Btrfs: fix leaf corruption caused by ENOSPC while hole punching
[deliverable/linux.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3 28#include <linux/raid/pq.h>
803b2f54 29#include <linux/semaphore.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
0b86a832 43
2b82032c
YZ
44static int init_first_rw_device(struct btrfs_trans_handle *trans,
45 struct btrfs_root *root,
46 struct btrfs_device *device);
47static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 48static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 49static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 50static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 51
8a4b83cc
CM
52static DEFINE_MUTEX(uuid_mutex);
53static LIST_HEAD(fs_uuids);
54
7d9eb12c
CM
55static void lock_chunks(struct btrfs_root *root)
56{
7d9eb12c
CM
57 mutex_lock(&root->fs_info->chunk_mutex);
58}
59
60static void unlock_chunks(struct btrfs_root *root)
61{
7d9eb12c
CM
62 mutex_unlock(&root->fs_info->chunk_mutex);
63}
64
2208a378
ID
65static struct btrfs_fs_devices *__alloc_fs_devices(void)
66{
67 struct btrfs_fs_devices *fs_devs;
68
69 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
70 if (!fs_devs)
71 return ERR_PTR(-ENOMEM);
72
73 mutex_init(&fs_devs->device_list_mutex);
74
75 INIT_LIST_HEAD(&fs_devs->devices);
76 INIT_LIST_HEAD(&fs_devs->alloc_list);
77 INIT_LIST_HEAD(&fs_devs->list);
78
79 return fs_devs;
80}
81
82/**
83 * alloc_fs_devices - allocate struct btrfs_fs_devices
84 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
85 * generated.
86 *
87 * Return: a pointer to a new &struct btrfs_fs_devices on success;
88 * ERR_PTR() on error. Returned struct is not linked onto any lists and
89 * can be destroyed with kfree() right away.
90 */
91static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
92{
93 struct btrfs_fs_devices *fs_devs;
94
95 fs_devs = __alloc_fs_devices();
96 if (IS_ERR(fs_devs))
97 return fs_devs;
98
99 if (fsid)
100 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
101 else
102 generate_random_uuid(fs_devs->fsid);
103
104 return fs_devs;
105}
106
e4404d6e
YZ
107static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
108{
109 struct btrfs_device *device;
110 WARN_ON(fs_devices->opened);
111 while (!list_empty(&fs_devices->devices)) {
112 device = list_entry(fs_devices->devices.next,
113 struct btrfs_device, dev_list);
114 list_del(&device->dev_list);
606686ee 115 rcu_string_free(device->name);
e4404d6e
YZ
116 kfree(device);
117 }
118 kfree(fs_devices);
119}
120
b8b8ff59
LC
121static void btrfs_kobject_uevent(struct block_device *bdev,
122 enum kobject_action action)
123{
124 int ret;
125
126 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
127 if (ret)
efe120a0 128 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
129 action,
130 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
131 &disk_to_dev(bdev->bd_disk)->kobj);
132}
133
143bede5 134void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
135{
136 struct btrfs_fs_devices *fs_devices;
8a4b83cc 137
2b82032c
YZ
138 while (!list_empty(&fs_uuids)) {
139 fs_devices = list_entry(fs_uuids.next,
140 struct btrfs_fs_devices, list);
141 list_del(&fs_devices->list);
e4404d6e 142 free_fs_devices(fs_devices);
8a4b83cc 143 }
8a4b83cc
CM
144}
145
12bd2fc0
ID
146static struct btrfs_device *__alloc_device(void)
147{
148 struct btrfs_device *dev;
149
150 dev = kzalloc(sizeof(*dev), GFP_NOFS);
151 if (!dev)
152 return ERR_PTR(-ENOMEM);
153
154 INIT_LIST_HEAD(&dev->dev_list);
155 INIT_LIST_HEAD(&dev->dev_alloc_list);
156
157 spin_lock_init(&dev->io_lock);
158
159 spin_lock_init(&dev->reada_lock);
160 atomic_set(&dev->reada_in_flight, 0);
161 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
162 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
163
164 return dev;
165}
166
a1b32a59
CM
167static noinline struct btrfs_device *__find_device(struct list_head *head,
168 u64 devid, u8 *uuid)
8a4b83cc
CM
169{
170 struct btrfs_device *dev;
8a4b83cc 171
c6e30871 172 list_for_each_entry(dev, head, dev_list) {
a443755f 173 if (dev->devid == devid &&
8f18cf13 174 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 175 return dev;
a443755f 176 }
8a4b83cc
CM
177 }
178 return NULL;
179}
180
a1b32a59 181static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 182{
8a4b83cc
CM
183 struct btrfs_fs_devices *fs_devices;
184
c6e30871 185 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
186 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
187 return fs_devices;
188 }
189 return NULL;
190}
191
beaf8ab3
SB
192static int
193btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
194 int flush, struct block_device **bdev,
195 struct buffer_head **bh)
196{
197 int ret;
198
199 *bdev = blkdev_get_by_path(device_path, flags, holder);
200
201 if (IS_ERR(*bdev)) {
202 ret = PTR_ERR(*bdev);
efe120a0 203 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
beaf8ab3
SB
204 goto error;
205 }
206
207 if (flush)
208 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
209 ret = set_blocksize(*bdev, 4096);
210 if (ret) {
211 blkdev_put(*bdev, flags);
212 goto error;
213 }
214 invalidate_bdev(*bdev);
215 *bh = btrfs_read_dev_super(*bdev);
216 if (!*bh) {
217 ret = -EINVAL;
218 blkdev_put(*bdev, flags);
219 goto error;
220 }
221
222 return 0;
223
224error:
225 *bdev = NULL;
226 *bh = NULL;
227 return ret;
228}
229
ffbd517d
CM
230static void requeue_list(struct btrfs_pending_bios *pending_bios,
231 struct bio *head, struct bio *tail)
232{
233
234 struct bio *old_head;
235
236 old_head = pending_bios->head;
237 pending_bios->head = head;
238 if (pending_bios->tail)
239 tail->bi_next = old_head;
240 else
241 pending_bios->tail = tail;
242}
243
8b712842
CM
244/*
245 * we try to collect pending bios for a device so we don't get a large
246 * number of procs sending bios down to the same device. This greatly
247 * improves the schedulers ability to collect and merge the bios.
248 *
249 * But, it also turns into a long list of bios to process and that is sure
250 * to eventually make the worker thread block. The solution here is to
251 * make some progress and then put this work struct back at the end of
252 * the list if the block device is congested. This way, multiple devices
253 * can make progress from a single worker thread.
254 */
143bede5 255static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
256{
257 struct bio *pending;
258 struct backing_dev_info *bdi;
b64a2851 259 struct btrfs_fs_info *fs_info;
ffbd517d 260 struct btrfs_pending_bios *pending_bios;
8b712842
CM
261 struct bio *tail;
262 struct bio *cur;
263 int again = 0;
ffbd517d 264 unsigned long num_run;
d644d8a1 265 unsigned long batch_run = 0;
b64a2851 266 unsigned long limit;
b765ead5 267 unsigned long last_waited = 0;
d84275c9 268 int force_reg = 0;
0e588859 269 int sync_pending = 0;
211588ad
CM
270 struct blk_plug plug;
271
272 /*
273 * this function runs all the bios we've collected for
274 * a particular device. We don't want to wander off to
275 * another device without first sending all of these down.
276 * So, setup a plug here and finish it off before we return
277 */
278 blk_start_plug(&plug);
8b712842 279
bedf762b 280 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
281 fs_info = device->dev_root->fs_info;
282 limit = btrfs_async_submit_limit(fs_info);
283 limit = limit * 2 / 3;
284
8b712842
CM
285loop:
286 spin_lock(&device->io_lock);
287
a6837051 288loop_lock:
d84275c9 289 num_run = 0;
ffbd517d 290
8b712842
CM
291 /* take all the bios off the list at once and process them
292 * later on (without the lock held). But, remember the
293 * tail and other pointers so the bios can be properly reinserted
294 * into the list if we hit congestion
295 */
d84275c9 296 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 297 pending_bios = &device->pending_sync_bios;
d84275c9
CM
298 force_reg = 1;
299 } else {
ffbd517d 300 pending_bios = &device->pending_bios;
d84275c9
CM
301 force_reg = 0;
302 }
ffbd517d
CM
303
304 pending = pending_bios->head;
305 tail = pending_bios->tail;
8b712842 306 WARN_ON(pending && !tail);
8b712842
CM
307
308 /*
309 * if pending was null this time around, no bios need processing
310 * at all and we can stop. Otherwise it'll loop back up again
311 * and do an additional check so no bios are missed.
312 *
313 * device->running_pending is used to synchronize with the
314 * schedule_bio code.
315 */
ffbd517d
CM
316 if (device->pending_sync_bios.head == NULL &&
317 device->pending_bios.head == NULL) {
8b712842
CM
318 again = 0;
319 device->running_pending = 0;
ffbd517d
CM
320 } else {
321 again = 1;
322 device->running_pending = 1;
8b712842 323 }
ffbd517d
CM
324
325 pending_bios->head = NULL;
326 pending_bios->tail = NULL;
327
8b712842
CM
328 spin_unlock(&device->io_lock);
329
d397712b 330 while (pending) {
ffbd517d
CM
331
332 rmb();
d84275c9
CM
333 /* we want to work on both lists, but do more bios on the
334 * sync list than the regular list
335 */
336 if ((num_run > 32 &&
337 pending_bios != &device->pending_sync_bios &&
338 device->pending_sync_bios.head) ||
339 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
340 device->pending_bios.head)) {
ffbd517d
CM
341 spin_lock(&device->io_lock);
342 requeue_list(pending_bios, pending, tail);
343 goto loop_lock;
344 }
345
8b712842
CM
346 cur = pending;
347 pending = pending->bi_next;
348 cur->bi_next = NULL;
b64a2851 349
66657b31 350 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
351 waitqueue_active(&fs_info->async_submit_wait))
352 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
353
354 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 355
2ab1ba68
CM
356 /*
357 * if we're doing the sync list, record that our
358 * plug has some sync requests on it
359 *
360 * If we're doing the regular list and there are
361 * sync requests sitting around, unplug before
362 * we add more
363 */
364 if (pending_bios == &device->pending_sync_bios) {
365 sync_pending = 1;
366 } else if (sync_pending) {
367 blk_finish_plug(&plug);
368 blk_start_plug(&plug);
369 sync_pending = 0;
370 }
371
21adbd5c 372 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
373 num_run++;
374 batch_run++;
7eaceacc 375 if (need_resched())
ffbd517d 376 cond_resched();
8b712842
CM
377
378 /*
379 * we made progress, there is more work to do and the bdi
380 * is now congested. Back off and let other work structs
381 * run instead
382 */
57fd5a5f 383 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 384 fs_info->fs_devices->open_devices > 1) {
b765ead5 385 struct io_context *ioc;
8b712842 386
b765ead5
CM
387 ioc = current->io_context;
388
389 /*
390 * the main goal here is that we don't want to
391 * block if we're going to be able to submit
392 * more requests without blocking.
393 *
394 * This code does two great things, it pokes into
395 * the elevator code from a filesystem _and_
396 * it makes assumptions about how batching works.
397 */
398 if (ioc && ioc->nr_batch_requests > 0 &&
399 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
400 (last_waited == 0 ||
401 ioc->last_waited == last_waited)) {
402 /*
403 * we want to go through our batch of
404 * requests and stop. So, we copy out
405 * the ioc->last_waited time and test
406 * against it before looping
407 */
408 last_waited = ioc->last_waited;
7eaceacc 409 if (need_resched())
ffbd517d 410 cond_resched();
b765ead5
CM
411 continue;
412 }
8b712842 413 spin_lock(&device->io_lock);
ffbd517d 414 requeue_list(pending_bios, pending, tail);
a6837051 415 device->running_pending = 1;
8b712842
CM
416
417 spin_unlock(&device->io_lock);
a8c93d4e
QW
418 btrfs_queue_work(fs_info->submit_workers,
419 &device->work);
8b712842
CM
420 goto done;
421 }
d85c8a6f
CM
422 /* unplug every 64 requests just for good measure */
423 if (batch_run % 64 == 0) {
424 blk_finish_plug(&plug);
425 blk_start_plug(&plug);
426 sync_pending = 0;
427 }
8b712842 428 }
ffbd517d 429
51684082
CM
430 cond_resched();
431 if (again)
432 goto loop;
433
434 spin_lock(&device->io_lock);
435 if (device->pending_bios.head || device->pending_sync_bios.head)
436 goto loop_lock;
437 spin_unlock(&device->io_lock);
438
8b712842 439done:
211588ad 440 blk_finish_plug(&plug);
8b712842
CM
441}
442
b2950863 443static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
444{
445 struct btrfs_device *device;
446
447 device = container_of(work, struct btrfs_device, work);
448 run_scheduled_bios(device);
449}
450
60999ca4
DS
451/*
452 * Add new device to list of registered devices
453 *
454 * Returns:
455 * 1 - first time device is seen
456 * 0 - device already known
457 * < 0 - error
458 */
a1b32a59 459static noinline int device_list_add(const char *path,
8a4b83cc
CM
460 struct btrfs_super_block *disk_super,
461 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
462{
463 struct btrfs_device *device;
464 struct btrfs_fs_devices *fs_devices;
606686ee 465 struct rcu_string *name;
60999ca4 466 int ret = 0;
8a4b83cc
CM
467 u64 found_transid = btrfs_super_generation(disk_super);
468
469 fs_devices = find_fsid(disk_super->fsid);
470 if (!fs_devices) {
2208a378
ID
471 fs_devices = alloc_fs_devices(disk_super->fsid);
472 if (IS_ERR(fs_devices))
473 return PTR_ERR(fs_devices);
474
8a4b83cc 475 list_add(&fs_devices->list, &fs_uuids);
8a4b83cc
CM
476 fs_devices->latest_devid = devid;
477 fs_devices->latest_trans = found_transid;
2208a378 478
8a4b83cc
CM
479 device = NULL;
480 } else {
a443755f
CM
481 device = __find_device(&fs_devices->devices, devid,
482 disk_super->dev_item.uuid);
8a4b83cc
CM
483 }
484 if (!device) {
2b82032c
YZ
485 if (fs_devices->opened)
486 return -EBUSY;
487
12bd2fc0
ID
488 device = btrfs_alloc_device(NULL, &devid,
489 disk_super->dev_item.uuid);
490 if (IS_ERR(device)) {
8a4b83cc 491 /* we can safely leave the fs_devices entry around */
12bd2fc0 492 return PTR_ERR(device);
8a4b83cc 493 }
606686ee
JB
494
495 name = rcu_string_strdup(path, GFP_NOFS);
496 if (!name) {
8a4b83cc
CM
497 kfree(device);
498 return -ENOMEM;
499 }
606686ee 500 rcu_assign_pointer(device->name, name);
90519d66 501
e5e9a520 502 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 503 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 504 fs_devices->num_devices++;
e5e9a520
CM
505 mutex_unlock(&fs_devices->device_list_mutex);
506
60999ca4 507 ret = 1;
2b82032c 508 device->fs_devices = fs_devices;
606686ee
JB
509 } else if (!device->name || strcmp(device->name->str, path)) {
510 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
511 if (!name)
512 return -ENOMEM;
606686ee
JB
513 rcu_string_free(device->name);
514 rcu_assign_pointer(device->name, name);
cd02dca5
CM
515 if (device->missing) {
516 fs_devices->missing_devices--;
517 device->missing = 0;
518 }
8a4b83cc
CM
519 }
520
521 if (found_transid > fs_devices->latest_trans) {
522 fs_devices->latest_devid = devid;
523 fs_devices->latest_trans = found_transid;
524 }
8a4b83cc 525 *fs_devices_ret = fs_devices;
60999ca4
DS
526
527 return ret;
8a4b83cc
CM
528}
529
e4404d6e
YZ
530static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
531{
532 struct btrfs_fs_devices *fs_devices;
533 struct btrfs_device *device;
534 struct btrfs_device *orig_dev;
535
2208a378
ID
536 fs_devices = alloc_fs_devices(orig->fsid);
537 if (IS_ERR(fs_devices))
538 return fs_devices;
e4404d6e 539
e4404d6e
YZ
540 fs_devices->latest_devid = orig->latest_devid;
541 fs_devices->latest_trans = orig->latest_trans;
02db0844 542 fs_devices->total_devices = orig->total_devices;
e4404d6e 543
46224705 544 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 545 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
546 struct rcu_string *name;
547
12bd2fc0
ID
548 device = btrfs_alloc_device(NULL, &orig_dev->devid,
549 orig_dev->uuid);
550 if (IS_ERR(device))
e4404d6e
YZ
551 goto error;
552
606686ee
JB
553 /*
554 * This is ok to do without rcu read locked because we hold the
555 * uuid mutex so nothing we touch in here is going to disappear.
556 */
557 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
558 if (!name) {
fd2696f3 559 kfree(device);
e4404d6e 560 goto error;
fd2696f3 561 }
606686ee 562 rcu_assign_pointer(device->name, name);
e4404d6e 563
e4404d6e
YZ
564 list_add(&device->dev_list, &fs_devices->devices);
565 device->fs_devices = fs_devices;
566 fs_devices->num_devices++;
567 }
568 return fs_devices;
569error:
570 free_fs_devices(fs_devices);
571 return ERR_PTR(-ENOMEM);
572}
573
8dabb742
SB
574void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
575 struct btrfs_fs_devices *fs_devices, int step)
dfe25020 576{
c6e30871 577 struct btrfs_device *device, *next;
dfe25020 578
a6b0d5c8
CM
579 struct block_device *latest_bdev = NULL;
580 u64 latest_devid = 0;
581 u64 latest_transid = 0;
582
dfe25020
CM
583 mutex_lock(&uuid_mutex);
584again:
46224705 585 /* This is the initialized path, it is safe to release the devices. */
c6e30871 586 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 587 if (device->in_fs_metadata) {
63a212ab
SB
588 if (!device->is_tgtdev_for_dev_replace &&
589 (!latest_transid ||
590 device->generation > latest_transid)) {
a6b0d5c8
CM
591 latest_devid = device->devid;
592 latest_transid = device->generation;
593 latest_bdev = device->bdev;
594 }
2b82032c 595 continue;
a6b0d5c8 596 }
2b82032c 597
8dabb742
SB
598 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
599 /*
600 * In the first step, keep the device which has
601 * the correct fsid and the devid that is used
602 * for the dev_replace procedure.
603 * In the second step, the dev_replace state is
604 * read from the device tree and it is known
605 * whether the procedure is really active or
606 * not, which means whether this device is
607 * used or whether it should be removed.
