Btrfs: bring back balance pause/resume logic
[deliverable/linux.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
4b4e25f2 28#include "compat.h"
0b86a832
CM
29#include "ctree.h"
30#include "extent_map.h"
31#include "disk-io.h"
32#include "transaction.h"
33#include "print-tree.h"
34#include "volumes.h"
8b712842 35#include "async-thread.h"
21adbd5c 36#include "check-integrity.h"
606686ee 37#include "rcu-string.h"
3fed40cc 38#include "math.h"
8dabb742 39#include "dev-replace.h"
0b86a832 40
2b82032c
YZ
41static int init_first_rw_device(struct btrfs_trans_handle *trans,
42 struct btrfs_root *root,
43 struct btrfs_device *device);
44static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb
SB
45static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
46static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 47
8a4b83cc
CM
48static DEFINE_MUTEX(uuid_mutex);
49static LIST_HEAD(fs_uuids);
50
7d9eb12c
CM
51static void lock_chunks(struct btrfs_root *root)
52{
7d9eb12c
CM
53 mutex_lock(&root->fs_info->chunk_mutex);
54}
55
56static void unlock_chunks(struct btrfs_root *root)
57{
7d9eb12c
CM
58 mutex_unlock(&root->fs_info->chunk_mutex);
59}
60
e4404d6e
YZ
61static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
62{
63 struct btrfs_device *device;
64 WARN_ON(fs_devices->opened);
65 while (!list_empty(&fs_devices->devices)) {
66 device = list_entry(fs_devices->devices.next,
67 struct btrfs_device, dev_list);
68 list_del(&device->dev_list);
606686ee 69 rcu_string_free(device->name);
e4404d6e
YZ
70 kfree(device);
71 }
72 kfree(fs_devices);
73}
74
b8b8ff59
LC
75static void btrfs_kobject_uevent(struct block_device *bdev,
76 enum kobject_action action)
77{
78 int ret;
79
80 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
81 if (ret)
82 pr_warn("Sending event '%d' to kobject: '%s' (%p): failed\n",
83 action,
84 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
85 &disk_to_dev(bdev->bd_disk)->kobj);
86}
87
143bede5 88void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
89{
90 struct btrfs_fs_devices *fs_devices;
8a4b83cc 91
2b82032c
YZ
92 while (!list_empty(&fs_uuids)) {
93 fs_devices = list_entry(fs_uuids.next,
94 struct btrfs_fs_devices, list);
95 list_del(&fs_devices->list);
e4404d6e 96 free_fs_devices(fs_devices);
8a4b83cc 97 }
8a4b83cc
CM
98}
99
a1b32a59
CM
100static noinline struct btrfs_device *__find_device(struct list_head *head,
101 u64 devid, u8 *uuid)
8a4b83cc
CM
102{
103 struct btrfs_device *dev;
8a4b83cc 104
c6e30871 105 list_for_each_entry(dev, head, dev_list) {
a443755f 106 if (dev->devid == devid &&
8f18cf13 107 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 108 return dev;
a443755f 109 }
8a4b83cc
CM
110 }
111 return NULL;
112}
113
a1b32a59 114static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 115{
8a4b83cc
CM
116 struct btrfs_fs_devices *fs_devices;
117
c6e30871 118 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
119 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
120 return fs_devices;
121 }
122 return NULL;
123}
124
beaf8ab3
SB
125static int
126btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
127 int flush, struct block_device **bdev,
128 struct buffer_head **bh)
129{
130 int ret;
131
132 *bdev = blkdev_get_by_path(device_path, flags, holder);
133
134 if (IS_ERR(*bdev)) {
135 ret = PTR_ERR(*bdev);
136 printk(KERN_INFO "btrfs: open %s failed\n", device_path);
137 goto error;
138 }
139
140 if (flush)
141 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
142 ret = set_blocksize(*bdev, 4096);
143 if (ret) {
144 blkdev_put(*bdev, flags);
145 goto error;
146 }
147 invalidate_bdev(*bdev);
148 *bh = btrfs_read_dev_super(*bdev);
149 if (!*bh) {
150 ret = -EINVAL;
151 blkdev_put(*bdev, flags);
152 goto error;
153 }
154
155 return 0;
156
157error:
158 *bdev = NULL;
159 *bh = NULL;
160 return ret;
161}
162
ffbd517d
CM
163static void requeue_list(struct btrfs_pending_bios *pending_bios,
164 struct bio *head, struct bio *tail)
165{
166
167 struct bio *old_head;
168
169 old_head = pending_bios->head;
170 pending_bios->head = head;
171 if (pending_bios->tail)
172 tail->bi_next = old_head;
173 else
174 pending_bios->tail = tail;
175}
176
8b712842
CM
177/*
178 * we try to collect pending bios for a device so we don't get a large
179 * number of procs sending bios down to the same device. This greatly
180 * improves the schedulers ability to collect and merge the bios.
181 *
182 * But, it also turns into a long list of bios to process and that is sure
183 * to eventually make the worker thread block. The solution here is to
184 * make some progress and then put this work struct back at the end of
185 * the list if the block device is congested. This way, multiple devices
186 * can make progress from a single worker thread.
187 */
143bede5 188static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
189{
190 struct bio *pending;
191 struct backing_dev_info *bdi;
b64a2851 192 struct btrfs_fs_info *fs_info;
ffbd517d 193 struct btrfs_pending_bios *pending_bios;
8b712842
CM
194 struct bio *tail;
195 struct bio *cur;
196 int again = 0;
ffbd517d 197 unsigned long num_run;
d644d8a1 198 unsigned long batch_run = 0;
b64a2851 199 unsigned long limit;
b765ead5 200 unsigned long last_waited = 0;
d84275c9 201 int force_reg = 0;
0e588859 202 int sync_pending = 0;
211588ad
CM
203 struct blk_plug plug;
204
205 /*
206 * this function runs all the bios we've collected for
207 * a particular device. We don't want to wander off to
208 * another device without first sending all of these down.
209 * So, setup a plug here and finish it off before we return
210 */
211 blk_start_plug(&plug);
8b712842 212
bedf762b 213 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
214 fs_info = device->dev_root->fs_info;
215 limit = btrfs_async_submit_limit(fs_info);
216 limit = limit * 2 / 3;
217
8b712842
CM
218loop:
219 spin_lock(&device->io_lock);
220
a6837051 221loop_lock:
d84275c9 222 num_run = 0;
ffbd517d 223
8b712842
CM
224 /* take all the bios off the list at once and process them
225 * later on (without the lock held). But, remember the
226 * tail and other pointers so the bios can be properly reinserted
227 * into the list if we hit congestion
228 */
d84275c9 229 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 230 pending_bios = &device->pending_sync_bios;
d84275c9
CM
231 force_reg = 1;
232 } else {
ffbd517d 233 pending_bios = &device->pending_bios;
d84275c9
CM
234 force_reg = 0;
235 }
ffbd517d
CM
236
237 pending = pending_bios->head;
238 tail = pending_bios->tail;
8b712842 239 WARN_ON(pending && !tail);
8b712842
CM
240
241 /*
242 * if pending was null this time around, no bios need processing
243 * at all and we can stop. Otherwise it'll loop back up again
244 * and do an additional check so no bios are missed.
245 *
246 * device->running_pending is used to synchronize with the
247 * schedule_bio code.
248 */
ffbd517d
CM
249 if (device->pending_sync_bios.head == NULL &&
250 device->pending_bios.head == NULL) {
8b712842
CM
251 again = 0;
252 device->running_pending = 0;
ffbd517d
CM
253 } else {
254 again = 1;
255 device->running_pending = 1;
8b712842 256 }
ffbd517d
CM
257
258 pending_bios->head = NULL;
259 pending_bios->tail = NULL;
260
8b712842
CM
261 spin_unlock(&device->io_lock);
262
d397712b 263 while (pending) {
ffbd517d
CM
264
265 rmb();
d84275c9
CM
266 /* we want to work on both lists, but do more bios on the
267 * sync list than the regular list
268 */
269 if ((num_run > 32 &&
270 pending_bios != &device->pending_sync_bios &&
271 device->pending_sync_bios.head) ||
272 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
273 device->pending_bios.head)) {
ffbd517d
CM
274 spin_lock(&device->io_lock);
275 requeue_list(pending_bios, pending, tail);
276 goto loop_lock;
277 }
278
8b712842
CM
279 cur = pending;
280 pending = pending->bi_next;
281 cur->bi_next = NULL;
b64a2851 282
66657b31 283 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
284 waitqueue_active(&fs_info->async_submit_wait))
285 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
286
287 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 288
2ab1ba68
CM
289 /*
290 * if we're doing the sync list, record that our
291 * plug has some sync requests on it
292 *
293 * If we're doing the regular list and there are
294 * sync requests sitting around, unplug before
295 * we add more
296 */
297 if (pending_bios == &device->pending_sync_bios) {
298 sync_pending = 1;
299 } else if (sync_pending) {
300 blk_finish_plug(&plug);
301 blk_start_plug(&plug);
302 sync_pending = 0;
303 }
304
21adbd5c 305 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
306 num_run++;
307 batch_run++;
7eaceacc 308 if (need_resched())
ffbd517d 309 cond_resched();
8b712842
CM
310
311 /*
312 * we made progress, there is more work to do and the bdi
313 * is now congested. Back off and let other work structs
314 * run instead
315 */
57fd5a5f 316 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 317 fs_info->fs_devices->open_devices > 1) {
b765ead5 318 struct io_context *ioc;
8b712842 319
b765ead5
CM
320 ioc = current->io_context;
321
322 /*
323 * the main goal here is that we don't want to
324 * block if we're going to be able to submit
325 * more requests without blocking.
326 *
327 * This code does two great things, it pokes into
328 * the elevator code from a filesystem _and_
329 * it makes assumptions about how batching works.
330 */
331 if (ioc && ioc->nr_batch_requests > 0 &&
332 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
333 (last_waited == 0 ||
334 ioc->last_waited == last_waited)) {
335 /*
336 * we want to go through our batch of
337 * requests and stop. So, we copy out
338 * the ioc->last_waited time and test
339 * against it before looping
340 */
341 last_waited = ioc->last_waited;
7eaceacc 342 if (need_resched())
ffbd517d 343 cond_resched();
b765ead5
CM
344 continue;
345 }
8b712842 346 spin_lock(&device->io_lock);
ffbd517d 347 requeue_list(pending_bios, pending, tail);
a6837051 348 device->running_pending = 1;
8b712842
CM
349
350 spin_unlock(&device->io_lock);
351 btrfs_requeue_work(&device->work);
352 goto done;
353 }
d85c8a6f
CM
354 /* unplug every 64 requests just for good measure */
355 if (batch_run % 64 == 0) {
356 blk_finish_plug(&plug);
357 blk_start_plug(&plug);
358 sync_pending = 0;
359 }
8b712842 360 }
ffbd517d 361
51684082
CM
362 cond_resched();
363 if (again)
364 goto loop;
365
366 spin_lock(&device->io_lock);
367 if (device->pending_bios.head || device->pending_sync_bios.head)
368 goto loop_lock;
369 spin_unlock(&device->io_lock);
370
8b712842 371done:
211588ad 372 blk_finish_plug(&plug);
8b712842
CM
373}
374
b2950863 375static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
376{
377 struct btrfs_device *device;
378
379 device = container_of(work, struct btrfs_device, work);
380 run_scheduled_bios(device);
381}
382
a1b32a59 383static noinline int device_list_add(const char *path,
8a4b83cc
CM
384 struct btrfs_super_block *disk_super,
385 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
386{
387 struct btrfs_device *device;
388 struct btrfs_fs_devices *fs_devices;
606686ee 389 struct rcu_string *name;
8a4b83cc
CM
390 u64 found_transid = btrfs_super_generation(disk_super);
391
392 fs_devices = find_fsid(disk_super->fsid);
393 if (!fs_devices) {
515dc322 394 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
395 if (!fs_devices)
396 return -ENOMEM;
397 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 398 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
399 list_add(&fs_devices->list, &fs_uuids);
400 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
401 fs_devices->latest_devid = devid;
402 fs_devices->latest_trans = found_transid;
e5e9a520 403 mutex_init(&fs_devices->device_list_mutex);
8a4b83cc
CM
404 device = NULL;
405 } else {
a443755f
CM
406 device = __find_device(&fs_devices->devices, devid,
407 disk_super->dev_item.uuid);
8a4b83cc
CM
408 }
409 if (!device) {
2b82032c
YZ
410 if (fs_devices->opened)
411 return -EBUSY;
412
8a4b83cc
CM
413 device = kzalloc(sizeof(*device), GFP_NOFS);
414 if (!device) {
415 /* we can safely leave the fs_devices entry around */
416 return -ENOMEM;
417 }
418 device->devid = devid;
733f4fbb 419 device->dev_stats_valid = 0;
8b712842 420 device->work.func = pending_bios_fn;
a443755f
CM
421 memcpy(device->uuid, disk_super->dev_item.uuid,
422 BTRFS_UUID_SIZE);
b248a415 423 spin_lock_init(&device->io_lock);
606686ee
JB
424
425 name = rcu_string_strdup(path, GFP_NOFS);
426 if (!name) {
8a4b83cc
CM
427 kfree(device);
428 return -ENOMEM;
429 }
606686ee 430 rcu_assign_pointer(device->name, name);
2b82032c 431 INIT_LIST_HEAD(&device->dev_alloc_list);
e5e9a520 432
90519d66
AJ
433 /* init readahead state */
434 spin_lock_init(&device->reada_lock);
435 device->reada_curr_zone = NULL;
436 atomic_set(&device->reada_in_flight, 0);
437 device->reada_next = 0;
438 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
439 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
440
e5e9a520 441 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 442 list_add_rcu(&device->dev_list, &fs_devices->devices);
e5e9a520
CM
443 mutex_unlock(&fs_devices->device_list_mutex);
444
2b82032c 445 device->fs_devices = fs_devices;
8a4b83cc 446 fs_devices->num_devices++;
606686ee
JB
447 } else if (!device->name || strcmp(device->name->str, path)) {
448 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
449 if (!name)
450 return -ENOMEM;
606686ee
JB
451 rcu_string_free(device->name);
452 rcu_assign_pointer(device->name, name);
cd02dca5
CM
453 if (device->missing) {
454 fs_devices->missing_devices--;
455 device->missing = 0;
456 }
8a4b83cc
CM
457 }
458
459 if (found_transid > fs_devices->latest_trans) {
460 fs_devices->latest_devid = devid;
461 fs_devices->latest_trans = found_transid;
462 }
8a4b83cc
CM
463 *fs_devices_ret = fs_devices;
464 return 0;
465}
466
e4404d6e
YZ
467static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
468{
469 struct btrfs_fs_devices *fs_devices;
470 struct btrfs_device *device;
471 struct btrfs_device *orig_dev;
472
473 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
474 if (!fs_devices)
475 return ERR_PTR(-ENOMEM);
476
477 INIT_LIST_HEAD(&fs_devices->devices);
478 INIT_LIST_HEAD(&fs_devices->alloc_list);
479 INIT_LIST_HEAD(&fs_devices->list);
e5e9a520 480 mutex_init(&fs_devices->device_list_mutex);
e4404d6e
YZ
481 fs_devices->latest_devid = orig->latest_devid;
482 fs_devices->latest_trans = orig->latest_trans;
02db0844 483 fs_devices->total_devices = orig->total_devices;
e4404d6e
YZ
484 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
485
46224705 486 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 487 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
488 struct rcu_string *name;
489
e4404d6e
YZ
490 device = kzalloc(sizeof(*device), GFP_NOFS);
491 if (!device)
492 goto error;
493
606686ee
JB
494 /*
495 * This is ok to do without rcu read locked because we hold the
496 * uuid mutex so nothing we touch in here is going to disappear.
497 */
498 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
499 if (!name) {
fd2696f3 500 kfree(device);
e4404d6e 501 goto error;
fd2696f3 502 }
606686ee 503 rcu_assign_pointer(device->name, name);
e4404d6e
YZ
504
505 device->devid = orig_dev->devid;
506 device->work.func = pending_bios_fn;
507 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
e4404d6e
YZ
508 spin_lock_init(&device->io_lock);
509 INIT_LIST_HEAD(&device->dev_list);
510 INIT_LIST_HEAD(&device->dev_alloc_list);
511
512 list_add(&device->dev_list, &fs_devices->devices);
513 device->fs_devices = fs_devices;
514 fs_devices->num_devices++;
515 }
516 return fs_devices;
517error:
518 free_fs_devices(fs_devices);
519 return ERR_PTR(-ENOMEM);
520}
521
8dabb742
SB
522void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
523 struct btrfs_fs_devices *fs_devices, int step)
dfe25020 524{
c6e30871 525 struct btrfs_device *device, *next;
dfe25020 526
a6b0d5c8
CM
527 struct block_device *latest_bdev = NULL;
528 u64 latest_devid = 0;
529 u64 latest_transid = 0;
530
dfe25020
CM
531 mutex_lock(&uuid_mutex);
532again:
46224705 533 /* This is the initialized path, it is safe to release the devices. */
c6e30871 534 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 535 if (device->in_fs_metadata) {
63a212ab
SB
536 if (!device->is_tgtdev_for_dev_replace &&
537 (!latest_transid ||
538 device->generation > latest_transid)) {
a6b0d5c8
CM
539 latest_devid = device->devid;
540 latest_transid = device->generation;
541 latest_bdev = device->bdev;
542 }
2b82032c 543 continue;
a6b0d5c8 544 }
2b82032c 545
8dabb742
SB
546 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
547 /*
548 * In the first step, keep the device which has
549 * the correct fsid and the devid that is used
550 * for the dev_replace procedure.
551 * In the second step, the dev_replace state is
552 * read from the device tree and it is known
553 * whether the procedure is really active or
554 * not, which means whether this device is
555 * used or whether it should be removed.
