier_failures;
3183 u64 target = bctl->sys.target;
3184
3185 num_tolerated_disk_barrier_failures =
3186 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3187 if (num_tolerated_disk_barrier_failures > 0 &&
3188 (target &
3189 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3190 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3191 num_tolerated_disk_barrier_failures = 0;
3192 else if (num_tolerated_disk_barrier_failures > 1 &&
3193 (target &
3194 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3195 num_tolerated_disk_barrier_failures = 1;
3196
3197 fs_info->num_tolerated_disk_barrier_failures =
3198 num_tolerated_disk_barrier_failures;
3199 }
3200
0940ebf6 3201 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3202 if (ret && ret != -EEXIST)
0940ebf6
ID
3203 goto out;
3204
59641015
ID
3205 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3206 BUG_ON(ret == -EEXIST);
3207 set_balance_control(bctl);
3208 } else {
3209 BUG_ON(ret != -EEXIST);
3210 spin_lock(&fs_info->balance_lock);
3211 update_balance_args(bctl);
3212 spin_unlock(&fs_info->balance_lock);
3213 }
c9e9f97b 3214
837d5b6e 3215 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3216 mutex_unlock(&fs_info->balance_mutex);
3217
3218 ret = __btrfs_balance(fs_info);
3219
3220 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3221 atomic_dec(&fs_info->balance_running);
c9e9f97b 3222
bf023ecf
ID
3223 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3224 fs_info->num_tolerated_disk_barrier_failures =
3225 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3226 }
3227
c9e9f97b
ID
3228 if (bargs) {
3229 memset(bargs, 0, sizeof(*bargs));
19a39dce 3230 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3231 }
3232
837d5b6e 3233 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3234
3235 return ret;
3236out:
59641015
ID
3237 if (bctl->flags & BTRFS_BALANCE_RESUME)
3238 __cancel_balance(fs_info);
ed0fb78f 3239 else {
59641015 3240 kfree(bctl);
ed0fb78f
ID
3241 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3242 }
59641015
ID
3243 return ret;
3244}
3245
3246static int balance_kthread(void *data)
3247{
2b6ba629 3248 struct btrfs_fs_info *fs_info = data;
9555c6c1 3249 int ret = 0;
59641015
ID
3250
3251 mutex_lock(&fs_info->volume_mutex);
3252 mutex_lock(&fs_info->balance_mutex);
3253
2b6ba629 3254 if (fs_info->balance_ctl) {
9555c6c1 3255 printk(KERN_INFO "btrfs: continuing balance\n");
2b6ba629 3256 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3257 }
59641015
ID
3258
3259 mutex_unlock(&fs_info->balance_mutex);
3260 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3261
59641015
ID
3262 return ret;
3263}
3264
2b6ba629
ID
3265int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3266{
3267 struct task_struct *tsk;
3268
3269 spin_lock(&fs_info->balance_lock);
3270 if (!fs_info->balance_ctl) {
3271 spin_unlock(&fs_info->balance_lock);
3272 return 0;
3273 }
3274 spin_unlock(&fs_info->balance_lock);
3275
3276 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3277 printk(KERN_INFO "btrfs: force skipping balance\n");
3278 return 0;
3279 }
3280
3281 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3282 if (IS_ERR(tsk))
3283 return PTR_ERR(tsk);
3284
3285 return 0;
3286}
3287
68310a5e 3288int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3289{
59641015
ID
3290 struct btrfs_balance_control *bctl;
3291 struct btrfs_balance_item *item;
3292 struct btrfs_disk_balance_args disk_bargs;
3293 struct btrfs_path *path;
3294 struct extent_buffer *leaf;
3295 struct btrfs_key key;
3296 int ret;
3297
3298 path = btrfs_alloc_path();
3299 if (!path)
3300 return -ENOMEM;
3301
59641015
ID
3302 key.objectid = BTRFS_BALANCE_OBJECTID;
3303 key.type = BTRFS_BALANCE_ITEM_KEY;
3304 key.offset = 0;
3305
68310a5e 3306 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3307 if (ret < 0)
68310a5e 3308 goto out;
59641015
ID
3309 if (ret > 0) { /* ret = -ENOENT; */
3310 ret = 0;
68310a5e
ID
3311 goto out;
3312 }
3313
3314 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3315 if (!bctl) {
3316 ret = -ENOMEM;
3317 goto out;
59641015
ID
3318 }
3319
3320 leaf = path->nodes[0];
3321 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3322
68310a5e
ID
3323 bctl->fs_info = fs_info;
3324 bctl->flags = btrfs_balance_flags(leaf, item);
3325 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3326
3327 btrfs_balance_data(leaf, item, &disk_bargs);
3328 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3329 btrfs_balance_meta(leaf, item, &disk_bargs);
3330 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3331 btrfs_balance_sys(leaf, item, &disk_bargs);
3332 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3333
ed0fb78f
ID
3334 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3335
68310a5e
ID
3336 mutex_lock(&fs_info->volume_mutex);
3337 mutex_lock(&fs_info->balance_mutex);
59641015 3338
68310a5e
ID
3339 set_balance_control(bctl);
3340
3341 mutex_unlock(&fs_info->balance_mutex);
3342 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3343out:
3344 btrfs_free_path(path);
ec44a35c
CM
3345 return ret;
3346}
3347
837d5b6e
ID
3348int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3349{
3350 int ret = 0;
3351
3352 mutex_lock(&fs_info->balance_mutex);
3353 if (!fs_info->balance_ctl) {
3354 mutex_unlock(&fs_info->balance_mutex);
3355 return -ENOTCONN;
3356 }
3357
3358 if (atomic_read(&fs_info->balance_running)) {
3359 atomic_inc(&fs_info->balance_pause_req);
3360 mutex_unlock(&fs_info->balance_mutex);
3361
3362 wait_event(fs_info->balance_wait_q,
3363 atomic_read(&fs_info->balance_running) == 0);
3364
3365 mutex_lock(&fs_info->balance_mutex);
3366 /* we are good with balance_ctl ripped off from under us */
3367 BUG_ON(atomic_read(&fs_info->balance_running));
3368 atomic_dec(&fs_info->balance_pause_req);
3369 } else {
3370 ret = -ENOTCONN;
3371 }
3372
3373 mutex_unlock(&fs_info->balance_mutex);
3374 return ret;
3375}
3376
a7e99c69
ID
3377int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3378{
3379 mutex_lock(&fs_info->balance_mutex);
3380 if (!fs_info->balance_ctl) {
3381 mutex_unlock(&fs_info->balance_mutex);
3382 return -ENOTCONN;
3383 }
3384
3385 atomic_inc(&fs_info->balance_cancel_req);
3386 /*
3387 * if we are running just wait and return, balance item is
3388 * deleted in btrfs_balance in this case
3389 */
3390 if (atomic_read(&fs_info->balance_running)) {
3391 mutex_unlock(&fs_info->balance_mutex);
3392 wait_event(fs_info->balance_wait_q,
3393 atomic_read(&fs_info->balance_running) == 0);
3394 mutex_lock(&fs_info->balance_mutex);
3395 } else {
3396 /* __cancel_balance needs volume_mutex */
3397 mutex_unlock(&fs_info->balance_mutex);
3398 mutex_lock(&fs_info->volume_mutex);
3399 mutex_lock(&fs_info->balance_mutex);
3400
3401 if (fs_info->balance_ctl)
3402 __cancel_balance(fs_info);
3403
3404 mutex_unlock(&fs_info->volume_mutex);
3405 }
3406
3407 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3408 atomic_dec(&fs_info->balance_cancel_req);
3409 mutex_unlock(&fs_info->balance_mutex);
3410 return 0;
3411}
3412
8f18cf13
CM
3413/*
3414 * shrinking a device means finding all of the device extents past
3415 * the new size, and then following the back refs to the chunks.
3416 * The chunk relocation code actually frees the device extent
3417 */
3418int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3419{
3420 struct btrfs_trans_handle *trans;
3421 struct btrfs_root *root = device->dev_root;
3422 struct btrfs_dev_extent *dev_extent = NULL;
3423 struct btrfs_path *path;
3424 u64 length;
3425 u64 chunk_tree;
3426 u64 chunk_objectid;
3427 u64 chunk_offset;
3428 int ret;
3429 int slot;
ba1bf481
JB
3430 int failed = 0;
3431 bool retried = false;
8f18cf13
CM
3432 struct extent_buffer *l;
3433 struct btrfs_key key;
6c41761f 3434 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 3435 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 3436 u64 old_size = device->total_bytes;
8f18cf13
CM
3437 u64 diff = device->total_bytes - new_size;
3438
63a212ab
SB
3439 if (device->is_tgtdev_for_dev_replace)
3440 return -EINVAL;
3441
8f18cf13
CM
3442 path = btrfs_alloc_path();
3443 if (!path)
3444 return -ENOMEM;
3445
8f18cf13
CM
3446 path->reada = 2;
3447
7d9eb12c
CM
3448 lock_chunks(root);
3449
8f18cf13 3450 device->total_bytes = new_size;
2bf64758 3451 if (device->writeable) {
2b82032c 3452 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
3453 spin_lock(&root->fs_info->free_chunk_lock);
3454 root->fs_info->free_chunk_space -= diff;
3455 spin_unlock(&root->fs_info->free_chunk_lock);
3456 }
7d9eb12c 3457 unlock_chunks(root);
8f18cf13 3458
ba1bf481 3459again:
8f18cf13
CM
3460 key.objectid = device->devid;
3461 key.offset = (u64)-1;
3462 key.type = BTRFS_DEV_EXTENT_KEY;
3463
213e64da 3464 do {
8f18cf13
CM
3465 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3466 if (ret < 0)
3467 goto done;
3468
3469 ret = btrfs_previous_item(root, path, 0, key.type);
3470 if (ret < 0)
3471 goto done;
3472 if (ret) {
3473 ret = 0;
b3b4aa74 3474 btrfs_release_path(path);
bf1fb512 3475 break;
8f18cf13
CM
3476 }
3477
3478 l = path->nodes[0];
3479 slot = path->slots[0];
3480 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3481
ba1bf481 3482 if (key.objectid != device->devid) {
b3b4aa74 3483 btrfs_release_path(path);
bf1fb512 3484 break;
ba1bf481 3485 }
8f18cf13
CM
3486
3487 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3488 length = btrfs_dev_extent_length(l, dev_extent);
3489
ba1bf481 3490 if (key.offset + length <= new_size) {
b3b4aa74 3491 btrfs_release_path(path);
d6397bae 3492 break;
ba1bf481 3493 }
8f18cf13
CM
3494
3495 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3496 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3497 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 3498 btrfs_release_path(path);
8f18cf13
CM
3499
3500 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3501 chunk_offset);
ba1bf481 3502 if (ret && ret != -ENOSPC)
8f18cf13 3503 goto done;
ba1bf481
JB
3504 if (ret == -ENOSPC)
3505 failed++;
213e64da 3506 } while (key.offset-- > 0);
ba1bf481
JB
3507
3508 if (failed && !retried) {
3509 failed = 0;