608 */
609 if (step == 0 || device->is_tgtdev_for_dev_replace) {
610 continue;
611 }
612 }
2b82032c 613 if (device->bdev) {
d4d77629 614 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
615 device->bdev = NULL;
616 fs_devices->open_devices--;
617 }
618 if (device->writeable) {
619 list_del_init(&device->dev_alloc_list);
620 device->writeable = 0;
8dabb742
SB
621 if (!device->is_tgtdev_for_dev_replace)
622 fs_devices->rw_devices--;
2b82032c 623 }
e4404d6e
YZ
624 list_del_init(&device->dev_list);
625 fs_devices->num_devices--;
606686ee 626 rcu_string_free(device->name);
e4404d6e 627 kfree(device);
dfe25020 628 }
2b82032c
YZ
629
630 if (fs_devices->seed) {
631 fs_devices = fs_devices->seed;
2b82032c
YZ
632 goto again;
633 }
634
a6b0d5c8
CM
635 fs_devices->latest_bdev = latest_bdev;
636 fs_devices->latest_devid = latest_devid;
637 fs_devices->latest_trans = latest_transid;
638
dfe25020 639 mutex_unlock(&uuid_mutex);
dfe25020 640}
a0af469b 641
1f78160c
XG
642static void __free_device(struct work_struct *work)
643{
644 struct btrfs_device *device;
645
646 device = container_of(work, struct btrfs_device, rcu_work);
647
648 if (device->bdev)
649 blkdev_put(device->bdev, device->mode);
650
606686ee 651 rcu_string_free(device->name);
1f78160c
XG
652 kfree(device);
653}
654
655static void free_device(struct rcu_head *head)
656{
657 struct btrfs_device *device;
658
659 device = container_of(head, struct btrfs_device, rcu);
660
661 INIT_WORK(&device->rcu_work, __free_device);
662 schedule_work(&device->rcu_work);
663}
664
2b82032c 665static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 666{
8a4b83cc 667 struct btrfs_device *device;
e4404d6e 668
2b82032c
YZ
669 if (--fs_devices->opened > 0)
670 return 0;
8a4b83cc 671
c9513edb 672 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 673 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c 674 struct btrfs_device *new_device;
606686ee 675 struct rcu_string *name;
1f78160c
XG
676
677 if (device->bdev)
a0af469b 678 fs_devices->open_devices--;
1f78160c 679
f747cab7
ID
680 if (device->writeable &&
681 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
682 list_del_init(&device->dev_alloc_list);
683 fs_devices->rw_devices--;
684 }
685
d5e2003c
JB
686 if (device->can_discard)
687 fs_devices->num_can_discard--;
726551eb
JB
688 if (device->missing)
689 fs_devices->missing_devices--;
d5e2003c 690
a1e8780a
ID
691 new_device = btrfs_alloc_device(NULL, &device->devid,
692 device->uuid);
693 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
606686ee
JB
694
695 /* Safe because we are under uuid_mutex */
99f5944b
JB
696 if (device->name) {
697 name = rcu_string_strdup(device->name->str, GFP_NOFS);
a1e8780a 698 BUG_ON(!name); /* -ENOMEM */
99f5944b
JB
699 rcu_assign_pointer(new_device->name, name);
700 }
a1e8780a 701
1f78160c 702 list_replace_rcu(&device->dev_list, &new_device->dev_list);
a1e8780a 703 new_device->fs_devices = device->fs_devices;
1f78160c
XG
704
705 call_rcu(&device->rcu, free_device);
8a4b83cc 706 }
c9513edb
XG
707 mutex_unlock(&fs_devices->device_list_mutex);
708
e4404d6e
YZ
709 WARN_ON(fs_devices->open_devices);
710 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
711 fs_devices->opened = 0;
712 fs_devices->seeding = 0;
2b82032c 713
8a4b83cc
CM
714 return 0;
715}
716
2b82032c
YZ
717int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
718{
e4404d6e 719 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
720 int ret;
721
722 mutex_lock(&uuid_mutex);
723 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
724 if (!fs_devices->opened) {
725 seed_devices = fs_devices->seed;
726 fs_devices->seed = NULL;
727 }
2b82032c 728 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
729
730 while (seed_devices) {
731 fs_devices = seed_devices;
732 seed_devices = fs_devices->seed;
733 __btrfs_close_devices(fs_devices);
734 free_fs_devices(fs_devices);
735 }
bc178622
ES
736 /*
737 * Wait for rcu kworkers under __btrfs_close_devices
738 * to finish all blkdev_puts so device is really
739 * free when umount is done.
740 */
741 rcu_barrier();
2b82032c
YZ
742 return ret;
743}
744
e4404d6e
YZ
745static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
746 fmode_t flags, void *holder)
8a4b83cc 747{
d5e2003c 748 struct request_queue *q;
8a4b83cc
CM
749 struct block_device *bdev;
750 struct list_head *head = &fs_devices->devices;
8a4b83cc 751 struct btrfs_device *device;
a0af469b
CM
752 struct block_device *latest_bdev = NULL;
753 struct buffer_head *bh;
754 struct btrfs_super_block *disk_super;
755 u64 latest_devid = 0;
756 u64 latest_transid = 0;
a0af469b 757 u64 devid;
2b82032c 758 int seeding = 1;
a0af469b 759 int ret = 0;
8a4b83cc 760
d4d77629
TH
761 flags |= FMODE_EXCL;
762
c6e30871 763 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
764 if (device->bdev)
765 continue;
dfe25020
CM
766 if (!device->name)
767 continue;
768
f63e0cca
ES
769 /* Just open everything we can; ignore failures here */
770 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
771 &bdev, &bh))
beaf8ab3 772 continue;
a0af469b
CM
773
774 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 775 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
776 if (devid != device->devid)
777 goto error_brelse;
778
2b82032c
YZ
779 if (memcmp(device->uuid, disk_super->dev_item.uuid,
780 BTRFS_UUID_SIZE))
781 goto error_brelse;
782
783 device->generation = btrfs_super_generation(disk_super);
784 if (!latest_transid || device->generation > latest_transid) {
a0af469b 785 latest_devid = devid;
2b82032c 786 latest_transid = device->generation;
a0af469b
CM
787 latest_bdev = bdev;
788 }
789
2b82032c
YZ
790 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
791 device->writeable = 0;
792 } else {
793 device->writeable = !bdev_read_only(bdev);
794 seeding = 0;
795 }
796
d5e2003c
JB
797 q = bdev_get_queue(bdev);
798 if (blk_queue_discard(q)) {
799 device->can_discard = 1;
800 fs_devices->num_can_discard++;
801 }
802
8a4b83cc 803 device->bdev = bdev;
dfe25020 804 device->in_fs_metadata = 0;
15916de8
CM
805 device->mode = flags;
806
c289811c
CM
807 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
808 fs_devices->rotating = 1;
809
a0af469b 810 fs_devices->open_devices++;
55e50e45
ID
811 if (device->writeable &&
812 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
813 fs_devices->rw_devices++;
814 list_add(&device->dev_alloc_list,
815 &fs_devices->alloc_list);
816 }
4f6c9328 817 brelse(bh);
a0af469b 818 continue;
a061fc8d 819
a0af469b
CM
820error_brelse:
821 brelse(bh);
d4d77629 822 blkdev_put(bdev, flags);
a0af469b 823 continue;
8a4b83cc 824 }
a0af469b 825 if (fs_devices->open_devices == 0) {
20bcd649 826 ret = -EINVAL;
a0af469b
CM
827 goto out;
828 }
2b82032c
YZ
829 fs_devices->seeding = seeding;
830 fs_devices->opened = 1;
a0af469b
CM
831 fs_devices->latest_bdev = latest_bdev;
832 fs_devices->latest_devid = latest_devid;
833 fs_devices->latest_trans = latest_transid;
2b82032c 834 fs_devices->total_rw_bytes = 0;
a0af469b 835out:
2b82032c
YZ
836 return ret;
837}
838
839int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 840 fmode_t flags, void *holder)
2b82032c
YZ
841{
842 int ret;
843
844 mutex_lock(&uuid_mutex);
845 if (fs_devices->opened) {
e4404d6e
YZ
846 fs_devices->opened++;
847 ret = 0;
2b82032c 848 } else {
15916de8 849 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 850 }
8a4b83cc 851 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
852 return ret;
853}
854
6f60cbd3
DS
855/*
856 * Look for a btrfs signature on a device. This may be called out of the mount path
857 * and we are not allowed to call set_blocksize during the scan. The superblock
858 * is read via pagecache
859 */
97288f2c 860int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
861 struct btrfs_fs_devices **fs_devices_ret)
862{
863 struct btrfs_super_block *disk_super;
864 struct block_device *bdev;
6f60cbd3
DS
865 struct page *page;
866 void *p;
867 int ret = -EINVAL;
8a4b83cc 868 u64 devid;
f2984462 869 u64 transid;
02db0844 870 u64 total_devices;
6f60cbd3
DS
871 u64 bytenr;
872 pgoff_t index;
8a4b83cc 873
6f60cbd3
DS
874 /*
875 * we would like to check all the supers, but that would make
876 * a btrfs mount succeed after a mkfs from a different FS.
877 * So, we need to add a special mount option to scan for
878 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
879 */
880 bytenr = btrfs_sb_offset(0);
d4d77629 881 flags |= FMODE_EXCL;
10f6327b 882 mutex_lock(&uuid_mutex);
6f60cbd3
DS
883
884 bdev = blkdev_get_by_path(path, flags, holder);
885
886 if (IS_ERR(bdev)) {
887 ret = PTR_ERR(bdev);
beaf8ab3 888 goto error;
6f60cbd3
DS
889 }
890
891 /* make sure our super fits in the device */
892 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
893 goto error_bdev_put;
894
895 /* make sure our super fits in the page */
896 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
897 goto error_bdev_put;
898
899 /* make sure our super doesn't straddle pages on disk */
900 index = bytenr >> PAGE_CACHE_SHIFT;
901 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
902 goto error_bdev_put;
903
904 /* pull in the page with our super */
905 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
906 index, GFP_NOFS);
907
908 if (IS_ERR_OR_NULL(page))
909 goto error_bdev_put;
910
911 p = kmap(page);
912
913 /* align our pointer to the offset of the super block */
914 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
915
916 if (btrfs_super_bytenr(disk_super) != bytenr ||
3cae210f 917 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
6f60cbd3
DS
918 goto error_unmap;
919
a343832f 920 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 921 transid = btrfs_super_generation(disk_super);
02db0844 922 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 923
8a4b83cc 924 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
925 if (ret > 0) {
926 if (disk_super->label[0]) {
927 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
928 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
929 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
930 } else {
931 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
932 }
933
934 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
935 ret = 0;
936 }
02db0844
JB
937 if (!ret && fs_devices_ret)
938 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3
DS
939
940error_unmap:
941 kunmap(page);
942 page_cache_release(page);
943
944error_bdev_put:
d4d77629 945 blkdev_put(bdev, flags);
8a4b83cc 946error:
beaf8ab3 947 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
948 return ret;
949}
0b86a832 950
6d07bcec
MX
951/* helper to account the used device space in the range */
952int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
953 u64 end, u64 *length)
954{
955 struct btrfs_key key;
956 struct btrfs_root *root = device->dev_root;
957 struct btrfs_dev_extent *dev_extent;
958 struct btrfs_path *path;
959 u64 extent_end;
960 int ret;
961 int slot;
962 struct extent_buffer *l;
963
964 *length = 0;
965
63a212ab 966 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
967 return 0;
968
969 path = btrfs_alloc_path();
970 if (!path)
971 return -ENOMEM;
972 path->reada = 2;
973
974 key.objectid = device->devid;
975 key.offset = start;
976 key.type = BTRFS_DEV_EXTENT_KEY;
977
978 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
979 if (ret < 0)
980 goto out;
981 if (ret > 0) {
982 ret = btrfs_previous_item(root, path, key.objectid, key.type);
983 if (ret < 0)
984 goto out;
985 }
986
987 while (1) {
988 l = path->nodes[0];
989 slot = path->slots[0];
990 if (slot >= btrfs_header_nritems(l)) {
991 ret = btrfs_next_leaf(root, path);
992 if (ret == 0)
993 continue;
994 if (ret < 0)
995 goto out;
996
997 break;
998 }
999 btrfs_item_key_to_cpu(l, &key, slot);
1000
1001 if (key.objectid < device->devid)
1002 goto next;
1003
1004 if (key.objectid > device->devid)
1005 break;
1006
1007 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1008 goto next;
1009
1010 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1011 extent_end = key.offset + btrfs_dev_extent_length(l,
1012 dev_extent);
1013 if (key.offset <= start && extent_end > end) {
1014 *length = end - start + 1;
1015 break;
1016 } else if (key.offset <= start && extent_end > start)
1017 *length += extent_end - start;
1018 else if (key.offset > start && extent_end <= end)
1019 *length += extent_end - key.offset;
1020 else if (key.offset > start && key.offset <= end) {
1021 *length += end - key.offset + 1;
1022 break;
1023 } else if (key.offset > end)
1024 break;
1025
1026next:
1027 path->slots[0]++;
1028 }
1029 ret = 0;
1030out:
1031 btrfs_free_path(path);
1032 return ret;
1033}
1034
6df9a95e
JB
1035static int contains_pending_extent(struct btrfs_trans_handle *trans,
1036 struct btrfs_device *device,
1037 u64 *start, u64 len)
1038{
1039 struct extent_map *em;
1040 int ret = 0;
1041
1042 list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1043 struct map_lookup *map;
1044 int i;
1045
1046 map = (struct map_lookup *)em->bdev;
1047 for (i = 0; i < map->num_stripes; i++) {
1048 if (map->stripes[i].dev != device)
1049 continue;
1050 if (map->stripes[i].physical >= *start + len ||
1051 map->stripes[i].physical + em->orig_block_len <=
1052 *start)
1053 continue;
1054 *start = map->stripes[i].physical +
1055 em->orig_block_len;
1056 ret = 1;
1057 }
1058 }
1059
1060 return ret;
1061}
1062
1063
0b86a832 1064/*
7bfc837d 1065 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
1066 * @device: the device which we search the free space in
1067 * @num_bytes: the size of the free space that we need
1068 * @start: store the start of the free space.
1069 * @len: the size of the free space. that we find, or the size of the max
1070 * free space if we don't find suitable free space
1071 *
0b86a832
CM
1072 * this uses a pretty simple search, the expectation is that it is
1073 * called very infrequently and that a given device has a small number
1074 * of extents
7bfc837d
MX
1075 *
1076 * @start is used to store the start of the free space if we find. But if we
1077 * don't find suitable free space, it will be used to store the start position
1078 * of the max free space.
1079 *
1080 * @len is used to store the size of the free space that we find.
1081 * But if we don't find suitable free space, it is used to store the size of
1082 * the max free space.
0b86a832 1083 */
6df9a95e
JB
1084int find_free_dev_extent(struct btrfs_trans_handle *trans,
1085 struct btrfs_device *device, u64 num_bytes,
7bfc837d 1086 u64 *start, u64 *len)
0b86a832
CM
1087{
1088 struct btrfs_key key;
1089 struct btrfs_root *root = device->dev_root;
7bfc837d 1090 struct btrfs_dev_extent *dev_extent;
2b82032c 1091 struct btrfs_path *path;
7bfc837d
MX
1092 u64 hole_size;
1093 u64 max_hole_start;
1094 u64 max_hole_size;
1095 u64 extent_end;
1096 u64 search_start;
0b86a832
CM
1097 u64 search_end = device->total_bytes;
1098 int ret;
7bfc837d 1099 int slot;
0b86a832
CM
1100 struct extent_buffer *l;
1101
0b86a832
CM
1102 /* FIXME use last free of some kind */
1103
8a4b83cc
CM
1104 /* we don't want to overwrite the superblock on the drive,
1105 * so we make sure to start at an offset of at least 1MB
1106 */
a9c9bf68 1107 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 1108
6df9a95e
JB
1109 path = btrfs_alloc_path();
1110 if (!path)
1111 return -ENOMEM;
1112again:
7bfc837d
MX
1113 max_hole_start = search_start;
1114 max_hole_size = 0;
38c01b96 1115 hole_size = 0;
7bfc837d 1116
63a212ab 1117 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1118 ret = -ENOSPC;
6df9a95e 1119 goto out;
7bfc837d
MX
1120 }
1121
7bfc837d 1122 path->reada = 2;
6df9a95e
JB
1123 path->search_commit_root = 1;
1124 path->skip_locking = 1;
7bfc837d 1125
0b86a832
CM
1126 key.objectid = device->devid;
1127 key.offset = search_start;
1128 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1129
125ccb0a 1130 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1131 if (ret < 0)
7bfc837d 1132 goto out;
1fcbac58
YZ
1133 if (ret > 0) {
1134 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1135 if (ret < 0)
7bfc837d 1136 goto out;
1fcbac58 1137 }
7bfc837d 1138
0b86a832
CM
1139 while (1) {
1140 l = path->nodes[0];
1141 slot = path->slots[0];
1142 if (slot >= btrfs_header_nritems(l)) {
1143 ret = btrfs_next_leaf(root, path);
1144 if (ret == 0)
1145 continue;
1146 if (ret < 0)
7bfc837d
MX
1147 goto out;
1148
1149 break;
0b86a832
CM
1150 }
1151 btrfs_item_key_to_cpu(l, &key, slot);
1152
1153 if (key.objectid < device->devid)
1154 goto next;
1155
1156 if (key.objectid > device->devid)
7bfc837d 1157 break;
0b86a832 1158
7bfc837d
MX
1159 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1160 goto next;
9779b72f 1161
7bfc837d
MX
1162 if (key.offset > search_start) {
1163 hole_size = key.offset - search_start;
9779b72f 1164
6df9a95e
JB
1165 /*
1166 * Have to check before we set max_hole_start, otherwise
1167 * we could end up sending back this offset anyway.
1168 */
1169 if (contains_pending_extent(trans, device,
1170 &search_start,
1171 hole_size))
1172 hole_size = 0;
1173
7bfc837d
MX
1174 if (hole_size > max_hole_size) {
1175 max_hole_start = search_start;
1176 max_hole_size = hole_size;
1177 }
9779b72f 1178
7bfc837d
MX
1179 /*
1180 * If this free space is greater than which we need,
1181 * it must be the max free space that we have found
1182 * until now, so max_hole_start must point to the start
1183 * of this free space and the length of this free space
1184 * is stored in max_hole_size. Thus, we return
1185 * max_hole_start and max_hole_size and go back to the
1186 * caller.
1187 */
1188 if (hole_size >= num_bytes) {
1189 ret = 0;
1190 goto out;
0b86a832
CM
1191 }
1192 }
0b86a832 1193
0b86a832 1194 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1195 extent_end = key.offset + btrfs_dev_extent_length(l,
1196 dev_extent);
1197 if (extent_end > search_start)
1198 search_start = extent_end;
0b86a832
CM
1199next:
1200 path->slots[0]++;
1201 cond_resched();
1202 }
0b86a832 1203
38c01b96 1204 /*
1205 * At this point, search_start should be the end of
1206 * allocated dev extents, and when shrinking the device,
1207 * search_end may be smaller than search_start.