556 */
557 if (step == 0 || device->is_tgtdev_for_dev_replace) {
558 continue;
559 }
560 }
2b82032c 561 if (device->bdev) {
d4d77629 562 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
563 device->bdev = NULL;
564 fs_devices->open_devices--;
565 }
566 if (device->writeable) {
567 list_del_init(&device->dev_alloc_list);
568 device->writeable = 0;
8dabb742
SB
569 if (!device->is_tgtdev_for_dev_replace)
570 fs_devices->rw_devices--;
2b82032c 571 }
e4404d6e
YZ
572 list_del_init(&device->dev_list);
573 fs_devices->num_devices--;
606686ee 574 rcu_string_free(device->name);
e4404d6e 575 kfree(device);
dfe25020 576 }
2b82032c
YZ
577
578 if (fs_devices->seed) {
579 fs_devices = fs_devices->seed;
2b82032c
YZ
580 goto again;
581 }
582
a6b0d5c8
CM
583 fs_devices->latest_bdev = latest_bdev;
584 fs_devices->latest_devid = latest_devid;
585 fs_devices->latest_trans = latest_transid;
586
dfe25020 587 mutex_unlock(&uuid_mutex);
dfe25020 588}
a0af469b 589
1f78160c
XG
590static void __free_device(struct work_struct *work)
591{
592 struct btrfs_device *device;
593
594 device = container_of(work, struct btrfs_device, rcu_work);
595
596 if (device->bdev)
597 blkdev_put(device->bdev, device->mode);
598
606686ee 599 rcu_string_free(device->name);
1f78160c
XG
600 kfree(device);
601}
602
603static void free_device(struct rcu_head *head)
604{
605 struct btrfs_device *device;
606
607 device = container_of(head, struct btrfs_device, rcu);
608
609 INIT_WORK(&device->rcu_work, __free_device);
610 schedule_work(&device->rcu_work);
611}
612
2b82032c 613static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 614{
8a4b83cc 615 struct btrfs_device *device;
e4404d6e 616
2b82032c
YZ
617 if (--fs_devices->opened > 0)
618 return 0;
8a4b83cc 619
c9513edb 620 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 621 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c 622 struct btrfs_device *new_device;
606686ee 623 struct rcu_string *name;
1f78160c
XG
624
625 if (device->bdev)
a0af469b 626 fs_devices->open_devices--;
1f78160c 627
8dabb742 628 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c
YZ
629 list_del_init(&device->dev_alloc_list);
630 fs_devices->rw_devices--;
631 }
632
d5e2003c
JB
633 if (device->can_discard)
634 fs_devices->num_can_discard--;
635
1f78160c 636 new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
79787eaa 637 BUG_ON(!new_device); /* -ENOMEM */
1f78160c 638 memcpy(new_device, device, sizeof(*new_device));
606686ee
JB
639
640 /* Safe because we are under uuid_mutex */
99f5944b
JB
641 if (device->name) {
642 name = rcu_string_strdup(device->name->str, GFP_NOFS);
643 BUG_ON(device->name && !name); /* -ENOMEM */
644 rcu_assign_pointer(new_device->name, name);
645 }
1f78160c
XG
646 new_device->bdev = NULL;
647 new_device->writeable = 0;
648 new_device->in_fs_metadata = 0;
d5e2003c 649 new_device->can_discard = 0;
1f78160c
XG
650 list_replace_rcu(&device->dev_list, &new_device->dev_list);
651
652 call_rcu(&device->rcu, free_device);
8a4b83cc 653 }
c9513edb
XG
654 mutex_unlock(&fs_devices->device_list_mutex);
655
e4404d6e
YZ
656 WARN_ON(fs_devices->open_devices);
657 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
658 fs_devices->opened = 0;
659 fs_devices->seeding = 0;
2b82032c 660
8a4b83cc
CM
661 return 0;
662}
663
2b82032c
YZ
664int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
665{
e4404d6e 666 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
667 int ret;
668
669 mutex_lock(&uuid_mutex);
670 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
671 if (!fs_devices->opened) {
672 seed_devices = fs_devices->seed;
673 fs_devices->seed = NULL;
674 }
2b82032c 675 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
676
677 while (seed_devices) {
678 fs_devices = seed_devices;
679 seed_devices = fs_devices->seed;
680 __btrfs_close_devices(fs_devices);
681 free_fs_devices(fs_devices);
682 }
2b82032c
YZ
683 return ret;
684}
685
e4404d6e
YZ
686static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
687 fmode_t flags, void *holder)
8a4b83cc 688{
d5e2003c 689 struct request_queue *q;
8a4b83cc
CM
690 struct block_device *bdev;
691 struct list_head *head = &fs_devices->devices;
8a4b83cc 692 struct btrfs_device *device;
a0af469b
CM
693 struct block_device *latest_bdev = NULL;
694 struct buffer_head *bh;
695 struct btrfs_super_block *disk_super;
696 u64 latest_devid = 0;
697 u64 latest_transid = 0;
a0af469b 698 u64 devid;
2b82032c 699 int seeding = 1;
a0af469b 700 int ret = 0;
8a4b83cc 701
d4d77629
TH
702 flags |= FMODE_EXCL;
703
c6e30871 704 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
705 if (device->bdev)
706 continue;
dfe25020
CM
707 if (!device->name)
708 continue;
709
beaf8ab3
SB
710 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
711 &bdev, &bh);
712 if (ret)
713 continue;
a0af469b
CM
714
715 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 716 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
717 if (devid != device->devid)
718 goto error_brelse;
719
2b82032c
YZ
720 if (memcmp(device->uuid, disk_super->dev_item.uuid,
721 BTRFS_UUID_SIZE))
722 goto error_brelse;
723
724 device->generation = btrfs_super_generation(disk_super);
725 if (!latest_transid || device->generation > latest_transid) {
a0af469b 726 latest_devid = devid;
2b82032c 727 latest_transid = device->generation;
a0af469b
CM
728 latest_bdev = bdev;
729 }
730
2b82032c
YZ
731 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
732 device->writeable = 0;
733 } else {
734 device->writeable = !bdev_read_only(bdev);
735 seeding = 0;
736 }
737
d5e2003c
JB
738 q = bdev_get_queue(bdev);
739 if (blk_queue_discard(q)) {
740 device->can_discard = 1;
741 fs_devices->num_can_discard++;
742 }
743
8a4b83cc 744 device->bdev = bdev;
dfe25020 745 device->in_fs_metadata = 0;
15916de8
CM
746 device->mode = flags;
747
c289811c
CM
748 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
749 fs_devices->rotating = 1;
750
a0af469b 751 fs_devices->open_devices++;
8dabb742 752 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c
YZ
753 fs_devices->rw_devices++;
754 list_add(&device->dev_alloc_list,
755 &fs_devices->alloc_list);
756 }
4f6c9328 757 brelse(bh);
a0af469b 758 continue;
a061fc8d 759
a0af469b
CM
760error_brelse:
761 brelse(bh);
d4d77629 762 blkdev_put(bdev, flags);
a0af469b 763 continue;
8a4b83cc 764 }
a0af469b 765 if (fs_devices->open_devices == 0) {
20bcd649 766 ret = -EINVAL;
a0af469b
CM
767 goto out;
768 }
2b82032c
YZ
769 fs_devices->seeding = seeding;
770 fs_devices->opened = 1;
a0af469b
CM
771 fs_devices->latest_bdev = latest_bdev;
772 fs_devices->latest_devid = latest_devid;
773 fs_devices->latest_trans = latest_transid;
2b82032c 774 fs_devices->total_rw_bytes = 0;
a0af469b 775out:
2b82032c
YZ
776 return ret;
777}
778
779int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 780 fmode_t flags, void *holder)
2b82032c
YZ
781{
782 int ret;
783
784 mutex_lock(&uuid_mutex);
785 if (fs_devices->opened) {
e4404d6e
YZ
786 fs_devices->opened++;
787 ret = 0;
2b82032c 788 } else {
15916de8 789 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 790 }
8a4b83cc 791 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
792 return ret;
793}
794
97288f2c 795int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
796 struct btrfs_fs_devices **fs_devices_ret)
797{
798 struct btrfs_super_block *disk_super;
799 struct block_device *bdev;
800 struct buffer_head *bh;
801 int ret;
802 u64 devid;
f2984462 803 u64 transid;
02db0844 804 u64 total_devices;
8a4b83cc 805
d4d77629 806 flags |= FMODE_EXCL;
10f6327b 807 mutex_lock(&uuid_mutex);
beaf8ab3 808 ret = btrfs_get_bdev_and_sb(path, flags, holder, 0, &bdev, &bh);
8a4b83cc 809 if (ret)
beaf8ab3 810 goto error;
8a4b83cc 811 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 812 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 813 transid = btrfs_super_generation(disk_super);
02db0844 814 total_devices = btrfs_super_num_devices(disk_super);
d03f918a
SB
815 if (disk_super->label[0]) {
816 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
817 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
d397712b 818 printk(KERN_INFO "device label %s ", disk_super->label);
d03f918a 819 } else {
22b63a29 820 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
d03f918a 821 }
119e10cf 822 printk(KERN_CONT "devid %llu transid %llu %s\n",
d397712b 823 (unsigned long long)devid, (unsigned long long)transid, path);
8a4b83cc 824 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
02db0844
JB
825 if (!ret && fs_devices_ret)
826 (*fs_devices_ret)->total_devices = total_devices;
8a4b83cc 827 brelse(bh);
d4d77629 828 blkdev_put(bdev, flags);
8a4b83cc 829error:
beaf8ab3 830 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
831 return ret;
832}
0b86a832 833
6d07bcec
MX
834/* helper to account the used device space in the range */
835int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
836 u64 end, u64 *length)
837{
838 struct btrfs_key key;
839 struct btrfs_root *root = device->dev_root;
840 struct btrfs_dev_extent *dev_extent;
841 struct btrfs_path *path;
842 u64 extent_end;
843 int ret;
844 int slot;
845 struct extent_buffer *l;
846
847 *length = 0;
848
63a212ab 849 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
850 return 0;
851
852 path = btrfs_alloc_path();
853 if (!path)
854 return -ENOMEM;
855 path->reada = 2;
856
857 key.objectid = device->devid;
858 key.offset = start;
859 key.type = BTRFS_DEV_EXTENT_KEY;
860
861 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
862 if (ret < 0)
863 goto out;
864 if (ret > 0) {
865 ret = btrfs_previous_item(root, path, key.objectid, key.type);
866 if (ret < 0)
867 goto out;
868 }
869
870 while (1) {
871 l = path->nodes[0];
872 slot = path->slots[0];
873 if (slot >= btrfs_header_nritems(l)) {
874 ret = btrfs_next_leaf(root, path);
875 if (ret == 0)
876 continue;
877 if (ret < 0)
878 goto out;
879
880 break;
881 }
882 btrfs_item_key_to_cpu(l, &key, slot);
883
884 if (key.objectid < device->devid)
885 goto next;
886
887 if (key.objectid > device->devid)
888 break;
889
890 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
891 goto next;
892
893 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
894 extent_end = key.offset + btrfs_dev_extent_length(l,
895 dev_extent);
896 if (key.offset <= start && extent_end > end) {
897 *length = end - start + 1;
898 break;
899 } else if (key.offset <= start && extent_end > start)
900 *length += extent_end - start;
901 else if (key.offset > start && extent_end <= end)
902 *length += extent_end - key.offset;
903 else if (key.offset > start && key.offset <= end) {
904 *length += end - key.offset + 1;
905 break;
906 } else if (key.offset > end)
907 break;
908
909next:
910 path->slots[0]++;
911 }
912 ret = 0;
913out:
914 btrfs_free_path(path);
915 return ret;
916}
917
0b86a832 918/*
7bfc837d 919 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
920 * @device: the device which we search the free space in
921 * @num_bytes: the size of the free space that we need
922 * @start: store the start of the free space.
923 * @len: the size of the free space. that we find, or the size of the max
924 * free space if we don't find suitable free space
925 *
0b86a832
CM
926 * this uses a pretty simple search, the expectation is that it is
927 * called very infrequently and that a given device has a small number
928 * of extents
7bfc837d
MX
929 *
930 * @start is used to store the start of the free space if we find. But if we
931 * don't find suitable free space, it will be used to store the start position
932 * of the max free space.
933 *
934 * @len is used to store the size of the free space that we find.
935 * But if we don't find suitable free space, it is used to store the size of
936 * the max free space.
0b86a832 937 */
125ccb0a 938int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
7bfc837d 939 u64 *start, u64 *len)
0b86a832
CM
940{
941 struct btrfs_key key;
942 struct btrfs_root *root = device->dev_root;
7bfc837d 943 struct btrfs_dev_extent *dev_extent;
2b82032c 944 struct btrfs_path *path;
7bfc837d
MX
945 u64 hole_size;
946 u64 max_hole_start;
947 u64 max_hole_size;
948 u64 extent_end;
949 u64 search_start;
0b86a832
CM
950 u64 search_end = device->total_bytes;
951 int ret;
7bfc837d 952 int slot;
0b86a832
CM
953 struct extent_buffer *l;
954
0b86a832
CM
955 /* FIXME use last free of some kind */
956
8a4b83cc
CM
957 /* we don't want to overwrite the superblock on the drive,
958 * so we make sure to start at an offset of at least 1MB
959 */
a9c9bf68 960 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 961
7bfc837d
MX
962 max_hole_start = search_start;
963 max_hole_size = 0;
38c01b96 964 hole_size = 0;
7bfc837d 965
63a212ab 966 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d
MX
967 ret = -ENOSPC;
968 goto error;
969 }
970
971 path = btrfs_alloc_path();
972 if (!path) {
973 ret = -ENOMEM;
974 goto error;
975 }
976 path->reada = 2;
977
0b86a832
CM
978 key.objectid = device->devid;
979 key.offset = search_start;
980 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 981
125ccb0a 982 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 983 if (ret < 0)
7bfc837d 984 goto out;
1fcbac58
YZ
985 if (ret > 0) {
986 ret = btrfs_previous_item(root, path, key.objectid, key.type);
987 if (ret < 0)
7bfc837d 988 goto out;
1fcbac58 989 }
7bfc837d 990
0b86a832
CM
991 while (1) {
992 l = path->nodes[0];
993 slot = path->slots[0];
994 if (slot >= btrfs_header_nritems(l)) {
995 ret = btrfs_next_leaf(root, path);
996 if (ret == 0)
997 continue;
998 if (ret < 0)
7bfc837d
MX
999 goto out;
1000
1001 break;
0b86a832
CM
1002 }
1003 btrfs_item_key_to_cpu(l, &key, slot);
1004
1005 if (key.objectid < device->devid)
1006 goto next;
1007
1008 if (key.objectid > device->devid)
7bfc837d 1009 break;
0b86a832 1010
7bfc837d
MX
1011 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1012 goto next;
9779b72f 1013
7bfc837d
MX
1014 if (key.offset > search_start) {
1015 hole_size = key.offset - search_start;
9779b72f 1016
7bfc837d
MX
1017 if (hole_size > max_hole_size) {
1018 max_hole_start = search_start;
1019 max_hole_size = hole_size;
1020 }
9779b72f 1021
7bfc837d
MX
1022 /*
1023 * If this free space is greater than which we need,
1024 * it must be the max free space that we have found
1025 * until now, so max_hole_start must point to the start
1026 * of this free space and the length of this free space
1027 * is stored in max_hole_size. Thus, we return
1028 * max_hole_start and max_hole_size and go back to the
1029 * caller.
1030 */
1031 if (hole_size >= num_bytes) {
1032 ret = 0;
1033 goto out;
0b86a832
CM
1034 }
1035 }
0b86a832 1036
0b86a832 1037 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1038 extent_end = key.offset + btrfs_dev_extent_length(l,
1039 dev_extent);
1040 if (extent_end > search_start)
1041 search_start = extent_end;
0b86a832
CM
1042next:
1043 path->slots[0]++;
1044 cond_resched();
1045 }
0b86a832 1046
38c01b96 1047 /*
1048 * At this point, search_start should be the end of
1049 * allocated dev extents, and when shrinking the device,
1050 * search_end may be smaller than search_start.
1051 */
1052 if (search_end > search_start)
1053 hole_size = search_end - search_start;
1054
7bfc837d
MX
1055 if (hole_size > max_hole_size) {
1056 max_hole_start = search_start;
1057 max_hole_size = hole_size;
0b86a832 1058 }
0b86a832 1059
7bfc837d
MX
1060 /* See above. */
1061 if (hole_size < num_bytes)
1062 ret = -ENOSPC;
1063 else
1064 ret = 0;
1065
1066out:
2b82032c 1067 btrfs_free_path(path);
7bfc837d
MX
1068error:
1069 *start = max_hole_start;
b2117a39 1070 if (len)
7bfc837d 1071 *len = max_hole_size;
0b86a832
CM
1072 return ret;
1073}
1074
b2950863 1075static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
1076 struct btrfs_device *device,
1077 u64 start)
1078{
1079 int ret;
1080 struct btrfs_path *path;
1081 struct btrfs_root *root = device->dev_root;
1082 struct btrfs_key key;
a061fc8d
CM
1083 struct btrfs_key found_key;
1084 struct extent_buffer *leaf = NULL;
1085 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1086
1087 path = btrfs_alloc_path();
1088 if (!path)
1089 return -ENOMEM;
1090
1091 key.objectid = device->devid;
1092 key.offset = start;
1093 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1094again:
8f18cf13 1095 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1096 if (ret > 0) {
1097 ret = btrfs_previous_item(root, path, key.objectid,
1098 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1099 if (ret)
1100 goto out;
a061fc8d
CM
1101 leaf = path->nodes[0];
1102 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1103 extent = btrfs_item_ptr(leaf, path->slots[0],
1104 struct btrfs_dev_extent);
1105 BUG_ON(found_key.offset > start || found_key.offset +
1106 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1107 key = found_key;
1108 btrfs_release_path(path);
1109 goto again;
a061fc8d
CM
1110 } else if (ret == 0) {
1111 leaf = path->nodes[0];
1112 extent = btrfs_item_ptr(leaf, path->slots[0],
1113 struct btrfs_dev_extent);
79787eaa
JM
1114 } else {
1115 btrfs_error(root->fs_info, ret, "Slot search failed");
1116 goto out;
a061fc8d 1117 }
8f18cf13 1118
2bf64758
JB
1119 if (device->bytes_used > 0) {
1120 u64 len = btrfs_dev_extent_length(leaf, extent);
1121 device->bytes_used -= len;
1122 spin_lock(&root->fs_info->free_chunk_lock);
1123 root->fs_info->free_chunk_space += len;
1124 spin_unlock(&root->fs_info->free_chunk_lock);
1125 }
8f18cf13 1126 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1127 if (ret) {
1128 btrfs_error(root->fs_info, ret,
1129 "Failed to remove dev extent item");
1130 }
b0b802d7 1131out:
8f18cf13
CM
1132 btrfs_free_path(path);
1133 return ret;
1134}
1135
2b82032c 1136int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
0b86a832 1137 struct btrfs_device *device,
e17cade2 1138 u64 chunk_tree, u64 chunk_objectid,
2b82032c 1139 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1140{
1141 int ret;
1142 struct btrfs_path *path;
1143 struct btrfs_root *root = device->dev_root;
1144 struct btrfs_dev_extent *extent;
1145 struct extent_buffer *leaf;
1146 struct btrfs_key key;
1147
dfe25020 1148 WARN_ON(!device->in_fs_metadata);
63a212ab 1149 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1150 path = btrfs_alloc_path();
1151 if (!path)
1152 return -ENOMEM;
1153
0b86a832 1154 key.objectid = device->devid;
2b82032c 1155 key.offset = start;
0b86a832
CM
1156 key.type = BTRFS_DEV_EXTENT_KEY;
1157 ret = btrfs_insert_empty_item(trans, root, path, &key,
1158 sizeof(*extent));
2cdcecbc
MF
1159 if (ret)
1160 goto out;
0b86a832
CM
1161
1162 leaf = path->nodes[0];
1163 extent = btrfs_item_ptr(leaf, path->slots[0],
1164 struct btrfs_dev_extent);
e17cade2
CM
1165 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1166 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1167 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1168
1169 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1170 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1171 BTRFS_UUID_SIZE);
1172
0b86a832
CM
1173 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1174 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1175out:
0b86a832
CM
1176 btrfs_free_path(path);
1177 return ret;
1178}
1179
a1b32a59
CM
1180static noinline int find_next_chunk(struct btrfs_root *root,
1181 u64 objectid, u64 *offset)
0b86a832
CM
1182{
1183 struct btrfs_path *path;
1184 int ret;
1185 struct btrfs_key key;
e17cade2 1186 struct btrfs_chunk *chunk;
0b86a832
CM
1187 struct btrfs_key found_key;
1188
1189 path = btrfs_alloc_path();
92b8e897
MF
1190 if (!path)
1191 return -ENOMEM;
0b86a832 1192
e17cade2 1193 key.objectid = objectid;
0b86a832
CM
1194 key.offset = (u64)-1;
1195 key.type = BTRFS_CHUNK_ITEM_KEY;
1196
1197 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1198 if (ret < 0)
1199 goto error;
1200
79787eaa 1201 BUG_ON(ret == 0); /* Corruption */
0b86a832
CM
1202
1203 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1204 if (ret) {
e17cade2 1205 *offset = 0;
0b86a832
CM
1206 } else {
1207 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1208 path->slots[0]);
e17cade2
CM
1209 if (found_key.objectid != objectid)
1210 *offset = 0;
1211 else {
1212 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1213 struct btrfs_chunk);
1214 *offset = found_key.offset +
1215 btrfs_chunk_length(path->nodes[0], chunk);
1216 }
0b86a832
CM
1217 }
1218 ret = 0;
1219error:
1220 btrfs_free_path(path);
1221 return ret;
1222}
1223
2b82032c 1224static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
0b86a832
CM
1225{
1226 int ret;
1227 struct btrfs_key key;
1228 struct btrfs_key found_key;
2b82032c
YZ
1229 struct btrfs_path *path;
1230
1231 root = root->fs_info->chunk_root;
1232
1233 path = btrfs_alloc_path();
1234 if (!path)
1235 return -ENOMEM;
0b86a832
CM
1236
1237 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1238 key.type = BTRFS_DEV_ITEM_KEY;
1239 key.offset = (u64)-1;
1240
1241 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1242 if (ret < 0)
1243 goto error;
1244
79787eaa 1245 BUG_ON(ret == 0); /* Corruption */
0b86a832
CM
1246
1247 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1248 BTRFS_DEV_ITEM_KEY);
1249 if (ret) {
1250 *objectid = 1;
1251 } else {
1252 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1253 path->slots[0]);
1254 *objectid = found_key.offset + 1;
1255 }
1256 ret = 0;
1257error:
2b82032c 1258 btrfs_free_path(path);
0b86a832
CM
1259 return ret;
1260}
1261
1262/*
1263 * the device information is stored in the chunk root
1264 * the btrfs_device struct should be fully filled in
1265 */
1266int btrfs_add_device(struct btrfs_trans_handle *trans,
1267 struct btrfs_root *root,
1268 struct btrfs_device *device)
1269{
1270 int ret;
1271 struct btrfs_path *path;
1272 struct btrfs_dev_item *dev_item;
1273 struct extent_buffer *leaf;
1274 struct btrfs_key key;
1275 unsigned long ptr;
0b86a832
CM
1276
1277 root = root->fs_info->chunk_root;
1278
1279 path = btrfs_alloc_path();
1280 if (!path)
1281 return -ENOMEM;
1282
0b86a832
CM
1283 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1284 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1285 key.offset = device->devid;
0b86a832
CM
1286
1287 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1288 sizeof(*dev_item));
0b86a832
CM
1289 if (ret)
1290 goto out;
1291
1292 leaf = path->nodes[0];
1293 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1294
1295 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1296 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1297 btrfs_set_device_type(leaf, dev_item, device->type);
1298 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1299 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1300 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1301 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1302 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1303 btrfs_set_device_group(leaf, dev_item, 0);
1304 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1305 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1306 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1307
0b86a832 1308 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 1309 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2b82032c
YZ
1310 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1311 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1312 btrfs_mark_buffer_dirty(leaf);
0b86a832 1313
2b82032c 1314 ret = 0;
0b86a832
CM
1315out:
1316 btrfs_free_path(path);
1317 return ret;
1318}
8f18cf13 1319
a061fc8d
CM
1320static int btrfs_rm_dev_item(struct btrfs_root *root,
1321 struct btrfs_device *device)
1322{
1323 int ret;
1324 struct btrfs_path *path;
a061fc8d 1325 struct btrfs_key key;
a061fc8d
CM
1326 struct btrfs_trans_handle *trans;
1327
1328 root = root->fs_info->chunk_root;
1329
1330 path = btrfs_alloc_path();
1331 if (!path)
1332 return -ENOMEM;
1333
a22285a6 1334 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1335 if (IS_ERR(trans)) {
1336 btrfs_free_path(path);
1337 return PTR_ERR(trans);
1338 }
a061fc8d
CM
1339 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1340 key.type = BTRFS_DEV_ITEM_KEY;
1341 key.offset = device->devid;
7d9eb12c 1342 lock_chunks(root);
a061fc8d
CM
1343
1344 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1345 if (ret < 0)
1346 goto out;
1347
1348 if (ret > 0) {
1349 ret = -ENOENT;
1350 goto out;
1351 }
1352
1353 ret = btrfs_del_item(trans, root, path);
1354 if (ret)
1355 goto out;
a061fc8d
CM
1356out:
1357 btrfs_free_path(path);
7d9eb12c 1358 unlock_chunks(root);
a061fc8d
CM
1359 btrfs_commit_transaction(trans, root);
1360 return ret;
1361}
1362
1363int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1364{
1365 struct btrfs_device *device;
2b82032c 1366 struct btrfs_device *next_device;
a061fc8d 1367 struct block_device *bdev;
dfe25020 1368 struct buffer_head *bh = NULL;
a061fc8d 1369 struct btrfs_super_block *disk_super;
1f78160c 1370 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1371 u64 all_avail;
1372 u64 devid;
2b82032c
YZ
1373 u64 num_devices;
1374 u8 *dev_uuid;
a061fc8d 1375 int ret = 0;
1f78160c 1376 bool clear_super = false;
a061fc8d 1377
a061fc8d
CM
1378 mutex_lock(&uuid_mutex);
1379
1380 all_avail = root->fs_info->avail_data_alloc_bits |
1381 root->fs_info->avail_system_alloc_bits |
1382 root->fs_info->avail_metadata_alloc_bits;
1383
8dabb742
SB
1384 num_devices = root->fs_info->fs_devices->num_devices;
1385 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1386 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1387 WARN_ON(num_devices < 1);
1388 num_devices--;
1389 }
1390 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1391
1392 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
d397712b
CM
1393 printk(KERN_ERR "btrfs: unable to go below four devices "
1394 "on raid10\n");
a061fc8d
CM
1395 ret = -EINVAL;
1396 goto out;
1397 }
1398
8dabb742 1399 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
d397712b
CM
1400 printk(KERN_ERR "btrfs: unable to go below two "
1401 "devices on raid1\n");
a061fc8d
CM
1402 ret = -EINVAL;
1403 goto out;
1404 }
1405
dfe25020 1406 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1407 struct list_head *devices;
1408 struct btrfs_device *tmp;
a061fc8d 1409
dfe25020
CM
1410 device = NULL;
1411 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1412 /*
1413 * It is safe to read the devices since the volume_mutex
1414 * is held.
1415 */
c6e30871 1416 list_for_each_entry(tmp, devices, dev_list) {
63a212ab
SB
1417 if (tmp->in_fs_metadata &&
1418 !tmp->is_tgtdev_for_dev_replace &&
1419 !tmp->bdev) {
dfe25020
CM
1420 device = tmp;
1421 break;
1422 }
1423 }
1424 bdev = NULL;
1425 bh = NULL;
1426 disk_super = NULL;
1427 if (!device) {
d397712b
CM
1428 printk(KERN_ERR "btrfs: no missing devices found to "
1429 "remove\n");
dfe25020
CM
1430 goto out;
1431 }
dfe25020 1432 } else {
beaf8ab3 1433 ret = btrfs_get_bdev_and_sb(device_path,
cc975eb4 1434 FMODE_WRITE | FMODE_EXCL,
beaf8ab3
SB
1435 root->fs_info->bdev_holder, 0,
1436 &bdev, &bh);
1437 if (ret)
dfe25020 1438 goto out;
dfe25020 1439 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1440 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c 1441 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1442 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2b82032c 1443 disk_super->fsid);
dfe25020
CM
1444 if (!device) {
1445 ret = -ENOENT;
1446 goto error_brelse;
1447 }
2b82032c 1448 }
dfe25020 1449
63a212ab
SB
1450 if (device->is_tgtdev_for_dev_replace) {
1451 pr_err("btrfs: unable to remove the dev_replace target dev\n");
1452 ret = -EINVAL;
1453 goto error_brelse;
1454 }
1455
2b82032c 1456 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
d397712b
CM
1457 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1458 "device\n");
2b82032c
YZ
1459 ret = -EINVAL;
1460 goto error_brelse;
1461 }
1462
1463 if (device->writeable) {
0c1daee0 1464 lock_chunks(root);
2b82032c 1465 list_del_init(&device->dev_alloc_list);
0c1daee0 1466 unlock_chunks(root);
2b82032c 1467 root->fs_info->fs_devices->rw_devices--;
1f78160c 1468 clear_super = true;
dfe25020 1469 }
a061fc8d
CM
1470
1471 ret = btrfs_shrink_device(device, 0);
1472 if (ret)
9b3517e9 1473 goto error_undo;
a061fc8d 1474
63a212ab
SB
1475 /*
1476 * TODO: the superblock still includes this device in its num_devices
1477 * counter although write_all_supers() is not locked out. This
1478 * could give a filesystem state which requires a degraded mount.