3510 retried = true;
3511 goto again;
3512 } else if (failed && retried) {
3513 ret = -ENOSPC;
3514 lock_chunks(root);
3515
3516 device->total_bytes = old_size;
3517 if (device->writeable)
3518 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
3519 spin_lock(&root->fs_info->free_chunk_lock);
3520 root->fs_info->free_chunk_space += diff;
3521 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
3522 unlock_chunks(root);
3523 goto done;
8f18cf13
CM
3524 }
3525
d6397bae 3526 /* Shrinking succeeded, else we would be at "done". */
a22285a6 3527 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
3528 if (IS_ERR(trans)) {
3529 ret = PTR_ERR(trans);
3530 goto done;
3531 }
3532
d6397bae
CB
3533 lock_chunks(root);
3534
3535 device->disk_total_bytes = new_size;
3536 /* Now btrfs_update_device() will change the on-disk size. */
3537 ret = btrfs_update_device(trans, device);
3538 if (ret) {
3539 unlock_chunks(root);
3540 btrfs_end_transaction(trans, root);
3541 goto done;
3542 }
3543 WARN_ON(diff > old_total);
3544 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3545 unlock_chunks(root);
3546 btrfs_end_transaction(trans, root);
8f18cf13
CM
3547done:
3548 btrfs_free_path(path);
3549 return ret;
3550}
3551
125ccb0a 3552static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
3553 struct btrfs_key *key,
3554 struct btrfs_chunk *chunk, int item_size)
3555{
6c41761f 3556 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
3557 struct btrfs_disk_key disk_key;
3558 u32 array_size;
3559 u8 *ptr;
3560
3561 array_size = btrfs_super_sys_array_size(super_copy);
3562 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3563 return -EFBIG;
3564
3565 ptr = super_copy->sys_chunk_array + array_size;
3566 btrfs_cpu_key_to_disk(&disk_key, key);
3567 memcpy(ptr, &disk_key, sizeof(disk_key));
3568 ptr += sizeof(disk_key);
3569 memcpy(ptr, chunk, item_size);
3570 item_size += sizeof(disk_key);
3571 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3572 return 0;
3573}
3574
73c5de00
AJ
3575/*
3576 * sort the devices in descending order by max_avail, total_avail
3577 */
3578static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 3579{
73c5de00
AJ
3580 const struct btrfs_device_info *di_a = a;
3581 const struct btrfs_device_info *di_b = b;
9b3f68b9 3582
73c5de00 3583 if (di_a->max_avail > di_b->max_avail)
b2117a39 3584 return -1;
73c5de00 3585 if (di_a->max_avail < di_b->max_avail)
b2117a39 3586 return 1;
73c5de00
AJ
3587 if (di_a->total_avail > di_b->total_avail)
3588 return -1;
3589 if (di_a->total_avail < di_b->total_avail)
3590 return 1;
3591 return 0;
b2117a39 3592}
0b86a832 3593
31e50229 3594struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
e6ec716f
MX
3595 [BTRFS_RAID_RAID10] = {
3596 .sub_stripes = 2,
3597 .dev_stripes = 1,
3598 .devs_max = 0, /* 0 == as many as possible */
3599 .devs_min = 4,
3600 .devs_increment = 2,
3601 .ncopies = 2,
3602 },
3603 [BTRFS_RAID_RAID1] = {
3604 .sub_stripes = 1,
3605 .dev_stripes = 1,
3606 .devs_max = 2,
3607 .devs_min = 2,
3608 .devs_increment = 2,
3609 .ncopies = 2,
3610 },
3611 [BTRFS_RAID_DUP] = {
3612 .sub_stripes = 1,
3613 .dev_stripes = 2,
3614 .devs_max = 1,
3615 .devs_min = 1,
3616 .devs_increment = 1,
3617 .ncopies = 2,
3618 },
3619 [BTRFS_RAID_RAID0] = {
3620 .sub_stripes = 1,
3621 .dev_stripes = 1,
3622 .devs_max = 0,
3623 .devs_min = 2,
3624 .devs_increment = 1,
3625 .ncopies = 1,
3626 },
3627 [BTRFS_RAID_SINGLE] = {
3628 .sub_stripes = 1,
3629 .dev_stripes = 1,
3630 .devs_max = 1,
3631 .devs_min = 1,
3632 .devs_increment = 1,
3633 .ncopies = 1,
3634 },
e942f883
CM
3635 [BTRFS_RAID_RAID5] = {
3636 .sub_stripes = 1,
3637 .dev_stripes = 1,
3638 .devs_max = 0,
3639 .devs_min = 2,
3640 .devs_increment = 1,
3641 .ncopies = 2,
3642 },
3643 [BTRFS_RAID_RAID6] = {
3644 .sub_stripes = 1,
3645 .dev_stripes = 1,
3646 .devs_max = 0,
3647 .devs_min = 3,
3648 .devs_increment = 1,
3649 .ncopies = 3,
3650 },
31e50229
LB
3651};
3652
53b381b3
DW
3653static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
3654{
3655 /* TODO allow them to set a preferred stripe size */
3656 return 64 * 1024;
3657}
3658
3659static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
3660{
3661 u64 features;
3662
3663 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
3664 return;
3665
3666 features = btrfs_super_incompat_flags(info->super_copy);
3667 if (features & BTRFS_FEATURE_INCOMPAT_RAID56)
3668 return;
3669
3670 features |= BTRFS_FEATURE_INCOMPAT_RAID56;
3671 btrfs_set_super_incompat_flags(info->super_copy, features);
3672 printk(KERN_INFO "btrfs: setting RAID5/6 feature flag\n");
3673}
3674
73c5de00
AJ
3675static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3676 struct btrfs_root *extent_root,
3677 struct map_lookup **map_ret,
3678 u64 *num_bytes_out, u64 *stripe_size_out,
3679 u64 start, u64 type)
b2117a39 3680{
73c5de00
AJ
3681 struct btrfs_fs_info *info = extent_root->fs_info;
3682 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3683 struct list_head *cur;
3684 struct map_lookup *map = NULL;
3685 struct extent_map_tree *em_tree;
3686 struct extent_map *em;
3687 struct btrfs_device_info *devices_info = NULL;
3688 u64 total_avail;
3689 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
3690 int data_stripes; /* number of stripes that count for
3691 block group size */
73c5de00
AJ
3692 int sub_stripes; /* sub_stripes info for map */
3693 int dev_stripes; /* stripes per dev */
3694 int devs_max; /* max devs to use */
3695 int devs_min; /* min devs needed */
3696 int devs_increment; /* ndevs has to be a multiple of this */
3697 int ncopies; /* how many copies to data has */
3698 int ret;
3699 u64 max_stripe_size;
3700 u64 max_chunk_size;
3701 u64 stripe_size;
3702 u64 num_bytes;
53b381b3 3703 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
3704 int ndevs;
3705 int i;
3706 int j;
31e50229 3707 int index;
593060d7 3708
0c460c0d 3709 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 3710
73c5de00
AJ
3711 if (list_empty(&fs_devices->alloc_list))
3712 return -ENOSPC;
b2117a39 3713
31e50229 3714 index = __get_raid_index(type);
73c5de00 3715
31e50229
LB
3716 sub_stripes = btrfs_raid_array[index].sub_stripes;
3717 dev_stripes = btrfs_raid_array[index].dev_stripes;
3718 devs_max = btrfs_raid_array[index].devs_max;
3719 devs_min = btrfs_raid_array[index].devs_min;
3720 devs_increment = btrfs_raid_array[index].devs_increment;
3721 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 3722
9b3f68b9 3723 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
3724 max_stripe_size = 1024 * 1024 * 1024;
3725 max_chunk_size = 10 * max_stripe_size;
9b3f68b9 3726 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
3727 /* for larger filesystems, use larger metadata chunks */
3728 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3729 max_stripe_size = 1024 * 1024 * 1024;
3730 else
3731 max_stripe_size = 256 * 1024 * 1024;
73c5de00 3732 max_chunk_size = max_stripe_size;
a40a90a0 3733 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 3734 max_stripe_size = 32 * 1024 * 1024;
73c5de00
AJ
3735 max_chunk_size = 2 * max_stripe_size;
3736 } else {
3737 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3738 type);
3739 BUG_ON(1);
9b3f68b9
CM
3740 }
3741
2b82032c
YZ
3742 /* we don't want a chunk larger than 10% of writeable space */
3743 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3744 max_chunk_size);
9b3f68b9 3745
73c5de00
AJ
3746 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3747 GFP_NOFS);
3748 if (!devices_info)
3749 return -ENOMEM;
0cad8a11 3750
73c5de00 3751 cur = fs_devices->alloc_list.next;
9b3f68b9 3752
9f680ce0 3753 /*
73c5de00
AJ
3754 * in the first pass through the devices list, we gather information
3755 * about the available holes on each device.
9f680ce0 3756 */
73c5de00
AJ
3757 ndevs = 0;
3758 while (cur != &fs_devices->alloc_list) {
3759 struct btrfs_device *device;
3760 u64 max_avail;
3761 u64 dev_offset;
b2117a39 3762
73c5de00 3763 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 3764
73c5de00 3765 cur = cur->next;
b2117a39 3766
73c5de00 3767 if (!device->writeable) {
31b1a2bd 3768 WARN(1, KERN_ERR
73c5de00 3769 "btrfs: read-only device in alloc_list\n");
73c5de00
AJ
3770 continue;
3771 }
b2117a39 3772
63a212ab
SB
3773 if (!device->in_fs_metadata ||
3774 device->is_tgtdev_for_dev_replace)
73c5de00 3775 continue;
b2117a39 3776
73c5de00
AJ
3777 if (device->total_bytes > device->bytes_used)
3778 total_avail = device->total_bytes - device->bytes_used;
3779 else
3780 total_avail = 0;
38c01b96 3781
3782 /* If there is no space on this device, skip it. */
3783 if (total_avail == 0)
3784 continue;
b2117a39 3785
125ccb0a 3786 ret = find_free_dev_extent(device,
73c5de00
AJ
3787 max_stripe_size * dev_stripes,
3788 &dev_offset, &max_avail);
3789 if (ret && ret != -ENOSPC)
3790 goto error;
b2117a39 3791
73c5de00
AJ
3792 if (ret == 0)
3793 max_avail = max_stripe_size * dev_stripes;
b2117a39 3794
73c5de00
AJ
3795 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
3796 continue;
b2117a39 3797
063d006f
ES
3798 if (ndevs == fs_devices->rw_devices) {
3799 WARN(1, "%s: found more than %llu devices\n",
3800 __func__, fs_devices->rw_devices);
3801 break;
3802 }
73c5de00
AJ
3803 devices_info[ndevs].dev_offset = dev_offset;
3804 devices_info[ndevs].max_avail = max_avail;
3805 devices_info[ndevs].total_avail = total_avail;
3806 devices_info[ndevs].dev = device;
3807 ++ndevs;
3808 }
b2117a39 3809
73c5de00
AJ
3810 /*
3811 * now sort the devices by hole size / available space
3812 */
3813 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3814 btrfs_cmp_device_info, NULL);
b2117a39 3815
73c5de00
AJ
3816 /* round down to number of usable stripes */
3817 ndevs -= ndevs % devs_increment;
b2117a39 3818
73c5de00
AJ
3819 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3820 ret = -ENOSPC;
3821 goto error;
b2117a39 3822 }
9f680ce0 3823
73c5de00
AJ
3824 if (devs_max && ndevs > devs_max)
3825 ndevs = devs_max;
3826 /*
3827 * the primary goal is to maximize the number of stripes, so use as many
3828 * devices as possible, even if the stripes are not maximum sized.