1208 */
1209 if (search_end > search_start)
1210 hole_size = search_end - search_start;
1211
7bfc837d
MX
1212 if (hole_size > max_hole_size) {
1213 max_hole_start = search_start;
1214 max_hole_size = hole_size;
0b86a832 1215 }
0b86a832 1216
6df9a95e
JB
1217 if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1218 btrfs_release_path(path);
1219 goto again;
1220 }
1221
7bfc837d
MX
1222 /* See above. */
1223 if (hole_size < num_bytes)
1224 ret = -ENOSPC;
1225 else
1226 ret = 0;
1227
1228out:
2b82032c 1229 btrfs_free_path(path);
7bfc837d 1230 *start = max_hole_start;
b2117a39 1231 if (len)
7bfc837d 1232 *len = max_hole_size;
0b86a832
CM
1233 return ret;
1234}
1235
b2950863 1236static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
1237 struct btrfs_device *device,
1238 u64 start)
1239{
1240 int ret;
1241 struct btrfs_path *path;
1242 struct btrfs_root *root = device->dev_root;
1243 struct btrfs_key key;
a061fc8d
CM
1244 struct btrfs_key found_key;
1245 struct extent_buffer *leaf = NULL;
1246 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1247
1248 path = btrfs_alloc_path();
1249 if (!path)
1250 return -ENOMEM;
1251
1252 key.objectid = device->devid;
1253 key.offset = start;
1254 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1255again:
8f18cf13 1256 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1257 if (ret > 0) {
1258 ret = btrfs_previous_item(root, path, key.objectid,
1259 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1260 if (ret)
1261 goto out;
a061fc8d
CM
1262 leaf = path->nodes[0];
1263 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1264 extent = btrfs_item_ptr(leaf, path->slots[0],
1265 struct btrfs_dev_extent);
1266 BUG_ON(found_key.offset > start || found_key.offset +
1267 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1268 key = found_key;
1269 btrfs_release_path(path);
1270 goto again;
a061fc8d
CM
1271 } else if (ret == 0) {
1272 leaf = path->nodes[0];
1273 extent = btrfs_item_ptr(leaf, path->slots[0],
1274 struct btrfs_dev_extent);
79787eaa
JM
1275 } else {
1276 btrfs_error(root->fs_info, ret, "Slot search failed");
1277 goto out;
a061fc8d 1278 }
8f18cf13 1279
2bf64758
JB
1280 if (device->bytes_used > 0) {
1281 u64 len = btrfs_dev_extent_length(leaf, extent);
1282 device->bytes_used -= len;
1283 spin_lock(&root->fs_info->free_chunk_lock);
1284 root->fs_info->free_chunk_space += len;
1285 spin_unlock(&root->fs_info->free_chunk_lock);
1286 }
8f18cf13 1287 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1288 if (ret) {
1289 btrfs_error(root->fs_info, ret,
1290 "Failed to remove dev extent item");
1291 }
b0b802d7 1292out:
8f18cf13
CM
1293 btrfs_free_path(path);
1294 return ret;
1295}
1296
48a3b636
ES
1297static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1298 struct btrfs_device *device,
1299 u64 chunk_tree, u64 chunk_objectid,
1300 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1301{
1302 int ret;
1303 struct btrfs_path *path;
1304 struct btrfs_root *root = device->dev_root;
1305 struct btrfs_dev_extent *extent;
1306 struct extent_buffer *leaf;
1307 struct btrfs_key key;
1308
dfe25020 1309 WARN_ON(!device->in_fs_metadata);
63a212ab 1310 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1311 path = btrfs_alloc_path();
1312 if (!path)
1313 return -ENOMEM;
1314
0b86a832 1315 key.objectid = device->devid;
2b82032c 1316 key.offset = start;
0b86a832
CM
1317 key.type = BTRFS_DEV_EXTENT_KEY;
1318 ret = btrfs_insert_empty_item(trans, root, path, &key,
1319 sizeof(*extent));
2cdcecbc
MF
1320 if (ret)
1321 goto out;
0b86a832
CM
1322
1323 leaf = path->nodes[0];
1324 extent = btrfs_item_ptr(leaf, path->slots[0],
1325 struct btrfs_dev_extent);
e17cade2
CM
1326 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1327 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1328 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1329
1330 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1331 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1332
0b86a832
CM
1333 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1334 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1335out:
0b86a832
CM
1336 btrfs_free_path(path);
1337 return ret;
1338}
1339
6df9a95e 1340static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1341{
6df9a95e
JB
1342 struct extent_map_tree *em_tree;
1343 struct extent_map *em;
1344 struct rb_node *n;
1345 u64 ret = 0;
0b86a832 1346
6df9a95e
JB
1347 em_tree = &fs_info->mapping_tree.map_tree;
1348 read_lock(&em_tree->lock);
1349 n = rb_last(&em_tree->map);
1350 if (n) {
1351 em = rb_entry(n, struct extent_map, rb_node);
1352 ret = em->start + em->len;
0b86a832 1353 }
6df9a95e
JB
1354 read_unlock(&em_tree->lock);
1355
0b86a832
CM
1356 return ret;
1357}
1358
53f10659
ID
1359static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1360 u64 *devid_ret)
0b86a832
CM
1361{
1362 int ret;
1363 struct btrfs_key key;
1364 struct btrfs_key found_key;
2b82032c
YZ
1365 struct btrfs_path *path;
1366
2b82032c
YZ
1367 path = btrfs_alloc_path();
1368 if (!path)
1369 return -ENOMEM;
0b86a832
CM
1370
1371 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1372 key.type = BTRFS_DEV_ITEM_KEY;
1373 key.offset = (u64)-1;
1374
53f10659 1375 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1376 if (ret < 0)
1377 goto error;
1378
79787eaa 1379 BUG_ON(ret == 0); /* Corruption */
0b86a832 1380
53f10659
ID
1381 ret = btrfs_previous_item(fs_info->chunk_root, path,
1382 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1383 BTRFS_DEV_ITEM_KEY);
1384 if (ret) {
53f10659 1385 *devid_ret = 1;
0b86a832
CM
1386 } else {
1387 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1388 path->slots[0]);
53f10659 1389 *devid_ret = found_key.offset + 1;
0b86a832
CM
1390 }
1391 ret = 0;
1392error:
2b82032c 1393 btrfs_free_path(path);
0b86a832
CM
1394 return ret;
1395}
1396
1397/*
1398 * the device information is stored in the chunk root
1399 * the btrfs_device struct should be fully filled in
1400 */
48a3b636
ES
1401static int btrfs_add_device(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root,
1403 struct btrfs_device *device)
0b86a832
CM
1404{
1405 int ret;
1406 struct btrfs_path *path;
1407 struct btrfs_dev_item *dev_item;
1408 struct extent_buffer *leaf;
1409 struct btrfs_key key;
1410 unsigned long ptr;
0b86a832
CM
1411
1412 root = root->fs_info->chunk_root;
1413
1414 path = btrfs_alloc_path();
1415 if (!path)
1416 return -ENOMEM;
1417
0b86a832
CM
1418 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1419 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1420 key.offset = device->devid;
0b86a832
CM
1421
1422 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1423 sizeof(*dev_item));
0b86a832
CM
1424 if (ret)
1425 goto out;
1426
1427 leaf = path->nodes[0];
1428 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1429
1430 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1431 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1432 btrfs_set_device_type(leaf, dev_item, device->type);
1433 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1434 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1435 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1436 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1437 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1438 btrfs_set_device_group(leaf, dev_item, 0);
1439 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1440 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1441 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1442
410ba3a2 1443 ptr = btrfs_device_uuid(dev_item);
e17cade2 1444 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1445 ptr = btrfs_device_fsid(dev_item);
2b82032c 1446 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1447 btrfs_mark_buffer_dirty(leaf);
0b86a832 1448
2b82032c 1449 ret = 0;
0b86a832
CM
1450out:
1451 btrfs_free_path(path);
1452 return ret;
1453}
8f18cf13 1454
a061fc8d
CM
1455static int btrfs_rm_dev_item(struct btrfs_root *root,
1456 struct btrfs_device *device)
1457{
1458 int ret;
1459 struct btrfs_path *path;
a061fc8d 1460 struct btrfs_key key;
a061fc8d
CM
1461 struct btrfs_trans_handle *trans;
1462
1463 root = root->fs_info->chunk_root;
1464
1465 path = btrfs_alloc_path();
1466 if (!path)
1467 return -ENOMEM;
1468
a22285a6 1469 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1470 if (IS_ERR(trans)) {
1471 btrfs_free_path(path);
1472 return PTR_ERR(trans);
1473 }
a061fc8d
CM
1474 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1475 key.type = BTRFS_DEV_ITEM_KEY;
1476 key.offset = device->devid;
7d9eb12c 1477 lock_chunks(root);
a061fc8d
CM
1478
1479 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1480 if (ret < 0)
1481 goto out;
1482
1483 if (ret > 0) {
1484 ret = -ENOENT;
1485 goto out;
1486 }
1487
1488 ret = btrfs_del_item(trans, root, path);
1489 if (ret)
1490 goto out;
a061fc8d
CM
1491out:
1492 btrfs_free_path(path);
7d9eb12c 1493 unlock_chunks(root);
a061fc8d
CM
1494 btrfs_commit_transaction(trans, root);
1495 return ret;
1496}
1497
1498int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1499{
1500 struct btrfs_device *device;
2b82032c 1501 struct btrfs_device *next_device;
a061fc8d 1502 struct block_device *bdev;
dfe25020 1503 struct buffer_head *bh = NULL;
a061fc8d 1504 struct btrfs_super_block *disk_super;
1f78160c 1505 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1506 u64 all_avail;
1507 u64 devid;
2b82032c
YZ
1508 u64 num_devices;
1509 u8 *dev_uuid;
de98ced9 1510 unsigned seq;
a061fc8d 1511 int ret = 0;
1f78160c 1512 bool clear_super = false;
a061fc8d 1513
a061fc8d
CM
1514 mutex_lock(&uuid_mutex);
1515
de98ced9
MX
1516 do {
1517 seq = read_seqbegin(&root->fs_info->profiles_lock);
1518
1519 all_avail = root->fs_info->avail_data_alloc_bits |
1520 root->fs_info->avail_system_alloc_bits |
1521 root->fs_info->avail_metadata_alloc_bits;
1522 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
a061fc8d 1523
8dabb742
SB
1524 num_devices = root->fs_info->fs_devices->num_devices;
1525 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1526 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1527 WARN_ON(num_devices < 1);
1528 num_devices--;
1529 }
1530 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1531
1532 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
183860f6 1533 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
a061fc8d
CM
1534 goto out;
1535 }
1536
8dabb742 1537 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
183860f6 1538 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
a061fc8d
CM
1539 goto out;
1540 }
1541
53b381b3
DW
1542 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1543 root->fs_info->fs_devices->rw_devices <= 2) {
183860f6 1544 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
53b381b3
DW
1545 goto out;
1546 }
1547 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1548 root->fs_info->fs_devices->rw_devices <= 3) {
183860f6 1549 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
53b381b3
DW
1550 goto out;
1551 }
1552
dfe25020 1553 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1554 struct list_head *devices;
1555 struct btrfs_device *tmp;
a061fc8d 1556
dfe25020
CM
1557 device = NULL;
1558 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1559 /*
1560 * It is safe to read the devices since the volume_mutex
1561 * is held.
1562 */
c6e30871 1563 list_for_each_entry(tmp, devices, dev_list) {
63a212ab
SB
1564 if (tmp->in_fs_metadata &&
1565 !tmp->is_tgtdev_for_dev_replace &&
1566 !tmp->bdev) {
dfe25020
CM
1567 device = tmp;
1568 break;
1569 }
1570 }
1571 bdev = NULL;
1572 bh = NULL;
1573 disk_super = NULL;
1574 if (!device) {
183860f6 1575 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
dfe25020
CM
1576 goto out;
1577 }
dfe25020 1578 } else {
beaf8ab3 1579 ret = btrfs_get_bdev_and_sb(device_path,
cc975eb4 1580 FMODE_WRITE | FMODE_EXCL,
beaf8ab3
SB
1581 root->fs_info->bdev_holder, 0,
1582 &bdev, &bh);
1583 if (ret)
dfe25020 1584 goto out;
dfe25020 1585 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1586 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c 1587 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1588 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2b82032c 1589 disk_super->fsid);
dfe25020
CM
1590 if (!device) {
1591 ret = -ENOENT;
1592 goto error_brelse;
1593 }
2b82032c 1594 }
dfe25020 1595
63a212ab 1596 if (device->is_tgtdev_for_dev_replace) {
183860f6 1597 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab
SB
1598 goto error_brelse;
1599 }
1600
2b82032c 1601 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1602 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c
YZ
1603 goto error_brelse;
1604 }
1605
1606 if (device->writeable) {
0c1daee0 1607 lock_chunks(root);
2b82032c 1608 list_del_init(&device->dev_alloc_list);
0c1daee0 1609 unlock_chunks(root);
2b82032c 1610 root->fs_info->fs_devices->rw_devices--;
1f78160c 1611 clear_super = true;
dfe25020 1612 }
a061fc8d 1613
d7901554 1614 mutex_unlock(&uuid_mutex);
a061fc8d 1615 ret = btrfs_shrink_device(device, 0);
d7901554 1616 mutex_lock(&uuid_mutex);
a061fc8d 1617 if (ret)
9b3517e9 1618 goto error_undo;
a061fc8d 1619
63a212ab
SB
1620 /*
1621 * TODO: the superblock still includes this device in its num_devices
1622 * counter although write_all_supers() is not locked out. This
1623 * could give a filesystem state which requires a degraded mount.
1624 */
a061fc8d
CM
1625 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1626 if (ret)
9b3517e9 1627 goto error_undo;
a061fc8d 1628
2bf64758
JB
1629 spin_lock(&root->fs_info->free_chunk_lock);
1630 root->fs_info->free_chunk_space = device->total_bytes -
1631 device->bytes_used;
1632 spin_unlock(&root->fs_info->free_chunk_lock);
1633
2b82032c 1634 device->in_fs_metadata = 0;
aa1b8cd4 1635 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1636
1637 /*
1638 * the device list mutex makes sure that we don't change
1639 * the device list while someone else is writing out all
d7306801
FDBM
1640 * the device supers. Whoever is writing all supers, should
1641 * lock the device list mutex before getting the number of
1642 * devices in the super block (super_copy). Conversely,
1643 * whoever updates the number of devices in the super block
1644 * (super_copy) should hold the device list mutex.
e5e9a520 1645 */
1f78160c
XG
1646
1647 cur_devices = device->fs_devices;
e5e9a520 1648 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1649 list_del_rcu(&device->dev_list);
e5e9a520 1650
e4404d6e 1651 device->fs_devices->num_devices--;
02db0844 1652 device->fs_devices->total_devices--;
2b82032c 1653
cd02dca5
CM
1654 if (device->missing)
1655 root->fs_info->fs_devices->missing_devices--;
1656
2b82032c
YZ
1657 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1658 struct btrfs_device, dev_list);
1659 if (device->bdev == root->fs_info->sb->s_bdev)
1660 root->fs_info->sb->s_bdev = next_device->bdev;
1661 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1662 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1663
1f78160c 1664 if (device->bdev)
e4404d6e 1665 device->fs_devices->open_devices--;
1f78160c
XG
1666
1667 call_rcu(&device->rcu, free_device);
e4404d6e 1668
6c41761f
DS
1669 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1670 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
d7306801 1671 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c 1672
1f78160c 1673 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1674 struct btrfs_fs_devices *fs_devices;
1675 fs_devices = root->fs_info->fs_devices;
1676 while (fs_devices) {
1f78160c 1677 if (fs_devices->seed == cur_devices)
e4404d6e
YZ
1678 break;
1679 fs_devices = fs_devices->seed;
2b82032c 1680 }
1f78160c
XG
1681 fs_devices->seed = cur_devices->seed;
1682 cur_devices->seed = NULL;
0c1daee0 1683 lock_chunks(root);
1f78160c 1684 __btrfs_close_devices(cur_devices);
0c1daee0 1685 unlock_chunks(root);
1f78160c 1686 free_fs_devices(cur_devices);
2b82032c
YZ
1687 }
1688
5af3e8cc
SB
1689 root->fs_info->num_tolerated_disk_barrier_failures =
1690 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1691
2b82032c
YZ
1692 /*
1693 * at this point, the device is zero sized. We want to
1694 * remove it from the devices list and zero out the old super
1695 */
aa1b8cd4 1696 if (clear_super && disk_super) {
dfe25020
CM
1697 /* make sure this device isn't detected as part of
1698 * the FS anymore
1699 */
1700 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1701 set_buffer_dirty(bh);
1702 sync_dirty_buffer(bh);
dfe25020 1703 }
a061fc8d 1704
a061fc8d 1705 ret = 0;
a061fc8d 1706
b8b8ff59 1707 /* Notify udev that device has changed */
3c911608
ES
1708 if (bdev)
1709 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
b8b8ff59 1710
a061fc8d
CM
1711error_brelse:
1712 brelse(bh);
dfe25020 1713 if (bdev)
e525fd89 1714 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1715out:
1716 mutex_unlock(&uuid_mutex);
a061fc8d 1717 return ret;
9b3517e9
ID
1718error_undo:
1719 if (device->writeable) {
0c1daee0 1720 lock_chunks(root);
9b3517e9
ID
1721 list_add(&device->dev_alloc_list,
1722 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1723 unlock_chunks(root);
9b3517e9
ID
1724 root->fs_info->fs_devices->rw_devices++;
1725 }
1726 goto error_brelse;
a061fc8d
CM
1727}
1728
e93c89c1
SB
1729void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1730 struct btrfs_device *srcdev)
1731{
1732 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 1733
e93c89c1
SB
1734 list_del_rcu(&srcdev->dev_list);
1735 list_del_rcu(&srcdev->dev_alloc_list);
1736 fs_info->fs_devices->num_devices--;
1737 if (srcdev->missing) {
1738 fs_info->fs_devices->missing_devices--;
1739 fs_info->fs_devices->rw_devices++;
1740 }
1741 if (srcdev->can_discard)
1742 fs_info->fs_devices->num_can_discard--;
1357272f 1743 if (srcdev->bdev) {
e93c89c1
SB
1744 fs_info->fs_devices->open_devices--;
1745
1357272f
ID
1746 /* zero out the old super */
1747 btrfs_scratch_superblock(srcdev);
1748 }
1749
e93c89c1
SB
1750 call_rcu(&srcdev->rcu, free_device);
1751}
1752
1753void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1754 struct btrfs_device *tgtdev)
1755{
1756 struct btrfs_device *next_device;
1757
1758 WARN_ON(!tgtdev);
1759 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1760 if (tgtdev->bdev) {
1761 btrfs_scratch_superblock(tgtdev);
1762 fs_info->fs_devices->open_devices--;
1763 }
1764 fs_info->fs_devices->num_devices--;
1765 if (tgtdev->can_discard)
1766 fs_info->fs_devices->num_can_discard++;
1767
1768 next_device = list_entry(fs_info->fs_devices->devices.next,
1769 struct btrfs_device, dev_list);
1770 if (tgtdev->bdev == fs_info->sb->s_bdev)
1771 fs_info->sb->s_bdev = next_device->bdev;
1772 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1773 fs_info->fs_devices->latest_bdev = next_device->bdev;
1774 list_del_rcu(&tgtdev->dev_list);
1775
1776 call_rcu(&tgtdev->rcu, free_device);
1777
1778 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1779}
1780
48a3b636
ES
1781static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1782 struct btrfs_device **device)
7ba15b7d
SB
1783{
1784 int ret = 0;
1785 struct btrfs_super_block *disk_super;
1786 u64 devid;
1787 u8 *dev_uuid;
1788 struct block_device *bdev;
1789 struct buffer_head *bh;
1790
1791 *device = NULL;
1792 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1793 root->fs_info->bdev_holder, 0, &bdev, &bh);
1794 if (ret)
1795 return ret;
1796 disk_super = (struct btrfs_super_block *)bh->b_data;
1797 devid = btrfs_stack_device_id(&disk_super->dev_item);
1798 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1799 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
1800 disk_super->fsid);
1801 brelse(bh);
1802 if (!*device)
1803 ret = -ENOENT;
1804 blkdev_put(bdev, FMODE_READ);
1805 return ret;
1806}
1807
1808int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1809 char *device_path,
1810 struct btrfs_device **device)
1811{
1812 *device = NULL;
1813 if (strcmp(device_path, "missing") == 0) {
1814 struct list_head *devices;
1815 struct btrfs_device *tmp;
1816
1817 devices = &root->fs_info->fs_devices->devices;
1818 /*
1819 * It is safe to read the devices since the volume_mutex
1820 * is held by the caller.
1821 */
1822 list_for_each_entry(tmp, devices, dev_list) {
1823 if (tmp->in_fs_metadata && !tmp->bdev) {
1824 *device = tmp;
1825 break;
1826 }
1827 }
1828
1829 if (!*device) {
efe120a0 1830 btrfs_err(root->fs_info, "no missing device found");
7ba15b7d
SB
1831 return -ENOENT;
1832 }
1833
1834 return 0;
1835 } else {
1836 return btrfs_find_device_by_path(root, device_path, device);
1837 }
1838}
1839
2b82032c
YZ
1840/*
1841 * does all the dirty work required for changing file system's UUID.
1842 */
125ccb0a 1843static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
1844{
1845 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1846 struct btrfs_fs_devices *old_devices;
e4404d6e 1847 struct btrfs_fs_devices *seed_devices;
6c41761f 1848 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1849 struct btrfs_device *device;
1850 u64 super_flags;
1851
1852 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1853 if (!fs_devices->seeding)
2b82032c
YZ
1854 return -EINVAL;
1855
2208a378
ID
1856 seed_devices = __alloc_fs_devices();
1857 if (IS_ERR(seed_devices))
1858 return PTR_ERR(seed_devices);
2b82032c 1859
e4404d6e
YZ
1860 old_devices = clone_fs_devices(fs_devices);
1861 if (IS_ERR(old_devices)) {
1862 kfree(seed_devices);
1863 return PTR_ERR(old_devices);
2b82032c 1864 }
e4404d6e 1865
2b82032c
YZ
1866 list_add(&old_devices->list, &fs_uuids);
1867
e4404d6e
YZ
1868 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1869 seed_devices->opened = 1;
1870 INIT_LIST_HEAD(&seed_devices->devices);
1871 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1872 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1873
1874 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1875 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1876 synchronize_rcu);
c9513edb 1877
e4404d6e
YZ
1878 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1879 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1880 device->fs_devices = seed_devices;
1881 }
1882
2b82032c
YZ
1883 fs_devices->seeding = 0;
1884 fs_devices->num_devices = 0;
1885 fs_devices->open_devices = 0;
02db0844 1886 fs_devices->total_devices = 0;
e4404d6e 1887 fs_devices->seed = seed_devices;
2b82032c
YZ
1888
1889 generate_random_uuid(fs_devices->fsid);
1890 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1891 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750
FDBM
1892 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1893
2b82032c
YZ
1894 super_flags = btrfs_super_flags(disk_super) &
1895 ~BTRFS_SUPER_FLAG_SEEDING;
1896 btrfs_set_super_flags(disk_super, super_flags);
1897
1898 return 0;
1899}
1900
1901/*
1902 * strore the expected generation for seed devices in device items.