1479 */
a061fc8d
CM
1480 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1481 if (ret)
9b3517e9 1482 goto error_undo;
a061fc8d 1483
2bf64758
JB
1484 spin_lock(&root->fs_info->free_chunk_lock);
1485 root->fs_info->free_chunk_space = device->total_bytes -
1486 device->bytes_used;
1487 spin_unlock(&root->fs_info->free_chunk_lock);
1488
2b82032c 1489 device->in_fs_metadata = 0;
aa1b8cd4 1490 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1491
1492 /*
1493 * the device list mutex makes sure that we don't change
1494 * the device list while someone else is writing out all
1495 * the device supers.
1496 */
1f78160c
XG
1497
1498 cur_devices = device->fs_devices;
e5e9a520 1499 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1500 list_del_rcu(&device->dev_list);
e5e9a520 1501
e4404d6e 1502 device->fs_devices->num_devices--;
02db0844 1503 device->fs_devices->total_devices--;
2b82032c 1504
cd02dca5
CM
1505 if (device->missing)
1506 root->fs_info->fs_devices->missing_devices--;
1507
2b82032c
YZ
1508 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1509 struct btrfs_device, dev_list);
1510 if (device->bdev == root->fs_info->sb->s_bdev)
1511 root->fs_info->sb->s_bdev = next_device->bdev;
1512 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1513 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1514
1f78160c 1515 if (device->bdev)
e4404d6e 1516 device->fs_devices->open_devices--;
1f78160c
XG
1517
1518 call_rcu(&device->rcu, free_device);
1519 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
e4404d6e 1520
6c41761f
DS
1521 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1522 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
2b82032c 1523
1f78160c 1524 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1525 struct btrfs_fs_devices *fs_devices;
1526 fs_devices = root->fs_info->fs_devices;
1527 while (fs_devices) {
1f78160c 1528 if (fs_devices->seed == cur_devices)
e4404d6e
YZ
1529 break;
1530 fs_devices = fs_devices->seed;
2b82032c 1531 }
1f78160c
XG
1532 fs_devices->seed = cur_devices->seed;
1533 cur_devices->seed = NULL;
0c1daee0 1534 lock_chunks(root);
1f78160c 1535 __btrfs_close_devices(cur_devices);
0c1daee0 1536 unlock_chunks(root);
1f78160c 1537 free_fs_devices(cur_devices);
2b82032c
YZ
1538 }
1539
5af3e8cc
SB
1540 root->fs_info->num_tolerated_disk_barrier_failures =
1541 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1542
2b82032c
YZ
1543 /*
1544 * at this point, the device is zero sized. We want to
1545 * remove it from the devices list and zero out the old super
1546 */
aa1b8cd4 1547 if (clear_super && disk_super) {
dfe25020
CM
1548 /* make sure this device isn't detected as part of
1549 * the FS anymore
1550 */
1551 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1552 set_buffer_dirty(bh);
1553 sync_dirty_buffer(bh);
dfe25020 1554 }
a061fc8d 1555
a061fc8d 1556 ret = 0;
a061fc8d 1557
b8b8ff59
LC
1558 /* Notify udev that device has changed */
1559 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1560
a061fc8d
CM
1561error_brelse:
1562 brelse(bh);
dfe25020 1563 if (bdev)
e525fd89 1564 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1565out:
1566 mutex_unlock(&uuid_mutex);
a061fc8d 1567 return ret;
9b3517e9
ID
1568error_undo:
1569 if (device->writeable) {
0c1daee0 1570 lock_chunks(root);
9b3517e9
ID
1571 list_add(&device->dev_alloc_list,
1572 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1573 unlock_chunks(root);
9b3517e9
ID
1574 root->fs_info->fs_devices->rw_devices++;
1575 }
1576 goto error_brelse;
a061fc8d
CM
1577}
1578
e93c89c1
SB
1579void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1580 struct btrfs_device *srcdev)
1581{
1582 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1583 list_del_rcu(&srcdev->dev_list);
1584 list_del_rcu(&srcdev->dev_alloc_list);
1585 fs_info->fs_devices->num_devices--;
1586 if (srcdev->missing) {
1587 fs_info->fs_devices->missing_devices--;
1588 fs_info->fs_devices->rw_devices++;
1589 }
1590 if (srcdev->can_discard)
1591 fs_info->fs_devices->num_can_discard--;
1592 if (srcdev->bdev)
1593 fs_info->fs_devices->open_devices--;
1594
1595 call_rcu(&srcdev->rcu, free_device);
1596}
1597
1598void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1599 struct btrfs_device *tgtdev)
1600{
1601 struct btrfs_device *next_device;
1602
1603 WARN_ON(!tgtdev);
1604 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1605 if (tgtdev->bdev) {
1606 btrfs_scratch_superblock(tgtdev);
1607 fs_info->fs_devices->open_devices--;
1608 }
1609 fs_info->fs_devices->num_devices--;
1610 if (tgtdev->can_discard)
1611 fs_info->fs_devices->num_can_discard++;
1612
1613 next_device = list_entry(fs_info->fs_devices->devices.next,
1614 struct btrfs_device, dev_list);
1615 if (tgtdev->bdev == fs_info->sb->s_bdev)
1616 fs_info->sb->s_bdev = next_device->bdev;
1617 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1618 fs_info->fs_devices->latest_bdev = next_device->bdev;
1619 list_del_rcu(&tgtdev->dev_list);
1620
1621 call_rcu(&tgtdev->rcu, free_device);
1622
1623 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1624}
1625
7ba15b7d
SB
1626int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1627 struct btrfs_device **device)
1628{
1629 int ret = 0;
1630 struct btrfs_super_block *disk_super;
1631 u64 devid;
1632 u8 *dev_uuid;
1633 struct block_device *bdev;
1634 struct buffer_head *bh;
1635
1636 *device = NULL;
1637 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1638 root->fs_info->bdev_holder, 0, &bdev, &bh);
1639 if (ret)
1640 return ret;
1641 disk_super = (struct btrfs_super_block *)bh->b_data;
1642 devid = btrfs_stack_device_id(&disk_super->dev_item);
1643 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1644 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
1645 disk_super->fsid);
1646 brelse(bh);
1647 if (!*device)
1648 ret = -ENOENT;
1649 blkdev_put(bdev, FMODE_READ);
1650 return ret;
1651}
1652
1653int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1654 char *device_path,
1655 struct btrfs_device **device)
1656{
1657 *device = NULL;
1658 if (strcmp(device_path, "missing") == 0) {
1659 struct list_head *devices;
1660 struct btrfs_device *tmp;
1661
1662 devices = &root->fs_info->fs_devices->devices;
1663 /*
1664 * It is safe to read the devices since the volume_mutex
1665 * is held by the caller.
1666 */
1667 list_for_each_entry(tmp, devices, dev_list) {
1668 if (tmp->in_fs_metadata && !tmp->bdev) {
1669 *device = tmp;
1670 break;
1671 }
1672 }
1673
1674 if (!*device) {
1675 pr_err("btrfs: no missing device found\n");
1676 return -ENOENT;
1677 }
1678
1679 return 0;
1680 } else {
1681 return btrfs_find_device_by_path(root, device_path, device);
1682 }
1683}
1684
2b82032c
YZ
1685/*
1686 * does all the dirty work required for changing file system's UUID.
1687 */
125ccb0a 1688static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
1689{
1690 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1691 struct btrfs_fs_devices *old_devices;
e4404d6e 1692 struct btrfs_fs_devices *seed_devices;
6c41761f 1693 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1694 struct btrfs_device *device;
1695 u64 super_flags;
1696
1697 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1698 if (!fs_devices->seeding)
2b82032c
YZ
1699 return -EINVAL;
1700
e4404d6e
YZ
1701 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1702 if (!seed_devices)
2b82032c
YZ
1703 return -ENOMEM;
1704
e4404d6e
YZ
1705 old_devices = clone_fs_devices(fs_devices);
1706 if (IS_ERR(old_devices)) {
1707 kfree(seed_devices);
1708 return PTR_ERR(old_devices);
2b82032c 1709 }
e4404d6e 1710
2b82032c
YZ
1711 list_add(&old_devices->list, &fs_uuids);
1712
e4404d6e
YZ
1713 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1714 seed_devices->opened = 1;
1715 INIT_LIST_HEAD(&seed_devices->devices);
1716 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1717 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1718
1719 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1720 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1721 synchronize_rcu);
c9513edb
XG
1722 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1723
e4404d6e
YZ
1724 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1725 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1726 device->fs_devices = seed_devices;
1727 }
1728
2b82032c
YZ
1729 fs_devices->seeding = 0;
1730 fs_devices->num_devices = 0;
1731 fs_devices->open_devices = 0;
02db0844 1732 fs_devices->total_devices = 0;
e4404d6e 1733 fs_devices->seed = seed_devices;
2b82032c
YZ
1734
1735 generate_random_uuid(fs_devices->fsid);
1736 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1737 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1738 super_flags = btrfs_super_flags(disk_super) &
1739 ~BTRFS_SUPER_FLAG_SEEDING;
1740 btrfs_set_super_flags(disk_super, super_flags);
1741
1742 return 0;
1743}
1744
1745/*
1746 * strore the expected generation for seed devices in device items.
1747 */
1748static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1749 struct btrfs_root *root)
1750{
1751 struct btrfs_path *path;
1752 struct extent_buffer *leaf;
1753 struct btrfs_dev_item *dev_item;
1754 struct btrfs_device *device;
1755 struct btrfs_key key;
1756 u8 fs_uuid[BTRFS_UUID_SIZE];
1757 u8 dev_uuid[BTRFS_UUID_SIZE];
1758 u64 devid;
1759 int ret;
1760
1761 path = btrfs_alloc_path();
1762 if (!path)
1763 return -ENOMEM;
1764
1765 root = root->fs_info->chunk_root;
1766 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1767 key.offset = 0;
1768 key.type = BTRFS_DEV_ITEM_KEY;
1769
1770 while (1) {
1771 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1772 if (ret < 0)
1773 goto error;
1774
1775 leaf = path->nodes[0];
1776next_slot:
1777 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1778 ret = btrfs_next_leaf(root, path);
1779 if (ret > 0)
1780 break;
1781 if (ret < 0)
1782 goto error;
1783 leaf = path->nodes[0];
1784 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 1785 btrfs_release_path(path);
2b82032c
YZ
1786 continue;
1787 }
1788
1789 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1790 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1791 key.type != BTRFS_DEV_ITEM_KEY)
1792 break;
1793
1794 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1795 struct btrfs_dev_item);
1796 devid = btrfs_device_id(leaf, dev_item);
1797 read_extent_buffer(leaf, dev_uuid,
1798 (unsigned long)btrfs_device_uuid(dev_item),
1799 BTRFS_UUID_SIZE);
1800 read_extent_buffer(leaf, fs_uuid,
1801 (unsigned long)btrfs_device_fsid(dev_item),
1802 BTRFS_UUID_SIZE);
aa1b8cd4
SB
1803 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1804 fs_uuid);
79787eaa 1805 BUG_ON(!device); /* Logic error */
2b82032c
YZ
1806
1807 if (device->fs_devices->seeding) {
1808 btrfs_set_device_generation(leaf, dev_item,
1809 device->generation);
1810 btrfs_mark_buffer_dirty(leaf);
1811 }
1812
1813 path->slots[0]++;
1814 goto next_slot;
1815 }
1816 ret = 0;
1817error:
1818 btrfs_free_path(path);
1819 return ret;
1820}
1821
788f20eb
CM
1822int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1823{
d5e2003c 1824 struct request_queue *q;
788f20eb
CM
1825 struct btrfs_trans_handle *trans;
1826 struct btrfs_device *device;
1827 struct block_device *bdev;
788f20eb 1828 struct list_head *devices;
2b82032c 1829 struct super_block *sb = root->fs_info->sb;
606686ee 1830 struct rcu_string *name;
788f20eb 1831 u64 total_bytes;
2b82032c 1832 int seeding_dev = 0;
788f20eb
CM
1833 int ret = 0;
1834
2b82032c 1835 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 1836 return -EROFS;
788f20eb 1837
a5d16333 1838 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 1839 root->fs_info->bdev_holder);
7f59203a
JB
1840 if (IS_ERR(bdev))
1841 return PTR_ERR(bdev);
a2135011 1842
2b82032c
YZ
1843 if (root->fs_info->fs_devices->seeding) {
1844 seeding_dev = 1;
1845 down_write(&sb->s_umount);
1846 mutex_lock(&uuid_mutex);
1847 }
1848
8c8bee1d 1849 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 1850
788f20eb 1851 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
1852
1853 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 1854 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1855 if (device->bdev == bdev) {
1856 ret = -EEXIST;
d25628bd
LB
1857 mutex_unlock(
1858 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 1859 goto error;
788f20eb
CM
1860 }
1861 }
d25628bd 1862 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb
CM
1863
1864 device = kzalloc(sizeof(*device), GFP_NOFS);
1865 if (!device) {
1866 /* we can safely leave the fs_devices entry around */
1867 ret = -ENOMEM;
2b82032c 1868 goto error;
788f20eb
CM
1869 }
1870
606686ee
JB
1871 name = rcu_string_strdup(device_path, GFP_NOFS);
1872 if (!name) {
788f20eb 1873 kfree(device);
2b82032c
YZ
1874 ret = -ENOMEM;
1875 goto error;
788f20eb 1876 }
606686ee 1877 rcu_assign_pointer(device->name, name);
2b82032c
YZ
1878
1879 ret = find_next_devid(root, &device->devid);
1880 if (ret) {
606686ee 1881 rcu_string_free(device->name);
2b82032c
YZ
1882 kfree(device);
1883 goto error;
1884 }
1885
a22285a6 1886 trans = btrfs_start_transaction(root, 0);
98d5dc13 1887 if (IS_ERR(trans)) {
606686ee 1888 rcu_string_free(device->name);
98d5dc13
TI
1889 kfree(device);
1890 ret = PTR_ERR(trans);
1891 goto error;
1892 }
1893
2b82032c
YZ
1894 lock_chunks(root);
1895
d5e2003c
JB
1896 q = bdev_get_queue(bdev);
1897 if (blk_queue_discard(q))
1898 device->can_discard = 1;
2b82032c
YZ
1899 device->writeable = 1;
1900 device->work.func = pending_bios_fn;
1901 generate_random_uuid(device->uuid);
1902 spin_lock_init(&device->io_lock);
1903 device->generation = trans->transid;
788f20eb
CM
1904 device->io_width = root->sectorsize;
1905 device->io_align = root->sectorsize;
1906 device->sector_size = root->sectorsize;
1907 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 1908 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
1909 device->dev_root = root->fs_info->dev_root;
1910 device->bdev = bdev;
dfe25020 1911 device->in_fs_metadata = 1;
63a212ab 1912 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 1913 device->mode = FMODE_EXCL;
2b82032c 1914 set_blocksize(device->bdev, 4096);
788f20eb 1915
2b82032c
YZ
1916 if (seeding_dev) {
1917 sb->s_flags &= ~MS_RDONLY;
125ccb0a 1918 ret = btrfs_prepare_sprout(root);
79787eaa 1919 BUG_ON(ret); /* -ENOMEM */
2b82032c 1920 }
788f20eb 1921
2b82032c 1922 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 1923
e5e9a520 1924 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1925 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
1926 list_add(&device->dev_alloc_list,
1927 &root->fs_info->fs_devices->alloc_list);
1928 root->fs_info->fs_devices->num_devices++;
1929 root->fs_info->fs_devices->open_devices++;
1930 root->fs_info->fs_devices->rw_devices++;
02db0844 1931 root->fs_info->fs_devices->total_devices++;
d5e2003c
JB
1932 if (device->can_discard)
1933 root->fs_info->fs_devices->num_can_discard++;
2b82032c 1934 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 1935
2bf64758
JB
1936 spin_lock(&root->fs_info->free_chunk_lock);
1937 root->fs_info->free_chunk_space += device->total_bytes;
1938 spin_unlock(&root->fs_info->free_chunk_lock);
1939
c289811c
CM
1940 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1941 root->fs_info->fs_devices->rotating = 1;
1942
6c41761f
DS
1943 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
1944 btrfs_set_super_total_bytes(root->fs_info->super_copy,
788f20eb
CM
1945 total_bytes + device->total_bytes);
1946
6c41761f
DS
1947 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
1948 btrfs_set_super_num_devices(root->fs_info->super_copy,
788f20eb 1949 total_bytes + 1);
e5e9a520 1950 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 1951
2b82032c
YZ
1952 if (seeding_dev) {
1953 ret = init_first_rw_device(trans, root, device);
005d6427
DS
1954 if (ret) {
1955 btrfs_abort_transaction(trans, root, ret);
79787eaa 1956 goto error_trans;
005d6427 1957 }
2b82032c 1958 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
1959 if (ret) {
1960 btrfs_abort_transaction(trans, root, ret);
79787eaa 1961 goto error_trans;
005d6427 1962 }
2b82032c
YZ
1963 } else {
1964 ret = btrfs_add_device(trans, root, device);
005d6427
DS
1965 if (ret) {
1966 btrfs_abort_transaction(trans, root, ret);
79787eaa 1967 goto error_trans;
005d6427 1968 }
2b82032c
YZ
1969 }
1970
913d952e
CM
1971 /*
1972 * we've got more storage, clear any full flags on the space
1973 * infos
1974 */
1975 btrfs_clear_space_info_full(root->fs_info);
1976
7d9eb12c 1977 unlock_chunks(root);
5af3e8cc
SB
1978 root->fs_info->num_tolerated_disk_barrier_failures =
1979 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 1980 ret = btrfs_commit_transaction(trans, root);
a2135011 1981
2b82032c
YZ
1982 if (seeding_dev) {
1983 mutex_unlock(&uuid_mutex);
1984 up_write(&sb->s_umount);
788f20eb 1985
79787eaa
JM
1986 if (ret) /* transaction commit */
1987 return ret;
1988
2b82032c 1989 ret = btrfs_relocate_sys_chunks(root);
79787eaa
JM
1990 if (ret < 0)
1991 btrfs_error(root->fs_info, ret,
1992 "Failed to relocate sys chunks after "
1993 "device initialization. This can be fixed "
1994 "using the \"btrfs balance\" command.");
671415b7
MX
1995 trans = btrfs_attach_transaction(root);
1996 if (IS_ERR(trans)) {
1997 if (PTR_ERR(trans) == -ENOENT)
1998 return 0;
1999 return PTR_ERR(trans);
2000 }
2001 ret = btrfs_commit_transaction(trans, root);
2b82032c 2002 }
c9e9f97b 2003
2b82032c 2004 return ret;
79787eaa
JM
2005
2006error_trans:
2007 unlock_chunks(root);
79787eaa 2008 btrfs_end_transaction(trans, root);
606686ee 2009 rcu_string_free(device->name);
79787eaa 2010 kfree(device);
2b82032c 2011error:
e525fd89 2012 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2013 if (seeding_dev) {
2014 mutex_unlock(&uuid_mutex);
2015 up_write(&sb->s_umount);
2016 }
c9e9f97b 2017 return ret;
788f20eb
CM
2018}
2019
e93c89c1
SB
2020int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2021 struct btrfs_device **device_out)
2022{
2023 struct request_queue *q;
2024 struct btrfs_device *device;
2025 struct block_device *bdev;
2026 struct btrfs_fs_info *fs_info = root->fs_info;
2027 struct list_head *devices;
2028 struct rcu_string *name;
2029 int ret = 0;
2030
2031 *device_out = NULL;
2032 if (fs_info->fs_devices->seeding)
2033 return -EINVAL;
2034
2035 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2036 fs_info->bdev_holder);
2037 if (IS_ERR(bdev))
2038 return PTR_ERR(bdev);
2039
2040 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2041
2042 devices = &fs_info->fs_devices->devices;
2043 list_for_each_entry(device, devices, dev_list) {
2044 if (device->bdev == bdev) {
2045 ret = -EEXIST;
2046 goto error;
2047 }
2048 }
2049
2050 device = kzalloc(sizeof(*device), GFP_NOFS);
2051 if (!device) {
2052 ret = -ENOMEM;
2053 goto error;
2054 }
2055
2056 name = rcu_string_strdup(device_path, GFP_NOFS);
2057 if (!name) {
2058 kfree(device);
2059 ret = -ENOMEM;
2060 goto error;
2061 }
2062 rcu_assign_pointer(device->name, name);
2063
2064 q = bdev_get_queue(bdev);
2065 if (blk_queue_discard(q))
2066 device->can_discard = 1;
2067 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2068 device->writeable = 1;
2069 device->work.func = pending_bios_fn;
2070 generate_random_uuid(device->uuid);
2071 device->devid = BTRFS_DEV_REPLACE_DEVID;
2072 spin_lock_init(&device->io_lock);
2073 device->generation = 0;
2074 device->io_width = root->sectorsize;
2075 device->io_align = root->sectorsize;
2076 device->sector_size = root->sectorsize;
2077 device->total_bytes = i_size_read(bdev->bd_inode);
2078 device->disk_total_bytes = device->total_bytes;
2079 device->dev_root = fs_info->dev_root;
2080 device->bdev = bdev;
2081 device->in_fs_metadata = 1;
2082 device->is_tgtdev_for_dev_replace = 1;
2083 device->mode = FMODE_EXCL;
2084 set_blocksize(device->bdev, 4096);
2085 device->fs_devices = fs_info->fs_devices;
2086 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2087 fs_info->fs_devices->num_devices++;
2088 fs_info->fs_devices->open_devices++;
2089 if (device->can_discard)
2090 fs_info->fs_devices->num_can_discard++;
2091 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2092
2093 *device_out = device;
2094 return ret;
2095
2096error:
2097 blkdev_put(bdev, FMODE_EXCL);
2098 return ret;
2099}
2100
2101void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2102 struct btrfs_device *tgtdev)
2103{
2104 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2105 tgtdev->io_width = fs_info->dev_root->sectorsize;
2106 tgtdev->io_align = fs_info->dev_root->sectorsize;
2107 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2108 tgtdev->dev_root = fs_info->dev_root;
2109 tgtdev->in_fs_metadata = 1;
2110}
2111
d397712b
CM
2112static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2113 struct btrfs_device *device)
0b86a832
CM
2114{
2115 int ret;
2116 struct btrfs_path *path;
2117 struct btrfs_root *root;
2118 struct btrfs_dev_item *dev_item;
2119 struct extent_buffer *leaf;
2120 struct btrfs_key key;
2121
2122 root = device->dev_root->fs_info->chunk_root;
2123
2124 path = btrfs_alloc_path();
2125 if (!path)
2126 return -ENOMEM;
2127
2128 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2129 key.type = BTRFS_DEV_ITEM_KEY;
2130 key.offset = device->devid;
2131
2132 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2133 if (ret < 0)
2134 goto out;
2135
2136 if (ret > 0) {
2137 ret = -ENOENT;
2138 goto out;
2139 }
2140
2141 leaf = path->nodes[0];
2142 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2143
2144 btrfs_set_device_id(leaf, dev_item, device->devid);
2145 btrfs_set_device_type(leaf, dev_item, device->type);
2146 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2147 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2148 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 2149 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
2150 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2151 btrfs_mark_buffer_dirty(leaf);
2152
2153out:
2154 btrfs_free_path(path);
2155 return ret;
2156}
2157
7d9eb12c 2158static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2159 struct btrfs_device *device, u64 new_size)
2160{
2161 struct btrfs_super_block *super_copy =
6c41761f 2162 device->dev_root->fs_info->super_copy;
8f18cf13
CM
2163 u64 old_total = btrfs_super_total_bytes(super_copy);
2164 u64 diff = new_size - device->total_bytes;
2165
2b82032c
YZ
2166 if (!device->writeable)
2167 return -EACCES;
63a212ab
SB
2168 if (new_size <= device->total_bytes ||
2169 device->is_tgtdev_for_dev_replace)
2b82032c
YZ
2170 return -EINVAL;
2171
8f18cf13 2172 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2173 device->fs_devices->total_rw_bytes += diff;
2174
2175 device->total_bytes = new_size;
9779b72f 2176 device->disk_total_bytes = new_size;
4184ea7f
CM
2177 btrfs_clear_space_info_full(device->dev_root->fs_info);
2178
8f18cf13
CM
2179 return btrfs_update_device(trans, device);
2180}
2181
7d9eb12c
CM
2182int btrfs_grow_device(struct btrfs_trans_handle *trans,
2183 struct btrfs_device *device, u64 new_size)
2184{
2185 int ret;
2186 lock_chunks(device->dev_root);
2187 ret = __btrfs_grow_device(trans, device, new_size);
2188 unlock_chunks(device->dev_root);
2189 return ret;
2190}
2191
8f18cf13
CM
2192static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2193 struct btrfs_root *root,
2194 u64 chunk_tree, u64 chunk_objectid,
2195 u64 chunk_offset)
2196{
2197 int ret;
2198 struct btrfs_path *path;
2199 struct btrfs_key key;
2200
2201 root = root->fs_info->chunk_root;
2202 path = btrfs_alloc_path();
2203 if (!path)
2204 return -ENOMEM;