3829 */
3830 stripe_size = devices_info[ndevs-1].max_avail;
3831 num_stripes = ndevs * dev_stripes;
b2117a39 3832
53b381b3
DW
3833 /*
3834 * this will have to be fixed for RAID1 and RAID10 over
3835 * more drives
3836 */
3837 data_stripes = num_stripes / ncopies;
3838
37db63a4 3839 if (stripe_size * ndevs > max_chunk_size * ncopies) {
73c5de00 3840 stripe_size = max_chunk_size * ncopies;
37db63a4 3841 do_div(stripe_size, ndevs);
b2117a39 3842 }
53b381b3
DW
3843 if (type & BTRFS_BLOCK_GROUP_RAID5) {
3844 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
3845 btrfs_super_stripesize(info->super_copy));
3846 data_stripes = num_stripes - 1;
3847 }
3848 if (type & BTRFS_BLOCK_GROUP_RAID6) {
3849 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
3850 btrfs_super_stripesize(info->super_copy));
3851 data_stripes = num_stripes - 2;
3852 }
73c5de00 3853 do_div(stripe_size, dev_stripes);
37db63a4
ID
3854
3855 /* align to BTRFS_STRIPE_LEN */
53b381b3
DW
3856 do_div(stripe_size, raid_stripe_len);
3857 stripe_size *= raid_stripe_len;
b2117a39
MX
3858
3859 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3860 if (!map) {
3861 ret = -ENOMEM;
3862 goto error;
3863 }
3864 map->num_stripes = num_stripes;
9b3f68b9 3865
73c5de00
AJ
3866 for (i = 0; i < ndevs; ++i) {
3867 for (j = 0; j < dev_stripes; ++j) {
3868 int s = i * dev_stripes + j;
3869 map->stripes[s].dev = devices_info[i].dev;
3870 map->stripes[s].physical = devices_info[i].dev_offset +
3871 j * stripe_size;
6324fbf3 3872 }
6324fbf3 3873 }
2b82032c 3874 map->sector_size = extent_root->sectorsize;
53b381b3
DW
3875 map->stripe_len = raid_stripe_len;
3876 map->io_align = raid_stripe_len;
3877 map->io_width = raid_stripe_len;
2b82032c 3878 map->type = type;
2b82032c 3879 map->sub_stripes = sub_stripes;
0b86a832 3880
2b82032c 3881 *map_ret = map;
53b381b3 3882 num_bytes = stripe_size * data_stripes;
0b86a832 3883
73c5de00
AJ
3884 *stripe_size_out = stripe_size;
3885 *num_bytes_out = num_bytes;
0b86a832 3886
73c5de00 3887 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 3888
172ddd60 3889 em = alloc_extent_map();
2b82032c 3890 if (!em) {
b2117a39
MX
3891 ret = -ENOMEM;
3892 goto error;
593060d7 3893 }
2b82032c
YZ
3894 em->bdev = (struct block_device *)map;
3895 em->start = start;
73c5de00 3896 em->len = num_bytes;
2b82032c
YZ
3897 em->block_start = 0;
3898 em->block_len = em->len;
593060d7 3899
2b82032c 3900 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 3901 write_lock(&em_tree->lock);
2b82032c 3902 ret = add_extent_mapping(em_tree, em);
890871be 3903 write_unlock(&em_tree->lock);
0f5d42b2
JB
3904 if (ret) {
3905 free_extent_map(em);
1dd4602f 3906 goto error;
0f5d42b2 3907 }
0b86a832 3908
73c5de00
AJ
3909 for (i = 0; i < map->num_stripes; ++i) {
3910 struct btrfs_device *device;
3911 u64 dev_offset;
3912
3913 device = map->stripes[i].dev;
3914 dev_offset = map->stripes[i].physical;
0b86a832
CM
3915
3916 ret = btrfs_alloc_dev_extent(trans, device,
2b82032c
YZ
3917 info->chunk_root->root_key.objectid,
3918 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
73c5de00 3919 start, dev_offset, stripe_size);
04487488
JB
3920 if (ret)
3921 goto error_dev_extent;
3922 }
3923
3924 ret = btrfs_make_block_group(trans, extent_root, 0, type,
3925 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3926 start, num_bytes);
3927 if (ret) {
3928 i = map->num_stripes - 1;
3929 goto error_dev_extent;
2b82032c
YZ
3930 }
3931
0f5d42b2 3932 free_extent_map(em);
53b381b3
DW
3933 check_raid56_incompat_flag(extent_root->fs_info, type);
3934
b2117a39 3935 kfree(devices_info);
2b82032c 3936 return 0;
b2117a39 3937
04487488
JB
3938error_dev_extent:
3939 for (; i >= 0; i--) {
3940 struct btrfs_device *device;
3941 int err;
3942
3943 device = map->stripes[i].dev;
3944 err = btrfs_free_dev_extent(trans, device, start);
3945 if (err) {
3946 btrfs_abort_transaction(trans, extent_root, err);
3947 break;
3948 }
3949 }
0f5d42b2
JB
3950 write_lock(&em_tree->lock);
3951 remove_extent_mapping(em_tree, em);
3952 write_unlock(&em_tree->lock);
3953
3954 /* One for our allocation */
3955 free_extent_map(em);
3956 /* One for the tree reference */
3957 free_extent_map(em);
b2117a39
MX
3958error:
3959 kfree(map);
3960 kfree(devices_info);
3961 return ret;
2b82032c
YZ
3962}
3963
3964static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
3965 struct btrfs_root *extent_root,
3966 struct map_lookup *map, u64 chunk_offset,
3967 u64 chunk_size, u64 stripe_size)
3968{
3969 u64 dev_offset;
3970 struct btrfs_key key;
3971 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3972 struct btrfs_device *device;
3973 struct btrfs_chunk *chunk;
3974 struct btrfs_stripe *stripe;
3975 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
3976 int index = 0;
3977 int ret;
3978
3979 chunk = kzalloc(item_size, GFP_NOFS);
3980 if (!chunk)
3981 return -ENOMEM;
3982
3983 index = 0;
3984 while (index < map->num_stripes) {
3985 device = map->stripes[index].dev;
3986 device->bytes_used += stripe_size;
0b86a832 3987 ret = btrfs_update_device(trans, device);
3acd3953
MF
3988 if (ret)
3989 goto out_free;
2b82032c
YZ
3990 index++;
3991 }
3992
2bf64758
JB
3993 spin_lock(&extent_root->fs_info->free_chunk_lock);
3994 extent_root->fs_info->free_chunk_space -= (stripe_size *
3995 map->num_stripes);
3996 spin_unlock(&extent_root->fs_info->free_chunk_lock);
3997
2b82032c
YZ
3998 index = 0;
3999 stripe = &chunk->stripe;
4000 while (index < map->num_stripes) {
4001 device = map->stripes[index].dev;
4002 dev_offset = map->stripes[index].physical;
0b86a832 4003
e17cade2
CM
4004 btrfs_set_stack_stripe_devid(stripe, device->devid);
4005 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4006 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4007 stripe++;
0b86a832
CM
4008 index++;
4009 }
4010
2b82032c 4011 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4012 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4013 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4014 btrfs_set_stack_chunk_type(chunk, map->type);
4015 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4016 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4017 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4018 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4019 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4020
2b82032c
YZ
4021 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4022 key.type = BTRFS_CHUNK_ITEM_KEY;
4023 key.offset = chunk_offset;
0b86a832 4024
2b82032c 4025 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
0b86a832 4026
4ed1d16e
MF
4027 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4028 /*
4029 * TODO: Cleanup of inserted chunk root in case of
4030 * failure.
4031 */
125ccb0a 4032 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4033 item_size);
8f18cf13 4034 }
1abe9b8a 4035
3acd3953 4036out_free:
0b86a832 4037 kfree(chunk);
4ed1d16e 4038 return ret;
2b82032c 4039}
0b86a832 4040
2b82032c
YZ
4041/*
4042 * Chunk allocation falls into two parts. The first part does works
4043 * that make the new allocated chunk useable, but not do any operation
4044 * that modifies the chunk tree. The second part does the works that
4045 * require modifying the chunk tree. This division is important for the
4046 * bootstrap process of adding storage to a seed btrfs.
4047 */
4048int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4049 struct btrfs_root *extent_root, u64 type)
4050{
4051 u64 chunk_offset;
4052 u64 chunk_size;
4053 u64 stripe_size;
4054 struct map_lookup *map;
4055 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4056 int ret;
4057
4058 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4059 &chunk_offset);
4060 if (ret)
4061 return ret;
4062
4063 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
4064 &stripe_size, chunk_offset, type);
4065 if (ret)
4066 return ret;
4067
4068 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
4069 chunk_size, stripe_size);
79787eaa
JM
4070 if (ret)
4071 return ret;
2b82032c
YZ
4072 return 0;
4073}
4074
d397712b 4075static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4076 struct btrfs_root *root,
4077 struct btrfs_device *device)
4078{
4079 u64 chunk_offset;
4080 u64 sys_chunk_offset;
4081 u64 chunk_size;
4082 u64 sys_chunk_size;
4083 u64 stripe_size;
4084 u64 sys_stripe_size;
4085 u64 alloc_profile;
4086 struct map_lookup *map;
4087 struct map_lookup *sys_map;
4088 struct btrfs_fs_info *fs_info = root->fs_info;
4089 struct btrfs_root *extent_root = fs_info->extent_root;
4090 int ret;
4091
4092 ret = find_next_chunk(fs_info->chunk_root,
4093 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
92b8e897
MF
4094 if (ret)
4095 return ret;
2b82032c 4096
de98ced9 4097 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
2b82032c
YZ
4098 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
4099 &stripe_size, chunk_offset, alloc_profile);
79787eaa
JM
4100 if (ret)
4101 return ret;
2b82032c
YZ
4102
4103 sys_chunk_offset = chunk_offset + chunk_size;
4104
de98ced9 4105 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
2b82032c
YZ
4106 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
4107 &sys_chunk_size, &sys_stripe_size,
4108 sys_chunk_offset, alloc_profile);
005d6427
DS
4109 if (ret) {
4110 btrfs_abort_transaction(trans, root, ret);
4111 goto out;
4112 }
2b82032c
YZ
4113
4114 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
005d6427
DS
4115 if (ret) {
4116 btrfs_abort_transaction(trans, root, ret);
4117 goto out;
4118 }
2b82032c
YZ
4119
4120 /*
4121 * Modifying chunk tree needs allocating new blocks from both
4122 * system block group and metadata block group. So we only can
4123 * do operations require modifying the chunk tree after both
4124 * block groups were created.