1903 */
1904static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1905 struct btrfs_root *root)
1906{
1907 struct btrfs_path *path;
1908 struct extent_buffer *leaf;
1909 struct btrfs_dev_item *dev_item;
1910 struct btrfs_device *device;
1911 struct btrfs_key key;
1912 u8 fs_uuid[BTRFS_UUID_SIZE];
1913 u8 dev_uuid[BTRFS_UUID_SIZE];
1914 u64 devid;
1915 int ret;
1916
1917 path = btrfs_alloc_path();
1918 if (!path)
1919 return -ENOMEM;
1920
1921 root = root->fs_info->chunk_root;
1922 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1923 key.offset = 0;
1924 key.type = BTRFS_DEV_ITEM_KEY;
1925
1926 while (1) {
1927 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1928 if (ret < 0)
1929 goto error;
1930
1931 leaf = path->nodes[0];
1932next_slot:
1933 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1934 ret = btrfs_next_leaf(root, path);
1935 if (ret > 0)
1936 break;
1937 if (ret < 0)
1938 goto error;
1939 leaf = path->nodes[0];
1940 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 1941 btrfs_release_path(path);
2b82032c
YZ
1942 continue;
1943 }
1944
1945 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1946 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1947 key.type != BTRFS_DEV_ITEM_KEY)
1948 break;
1949
1950 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1951 struct btrfs_dev_item);
1952 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 1953 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 1954 BTRFS_UUID_SIZE);
1473b24e 1955 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 1956 BTRFS_UUID_SIZE);
aa1b8cd4
SB
1957 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1958 fs_uuid);
79787eaa 1959 BUG_ON(!device); /* Logic error */
2b82032c
YZ
1960
1961 if (device->fs_devices->seeding) {
1962 btrfs_set_device_generation(leaf, dev_item,
1963 device->generation);
1964 btrfs_mark_buffer_dirty(leaf);
1965 }
1966
1967 path->slots[0]++;
1968 goto next_slot;
1969 }
1970 ret = 0;
1971error:
1972 btrfs_free_path(path);
1973 return ret;
1974}
1975
788f20eb
CM
1976int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1977{
d5e2003c 1978 struct request_queue *q;
788f20eb
CM
1979 struct btrfs_trans_handle *trans;
1980 struct btrfs_device *device;
1981 struct block_device *bdev;
788f20eb 1982 struct list_head *devices;
2b82032c 1983 struct super_block *sb = root->fs_info->sb;
606686ee 1984 struct rcu_string *name;
788f20eb 1985 u64 total_bytes;
2b82032c 1986 int seeding_dev = 0;
788f20eb
CM
1987 int ret = 0;
1988
2b82032c 1989 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 1990 return -EROFS;
788f20eb 1991
a5d16333 1992 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 1993 root->fs_info->bdev_holder);
7f59203a
JB
1994 if (IS_ERR(bdev))
1995 return PTR_ERR(bdev);
a2135011 1996
2b82032c
YZ
1997 if (root->fs_info->fs_devices->seeding) {
1998 seeding_dev = 1;
1999 down_write(&sb->s_umount);
2000 mutex_lock(&uuid_mutex);
2001 }
2002
8c8bee1d 2003 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2004
788f20eb 2005 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
2006
2007 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 2008 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2009 if (device->bdev == bdev) {
2010 ret = -EEXIST;
d25628bd
LB
2011 mutex_unlock(
2012 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 2013 goto error;
788f20eb
CM
2014 }
2015 }
d25628bd 2016 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2017
12bd2fc0
ID
2018 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2019 if (IS_ERR(device)) {
788f20eb 2020 /* we can safely leave the fs_devices entry around */
12bd2fc0 2021 ret = PTR_ERR(device);
2b82032c 2022 goto error;
788f20eb
CM
2023 }
2024
606686ee
JB
2025 name = rcu_string_strdup(device_path, GFP_NOFS);
2026 if (!name) {
788f20eb 2027 kfree(device);
2b82032c
YZ
2028 ret = -ENOMEM;
2029 goto error;
788f20eb 2030 }
606686ee 2031 rcu_assign_pointer(device->name, name);
2b82032c 2032
a22285a6 2033 trans = btrfs_start_transaction(root, 0);
98d5dc13 2034 if (IS_ERR(trans)) {
606686ee 2035 rcu_string_free(device->name);
98d5dc13
TI
2036 kfree(device);
2037 ret = PTR_ERR(trans);
2038 goto error;
2039 }
2040
2b82032c
YZ
2041 lock_chunks(root);
2042
d5e2003c
JB
2043 q = bdev_get_queue(bdev);
2044 if (blk_queue_discard(q))
2045 device->can_discard = 1;
2b82032c 2046 device->writeable = 1;
2b82032c 2047 device->generation = trans->transid;
788f20eb
CM
2048 device->io_width = root->sectorsize;
2049 device->io_align = root->sectorsize;
2050 device->sector_size = root->sectorsize;
2051 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2052 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
2053 device->dev_root = root->fs_info->dev_root;
2054 device->bdev = bdev;
dfe25020 2055 device->in_fs_metadata = 1;
63a212ab 2056 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2057 device->mode = FMODE_EXCL;
27087f37 2058 device->dev_stats_valid = 1;
2b82032c 2059 set_blocksize(device->bdev, 4096);
788f20eb 2060
2b82032c
YZ
2061 if (seeding_dev) {
2062 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2063 ret = btrfs_prepare_sprout(root);
79787eaa 2064 BUG_ON(ret); /* -ENOMEM */
2b82032c 2065 }
788f20eb 2066
2b82032c 2067 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2068
e5e9a520 2069 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 2070 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2071 list_add(&device->dev_alloc_list,
2072 &root->fs_info->fs_devices->alloc_list);
2073 root->fs_info->fs_devices->num_devices++;
2074 root->fs_info->fs_devices->open_devices++;
2075 root->fs_info->fs_devices->rw_devices++;
02db0844 2076 root->fs_info->fs_devices->total_devices++;
d5e2003c
JB
2077 if (device->can_discard)
2078 root->fs_info->fs_devices->num_can_discard++;
2b82032c 2079 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2080
2bf64758
JB
2081 spin_lock(&root->fs_info->free_chunk_lock);
2082 root->fs_info->free_chunk_space += device->total_bytes;
2083 spin_unlock(&root->fs_info->free_chunk_lock);
2084
c289811c
CM
2085 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2086 root->fs_info->fs_devices->rotating = 1;
2087
6c41761f
DS
2088 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2089 btrfs_set_super_total_bytes(root->fs_info->super_copy,
788f20eb
CM
2090 total_bytes + device->total_bytes);
2091
6c41761f
DS
2092 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2093 btrfs_set_super_num_devices(root->fs_info->super_copy,
788f20eb 2094 total_bytes + 1);
e5e9a520 2095 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2096
2b82032c
YZ
2097 if (seeding_dev) {
2098 ret = init_first_rw_device(trans, root, device);
005d6427
DS
2099 if (ret) {
2100 btrfs_abort_transaction(trans, root, ret);
79787eaa 2101 goto error_trans;
005d6427 2102 }
2b82032c 2103 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2104 if (ret) {
2105 btrfs_abort_transaction(trans, root, ret);
79787eaa 2106 goto error_trans;
005d6427 2107 }
2b82032c
YZ
2108 } else {
2109 ret = btrfs_add_device(trans, root, device);
005d6427
DS
2110 if (ret) {
2111 btrfs_abort_transaction(trans, root, ret);
79787eaa 2112 goto error_trans;
005d6427 2113 }
2b82032c
YZ
2114 }
2115
913d952e
CM
2116 /*
2117 * we've got more storage, clear any full flags on the space
2118 * infos
2119 */
2120 btrfs_clear_space_info_full(root->fs_info);
2121
7d9eb12c 2122 unlock_chunks(root);
5af3e8cc
SB
2123 root->fs_info->num_tolerated_disk_barrier_failures =
2124 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2125 ret = btrfs_commit_transaction(trans, root);
a2135011 2126
2b82032c
YZ
2127 if (seeding_dev) {
2128 mutex_unlock(&uuid_mutex);
2129 up_write(&sb->s_umount);
788f20eb 2130
79787eaa
JM
2131 if (ret) /* transaction commit */
2132 return ret;
2133
2b82032c 2134 ret = btrfs_relocate_sys_chunks(root);
79787eaa
JM
2135 if (ret < 0)
2136 btrfs_error(root->fs_info, ret,
2137 "Failed to relocate sys chunks after "
2138 "device initialization. This can be fixed "
2139 "using the \"btrfs balance\" command.");
671415b7
MX
2140 trans = btrfs_attach_transaction(root);
2141 if (IS_ERR(trans)) {
2142 if (PTR_ERR(trans) == -ENOENT)
2143 return 0;
2144 return PTR_ERR(trans);
2145 }
2146 ret = btrfs_commit_transaction(trans, root);
2b82032c 2147 }
c9e9f97b 2148
2b82032c 2149 return ret;
79787eaa
JM
2150
2151error_trans:
2152 unlock_chunks(root);
79787eaa 2153 btrfs_end_transaction(trans, root);
606686ee 2154 rcu_string_free(device->name);
79787eaa 2155 kfree(device);
2b82032c 2156error:
e525fd89 2157 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2158 if (seeding_dev) {
2159 mutex_unlock(&uuid_mutex);
2160 up_write(&sb->s_umount);
2161 }
c9e9f97b 2162 return ret;
788f20eb
CM
2163}
2164
e93c89c1
SB
2165int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2166 struct btrfs_device **device_out)
2167{
2168 struct request_queue *q;
2169 struct btrfs_device *device;
2170 struct block_device *bdev;
2171 struct btrfs_fs_info *fs_info = root->fs_info;
2172 struct list_head *devices;
2173 struct rcu_string *name;
12bd2fc0 2174 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2175 int ret = 0;
2176
2177 *device_out = NULL;
2178 if (fs_info->fs_devices->seeding)
2179 return -EINVAL;
2180
2181 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2182 fs_info->bdev_holder);
2183 if (IS_ERR(bdev))
2184 return PTR_ERR(bdev);
2185
2186 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2187
2188 devices = &fs_info->fs_devices->devices;
2189 list_for_each_entry(device, devices, dev_list) {
2190 if (device->bdev == bdev) {
2191 ret = -EEXIST;
2192 goto error;
2193 }
2194 }
2195
12bd2fc0
ID
2196 device = btrfs_alloc_device(NULL, &devid, NULL);
2197 if (IS_ERR(device)) {
2198 ret = PTR_ERR(device);
e93c89c1
SB
2199 goto error;
2200 }
2201
2202 name = rcu_string_strdup(device_path, GFP_NOFS);
2203 if (!name) {
2204 kfree(device);
2205 ret = -ENOMEM;
2206 goto error;
2207 }
2208 rcu_assign_pointer(device->name, name);
2209
2210 q = bdev_get_queue(bdev);
2211 if (blk_queue_discard(q))
2212 device->can_discard = 1;
2213 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2214 device->writeable = 1;
e93c89c1
SB
2215 device->generation = 0;
2216 device->io_width = root->sectorsize;
2217 device->io_align = root->sectorsize;
2218 device->sector_size = root->sectorsize;
2219 device->total_bytes = i_size_read(bdev->bd_inode);
2220 device->disk_total_bytes = device->total_bytes;
2221 device->dev_root = fs_info->dev_root;
2222 device->bdev = bdev;
2223 device->in_fs_metadata = 1;
2224 device->is_tgtdev_for_dev_replace = 1;
2225 device->mode = FMODE_EXCL;
27087f37 2226 device->dev_stats_valid = 1;
e93c89c1
SB
2227 set_blocksize(device->bdev, 4096);
2228 device->fs_devices = fs_info->fs_devices;
2229 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2230 fs_info->fs_devices->num_devices++;
2231 fs_info->fs_devices->open_devices++;
2232 if (device->can_discard)
2233 fs_info->fs_devices->num_can_discard++;
2234 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2235
2236 *device_out = device;
2237 return ret;
2238
2239error:
2240 blkdev_put(bdev, FMODE_EXCL);
2241 return ret;
2242}
2243
2244void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2245 struct btrfs_device *tgtdev)
2246{
2247 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2248 tgtdev->io_width = fs_info->dev_root->sectorsize;
2249 tgtdev->io_align = fs_info->dev_root->sectorsize;
2250 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2251 tgtdev->dev_root = fs_info->dev_root;
2252 tgtdev->in_fs_metadata = 1;
2253}
2254
d397712b
CM
2255static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2256 struct btrfs_device *device)
0b86a832
CM
2257{
2258 int ret;
2259 struct btrfs_path *path;
2260 struct btrfs_root *root;
2261 struct btrfs_dev_item *dev_item;
2262 struct extent_buffer *leaf;
2263 struct btrfs_key key;
2264
2265 root = device->dev_root->fs_info->chunk_root;
2266
2267 path = btrfs_alloc_path();
2268 if (!path)
2269 return -ENOMEM;
2270
2271 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2272 key.type = BTRFS_DEV_ITEM_KEY;
2273 key.offset = device->devid;
2274
2275 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2276 if (ret < 0)
2277 goto out;
2278
2279 if (ret > 0) {
2280 ret = -ENOENT;
2281 goto out;
2282 }
2283
2284 leaf = path->nodes[0];
2285 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2286
2287 btrfs_set_device_id(leaf, dev_item, device->devid);
2288 btrfs_set_device_type(leaf, dev_item, device->type);
2289 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2290 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2291 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 2292 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
2293 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2294 btrfs_mark_buffer_dirty(leaf);
2295
2296out:
2297 btrfs_free_path(path);
2298 return ret;
2299}
2300
7d9eb12c 2301static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2302 struct btrfs_device *device, u64 new_size)
2303{
2304 struct btrfs_super_block *super_copy =
6c41761f 2305 device->dev_root->fs_info->super_copy;
8f18cf13
CM
2306 u64 old_total = btrfs_super_total_bytes(super_copy);
2307 u64 diff = new_size - device->total_bytes;
2308
2b82032c
YZ
2309 if (!device->writeable)
2310 return -EACCES;
63a212ab
SB
2311 if (new_size <= device->total_bytes ||
2312 device->is_tgtdev_for_dev_replace)
2b82032c
YZ
2313 return -EINVAL;
2314
8f18cf13 2315 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2316 device->fs_devices->total_rw_bytes += diff;
2317
2318 device->total_bytes = new_size;
9779b72f 2319 device->disk_total_bytes = new_size;
4184ea7f
CM
2320 btrfs_clear_space_info_full(device->dev_root->fs_info);
2321
8f18cf13
CM
2322 return btrfs_update_device(trans, device);
2323}
2324
7d9eb12c
CM
2325int btrfs_grow_device(struct btrfs_trans_handle *trans,
2326 struct btrfs_device *device, u64 new_size)
2327{
2328 int ret;
2329 lock_chunks(device->dev_root);
2330 ret = __btrfs_grow_device(trans, device, new_size);
2331 unlock_chunks(device->dev_root);
2332 return ret;
2333}
2334
8f18cf13
CM
2335static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2336 struct btrfs_root *root,
2337 u64 chunk_tree, u64 chunk_objectid,
2338 u64 chunk_offset)
2339{
2340 int ret;
2341 struct btrfs_path *path;
2342 struct btrfs_key key;
2343
2344 root = root->fs_info->chunk_root;
2345 path = btrfs_alloc_path();
2346 if (!path)
2347 return -ENOMEM;
2348
2349 key.objectid = chunk_objectid;
2350 key.offset = chunk_offset;
2351 key.type = BTRFS_CHUNK_ITEM_KEY;
2352
2353 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2354 if (ret < 0)
2355 goto out;
2356 else if (ret > 0) { /* Logic error or corruption */
2357 btrfs_error(root->fs_info, -ENOENT,
2358 "Failed lookup while freeing chunk.");
2359 ret = -ENOENT;
2360 goto out;
2361 }
8f18cf13
CM
2362
2363 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
2364 if (ret < 0)
2365 btrfs_error(root->fs_info, ret,
2366 "Failed to delete chunk item.");
2367out:
8f18cf13 2368 btrfs_free_path(path);
65a246c5 2369 return ret;
8f18cf13
CM
2370}
2371
b2950863 2372static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2373 chunk_offset)
2374{
6c41761f 2375 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2376 struct btrfs_disk_key *disk_key;
2377 struct btrfs_chunk *chunk;
2378 u8 *ptr;
2379 int ret = 0;
2380 u32 num_stripes;
2381 u32 array_size;
2382 u32 len = 0;
2383 u32 cur;
2384 struct btrfs_key key;
2385
2386 array_size = btrfs_super_sys_array_size(super_copy);
2387
2388 ptr = super_copy->sys_chunk_array;
2389 cur = 0;
2390
2391 while (cur < array_size) {
2392 disk_key = (struct btrfs_disk_key *)ptr;
2393 btrfs_disk_key_to_cpu(&key, disk_key);
2394
2395 len = sizeof(*disk_key);
2396
2397 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2398 chunk = (struct btrfs_chunk *)(ptr + len);
2399 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2400 len += btrfs_chunk_item_size(num_stripes);
2401 } else {
2402 ret = -EIO;
2403 break;
2404 }
2405 if (key.objectid == chunk_objectid &&
2406 key.offset == chunk_offset) {
2407 memmove(ptr, ptr + len, array_size - (cur + len));
2408 array_size -= len;
2409 btrfs_set_super_sys_array_size(super_copy, array_size);
2410 } else {
2411 ptr += len;
2412 cur += len;
2413 }
2414 }
2415 return ret;
2416}
2417
b2950863 2418static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
2419 u64 chunk_tree, u64 chunk_objectid,
2420 u64 chunk_offset)
2421{
2422 struct extent_map_tree *em_tree;
2423 struct btrfs_root *extent_root;
2424 struct btrfs_trans_handle *trans;
2425 struct extent_map *em;
2426 struct map_lookup *map;
2427 int ret;
2428 int i;
2429
2430 root = root->fs_info->chunk_root;
2431 extent_root = root->fs_info->extent_root;
2432 em_tree = &root->fs_info->mapping_tree.map_tree;
2433
ba1bf481
JB
2434 ret = btrfs_can_relocate(extent_root, chunk_offset);
2435 if (ret)
2436 return -ENOSPC;
2437
8f18cf13 2438 /* step one, relocate all the extents inside this chunk */
1a40e23b 2439 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
2440 if (ret)
2441 return ret;
8f18cf13 2442
a22285a6 2443 trans = btrfs_start_transaction(root, 0);
0f788c58
LB
2444 if (IS_ERR(trans)) {
2445 ret = PTR_ERR(trans);
2446 btrfs_std_error(root->fs_info, ret);
2447 return ret;
2448 }
8f18cf13 2449
7d9eb12c
CM
2450 lock_chunks(root);
2451
8f18cf13
CM
2452 /*
2453 * step two, delete the device extents and the
2454 * chunk tree entries
2455 */
890871be 2456 read_lock(&em_tree->lock);
8f18cf13 2457 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2458 read_unlock(&em_tree->lock);
8f18cf13 2459
285190d9 2460 BUG_ON(!em || em->start > chunk_offset ||
a061fc8d 2461 em->start + em->len < chunk_offset);
8f18cf13
CM
2462 map = (struct map_lookup *)em->bdev;
2463
2464 for (i = 0; i < map->num_stripes; i++) {
2465 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2466 map->stripes[i].physical);
2467 BUG_ON(ret);
a061fc8d 2468
dfe25020
CM
2469 if (map->stripes[i].dev) {
2470 ret = btrfs_update_device(trans, map->stripes[i].dev);
2471 BUG_ON(ret);
2472 }
8f18cf13
CM
2473 }
2474 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2475 chunk_offset);
2476
2477 BUG_ON(ret);
2478
1abe9b8a 2479 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2480
8f18cf13
CM
2481 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2482 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2483 BUG_ON(ret);
8f18cf13
CM
2484 }
2485
2b82032c
YZ
2486 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2487 BUG_ON(ret);
2488
890871be 2489 write_lock(&em_tree->lock);
2b82032c 2490 remove_extent_mapping(em_tree, em);
890871be 2491 write_unlock(&em_tree->lock);
2b82032c
YZ
2492
2493 kfree(map);
2494 em->bdev = NULL;
2495
2496 /* once for the tree */
2497 free_extent_map(em);
2498 /* once for us */
2499 free_extent_map(em);
2500
2501 unlock_chunks(root);
2502 btrfs_end_transaction(trans, root);
2503 return 0;
2504}
2505
2506static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2507{
2508 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2509 struct btrfs_path *path;
2510 struct extent_buffer *leaf;
2511 struct btrfs_chunk *chunk;
2512 struct btrfs_key key;
2513 struct btrfs_key found_key;
2514 u64 chunk_tree = chunk_root->root_key.objectid;
2515 u64 chunk_type;
ba1bf481
JB
2516 bool retried = false;
2517 int failed = 0;
2b82032c
YZ
2518 int ret;
2519
2520 path = btrfs_alloc_path();
2521 if (!path)
2522 return -ENOMEM;
2523
ba1bf481 2524again:
2b82032c
YZ
2525 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2526 key.offset = (u64)-1;
2527 key.type = BTRFS_CHUNK_ITEM_KEY;
2528
2529 while (1) {
2530 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2531 if (ret < 0)
2532 goto error;
79787eaa 2533 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2534
2535 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2536 key.type);
2537 if (ret < 0)
2538 goto error;
2539 if (ret > 0)
2540 break;
1a40e23b 2541
2b82032c
YZ
2542 leaf = path->nodes[0];
2543 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2544
2b82032c
YZ
2545 chunk = btrfs_item_ptr(leaf, path->slots[0],
2546 struct btrfs_chunk);
2547 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2548 btrfs_release_path(path);
8f18cf13 2549
2b82032c
YZ
2550 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2551 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2552 found_key.objectid,
2553 found_key.offset);
ba1bf481
JB
2554 if (ret == -ENOSPC)
2555 failed++;
2556 else if (ret)
2557 BUG();
2b82032c 2558 }
8f18cf13 2559
2b82032c
YZ
2560 if (found_key.offset == 0)
2561 break;
2562 key.offset = found_key.offset - 1;
2563 }
2564 ret = 0;
ba1bf481
JB
2565 if (failed && !retried) {
2566 failed = 0;
2567 retried = true;
2568 goto again;
fae7f21c 2569 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
2570 ret = -ENOSPC;
2571 }
2b82032c
YZ
2572error:
2573 btrfs_free_path(path);
2574 return ret;
8f18cf13
CM
2575}
2576
0940ebf6
ID
2577static int insert_balance_item(struct btrfs_root *root,
2578 struct btrfs_balance_control *bctl)
2579{
2580 struct btrfs_trans_handle *trans;
2581 struct btrfs_balance_item *item;
2582 struct btrfs_disk_balance_args disk_bargs;
2583 struct btrfs_path *path;
2584 struct extent_buffer *leaf;
2585 struct btrfs_key key;
2586 int ret, err;
2587
2588 path = btrfs_alloc_path();
2589 if (!path)
2590 return -ENOMEM;
2591
2592 trans = btrfs_start_transaction(root, 0);
2593 if (IS_ERR(trans)) {
2594 btrfs_free_path(path);
2595 return PTR_ERR(trans);
2596 }
2597
2598 key.objectid = BTRFS_BALANCE_OBJECTID;
2599 key.type = BTRFS_BALANCE_ITEM_KEY;
2600 key.offset = 0;
2601
2602 ret = btrfs_insert_empty_item(trans, root, path, &key,
2603 sizeof(*item));
2604 if (ret)
2605 goto out;
2606
2607 leaf = path->nodes[0];
2608 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2609
2610 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2611
2612 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2613 btrfs_set_balance_data(leaf, item, &disk_bargs);
2614 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2615 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2616 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2617 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2618
2619 btrfs_set_balance_flags(leaf, item, bctl->flags);
2620
2621 btrfs_mark_buffer_dirty(leaf);
2622out:
2623 btrfs_free_path(path);
2624 err = btrfs_commit_transaction(trans, root);
2625 if (err && !ret)
2626 ret = err;
2627 return ret;
2628}
2629
2630static int del_balance_item(struct btrfs_root *root)
2631{
2632 struct btrfs_trans_handle *trans;
2633 struct btrfs_path *path;
2634 struct btrfs_key key;
2635 int ret, err;
2636
2637 path = btrfs_alloc_path();
2638 if (!path)
2639 return -ENOMEM;
2640
2641 trans = btrfs_start_transaction(root, 0);
2642 if (IS_ERR(trans)) {
2643 btrfs_free_path(path);
2644 return PTR_ERR(trans);
2645 }
2646
2647 key.objectid = BTRFS_BALANCE_OBJECTID;
2648 key.type = BTRFS_BALANCE_ITEM_KEY;
2649 key.offset = 0;
2650
2651 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2652 if (ret < 0)
2653 goto out;
2654 if (ret > 0) {
2655 ret = -ENOENT;
2656 goto out;
2657 }
2658
2659 ret = btrfs_del_item(trans, root, path);
2660out:
2661 btrfs_free_path(path);
2662 err = btrfs_commit_transaction(trans, root);
2663 if (err && !ret)
2664 ret = err;
2665 return ret;
2666}
2667
59641015
ID
2668/*
2669 * This is a heuristic used to reduce the number of chunks balanced on
2670 * resume after balance was interrupted.