2205
2206 key.objectid = chunk_objectid;
2207 key.offset = chunk_offset;
2208 key.type = BTRFS_CHUNK_ITEM_KEY;
2209
2210 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2211 if (ret < 0)
2212 goto out;
2213 else if (ret > 0) { /* Logic error or corruption */
2214 btrfs_error(root->fs_info, -ENOENT,
2215 "Failed lookup while freeing chunk.");
2216 ret = -ENOENT;
2217 goto out;
2218 }
8f18cf13
CM
2219
2220 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
2221 if (ret < 0)
2222 btrfs_error(root->fs_info, ret,
2223 "Failed to delete chunk item.");
2224out:
8f18cf13 2225 btrfs_free_path(path);
65a246c5 2226 return ret;
8f18cf13
CM
2227}
2228
b2950863 2229static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2230 chunk_offset)
2231{
6c41761f 2232 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2233 struct btrfs_disk_key *disk_key;
2234 struct btrfs_chunk *chunk;
2235 u8 *ptr;
2236 int ret = 0;
2237 u32 num_stripes;
2238 u32 array_size;
2239 u32 len = 0;
2240 u32 cur;
2241 struct btrfs_key key;
2242
2243 array_size = btrfs_super_sys_array_size(super_copy);
2244
2245 ptr = super_copy->sys_chunk_array;
2246 cur = 0;
2247
2248 while (cur < array_size) {
2249 disk_key = (struct btrfs_disk_key *)ptr;
2250 btrfs_disk_key_to_cpu(&key, disk_key);
2251
2252 len = sizeof(*disk_key);
2253
2254 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2255 chunk = (struct btrfs_chunk *)(ptr + len);
2256 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2257 len += btrfs_chunk_item_size(num_stripes);
2258 } else {
2259 ret = -EIO;
2260 break;
2261 }
2262 if (key.objectid == chunk_objectid &&
2263 key.offset == chunk_offset) {
2264 memmove(ptr, ptr + len, array_size - (cur + len));
2265 array_size -= len;
2266 btrfs_set_super_sys_array_size(super_copy, array_size);
2267 } else {
2268 ptr += len;
2269 cur += len;
2270 }
2271 }
2272 return ret;
2273}
2274
b2950863 2275static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
2276 u64 chunk_tree, u64 chunk_objectid,
2277 u64 chunk_offset)
2278{
2279 struct extent_map_tree *em_tree;
2280 struct btrfs_root *extent_root;
2281 struct btrfs_trans_handle *trans;
2282 struct extent_map *em;
2283 struct map_lookup *map;
2284 int ret;
2285 int i;
2286
2287 root = root->fs_info->chunk_root;
2288 extent_root = root->fs_info->extent_root;
2289 em_tree = &root->fs_info->mapping_tree.map_tree;
2290
ba1bf481
JB
2291 ret = btrfs_can_relocate(extent_root, chunk_offset);
2292 if (ret)
2293 return -ENOSPC;
2294
8f18cf13 2295 /* step one, relocate all the extents inside this chunk */
1a40e23b 2296 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
2297 if (ret)
2298 return ret;
8f18cf13 2299
a22285a6 2300 trans = btrfs_start_transaction(root, 0);
98d5dc13 2301 BUG_ON(IS_ERR(trans));
8f18cf13 2302
7d9eb12c
CM
2303 lock_chunks(root);
2304
8f18cf13
CM
2305 /*
2306 * step two, delete the device extents and the
2307 * chunk tree entries
2308 */
890871be 2309 read_lock(&em_tree->lock);
8f18cf13 2310 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2311 read_unlock(&em_tree->lock);
8f18cf13 2312
285190d9 2313 BUG_ON(!em || em->start > chunk_offset ||
a061fc8d 2314 em->start + em->len < chunk_offset);
8f18cf13
CM
2315 map = (struct map_lookup *)em->bdev;
2316
2317 for (i = 0; i < map->num_stripes; i++) {
2318 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2319 map->stripes[i].physical);
2320 BUG_ON(ret);
a061fc8d 2321
dfe25020
CM
2322 if (map->stripes[i].dev) {
2323 ret = btrfs_update_device(trans, map->stripes[i].dev);
2324 BUG_ON(ret);
2325 }
8f18cf13
CM
2326 }
2327 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2328 chunk_offset);
2329
2330 BUG_ON(ret);
2331
1abe9b8a 2332 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2333
8f18cf13
CM
2334 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2335 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2336 BUG_ON(ret);
8f18cf13
CM
2337 }
2338
2b82032c
YZ
2339 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2340 BUG_ON(ret);
2341
890871be 2342 write_lock(&em_tree->lock);
2b82032c 2343 remove_extent_mapping(em_tree, em);
890871be 2344 write_unlock(&em_tree->lock);
2b82032c
YZ
2345
2346 kfree(map);
2347 em->bdev = NULL;
2348
2349 /* once for the tree */
2350 free_extent_map(em);
2351 /* once for us */
2352 free_extent_map(em);
2353
2354 unlock_chunks(root);
2355 btrfs_end_transaction(trans, root);
2356 return 0;
2357}
2358
2359static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2360{
2361 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2362 struct btrfs_path *path;
2363 struct extent_buffer *leaf;
2364 struct btrfs_chunk *chunk;
2365 struct btrfs_key key;
2366 struct btrfs_key found_key;
2367 u64 chunk_tree = chunk_root->root_key.objectid;
2368 u64 chunk_type;
ba1bf481
JB
2369 bool retried = false;
2370 int failed = 0;
2b82032c
YZ
2371 int ret;
2372
2373 path = btrfs_alloc_path();
2374 if (!path)
2375 return -ENOMEM;
2376
ba1bf481 2377again:
2b82032c
YZ
2378 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2379 key.offset = (u64)-1;
2380 key.type = BTRFS_CHUNK_ITEM_KEY;
2381
2382 while (1) {
2383 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2384 if (ret < 0)
2385 goto error;
79787eaa 2386 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2387
2388 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2389 key.type);
2390 if (ret < 0)
2391 goto error;
2392 if (ret > 0)
2393 break;
1a40e23b 2394
2b82032c
YZ
2395 leaf = path->nodes[0];
2396 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2397
2b82032c
YZ
2398 chunk = btrfs_item_ptr(leaf, path->slots[0],
2399 struct btrfs_chunk);
2400 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2401 btrfs_release_path(path);
8f18cf13 2402
2b82032c
YZ
2403 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2404 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2405 found_key.objectid,
2406 found_key.offset);
ba1bf481
JB
2407 if (ret == -ENOSPC)
2408 failed++;
2409 else if (ret)
2410 BUG();
2b82032c 2411 }
8f18cf13 2412
2b82032c
YZ
2413 if (found_key.offset == 0)
2414 break;
2415 key.offset = found_key.offset - 1;
2416 }
2417 ret = 0;
ba1bf481
JB
2418 if (failed && !retried) {
2419 failed = 0;
2420 retried = true;
2421 goto again;
2422 } else if (failed && retried) {
2423 WARN_ON(1);
2424 ret = -ENOSPC;
2425 }
2b82032c
YZ
2426error:
2427 btrfs_free_path(path);
2428 return ret;
8f18cf13
CM
2429}
2430
0940ebf6
ID
2431static int insert_balance_item(struct btrfs_root *root,
2432 struct btrfs_balance_control *bctl)
2433{
2434 struct btrfs_trans_handle *trans;
2435 struct btrfs_balance_item *item;
2436 struct btrfs_disk_balance_args disk_bargs;
2437 struct btrfs_path *path;
2438 struct extent_buffer *leaf;
2439 struct btrfs_key key;
2440 int ret, err;
2441
2442 path = btrfs_alloc_path();
2443 if (!path)
2444 return -ENOMEM;
2445
2446 trans = btrfs_start_transaction(root, 0);
2447 if (IS_ERR(trans)) {
2448 btrfs_free_path(path);
2449 return PTR_ERR(trans);
2450 }
2451
2452 key.objectid = BTRFS_BALANCE_OBJECTID;
2453 key.type = BTRFS_BALANCE_ITEM_KEY;
2454 key.offset = 0;
2455
2456 ret = btrfs_insert_empty_item(trans, root, path, &key,
2457 sizeof(*item));
2458 if (ret)
2459 goto out;
2460
2461 leaf = path->nodes[0];
2462 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2463
2464 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2465
2466 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2467 btrfs_set_balance_data(leaf, item, &disk_bargs);
2468 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2469 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2470 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2471 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2472
2473 btrfs_set_balance_flags(leaf, item, bctl->flags);
2474
2475 btrfs_mark_buffer_dirty(leaf);
2476out:
2477 btrfs_free_path(path);
2478 err = btrfs_commit_transaction(trans, root);
2479 if (err && !ret)
2480 ret = err;
2481 return ret;
2482}
2483
2484static int del_balance_item(struct btrfs_root *root)
2485{
2486 struct btrfs_trans_handle *trans;
2487 struct btrfs_path *path;
2488 struct btrfs_key key;
2489 int ret, err;
2490
2491 path = btrfs_alloc_path();
2492 if (!path)
2493 return -ENOMEM;
2494
2495 trans = btrfs_start_transaction(root, 0);
2496 if (IS_ERR(trans)) {
2497 btrfs_free_path(path);
2498 return PTR_ERR(trans);
2499 }
2500
2501 key.objectid = BTRFS_BALANCE_OBJECTID;
2502 key.type = BTRFS_BALANCE_ITEM_KEY;
2503 key.offset = 0;
2504
2505 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2506 if (ret < 0)
2507 goto out;
2508 if (ret > 0) {
2509 ret = -ENOENT;
2510 goto out;
2511 }
2512
2513 ret = btrfs_del_item(trans, root, path);
2514out:
2515 btrfs_free_path(path);
2516 err = btrfs_commit_transaction(trans, root);
2517 if (err && !ret)
2518 ret = err;
2519 return ret;
2520}
2521
59641015
ID
2522/*
2523 * This is a heuristic used to reduce the number of chunks balanced on
2524 * resume after balance was interrupted.
2525 */
2526static void update_balance_args(struct btrfs_balance_control *bctl)
2527{
2528 /*
2529 * Turn on soft mode for chunk types that were being converted.
2530 */
2531 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2532 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2533 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2534 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2535 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2536 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2537
2538 /*
2539 * Turn on usage filter if is not already used. The idea is
2540 * that chunks that we have already balanced should be
2541 * reasonably full. Don't do it for chunks that are being
2542 * converted - that will keep us from relocating unconverted
2543 * (albeit full) chunks.
2544 */
2545 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2546 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2547 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2548 bctl->data.usage = 90;
2549 }
2550 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2551 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2552 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2553 bctl->sys.usage = 90;
2554 }
2555 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2556 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2557 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2558 bctl->meta.usage = 90;
2559 }
2560}
2561
c9e9f97b
ID
2562/*
2563 * Should be called with both balance and volume mutexes held to
2564 * serialize other volume operations (add_dev/rm_dev/resize) with
2565 * restriper. Same goes for unset_balance_control.
2566 */
2567static void set_balance_control(struct btrfs_balance_control *bctl)
2568{
2569 struct btrfs_fs_info *fs_info = bctl->fs_info;
2570
2571 BUG_ON(fs_info->balance_ctl);
2572
2573 spin_lock(&fs_info->balance_lock);
2574 fs_info->balance_ctl = bctl;
2575 spin_unlock(&fs_info->balance_lock);
2576}
2577
2578static void unset_balance_control(struct btrfs_fs_info *fs_info)
2579{
2580 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2581
2582 BUG_ON(!fs_info->balance_ctl);
2583
2584 spin_lock(&fs_info->balance_lock);
2585 fs_info->balance_ctl = NULL;
2586 spin_unlock(&fs_info->balance_lock);
2587
2588 kfree(bctl);
2589}
2590
ed25e9b2
ID
2591/*
2592 * Balance filters. Return 1 if chunk should be filtered out
2593 * (should not be balanced).
2594 */
899c81ea 2595static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
2596 struct btrfs_balance_args *bargs)
2597{
899c81ea
ID
2598 chunk_type = chunk_to_extended(chunk_type) &
2599 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 2600
899c81ea 2601 if (bargs->profiles & chunk_type)
ed25e9b2
ID
2602 return 0;
2603
2604 return 1;
2605}
2606
5ce5b3c0
ID
2607static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2608 struct btrfs_balance_args *bargs)
2609{
2610 struct btrfs_block_group_cache *cache;
2611 u64 chunk_used, user_thresh;
2612 int ret = 1;
2613
2614 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2615 chunk_used = btrfs_block_group_used(&cache->item);
2616
2617 user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
2618 if (chunk_used < user_thresh)
2619 ret = 0;
2620
2621 btrfs_put_block_group(cache);
2622 return ret;
2623}
2624
409d404b
ID
2625static int chunk_devid_filter(struct extent_buffer *leaf,
2626 struct btrfs_chunk *chunk,
2627 struct btrfs_balance_args *bargs)
2628{
2629 struct btrfs_stripe *stripe;
2630 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2631 int i;
2632
2633 for (i = 0; i < num_stripes; i++) {
2634 stripe = btrfs_stripe_nr(chunk, i);
2635 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2636 return 0;
2637 }
2638
2639 return 1;
2640}
2641
94e60d5a
ID
2642/* [pstart, pend) */
2643static int chunk_drange_filter(struct extent_buffer *leaf,
2644 struct btrfs_chunk *chunk,
2645 u64 chunk_offset,
2646 struct btrfs_balance_args *bargs)
2647{
2648 struct btrfs_stripe *stripe;
2649 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2650 u64 stripe_offset;
2651 u64 stripe_length;
2652 int factor;
2653 int i;
2654
2655 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2656 return 0;
2657
2658 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2659 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
2660 factor = 2;
2661 else
2662 factor = 1;
2663 factor = num_stripes / factor;
2664
2665 for (i = 0; i < num_stripes; i++) {
2666 stripe = btrfs_stripe_nr(chunk, i);
2667 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2668 continue;
2669
2670 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2671 stripe_length = btrfs_chunk_length(leaf, chunk);
2672 do_div(stripe_length, factor);
2673
2674 if (stripe_offset < bargs->pend &&
2675 stripe_offset + stripe_length > bargs->pstart)
2676 return 0;
2677 }
2678
2679 return 1;
2680}
2681
ea67176a
ID
2682/* [vstart, vend) */
2683static int chunk_vrange_filter(struct extent_buffer *leaf,
2684 struct btrfs_chunk *chunk,
2685 u64 chunk_offset,
2686 struct btrfs_balance_args *bargs)
2687{
2688 if (chunk_offset < bargs->vend &&
2689 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2690 /* at least part of the chunk is inside this vrange */
2691 return 0;
2692
2693 return 1;
2694}
2695
899c81ea 2696static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
2697 struct btrfs_balance_args *bargs)
2698{
2699 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2700 return 0;
2701
899c81ea
ID
2702 chunk_type = chunk_to_extended(chunk_type) &
2703 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 2704
899c81ea 2705 if (bargs->target == chunk_type)
cfa4c961
ID
2706 return 1;
2707
2708 return 0;
2709}
2710
f43ffb60
ID
2711static int should_balance_chunk(struct btrfs_root *root,
2712 struct extent_buffer *leaf,
2713 struct btrfs_chunk *chunk, u64 chunk_offset)
2714{
2715 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2716 struct btrfs_balance_args *bargs = NULL;
2717 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2718
2719 /* type filter */
2720 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2721 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2722 return 0;
2723 }
2724
2725 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2726 bargs = &bctl->data;
2727 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2728 bargs = &bctl->sys;
2729 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2730 bargs = &bctl->meta;
2731
ed25e9b2
ID
2732 /* profiles filter */
2733 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2734 chunk_profiles_filter(chunk_type, bargs)) {
2735 return 0;
5ce5b3c0
ID
2736 }
2737
2738 /* usage filter */
2739 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2740 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2741 return 0;
409d404b
ID
2742 }
2743
2744 /* devid filter */
2745 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2746 chunk_devid_filter(leaf, chunk, bargs)) {
2747 return 0;
94e60d5a
ID
2748 }
2749
2750 /* drange filter, makes sense only with devid filter */
2751 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2752 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2753 return 0;
ea67176a
ID
2754 }
2755
2756 /* vrange filter */
2757 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2758 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2759 return 0;
ed25e9b2
ID
2760 }
2761
cfa4c961
ID
2762 /* soft profile changing mode */
2763 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2764 chunk_soft_convert_filter(chunk_type, bargs)) {
2765 return 0;
2766 }
2767
f43ffb60
ID
2768 return 1;
2769}
2770
c9e9f97b 2771static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 2772{
19a39dce 2773 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
2774 struct btrfs_root *chunk_root = fs_info->chunk_root;
2775 struct btrfs_root *dev_root = fs_info->dev_root;
2776 struct list_head *devices;
ec44a35c
CM
2777 struct btrfs_device *device;
2778 u64 old_size;
2779 u64 size_to_free;
f43ffb60 2780 struct btrfs_chunk *chunk;
ec44a35c
CM
2781 struct btrfs_path *path;
2782 struct btrfs_key key;
ec44a35c 2783 struct btrfs_key found_key;
c9e9f97b 2784 struct btrfs_trans_handle *trans;
f43ffb60
ID
2785 struct extent_buffer *leaf;
2786 int slot;
c9e9f97b
ID
2787 int ret;
2788 int enospc_errors = 0;
19a39dce 2789 bool counting = true;
ec44a35c 2790
ec44a35c 2791 /* step one make some room on all the devices */
c9e9f97b 2792 devices = &fs_info->fs_devices->devices;
c6e30871 2793 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2794 old_size = device->total_bytes;
2795 size_to_free = div_factor(old_size, 1);
2796 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c 2797 if (!device->writeable ||
63a212ab
SB
2798 device->total_bytes - device->bytes_used > size_to_free ||
2799 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
2800 continue;
2801
2802 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2803 if (ret == -ENOSPC)
2804 break;
ec44a35c
CM
2805 BUG_ON(ret);
2806
a22285a6 2807 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2808 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2809
2810 ret = btrfs_grow_device(trans, device, old_size);
2811 BUG_ON(ret);
2812
2813 btrfs_end_transaction(trans, dev_root);
2814 }
2815
2816 /* step two, relocate all the chunks */
2817 path = btrfs_alloc_path();
17e9f796
MF
2818 if (!path) {
2819 ret = -ENOMEM;
2820 goto error;
2821 }
19a39dce
ID
2822
2823 /* zero out stat counters */
2824 spin_lock(&fs_info->balance_lock);
2825 memset(&bctl->stat, 0, sizeof(bctl->stat));
2826 spin_unlock(&fs_info->balance_lock);
2827again:
ec44a35c
CM
2828 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2829 key.offset = (u64)-1;
2830 key.type = BTRFS_CHUNK_ITEM_KEY;
2831
d397712b 2832 while (1) {
19a39dce 2833 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 2834 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
2835 ret = -ECANCELED;
2836 goto error;
2837 }
2838
ec44a35c
CM
2839 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2840 if (ret < 0)
2841 goto error;
2842
2843 /*
2844 * this shouldn't happen, it means the last relocate
2845 * failed
2846 */
2847 if (ret == 0)
c9e9f97b 2848 BUG(); /* FIXME break ? */
ec44a35c
CM
2849
2850 ret = btrfs_previous_item(chunk_root, path, 0,
2851 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b
ID
2852 if (ret) {
2853 ret = 0;
ec44a35c 2854 break;
c9e9f97b 2855 }
7d9eb12c 2856
f43ffb60
ID
2857 leaf = path->nodes[0];
2858 slot = path->slots[0];
2859 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 2860
ec44a35c
CM
2861 if (found_key.objectid != key.objectid)
2862 break;
7d9eb12c 2863
ec44a35c 2864 /* chunk zero is special */
ba1bf481 2865 if (found_key.offset == 0)
ec44a35c
CM
2866 break;
2867
f43ffb60
ID
2868 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2869
19a39dce
ID
2870 if (!counting) {
2871 spin_lock(&fs_info->balance_lock);
2872 bctl->stat.considered++;
2873 spin_unlock(&fs_info->balance_lock);
2874 }
2875
f43ffb60
ID
2876 ret = should_balance_chunk(chunk_root, leaf, chunk,
2877 found_key.offset);
b3b4aa74 2878 btrfs_release_path(path);
f43ffb60
ID
2879 if (!ret)
2880 goto loop;
2881
19a39dce
ID
2882 if (counting) {
2883 spin_lock(&fs_info->balance_lock);
2884 bctl->stat.expected++;
2885 spin_unlock(&fs_info->balance_lock);
2886 goto loop;
2887 }
2888
ec44a35c
CM
2889 ret = btrfs_relocate_chunk(chunk_root,
2890 chunk_root->root_key.objectid,
2891 found_key.objectid,
2892 found_key.offset);
508794eb
JB
2893 if (ret && ret != -ENOSPC)
2894 goto error;
19a39dce 2895 if (ret == -ENOSPC) {
c9e9f97b 2896 enospc_errors++;
19a39dce
ID
2897 } else {
2898 spin_lock(&fs_info->balance_lock);
2899 bctl->stat.completed++;
2900 spin_unlock(&fs_info->balance_lock);
2901 }
f43ffb60 2902loop:
ba1bf481 2903 key.offset = found_key.offset - 1;
ec44a35c 2904 }
c9e9f97b 2905
19a39dce
ID
2906 if (counting) {
2907 btrfs_release_path(path);
2908 counting = false;
2909 goto again;
2910 }
ec44a35c
CM
2911error:
2912 btrfs_free_path(path);
c9e9f97b
ID
2913 if (enospc_errors) {
2914 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
2915 enospc_errors);
2916 if (!ret)
2917 ret = -ENOSPC;
2918 }
2919
ec44a35c
CM
2920 return ret;
2921}
2922
0c460c0d
ID
2923/**
2924 * alloc_profile_is_valid - see if a given profile is valid and reduced
2925 * @flags: profile to validate
2926 * @extended: if true @flags is treated as an extended profile
2927 */
2928static int alloc_profile_is_valid(u64 flags, int extended)
2929{
2930 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
2931 BTRFS_BLOCK_GROUP_PROFILE_MASK);
2932
2933 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
2934
2935 /* 1) check that all other bits are zeroed */
2936 if (flags & ~mask)
2937 return 0;
2938
2939 /* 2) see if profile is reduced */
2940 if (flags == 0)
2941 return !extended; /* "0" is valid for usual profiles */
2942
2943 /* true if exactly one bit set */
2944 return (flags & (flags - 1)) == 0;
2945}
2946
837d5b6e
ID
2947static inline int balance_need_close(struct btrfs_fs_info *fs_info)
2948{
a7e99c69
ID
2949 /* cancel requested || normal exit path */
2950 return atomic_read(&fs_info->balance_cancel_req) ||
2951 (atomic_read(&fs_info->balance_pause_req) == 0 &&
2952 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
2953}
2954
c9e9f97b
ID
2955static void __cancel_balance(struct btrfs_fs_info *fs_info)
2956{
0940ebf6
ID
2957 int ret;
2958
c9e9f97b 2959 unset_balance_control(fs_info);
0940ebf6
ID
2960 ret = del_balance_item(fs_info->tree_root);
2961 BUG_ON(ret);
ed0fb78f
ID
2962
2963 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
2964}
2965
19a39dce 2966void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
c9e9f97b
ID
2967 struct btrfs_ioctl_balance_args *bargs);
2968
2969/*
2970 * Should be called with both balance and volume mutexes held
2971 */
2972int btrfs_balance(struct btrfs_balance_control *bctl,
2973 struct btrfs_ioctl_balance_args *bargs)
2974{
2975 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 2976 u64 allowed;
e4837f8f 2977 int mixed = 0;
c9e9f97b 2978 int ret;
8dabb742 2979 u64 num_devices;
c9e9f97b 2980
837d5b6e 2981 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
2982 atomic_read(&fs_info->balance_pause_req) ||
2983 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
2984 ret = -EINVAL;
2985 goto out;
2986 }
2987
e4837f8f
ID
2988 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
2989 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
2990 mixed = 1;
2991
f43ffb60
ID
2992 /*
2993 * In case of mixed groups both data and meta should be picked,
2994 * and identical options should be given for both of them.