4125 */
4126 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
4127 chunk_size, stripe_size);
005d6427
DS
4128 if (ret) {
4129 btrfs_abort_transaction(trans, root, ret);
4130 goto out;
4131 }
2b82032c
YZ
4132
4133 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
4134 sys_chunk_offset, sys_chunk_size,
4135 sys_stripe_size);
79787eaa 4136 if (ret)
005d6427 4137 btrfs_abort_transaction(trans, root, ret);
79787eaa 4138
005d6427 4139out:
79787eaa 4140
79787eaa 4141 return ret;
2b82032c
YZ
4142}
4143
4144int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4145{
4146 struct extent_map *em;
4147 struct map_lookup *map;
4148 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4149 int readonly = 0;
4150 int i;
4151
890871be 4152 read_lock(&map_tree->map_tree.lock);
2b82032c 4153 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 4154 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
4155 if (!em)
4156 return 1;
4157
f48b9075
JB
4158 if (btrfs_test_opt(root, DEGRADED)) {
4159 free_extent_map(em);
4160 return 0;
4161 }
4162
2b82032c
YZ
4163 map = (struct map_lookup *)em->bdev;
4164 for (i = 0; i < map->num_stripes; i++) {
4165 if (!map->stripes[i].dev->writeable) {
4166 readonly = 1;
4167 break;
4168 }
4169 }
0b86a832 4170 free_extent_map(em);
2b82032c 4171 return readonly;
0b86a832
CM
4172}
4173
4174void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4175{
a8067e02 4176 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
4177}
4178
4179void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4180{
4181 struct extent_map *em;
4182
d397712b 4183 while (1) {
890871be 4184 write_lock(&tree->map_tree.lock);
0b86a832
CM
4185 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4186 if (em)
4187 remove_extent_mapping(&tree->map_tree, em);
890871be 4188 write_unlock(&tree->map_tree.lock);
0b86a832
CM
4189 if (!em)
4190 break;
4191 kfree(em->bdev);
4192 /* once for us */
4193 free_extent_map(em);
4194 /* once for the tree */
4195 free_extent_map(em);
4196 }
4197}
4198
5d964051 4199int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 4200{
5d964051 4201 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
4202 struct extent_map *em;
4203 struct map_lookup *map;
4204 struct extent_map_tree *em_tree = &map_tree->map_tree;
4205 int ret;
4206
890871be 4207 read_lock(&em_tree->lock);
f188591e 4208 em = lookup_extent_mapping(em_tree, logical, len);
890871be 4209 read_unlock(&em_tree->lock);
f188591e
CM
4210 BUG_ON(!em);
4211
4212 BUG_ON(em->start > logical || em->start + em->len < logical);
4213 map = (struct map_lookup *)em->bdev;
4214 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4215 ret = map->num_stripes;
321aecc6
CM
4216 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4217 ret = map->sub_stripes;
53b381b3
DW
4218 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4219 ret = 2;
4220 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4221 ret = 3;
f188591e
CM
4222 else
4223 ret = 1;
4224 free_extent_map(em);
ad6d620e
SB
4225
4226 btrfs_dev_replace_lock(&fs_info->dev_replace);
4227 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4228 ret++;
4229 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4230
f188591e
CM
4231 return ret;
4232}
4233
53b381b3
DW
4234unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4235 struct btrfs_mapping_tree *map_tree,
4236 u64 logical)
4237{
4238 struct extent_map *em;
4239 struct map_lookup *map;
4240 struct extent_map_tree *em_tree = &map_tree->map_tree;
4241 unsigned long len = root->sectorsize;
4242
4243 read_lock(&em_tree->lock);
4244 em = lookup_extent_mapping(em_tree, logical, len);
4245 read_unlock(&em_tree->lock);
4246 BUG_ON(!em);
4247
4248 BUG_ON(em->start > logical || em->start + em->len < logical);
4249 map = (struct map_lookup *)em->bdev;
4250 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4251 BTRFS_BLOCK_GROUP_RAID6)) {
4252 len = map->stripe_len * nr_data_stripes(map);
4253 }
4254 free_extent_map(em);
4255 return len;
4256}
4257
4258int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4259 u64 logical, u64 len, int mirror_num)
4260{
4261 struct extent_map *em;
4262 struct map_lookup *map;
4263 struct extent_map_tree *em_tree = &map_tree->map_tree;
4264 int ret = 0;
4265
4266 read_lock(&em_tree->lock);
4267 em = lookup_extent_mapping(em_tree, logical, len);
4268 read_unlock(&em_tree->lock);
4269 BUG_ON(!em);
4270
4271 BUG_ON(em->start > logical || em->start + em->len < logical);
4272 map = (struct map_lookup *)em->bdev;
4273 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4274 BTRFS_BLOCK_GROUP_RAID6))
4275 ret = 1;
4276 free_extent_map(em);
4277 return ret;
4278}
4279
30d9861f
SB
4280static int find_live_mirror(struct btrfs_fs_info *fs_info,
4281 struct map_lookup *map, int first, int num,
4282 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
4283{
4284 int i;
30d9861f
SB
4285 int tolerance;
4286 struct btrfs_device *srcdev;
4287
4288 if (dev_replace_is_ongoing &&
4289 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4290 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4291 srcdev = fs_info->dev_replace.srcdev;
4292 else
4293 srcdev = NULL;
4294
4295 /*
4296 * try to avoid the drive that is the source drive for a
4297 * dev-replace procedure, only choose it if no other non-missing
4298 * mirror is available
4299 */
4300 for (tolerance = 0; tolerance < 2; tolerance++) {
4301 if (map->stripes[optimal].dev->bdev &&
4302 (tolerance || map->stripes[optimal].dev != srcdev))
4303 return optimal;
4304 for (i = first; i < first + num; i++) {
4305 if (map->stripes[i].dev->bdev &&
4306 (tolerance || map->stripes[i].dev != srcdev))
4307 return i;
4308 }
dfe25020 4309 }
30d9861f 4310
dfe25020
CM
4311 /* we couldn't find one that doesn't fail. Just return something
4312 * and the io error handling code will clean up eventually
4313 */
4314 return optimal;
4315}
4316
53b381b3
DW
4317static inline int parity_smaller(u64 a, u64 b)
4318{
4319 return a > b;
4320}
4321
4322/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4323static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4324{
4325 struct btrfs_bio_stripe s;
4326 int i;
4327 u64 l;
4328 int again = 1;
4329
4330 while (again) {
4331 again = 0;
4332 for (i = 0; i < bbio->num_stripes - 1; i++) {
4333 if (parity_smaller(raid_map[i], raid_map[i+1])) {
4334 s = bbio->stripes[i];
4335 l = raid_map[i];
4336 bbio->stripes[i] = bbio->stripes[i+1];
4337 raid_map[i] = raid_map[i+1];
4338 bbio->stripes[i+1] = s;
4339 raid_map[i+1] = l;
4340 again = 1;
4341 }
4342 }
4343 }
4344}
4345
3ec706c8 4346static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 4347 u64 logical, u64 *length,
a1d3c478 4348 struct btrfs_bio **bbio_ret,
53b381b3 4349 int mirror_num, u64 **raid_map_ret)
0b86a832
CM
4350{
4351 struct extent_map *em;
4352 struct map_lookup *map;
3ec706c8 4353 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
4354 struct extent_map_tree *em_tree = &map_tree->map_tree;
4355 u64 offset;
593060d7 4356 u64 stripe_offset;
fce3bb9a 4357 u64 stripe_end_offset;
593060d7 4358 u64 stripe_nr;
fce3bb9a
LD
4359 u64 stripe_nr_orig;
4360 u64 stripe_nr_end;
53b381b3
DW
4361 u64 stripe_len;
4362 u64 *raid_map = NULL;
593060d7 4363 int stripe_index;
cea9e445 4364 int i;
de11cc12 4365 int ret = 0;
f2d8d74d 4366 int num_stripes;
a236aed1 4367 int max_errors = 0;
a1d3c478 4368 struct btrfs_bio *bbio = NULL;
472262f3
SB
4369 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4370 int dev_replace_is_ongoing = 0;
4371 int num_alloc_stripes;
ad6d620e
SB
4372 int patch_the_first_stripe_for_dev_replace = 0;
4373 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 4374 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 4375
890871be 4376 read_lock(&em_tree->lock);
0b86a832 4377 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 4378 read_unlock(&em_tree->lock);
f2d8d74d 4379
3b951516 4380 if (!em) {
48940662 4381 printk(KERN_CRIT "btrfs: unable to find logical %llu len %llu\n",
d397712b
CM
4382 (unsigned long long)logical,
4383 (unsigned long long)*length);
f2d8d74d 4384 BUG();
3b951516 4385 }
0b86a832
CM
4386
4387 BUG_ON(em->start > logical || em->start + em->len < logical);
4388 map = (struct map_lookup *)em->bdev;
4389 offset = logical - em->start;
593060d7 4390
53b381b3
DW
4391 if (mirror_num > map->num_stripes)
4392 mirror_num = 0;
4393
4394 stripe_len = map->stripe_len;
593060d7
CM
4395 stripe_nr = offset;
4396 /*
4397 * stripe_nr counts the total number of stripes we have to stride
4398 * to get to this block
4399 */
53b381b3 4400 do_div(stripe_nr, stripe_len);
593060d7 4401
53b381b3 4402 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
4403 BUG_ON(offset < stripe_offset);
4404
4405 /* stripe_offset is the offset of this block in its stripe*/
4406 stripe_offset = offset - stripe_offset;
4407
53b381b3
DW
4408 /* if we're here for raid56, we need to know the stripe aligned start */
4409 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4410 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4411 raid56_full_stripe_start = offset;
4412
4413 /* allow a write of a full stripe, but make sure we don't
4414 * allow straddling of stripes
4415 */
4416 do_div(raid56_full_stripe_start, full_stripe_len);
4417 raid56_full_stripe_start *= full_stripe_len;
4418 }
4419
4420 if (rw & REQ_DISCARD) {
4421 /* we don't discard raid56 yet */
4422 if (map->type &
4423 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4424 ret = -EOPNOTSUPP;
4425 goto out;
4426 }
fce3bb9a 4427 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
4428 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4429 u64 max_len;
4430 /* For writes to RAID[56], allow a full stripeset across all disks.
4431 For other RAID types and for RAID[56] reads, just allow a single
4432 stripe (on a single disk). */
4433 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4434 (rw & REQ_WRITE)) {
4435 max_len = stripe_len * nr_data_stripes(map) -
4436 (offset - raid56_full_stripe_start);
4437 } else {
4438 /* we limit the length of each bio to what fits in a stripe */
4439 max_len = stripe_len - stripe_offset;
4440 }
4441 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
4442 } else {
4443 *length = em->len - offset;
4444 }
f2d8d74d 4445
53b381b3
DW
4446 /* This is for when we're called from btrfs_merge_bio_hook() and all
4447 it cares about is the length */
a1d3c478 4448 if (!bbio_ret)
cea9e445
CM
4449 goto out;
4450
472262f3
SB
4451 btrfs_dev_replace_lock(dev_replace);
4452 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4453 if (!dev_replace_is_ongoing)
4454 btrfs_dev_replace_unlock(dev_replace);
4455
ad6d620e
SB
4456 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4457 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4458 dev_replace->tgtdev != NULL) {
4459 /*
4460 * in dev-replace case, for repair case (that's the only
4461 * case where the mirror is selected explicitly when
4462 * calling btrfs_map_block), blocks left of the left cursor
4463 * can also be read from the target drive.
4464 * For REQ_GET_READ_MIRRORS, the target drive is added as
4465 * the last one to the array of stripes. For READ, it also
4466 * needs to be supported using the same mirror number.
4467 * If the requested block is not left of the left cursor,
4468 * EIO is returned. This can happen because btrfs_num_copies()
4469 * returns one more in the dev-replace case.
4470 */
4471 u64 tmp_length = *length;
4472 struct btrfs_bio *tmp_bbio = NULL;
4473 int tmp_num_stripes;
4474 u64 srcdev_devid = dev_replace->srcdev->devid;
4475 int index_srcdev = 0;
4476 int found = 0;
4477 u64 physical_of_found = 0;
4478
4479 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
53b381b3 4480 logical, &tmp_length, &tmp_bbio, 0, NULL);
ad6d620e
SB
4481 if (ret) {
4482 WARN_ON(tmp_bbio != NULL);
4483 goto out;
4484 }
4485
4486 tmp_num_stripes = tmp_bbio->num_stripes;
4487 if (mirror_num > tmp_num_stripes) {
4488 /*
4489 * REQ_GET_READ_MIRRORS does not contain this
4490 * mirror, that means that the requested area
4491 * is not left of the left cursor
4492 */
4493 ret = -EIO;
4494 kfree(tmp_bbio);
4495 goto out;
4496 }
4497
4498 /*
4499 * process the rest of the function using the mirror_num
4500 * of the source drive. Therefore look it up first.
4501 * At the end, patch the device pointer to the one of the
4502 * target drive.