2671 */
2672static void update_balance_args(struct btrfs_balance_control *bctl)
2673{
2674 /*
2675 * Turn on soft mode for chunk types that were being converted.
2676 */
2677 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2678 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2679 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2680 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2681 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2682 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2683
2684 /*
2685 * Turn on usage filter if is not already used. The idea is
2686 * that chunks that we have already balanced should be
2687 * reasonably full. Don't do it for chunks that are being
2688 * converted - that will keep us from relocating unconverted
2689 * (albeit full) chunks.
2690 */
2691 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2692 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2693 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2694 bctl->data.usage = 90;
2695 }
2696 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2697 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2698 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2699 bctl->sys.usage = 90;
2700 }
2701 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2702 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2703 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2704 bctl->meta.usage = 90;
2705 }
2706}
2707
c9e9f97b
ID
2708/*
2709 * Should be called with both balance and volume mutexes held to
2710 * serialize other volume operations (add_dev/rm_dev/resize) with
2711 * restriper. Same goes for unset_balance_control.
2712 */
2713static void set_balance_control(struct btrfs_balance_control *bctl)
2714{
2715 struct btrfs_fs_info *fs_info = bctl->fs_info;
2716
2717 BUG_ON(fs_info->balance_ctl);
2718
2719 spin_lock(&fs_info->balance_lock);
2720 fs_info->balance_ctl = bctl;
2721 spin_unlock(&fs_info->balance_lock);
2722}
2723
2724static void unset_balance_control(struct btrfs_fs_info *fs_info)
2725{
2726 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2727
2728 BUG_ON(!fs_info->balance_ctl);
2729
2730 spin_lock(&fs_info->balance_lock);
2731 fs_info->balance_ctl = NULL;
2732 spin_unlock(&fs_info->balance_lock);
2733
2734 kfree(bctl);
2735}
2736
ed25e9b2
ID
2737/*
2738 * Balance filters. Return 1 if chunk should be filtered out
2739 * (should not be balanced).
2740 */
899c81ea 2741static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
2742 struct btrfs_balance_args *bargs)
2743{
899c81ea
ID
2744 chunk_type = chunk_to_extended(chunk_type) &
2745 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 2746
899c81ea 2747 if (bargs->profiles & chunk_type)
ed25e9b2
ID
2748 return 0;
2749
2750 return 1;
2751}
2752
5ce5b3c0
ID
2753static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2754 struct btrfs_balance_args *bargs)
2755{
2756 struct btrfs_block_group_cache *cache;
2757 u64 chunk_used, user_thresh;
2758 int ret = 1;
2759
2760 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2761 chunk_used = btrfs_block_group_used(&cache->item);
2762
a105bb88 2763 if (bargs->usage == 0)
3e39cea6 2764 user_thresh = 1;
a105bb88
ID
2765 else if (bargs->usage > 100)
2766 user_thresh = cache->key.offset;
2767 else
2768 user_thresh = div_factor_fine(cache->key.offset,
2769 bargs->usage);
2770
5ce5b3c0
ID
2771 if (chunk_used < user_thresh)
2772 ret = 0;
2773
2774 btrfs_put_block_group(cache);
2775 return ret;
2776}
2777
409d404b
ID
2778static int chunk_devid_filter(struct extent_buffer *leaf,
2779 struct btrfs_chunk *chunk,
2780 struct btrfs_balance_args *bargs)
2781{
2782 struct btrfs_stripe *stripe;
2783 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2784 int i;
2785
2786 for (i = 0; i < num_stripes; i++) {
2787 stripe = btrfs_stripe_nr(chunk, i);
2788 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2789 return 0;
2790 }
2791
2792 return 1;
2793}
2794
94e60d5a
ID
2795/* [pstart, pend) */
2796static int chunk_drange_filter(struct extent_buffer *leaf,
2797 struct btrfs_chunk *chunk,
2798 u64 chunk_offset,
2799 struct btrfs_balance_args *bargs)
2800{
2801 struct btrfs_stripe *stripe;
2802 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2803 u64 stripe_offset;
2804 u64 stripe_length;
2805 int factor;
2806 int i;
2807
2808 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2809 return 0;
2810
2811 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
2812 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2813 factor = num_stripes / 2;
2814 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2815 factor = num_stripes - 1;
2816 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2817 factor = num_stripes - 2;
2818 } else {
2819 factor = num_stripes;
2820 }
94e60d5a
ID
2821
2822 for (i = 0; i < num_stripes; i++) {
2823 stripe = btrfs_stripe_nr(chunk, i);
2824 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2825 continue;
2826
2827 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2828 stripe_length = btrfs_chunk_length(leaf, chunk);
2829 do_div(stripe_length, factor);
2830
2831 if (stripe_offset < bargs->pend &&
2832 stripe_offset + stripe_length > bargs->pstart)
2833 return 0;
2834 }
2835
2836 return 1;
2837}
2838
ea67176a
ID
2839/* [vstart, vend) */
2840static int chunk_vrange_filter(struct extent_buffer *leaf,
2841 struct btrfs_chunk *chunk,
2842 u64 chunk_offset,
2843 struct btrfs_balance_args *bargs)
2844{
2845 if (chunk_offset < bargs->vend &&
2846 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2847 /* at least part of the chunk is inside this vrange */
2848 return 0;
2849
2850 return 1;
2851}
2852
899c81ea 2853static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
2854 struct btrfs_balance_args *bargs)
2855{
2856 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2857 return 0;
2858
899c81ea
ID
2859 chunk_type = chunk_to_extended(chunk_type) &
2860 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 2861
899c81ea 2862 if (bargs->target == chunk_type)
cfa4c961
ID
2863 return 1;
2864
2865 return 0;
2866}
2867
f43ffb60
ID
2868static int should_balance_chunk(struct btrfs_root *root,
2869 struct extent_buffer *leaf,
2870 struct btrfs_chunk *chunk, u64 chunk_offset)
2871{
2872 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2873 struct btrfs_balance_args *bargs = NULL;
2874 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2875
2876 /* type filter */
2877 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2878 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2879 return 0;
2880 }
2881
2882 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2883 bargs = &bctl->data;
2884 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2885 bargs = &bctl->sys;
2886 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2887 bargs = &bctl->meta;
2888
ed25e9b2
ID
2889 /* profiles filter */
2890 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2891 chunk_profiles_filter(chunk_type, bargs)) {
2892 return 0;
5ce5b3c0
ID
2893 }
2894
2895 /* usage filter */
2896 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2897 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2898 return 0;
409d404b
ID
2899 }
2900
2901 /* devid filter */
2902 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2903 chunk_devid_filter(leaf, chunk, bargs)) {
2904 return 0;
94e60d5a
ID
2905 }
2906
2907 /* drange filter, makes sense only with devid filter */
2908 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2909 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2910 return 0;
ea67176a
ID
2911 }
2912
2913 /* vrange filter */
2914 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2915 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2916 return 0;
ed25e9b2
ID
2917 }
2918
cfa4c961
ID
2919 /* soft profile changing mode */
2920 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2921 chunk_soft_convert_filter(chunk_type, bargs)) {
2922 return 0;
2923 }
2924
f43ffb60
ID
2925 return 1;
2926}
2927
c9e9f97b 2928static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 2929{
19a39dce 2930 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
2931 struct btrfs_root *chunk_root = fs_info->chunk_root;
2932 struct btrfs_root *dev_root = fs_info->dev_root;
2933 struct list_head *devices;
ec44a35c
CM
2934 struct btrfs_device *device;
2935 u64 old_size;
2936 u64 size_to_free;
f43ffb60 2937 struct btrfs_chunk *chunk;
ec44a35c
CM
2938 struct btrfs_path *path;
2939 struct btrfs_key key;
ec44a35c 2940 struct btrfs_key found_key;
c9e9f97b 2941 struct btrfs_trans_handle *trans;
f43ffb60
ID
2942 struct extent_buffer *leaf;
2943 int slot;
c9e9f97b
ID
2944 int ret;
2945 int enospc_errors = 0;
19a39dce 2946 bool counting = true;
ec44a35c 2947
ec44a35c 2948 /* step one make some room on all the devices */
c9e9f97b 2949 devices = &fs_info->fs_devices->devices;
c6e30871 2950 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2951 old_size = device->total_bytes;
2952 size_to_free = div_factor(old_size, 1);
2953 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c 2954 if (!device->writeable ||
63a212ab
SB
2955 device->total_bytes - device->bytes_used > size_to_free ||
2956 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
2957 continue;
2958
2959 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2960 if (ret == -ENOSPC)
2961 break;
ec44a35c
CM
2962 BUG_ON(ret);
2963
a22285a6 2964 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2965 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2966
2967 ret = btrfs_grow_device(trans, device, old_size);
2968 BUG_ON(ret);
2969
2970 btrfs_end_transaction(trans, dev_root);
2971 }
2972
2973 /* step two, relocate all the chunks */
2974 path = btrfs_alloc_path();
17e9f796
MF
2975 if (!path) {
2976 ret = -ENOMEM;
2977 goto error;
2978 }
19a39dce
ID
2979
2980 /* zero out stat counters */
2981 spin_lock(&fs_info->balance_lock);
2982 memset(&bctl->stat, 0, sizeof(bctl->stat));
2983 spin_unlock(&fs_info->balance_lock);
2984again:
ec44a35c
CM
2985 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2986 key.offset = (u64)-1;
2987 key.type = BTRFS_CHUNK_ITEM_KEY;
2988
d397712b 2989 while (1) {
19a39dce 2990 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 2991 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
2992 ret = -ECANCELED;
2993 goto error;
2994 }
2995
ec44a35c
CM
2996 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2997 if (ret < 0)
2998 goto error;
2999
3000 /*
3001 * this shouldn't happen, it means the last relocate
3002 * failed
3003 */
3004 if (ret == 0)
c9e9f97b 3005 BUG(); /* FIXME break ? */
ec44a35c
CM
3006
3007 ret = btrfs_previous_item(chunk_root, path, 0,
3008 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b
ID
3009 if (ret) {
3010 ret = 0;
ec44a35c 3011 break;
c9e9f97b 3012 }
7d9eb12c 3013
f43ffb60
ID
3014 leaf = path->nodes[0];
3015 slot = path->slots[0];
3016 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3017
ec44a35c
CM
3018 if (found_key.objectid != key.objectid)
3019 break;
7d9eb12c 3020
f43ffb60
ID
3021 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3022
19a39dce
ID
3023 if (!counting) {
3024 spin_lock(&fs_info->balance_lock);
3025 bctl->stat.considered++;
3026 spin_unlock(&fs_info->balance_lock);
3027 }
3028
f43ffb60
ID
3029 ret = should_balance_chunk(chunk_root, leaf, chunk,
3030 found_key.offset);
b3b4aa74 3031 btrfs_release_path(path);
f43ffb60
ID
3032 if (!ret)
3033 goto loop;
3034
19a39dce
ID
3035 if (counting) {
3036 spin_lock(&fs_info->balance_lock);
3037 bctl->stat.expected++;
3038 spin_unlock(&fs_info->balance_lock);
3039 goto loop;
3040 }
3041
ec44a35c
CM
3042 ret = btrfs_relocate_chunk(chunk_root,
3043 chunk_root->root_key.objectid,
3044 found_key.objectid,
3045 found_key.offset);
508794eb
JB
3046 if (ret && ret != -ENOSPC)
3047 goto error;
19a39dce 3048 if (ret == -ENOSPC) {
c9e9f97b 3049 enospc_errors++;
19a39dce
ID
3050 } else {
3051 spin_lock(&fs_info->balance_lock);
3052 bctl->stat.completed++;
3053 spin_unlock(&fs_info->balance_lock);
3054 }
f43ffb60 3055loop:
795a3321
ID
3056 if (found_key.offset == 0)
3057 break;
ba1bf481 3058 key.offset = found_key.offset - 1;
ec44a35c 3059 }
c9e9f97b 3060
19a39dce
ID
3061 if (counting) {
3062 btrfs_release_path(path);
3063 counting = false;
3064 goto again;
3065 }
ec44a35c
CM
3066error:
3067 btrfs_free_path(path);
c9e9f97b 3068 if (enospc_errors) {
efe120a0 3069 btrfs_info(fs_info, "%d enospc errors during balance",
c9e9f97b
ID
3070 enospc_errors);
3071 if (!ret)
3072 ret = -ENOSPC;
3073 }
3074
ec44a35c
CM
3075 return ret;
3076}
3077
0c460c0d
ID
3078/**
3079 * alloc_profile_is_valid - see if a given profile is valid and reduced
3080 * @flags: profile to validate
3081 * @extended: if true @flags is treated as an extended profile
3082 */
3083static int alloc_profile_is_valid(u64 flags, int extended)
3084{
3085 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3086 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3087
3088 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3089
3090 /* 1) check that all other bits are zeroed */
3091 if (flags & ~mask)
3092 return 0;
3093
3094 /* 2) see if profile is reduced */
3095 if (flags == 0)
3096 return !extended; /* "0" is valid for usual profiles */
3097
3098 /* true if exactly one bit set */
3099 return (flags & (flags - 1)) == 0;
3100}
3101
837d5b6e
ID
3102static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3103{
a7e99c69
ID
3104 /* cancel requested || normal exit path */
3105 return atomic_read(&fs_info->balance_cancel_req) ||
3106 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3107 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3108}
3109
c9e9f97b
ID
3110static void __cancel_balance(struct btrfs_fs_info *fs_info)
3111{
0940ebf6
ID
3112 int ret;
3113
c9e9f97b 3114 unset_balance_control(fs_info);
0940ebf6 3115 ret = del_balance_item(fs_info->tree_root);
0f788c58
LB
3116 if (ret)
3117 btrfs_std_error(fs_info, ret);
ed0fb78f
ID
3118
3119 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3120}
3121
c9e9f97b
ID
3122/*
3123 * Should be called with both balance and volume mutexes held
3124 */
3125int btrfs_balance(struct btrfs_balance_control *bctl,
3126 struct btrfs_ioctl_balance_args *bargs)
3127{
3128 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3129 u64 allowed;
e4837f8f 3130 int mixed = 0;
c9e9f97b 3131 int ret;
8dabb742 3132 u64 num_devices;
de98ced9 3133 unsigned seq;
c9e9f97b 3134
837d5b6e 3135 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3136 atomic_read(&fs_info->balance_pause_req) ||
3137 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3138 ret = -EINVAL;
3139 goto out;
3140 }
3141
e4837f8f
ID
3142 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3143 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3144 mixed = 1;
3145
f43ffb60
ID
3146 /*
3147 * In case of mixed groups both data and meta should be picked,
3148 * and identical options should be given for both of them.