2995 */
e4837f8f
ID
2996 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
2997 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
2998 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
2999 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3000 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3001 printk(KERN_ERR "btrfs: with mixed groups data and "
3002 "metadata balance options must be the same\n");
3003 ret = -EINVAL;
3004 goto out;
3005 }
3006 }
3007
8dabb742
SB
3008 num_devices = fs_info->fs_devices->num_devices;
3009 btrfs_dev_replace_lock(&fs_info->dev_replace);
3010 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3011 BUG_ON(num_devices < 1);
3012 num_devices--;
3013 }
3014 btrfs_dev_replace_unlock(&fs_info->dev_replace);
e4d8ec0f 3015 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3016 if (num_devices == 1)
e4d8ec0f 3017 allowed |= BTRFS_BLOCK_GROUP_DUP;
8dabb742 3018 else if (num_devices < 4)
e4d8ec0f
ID
3019 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3020 else
3021 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
3022 BTRFS_BLOCK_GROUP_RAID10);
3023
6728b198
ID
3024 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3025 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3026 (bctl->data.target & ~allowed))) {
e4d8ec0f
ID
3027 printk(KERN_ERR "btrfs: unable to start balance with target "
3028 "data profile %llu\n",
3029 (unsigned long long)bctl->data.target);
3030 ret = -EINVAL;
3031 goto out;
3032 }
6728b198
ID
3033 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3034 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3035 (bctl->meta.target & ~allowed))) {
e4d8ec0f
ID
3036 printk(KERN_ERR "btrfs: unable to start balance with target "
3037 "metadata profile %llu\n",
3038 (unsigned long long)bctl->meta.target);
3039 ret = -EINVAL;
3040 goto out;
3041 }
6728b198
ID
3042 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3043 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3044 (bctl->sys.target & ~allowed))) {
e4d8ec0f
ID
3045 printk(KERN_ERR "btrfs: unable to start balance with target "
3046 "system profile %llu\n",
3047 (unsigned long long)bctl->sys.target);
3048 ret = -EINVAL;
3049 goto out;
3050 }
3051
e4837f8f
ID
3052 /* allow dup'ed data chunks only in mixed mode */
3053 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 3054 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
e4d8ec0f
ID
3055 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
3056 ret = -EINVAL;
3057 goto out;
3058 }
3059
3060 /* allow to reduce meta or sys integrity only if force set */
3061 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3062 BTRFS_BLOCK_GROUP_RAID10;
3063 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3064 (fs_info->avail_system_alloc_bits & allowed) &&
3065 !(bctl->sys.target & allowed)) ||
3066 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3067 (fs_info->avail_metadata_alloc_bits & allowed) &&
3068 !(bctl->meta.target & allowed))) {
3069 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3070 printk(KERN_INFO "btrfs: force reducing metadata "
3071 "integrity\n");
3072 } else {
3073 printk(KERN_ERR "btrfs: balance will reduce metadata "
3074 "integrity, use force if you want this\n");
3075 ret = -EINVAL;
3076 goto out;
3077 }
3078 }
3079
5af3e8cc
SB
3080 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3081 int num_tolerated_disk_barrier_failures;
3082 u64 target = bctl->sys.target;
3083
3084 num_tolerated_disk_barrier_failures =
3085 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3086 if (num_tolerated_disk_barrier_failures > 0 &&
3087 (target &
3088 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3089 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3090 num_tolerated_disk_barrier_failures = 0;
3091 else if (num_tolerated_disk_barrier_failures > 1 &&
3092 (target &
3093 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3094 num_tolerated_disk_barrier_failures = 1;
3095
3096 fs_info->num_tolerated_disk_barrier_failures =
3097 num_tolerated_disk_barrier_failures;
3098 }
3099
0940ebf6 3100 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3101 if (ret && ret != -EEXIST)
0940ebf6
ID
3102 goto out;
3103
59641015
ID
3104 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3105 BUG_ON(ret == -EEXIST);
3106 set_balance_control(bctl);
3107 } else {
3108 BUG_ON(ret != -EEXIST);
3109 spin_lock(&fs_info->balance_lock);
3110 update_balance_args(bctl);
3111 spin_unlock(&fs_info->balance_lock);
3112 }
c9e9f97b 3113
837d5b6e 3114 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3115 mutex_unlock(&fs_info->balance_mutex);
3116
3117 ret = __btrfs_balance(fs_info);
3118
3119 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3120 atomic_dec(&fs_info->balance_running);
c9e9f97b
ID
3121
3122 if (bargs) {
3123 memset(bargs, 0, sizeof(*bargs));
19a39dce 3124 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3125 }
3126
837d5b6e
ID
3127 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3128 balance_need_close(fs_info)) {
3129 __cancel_balance(fs_info);
3130 }
3131
5af3e8cc
SB
3132 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3133 fs_info->num_tolerated_disk_barrier_failures =
3134 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3135 }
3136
837d5b6e 3137 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3138
3139 return ret;
3140out:
59641015
ID
3141 if (bctl->flags & BTRFS_BALANCE_RESUME)
3142 __cancel_balance(fs_info);
ed0fb78f 3143 else {
59641015 3144 kfree(bctl);
ed0fb78f
ID
3145 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3146 }
59641015
ID
3147 return ret;
3148}
3149
3150static int balance_kthread(void *data)
3151{
2b6ba629 3152 struct btrfs_fs_info *fs_info = data;
9555c6c1 3153 int ret = 0;
59641015
ID
3154
3155 mutex_lock(&fs_info->volume_mutex);
3156 mutex_lock(&fs_info->balance_mutex);
3157
2b6ba629 3158 if (fs_info->balance_ctl) {
9555c6c1 3159 printk(KERN_INFO "btrfs: continuing balance\n");
2b6ba629 3160 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3161 }
59641015
ID
3162
3163 mutex_unlock(&fs_info->balance_mutex);
3164 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3165
59641015
ID
3166 return ret;
3167}
3168
2b6ba629
ID
3169int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3170{
3171 struct task_struct *tsk;
3172
3173 spin_lock(&fs_info->balance_lock);
3174 if (!fs_info->balance_ctl) {
3175 spin_unlock(&fs_info->balance_lock);
3176 return 0;
3177 }
3178 spin_unlock(&fs_info->balance_lock);
3179
3180 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3181 printk(KERN_INFO "btrfs: force skipping balance\n");
3182 return 0;
3183 }
3184
3185 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3186 if (IS_ERR(tsk))
3187 return PTR_ERR(tsk);
3188
3189 return 0;
3190}
3191
68310a5e 3192int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3193{
59641015
ID
3194 struct btrfs_balance_control *bctl;
3195 struct btrfs_balance_item *item;
3196 struct btrfs_disk_balance_args disk_bargs;
3197 struct btrfs_path *path;
3198 struct extent_buffer *leaf;
3199 struct btrfs_key key;
3200 int ret;
3201
3202 path = btrfs_alloc_path();
3203 if (!path)
3204 return -ENOMEM;
3205
59641015
ID
3206 key.objectid = BTRFS_BALANCE_OBJECTID;
3207 key.type = BTRFS_BALANCE_ITEM_KEY;
3208 key.offset = 0;
3209
68310a5e 3210 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3211 if (ret < 0)
68310a5e 3212 goto out;
59641015
ID
3213 if (ret > 0) { /* ret = -ENOENT; */
3214 ret = 0;
68310a5e
ID
3215 goto out;
3216 }
3217
3218 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3219 if (!bctl) {
3220 ret = -ENOMEM;
3221 goto out;
59641015
ID
3222 }
3223
3224 leaf = path->nodes[0];
3225 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3226
68310a5e
ID
3227 bctl->fs_info = fs_info;
3228 bctl->flags = btrfs_balance_flags(leaf, item);
3229 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3230
3231 btrfs_balance_data(leaf, item, &disk_bargs);
3232 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3233 btrfs_balance_meta(leaf, item, &disk_bargs);
3234 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3235 btrfs_balance_sys(leaf, item, &disk_bargs);
3236 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3237
ed0fb78f
ID
3238 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3239
68310a5e
ID
3240 mutex_lock(&fs_info->volume_mutex);
3241 mutex_lock(&fs_info->balance_mutex);
59641015 3242
68310a5e
ID
3243 set_balance_control(bctl);
3244
3245 mutex_unlock(&fs_info->balance_mutex);
3246 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3247out:
3248 btrfs_free_path(path);
ec44a35c
CM
3249 return ret;
3250}
3251
837d5b6e
ID
3252int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3253{
3254 int ret = 0;
3255
3256 mutex_lock(&fs_info->balance_mutex);
3257 if (!fs_info->balance_ctl) {
3258 mutex_unlock(&fs_info->balance_mutex);
3259 return -ENOTCONN;
3260 }
3261
3262 if (atomic_read(&fs_info->balance_running)) {
3263 atomic_inc(&fs_info->balance_pause_req);
3264 mutex_unlock(&fs_info->balance_mutex);
3265
3266 wait_event(fs_info->balance_wait_q,
3267 atomic_read(&fs_info->balance_running) == 0);
3268
3269 mutex_lock(&fs_info->balance_mutex);
3270 /* we are good with balance_ctl ripped off from under us */
3271 BUG_ON(atomic_read(&fs_info->balance_running));
3272 atomic_dec(&fs_info->balance_pause_req);
3273 } else {
3274 ret = -ENOTCONN;
3275 }
3276
3277 mutex_unlock(&fs_info->balance_mutex);
3278 return ret;
3279}
3280
a7e99c69
ID
3281int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3282{
3283 mutex_lock(&fs_info->balance_mutex);
3284 if (!fs_info->balance_ctl) {
3285 mutex_unlock(&fs_info->balance_mutex);
3286 return -ENOTCONN;
3287 }
3288
3289 atomic_inc(&fs_info->balance_cancel_req);
3290 /*
3291 * if we are running just wait and return, balance item is
3292 * deleted in btrfs_balance in this case
3293 */
3294 if (atomic_read(&fs_info->balance_running)) {
3295 mutex_unlock(&fs_info->balance_mutex);
3296 wait_event(fs_info->balance_wait_q,
3297 atomic_read(&fs_info->balance_running) == 0);
3298 mutex_lock(&fs_info->balance_mutex);
3299 } else {
3300 /* __cancel_balance needs volume_mutex */
3301 mutex_unlock(&fs_info->balance_mutex);
3302 mutex_lock(&fs_info->volume_mutex);
3303 mutex_lock(&fs_info->balance_mutex);
3304
3305 if (fs_info->balance_ctl)
3306 __cancel_balance(fs_info);
3307
3308 mutex_unlock(&fs_info->volume_mutex);
3309 }
3310
3311 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3312 atomic_dec(&fs_info->balance_cancel_req);
3313 mutex_unlock(&fs_info->balance_mutex);
3314 return 0;
3315}
3316
8f18cf13
CM
3317/*
3318 * shrinking a device means finding all of the device extents past
3319 * the new size, and then following the back refs to the chunks.
3320 * The chunk relocation code actually frees the device extent
3321 */
3322int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3323{
3324 struct btrfs_trans_handle *trans;
3325 struct btrfs_root *root = device->dev_root;
3326 struct btrfs_dev_extent *dev_extent = NULL;
3327 struct btrfs_path *path;
3328 u64 length;
3329 u64 chunk_tree;
3330 u64 chunk_objectid;
3331 u64 chunk_offset;
3332 int ret;
3333 int slot;
ba1bf481
JB
3334 int failed = 0;
3335 bool retried = false;
8f18cf13
CM
3336 struct extent_buffer *l;
3337 struct btrfs_key key;
6c41761f 3338 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 3339 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 3340 u64 old_size = device->total_bytes;
8f18cf13
CM
3341 u64 diff = device->total_bytes - new_size;
3342
63a212ab
SB
3343 if (device->is_tgtdev_for_dev_replace)
3344 return -EINVAL;
3345
8f18cf13
CM
3346 path = btrfs_alloc_path();
3347 if (!path)
3348 return -ENOMEM;
3349
8f18cf13
CM
3350 path->reada = 2;
3351
7d9eb12c
CM
3352 lock_chunks(root);
3353
8f18cf13 3354 device->total_bytes = new_size;
2bf64758 3355 if (device->writeable) {
2b82032c 3356 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
3357 spin_lock(&root->fs_info->free_chunk_lock);
3358 root->fs_info->free_chunk_space -= diff;
3359 spin_unlock(&root->fs_info->free_chunk_lock);
3360 }
7d9eb12c 3361 unlock_chunks(root);
8f18cf13 3362
ba1bf481 3363again:
8f18cf13
CM
3364 key.objectid = device->devid;
3365 key.offset = (u64)-1;
3366 key.type = BTRFS_DEV_EXTENT_KEY;
3367
213e64da 3368 do {
8f18cf13
CM
3369 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3370 if (ret < 0)
3371 goto done;
3372
3373 ret = btrfs_previous_item(root, path, 0, key.type);
3374 if (ret < 0)
3375 goto done;
3376 if (ret) {
3377 ret = 0;
b3b4aa74 3378 btrfs_release_path(path);
bf1fb512 3379 break;
8f18cf13
CM
3380 }
3381
3382 l = path->nodes[0];
3383 slot = path->slots[0];
3384 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3385
ba1bf481 3386 if (key.objectid != device->devid) {
b3b4aa74 3387 btrfs_release_path(path);
bf1fb512 3388 break;
ba1bf481 3389 }
8f18cf13
CM
3390
3391 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3392 length = btrfs_dev_extent_length(l, dev_extent);
3393
ba1bf481 3394 if (key.offset + length <= new_size) {
b3b4aa74 3395 btrfs_release_path(path);
d6397bae 3396 break;
ba1bf481 3397 }
8f18cf13
CM
3398
3399 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3400 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3401 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 3402 btrfs_release_path(path);
8f18cf13
CM
3403
3404 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3405 chunk_offset);
ba1bf481 3406 if (ret && ret != -ENOSPC)
8f18cf13 3407 goto done;
ba1bf481
JB
3408 if (ret == -ENOSPC)
3409 failed++;
213e64da 3410 } while (key.offset-- > 0);
ba1bf481
JB
3411
3412 if (failed && !retried) {
3413 failed = 0;
3414 retried = true;
3415 goto again;
3416 } else if (failed && retried) {
3417 ret = -ENOSPC;
3418 lock_chunks(root);
3419
3420 device->total_bytes = old_size;
3421 if (device->writeable)
3422 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
3423 spin_lock(&root->fs_info->free_chunk_lock);
3424 root->fs_info->free_chunk_space += diff;
3425 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
3426 unlock_chunks(root);
3427 goto done;
8f18cf13
CM
3428 }
3429
d6397bae 3430 /* Shrinking succeeded, else we would be at "done". */
a22285a6 3431 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
3432 if (IS_ERR(trans)) {
3433 ret = PTR_ERR(trans);
3434 goto done;
3435 }
3436
d6397bae
CB
3437 lock_chunks(root);
3438
3439 device->disk_total_bytes = new_size;
3440 /* Now btrfs_update_device() will change the on-disk size. */
3441 ret = btrfs_update_device(trans, device);
3442 if (ret) {
3443 unlock_chunks(root);
3444 btrfs_end_transaction(trans, root);
3445 goto done;
3446 }
3447 WARN_ON(diff > old_total);
3448 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3449 unlock_chunks(root);
3450 btrfs_end_transaction(trans, root);
8f18cf13
CM
3451done:
3452 btrfs_free_path(path);
3453 return ret;
3454}
3455
125ccb0a 3456static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
3457 struct btrfs_key *key,
3458 struct btrfs_chunk *chunk, int item_size)
3459{
6c41761f 3460 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
3461 struct btrfs_disk_key disk_key;
3462 u32 array_size;
3463 u8 *ptr;
3464
3465 array_size = btrfs_super_sys_array_size(super_copy);
3466 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3467 return -EFBIG;
3468
3469 ptr = super_copy->sys_chunk_array + array_size;
3470 btrfs_cpu_key_to_disk(&disk_key, key);
3471 memcpy(ptr, &disk_key, sizeof(disk_key));
3472 ptr += sizeof(disk_key);
3473 memcpy(ptr, chunk, item_size);
3474 item_size += sizeof(disk_key);
3475 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3476 return 0;
3477}
3478
73c5de00
AJ
3479/*
3480 * sort the devices in descending order by max_avail, total_avail
3481 */
3482static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 3483{
73c5de00
AJ
3484 const struct btrfs_device_info *di_a = a;
3485 const struct btrfs_device_info *di_b = b;
9b3f68b9 3486
73c5de00 3487 if (di_a->max_avail > di_b->max_avail)
b2117a39 3488 return -1;
73c5de00 3489 if (di_a->max_avail < di_b->max_avail)
b2117a39 3490 return 1;
73c5de00
AJ
3491 if (di_a->total_avail > di_b->total_avail)
3492 return -1;
3493 if (di_a->total_avail < di_b->total_avail)
3494 return 1;
3495 return 0;
b2117a39 3496}
0b86a832 3497
31e50229
LB
3498struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
3499 { 2, 1, 0, 4, 2, 2 /* raid10 */ },
3500 { 1, 1, 2, 2, 2, 2 /* raid1 */ },
3501 { 1, 2, 1, 1, 1, 2 /* dup */ },
3502 { 1, 1, 0, 2, 1, 1 /* raid0 */ },
3503 { 1, 1, 0, 1, 1, 1 /* single */ },
3504};
3505
73c5de00
AJ
3506static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3507 struct btrfs_root *extent_root,
3508 struct map_lookup **map_ret,
3509 u64 *num_bytes_out, u64 *stripe_size_out,
3510 u64 start, u64 type)
b2117a39 3511{
73c5de00
AJ
3512 struct btrfs_fs_info *info = extent_root->fs_info;
3513 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3514 struct list_head *cur;
3515 struct map_lookup *map = NULL;
3516 struct extent_map_tree *em_tree;
3517 struct extent_map *em;
3518 struct btrfs_device_info *devices_info = NULL;
3519 u64 total_avail;
3520 int num_stripes; /* total number of stripes to allocate */
3521 int sub_stripes; /* sub_stripes info for map */
3522 int dev_stripes; /* stripes per dev */
3523 int devs_max; /* max devs to use */
3524 int devs_min; /* min devs needed */
3525 int devs_increment; /* ndevs has to be a multiple of this */
3526 int ncopies; /* how many copies to data has */
3527 int ret;
3528 u64 max_stripe_size;
3529 u64 max_chunk_size;
3530 u64 stripe_size;
3531 u64 num_bytes;
3532 int ndevs;
3533 int i;
3534 int j;
31e50229 3535 int index;
593060d7 3536
0c460c0d 3537 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 3538
73c5de00
AJ
3539 if (list_empty(&fs_devices->alloc_list))
3540 return -ENOSPC;
b2117a39 3541
31e50229 3542 index = __get_raid_index(type);
73c5de00 3543
31e50229
LB
3544 sub_stripes = btrfs_raid_array[index].sub_stripes;
3545 dev_stripes = btrfs_raid_array[index].dev_stripes;
3546 devs_max = btrfs_raid_array[index].devs_max;
3547 devs_min = btrfs_raid_array[index].devs_min;
3548 devs_increment = btrfs_raid_array[index].devs_increment;
3549 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 3550
9b3f68b9 3551 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
3552 max_stripe_size = 1024 * 1024 * 1024;
3553 max_chunk_size = 10 * max_stripe_size;
9b3f68b9 3554 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
3555 /* for larger filesystems, use larger metadata chunks */
3556 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3557 max_stripe_size = 1024 * 1024 * 1024;
3558 else
3559 max_stripe_size = 256 * 1024 * 1024;
73c5de00 3560 max_chunk_size = max_stripe_size;
a40a90a0 3561 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 3562 max_stripe_size = 32 * 1024 * 1024;
73c5de00
AJ
3563 max_chunk_size = 2 * max_stripe_size;
3564 } else {
3565 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3566 type);
3567 BUG_ON(1);
9b3f68b9
CM
3568 }
3569
2b82032c
YZ
3570 /* we don't want a chunk larger than 10% of writeable space */
3571 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3572 max_chunk_size);
9b3f68b9 3573
73c5de00
AJ
3574 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3575 GFP_NOFS);
3576 if (!devices_info)
3577 return -ENOMEM;
0cad8a11 3578
73c5de00 3579 cur = fs_devices->alloc_list.next;
9b3f68b9 3580
9f680ce0 3581 /*
73c5de00
AJ
3582 * in the first pass through the devices list, we gather information
3583 * about the available holes on each device.