4503 */
4504 for (i = 0; i < tmp_num_stripes; i++) {
4505 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4506 /*
4507 * In case of DUP, in order to keep it
4508 * simple, only add the mirror with the
4509 * lowest physical address
4510 */
4511 if (found &&
4512 physical_of_found <=
4513 tmp_bbio->stripes[i].physical)
4514 continue;
4515 index_srcdev = i;
4516 found = 1;
4517 physical_of_found =
4518 tmp_bbio->stripes[i].physical;
4519 }
4520 }
4521
4522 if (found) {
4523 mirror_num = index_srcdev + 1;
4524 patch_the_first_stripe_for_dev_replace = 1;
4525 physical_to_patch_in_first_stripe = physical_of_found;
4526 } else {
4527 WARN_ON(1);
4528 ret = -EIO;
4529 kfree(tmp_bbio);
4530 goto out;
4531 }
4532
4533 kfree(tmp_bbio);
4534 } else if (mirror_num > map->num_stripes) {
4535 mirror_num = 0;
4536 }
4537
f2d8d74d 4538 num_stripes = 1;
cea9e445 4539 stripe_index = 0;
fce3bb9a
LD
4540 stripe_nr_orig = stripe_nr;
4541 stripe_nr_end = (offset + *length + map->stripe_len - 1) &
4542 (~(map->stripe_len - 1));
4543 do_div(stripe_nr_end, map->stripe_len);
4544 stripe_end_offset = stripe_nr_end * map->stripe_len -
4545 (offset + *length);
53b381b3 4546
fce3bb9a
LD
4547 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4548 if (rw & REQ_DISCARD)
4549 num_stripes = min_t(u64, map->num_stripes,
4550 stripe_nr_end - stripe_nr_orig);
4551 stripe_index = do_div(stripe_nr, map->num_stripes);
4552 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 4553 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 4554 num_stripes = map->num_stripes;
2fff734f 4555 else if (mirror_num)
f188591e 4556 stripe_index = mirror_num - 1;
dfe25020 4557 else {
30d9861f 4558 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 4559 map->num_stripes,
30d9861f
SB
4560 current->pid % map->num_stripes,
4561 dev_replace_is_ongoing);
a1d3c478 4562 mirror_num = stripe_index + 1;
dfe25020 4563 }
2fff734f 4564
611f0e00 4565 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 4566 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 4567 num_stripes = map->num_stripes;
a1d3c478 4568 } else if (mirror_num) {
f188591e 4569 stripe_index = mirror_num - 1;
a1d3c478
JS
4570 } else {
4571 mirror_num = 1;
4572 }
2fff734f 4573
321aecc6
CM
4574 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4575 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
4576
4577 stripe_index = do_div(stripe_nr, factor);
4578 stripe_index *= map->sub_stripes;
4579
29a8d9a0 4580 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 4581 num_stripes = map->sub_stripes;
fce3bb9a
LD
4582 else if (rw & REQ_DISCARD)
4583 num_stripes = min_t(u64, map->sub_stripes *
4584 (stripe_nr_end - stripe_nr_orig),
4585 map->num_stripes);
321aecc6
CM
4586 else if (mirror_num)
4587 stripe_index += mirror_num - 1;
dfe25020 4588 else {
3e74317a 4589 int old_stripe_index = stripe_index;
30d9861f
SB
4590 stripe_index = find_live_mirror(fs_info, map,
4591 stripe_index,
dfe25020 4592 map->sub_stripes, stripe_index +
30d9861f
SB
4593 current->pid % map->sub_stripes,
4594 dev_replace_is_ongoing);
3e74317a 4595 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 4596 }
53b381b3
DW
4597
4598 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4599 BTRFS_BLOCK_GROUP_RAID6)) {
4600 u64 tmp;
4601
4602 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4603 && raid_map_ret) {
4604 int i, rot;
4605
4606 /* push stripe_nr back to the start of the full stripe */
4607 stripe_nr = raid56_full_stripe_start;
4608 do_div(stripe_nr, stripe_len);
4609
4610 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4611
4612 /* RAID[56] write or recovery. Return all stripes */
4613 num_stripes = map->num_stripes;
4614 max_errors = nr_parity_stripes(map);
4615
4616 raid_map = kmalloc(sizeof(u64) * num_stripes,
4617 GFP_NOFS);
4618 if (!raid_map) {
4619 ret = -ENOMEM;
4620 goto out;
4621 }
4622
4623 /* Work out the disk rotation on this stripe-set */
4624 tmp = stripe_nr;
4625 rot = do_div(tmp, num_stripes);
4626
4627 /* Fill in the logical address of each stripe */
4628 tmp = stripe_nr * nr_data_stripes(map);
4629 for (i = 0; i < nr_data_stripes(map); i++)
4630 raid_map[(i+rot) % num_stripes] =
4631 em->start + (tmp + i) * map->stripe_len;
4632
4633 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
4634 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4635 raid_map[(i+rot+1) % num_stripes] =
4636 RAID6_Q_STRIPE;
4637
4638 *length = map->stripe_len;
4639 stripe_index = 0;
4640 stripe_offset = 0;
4641 } else {
4642 /*
4643 * Mirror #0 or #1 means the original data block.
4644 * Mirror #2 is RAID5 parity block.
4645 * Mirror #3 is RAID6 Q block.
4646 */
4647 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4648 if (mirror_num > 1)
4649 stripe_index = nr_data_stripes(map) +
4650 mirror_num - 2;
4651
4652 /* We distribute the parity blocks across stripes */
4653 tmp = stripe_nr + stripe_index;
4654 stripe_index = do_div(tmp, map->num_stripes);
4655 }
8790d502
CM
4656 } else {
4657 /*
4658 * after this do_div call, stripe_nr is the number of stripes
4659 * on this device we have to walk to find the data, and
4660 * stripe_index is the number of our device in the stripe array
4661 */
4662 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 4663 mirror_num = stripe_index + 1;
8790d502 4664 }
593060d7 4665 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 4666
472262f3 4667 num_alloc_stripes = num_stripes;
ad6d620e
SB
4668 if (dev_replace_is_ongoing) {
4669 if (rw & (REQ_WRITE | REQ_DISCARD))
4670 num_alloc_stripes <<= 1;
4671 if (rw & REQ_GET_READ_MIRRORS)
4672 num_alloc_stripes++;
4673 }
472262f3 4674 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
de11cc12
LZ
4675 if (!bbio) {
4676 ret = -ENOMEM;
4677 goto out;
4678 }
4679 atomic_set(&bbio->error, 0);
4680
fce3bb9a 4681 if (rw & REQ_DISCARD) {
ec9ef7a1
LZ
4682 int factor = 0;
4683 int sub_stripes = 0;
4684 u64 stripes_per_dev = 0;
4685 u32 remaining_stripes = 0;
b89203f7 4686 u32 last_stripe = 0;
ec9ef7a1
LZ
4687
4688 if (map->type &
4689 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
4690 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4691 sub_stripes = 1;
4692 else
4693 sub_stripes = map->sub_stripes;
4694
4695 factor = map->num_stripes / sub_stripes;
4696 stripes_per_dev = div_u64_rem(stripe_nr_end -
4697 stripe_nr_orig,
4698 factor,
4699 &remaining_stripes);
b89203f7
LB
4700 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
4701 last_stripe *= sub_stripes;
ec9ef7a1
LZ
4702 }
4703
fce3bb9a 4704 for (i = 0; i < num_stripes; i++) {
a1d3c478 4705 bbio->stripes[i].physical =
f2d8d74d
CM
4706 map->stripes[stripe_index].physical +
4707 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 4708 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 4709
ec9ef7a1
LZ
4710 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
4711 BTRFS_BLOCK_GROUP_RAID10)) {
4712 bbio->stripes[i].length = stripes_per_dev *
4713 map->stripe_len;
b89203f7 4714
ec9ef7a1
LZ
4715 if (i / sub_stripes < remaining_stripes)
4716 bbio->stripes[i].length +=
4717 map->stripe_len;
b89203f7
LB
4718
4719 /*
4720 * Special for the first stripe and
4721 * the last stripe:
4722 *
4723 * |-------|...|-------|
4724 * |----------|
4725 * off end_off
4726 */
ec9ef7a1 4727 if (i < sub_stripes)
a1d3c478 4728 bbio->stripes[i].length -=
fce3bb9a 4729 stripe_offset;
b89203f7
LB
4730
4731 if (stripe_index >= last_stripe &&
4732 stripe_index <= (last_stripe +
4733 sub_stripes - 1))
a1d3c478 4734 bbio->stripes[i].length -=
fce3bb9a 4735 stripe_end_offset;
b89203f7 4736
ec9ef7a1
LZ
4737 if (i == sub_stripes - 1)
4738 stripe_offset = 0;
fce3bb9a 4739 } else
a1d3c478 4740 bbio->stripes[i].length = *length;
fce3bb9a
LD
4741
4742 stripe_index++;
4743 if (stripe_index == map->num_stripes) {
4744 /* This could only happen for RAID0/10 */
4745 stripe_index = 0;
4746 stripe_nr++;
4747 }
4748 }
4749 } else {
4750 for (i = 0; i < num_stripes; i++) {
a1d3c478 4751 bbio->stripes[i].physical =
212a17ab
LT
4752 map->stripes[stripe_index].physical +
4753 stripe_offset +
4754 stripe_nr * map->stripe_len;
a1d3c478 4755 bbio->stripes[i].dev =
212a17ab 4756 map->stripes[stripe_index].dev;
fce3bb9a 4757 stripe_index++;
f2d8d74d 4758 }
593060d7 4759 }
de11cc12 4760
29a8d9a0 4761 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
de11cc12
LZ
4762 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4763 BTRFS_BLOCK_GROUP_RAID10 |
53b381b3 4764 BTRFS_BLOCK_GROUP_RAID5 |
de11cc12
LZ
4765 BTRFS_BLOCK_GROUP_DUP)) {
4766 max_errors = 1;
53b381b3
DW
4767 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4768 max_errors = 2;
de11cc12 4769 }
f2d8d74d 4770 }
de11cc12 4771
472262f3
SB
4772 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
4773 dev_replace->tgtdev != NULL) {
4774 int index_where_to_add;
4775 u64 srcdev_devid = dev_replace->srcdev->devid;
4776
4777 /*
4778 * duplicate the write operations while the dev replace
4779 * procedure is running. Since the copying of the old disk
4780 * to the new disk takes place at run time while the
4781 * filesystem is mounted writable, the regular write
4782 * operations to the old disk have to be duplicated to go
4783 * to the new disk as well.
4784 * Note that device->missing is handled by the caller, and
4785 * that the write to the old disk is already set up in the
4786 * stripes array.
4787 */
4788 index_where_to_add = num_stripes;
4789 for (i = 0; i < num_stripes; i++) {
4790 if (bbio->stripes[i].dev->devid == srcdev_devid) {
4791 /* write to new disk, too */
4792 struct btrfs_bio_stripe *new =
4793 bbio->stripes + index_where_to_add;
4794 struct btrfs_bio_stripe *old =
4795 bbio->stripes + i;
4796
4797 new->physical = old->physical;
4798 new->length = old->length;
4799 new->dev = dev_replace->tgtdev;
4800 index_where_to_add++;
4801 max_errors++;
4802 }
4803 }
4804 num_stripes = index_where_to_add;
ad6d620e
SB
4805 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
4806 dev_replace->tgtdev != NULL) {
4807 u64 srcdev_devid = dev_replace->srcdev->devid;
4808 int index_srcdev = 0;
4809 int found = 0;
4810 u64 physical_of_found = 0;
4811
4812 /*
4813 * During the dev-replace procedure, the target drive can
4814 * also be used to read data in case it is needed to repair
4815 * a corrupt block elsewhere. This is possible if the
4816 * requested area is left of the left cursor. In this area,
4817 * the target drive is a full copy of the source drive.
4818 */
4819 for (i = 0; i < num_stripes; i++) {
4820 if (bbio->stripes[i].dev->devid == srcdev_devid) {
4821 /*
4822 * In case of DUP, in order to keep it
4823 * simple, only add the mirror with the
4824 * lowest physical address
4825 */
4826 if (found &&
4827 physical_of_found <=
4828 bbio->stripes[i].physical)
4829 continue;
4830 index_srcdev = i;
4831 found = 1;
4832 physical_of_found = bbio->stripes[i].physical;
4833 }
4834 }
4835 if (found) {
4836 u64 length = map->stripe_len;
4837
4838 if (physical_of_found + length <=
4839 dev_replace->cursor_left) {
4840 struct btrfs_bio_stripe *tgtdev_stripe =
4841 bbio->stripes + num_stripes;
4842
4843 tgtdev_stripe->physical = physical_of_found;
4844 tgtdev_stripe->length =
4845 bbio->stripes[index_srcdev].length;
4846 tgtdev_stripe->dev = dev_replace->tgtdev;
4847
4848 num_stripes++;
4849 }
4850 }
472262f3
SB
4851 }
4852
de11cc12
LZ
4853 *bbio_ret = bbio;
4854 bbio->num_stripes = num_stripes;
4855 bbio->max_errors = max_errors;
4856 bbio->mirror_num = mirror_num;
ad6d620e
SB
4857
4858 /*
4859 * this is the case that REQ_READ && dev_replace_is_ongoing &&
4860 * mirror_num == num_stripes + 1 && dev_replace target drive is
4861 * available as a mirror
4862 */
4863 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
4864 WARN_ON(num_stripes > 1);
4865 bbio->stripes[0].dev = dev_replace->tgtdev;
4866 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
4867 bbio->mirror_num = map->num_stripes + 1;
4868 }
53b381b3
DW
4869 if (raid_map) {
4870 sort_parity_stripes(bbio, raid_map);
4871 *raid_map_ret = raid_map;
4872 }
cea9e445 4873out:
472262f3
SB
4874 if (dev_replace_is_ongoing)
4875 btrfs_dev_replace_unlock(dev_replace);
0b86a832 4876 free_extent_map(em);
de11cc12 4877 return ret;
0b86a832
CM
4878}
4879
3ec706c8 4880int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 4881 u64 logical, u64 *length,
a1d3c478 4882 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 4883{
3ec706c8 4884 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
53b381b3 4885 mirror_num, NULL);
f2d8d74d
CM
4886}
4887
a512bbf8
YZ
4888int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
4889 u64 chunk_start, u64 physical, u64 devid,
4890 u64 **logical, int *naddrs, int *stripe_len)
4891{
4892 struct extent_map_tree *em_tree = &map_tree->map_tree;
4893 struct extent_map *em;
4894 struct map_lookup *map;
4895 u64 *buf;
4896 u64 bytenr;
4897 u64 length;
4898 u64 stripe_nr;
53b381b3 4899 u64 rmap_len;
a512bbf8
YZ
4900 int i, j, nr = 0;
4901
890871be 4902 read_lock(&em_tree->lock);
a512bbf8 4903 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 4904 read_unlock(&em_tree->lock);
a512bbf8
YZ
4905
4906 BUG_ON(!em || em->start != chunk_start);
4907 map = (struct map_lookup *)em->bdev;
4908
4909 length = em->len;
53b381b3
DW
4910 rmap_len = map->stripe_len;
4911
a512bbf8
YZ
4912 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4913 do_div(length, map->num_stripes / map->sub_stripes);
4914 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4915 do_div(length, map->num_stripes);
53b381b3
DW
4916 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4917 BTRFS_BLOCK_GROUP_RAID6)) {
4918 do_div(length, nr_data_stripes(map));
4919 rmap_len = map->stripe_len * nr_data_stripes(map);
4920 }
a512bbf8
YZ
4921
4922 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
79787eaa 4923 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
4924
4925 for (i = 0; i < map->num_stripes; i++) {
4926 if (devid && map->stripes[i].dev->devid != devid)
4927 continue;
4928 if (map->stripes[i].physical > physical ||
4929 map->stripes[i].physical + length <= physical)
4930 continue;
4931
4932 stripe_nr = physical - map->stripes[i].physical;
4933 do_div(stripe_nr, map->stripe_len);
4934
4935 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4936 stripe_nr = stripe_nr * map->num_stripes + i;
4937 do_div(stripe_nr, map->sub_stripes);
4938 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4939 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
4940 } /* else if RAID[56], multiply by nr_data_stripes().