3149 */
e4837f8f
ID
3150 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3151 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3152 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3153 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3154 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
efe120a0
FH
3155 btrfs_err(fs_info, "with mixed groups data and "
3156 "metadata balance options must be the same");
f43ffb60
ID
3157 ret = -EINVAL;
3158 goto out;
3159 }
3160 }
3161
8dabb742
SB
3162 num_devices = fs_info->fs_devices->num_devices;
3163 btrfs_dev_replace_lock(&fs_info->dev_replace);
3164 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3165 BUG_ON(num_devices < 1);
3166 num_devices--;
3167 }
3168 btrfs_dev_replace_unlock(&fs_info->dev_replace);
e4d8ec0f 3169 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3170 if (num_devices == 1)
e4d8ec0f 3171 allowed |= BTRFS_BLOCK_GROUP_DUP;
8250dabe 3172 else if (num_devices > 1)
e4d8ec0f 3173 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3174 if (num_devices > 2)
3175 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3176 if (num_devices > 3)
3177 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3178 BTRFS_BLOCK_GROUP_RAID6);
6728b198
ID
3179 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3180 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3181 (bctl->data.target & ~allowed))) {
efe120a0
FH
3182 btrfs_err(fs_info, "unable to start balance with target "
3183 "data profile %llu",
c1c9ff7c 3184 bctl->data.target);
e4d8ec0f
ID
3185 ret = -EINVAL;
3186 goto out;
3187 }
6728b198
ID
3188 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3189 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3190 (bctl->meta.target & ~allowed))) {
efe120a0
FH
3191 btrfs_err(fs_info,
3192 "unable to start balance with target metadata profile %llu",
c1c9ff7c 3193 bctl->meta.target);
e4d8ec0f
ID
3194 ret = -EINVAL;
3195 goto out;
3196 }
6728b198
ID
3197 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3198 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3199 (bctl->sys.target & ~allowed))) {
efe120a0
FH
3200 btrfs_err(fs_info,
3201 "unable to start balance with target system profile %llu",
c1c9ff7c 3202 bctl->sys.target);
e4d8ec0f
ID
3203 ret = -EINVAL;
3204 goto out;
3205 }
3206
e4837f8f
ID
3207 /* allow dup'ed data chunks only in mixed mode */
3208 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 3209 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
efe120a0 3210 btrfs_err(fs_info, "dup for data is not allowed");
e4d8ec0f
ID
3211 ret = -EINVAL;
3212 goto out;
3213 }
3214
3215 /* allow to reduce meta or sys integrity only if force set */
3216 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3217 BTRFS_BLOCK_GROUP_RAID10 |
3218 BTRFS_BLOCK_GROUP_RAID5 |
3219 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3220 do {
3221 seq = read_seqbegin(&fs_info->profiles_lock);
3222
3223 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3224 (fs_info->avail_system_alloc_bits & allowed) &&
3225 !(bctl->sys.target & allowed)) ||
3226 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3227 (fs_info->avail_metadata_alloc_bits & allowed) &&
3228 !(bctl->meta.target & allowed))) {
3229 if (bctl->flags & BTRFS_BALANCE_FORCE) {
efe120a0 3230 btrfs_info(fs_info, "force reducing metadata integrity");
de98ced9 3231 } else {
efe120a0
FH
3232 btrfs_err(fs_info, "balance will reduce metadata "
3233 "integrity, use force if you want this");
de98ced9
MX
3234 ret = -EINVAL;
3235 goto out;
3236 }
e4d8ec0f 3237 }
de98ced9 3238 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3239
5af3e8cc
SB
3240 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3241 int num_tolerated_disk_barrier_failures;
3242 u64 target = bctl->sys.target;
3243
3244 num_tolerated_disk_barrier_failures =
3245 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3246 if (num_tolerated_disk_barrier_failures > 0 &&
3247 (target &
3248 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3249 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3250 num_tolerated_disk_barrier_failures = 0;
3251 else if (num_tolerated_disk_barrier_failures > 1 &&
3252 (target &
3253 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3254 num_tolerated_disk_barrier_failures = 1;
3255
3256 fs_info->num_tolerated_disk_barrier_failures =
3257 num_tolerated_disk_barrier_failures;
3258 }
3259
0940ebf6 3260 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3261 if (ret && ret != -EEXIST)
0940ebf6
ID
3262 goto out;
3263
59641015
ID
3264 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3265 BUG_ON(ret == -EEXIST);
3266 set_balance_control(bctl);
3267 } else {
3268 BUG_ON(ret != -EEXIST);
3269 spin_lock(&fs_info->balance_lock);
3270 update_balance_args(bctl);
3271 spin_unlock(&fs_info->balance_lock);
3272 }
c9e9f97b 3273
837d5b6e 3274 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3275 mutex_unlock(&fs_info->balance_mutex);
3276
3277 ret = __btrfs_balance(fs_info);
3278
3279 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3280 atomic_dec(&fs_info->balance_running);
c9e9f97b 3281
bf023ecf
ID
3282 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3283 fs_info->num_tolerated_disk_barrier_failures =
3284 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3285 }
3286
c9e9f97b
ID
3287 if (bargs) {
3288 memset(bargs, 0, sizeof(*bargs));
19a39dce 3289 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3290 }
3291
3a01aa7a
ID
3292 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3293 balance_need_close(fs_info)) {
3294 __cancel_balance(fs_info);
3295 }
3296
837d5b6e 3297 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3298
3299 return ret;
3300out:
59641015
ID
3301 if (bctl->flags & BTRFS_BALANCE_RESUME)
3302 __cancel_balance(fs_info);
ed0fb78f 3303 else {
59641015 3304 kfree(bctl);
ed0fb78f
ID
3305 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3306 }
59641015
ID
3307 return ret;
3308}
3309
3310static int balance_kthread(void *data)
3311{
2b6ba629 3312 struct btrfs_fs_info *fs_info = data;
9555c6c1 3313 int ret = 0;
59641015
ID
3314
3315 mutex_lock(&fs_info->volume_mutex);
3316 mutex_lock(&fs_info->balance_mutex);
3317
2b6ba629 3318 if (fs_info->balance_ctl) {
efe120a0 3319 btrfs_info(fs_info, "continuing balance");
2b6ba629 3320 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3321 }
59641015
ID
3322
3323 mutex_unlock(&fs_info->balance_mutex);
3324 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3325
59641015
ID
3326 return ret;
3327}
3328
2b6ba629
ID
3329int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3330{
3331 struct task_struct *tsk;
3332
3333 spin_lock(&fs_info->balance_lock);
3334 if (!fs_info->balance_ctl) {
3335 spin_unlock(&fs_info->balance_lock);
3336 return 0;
3337 }
3338 spin_unlock(&fs_info->balance_lock);
3339
3340 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
efe120a0 3341 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3342 return 0;
3343 }
3344
3345 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3346 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3347}
3348
68310a5e 3349int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3350{
59641015
ID
3351 struct btrfs_balance_control *bctl;
3352 struct btrfs_balance_item *item;
3353 struct btrfs_disk_balance_args disk_bargs;
3354 struct btrfs_path *path;
3355 struct extent_buffer *leaf;
3356 struct btrfs_key key;
3357 int ret;
3358
3359 path = btrfs_alloc_path();
3360 if (!path)
3361 return -ENOMEM;
3362
59641015
ID
3363 key.objectid = BTRFS_BALANCE_OBJECTID;
3364 key.type = BTRFS_BALANCE_ITEM_KEY;
3365 key.offset = 0;
3366
68310a5e 3367 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3368 if (ret < 0)
68310a5e 3369 goto out;
59641015
ID
3370 if (ret > 0) { /* ret = -ENOENT; */
3371 ret = 0;
68310a5e
ID
3372 goto out;
3373 }
3374
3375 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3376 if (!bctl) {
3377 ret = -ENOMEM;
3378 goto out;
59641015
ID
3379 }
3380
3381 leaf = path->nodes[0];
3382 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3383
68310a5e
ID
3384 bctl->fs_info = fs_info;
3385 bctl->flags = btrfs_balance_flags(leaf, item);
3386 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3387
3388 btrfs_balance_data(leaf, item, &disk_bargs);
3389 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3390 btrfs_balance_meta(leaf, item, &disk_bargs);
3391 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3392 btrfs_balance_sys(leaf, item, &disk_bargs);
3393 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3394
ed0fb78f
ID
3395 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3396
68310a5e
ID
3397 mutex_lock(&fs_info->volume_mutex);
3398 mutex_lock(&fs_info->balance_mutex);
59641015 3399
68310a5e
ID
3400 set_balance_control(bctl);
3401
3402 mutex_unlock(&fs_info->balance_mutex);
3403 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3404out:
3405 btrfs_free_path(path);
ec44a35c
CM
3406 return ret;
3407}
3408
837d5b6e
ID
3409int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3410{
3411 int ret = 0;
3412
3413 mutex_lock(&fs_info->balance_mutex);
3414 if (!fs_info->balance_ctl) {
3415 mutex_unlock(&fs_info->balance_mutex);
3416 return -ENOTCONN;
3417 }
3418
3419 if (atomic_read(&fs_info->balance_running)) {
3420 atomic_inc(&fs_info->balance_pause_req);
3421 mutex_unlock(&fs_info->balance_mutex);
3422
3423 wait_event(fs_info->balance_wait_q,
3424 atomic_read(&fs_info->balance_running) == 0);
3425
3426 mutex_lock(&fs_info->balance_mutex);
3427 /* we are good with balance_ctl ripped off from under us */
3428 BUG_ON(atomic_read(&fs_info->balance_running));
3429 atomic_dec(&fs_info->balance_pause_req);
3430 } else {
3431 ret = -ENOTCONN;
3432 }
3433
3434 mutex_unlock(&fs_info->balance_mutex);
3435 return ret;
3436}
3437
a7e99c69
ID
3438int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3439{
e649e587
ID
3440 if (fs_info->sb->s_flags & MS_RDONLY)
3441 return -EROFS;
3442
a7e99c69
ID
3443 mutex_lock(&fs_info->balance_mutex);
3444 if (!fs_info->balance_ctl) {
3445 mutex_unlock(&fs_info->balance_mutex);
3446 return -ENOTCONN;
3447 }
3448
3449 atomic_inc(&fs_info->balance_cancel_req);
3450 /*
3451 * if we are running just wait and return, balance item is
3452 * deleted in btrfs_balance in this case
3453 */
3454 if (atomic_read(&fs_info->balance_running)) {
3455 mutex_unlock(&fs_info->balance_mutex);
3456 wait_event(fs_info->balance_wait_q,
3457 atomic_read(&fs_info->balance_running) == 0);
3458 mutex_lock(&fs_info->balance_mutex);
3459 } else {
3460 /* __cancel_balance needs volume_mutex */
3461 mutex_unlock(&fs_info->balance_mutex);
3462 mutex_lock(&fs_info->volume_mutex);
3463 mutex_lock(&fs_info->balance_mutex);
3464
3465 if (fs_info->balance_ctl)
3466 __cancel_balance(fs_info);
3467
3468 mutex_unlock(&fs_info->volume_mutex);
3469 }
3470
3471 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3472 atomic_dec(&fs_info->balance_cancel_req);
3473 mutex_unlock(&fs_info->balance_mutex);
3474 return 0;
3475}
3476
803b2f54
SB
3477static int btrfs_uuid_scan_kthread(void *data)
3478{
3479 struct btrfs_fs_info *fs_info = data;
3480 struct btrfs_root *root = fs_info->tree_root;
3481 struct btrfs_key key;
3482 struct btrfs_key max_key;
3483 struct btrfs_path *path = NULL;
3484 int ret = 0;
3485 struct extent_buffer *eb;
3486 int slot;
3487 struct btrfs_root_item root_item;
3488 u32 item_size;
f45388f3 3489 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
3490
3491 path = btrfs_alloc_path();
3492 if (!path) {
3493 ret = -ENOMEM;
3494 goto out;
3495 }
3496
3497 key.objectid = 0;
3498 key.type = BTRFS_ROOT_ITEM_KEY;
3499 key.offset = 0;
3500
3501 max_key.objectid = (u64)-1;
3502 max_key.type = BTRFS_ROOT_ITEM_KEY;
3503 max_key.offset = (u64)-1;
3504
3505 path->keep_locks = 1;
3506
3507 while (1) {
6174d3cb 3508 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
3509 if (ret) {
3510 if (ret > 0)
3511 ret = 0;
3512 break;
3513 }
3514
3515 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3516 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3517 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3518 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3519 goto skip;
3520
3521 eb = path->nodes[0];
3522 slot = path->slots[0];
3523 item_size = btrfs_item_size_nr(eb, slot);
3524 if (item_size < sizeof(root_item))
3525 goto skip;
3526
803b2f54
SB
3527 read_extent_buffer(eb, &root_item,
3528 btrfs_item_ptr_offset(eb, slot),
3529 (int)sizeof(root_item));
3530 if (btrfs_root_refs(&root_item) == 0)
3531 goto skip;
f45388f3
FDBM
3532
3533 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3534 !btrfs_is_empty_uuid(root_item.received_uuid)) {
3535 if (trans)
3536 goto update_tree;
3537
3538 btrfs_release_path(path);
803b2f54
SB
3539 /*
3540 * 1 - subvol uuid item
3541 * 1 - received_subvol uuid item
3542 */
3543 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3544 if (IS_ERR(trans)) {
3545 ret = PTR_ERR(trans);
3546 break;
3547 }
f45388f3
FDBM
3548 continue;
3549 } else {
3550 goto skip;
3551 }
3552update_tree:
3553 if (!btrfs_is_empty_uuid(root_item.uuid)) {
803b2f54
SB
3554 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3555 root_item.uuid,
3556 BTRFS_UUID_KEY_SUBVOL,
3557 key.objectid);
3558 if (ret < 0) {
efe120a0 3559 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 3560 ret);
803b2f54
SB
3561 break;
3562 }
3563 }
3564
3565 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
803b2f54
SB
3566 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3567 root_item.received_uuid,
3568 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3569 key.objectid);
3570 if (ret < 0) {
efe120a0 3571 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 3572 ret);
803b2f54
SB
3573 break;
3574 }
3575 }
3576
f45388f3 3577skip:
803b2f54
SB
3578 if (trans) {
3579 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
f45388f3 3580 trans = NULL;
803b2f54
SB
3581 if (ret)
3582 break;
3583 }
3584
803b2f54
SB
3585 btrfs_release_path(path);
3586 if (key.offset < (u64)-1) {
3587 key.offset++;
3588 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3589 key.offset = 0;
3590 key.type = BTRFS_ROOT_ITEM_KEY;
3591 } else if (key.objectid < (u64)-1) {
3592 key.offset = 0;
3593 key.type = BTRFS_ROOT_ITEM_KEY;
3594 key.objectid++;
3595 } else {
3596 break;
3597 }
3598 cond_resched();
3599 }
3600
3601out:
3602 btrfs_free_path(path);
f45388f3
FDBM
3603 if (trans && !IS_ERR(trans))
3604 btrfs_end_transaction(trans, fs_info->uuid_root);
803b2f54 3605 if (ret)
efe120a0 3606 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175
SB
3607 else
3608 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
3609 up(&fs_info->uuid_tree_rescan_sem);
3610 return 0;
3611}
3612
70f80175
SB
3613/*
3614 * Callback for btrfs_uuid_tree_iterate().
3615 * returns:
3616 * 0 check succeeded, the entry is not outdated.
3617 * < 0 if an error occured.
3618 * > 0 if the check failed, which means the caller shall remove the entry.
3619 */
3620static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3621 u8 *uuid, u8 type, u64 subid)
3622{
3623 struct btrfs_key key;
3624 int ret = 0;
3625 struct btrfs_root *subvol_root;
3626
3627 if (type != BTRFS_UUID_KEY_SUBVOL &&
3628 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3629 goto out;
3630
3631 key.objectid = subid;
3632 key.type = BTRFS_ROOT_ITEM_KEY;
3633 key.offset = (u64)-1;
3634 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3635 if (IS_ERR(subvol_root)) {
3636 ret = PTR_ERR(subvol_root);
3637 if (ret == -ENOENT)
3638 ret = 1;
3639 goto out;
3640 }
3641
3642 switch (type) {
3643 case BTRFS_UUID_KEY_SUBVOL:
3644 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3645 ret = 1;
3646 break;
3647 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3648 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3649 BTRFS_UUID_SIZE))
3650 ret = 1;
3651 break;
3652 }
3653
3654out:
3655 return ret;
3656}
3657
3658static int btrfs_uuid_rescan_kthread(void *data)
3659{
3660 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3661 int ret;
3662
3663 /*
3664 * 1st step is to iterate through the existing UUID tree and
3665 * to delete all entries that contain outdated data.
3666 * 2nd step is to add all missing entries to the UUID tree.
3667 */
3668 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3669 if (ret < 0) {
efe120a0 3670 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
3671 up(&fs_info->uuid_tree_rescan_sem);
3672 return ret;
3673 }
3674 return btrfs_uuid_scan_kthread(data);
3675}
3676
f7a81ea4
SB
3677int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3678{
3679 struct btrfs_trans_handle *trans;
3680 struct btrfs_root *tree_root = fs_info->tree_root;
3681 struct btrfs_root *uuid_root;
803b2f54
SB
3682 struct task_struct *task;
3683 int ret;
f7a81ea4
SB
3684
3685 /*
3686 * 1 - root node
3687 * 1 - root item
3688 */
3689 trans = btrfs_start_transaction(tree_root, 2);
3690 if (IS_ERR(trans))
3691 return PTR_ERR(trans);
3692
3693 uuid_root = btrfs_create_tree(trans, fs_info,
3694 BTRFS_UUID_TREE_OBJECTID);
3695 if (IS_ERR(uuid_root)) {
3696 btrfs_abort_transaction(trans, tree_root,
3697 PTR_ERR(uuid_root));
3698 return PTR_ERR(uuid_root);
3699 }
3700
3701 fs_info->uuid_root = uuid_root;
3702
803b2f54
SB
3703 ret = btrfs_commit_transaction(trans, tree_root);
3704 if (ret)
3705 return ret;
3706
3707 down(&fs_info->uuid_tree_rescan_sem);
3708 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3709 if (IS_ERR(task)) {
70f80175 3710 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 3711 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
3712 up(&fs_info->uuid_tree_rescan_sem);
3713 return PTR_ERR(task);
3714 }
3715
3716 return 0;
f7a81ea4 3717}
803b2f54 3718
70f80175
SB
3719int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3720{
3721 struct task_struct *task;
3722
3723 down(&fs_info->uuid_tree_rescan_sem);
3724 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3725 if (IS_ERR(task)) {
3726 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 3727 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
3728 up(&fs_info->uuid_tree_rescan_sem);
3729 return PTR_ERR(task);
3730 }
3731
3732 return 0;
3733}
3734
8f18cf13
CM
3735/*
3736 * shrinking a device means finding all of the device extents past
3737 * the new size, and then following the back refs to the chunks.