9f680ce0 3584 */
73c5de00
AJ
3585 ndevs = 0;
3586 while (cur != &fs_devices->alloc_list) {
3587 struct btrfs_device *device;
3588 u64 max_avail;
3589 u64 dev_offset;
b2117a39 3590
73c5de00 3591 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 3592
73c5de00 3593 cur = cur->next;
b2117a39 3594
73c5de00 3595 if (!device->writeable) {
31b1a2bd 3596 WARN(1, KERN_ERR
73c5de00 3597 "btrfs: read-only device in alloc_list\n");
73c5de00
AJ
3598 continue;
3599 }
b2117a39 3600
63a212ab
SB
3601 if (!device->in_fs_metadata ||
3602 device->is_tgtdev_for_dev_replace)
73c5de00 3603 continue;
b2117a39 3604
73c5de00
AJ
3605 if (device->total_bytes > device->bytes_used)
3606 total_avail = device->total_bytes - device->bytes_used;
3607 else
3608 total_avail = 0;
38c01b96 3609
3610 /* If there is no space on this device, skip it. */
3611 if (total_avail == 0)
3612 continue;
b2117a39 3613
125ccb0a 3614 ret = find_free_dev_extent(device,
73c5de00
AJ
3615 max_stripe_size * dev_stripes,
3616 &dev_offset, &max_avail);
3617 if (ret && ret != -ENOSPC)
3618 goto error;
b2117a39 3619
73c5de00
AJ
3620 if (ret == 0)
3621 max_avail = max_stripe_size * dev_stripes;
b2117a39 3622
73c5de00
AJ
3623 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
3624 continue;
b2117a39 3625
73c5de00
AJ
3626 devices_info[ndevs].dev_offset = dev_offset;
3627 devices_info[ndevs].max_avail = max_avail;
3628 devices_info[ndevs].total_avail = total_avail;
3629 devices_info[ndevs].dev = device;
3630 ++ndevs;
8dabb742 3631 WARN_ON(ndevs > fs_devices->rw_devices);
73c5de00 3632 }
b2117a39 3633
73c5de00
AJ
3634 /*
3635 * now sort the devices by hole size / available space
3636 */
3637 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3638 btrfs_cmp_device_info, NULL);
b2117a39 3639
73c5de00
AJ
3640 /* round down to number of usable stripes */
3641 ndevs -= ndevs % devs_increment;
b2117a39 3642
73c5de00
AJ
3643 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3644 ret = -ENOSPC;
3645 goto error;
b2117a39 3646 }
9f680ce0 3647
73c5de00
AJ
3648 if (devs_max && ndevs > devs_max)
3649 ndevs = devs_max;
3650 /*
3651 * the primary goal is to maximize the number of stripes, so use as many
3652 * devices as possible, even if the stripes are not maximum sized.
3653 */
3654 stripe_size = devices_info[ndevs-1].max_avail;
3655 num_stripes = ndevs * dev_stripes;
b2117a39 3656
37db63a4 3657 if (stripe_size * ndevs > max_chunk_size * ncopies) {
73c5de00 3658 stripe_size = max_chunk_size * ncopies;
37db63a4 3659 do_div(stripe_size, ndevs);
b2117a39 3660 }
b2117a39 3661
73c5de00 3662 do_div(stripe_size, dev_stripes);
37db63a4
ID
3663
3664 /* align to BTRFS_STRIPE_LEN */
73c5de00
AJ
3665 do_div(stripe_size, BTRFS_STRIPE_LEN);
3666 stripe_size *= BTRFS_STRIPE_LEN;
b2117a39
MX
3667
3668 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3669 if (!map) {
3670 ret = -ENOMEM;
3671 goto error;
3672 }
3673 map->num_stripes = num_stripes;
9b3f68b9 3674
73c5de00
AJ
3675 for (i = 0; i < ndevs; ++i) {
3676 for (j = 0; j < dev_stripes; ++j) {
3677 int s = i * dev_stripes + j;
3678 map->stripes[s].dev = devices_info[i].dev;
3679 map->stripes[s].physical = devices_info[i].dev_offset +
3680 j * stripe_size;
6324fbf3 3681 }
6324fbf3 3682 }
2b82032c 3683 map->sector_size = extent_root->sectorsize;
b2117a39
MX
3684 map->stripe_len = BTRFS_STRIPE_LEN;
3685 map->io_align = BTRFS_STRIPE_LEN;
3686 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 3687 map->type = type;
2b82032c 3688 map->sub_stripes = sub_stripes;
0b86a832 3689
2b82032c 3690 *map_ret = map;
73c5de00 3691 num_bytes = stripe_size * (num_stripes / ncopies);
0b86a832 3692
73c5de00
AJ
3693 *stripe_size_out = stripe_size;
3694 *num_bytes_out = num_bytes;
0b86a832 3695
73c5de00 3696 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 3697
172ddd60 3698 em = alloc_extent_map();
2b82032c 3699 if (!em) {
b2117a39
MX
3700 ret = -ENOMEM;
3701 goto error;
593060d7 3702 }
2b82032c
YZ
3703 em->bdev = (struct block_device *)map;
3704 em->start = start;
73c5de00 3705 em->len = num_bytes;
2b82032c
YZ
3706 em->block_start = 0;
3707 em->block_len = em->len;
593060d7 3708
2b82032c 3709 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 3710 write_lock(&em_tree->lock);
2b82032c 3711 ret = add_extent_mapping(em_tree, em);
890871be 3712 write_unlock(&em_tree->lock);
2b82032c 3713 free_extent_map(em);
1dd4602f
MF
3714 if (ret)
3715 goto error;
0b86a832 3716
2b82032c
YZ
3717 ret = btrfs_make_block_group(trans, extent_root, 0, type,
3718 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
73c5de00 3719 start, num_bytes);
79787eaa
JM
3720 if (ret)
3721 goto error;
611f0e00 3722
73c5de00
AJ
3723 for (i = 0; i < map->num_stripes; ++i) {
3724 struct btrfs_device *device;
3725 u64 dev_offset;
3726
3727 device = map->stripes[i].dev;
3728 dev_offset = map->stripes[i].physical;
0b86a832
CM
3729
3730 ret = btrfs_alloc_dev_extent(trans, device,
2b82032c
YZ
3731 info->chunk_root->root_key.objectid,
3732 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
73c5de00 3733 start, dev_offset, stripe_size);
79787eaa
JM
3734 if (ret) {
3735 btrfs_abort_transaction(trans, extent_root, ret);
3736 goto error;
3737 }
2b82032c
YZ
3738 }
3739
b2117a39 3740 kfree(devices_info);
2b82032c 3741 return 0;
b2117a39
MX
3742
3743error:
3744 kfree(map);
3745 kfree(devices_info);
3746 return ret;
2b82032c
YZ
3747}
3748
3749static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
3750 struct btrfs_root *extent_root,
3751 struct map_lookup *map, u64 chunk_offset,
3752 u64 chunk_size, u64 stripe_size)
3753{
3754 u64 dev_offset;
3755 struct btrfs_key key;
3756 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3757 struct btrfs_device *device;
3758 struct btrfs_chunk *chunk;
3759 struct btrfs_stripe *stripe;
3760 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
3761 int index = 0;
3762 int ret;
3763
3764 chunk = kzalloc(item_size, GFP_NOFS);
3765 if (!chunk)
3766 return -ENOMEM;
3767
3768 index = 0;
3769 while (index < map->num_stripes) {
3770 device = map->stripes[index].dev;
3771 device->bytes_used += stripe_size;
0b86a832 3772 ret = btrfs_update_device(trans, device);
3acd3953
MF
3773 if (ret)
3774 goto out_free;
2b82032c
YZ
3775 index++;
3776 }
3777
2bf64758
JB
3778 spin_lock(&extent_root->fs_info->free_chunk_lock);
3779 extent_root->fs_info->free_chunk_space -= (stripe_size *
3780 map->num_stripes);
3781 spin_unlock(&extent_root->fs_info->free_chunk_lock);
3782
2b82032c
YZ
3783 index = 0;
3784 stripe = &chunk->stripe;
3785 while (index < map->num_stripes) {
3786 device = map->stripes[index].dev;
3787 dev_offset = map->stripes[index].physical;
0b86a832 3788
e17cade2
CM
3789 btrfs_set_stack_stripe_devid(stripe, device->devid);
3790 btrfs_set_stack_stripe_offset(stripe, dev_offset);
3791 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 3792 stripe++;
0b86a832
CM
3793 index++;
3794 }
3795
2b82032c 3796 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 3797 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
3798 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
3799 btrfs_set_stack_chunk_type(chunk, map->type);
3800 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
3801 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
3802 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 3803 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 3804 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 3805
2b82032c
YZ
3806 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3807 key.type = BTRFS_CHUNK_ITEM_KEY;
3808 key.offset = chunk_offset;
0b86a832 3809
2b82032c 3810 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
0b86a832 3811
4ed1d16e
MF
3812 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3813 /*
3814 * TODO: Cleanup of inserted chunk root in case of
3815 * failure.
3816 */
125ccb0a 3817 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 3818 item_size);
8f18cf13 3819 }
1abe9b8a 3820
3acd3953 3821out_free:
0b86a832 3822 kfree(chunk);
4ed1d16e 3823 return ret;
2b82032c 3824}
0b86a832 3825
2b82032c
YZ
3826/*
3827 * Chunk allocation falls into two parts. The first part does works
3828 * that make the new allocated chunk useable, but not do any operation
3829 * that modifies the chunk tree. The second part does the works that
3830 * require modifying the chunk tree. This division is important for the
3831 * bootstrap process of adding storage to a seed btrfs.
3832 */
3833int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3834 struct btrfs_root *extent_root, u64 type)
3835{
3836 u64 chunk_offset;
3837 u64 chunk_size;
3838 u64 stripe_size;
3839 struct map_lookup *map;
3840 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3841 int ret;
3842
3843 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3844 &chunk_offset);
3845 if (ret)
3846 return ret;
3847
3848 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3849 &stripe_size, chunk_offset, type);
3850 if (ret)
3851 return ret;
3852
3853 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3854 chunk_size, stripe_size);
79787eaa
JM
3855 if (ret)
3856 return ret;
2b82032c
YZ
3857 return 0;
3858}
3859
d397712b 3860static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
3861 struct btrfs_root *root,
3862 struct btrfs_device *device)
3863{
3864 u64 chunk_offset;
3865 u64 sys_chunk_offset;
3866 u64 chunk_size;
3867 u64 sys_chunk_size;
3868 u64 stripe_size;
3869 u64 sys_stripe_size;
3870 u64 alloc_profile;
3871 struct map_lookup *map;
3872 struct map_lookup *sys_map;
3873 struct btrfs_fs_info *fs_info = root->fs_info;
3874 struct btrfs_root *extent_root = fs_info->extent_root;
3875 int ret;
3876
3877 ret = find_next_chunk(fs_info->chunk_root,
3878 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
92b8e897
MF
3879 if (ret)
3880 return ret;
2b82032c
YZ
3881
3882 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
6fef8df1 3883 fs_info->avail_metadata_alloc_bits;
2b82032c
YZ
3884 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3885
3886 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3887 &stripe_size, chunk_offset, alloc_profile);
79787eaa
JM
3888 if (ret)
3889 return ret;
2b82032c
YZ
3890
3891 sys_chunk_offset = chunk_offset + chunk_size;
3892
3893 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
6fef8df1 3894 fs_info->avail_system_alloc_bits;
2b82032c
YZ
3895 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3896
3897 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
3898 &sys_chunk_size, &sys_stripe_size,
3899 sys_chunk_offset, alloc_profile);
005d6427
DS
3900 if (ret) {
3901 btrfs_abort_transaction(trans, root, ret);
3902 goto out;
3903 }
2b82032c
YZ
3904
3905 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
005d6427
DS
3906 if (ret) {
3907 btrfs_abort_transaction(trans, root, ret);
3908 goto out;
3909 }
2b82032c
YZ
3910
3911 /*
3912 * Modifying chunk tree needs allocating new blocks from both
3913 * system block group and metadata block group. So we only can
3914 * do operations require modifying the chunk tree after both
3915 * block groups were created.
3916 */
3917 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3918 chunk_size, stripe_size);
005d6427
DS
3919 if (ret) {
3920 btrfs_abort_transaction(trans, root, ret);
3921 goto out;
3922 }
2b82032c
YZ
3923
3924 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
3925 sys_chunk_offset, sys_chunk_size,
3926 sys_stripe_size);
79787eaa 3927 if (ret)
005d6427 3928 btrfs_abort_transaction(trans, root, ret);
79787eaa 3929
005d6427 3930out:
79787eaa 3931
79787eaa 3932 return ret;
2b82032c
YZ
3933}
3934
3935int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
3936{
3937 struct extent_map *em;
3938 struct map_lookup *map;
3939 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3940 int readonly = 0;
3941 int i;
3942
890871be 3943 read_lock(&map_tree->map_tree.lock);
2b82032c 3944 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 3945 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
3946 if (!em)
3947 return 1;
3948
f48b9075
JB
3949 if (btrfs_test_opt(root, DEGRADED)) {
3950 free_extent_map(em);
3951 return 0;
3952 }
3953
2b82032c
YZ
3954 map = (struct map_lookup *)em->bdev;
3955 for (i = 0; i < map->num_stripes; i++) {
3956 if (!map->stripes[i].dev->writeable) {
3957 readonly = 1;
3958 break;
3959 }
3960 }
0b86a832 3961 free_extent_map(em);
2b82032c 3962 return readonly;
0b86a832
CM
3963}
3964
3965void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
3966{
a8067e02 3967 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
3968}
3969
3970void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
3971{
3972 struct extent_map *em;
3973
d397712b 3974 while (1) {
890871be 3975 write_lock(&tree->map_tree.lock);
0b86a832
CM
3976 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
3977 if (em)
3978 remove_extent_mapping(&tree->map_tree, em);
890871be 3979 write_unlock(&tree->map_tree.lock);
0b86a832
CM
3980 if (!em)
3981 break;
3982 kfree(em->bdev);
3983 /* once for us */
3984 free_extent_map(em);
3985 /* once for the tree */
3986 free_extent_map(em);
3987 }
3988}
3989
5d964051 3990int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 3991{
5d964051 3992 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
3993 struct extent_map *em;
3994 struct map_lookup *map;
3995 struct extent_map_tree *em_tree = &map_tree->map_tree;
3996 int ret;
3997
890871be 3998 read_lock(&em_tree->lock);
f188591e 3999 em = lookup_extent_mapping(em_tree, logical, len);
890871be 4000 read_unlock(&em_tree->lock);
f188591e
CM
4001 BUG_ON(!em);
4002
4003 BUG_ON(em->start > logical || em->start + em->len < logical);
4004 map = (struct map_lookup *)em->bdev;
4005 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4006 ret = map->num_stripes;
321aecc6
CM
4007 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4008 ret = map->sub_stripes;
f188591e
CM
4009 else
4010 ret = 1;
4011 free_extent_map(em);
ad6d620e
SB
4012
4013 btrfs_dev_replace_lock(&fs_info->dev_replace);
4014 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4015 ret++;
4016 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4017
f188591e
CM
4018 return ret;
4019}
4020
30d9861f
SB
4021static int find_live_mirror(struct btrfs_fs_info *fs_info,
4022 struct map_lookup *map, int first, int num,
4023 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
4024{
4025 int i;
30d9861f
SB
4026 int tolerance;
4027 struct btrfs_device *srcdev;
4028
4029 if (dev_replace_is_ongoing &&
4030 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4031 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4032 srcdev = fs_info->dev_replace.srcdev;
4033 else
4034 srcdev = NULL;
4035
4036 /*
4037 * try to avoid the drive that is the source drive for a
4038 * dev-replace procedure, only choose it if no other non-missing
4039 * mirror is available
4040 */
4041 for (tolerance = 0; tolerance < 2; tolerance++) {
4042 if (map->stripes[optimal].dev->bdev &&
4043 (tolerance || map->stripes[optimal].dev != srcdev))
4044 return optimal;
4045 for (i = first; i < first + num; i++) {
4046 if (map->stripes[i].dev->bdev &&
4047 (tolerance || map->stripes[i].dev != srcdev))
4048 return i;
4049 }
dfe25020 4050 }
30d9861f 4051
dfe25020
CM
4052 /* we couldn't find one that doesn't fail. Just return something
4053 * and the io error handling code will clean up eventually
4054 */
4055 return optimal;
4056}
4057
3ec706c8 4058static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 4059 u64 logical, u64 *length,
a1d3c478 4060 struct btrfs_bio **bbio_ret,
7eaceacc 4061 int mirror_num)
0b86a832
CM
4062{
4063 struct extent_map *em;
4064 struct map_lookup *map;
3ec706c8 4065 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
4066 struct extent_map_tree *em_tree = &map_tree->map_tree;
4067 u64 offset;
593060d7 4068 u64 stripe_offset;
fce3bb9a 4069 u64 stripe_end_offset;
593060d7 4070 u64 stripe_nr;
fce3bb9a
LD
4071 u64 stripe_nr_orig;
4072 u64 stripe_nr_end;
593060d7 4073 int stripe_index;
cea9e445 4074 int i;
de11cc12 4075 int ret = 0;
f2d8d74d 4076 int num_stripes;
a236aed1 4077 int max_errors = 0;
a1d3c478 4078 struct btrfs_bio *bbio = NULL;
472262f3
SB
4079 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4080 int dev_replace_is_ongoing = 0;
4081 int num_alloc_stripes;
ad6d620e
SB
4082 int patch_the_first_stripe_for_dev_replace = 0;
4083 u64 physical_to_patch_in_first_stripe = 0;
0b86a832 4084
890871be 4085 read_lock(&em_tree->lock);
0b86a832 4086 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 4087 read_unlock(&em_tree->lock);
f2d8d74d 4088
3b951516 4089 if (!em) {
48940662 4090 printk(KERN_CRIT "btrfs: unable to find logical %llu len %llu\n",
d397712b
CM
4091 (unsigned long long)logical,
4092 (unsigned long long)*length);
f2d8d74d 4093 BUG();
3b951516 4094 }
0b86a832
CM
4095
4096 BUG_ON(em->start > logical || em->start + em->len < logical);
4097 map = (struct map_lookup *)em->bdev;
4098 offset = logical - em->start;
593060d7
CM
4099
4100 stripe_nr = offset;
4101 /*
4102 * stripe_nr counts the total number of stripes we have to stride
4103 * to get to this block
4104 */
4105 do_div(stripe_nr, map->stripe_len);
4106
4107 stripe_offset = stripe_nr * map->stripe_len;
4108 BUG_ON(offset < stripe_offset);
4109
4110 /* stripe_offset is the offset of this block in its stripe*/
4111 stripe_offset = offset - stripe_offset;
4112
fce3bb9a
LD
4113 if (rw & REQ_DISCARD)
4114 *length = min_t(u64, em->len - offset, *length);
52ba6929 4115 else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
cea9e445
CM
4116 /* we limit the length of each bio to what fits in a stripe */
4117 *length = min_t(u64, em->len - offset,
fce3bb9a 4118 map->stripe_len - stripe_offset);
cea9e445
CM
4119 } else {
4120 *length = em->len - offset;
4121 }
f2d8d74d 4122
a1d3c478 4123 if (!bbio_ret)
cea9e445
CM
4124 goto out;
4125
472262f3
SB
4126 btrfs_dev_replace_lock(dev_replace);
4127 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4128 if (!dev_replace_is_ongoing)
4129 btrfs_dev_replace_unlock(dev_replace);
4130
ad6d620e
SB
4131 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4132 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4133 dev_replace->tgtdev != NULL) {
4134 /*
4135 * in dev-replace case, for repair case (that's the only
4136 * case where the mirror is selected explicitly when
4137 * calling btrfs_map_block), blocks left of the left cursor
4138 * can also be read from the target drive.
4139 * For REQ_GET_READ_MIRRORS, the target drive is added as
4140 * the last one to the array of stripes. For READ, it also
4141 * needs to be supported using the same mirror number.
4142 * If the requested block is not left of the left cursor,
4143 * EIO is returned. This can happen because btrfs_num_copies()
4144 * returns one more in the dev-replace case.
4145 */
4146 u64 tmp_length = *length;
4147 struct btrfs_bio *tmp_bbio = NULL;
4148 int tmp_num_stripes;
4149 u64 srcdev_devid = dev_replace->srcdev->devid;
4150 int index_srcdev = 0;
4151 int found = 0;
4152 u64 physical_of_found = 0;
4153
4154 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
4155 logical, &tmp_length, &tmp_bbio, 0);
4156 if (ret) {
4157 WARN_ON(tmp_bbio != NULL);
4158 goto out;
4159 }
4160
4161 tmp_num_stripes = tmp_bbio->num_stripes;
4162 if (mirror_num > tmp_num_stripes) {
4163 /*
4164 * REQ_GET_READ_MIRRORS does not contain this
4165 * mirror, that means that the requested area
4166 * is not left of the left cursor
4167 */
4168 ret = -EIO;
4169 kfree(tmp_bbio);
4170 goto out;
4171 }
4172
4173 /*
4174 * process the rest of the function using the mirror_num
4175 * of the source drive. Therefore look it up first.
4176 * At the end, patch the device pointer to the one of the
4177 * target drive.