4941 * Alternatively, just use rmap_len below instead of
4942 * map->stripe_len */
4943
4944 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 4945 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
4946 for (j = 0; j < nr; j++) {
4947 if (buf[j] == bytenr)
4948 break;
4949 }
934d375b
CM
4950 if (j == nr) {
4951 WARN_ON(nr >= map->num_stripes);
a512bbf8 4952 buf[nr++] = bytenr;
934d375b 4953 }
a512bbf8
YZ
4954 }
4955
a512bbf8
YZ
4956 *logical = buf;
4957 *naddrs = nr;
53b381b3 4958 *stripe_len = rmap_len;
a512bbf8
YZ
4959
4960 free_extent_map(em);
4961 return 0;
f2d8d74d
CM
4962}
4963
442a4f63
SB
4964static void *merge_stripe_index_into_bio_private(void *bi_private,
4965 unsigned int stripe_index)
4966{
4967 /*
4968 * with single, dup, RAID0, RAID1 and RAID10, stripe_index is
4969 * at most 1.
4970 * The alternative solution (instead of stealing bits from the
4971 * pointer) would be to allocate an intermediate structure
4972 * that contains the old private pointer plus the stripe_index.
4973 */
4974 BUG_ON((((uintptr_t)bi_private) & 3) != 0);
4975 BUG_ON(stripe_index > 3);
4976 return (void *)(((uintptr_t)bi_private) | stripe_index);
4977}
4978
4979static struct btrfs_bio *extract_bbio_from_bio_private(void *bi_private)
4980{
4981 return (struct btrfs_bio *)(((uintptr_t)bi_private) & ~((uintptr_t)3));
4982}
4983
4984static unsigned int extract_stripe_index_from_bio_private(void *bi_private)
4985{
4986 return (unsigned int)((uintptr_t)bi_private) & 3;
4987}
4988
a1d3c478 4989static void btrfs_end_bio(struct bio *bio, int err)
8790d502 4990{
442a4f63 4991 struct btrfs_bio *bbio = extract_bbio_from_bio_private(bio->bi_private);
7d2b4daa 4992 int is_orig_bio = 0;
8790d502 4993
442a4f63 4994 if (err) {
a1d3c478 4995 atomic_inc(&bbio->error);
442a4f63
SB
4996 if (err == -EIO || err == -EREMOTEIO) {
4997 unsigned int stripe_index =
4998 extract_stripe_index_from_bio_private(
4999 bio->bi_private);
5000 struct btrfs_device *dev;
5001
5002 BUG_ON(stripe_index >= bbio->num_stripes);
5003 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5004 if (dev->bdev) {
5005 if (bio->bi_rw & WRITE)
5006 btrfs_dev_stat_inc(dev,
5007 BTRFS_DEV_STAT_WRITE_ERRS);
5008 else
5009 btrfs_dev_stat_inc(dev,
5010 BTRFS_DEV_STAT_READ_ERRS);
5011 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5012 btrfs_dev_stat_inc(dev,
5013 BTRFS_DEV_STAT_FLUSH_ERRS);
5014 btrfs_dev_stat_print_on_error(dev);
5015 }
442a4f63
SB
5016 }
5017 }
8790d502 5018
a1d3c478 5019 if (bio == bbio->orig_bio)
7d2b4daa
CM
5020 is_orig_bio = 1;
5021
a1d3c478 5022 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5023 if (!is_orig_bio) {
5024 bio_put(bio);
a1d3c478 5025 bio = bbio->orig_bio;
7d2b4daa 5026 }
a1d3c478
JS
5027 bio->bi_private = bbio->private;
5028 bio->bi_end_io = bbio->end_io;
2774b2ca
JS
5029 bio->bi_bdev = (struct block_device *)
5030 (unsigned long)bbio->mirror_num;
a236aed1 5031 /* only send an error to the higher layers if it is
53b381b3 5032 * beyond the tolerance of the btrfs bio
a236aed1 5033 */
a1d3c478 5034 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 5035 err = -EIO;
5dbc8fca 5036 } else {
1259ab75
CM
5037 /*
5038 * this bio is actually up to date, we didn't
5039 * go over the max number of errors
5040 */
5041 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 5042 err = 0;
1259ab75 5043 }
a1d3c478 5044 kfree(bbio);
8790d502
CM
5045
5046 bio_endio(bio, err);
7d2b4daa 5047 } else if (!is_orig_bio) {
8790d502
CM
5048 bio_put(bio);
5049 }
8790d502
CM
5050}
5051
8b712842
CM
5052struct async_sched {
5053 struct bio *bio;
5054 int rw;
5055 struct btrfs_fs_info *info;
5056 struct btrfs_work work;
5057};
5058
5059/*
5060 * see run_scheduled_bios for a description of why bios are collected for
5061 * async submit.
5062 *
5063 * This will add one bio to the pending list for a device and make sure
5064 * the work struct is scheduled.
5065 */
53b381b3 5066noinline void btrfs_schedule_bio(struct btrfs_root *root,
a1b32a59
CM
5067 struct btrfs_device *device,
5068 int rw, struct bio *bio)
8b712842
CM
5069{
5070 int should_queue = 1;
ffbd517d 5071 struct btrfs_pending_bios *pending_bios;
8b712842 5072
53b381b3
DW
5073 if (device->missing || !device->bdev) {
5074 bio_endio(bio, -EIO);
5075 return;
5076 }
5077
8b712842 5078 /* don't bother with additional async steps for reads, right now */
7b6d91da 5079 if (!(rw & REQ_WRITE)) {
492bb6de 5080 bio_get(bio);
21adbd5c 5081 btrfsic_submit_bio(rw, bio);
492bb6de 5082 bio_put(bio);
143bede5 5083 return;
8b712842
CM
5084 }
5085
5086 /*
0986fe9e 5087 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
5088 * higher layers. Otherwise, the async bio makes it appear we have
5089 * made progress against dirty pages when we've really just put it
5090 * on a queue for later
5091 */
0986fe9e 5092 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 5093 WARN_ON(bio->bi_next);
8b712842
CM
5094 bio->bi_next = NULL;
5095 bio->bi_rw |= rw;
5096
5097 spin_lock(&device->io_lock);
7b6d91da 5098 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
5099 pending_bios = &device->pending_sync_bios;
5100 else
5101 pending_bios = &device->pending_bios;
8b712842 5102
ffbd517d
CM
5103 if (pending_bios->tail)
5104 pending_bios->tail->bi_next = bio;
8b712842 5105
ffbd517d
CM
5106 pending_bios->tail = bio;
5107 if (!pending_bios->head)
5108 pending_bios->head = bio;
8b712842
CM
5109 if (device->running_pending)
5110 should_queue = 0;
5111
5112 spin_unlock(&device->io_lock);
5113
5114 if (should_queue)
1cc127b5
CM
5115 btrfs_queue_worker(&root->fs_info->submit_workers,
5116 &device->work);
8b712842
CM
5117}
5118
de1ee92a
JB
5119static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5120 sector_t sector)
5121{
5122 struct bio_vec *prev;
5123 struct request_queue *q = bdev_get_queue(bdev);
5124 unsigned short max_sectors = queue_max_sectors(q);
5125 struct bvec_merge_data bvm = {
5126 .bi_bdev = bdev,
5127 .bi_sector = sector,
5128 .bi_rw = bio->bi_rw,
5129 };
5130
5131 if (bio->bi_vcnt == 0) {
5132 WARN_ON(1);
5133 return 1;
5134 }
5135
5136 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5137 if ((bio->bi_size >> 9) > max_sectors)
5138 return 0;
5139
5140 if (!q->merge_bvec_fn)
5141 return 1;
5142
5143 bvm.bi_size = bio->bi_size - prev->bv_len;
5144 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5145 return 0;
5146 return 1;
5147}
5148
5149static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5150 struct bio *bio, u64 physical, int dev_nr,
5151 int rw, int async)
5152{
5153 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5154
5155 bio->bi_private = bbio;
5156 bio->bi_private = merge_stripe_index_into_bio_private(
5157 bio->bi_private, (unsigned int)dev_nr);
5158 bio->bi_end_io = btrfs_end_bio;
5159 bio->bi_sector = physical >> 9;
5160#ifdef DEBUG
5161 {
5162 struct rcu_string *name;
5163
5164 rcu_read_lock();
5165 name = rcu_dereference(dev->name);
d1423248 5166 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a
JB
5167 "(%s id %llu), size=%u\n", rw,
5168 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5169 name->str, dev->devid, bio->bi_size);
5170 rcu_read_unlock();
5171 }
5172#endif
5173 bio->bi_bdev = dev->bdev;
5174 if (async)
53b381b3 5175 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
5176 else
5177 btrfsic_submit_bio(rw, bio);
5178}
5179
5180static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5181 struct bio *first_bio, struct btrfs_device *dev,
5182 int dev_nr, int rw, int async)
5183{
5184 struct bio_vec *bvec = first_bio->bi_io_vec;
5185 struct bio *bio;
5186 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5187 u64 physical = bbio->stripes[dev_nr].physical;
5188
5189again:
5190 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5191 if (!bio)
5192 return -ENOMEM;
5193
5194 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5195 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5196 bvec->bv_offset) < bvec->bv_len) {
5197 u64 len = bio->bi_size;
5198
5199 atomic_inc(&bbio->stripes_pending);
5200 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5201 rw, async);
5202 physical += len;
5203 goto again;
5204 }
5205 bvec++;
5206 }
5207
5208 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5209 return 0;
5210}
5211
5212static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5213{
5214 atomic_inc(&bbio->error);
5215 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5216 bio->bi_private = bbio->private;
5217 bio->bi_end_io = bbio->end_io;
5218 bio->bi_bdev = (struct block_device *)
5219 (unsigned long)bbio->mirror_num;
5220 bio->bi_sector = logical >> 9;
5221 kfree(bbio);
5222 bio_endio(bio, -EIO);
5223 }
5224}
5225
f188591e 5226int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 5227 int mirror_num, int async_submit)
0b86a832 5228{
0b86a832 5229 struct btrfs_device *dev;
8790d502 5230 struct bio *first_bio = bio;
a62b9401 5231 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
5232 u64 length = 0;
5233 u64 map_length;
53b381b3 5234 u64 *raid_map = NULL;
0b86a832 5235 int ret;
8790d502
CM
5236 int dev_nr = 0;
5237 int total_devs = 1;
a1d3c478 5238 struct btrfs_bio *bbio = NULL;
0b86a832 5239
f2d8d74d 5240 length = bio->bi_size;
0b86a832 5241 map_length = length;
cea9e445 5242
53b381b3
DW
5243 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5244 mirror_num, &raid_map);
5245 if (ret) /* -ENOMEM */
79787eaa 5246 return ret;
cea9e445 5247
a1d3c478 5248 total_devs = bbio->num_stripes;
53b381b3
DW
5249 bbio->orig_bio = first_bio;
5250 bbio->private = first_bio->bi_private;
5251 bbio->end_io = first_bio->bi_end_io;
5252 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5253
5254 if (raid_map) {
5255 /* In this case, map_length has been set to the length of
5256 a single stripe; not the whole write */
5257 if (rw & WRITE) {
5258 return raid56_parity_write(root, bio, bbio,
5259 raid_map, map_length);
5260 } else {
5261 return raid56_parity_recover(root, bio, bbio,
5262 raid_map, map_length,
5263 mirror_num);
5264 }
5265 }
5266
cea9e445 5267 if (map_length < length) {
48940662 5268 printk(KERN_CRIT "btrfs: mapping failed logical %llu bio len %llu "
d397712b
CM
5269 "len %llu\n", (unsigned long long)logical,
5270 (unsigned long long)length,
5271 (unsigned long long)map_length);
cea9e445
CM
5272 BUG();
5273 }
a1d3c478 5274
d397712b 5275 while (dev_nr < total_devs) {
de1ee92a
JB
5276 dev = bbio->stripes[dev_nr].dev;
5277 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5278 bbio_error(bbio, first_bio, logical);
5279 dev_nr++;
5280 continue;
5281 }
5282
5283 /*
5284 * Check and see if we're ok with this bio based on it's size
5285 * and offset with the given device.