3738 * The chunk relocation code actually frees the device extent
3739 */
3740int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3741{
3742 struct btrfs_trans_handle *trans;
3743 struct btrfs_root *root = device->dev_root;
3744 struct btrfs_dev_extent *dev_extent = NULL;
3745 struct btrfs_path *path;
3746 u64 length;
3747 u64 chunk_tree;
3748 u64 chunk_objectid;
3749 u64 chunk_offset;
3750 int ret;
3751 int slot;
ba1bf481
JB
3752 int failed = 0;
3753 bool retried = false;
8f18cf13
CM
3754 struct extent_buffer *l;
3755 struct btrfs_key key;
6c41761f 3756 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 3757 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 3758 u64 old_size = device->total_bytes;
8f18cf13
CM
3759 u64 diff = device->total_bytes - new_size;
3760
63a212ab
SB
3761 if (device->is_tgtdev_for_dev_replace)
3762 return -EINVAL;
3763
8f18cf13
CM
3764 path = btrfs_alloc_path();
3765 if (!path)
3766 return -ENOMEM;
3767
8f18cf13
CM
3768 path->reada = 2;
3769
7d9eb12c
CM
3770 lock_chunks(root);
3771
8f18cf13 3772 device->total_bytes = new_size;
2bf64758 3773 if (device->writeable) {
2b82032c 3774 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
3775 spin_lock(&root->fs_info->free_chunk_lock);
3776 root->fs_info->free_chunk_space -= diff;
3777 spin_unlock(&root->fs_info->free_chunk_lock);
3778 }
7d9eb12c 3779 unlock_chunks(root);
8f18cf13 3780
ba1bf481 3781again:
8f18cf13
CM
3782 key.objectid = device->devid;
3783 key.offset = (u64)-1;
3784 key.type = BTRFS_DEV_EXTENT_KEY;
3785
213e64da 3786 do {
8f18cf13
CM
3787 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3788 if (ret < 0)
3789 goto done;
3790
3791 ret = btrfs_previous_item(root, path, 0, key.type);
3792 if (ret < 0)
3793 goto done;
3794 if (ret) {
3795 ret = 0;
b3b4aa74 3796 btrfs_release_path(path);
bf1fb512 3797 break;
8f18cf13
CM
3798 }
3799
3800 l = path->nodes[0];
3801 slot = path->slots[0];
3802 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3803
ba1bf481 3804 if (key.objectid != device->devid) {
b3b4aa74 3805 btrfs_release_path(path);
bf1fb512 3806 break;
ba1bf481 3807 }
8f18cf13
CM
3808
3809 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3810 length = btrfs_dev_extent_length(l, dev_extent);
3811
ba1bf481 3812 if (key.offset + length <= new_size) {
b3b4aa74 3813 btrfs_release_path(path);
d6397bae 3814 break;
ba1bf481 3815 }
8f18cf13
CM
3816
3817 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3818 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3819 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 3820 btrfs_release_path(path);
8f18cf13
CM
3821
3822 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3823 chunk_offset);
ba1bf481 3824 if (ret && ret != -ENOSPC)
8f18cf13 3825 goto done;
ba1bf481
JB
3826 if (ret == -ENOSPC)
3827 failed++;
213e64da 3828 } while (key.offset-- > 0);
ba1bf481
JB
3829
3830 if (failed && !retried) {
3831 failed = 0;
3832 retried = true;
3833 goto again;
3834 } else if (failed && retried) {
3835 ret = -ENOSPC;
3836 lock_chunks(root);
3837
3838 device->total_bytes = old_size;
3839 if (device->writeable)
3840 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
3841 spin_lock(&root->fs_info->free_chunk_lock);
3842 root->fs_info->free_chunk_space += diff;
3843 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
3844 unlock_chunks(root);
3845 goto done;
8f18cf13
CM
3846 }
3847
d6397bae 3848 /* Shrinking succeeded, else we would be at "done". */
a22285a6 3849 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
3850 if (IS_ERR(trans)) {
3851 ret = PTR_ERR(trans);
3852 goto done;
3853 }
3854
d6397bae
CB
3855 lock_chunks(root);
3856
3857 device->disk_total_bytes = new_size;
3858 /* Now btrfs_update_device() will change the on-disk size. */
3859 ret = btrfs_update_device(trans, device);
3860 if (ret) {
3861 unlock_chunks(root);
3862 btrfs_end_transaction(trans, root);
3863 goto done;
3864 }
3865 WARN_ON(diff > old_total);
3866 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3867 unlock_chunks(root);
3868 btrfs_end_transaction(trans, root);
8f18cf13
CM
3869done:
3870 btrfs_free_path(path);
3871 return ret;
3872}
3873
125ccb0a 3874static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
3875 struct btrfs_key *key,
3876 struct btrfs_chunk *chunk, int item_size)
3877{
6c41761f 3878 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
3879 struct btrfs_disk_key disk_key;
3880 u32 array_size;
3881 u8 *ptr;
3882
3883 array_size = btrfs_super_sys_array_size(super_copy);
3884 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3885 return -EFBIG;
3886
3887 ptr = super_copy->sys_chunk_array + array_size;
3888 btrfs_cpu_key_to_disk(&disk_key, key);
3889 memcpy(ptr, &disk_key, sizeof(disk_key));
3890 ptr += sizeof(disk_key);
3891 memcpy(ptr, chunk, item_size);
3892 item_size += sizeof(disk_key);
3893 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3894 return 0;
3895}
3896
73c5de00
AJ
3897/*
3898 * sort the devices in descending order by max_avail, total_avail
3899 */
3900static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 3901{
73c5de00
AJ
3902 const struct btrfs_device_info *di_a = a;
3903 const struct btrfs_device_info *di_b = b;
9b3f68b9 3904
73c5de00 3905 if (di_a->max_avail > di_b->max_avail)
b2117a39 3906 return -1;
73c5de00 3907 if (di_a->max_avail < di_b->max_avail)
b2117a39 3908 return 1;
73c5de00
AJ
3909 if (di_a->total_avail > di_b->total_avail)
3910 return -1;
3911 if (di_a->total_avail < di_b->total_avail)
3912 return 1;
3913 return 0;
b2117a39 3914}
0b86a832 3915
48a3b636 3916static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
e6ec716f
MX
3917 [BTRFS_RAID_RAID10] = {
3918 .sub_stripes = 2,
3919 .dev_stripes = 1,
3920 .devs_max = 0, /* 0 == as many as possible */
3921 .devs_min = 4,
3922 .devs_increment = 2,
3923 .ncopies = 2,
3924 },
3925 [BTRFS_RAID_RAID1] = {
3926 .sub_stripes = 1,
3927 .dev_stripes = 1,
3928 .devs_max = 2,
3929 .devs_min = 2,
3930 .devs_increment = 2,
3931 .ncopies = 2,
3932 },
3933 [BTRFS_RAID_DUP] = {
3934 .sub_stripes = 1,
3935 .dev_stripes = 2,
3936 .devs_max = 1,
3937 .devs_min = 1,
3938 .devs_increment = 1,
3939 .ncopies = 2,
3940 },
3941 [BTRFS_RAID_RAID0] = {
3942 .sub_stripes = 1,
3943 .dev_stripes = 1,
3944 .devs_max = 0,
3945 .devs_min = 2,
3946 .devs_increment = 1,
3947 .ncopies = 1,
3948 },
3949 [BTRFS_RAID_SINGLE] = {
3950 .sub_stripes = 1,
3951 .dev_stripes = 1,
3952 .devs_max = 1,
3953 .devs_min = 1,
3954 .devs_increment = 1,
3955 .ncopies = 1,
3956 },
e942f883
CM
3957 [BTRFS_RAID_RAID5] = {
3958 .sub_stripes = 1,
3959 .dev_stripes = 1,
3960 .devs_max = 0,
3961 .devs_min = 2,
3962 .devs_increment = 1,
3963 .ncopies = 2,
3964 },
3965 [BTRFS_RAID_RAID6] = {
3966 .sub_stripes = 1,
3967 .dev_stripes = 1,
3968 .devs_max = 0,
3969 .devs_min = 3,
3970 .devs_increment = 1,
3971 .ncopies = 3,
3972 },
31e50229
LB
3973};
3974
53b381b3
DW
3975static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
3976{
3977 /* TODO allow them to set a preferred stripe size */
3978 return 64 * 1024;
3979}
3980
3981static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
3982{
53b381b3
DW
3983 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
3984 return;
3985
ceda0864 3986 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
3987}
3988
73c5de00 3989static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
3990 struct btrfs_root *extent_root, u64 start,
3991 u64 type)
b2117a39 3992{
73c5de00
AJ
3993 struct btrfs_fs_info *info = extent_root->fs_info;
3994 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3995 struct list_head *cur;
3996 struct map_lookup *map = NULL;
3997 struct extent_map_tree *em_tree;
3998 struct extent_map *em;
3999 struct btrfs_device_info *devices_info = NULL;
4000 u64 total_avail;
4001 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4002 int data_stripes; /* number of stripes that count for
4003 block group size */
73c5de00
AJ
4004 int sub_stripes; /* sub_stripes info for map */
4005 int dev_stripes; /* stripes per dev */
4006 int devs_max; /* max devs to use */
4007 int devs_min; /* min devs needed */
4008 int devs_increment; /* ndevs has to be a multiple of this */
4009 int ncopies; /* how many copies to data has */
4010 int ret;
4011 u64 max_stripe_size;
4012 u64 max_chunk_size;
4013 u64 stripe_size;
4014 u64 num_bytes;
53b381b3 4015 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4016 int ndevs;
4017 int i;
4018 int j;
31e50229 4019 int index;
593060d7 4020
0c460c0d 4021 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4022
73c5de00
AJ
4023 if (list_empty(&fs_devices->alloc_list))
4024 return -ENOSPC;
b2117a39 4025
31e50229 4026 index = __get_raid_index(type);
73c5de00 4027
31e50229
LB
4028 sub_stripes = btrfs_raid_array[index].sub_stripes;
4029 dev_stripes = btrfs_raid_array[index].dev_stripes;
4030 devs_max = btrfs_raid_array[index].devs_max;
4031 devs_min = btrfs_raid_array[index].devs_min;
4032 devs_increment = btrfs_raid_array[index].devs_increment;
4033 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4034
9b3f68b9 4035 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
4036 max_stripe_size = 1024 * 1024 * 1024;
4037 max_chunk_size = 10 * max_stripe_size;
9b3f68b9 4038 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
4039 /* for larger filesystems, use larger metadata chunks */
4040 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4041 max_stripe_size = 1024 * 1024 * 1024;
4042 else
4043 max_stripe_size = 256 * 1024 * 1024;
73c5de00 4044 max_chunk_size = max_stripe_size;
a40a90a0 4045 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 4046 max_stripe_size = 32 * 1024 * 1024;
73c5de00
AJ
4047 max_chunk_size = 2 * max_stripe_size;
4048 } else {
efe120a0 4049 btrfs_err(info, "invalid chunk type 0x%llx requested\n",
73c5de00
AJ
4050 type);
4051 BUG_ON(1);
9b3f68b9
CM
4052 }
4053
2b82032c
YZ
4054 /* we don't want a chunk larger than 10% of writeable space */
4055 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4056 max_chunk_size);
9b3f68b9 4057
73c5de00
AJ
4058 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4059 GFP_NOFS);
4060 if (!devices_info)
4061 return -ENOMEM;
0cad8a11 4062
73c5de00 4063 cur = fs_devices->alloc_list.next;
9b3f68b9 4064
9f680ce0 4065 /*
73c5de00
AJ
4066 * in the first pass through the devices list, we gather information
4067 * about the available holes on each device.
9f680ce0 4068 */
73c5de00
AJ
4069 ndevs = 0;
4070 while (cur != &fs_devices->alloc_list) {
4071 struct btrfs_device *device;
4072 u64 max_avail;
4073 u64 dev_offset;
b2117a39 4074
73c5de00 4075 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4076
73c5de00 4077 cur = cur->next;
b2117a39 4078
73c5de00 4079 if (!device->writeable) {
31b1a2bd 4080 WARN(1, KERN_ERR
efe120a0 4081 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4082 continue;
4083 }
b2117a39 4084
63a212ab
SB
4085 if (!device->in_fs_metadata ||
4086 device->is_tgtdev_for_dev_replace)
73c5de00 4087 continue;
b2117a39 4088
73c5de00
AJ
4089 if (device->total_bytes > device->bytes_used)
4090 total_avail = device->total_bytes - device->bytes_used;
4091 else
4092 total_avail = 0;
38c01b96 4093
4094 /* If there is no space on this device, skip it. */
4095 if (total_avail == 0)
4096 continue;
b2117a39 4097
6df9a95e 4098 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4099 max_stripe_size * dev_stripes,
4100 &dev_offset, &max_avail);
4101 if (ret && ret != -ENOSPC)
4102 goto error;
b2117a39 4103
73c5de00
AJ
4104 if (ret == 0)
4105 max_avail = max_stripe_size * dev_stripes;
b2117a39 4106
73c5de00
AJ
4107 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4108 continue;
b2117a39 4109
063d006f
ES
4110 if (ndevs == fs_devices->rw_devices) {
4111 WARN(1, "%s: found more than %llu devices\n",
4112 __func__, fs_devices->rw_devices);
4113 break;
4114 }
73c5de00
AJ
4115 devices_info[ndevs].dev_offset = dev_offset;
4116 devices_info[ndevs].max_avail = max_avail;
4117 devices_info[ndevs].total_avail = total_avail;
4118 devices_info[ndevs].dev = device;
4119 ++ndevs;
4120 }
b2117a39 4121
73c5de00
AJ
4122 /*
4123 * now sort the devices by hole size / available space
4124 */
4125 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4126 btrfs_cmp_device_info, NULL);
b2117a39 4127
73c5de00
AJ
4128 /* round down to number of usable stripes */
4129 ndevs -= ndevs % devs_increment;
b2117a39 4130
73c5de00
AJ
4131 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4132 ret = -ENOSPC;
4133 goto error;
b2117a39 4134 }
9f680ce0 4135
73c5de00
AJ
4136 if (devs_max && ndevs > devs_max)
4137 ndevs = devs_max;
4138 /*
4139 * the primary goal is to maximize the number of stripes, so use as many
4140 * devices as possible, even if the stripes are not maximum sized.
4141 */
4142 stripe_size = devices_info[ndevs-1].max_avail;
4143 num_stripes = ndevs * dev_stripes;
b2117a39 4144
53b381b3
DW
4145 /*
4146 * this will have to be fixed for RAID1 and RAID10 over
4147 * more drives
4148 */
4149 data_stripes = num_stripes / ncopies;
4150
53b381b3
DW
4151 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4152 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4153 btrfs_super_stripesize(info->super_copy));
4154 data_stripes = num_stripes - 1;
4155 }
4156 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4157 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4158 btrfs_super_stripesize(info->super_copy));
4159 data_stripes = num_stripes - 2;
4160 }
86db2578
CM
4161
4162 /*
4163 * Use the number of data stripes to figure out how big this chunk
4164 * is really going to be in terms of logical address space,
4165 * and compare that answer with the max chunk size
4166 */
4167 if (stripe_size * data_stripes > max_chunk_size) {
4168 u64 mask = (1ULL << 24) - 1;
4169 stripe_size = max_chunk_size;
4170 do_div(stripe_size, data_stripes);
4171
4172 /* bump the answer up to a 16MB boundary */
4173 stripe_size = (stripe_size + mask) & ~mask;
4174
4175 /* but don't go higher than the limits we found
4176 * while searching for free extents
4177 */
4178 if (stripe_size > devices_info[ndevs-1].max_avail)
4179 stripe_size = devices_info[ndevs-1].max_avail;
4180 }
4181
73c5de00 4182 do_div(stripe_size, dev_stripes);
37db63a4
ID
4183
4184 /* align to BTRFS_STRIPE_LEN */
53b381b3
DW
4185 do_div(stripe_size, raid_stripe_len);
4186 stripe_size *= raid_stripe_len;
b2117a39
MX
4187
4188 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4189 if (!map) {
4190 ret = -ENOMEM;
4191 goto error;
4192 }
4193 map->num_stripes = num_stripes;
9b3f68b9 4194
73c5de00
AJ
4195 for (i = 0; i < ndevs; ++i) {
4196 for (j = 0; j < dev_stripes; ++j) {
4197 int s = i * dev_stripes + j;
4198 map->stripes[s].dev = devices_info[i].dev;
4199 map->stripes[s].physical = devices_info[i].dev_offset +
4200 j * stripe_size;
6324fbf3 4201 }
6324fbf3 4202 }
2b82032c 4203 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4204 map->stripe_len = raid_stripe_len;
4205 map->io_align = raid_stripe_len;
4206 map->io_width = raid_stripe_len;
2b82032c 4207 map->type = type;
2b82032c 4208 map->sub_stripes = sub_stripes;
0b86a832 4209
53b381b3 4210 num_bytes = stripe_size * data_stripes;
0b86a832 4211
73c5de00 4212 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4213
172ddd60 4214 em = alloc_extent_map();
2b82032c 4215 if (!em) {
b2117a39
MX
4216 ret = -ENOMEM;
4217 goto error;
593060d7 4218 }
2b82032c
YZ
4219 em->bdev = (struct block_device *)map;
4220 em->start = start;
73c5de00 4221 em->len = num_bytes;
2b82032c
YZ
4222 em->block_start = 0;
4223 em->block_len = em->len;
6df9a95e 4224 em->orig_block_len = stripe_size;
593060d7 4225
2b82032c 4226 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4227 write_lock(&em_tree->lock);
09a2a8f9 4228 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4229 if (!ret) {
4230 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4231 atomic_inc(&em->refs);
4232 }
890871be 4233 write_unlock(&em_tree->lock);
0f5d42b2
JB
4234 if (ret) {
4235 free_extent_map(em);
1dd4602f 4236 goto error;
0f5d42b2 4237 }
0b86a832 4238
04487488
JB
4239 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4240 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4241 start, num_bytes);
6df9a95e
JB
4242 if (ret)
4243 goto error_del_extent;
2b82032c 4244
0f5d42b2 4245 free_extent_map(em);
53b381b3
DW
4246 check_raid56_incompat_flag(extent_root->fs_info, type);
4247
b2117a39 4248 kfree(devices_info);
2b82032c 4249 return 0;
b2117a39 4250
6df9a95e 4251error_del_extent:
0f5d42b2
JB
4252 write_lock(&em_tree->lock);
4253 remove_extent_mapping(em_tree, em);
4254 write_unlock(&em_tree->lock);
4255
4256 /* One for our allocation */
4257 free_extent_map(em);
4258 /* One for the tree reference */
4259 free_extent_map(em);
b2117a39
MX
4260error:
4261 kfree(map);
4262 kfree(devices_info);
4263 return ret;
2b82032c
YZ
4264}
4265
6df9a95e 4266int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4267 struct btrfs_root *extent_root,
6df9a95e 4268 u64 chunk_offset, u64 chunk_size)
2b82032c 4269{
2b82032c
YZ
4270 struct btrfs_key key;
4271 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4272 struct btrfs_device *device;
4273 struct btrfs_chunk *chunk;
4274 struct btrfs_stripe *stripe;
6df9a95e
JB
4275 struct extent_map_tree *em_tree;
4276 struct extent_map *em;
4277 struct map_lookup *map;
4278 size_t item_size;
4279 u64 dev_offset;
4280 u64 stripe_size;
4281 int i = 0;
2b82032c
YZ
4282 int ret;
4283
6df9a95e
JB
4284 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4285 read_lock(&em_tree->lock);
4286 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4287 read_unlock(&em_tree->lock);
4288
4289 if (!em) {
4290 btrfs_crit(extent_root->fs_info, "unable to find logical "
4291 "%Lu len %Lu", chunk_offset, chunk_size);
4292 return -EINVAL;
4293 }
4294
4295 if (em->start != chunk_offset || em->len != chunk_size) {
4296 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4297 " %Lu-%Lu, found %Lu-%Lu\n", chunk_offset,
4298 chunk_size, em->start, em->len);
4299 free_extent_map(em);
4300 return -EINVAL;
4301 }
4302
4303 map = (struct map_lookup *)em->bdev;
4304 item_size = btrfs_chunk_item_size(map->num_stripes);
4305 stripe_size = em->orig_block_len;
4306
2b82032c 4307 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4308 if (!chunk) {
4309 ret = -ENOMEM;
4310 goto out;
4311 }
4312
4313 for (i = 0; i < map->num_stripes; i++) {
4314 device = map->stripes[i].dev;
4315 dev_offset = map->stripes[i].physical;
2b82032c 4316
2b82032c 4317 device->bytes_used += stripe_size;
0b86a832 4318 ret = btrfs_update_device(trans, device);
3acd3953 4319 if (ret)
6df9a95e
JB
4320 goto out;
4321 ret = btrfs_alloc_dev_extent(trans, device,
4322 chunk_root->root_key.objectid,
4323 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4324 chunk_offset, dev_offset,
4325 stripe_size);
4326 if (ret)
4327 goto out;
2b82032c
YZ
4328 }
4329
2bf64758
JB
4330 spin_lock(&extent_root->fs_info->free_chunk_lock);
4331 extent_root->fs_info->free_chunk_space -= (stripe_size *
4332 map->num_stripes);
4333 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4334
2b82032c 4335 stripe = &chunk->stripe;
6df9a95e
JB
4336 for (i = 0; i < map->num_stripes; i++) {
4337 device = map->stripes[i].dev;
4338 dev_offset = map->stripes[i].physical;
0b86a832 4339
e17cade2
CM
4340 btrfs_set_stack_stripe_devid(stripe, device->devid);
4341 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4342 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4343 stripe++;
0b86a832
CM
4344 }
4345
2b82032c 4346 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4347 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4348 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4349 btrfs_set_stack_chunk_type(chunk, map->type);
4350 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4351 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4352 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4353 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4354 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4355
2b82032c
YZ
4356 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4357 key.type = BTRFS_CHUNK_ITEM_KEY;
4358 key.offset = chunk_offset;
0b86a832 4359
2b82032c 4360 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4361 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4362 /*
4363 * TODO: Cleanup of inserted chunk root in case of
4364 * failure.