4178 */
4179 for (i = 0; i < tmp_num_stripes; i++) {
4180 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4181 /*
4182 * In case of DUP, in order to keep it
4183 * simple, only add the mirror with the
4184 * lowest physical address
4185 */
4186 if (found &&
4187 physical_of_found <=
4188 tmp_bbio->stripes[i].physical)
4189 continue;
4190 index_srcdev = i;
4191 found = 1;
4192 physical_of_found =
4193 tmp_bbio->stripes[i].physical;
4194 }
4195 }
4196
4197 if (found) {
4198 mirror_num = index_srcdev + 1;
4199 patch_the_first_stripe_for_dev_replace = 1;
4200 physical_to_patch_in_first_stripe = physical_of_found;
4201 } else {
4202 WARN_ON(1);
4203 ret = -EIO;
4204 kfree(tmp_bbio);
4205 goto out;
4206 }
4207
4208 kfree(tmp_bbio);
4209 } else if (mirror_num > map->num_stripes) {
4210 mirror_num = 0;
4211 }
4212
f2d8d74d 4213 num_stripes = 1;
cea9e445 4214 stripe_index = 0;
fce3bb9a
LD
4215 stripe_nr_orig = stripe_nr;
4216 stripe_nr_end = (offset + *length + map->stripe_len - 1) &
4217 (~(map->stripe_len - 1));
4218 do_div(stripe_nr_end, map->stripe_len);
4219 stripe_end_offset = stripe_nr_end * map->stripe_len -
4220 (offset + *length);
4221 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4222 if (rw & REQ_DISCARD)
4223 num_stripes = min_t(u64, map->num_stripes,
4224 stripe_nr_end - stripe_nr_orig);
4225 stripe_index = do_div(stripe_nr, map->num_stripes);
4226 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 4227 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 4228 num_stripes = map->num_stripes;
2fff734f 4229 else if (mirror_num)
f188591e 4230 stripe_index = mirror_num - 1;
dfe25020 4231 else {
30d9861f 4232 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 4233 map->num_stripes,
30d9861f
SB
4234 current->pid % map->num_stripes,
4235 dev_replace_is_ongoing);
a1d3c478 4236 mirror_num = stripe_index + 1;
dfe25020 4237 }
2fff734f 4238
611f0e00 4239 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 4240 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 4241 num_stripes = map->num_stripes;
a1d3c478 4242 } else if (mirror_num) {
f188591e 4243 stripe_index = mirror_num - 1;
a1d3c478
JS
4244 } else {
4245 mirror_num = 1;
4246 }
2fff734f 4247
321aecc6
CM
4248 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4249 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
4250
4251 stripe_index = do_div(stripe_nr, factor);
4252 stripe_index *= map->sub_stripes;
4253
29a8d9a0 4254 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 4255 num_stripes = map->sub_stripes;
fce3bb9a
LD
4256 else if (rw & REQ_DISCARD)
4257 num_stripes = min_t(u64, map->sub_stripes *
4258 (stripe_nr_end - stripe_nr_orig),
4259 map->num_stripes);
321aecc6
CM
4260 else if (mirror_num)
4261 stripe_index += mirror_num - 1;
dfe25020 4262 else {
3e74317a 4263 int old_stripe_index = stripe_index;
30d9861f
SB
4264 stripe_index = find_live_mirror(fs_info, map,
4265 stripe_index,
dfe25020 4266 map->sub_stripes, stripe_index +
30d9861f
SB
4267 current->pid % map->sub_stripes,
4268 dev_replace_is_ongoing);
3e74317a 4269 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 4270 }
8790d502
CM
4271 } else {
4272 /*
4273 * after this do_div call, stripe_nr is the number of stripes
4274 * on this device we have to walk to find the data, and
4275 * stripe_index is the number of our device in the stripe array
4276 */
4277 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 4278 mirror_num = stripe_index + 1;
8790d502 4279 }
593060d7 4280 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 4281
472262f3 4282 num_alloc_stripes = num_stripes;
ad6d620e
SB
4283 if (dev_replace_is_ongoing) {
4284 if (rw & (REQ_WRITE | REQ_DISCARD))
4285 num_alloc_stripes <<= 1;
4286 if (rw & REQ_GET_READ_MIRRORS)
4287 num_alloc_stripes++;
4288 }
472262f3 4289 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
de11cc12
LZ
4290 if (!bbio) {
4291 ret = -ENOMEM;
4292 goto out;
4293 }
4294 atomic_set(&bbio->error, 0);
4295
fce3bb9a 4296 if (rw & REQ_DISCARD) {
ec9ef7a1
LZ
4297 int factor = 0;
4298 int sub_stripes = 0;
4299 u64 stripes_per_dev = 0;
4300 u32 remaining_stripes = 0;
b89203f7 4301 u32 last_stripe = 0;
ec9ef7a1
LZ
4302
4303 if (map->type &
4304 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
4305 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4306 sub_stripes = 1;
4307 else
4308 sub_stripes = map->sub_stripes;
4309
4310 factor = map->num_stripes / sub_stripes;
4311 stripes_per_dev = div_u64_rem(stripe_nr_end -
4312 stripe_nr_orig,
4313 factor,
4314 &remaining_stripes);
b89203f7
LB
4315 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
4316 last_stripe *= sub_stripes;
ec9ef7a1
LZ
4317 }
4318
fce3bb9a 4319 for (i = 0; i < num_stripes; i++) {
a1d3c478 4320 bbio->stripes[i].physical =
f2d8d74d
CM
4321 map->stripes[stripe_index].physical +
4322 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 4323 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 4324
ec9ef7a1
LZ
4325 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
4326 BTRFS_BLOCK_GROUP_RAID10)) {
4327 bbio->stripes[i].length = stripes_per_dev *
4328 map->stripe_len;
b89203f7 4329
ec9ef7a1
LZ
4330 if (i / sub_stripes < remaining_stripes)
4331 bbio->stripes[i].length +=
4332 map->stripe_len;
b89203f7
LB
4333
4334 /*
4335 * Special for the first stripe and
4336 * the last stripe:
4337 *
4338 * |-------|...|-------|
4339 * |----------|
4340 * off end_off
4341 */
ec9ef7a1 4342 if (i < sub_stripes)
a1d3c478 4343 bbio->stripes[i].length -=
fce3bb9a 4344 stripe_offset;
b89203f7
LB
4345
4346 if (stripe_index >= last_stripe &&
4347 stripe_index <= (last_stripe +
4348 sub_stripes - 1))
a1d3c478 4349 bbio->stripes[i].length -=
fce3bb9a 4350 stripe_end_offset;
b89203f7 4351
ec9ef7a1
LZ
4352 if (i == sub_stripes - 1)
4353 stripe_offset = 0;
fce3bb9a 4354 } else
a1d3c478 4355 bbio->stripes[i].length = *length;
fce3bb9a
LD
4356
4357 stripe_index++;
4358 if (stripe_index == map->num_stripes) {
4359 /* This could only happen for RAID0/10 */
4360 stripe_index = 0;
4361 stripe_nr++;
4362 }
4363 }
4364 } else {
4365 for (i = 0; i < num_stripes; i++) {
a1d3c478 4366 bbio->stripes[i].physical =
212a17ab
LT
4367 map->stripes[stripe_index].physical +
4368 stripe_offset +
4369 stripe_nr * map->stripe_len;
a1d3c478 4370 bbio->stripes[i].dev =
212a17ab 4371 map->stripes[stripe_index].dev;
fce3bb9a 4372 stripe_index++;
f2d8d74d 4373 }
593060d7 4374 }
de11cc12 4375
29a8d9a0 4376 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
de11cc12
LZ
4377 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4378 BTRFS_BLOCK_GROUP_RAID10 |
4379 BTRFS_BLOCK_GROUP_DUP)) {
4380 max_errors = 1;
4381 }
f2d8d74d 4382 }
de11cc12 4383
472262f3
SB
4384 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
4385 dev_replace->tgtdev != NULL) {
4386 int index_where_to_add;
4387 u64 srcdev_devid = dev_replace->srcdev->devid;
4388
4389 /*
4390 * duplicate the write operations while the dev replace
4391 * procedure is running. Since the copying of the old disk
4392 * to the new disk takes place at run time while the
4393 * filesystem is mounted writable, the regular write
4394 * operations to the old disk have to be duplicated to go
4395 * to the new disk as well.
4396 * Note that device->missing is handled by the caller, and
4397 * that the write to the old disk is already set up in the
4398 * stripes array.
4399 */
4400 index_where_to_add = num_stripes;
4401 for (i = 0; i < num_stripes; i++) {
4402 if (bbio->stripes[i].dev->devid == srcdev_devid) {
4403 /* write to new disk, too */
4404 struct btrfs_bio_stripe *new =
4405 bbio->stripes + index_where_to_add;
4406 struct btrfs_bio_stripe *old =
4407 bbio->stripes + i;
4408
4409 new->physical = old->physical;
4410 new->length = old->length;
4411 new->dev = dev_replace->tgtdev;
4412 index_where_to_add++;
4413 max_errors++;
4414 }
4415 }
4416 num_stripes = index_where_to_add;
ad6d620e
SB
4417 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
4418 dev_replace->tgtdev != NULL) {
4419 u64 srcdev_devid = dev_replace->srcdev->devid;
4420 int index_srcdev = 0;
4421 int found = 0;
4422 u64 physical_of_found = 0;
4423
4424 /*
4425 * During the dev-replace procedure, the target drive can
4426 * also be used to read data in case it is needed to repair
4427 * a corrupt block elsewhere. This is possible if the
4428 * requested area is left of the left cursor. In this area,
4429 * the target drive is a full copy of the source drive.
4430 */
4431 for (i = 0; i < num_stripes; i++) {
4432 if (bbio->stripes[i].dev->devid == srcdev_devid) {
4433 /*
4434 * In case of DUP, in order to keep it
4435 * simple, only add the mirror with the
4436 * lowest physical address
4437 */
4438 if (found &&
4439 physical_of_found <=
4440 bbio->stripes[i].physical)
4441 continue;
4442 index_srcdev = i;
4443 found = 1;
4444 physical_of_found = bbio->stripes[i].physical;
4445 }
4446 }
4447 if (found) {
4448 u64 length = map->stripe_len;
4449
4450 if (physical_of_found + length <=
4451 dev_replace->cursor_left) {
4452 struct btrfs_bio_stripe *tgtdev_stripe =
4453 bbio->stripes + num_stripes;
4454
4455 tgtdev_stripe->physical = physical_of_found;
4456 tgtdev_stripe->length =
4457 bbio->stripes[index_srcdev].length;
4458 tgtdev_stripe->dev = dev_replace->tgtdev;
4459
4460 num_stripes++;
4461 }
4462 }
472262f3
SB
4463 }
4464
de11cc12
LZ
4465 *bbio_ret = bbio;
4466 bbio->num_stripes = num_stripes;
4467 bbio->max_errors = max_errors;
4468 bbio->mirror_num = mirror_num;
ad6d620e
SB
4469
4470 /*
4471 * this is the case that REQ_READ && dev_replace_is_ongoing &&
4472 * mirror_num == num_stripes + 1 && dev_replace target drive is
4473 * available as a mirror
4474 */
4475 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
4476 WARN_ON(num_stripes > 1);
4477 bbio->stripes[0].dev = dev_replace->tgtdev;
4478 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
4479 bbio->mirror_num = map->num_stripes + 1;
4480 }
cea9e445 4481out:
472262f3
SB
4482 if (dev_replace_is_ongoing)
4483 btrfs_dev_replace_unlock(dev_replace);
0b86a832 4484 free_extent_map(em);
de11cc12 4485 return ret;
0b86a832
CM
4486}
4487
3ec706c8 4488int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 4489 u64 logical, u64 *length,
a1d3c478 4490 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 4491{
3ec706c8 4492 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
7eaceacc 4493 mirror_num);
f2d8d74d
CM
4494}
4495
a512bbf8
YZ
4496int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
4497 u64 chunk_start, u64 physical, u64 devid,
4498 u64 **logical, int *naddrs, int *stripe_len)
4499{
4500 struct extent_map_tree *em_tree = &map_tree->map_tree;
4501 struct extent_map *em;
4502 struct map_lookup *map;
4503 u64 *buf;
4504 u64 bytenr;
4505 u64 length;
4506 u64 stripe_nr;
4507 int i, j, nr = 0;
4508
890871be 4509 read_lock(&em_tree->lock);
a512bbf8 4510 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 4511 read_unlock(&em_tree->lock);
a512bbf8
YZ
4512
4513 BUG_ON(!em || em->start != chunk_start);
4514 map = (struct map_lookup *)em->bdev;
4515
4516 length = em->len;
4517 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4518 do_div(length, map->num_stripes / map->sub_stripes);
4519 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4520 do_div(length, map->num_stripes);
4521
4522 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
79787eaa 4523 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
4524
4525 for (i = 0; i < map->num_stripes; i++) {
4526 if (devid && map->stripes[i].dev->devid != devid)
4527 continue;
4528 if (map->stripes[i].physical > physical ||
4529 map->stripes[i].physical + length <= physical)
4530 continue;
4531
4532 stripe_nr = physical - map->stripes[i].physical;
4533 do_div(stripe_nr, map->stripe_len);
4534
4535 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4536 stripe_nr = stripe_nr * map->num_stripes + i;
4537 do_div(stripe_nr, map->sub_stripes);
4538 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4539 stripe_nr = stripe_nr * map->num_stripes + i;
4540 }
4541 bytenr = chunk_start + stripe_nr * map->stripe_len;
934d375b 4542 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
4543 for (j = 0; j < nr; j++) {
4544 if (buf[j] == bytenr)
4545 break;
4546 }
934d375b
CM
4547 if (j == nr) {
4548 WARN_ON(nr >= map->num_stripes);
a512bbf8 4549 buf[nr++] = bytenr;
934d375b 4550 }
a512bbf8
YZ
4551 }
4552
a512bbf8
YZ
4553 *logical = buf;
4554 *naddrs = nr;
4555 *stripe_len = map->stripe_len;
4556
4557 free_extent_map(em);
4558 return 0;
f2d8d74d
CM
4559}
4560
442a4f63
SB
4561static void *merge_stripe_index_into_bio_private(void *bi_private,
4562 unsigned int stripe_index)
4563{
4564 /*
4565 * with single, dup, RAID0, RAID1 and RAID10, stripe_index is
4566 * at most 1.
4567 * The alternative solution (instead of stealing bits from the
4568 * pointer) would be to allocate an intermediate structure
4569 * that contains the old private pointer plus the stripe_index.
4570 */
4571 BUG_ON((((uintptr_t)bi_private) & 3) != 0);
4572 BUG_ON(stripe_index > 3);
4573 return (void *)(((uintptr_t)bi_private) | stripe_index);
4574}
4575
4576static struct btrfs_bio *extract_bbio_from_bio_private(void *bi_private)
4577{
4578 return (struct btrfs_bio *)(((uintptr_t)bi_private) & ~((uintptr_t)3));
4579}
4580
4581static unsigned int extract_stripe_index_from_bio_private(void *bi_private)
4582{
4583 return (unsigned int)((uintptr_t)bi_private) & 3;
4584}
4585
a1d3c478 4586static void btrfs_end_bio(struct bio *bio, int err)
8790d502 4587{
442a4f63 4588 struct btrfs_bio *bbio = extract_bbio_from_bio_private(bio->bi_private);
7d2b4daa 4589 int is_orig_bio = 0;
8790d502 4590
442a4f63 4591 if (err) {
a1d3c478 4592 atomic_inc(&bbio->error);
442a4f63
SB
4593 if (err == -EIO || err == -EREMOTEIO) {
4594 unsigned int stripe_index =
4595 extract_stripe_index_from_bio_private(
4596 bio->bi_private);
4597 struct btrfs_device *dev;
4598
4599 BUG_ON(stripe_index >= bbio->num_stripes);
4600 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
4601 if (dev->bdev) {
4602 if (bio->bi_rw & WRITE)
4603 btrfs_dev_stat_inc(dev,
4604 BTRFS_DEV_STAT_WRITE_ERRS);
4605 else
4606 btrfs_dev_stat_inc(dev,
4607 BTRFS_DEV_STAT_READ_ERRS);
4608 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
4609 btrfs_dev_stat_inc(dev,
4610 BTRFS_DEV_STAT_FLUSH_ERRS);
4611 btrfs_dev_stat_print_on_error(dev);
4612 }
442a4f63
SB
4613 }
4614 }
8790d502 4615
a1d3c478 4616 if (bio == bbio->orig_bio)
7d2b4daa
CM
4617 is_orig_bio = 1;
4618
a1d3c478 4619 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
4620 if (!is_orig_bio) {
4621 bio_put(bio);
a1d3c478 4622 bio = bbio->orig_bio;
7d2b4daa 4623 }
a1d3c478
JS
4624 bio->bi_private = bbio->private;
4625 bio->bi_end_io = bbio->end_io;
2774b2ca
JS
4626 bio->bi_bdev = (struct block_device *)
4627 (unsigned long)bbio->mirror_num;
a236aed1
CM
4628 /* only send an error to the higher layers if it is
4629 * beyond the tolerance of the multi-bio
4630 */
a1d3c478 4631 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 4632 err = -EIO;
5dbc8fca 4633 } else {
1259ab75
CM
4634 /*
4635 * this bio is actually up to date, we didn't
4636 * go over the max number of errors
4637 */
4638 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 4639 err = 0;
1259ab75 4640 }
a1d3c478 4641 kfree(bbio);
8790d502
CM
4642
4643 bio_endio(bio, err);
7d2b4daa 4644 } else if (!is_orig_bio) {
8790d502
CM
4645 bio_put(bio);
4646 }
8790d502
CM
4647}
4648
8b712842
CM
4649struct async_sched {
4650 struct bio *bio;
4651 int rw;
4652 struct btrfs_fs_info *info;
4653 struct btrfs_work work;
4654};
4655
4656/*
4657 * see run_scheduled_bios for a description of why bios are collected for
4658 * async submit.
4659 *
4660 * This will add one bio to the pending list for a device and make sure
4661 * the work struct is scheduled.
4662 */
143bede5 4663static noinline void schedule_bio(struct btrfs_root *root,
a1b32a59
CM
4664 struct btrfs_device *device,
4665 int rw, struct bio *bio)
8b712842
CM
4666{
4667 int should_queue = 1;
ffbd517d 4668 struct btrfs_pending_bios *pending_bios;
8b712842
CM
4669
4670 /* don't bother with additional async steps for reads, right now */
7b6d91da 4671 if (!(rw & REQ_WRITE)) {
492bb6de 4672 bio_get(bio);
21adbd5c 4673 btrfsic_submit_bio(rw, bio);
492bb6de 4674 bio_put(bio);
143bede5 4675 return;
8b712842
CM
4676 }
4677
4678 /*
0986fe9e 4679 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
4680 * higher layers. Otherwise, the async bio makes it appear we have
4681 * made progress against dirty pages when we've really just put it
4682 * on a queue for later
4683 */
0986fe9e 4684 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 4685 WARN_ON(bio->bi_next);
8b712842
CM
4686 bio->bi_next = NULL;
4687 bio->bi_rw |= rw;
4688
4689 spin_lock(&device->io_lock);
7b6d91da 4690 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
4691 pending_bios = &device->pending_sync_bios;
4692 else
4693 pending_bios = &device->pending_bios;
8b712842 4694
ffbd517d
CM
4695 if (pending_bios->tail)
4696 pending_bios->tail->bi_next = bio;
8b712842 4697
ffbd517d
CM
4698 pending_bios->tail = bio;
4699 if (!pending_bios->head)
4700 pending_bios->head = bio;
8b712842
CM
4701 if (device->running_pending)
4702 should_queue = 0;
4703
4704 spin_unlock(&device->io_lock);
4705
4706 if (should_queue)
1cc127b5
CM
4707 btrfs_queue_worker(&root->fs_info->submit_workers,
4708 &device->work);
8b712842
CM
4709}
4710
de1ee92a
JB
4711static int bio_size_ok(struct block_device *bdev, struct bio *bio,
4712 sector_t sector)
4713{
4714 struct bio_vec *prev;
4715 struct request_queue *q = bdev_get_queue(bdev);
4716 unsigned short max_sectors = queue_max_sectors(q);
4717 struct bvec_merge_data bvm = {
4718 .bi_bdev = bdev,
4719 .bi_sector = sector,
4720 .bi_rw = bio->bi_rw,
4721 };
4722
4723 if (bio->bi_vcnt == 0) {
4724 WARN_ON(1);
4725 return 1;
4726 }
4727
4728 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
4729 if ((bio->bi_size >> 9) > max_sectors)
4730 return 0;
4731
4732 if (!q->merge_bvec_fn)
4733 return 1;
4734
4735 bvm.bi_size = bio->bi_size - prev->bv_len;
4736 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
4737 return 0;
4738 return 1;
4739}
4740
4741static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
4742 struct bio *bio, u64 physical, int dev_nr,
4743 int rw, int async)
4744{
4745 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
4746
4747 bio->bi_private = bbio;
4748 bio->bi_private = merge_stripe_index_into_bio_private(
4749 bio->bi_private, (unsigned int)dev_nr);
4750 bio->bi_end_io = btrfs_end_bio;
4751 bio->bi_sector = physical >> 9;
4752#ifdef DEBUG
4753 {
4754 struct rcu_string *name;
4755
4756 rcu_read_lock();
4757 name = rcu_dereference(dev->name);
d1423248 4758 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a
JB
4759 "(%s id %llu), size=%u\n", rw,
4760 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
4761 name->str, dev->devid, bio->bi_size);
4762 rcu_read_unlock();
4763 }
4764#endif
4765 bio->bi_bdev = dev->bdev;
4766 if (async)
4767 schedule_bio(root, dev, rw, bio);
4768 else
4769 btrfsic_submit_bio(rw, bio);
4770}
4771
4772static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
4773 struct bio *first_bio, struct btrfs_device *dev,
4774 int dev_nr, int rw, int async)
4775{
4776 struct bio_vec *bvec = first_bio->bi_io_vec;
4777 struct bio *bio;
4778 int nr_vecs = bio_get_nr_vecs(dev->bdev);
4779 u64 physical = bbio->stripes[dev_nr].physical;
4780
4781again:
4782 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
4783 if (!bio)
4784 return -ENOMEM;
4785
4786 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
4787 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
4788 bvec->bv_offset) < bvec->bv_len) {
4789 u64 len = bio->bi_size;
4790
4791 atomic_inc(&bbio->stripes_pending);
4792 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
4793 rw, async);
4794 physical += len;
4795 goto again;
4796 }
4797 bvec++;
4798 }
4799
4800 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
4801 return 0;
4802}
4803
4804static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
4805{
4806 atomic_inc(&bbio->error);
4807 if (atomic_dec_and_test(&bbio->stripes_pending)) {
4808 bio->bi_private = bbio->private;
4809 bio->bi_end_io = bbio->end_io;
4810 bio->bi_bdev = (struct block_device *)
4811 (unsigned long)bbio->mirror_num;
4812 bio->bi_sector = logical >> 9;
4813 kfree(bbio);
4814 bio_endio(bio, -EIO);
4815 }
4816}
4817
f188591e 4818int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 4819 int mirror_num, int async_submit)
0b86a832 4820{
0b86a832 4821 struct btrfs_device *dev;
8790d502 4822 struct bio *first_bio = bio;
a62b9401 4823 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
4824 u64 length = 0;
4825 u64 map_length;
0b86a832 4826 int ret;
8790d502
CM
4827 int dev_nr = 0;
4828 int total_devs = 1;
a1d3c478 4829 struct btrfs_bio *bbio = NULL;
0b86a832 4830
f2d8d74d 4831 length = bio->bi_size;
0b86a832 4832 map_length = length;
cea9e445 4833
3ec706c8 4834 ret = btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
f188591e 4835 mirror_num);
61891923 4836 if (ret)
79787eaa 4837 return ret;
cea9e445 4838
a1d3c478 4839 total_devs = bbio->num_stripes;
cea9e445 4840 if (map_length < length) {
48940662 4841 printk(KERN_CRIT "btrfs: mapping failed logical %llu bio len %llu "
d397712b
CM
4842 "len %llu\n", (unsigned long long)logical,
4843 (unsigned long long)length,
4844 (unsigned long long)map_length);
cea9e445
CM
4845 BUG();
4846 }
a1d3c478
JS
4847
4848 bbio->orig_bio = first_bio;
4849 bbio->private = first_bio->bi_private;
4850 bbio->end_io = first_bio->bi_end_io;
4851 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
cea9e445 4852
d397712b 4853 while (dev_nr < total_devs) {
de1ee92a
JB
4854 dev = bbio->stripes[dev_nr].dev;
4855 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
4856 bbio_error(bbio, first_bio, logical);
4857 dev_nr++;
4858 continue;
4859 }
4860
4861 /*
4862 * Check and see if we're ok with this bio based on it's size
4863 * and offset with the given device.