5286 */
5287 if (!bio_size_ok(dev->bdev, first_bio,
5288 bbio->stripes[dev_nr].physical >> 9)) {
5289 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5290 dev_nr, rw, async_submit);
5291 BUG_ON(ret);
5292 dev_nr++;
5293 continue;
5294 }
5295
a1d3c478
JS
5296 if (dev_nr < total_devs - 1) {
5297 bio = bio_clone(first_bio, GFP_NOFS);
79787eaa 5298 BUG_ON(!bio); /* -ENOMEM */
a1d3c478
JS
5299 } else {
5300 bio = first_bio;
8790d502 5301 }
de1ee92a
JB
5302
5303 submit_stripe_bio(root, bbio, bio,
5304 bbio->stripes[dev_nr].physical, dev_nr, rw,
5305 async_submit);
8790d502
CM
5306 dev_nr++;
5307 }
0b86a832
CM
5308 return 0;
5309}
5310
aa1b8cd4 5311struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 5312 u8 *uuid, u8 *fsid)
0b86a832 5313{
2b82032c
YZ
5314 struct btrfs_device *device;
5315 struct btrfs_fs_devices *cur_devices;
5316
aa1b8cd4 5317 cur_devices = fs_info->fs_devices;
2b82032c
YZ
5318 while (cur_devices) {
5319 if (!fsid ||
5320 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5321 device = __find_device(&cur_devices->devices,
5322 devid, uuid);
5323 if (device)
5324 return device;
5325 }
5326 cur_devices = cur_devices->seed;
5327 }
5328 return NULL;
0b86a832
CM
5329}
5330
dfe25020
CM
5331static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5332 u64 devid, u8 *dev_uuid)
5333{
5334 struct btrfs_device *device;
5335 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5336
5337 device = kzalloc(sizeof(*device), GFP_NOFS);
7cbd8a83 5338 if (!device)
5339 return NULL;
dfe25020
CM
5340 list_add(&device->dev_list,
5341 &fs_devices->devices);
dfe25020
CM
5342 device->dev_root = root->fs_info->dev_root;
5343 device->devid = devid;
8b712842 5344 device->work.func = pending_bios_fn;
e4404d6e 5345 device->fs_devices = fs_devices;
cd02dca5 5346 device->missing = 1;
dfe25020 5347 fs_devices->num_devices++;
cd02dca5 5348 fs_devices->missing_devices++;
dfe25020 5349 spin_lock_init(&device->io_lock);
d20f7043 5350 INIT_LIST_HEAD(&device->dev_alloc_list);
dfe25020
CM
5351 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
5352 return device;
5353}
5354
0b86a832
CM
5355static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5356 struct extent_buffer *leaf,
5357 struct btrfs_chunk *chunk)
5358{
5359 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5360 struct map_lookup *map;
5361 struct extent_map *em;
5362 u64 logical;
5363 u64 length;
5364 u64 devid;
a443755f 5365 u8 uuid[BTRFS_UUID_SIZE];
593060d7 5366 int num_stripes;
0b86a832 5367 int ret;
593060d7 5368 int i;
0b86a832 5369
e17cade2
CM
5370 logical = key->offset;
5371 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 5372
890871be 5373 read_lock(&map_tree->map_tree.lock);
0b86a832 5374 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 5375 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
5376
5377 /* already mapped? */
5378 if (em && em->start <= logical && em->start + em->len > logical) {
5379 free_extent_map(em);
0b86a832
CM
5380 return 0;
5381 } else if (em) {
5382 free_extent_map(em);
5383 }
0b86a832 5384
172ddd60 5385 em = alloc_extent_map();
0b86a832
CM
5386 if (!em)
5387 return -ENOMEM;
593060d7
CM
5388 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5389 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
5390 if (!map) {
5391 free_extent_map(em);
5392 return -ENOMEM;
5393 }
5394
5395 em->bdev = (struct block_device *)map;
5396 em->start = logical;
5397 em->len = length;
70c8a91c 5398 em->orig_start = 0;
0b86a832 5399 em->block_start = 0;
c8b97818 5400 em->block_len = em->len;
0b86a832 5401
593060d7
CM
5402 map->num_stripes = num_stripes;
5403 map->io_width = btrfs_chunk_io_width(leaf, chunk);
5404 map->io_align = btrfs_chunk_io_align(leaf, chunk);
5405 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5406 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5407 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 5408 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
5409 for (i = 0; i < num_stripes; i++) {
5410 map->stripes[i].physical =
5411 btrfs_stripe_offset_nr(leaf, chunk, i);
5412 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
5413 read_extent_buffer(leaf, uuid, (unsigned long)
5414 btrfs_stripe_dev_uuid_nr(chunk, i),
5415 BTRFS_UUID_SIZE);
aa1b8cd4
SB
5416 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5417 uuid, NULL);
dfe25020 5418 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
5419 kfree(map);
5420 free_extent_map(em);
5421 return -EIO;
5422 }
dfe25020
CM
5423 if (!map->stripes[i].dev) {
5424 map->stripes[i].dev =
5425 add_missing_dev(root, devid, uuid);
5426 if (!map->stripes[i].dev) {
5427 kfree(map);
5428 free_extent_map(em);
5429 return -EIO;
5430 }
5431 }
5432 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
5433 }
5434
890871be 5435 write_lock(&map_tree->map_tree.lock);
0b86a832 5436 ret = add_extent_mapping(&map_tree->map_tree, em);
890871be 5437 write_unlock(&map_tree->map_tree.lock);
79787eaa 5438 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
5439 free_extent_map(em);
5440
5441 return 0;
5442}
5443
143bede5 5444static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
5445 struct btrfs_dev_item *dev_item,
5446 struct btrfs_device *device)
5447{
5448 unsigned long ptr;
0b86a832
CM
5449
5450 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
5451 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5452 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
5453 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5454 device->type = btrfs_device_type(leaf, dev_item);
5455 device->io_align = btrfs_device_io_align(leaf, dev_item);
5456 device->io_width = btrfs_device_io_width(leaf, dev_item);
5457 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 5458 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 5459 device->is_tgtdev_for_dev_replace = 0;
0b86a832
CM
5460
5461 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 5462 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
5463}
5464
2b82032c
YZ
5465static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5466{
5467 struct btrfs_fs_devices *fs_devices;
5468 int ret;
5469
b367e47f 5470 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
5471
5472 fs_devices = root->fs_info->fs_devices->seed;
5473 while (fs_devices) {
5474 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5475 ret = 0;
5476 goto out;
5477 }
5478 fs_devices = fs_devices->seed;
5479 }
5480
5481 fs_devices = find_fsid(fsid);
5482 if (!fs_devices) {
5483 ret = -ENOENT;
5484 goto out;
5485 }
e4404d6e
YZ
5486
5487 fs_devices = clone_fs_devices(fs_devices);
5488 if (IS_ERR(fs_devices)) {
5489 ret = PTR_ERR(fs_devices);
2b82032c
YZ
5490 goto out;
5491 }
5492
97288f2c 5493 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 5494 root->fs_info->bdev_holder);
48d28232
JL
5495 if (ret) {
5496 free_fs_devices(fs_devices);
2b82032c 5497 goto out;
48d28232 5498 }
2b82032c
YZ
5499
5500 if (!fs_devices->seeding) {
5501 __btrfs_close_devices(fs_devices);
e4404d6e 5502 free_fs_devices(fs_devices);
2b82032c
YZ
5503 ret = -EINVAL;
5504 goto out;
5505 }
5506
5507 fs_devices->seed = root->fs_info->fs_devices->seed;
5508 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 5509out:
2b82032c
YZ
5510 return ret;
5511}
5512
0d81ba5d 5513static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
5514 struct extent_buffer *leaf,
5515 struct btrfs_dev_item *dev_item)
5516{
5517 struct btrfs_device *device;
5518 u64 devid;
5519 int ret;
2b82032c 5520 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
5521 u8 dev_uuid[BTRFS_UUID_SIZE];
5522
0b86a832 5523 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
5524 read_extent_buffer(leaf, dev_uuid,
5525 (unsigned long)btrfs_device_uuid(dev_item),
5526 BTRFS_UUID_SIZE);
2b82032c
YZ
5527 read_extent_buffer(leaf, fs_uuid,
5528 (unsigned long)btrfs_device_fsid(dev_item),
5529 BTRFS_UUID_SIZE);
5530
5531 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5532 ret = open_seed_devices(root, fs_uuid);
e4404d6e 5533 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 5534 return ret;
2b82032c
YZ
5535 }
5536
aa1b8cd4 5537 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
2b82032c 5538 if (!device || !device->bdev) {
e4404d6e 5539 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
5540 return -EIO;
5541
5542 if (!device) {
d397712b
CM
5543 printk(KERN_WARNING "warning devid %llu missing\n",
5544 (unsigned long long)devid);
2b82032c
YZ
5545 device = add_missing_dev(root, devid, dev_uuid);
5546 if (!device)
5547 return -ENOMEM;
cd02dca5
CM
5548 } else if (!device->missing) {
5549 /*
5550 * this happens when a device that was properly setup
5551 * in the device info lists suddenly goes bad.
5552 * device->bdev is NULL, and so we have to set
5553 * device->missing to one here
5554 */
5555 root->fs_info->fs_devices->missing_devices++;
5556 device->missing = 1;
2b82032c
YZ
5557 }
5558 }
5559
5560 if (device->fs_devices != root->fs_info->fs_devices) {
5561 BUG_ON(device->writeable);
5562 if (device->generation !=
5563 btrfs_device_generation(leaf, dev_item))
5564 return -EINVAL;
6324fbf3 5565 }
0b86a832
CM
5566
5567 fill_device_from_item(leaf, dev_item, device);
5568 device->dev_root = root->fs_info->dev_root;
dfe25020 5569 device->in_fs_metadata = 1;
63a212ab 5570 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 5571 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
5572 spin_lock(&root->fs_info->free_chunk_lock);
5573 root->fs_info->free_chunk_space += device->total_bytes -
5574 device->bytes_used;
5575 spin_unlock(&root->fs_info->free_chunk_lock);
5576 }
0b86a832 5577 ret = 0;
0b86a832
CM
5578 return ret;
5579}
5580
e4404d6e 5581int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 5582{
6c41761f 5583 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 5584 struct extent_buffer *sb;
0b86a832 5585 struct btrfs_disk_key *disk_key;
0b86a832 5586 struct btrfs_chunk *chunk;
84eed90f
CM
5587 u8 *ptr;
5588 unsigned long sb_ptr;
5589 int ret = 0;
0b86a832
CM
5590 u32 num_stripes;
5591 u32 array_size;
5592 u32 len = 0;
0b86a832 5593 u32 cur;
84eed90f 5594 struct btrfs_key key;
0b86a832 5595
e4404d6e 5596 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
5597 BTRFS_SUPER_INFO_SIZE);
5598 if (!sb)
5599 return -ENOMEM;
5600 btrfs_set_buffer_uptodate(sb);
85d4e461 5601 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
5602 /*
5603 * The sb extent buffer is artifical and just used to read the system array.
5604 * btrfs_set_buffer_uptodate() call does not properly mark all it's
5605 * pages up-to-date when the page is larger: extent does not cover the
5606 * whole page and consequently check_page_uptodate does not find all
5607 * the page's extents up-to-date (the hole beyond sb),
5608 * write_extent_buffer then triggers a WARN_ON.
5609 *
5610 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
5611 * but sb spans only this function. Add an explicit SetPageUptodate call
5612 * to silence the warning eg. on PowerPC 64.
5613 */
5614 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 5615 SetPageUptodate(sb->pages[0]);
4008c04a 5616
a061fc8d 5617 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
5618 array_size = btrfs_super_sys_array_size(super_copy);
5619
0b86a832
CM
5620 ptr = super_copy->sys_chunk_array;
5621 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
5622 cur = 0;
5623
5624 while (cur < array_size) {
5625 disk_key = (struct btrfs_disk_key *)ptr;
5626 btrfs_disk_key_to_cpu(&key, disk_key);
5627
a061fc8d 5628 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
5629 sb_ptr += len;
5630 cur += len;
5631
0d81ba5d 5632 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 5633 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 5634 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
5635 if (ret)
5636 break;
0b86a832
CM
5637 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
5638 len = btrfs_chunk_item_size(num_stripes);
5639 } else {
84eed90f
CM
5640 ret = -EIO;
5641 break;
0b86a832
CM
5642 }
5643 ptr += len;
5644 sb_ptr += len;
5645 cur += len;
5646 }
a061fc8d 5647 free_extent_buffer(sb);
84eed90f 5648 return ret;
0b86a832
CM
5649}
5650
5651int btrfs_read_chunk_tree(struct btrfs_root *root)
5652{
5653 struct btrfs_path *path;
5654 struct extent_buffer *leaf;
5655 struct btrfs_key key;
5656 struct btrfs_key found_key;
5657 int ret;
5658 int slot;
5659
5660 root = root->fs_info->chunk_root;
5661
5662 path = btrfs_alloc_path();
5663 if (!path)
5664 return -ENOMEM;
5665
b367e47f
LZ
5666 mutex_lock(&uuid_mutex);
5667 lock_chunks(root);
5668
0b86a832
CM
5669 /* first we search for all of the device items, and then we
5670 * read in all of the chunk items. This way we can create chunk
5671 * mappings that reference all of the devices that are afound
5672 */
5673 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
5674 key.offset = 0;
5675 key.type = 0;
5676again:
5677 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
5678 if (ret < 0)
5679 goto error;
d397712b 5680 while (1) {
0b86a832
CM
5681 leaf = path->nodes[0];
5682 slot = path->slots[0];
5683 if (slot >= btrfs_header_nritems(leaf)) {
5684 ret = btrfs_next_leaf(root, path);
5685 if (ret == 0)
5686 continue;
5687 if (ret < 0)
5688 goto error;
5689 break;
5690 }
5691 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5692 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
5693 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
5694 break;
5695 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
5696 struct btrfs_dev_item *dev_item;
5697 dev_item = btrfs_item_ptr(leaf, slot,
5698 struct btrfs_dev_item);
0d81ba5d 5699 ret = read_one_dev(root, leaf, dev_item);
2b82032c
YZ
5700 if (ret)
5701 goto error;
0b86a832
CM
5702 }
5703 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
5704 struct btrfs_chunk *chunk;
5705 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
5706 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
5707 if (ret)
5708 goto error;
0b86a832
CM
5709 }
5710 path->slots[0]++;
5711 }
5712 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
5713 key.objectid = 0;
b3b4aa74 5714 btrfs_release_path(path);
0b86a832
CM
5715 goto again;
5716 }
0b86a832
CM
5717 ret = 0;
5718error:
b367e47f
LZ
5719 unlock_chunks(root);
5720 mutex_unlock(&uuid_mutex);
5721
2b82032c 5722 btrfs_free_path(path);
0b86a832
CM
5723 return ret;
5724}
442a4f63 5725
733f4fbb
SB
5726static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
5727{
5728 int i;
5729
5730 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
5731 btrfs_dev_stat_reset(dev, i);
5732}
5733
5734int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
5735{
5736 struct btrfs_key key;
5737 struct btrfs_key found_key;
5738 struct btrfs_root *dev_root = fs_info->dev_root;
5739 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
5740 struct extent_buffer *eb;
5741 int slot;
5742 int ret = 0;
5743 struct btrfs_device *device;
5744 struct btrfs_path *path = NULL;
5745 int i;
5746
5747 path = btrfs_alloc_path();
5748 if (!path) {
5749 ret = -ENOMEM;
5750 goto out;
5751 }
5752
5753 mutex_lock(&fs_devices->device_list_mutex);
5754 list_for_each_entry(device, &fs_devices->devices, dev_list) {
5755 int item_size;
5756 struct btrfs_dev_stats_item *ptr;
5757
5758 key.objectid = 0;
5759 key.type = BTRFS_DEV_STATS_KEY;
5760 key.offset = device->devid;
5761 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
5762 if (ret) {
733f4fbb
SB
5763 __btrfs_reset_dev_stats(device);
5764 device->dev_stats_valid = 1;
5765 btrfs_release_path(path);
5766 continue;
5767 }
5768 slot = path->slots[0];
5769 eb = path->nodes[0];
5770 btrfs_item_key_to_cpu(eb, &found_key, slot);
5771 item_size = btrfs_item_size_nr(eb, slot);
5772
5773 ptr = btrfs_item_ptr(eb, slot,
5774 struct btrfs_dev_stats_item);
5775
5776 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
5777 if (item_size >= (1 + i) * sizeof(__le64))
5778 btrfs_dev_stat_set(device, i,
5779 btrfs_dev_stats_value(eb, ptr, i));
5780 else
5781 btrfs_dev_stat_reset(device, i);
5782 }
5783
5784 device->dev_stats_valid = 1;
5785 btrfs_dev_stat_print_on_load(device);
5786 btrfs_release_path(path);
5787 }
5788 mutex_unlock(&fs_devices->device_list_mutex);
5789
5790out:
5791 btrfs_free_path(path);
5792 return ret < 0 ? ret : 0;
5793}
5794
5795static int update_dev_stat_item(struct btrfs_trans_handle *trans,
5796 struct btrfs_root *dev_root,
5797 struct btrfs_device *device)
5798{
5799 struct btrfs_path *path;
5800 struct btrfs_key key;
5801 struct extent_buffer *eb;
5802 struct btrfs_dev_stats_item *ptr;
5803 int ret;
5804 int i;
5805
5806 key.objectid = 0;
5807 key.type = BTRFS_DEV_STATS_KEY;
5808 key.offset = device->devid;
5809
5810 path = btrfs_alloc_path();
5811 BUG_ON(!path);
5812 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
5813 if (ret < 0) {
606686ee
JB
5814 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
5815 ret, rcu_str_deref(device->name));
733f4fbb
SB
5816 goto out;
5817 }
5818
5819 if (ret == 0 &&
5820 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
5821 /* need to delete old one and insert a new one */
5822 ret = btrfs_del_item(trans, dev_root, path);
5823 if (ret != 0) {
606686ee
JB
5824 printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
5825 rcu_str_deref(device->name), ret);
733f4fbb
SB
5826 goto out;
5827 }
5828 ret = 1;
5829 }
5830
5831 if (ret == 1) {
5832 /* need to insert a new item */
5833 btrfs_release_path(path);
5834 ret = btrfs_insert_empty_item(trans, dev_root, path,
5835 &key, sizeof(*ptr));
5836 if (ret < 0) {
606686ee
JB
5837 printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
5838 rcu_str_deref(device->name), ret);
733f4fbb
SB
5839 goto out;
5840 }
5841 }
5842
5843 eb = path->nodes[0];
5844 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
5845 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
5846 btrfs_set_dev_stats_value(eb, ptr, i,
5847 btrfs_dev_stat_read(device, i));
5848 btrfs_mark_buffer_dirty(eb);
5849
5850out:
5851 btrfs_free_path(path);
5852 return ret;
5853}
5854
5855/*
5856 * called from commit_transaction. Writes all changed device stats to disk.
5857 */
5858int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
5859 struct btrfs_fs_info *fs_info)
5860{
5861 struct btrfs_root *dev_root = fs_info->dev_root;
5862 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
5863 struct btrfs_device *device;
5864 int ret = 0;
5865
5866 mutex_lock(&fs_devices->device_list_mutex);
5867 list_for_each_entry(device, &fs_devices->devices, dev_list) {
5868 if (!device->dev_stats_valid || !device->dev_stats_dirty)
5869 continue;
5870
5871 ret = update_dev_stat_item(trans, dev_root, device);
5872 if (!ret)
5873 device->dev_stats_dirty = 0;
5874 }
5875 mutex_unlock(&fs_devices->device_list_mutex);
5876
5877 return ret;
5878}
5879
442a4f63
SB
5880void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
5881{
5882 btrfs_dev_stat_inc(dev, index);
5883 btrfs_dev_stat_print_on_error(dev);
5884}
5885
5886void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
5887{
733f4fbb
SB
5888 if (!dev->dev_stats_valid)
5889 return;
606686ee 5890 printk_ratelimited_in_rcu(KERN_ERR
442a4f63 5891 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 5892 rcu_str_deref(dev->name),
442a4f63
SB
5893 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
5894 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
5895 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
5896 btrfs_dev_stat_read(dev,
5897 BTRFS_DEV_STAT_CORRUPTION_ERRS),
5898 btrfs_dev_stat_read(dev,
5899 BTRFS_DEV_STAT_GENERATION_ERRS));
5900}
c11d2c23 5901
733f4fbb
SB
5902static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
5903{
a98cdb85
SB
5904 int i;
5905
5906 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
5907 if (btrfs_dev_stat_read(dev, i) != 0)
5908 break;
5909 if (i == BTRFS_DEV_STAT_VALUES_MAX)
5910 return; /* all values == 0, suppress message */
5911
606686ee
JB
5912 printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
5913 rcu_str_deref(dev->name),
733f4fbb
SB
5914 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
5915 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
5916 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
5917 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
5918 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
5919}
5920
c11d2c23 5921int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 5922 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
5923{
5924 struct btrfs_device *dev;
5925 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5926 int i;
5927
5928 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 5929 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
5930 mutex_unlock(&fs_devices->device_list_mutex);
5931
5932 if (!dev) {
5933 printk(KERN_WARNING
5934 "btrfs: get dev_stats failed, device not found\n");
5935 return -ENODEV;
733f4fbb
SB
5936 } else if (!dev->dev_stats_valid) {
5937 printk(KERN_WARNING
5938 "btrfs: get dev_stats failed, not yet valid\n");
5939 return -ENODEV;
b27f7c0c 5940 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
5941 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
5942 if (stats->nr_items > i)
5943 stats->values[i] =
5944 btrfs_dev_stat_read_and_reset(dev, i);
5945 else
5946 btrfs_dev_stat_reset(dev, i);
5947 }
5948 } else {
5949 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
5950 if (stats->nr_items > i)
5951 stats->values[i] = btrfs_dev_stat_read(dev, i);
5952 }
5953 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
5954 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
5955 return 0;
5956}
a8a6dab7
SB
5957
5958int btrfs_scratch_superblock(struct btrfs_device *device)
5959{
5960 struct buffer_head *bh;
5961 struct btrfs_super_block *disk_super;
5962
5963 bh = btrfs_read_dev_super(device->bdev);
5964 if (!bh)
5965 return -EINVAL;
5966 disk_super = (struct btrfs_super_block *)bh->b_data;
5967
5968 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
5969 set_buffer_dirty(bh);
5970 sync_dirty_buffer(bh);
5971 brelse(bh);
5972
5973 return 0;
5974}
This page took 0.578227 seconds and 5 git commands to generate.