4864 */
4865 if (!bio_size_ok(dev->bdev, first_bio,
4866 bbio->stripes[dev_nr].physical >> 9)) {
4867 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
4868 dev_nr, rw, async_submit);
4869 BUG_ON(ret);
4870 dev_nr++;
4871 continue;
4872 }
4873
a1d3c478
JS
4874 if (dev_nr < total_devs - 1) {
4875 bio = bio_clone(first_bio, GFP_NOFS);
79787eaa 4876 BUG_ON(!bio); /* -ENOMEM */
a1d3c478
JS
4877 } else {
4878 bio = first_bio;
8790d502 4879 }
de1ee92a
JB
4880
4881 submit_stripe_bio(root, bbio, bio,
4882 bbio->stripes[dev_nr].physical, dev_nr, rw,
4883 async_submit);
8790d502
CM
4884 dev_nr++;
4885 }
0b86a832
CM
4886 return 0;
4887}
4888
aa1b8cd4 4889struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 4890 u8 *uuid, u8 *fsid)
0b86a832 4891{
2b82032c
YZ
4892 struct btrfs_device *device;
4893 struct btrfs_fs_devices *cur_devices;
4894
aa1b8cd4 4895 cur_devices = fs_info->fs_devices;
2b82032c
YZ
4896 while (cur_devices) {
4897 if (!fsid ||
4898 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4899 device = __find_device(&cur_devices->devices,
4900 devid, uuid);
4901 if (device)
4902 return device;
4903 }
4904 cur_devices = cur_devices->seed;
4905 }
4906 return NULL;
0b86a832
CM
4907}
4908
dfe25020
CM
4909static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
4910 u64 devid, u8 *dev_uuid)
4911{
4912 struct btrfs_device *device;
4913 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4914
4915 device = kzalloc(sizeof(*device), GFP_NOFS);
7cbd8a83 4916 if (!device)
4917 return NULL;
dfe25020
CM
4918 list_add(&device->dev_list,
4919 &fs_devices->devices);
dfe25020
CM
4920 device->dev_root = root->fs_info->dev_root;
4921 device->devid = devid;
8b712842 4922 device->work.func = pending_bios_fn;
e4404d6e 4923 device->fs_devices = fs_devices;
cd02dca5 4924 device->missing = 1;
dfe25020 4925 fs_devices->num_devices++;
cd02dca5 4926 fs_devices->missing_devices++;
dfe25020 4927 spin_lock_init(&device->io_lock);
d20f7043 4928 INIT_LIST_HEAD(&device->dev_alloc_list);
dfe25020
CM
4929 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
4930 return device;
4931}
4932
0b86a832
CM
4933static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
4934 struct extent_buffer *leaf,
4935 struct btrfs_chunk *chunk)
4936{
4937 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4938 struct map_lookup *map;
4939 struct extent_map *em;
4940 u64 logical;
4941 u64 length;
4942 u64 devid;
a443755f 4943 u8 uuid[BTRFS_UUID_SIZE];
593060d7 4944 int num_stripes;
0b86a832 4945 int ret;
593060d7 4946 int i;
0b86a832 4947
e17cade2
CM
4948 logical = key->offset;
4949 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 4950
890871be 4951 read_lock(&map_tree->map_tree.lock);
0b86a832 4952 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 4953 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
4954
4955 /* already mapped? */
4956 if (em && em->start <= logical && em->start + em->len > logical) {
4957 free_extent_map(em);
0b86a832
CM
4958 return 0;
4959 } else if (em) {
4960 free_extent_map(em);
4961 }
0b86a832 4962
172ddd60 4963 em = alloc_extent_map();
0b86a832
CM
4964 if (!em)
4965 return -ENOMEM;
593060d7
CM
4966 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4967 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
4968 if (!map) {
4969 free_extent_map(em);
4970 return -ENOMEM;
4971 }
4972
4973 em->bdev = (struct block_device *)map;
4974 em->start = logical;
4975 em->len = length;
70c8a91c 4976 em->orig_start = 0;
0b86a832 4977 em->block_start = 0;
c8b97818 4978 em->block_len = em->len;
0b86a832 4979
593060d7
CM
4980 map->num_stripes = num_stripes;
4981 map->io_width = btrfs_chunk_io_width(leaf, chunk);
4982 map->io_align = btrfs_chunk_io_align(leaf, chunk);
4983 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
4984 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
4985 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 4986 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
4987 for (i = 0; i < num_stripes; i++) {
4988 map->stripes[i].physical =
4989 btrfs_stripe_offset_nr(leaf, chunk, i);
4990 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
4991 read_extent_buffer(leaf, uuid, (unsigned long)
4992 btrfs_stripe_dev_uuid_nr(chunk, i),
4993 BTRFS_UUID_SIZE);
aa1b8cd4
SB
4994 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
4995 uuid, NULL);
dfe25020 4996 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
4997 kfree(map);
4998 free_extent_map(em);
4999 return -EIO;
5000 }
dfe25020
CM
5001 if (!map->stripes[i].dev) {
5002 map->stripes[i].dev =
5003 add_missing_dev(root, devid, uuid);
5004 if (!map->stripes[i].dev) {
5005 kfree(map);
5006 free_extent_map(em);
5007 return -EIO;
5008 }
5009 }
5010 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
5011 }
5012
890871be 5013 write_lock(&map_tree->map_tree.lock);
0b86a832 5014 ret = add_extent_mapping(&map_tree->map_tree, em);
890871be 5015 write_unlock(&map_tree->map_tree.lock);
79787eaa 5016 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
5017 free_extent_map(em);
5018
5019 return 0;
5020}
5021
143bede5 5022static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
5023 struct btrfs_dev_item *dev_item,
5024 struct btrfs_device *device)
5025{
5026 unsigned long ptr;
0b86a832
CM
5027
5028 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
5029 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5030 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
5031 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5032 device->type = btrfs_device_type(leaf, dev_item);
5033 device->io_align = btrfs_device_io_align(leaf, dev_item);
5034 device->io_width = btrfs_device_io_width(leaf, dev_item);
5035 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 5036 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 5037 device->is_tgtdev_for_dev_replace = 0;
0b86a832
CM
5038
5039 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 5040 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
5041}
5042
2b82032c
YZ
5043static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5044{
5045 struct btrfs_fs_devices *fs_devices;
5046 int ret;
5047
b367e47f 5048 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
5049
5050 fs_devices = root->fs_info->fs_devices->seed;
5051 while (fs_devices) {
5052 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5053 ret = 0;
5054 goto out;
5055 }
5056 fs_devices = fs_devices->seed;
5057 }
5058
5059 fs_devices = find_fsid(fsid);
5060 if (!fs_devices) {
5061 ret = -ENOENT;
5062 goto out;
5063 }
e4404d6e
YZ
5064
5065 fs_devices = clone_fs_devices(fs_devices);
5066 if (IS_ERR(fs_devices)) {
5067 ret = PTR_ERR(fs_devices);
2b82032c
YZ
5068 goto out;
5069 }
5070
97288f2c 5071 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 5072 root->fs_info->bdev_holder);
48d28232
JL
5073 if (ret) {
5074 free_fs_devices(fs_devices);
2b82032c 5075 goto out;
48d28232 5076 }
2b82032c
YZ
5077
5078 if (!fs_devices->seeding) {
5079 __btrfs_close_devices(fs_devices);
e4404d6e 5080 free_fs_devices(fs_devices);
2b82032c
YZ
5081 ret = -EINVAL;
5082 goto out;
5083 }
5084
5085 fs_devices->seed = root->fs_info->fs_devices->seed;
5086 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 5087out:
2b82032c
YZ
5088 return ret;
5089}
5090
0d81ba5d 5091static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
5092 struct extent_buffer *leaf,
5093 struct btrfs_dev_item *dev_item)
5094{
5095 struct btrfs_device *device;
5096 u64 devid;
5097 int ret;
2b82032c 5098 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
5099 u8 dev_uuid[BTRFS_UUID_SIZE];
5100
0b86a832 5101 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
5102 read_extent_buffer(leaf, dev_uuid,
5103 (unsigned long)btrfs_device_uuid(dev_item),
5104 BTRFS_UUID_SIZE);
2b82032c
YZ
5105 read_extent_buffer(leaf, fs_uuid,
5106 (unsigned long)btrfs_device_fsid(dev_item),
5107 BTRFS_UUID_SIZE);
5108
5109 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5110 ret = open_seed_devices(root, fs_uuid);
e4404d6e 5111 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 5112 return ret;
2b82032c
YZ
5113 }
5114
aa1b8cd4 5115 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
2b82032c 5116 if (!device || !device->bdev) {
e4404d6e 5117 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
5118 return -EIO;
5119
5120 if (!device) {
d397712b
CM
5121 printk(KERN_WARNING "warning devid %llu missing\n",
5122 (unsigned long long)devid);
2b82032c
YZ
5123 device = add_missing_dev(root, devid, dev_uuid);
5124 if (!device)
5125 return -ENOMEM;
cd02dca5
CM
5126 } else if (!device->missing) {
5127 /*
5128 * this happens when a device that was properly setup
5129 * in the device info lists suddenly goes bad.
5130 * device->bdev is NULL, and so we have to set
5131 * device->missing to one here
5132 */
5133 root->fs_info->fs_devices->missing_devices++;
5134 device->missing = 1;
2b82032c
YZ
5135 }
5136 }
5137
5138 if (device->fs_devices != root->fs_info->fs_devices) {
5139 BUG_ON(device->writeable);
5140 if (device->generation !=
5141 btrfs_device_generation(leaf, dev_item))
5142 return -EINVAL;
6324fbf3 5143 }
0b86a832
CM
5144
5145 fill_device_from_item(leaf, dev_item, device);
5146 device->dev_root = root->fs_info->dev_root;
dfe25020 5147 device->in_fs_metadata = 1;
63a212ab 5148 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 5149 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
5150 spin_lock(&root->fs_info->free_chunk_lock);
5151 root->fs_info->free_chunk_space += device->total_bytes -
5152 device->bytes_used;
5153 spin_unlock(&root->fs_info->free_chunk_lock);
5154 }
0b86a832 5155 ret = 0;
0b86a832
CM
5156 return ret;
5157}
5158
e4404d6e 5159int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 5160{
6c41761f 5161 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 5162 struct extent_buffer *sb;
0b86a832 5163 struct btrfs_disk_key *disk_key;
0b86a832 5164 struct btrfs_chunk *chunk;
84eed90f
CM
5165 u8 *ptr;
5166 unsigned long sb_ptr;
5167 int ret = 0;
0b86a832
CM
5168 u32 num_stripes;
5169 u32 array_size;
5170 u32 len = 0;
0b86a832 5171 u32 cur;
84eed90f 5172 struct btrfs_key key;
0b86a832 5173
e4404d6e 5174 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
5175 BTRFS_SUPER_INFO_SIZE);
5176 if (!sb)
5177 return -ENOMEM;
5178 btrfs_set_buffer_uptodate(sb);
85d4e461 5179 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
5180 /*
5181 * The sb extent buffer is artifical and just used to read the system array.
5182 * btrfs_set_buffer_uptodate() call does not properly mark all it's
5183 * pages up-to-date when the page is larger: extent does not cover the
5184 * whole page and consequently check_page_uptodate does not find all
5185 * the page's extents up-to-date (the hole beyond sb),
5186 * write_extent_buffer then triggers a WARN_ON.
5187 *
5188 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
5189 * but sb spans only this function. Add an explicit SetPageUptodate call
5190 * to silence the warning eg. on PowerPC 64.
5191 */
5192 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 5193 SetPageUptodate(sb->pages[0]);
4008c04a 5194
a061fc8d 5195 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
5196 array_size = btrfs_super_sys_array_size(super_copy);
5197
0b86a832
CM
5198 ptr = super_copy->sys_chunk_array;
5199 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
5200 cur = 0;
5201
5202 while (cur < array_size) {
5203 disk_key = (struct btrfs_disk_key *)ptr;
5204 btrfs_disk_key_to_cpu(&key, disk_key);
5205
a061fc8d 5206 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
5207 sb_ptr += len;
5208 cur += len;
5209
0d81ba5d 5210 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 5211 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 5212 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
5213 if (ret)
5214 break;
0b86a832
CM
5215 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
5216 len = btrfs_chunk_item_size(num_stripes);
5217 } else {
84eed90f
CM
5218 ret = -EIO;
5219 break;
0b86a832
CM
5220 }
5221 ptr += len;
5222 sb_ptr += len;
5223 cur += len;
5224 }
a061fc8d 5225 free_extent_buffer(sb);
84eed90f 5226 return ret;
0b86a832
CM
5227}
5228
5229int btrfs_read_chunk_tree(struct btrfs_root *root)
5230{
5231 struct btrfs_path *path;
5232 struct extent_buffer *leaf;
5233 struct btrfs_key key;
5234 struct btrfs_key found_key;
5235 int ret;
5236 int slot;
5237
5238 root = root->fs_info->chunk_root;
5239
5240 path = btrfs_alloc_path();
5241 if (!path)
5242 return -ENOMEM;
5243
b367e47f
LZ
5244 mutex_lock(&uuid_mutex);
5245 lock_chunks(root);
5246
0b86a832
CM
5247 /* first we search for all of the device items, and then we
5248 * read in all of the chunk items. This way we can create chunk
5249 * mappings that reference all of the devices that are afound
5250 */
5251 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
5252 key.offset = 0;
5253 key.type = 0;
5254again:
5255 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
5256 if (ret < 0)
5257 goto error;
d397712b 5258 while (1) {
0b86a832
CM
5259 leaf = path->nodes[0];
5260 slot = path->slots[0];
5261 if (slot >= btrfs_header_nritems(leaf)) {
5262 ret = btrfs_next_leaf(root, path);
5263 if (ret == 0)
5264 continue;
5265 if (ret < 0)
5266 goto error;
5267 break;
5268 }
5269 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5270 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
5271 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
5272 break;
5273 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
5274 struct btrfs_dev_item *dev_item;
5275 dev_item = btrfs_item_ptr(leaf, slot,
5276 struct btrfs_dev_item);
0d81ba5d 5277 ret = read_one_dev(root, leaf, dev_item);
2b82032c
YZ
5278 if (ret)
5279 goto error;
0b86a832
CM
5280 }
5281 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
5282 struct btrfs_chunk *chunk;
5283 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
5284 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
5285 if (ret)
5286 goto error;
0b86a832
CM
5287 }
5288 path->slots[0]++;
5289 }
5290 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
5291 key.objectid = 0;
b3b4aa74 5292 btrfs_release_path(path);
0b86a832
CM
5293 goto again;
5294 }
0b86a832
CM
5295 ret = 0;
5296error:
b367e47f
LZ
5297 unlock_chunks(root);
5298 mutex_unlock(&uuid_mutex);
5299
2b82032c 5300 btrfs_free_path(path);
0b86a832
CM
5301 return ret;
5302}
442a4f63 5303
733f4fbb
SB
5304static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
5305{
5306 int i;
5307
5308 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
5309 btrfs_dev_stat_reset(dev, i);
5310}
5311
5312int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
5313{
5314 struct btrfs_key key;
5315 struct btrfs_key found_key;
5316 struct btrfs_root *dev_root = fs_info->dev_root;
5317 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
5318 struct extent_buffer *eb;
5319 int slot;
5320 int ret = 0;
5321 struct btrfs_device *device;
5322 struct btrfs_path *path = NULL;
5323 int i;
5324
5325 path = btrfs_alloc_path();
5326 if (!path) {
5327 ret = -ENOMEM;
5328 goto out;
5329 }
5330
5331 mutex_lock(&fs_devices->device_list_mutex);
5332 list_for_each_entry(device, &fs_devices->devices, dev_list) {
5333 int item_size;
5334 struct btrfs_dev_stats_item *ptr;
5335
5336 key.objectid = 0;
5337 key.type = BTRFS_DEV_STATS_KEY;
5338 key.offset = device->devid;
5339 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
5340 if (ret) {
733f4fbb
SB
5341 __btrfs_reset_dev_stats(device);
5342 device->dev_stats_valid = 1;
5343 btrfs_release_path(path);
5344 continue;
5345 }
5346 slot = path->slots[0];
5347 eb = path->nodes[0];
5348 btrfs_item_key_to_cpu(eb, &found_key, slot);
5349 item_size = btrfs_item_size_nr(eb, slot);
5350
5351 ptr = btrfs_item_ptr(eb, slot,
5352 struct btrfs_dev_stats_item);
5353
5354 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
5355 if (item_size >= (1 + i) * sizeof(__le64))
5356 btrfs_dev_stat_set(device, i,
5357 btrfs_dev_stats_value(eb, ptr, i));
5358 else
5359 btrfs_dev_stat_reset(device, i);
5360 }
5361
5362 device->dev_stats_valid = 1;
5363 btrfs_dev_stat_print_on_load(device);
5364 btrfs_release_path(path);
5365 }
5366 mutex_unlock(&fs_devices->device_list_mutex);
5367
5368out:
5369 btrfs_free_path(path);
5370 return ret < 0 ? ret : 0;
5371}
5372
5373static int update_dev_stat_item(struct btrfs_trans_handle *trans,
5374 struct btrfs_root *dev_root,
5375 struct btrfs_device *device)
5376{
5377 struct btrfs_path *path;
5378 struct btrfs_key key;
5379 struct extent_buffer *eb;
5380 struct btrfs_dev_stats_item *ptr;
5381 int ret;
5382 int i;
5383
5384 key.objectid = 0;
5385 key.type = BTRFS_DEV_STATS_KEY;
5386 key.offset = device->devid;
5387
5388 path = btrfs_alloc_path();
5389 BUG_ON(!path);
5390 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
5391 if (ret < 0) {
606686ee
JB
5392 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
5393 ret, rcu_str_deref(device->name));
733f4fbb
SB
5394 goto out;
5395 }
5396
5397 if (ret == 0 &&
5398 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
5399 /* need to delete old one and insert a new one */
5400 ret = btrfs_del_item(trans, dev_root, path);
5401 if (ret != 0) {
606686ee
JB
5402 printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
5403 rcu_str_deref(device->name), ret);
733f4fbb
SB
5404 goto out;
5405 }
5406 ret = 1;
5407 }
5408
5409 if (ret == 1) {
5410 /* need to insert a new item */
5411 btrfs_release_path(path);
5412 ret = btrfs_insert_empty_item(trans, dev_root, path,
5413 &key, sizeof(*ptr));
5414 if (ret < 0) {
606686ee
JB
5415 printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
5416 rcu_str_deref(device->name), ret);
733f4fbb
SB
5417 goto out;
5418 }
5419 }
5420
5421 eb = path->nodes[0];
5422 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
5423 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
5424 btrfs_set_dev_stats_value(eb, ptr, i,
5425 btrfs_dev_stat_read(device, i));
5426 btrfs_mark_buffer_dirty(eb);
5427
5428out:
5429 btrfs_free_path(path);
5430 return ret;
5431}
5432
5433/*
5434 * called from commit_transaction. Writes all changed device stats to disk.
5435 */
5436int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
5437 struct btrfs_fs_info *fs_info)
5438{
5439 struct btrfs_root *dev_root = fs_info->dev_root;
5440 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
5441 struct btrfs_device *device;
5442 int ret = 0;
5443
5444 mutex_lock(&fs_devices->device_list_mutex);
5445 list_for_each_entry(device, &fs_devices->devices, dev_list) {
5446 if (!device->dev_stats_valid || !device->dev_stats_dirty)
5447 continue;
5448
5449 ret = update_dev_stat_item(trans, dev_root, device);
5450 if (!ret)
5451 device->dev_stats_dirty = 0;
5452 }
5453 mutex_unlock(&fs_devices->device_list_mutex);
5454
5455 return ret;
5456}
5457
442a4f63
SB
5458void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
5459{
5460 btrfs_dev_stat_inc(dev, index);
5461 btrfs_dev_stat_print_on_error(dev);
5462}
5463
5464void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
5465{
733f4fbb
SB
5466 if (!dev->dev_stats_valid)
5467 return;
606686ee 5468 printk_ratelimited_in_rcu(KERN_ERR
442a4f63 5469 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 5470 rcu_str_deref(dev->name),
442a4f63
SB
5471 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
5472 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
5473 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
5474 btrfs_dev_stat_read(dev,
5475 BTRFS_DEV_STAT_CORRUPTION_ERRS),
5476 btrfs_dev_stat_read(dev,
5477 BTRFS_DEV_STAT_GENERATION_ERRS));
5478}
c11d2c23 5479
733f4fbb
SB
5480static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
5481{
a98cdb85
SB
5482 int i;
5483
5484 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
5485 if (btrfs_dev_stat_read(dev, i) != 0)
5486 break;
5487 if (i == BTRFS_DEV_STAT_VALUES_MAX)
5488 return; /* all values == 0, suppress message */
5489
606686ee
JB
5490 printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
5491 rcu_str_deref(dev->name),
733f4fbb
SB
5492 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
5493 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
5494 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
5495 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
5496 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
5497}
5498
c11d2c23 5499int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 5500 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
5501{
5502 struct btrfs_device *dev;
5503 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5504 int i;
5505
5506 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 5507 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
5508 mutex_unlock(&fs_devices->device_list_mutex);
5509
5510 if (!dev) {
5511 printk(KERN_WARNING
5512 "btrfs: get dev_stats failed, device not found\n");
5513 return -ENODEV;
733f4fbb
SB
5514 } else if (!dev->dev_stats_valid) {
5515 printk(KERN_WARNING
5516 "btrfs: get dev_stats failed, not yet valid\n");
5517 return -ENODEV;
b27f7c0c 5518 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
5519 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
5520 if (stats->nr_items > i)
5521 stats->values[i] =
5522 btrfs_dev_stat_read_and_reset(dev, i);
5523 else
5524 btrfs_dev_stat_reset(dev, i);
5525 }
5526 } else {
5527 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
5528 if (stats->nr_items > i)
5529 stats->values[i] = btrfs_dev_stat_read(dev, i);
5530 }
5531 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
5532 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
5533 return 0;
5534}
a8a6dab7
SB
5535
5536int btrfs_scratch_superblock(struct btrfs_device *device)
5537{
5538 struct buffer_head *bh;
5539 struct btrfs_super_block *disk_super;
5540
5541 bh = btrfs_read_dev_super(device->bdev);
5542 if (!bh)
5543 return -EINVAL;
5544 disk_super = (struct btrfs_super_block *)bh->b_data;
5545
5546 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
5547 set_buffer_dirty(bh);
5548 sync_dirty_buffer(bh);
5549 brelse(bh);
5550
5551 return 0;
5552}
This page took 0.539443 seconds and 5 git commands to generate.