4365 */
125ccb0a 4366 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4367 item_size);
8f18cf13 4368 }
1abe9b8a 4369
6df9a95e 4370out:
0b86a832 4371 kfree(chunk);
6df9a95e 4372 free_extent_map(em);
4ed1d16e 4373 return ret;
2b82032c 4374}
0b86a832 4375
2b82032c
YZ
4376/*
4377 * Chunk allocation falls into two parts. The first part does works
4378 * that make the new allocated chunk useable, but not do any operation
4379 * that modifies the chunk tree. The second part does the works that
4380 * require modifying the chunk tree. This division is important for the
4381 * bootstrap process of adding storage to a seed btrfs.
4382 */
4383int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4384 struct btrfs_root *extent_root, u64 type)
4385{
4386 u64 chunk_offset;
2b82032c 4387
6df9a95e
JB
4388 chunk_offset = find_next_chunk(extent_root->fs_info);
4389 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4390}
4391
d397712b 4392static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4393 struct btrfs_root *root,
4394 struct btrfs_device *device)
4395{
4396 u64 chunk_offset;
4397 u64 sys_chunk_offset;
2b82032c 4398 u64 alloc_profile;
2b82032c
YZ
4399 struct btrfs_fs_info *fs_info = root->fs_info;
4400 struct btrfs_root *extent_root = fs_info->extent_root;
4401 int ret;
4402
6df9a95e 4403 chunk_offset = find_next_chunk(fs_info);
de98ced9 4404 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
4405 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4406 alloc_profile);
79787eaa
JM
4407 if (ret)
4408 return ret;
2b82032c 4409
6df9a95e 4410 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 4411 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
4412 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4413 alloc_profile);
005d6427
DS
4414 if (ret) {
4415 btrfs_abort_transaction(trans, root, ret);
4416 goto out;
4417 }
2b82032c
YZ
4418
4419 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
79787eaa 4420 if (ret)
005d6427 4421 btrfs_abort_transaction(trans, root, ret);
005d6427 4422out:
79787eaa 4423 return ret;
2b82032c
YZ
4424}
4425
4426int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4427{
4428 struct extent_map *em;
4429 struct map_lookup *map;
4430 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4431 int readonly = 0;
4432 int i;
4433
890871be 4434 read_lock(&map_tree->map_tree.lock);
2b82032c 4435 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 4436 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
4437 if (!em)
4438 return 1;
4439
f48b9075
JB
4440 if (btrfs_test_opt(root, DEGRADED)) {
4441 free_extent_map(em);
4442 return 0;
4443 }
4444
2b82032c
YZ
4445 map = (struct map_lookup *)em->bdev;
4446 for (i = 0; i < map->num_stripes; i++) {
4447 if (!map->stripes[i].dev->writeable) {
4448 readonly = 1;
4449 break;
4450 }
4451 }
0b86a832 4452 free_extent_map(em);
2b82032c 4453 return readonly;
0b86a832
CM
4454}
4455
4456void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4457{
a8067e02 4458 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
4459}
4460
4461void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4462{
4463 struct extent_map *em;
4464
d397712b 4465 while (1) {
890871be 4466 write_lock(&tree->map_tree.lock);
0b86a832
CM
4467 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4468 if (em)
4469 remove_extent_mapping(&tree->map_tree, em);
890871be 4470 write_unlock(&tree->map_tree.lock);
0b86a832
CM
4471 if (!em)
4472 break;
4473 kfree(em->bdev);
4474 /* once for us */
4475 free_extent_map(em);
4476 /* once for the tree */
4477 free_extent_map(em);
4478 }
4479}
4480
5d964051 4481int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 4482{
5d964051 4483 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
4484 struct extent_map *em;
4485 struct map_lookup *map;
4486 struct extent_map_tree *em_tree = &map_tree->map_tree;
4487 int ret;
4488
890871be 4489 read_lock(&em_tree->lock);
f188591e 4490 em = lookup_extent_mapping(em_tree, logical, len);
890871be 4491 read_unlock(&em_tree->lock);
f188591e 4492
fb7669b5
JB
4493 /*
4494 * We could return errors for these cases, but that could get ugly and
4495 * we'd probably do the same thing which is just not do anything else
4496 * and exit, so return 1 so the callers don't try to use other copies.
4497 */
4498 if (!em) {
ccf39f92 4499 btrfs_crit(fs_info, "No mapping for %Lu-%Lu\n", logical,
fb7669b5
JB
4500 logical+len);
4501 return 1;
4502 }
4503
4504 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 4505 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
fb7669b5
JB
4506 "%Lu-%Lu\n", logical, logical+len, em->start,
4507 em->start + em->len);
7d3d1744 4508 free_extent_map(em);
fb7669b5
JB
4509 return 1;
4510 }
4511
f188591e
CM
4512 map = (struct map_lookup *)em->bdev;
4513 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4514 ret = map->num_stripes;
321aecc6
CM
4515 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4516 ret = map->sub_stripes;
53b381b3
DW
4517 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4518 ret = 2;
4519 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4520 ret = 3;
f188591e
CM
4521 else
4522 ret = 1;
4523 free_extent_map(em);
ad6d620e
SB
4524
4525 btrfs_dev_replace_lock(&fs_info->dev_replace);
4526 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4527 ret++;
4528 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4529
f188591e
CM
4530 return ret;
4531}
4532
53b381b3
DW
4533unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4534 struct btrfs_mapping_tree *map_tree,
4535 u64 logical)
4536{
4537 struct extent_map *em;
4538 struct map_lookup *map;
4539 struct extent_map_tree *em_tree = &map_tree->map_tree;
4540 unsigned long len = root->sectorsize;
4541
4542 read_lock(&em_tree->lock);
4543 em = lookup_extent_mapping(em_tree, logical, len);
4544 read_unlock(&em_tree->lock);
4545 BUG_ON(!em);
4546
4547 BUG_ON(em->start > logical || em->start + em->len < logical);
4548 map = (struct map_lookup *)em->bdev;
4549 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4550 BTRFS_BLOCK_GROUP_RAID6)) {
4551 len = map->stripe_len * nr_data_stripes(map);
4552 }
4553 free_extent_map(em);
4554 return len;
4555}
4556
4557int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4558 u64 logical, u64 len, int mirror_num)
4559{
4560 struct extent_map *em;
4561 struct map_lookup *map;
4562 struct extent_map_tree *em_tree = &map_tree->map_tree;
4563 int ret = 0;
4564
4565 read_lock(&em_tree->lock);
4566 em = lookup_extent_mapping(em_tree, logical, len);
4567 read_unlock(&em_tree->lock);
4568 BUG_ON(!em);
4569
4570 BUG_ON(em->start > logical || em->start + em->len < logical);
4571 map = (struct map_lookup *)em->bdev;
4572 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4573 BTRFS_BLOCK_GROUP_RAID6))
4574 ret = 1;
4575 free_extent_map(em);
4576 return ret;
4577}
4578
30d9861f
SB
4579static int find_live_mirror(struct btrfs_fs_info *fs_info,
4580 struct map_lookup *map, int first, int num,
4581 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
4582{
4583 int i;
30d9861f
SB
4584 int tolerance;
4585 struct btrfs_device *srcdev;
4586
4587 if (dev_replace_is_ongoing &&
4588 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4589 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4590 srcdev = fs_info->dev_replace.srcdev;
4591 else
4592 srcdev = NULL;
4593
4594 /*
4595 * try to avoid the drive that is the source drive for a
4596 * dev-replace procedure, only choose it if no other non-missing
4597 * mirror is available
4598 */
4599 for (tolerance = 0; tolerance < 2; tolerance++) {
4600 if (map->stripes[optimal].dev->bdev &&
4601 (tolerance || map->stripes[optimal].dev != srcdev))
4602 return optimal;
4603 for (i = first; i < first + num; i++) {
4604 if (map->stripes[i].dev->bdev &&
4605 (tolerance || map->stripes[i].dev != srcdev))
4606 return i;
4607 }
dfe25020 4608 }
30d9861f 4609
dfe25020
CM
4610 /* we couldn't find one that doesn't fail. Just return something
4611 * and the io error handling code will clean up eventually
4612 */
4613 return optimal;
4614}
4615
53b381b3
DW
4616static inline int parity_smaller(u64 a, u64 b)
4617{
4618 return a > b;
4619}
4620
4621/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4622static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4623{
4624 struct btrfs_bio_stripe s;
4625 int i;
4626 u64 l;
4627 int again = 1;
4628
4629 while (again) {
4630 again = 0;
4631 for (i = 0; i < bbio->num_stripes - 1; i++) {
4632 if (parity_smaller(raid_map[i], raid_map[i+1])) {
4633 s = bbio->stripes[i];
4634 l = raid_map[i];
4635 bbio->stripes[i] = bbio->stripes[i+1];
4636 raid_map[i] = raid_map[i+1];
4637 bbio->stripes[i+1] = s;
4638 raid_map[i+1] = l;
4639 again = 1;
4640 }
4641 }
4642 }
4643}
4644
3ec706c8 4645static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 4646 u64 logical, u64 *length,
a1d3c478 4647 struct btrfs_bio **bbio_ret,
53b381b3 4648 int mirror_num, u64 **raid_map_ret)
0b86a832
CM
4649{
4650 struct extent_map *em;
4651 struct map_lookup *map;
3ec706c8 4652 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
4653 struct extent_map_tree *em_tree = &map_tree->map_tree;
4654 u64 offset;
593060d7 4655 u64 stripe_offset;
fce3bb9a 4656 u64 stripe_end_offset;
593060d7 4657 u64 stripe_nr;
fce3bb9a
LD
4658 u64 stripe_nr_orig;
4659 u64 stripe_nr_end;
53b381b3
DW
4660 u64 stripe_len;
4661 u64 *raid_map = NULL;
593060d7 4662 int stripe_index;
cea9e445 4663 int i;
de11cc12 4664 int ret = 0;
f2d8d74d 4665 int num_stripes;
a236aed1 4666 int max_errors = 0;
a1d3c478 4667 struct btrfs_bio *bbio = NULL;
472262f3
SB
4668 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4669 int dev_replace_is_ongoing = 0;
4670 int num_alloc_stripes;
ad6d620e
SB
4671 int patch_the_first_stripe_for_dev_replace = 0;
4672 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 4673 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 4674
890871be 4675 read_lock(&em_tree->lock);
0b86a832 4676 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 4677 read_unlock(&em_tree->lock);
f2d8d74d 4678
3b951516 4679 if (!em) {
c2cf52eb 4680 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 4681 logical, *length);
9bb91873
JB
4682 return -EINVAL;
4683 }
4684
4685 if (em->start > logical || em->start + em->len < logical) {
4686 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4687 "found %Lu-%Lu\n", logical, em->start,
4688 em->start + em->len);
7d3d1744 4689 free_extent_map(em);
9bb91873 4690 return -EINVAL;
3b951516 4691 }
0b86a832 4692
0b86a832
CM
4693 map = (struct map_lookup *)em->bdev;
4694 offset = logical - em->start;
593060d7 4695
53b381b3 4696 stripe_len = map->stripe_len;
593060d7
CM
4697 stripe_nr = offset;
4698 /*
4699 * stripe_nr counts the total number of stripes we have to stride
4700 * to get to this block
4701 */
53b381b3 4702 do_div(stripe_nr, stripe_len);
593060d7 4703
53b381b3 4704 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
4705 BUG_ON(offset < stripe_offset);
4706
4707 /* stripe_offset is the offset of this block in its stripe*/
4708 stripe_offset = offset - stripe_offset;
4709
53b381b3
DW
4710 /* if we're here for raid56, we need to know the stripe aligned start */
4711 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4712 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4713 raid56_full_stripe_start = offset;
4714
4715 /* allow a write of a full stripe, but make sure we don't
4716 * allow straddling of stripes
4717 */
4718 do_div(raid56_full_stripe_start, full_stripe_len);
4719 raid56_full_stripe_start *= full_stripe_len;
4720 }
4721
4722 if (rw & REQ_DISCARD) {
4723 /* we don't discard raid56 yet */
4724 if (map->type &
4725 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4726 ret = -EOPNOTSUPP;
4727 goto out;
4728 }
fce3bb9a 4729 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
4730 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4731 u64 max_len;
4732 /* For writes to RAID[56], allow a full stripeset across all disks.
4733 For other RAID types and for RAID[56] reads, just allow a single
4734 stripe (on a single disk). */
4735 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4736 (rw & REQ_WRITE)) {
4737 max_len = stripe_len * nr_data_stripes(map) -
4738 (offset - raid56_full_stripe_start);
4739 } else {
4740 /* we limit the length of each bio to what fits in a stripe */
4741 max_len = stripe_len - stripe_offset;
4742 }
4743 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
4744 } else {
4745 *length = em->len - offset;
4746 }
f2d8d74d 4747
53b381b3
DW
4748 /* This is for when we're called from btrfs_merge_bio_hook() and all
4749 it cares about is the length */
a1d3c478 4750 if (!bbio_ret)
cea9e445
CM
4751 goto out;
4752
472262f3
SB
4753 btrfs_dev_replace_lock(dev_replace);
4754 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4755 if (!dev_replace_is_ongoing)
4756 btrfs_dev_replace_unlock(dev_replace);
4757
ad6d620e
SB
4758 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4759 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4760 dev_replace->tgtdev != NULL) {
4761 /*
4762 * in dev-replace case, for repair case (that's the only
4763 * case where the mirror is selected explicitly when
4764 * calling btrfs_map_block), blocks left of the left cursor
4765 * can also be read from the target drive.
4766 * For REQ_GET_READ_MIRRORS, the target drive is added as
4767 * the last one to the array of stripes. For READ, it also
4768 * needs to be supported using the same mirror number.
4769 * If the requested block is not left of the left cursor,
4770 * EIO is returned. This can happen because btrfs_num_copies()
4771 * returns one more in the dev-replace case.
4772 */
4773 u64 tmp_length = *length;
4774 struct btrfs_bio *tmp_bbio = NULL;
4775 int tmp_num_stripes;
4776 u64 srcdev_devid = dev_replace->srcdev->devid;
4777 int index_srcdev = 0;
4778 int found = 0;
4779 u64 physical_of_found = 0;
4780
4781 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
53b381b3 4782 logical, &tmp_length, &tmp_bbio, 0, NULL);
ad6d620e
SB
4783 if (ret) {
4784 WARN_ON(tmp_bbio != NULL);
4785 goto out;
4786 }
4787
4788 tmp_num_stripes = tmp_bbio->num_stripes;
4789 if (mirror_num > tmp_num_stripes) {
4790 /*
4791 * REQ_GET_READ_MIRRORS does not contain this
4792 * mirror, that means that the requested area
4793 * is not left of the left cursor
4794 */
4795 ret = -EIO;
4796 kfree(tmp_bbio);
4797 goto out;
4798 }
4799
4800 /*
4801 * process the rest of the function using the mirror_num
4802 * of the source drive. Therefore look it up first.
4803 * At the end, patch the device pointer to the one of the
4804 * target drive.
4805 */
4806 for (i = 0; i < tmp_num_stripes; i++) {
4807 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4808 /*
4809 * In case of DUP, in order to keep it
4810 * simple, only add the mirror with the
4811 * lowest physical address
4812 */
4813 if (found &&
4814 physical_of_found <=
4815 tmp_bbio->stripes[i].physical)
4816 continue;
4817 index_srcdev = i;
4818 found = 1;
4819 physical_of_found =
4820 tmp_bbio->stripes[i].physical;
4821 }
4822 }
4823
4824 if (found) {
4825 mirror_num = index_srcdev + 1;
4826 patch_the_first_stripe_for_dev_replace = 1;
4827 physical_to_patch_in_first_stripe = physical_of_found;
4828 } else {
4829 WARN_ON(1);
4830 ret = -EIO;
4831 kfree(tmp_bbio);
4832 goto out;
4833 }
4834
4835 kfree(tmp_bbio);
4836 } else if (mirror_num > map->num_stripes) {
4837 mirror_num = 0;
4838 }
4839
f2d8d74d 4840 num_stripes = 1;
cea9e445 4841 stripe_index = 0;
fce3bb9a 4842 stripe_nr_orig = stripe_nr;
fda2832f 4843 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
fce3bb9a
LD
4844 do_div(stripe_nr_end, map->stripe_len);
4845 stripe_end_offset = stripe_nr_end * map->stripe_len -
4846 (offset + *length);
53b381b3 4847
fce3bb9a
LD
4848 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4849 if (rw & REQ_DISCARD)
4850 num_stripes = min_t(u64, map->num_stripes,
4851 stripe_nr_end - stripe_nr_orig);
4852 stripe_index = do_div(stripe_nr, map->num_stripes);
4853 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 4854 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 4855 num_stripes = map->num_stripes;
2fff734f 4856 else if (mirror_num)
f188591e 4857 stripe_index = mirror_num - 1;
dfe25020 4858 else {
30d9861f 4859 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 4860 map->num_stripes,
30d9861f
SB
4861 current->pid % map->num_stripes,
4862 dev_replace_is_ongoing);
a1d3c478 4863 mirror_num = stripe_index + 1;
dfe25020 4864 }
2fff734f 4865
611f0e00 4866 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 4867 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 4868 num_stripes = map->num_stripes;
a1d3c478 4869 } else if (mirror_num) {
f188591e 4870 stripe_index = mirror_num - 1;
a1d3c478
JS
4871 } else {
4872 mirror_num = 1;
4873 }
2fff734f 4874
321aecc6
CM
4875 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4876 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
4877
4878 stripe_index = do_div(stripe_nr, factor);
4879 stripe_index *= map->sub_stripes;
4880
29a8d9a0 4881 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 4882 num_stripes = map->sub_stripes;
fce3bb9a
LD
4883 else if (rw & REQ_DISCARD)
4884 num_stripes = min_t(u64, map->sub_stripes *
4885 (stripe_nr_end - stripe_nr_orig),
4886 map->num_stripes);
321aecc6
CM
4887 else if (mirror_num)
4888 stripe_index += mirror_num - 1;
dfe25020 4889 else {
3e74317a 4890 int old_stripe_index = stripe_index;
30d9861f
SB
4891 stripe_index = find_live_mirror(fs_info, map,
4892 stripe_index,
dfe25020 4893 map->sub_stripes, stripe_index +
30d9861f
SB
4894 current->pid % map->sub_stripes,
4895 dev_replace_is_ongoing);
3e74317a 4896 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 4897 }
53b381b3
DW
4898
4899 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4900 BTRFS_BLOCK_GROUP_RAID6)) {
4901 u64 tmp;
4902
4903 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4904 && raid_map_ret) {
4905 int i, rot;
4906
4907 /* push stripe_nr back to the start of the full stripe */
4908 stripe_nr = raid56_full_stripe_start;
4909 do_div(stripe_nr, stripe_len);
4910
4911 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4912
4913 /* RAID[56] write or recovery. Return all stripes */
4914 num_stripes = map->num_stripes;
4915 max_errors = nr_parity_stripes(map);
4916
d9b0d9ba 4917 raid_map = kmalloc_array(num_stripes, sizeof(u64),
53b381b3
DW
4918 GFP_NOFS);
4919 if (!raid_map) {
4920 ret = -ENOMEM;
4921 goto out;
4922 }
4923
4924 /* Work out the disk rotation on this stripe-set */
4925 tmp = stripe_nr;
4926 rot = do_div(tmp, num_stripes);
4927
4928 /* Fill in the logical address of each stripe */
4929 tmp = stripe_nr * nr_data_stripes(map);
4930 for (i = 0; i < nr_data_stripes(map); i++)
4931 raid_map[(i+rot) % num_stripes] =
4932 em->start + (tmp + i) * map->stripe_len;
4933
4934 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
4935 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4936 raid_map[(i+rot+1) % num_stripes] =
4937 RAID6_Q_STRIPE;
4938
4939 *length = map->stripe_len;
4940 stripe_index = 0;
4941 stripe_offset = 0;
4942 } else {
4943 /*
4944 * Mirror #0 or #1 means the original data block.
4945 * Mirror #2 is RAID5 parity block.
4946 * Mirror #3 is RAID6 Q block.
4947 */
4948 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4949 if (mirror_num > 1)
4950 stripe_index = nr_data_stripes(map) +
4951 mirror_num - 2;
4952
4953 /* We distribute the parity blocks across stripes */
4954 tmp = stripe_nr + stripe_index;
4955 stripe_index = do_div(tmp, map->num_stripes);
4956 }
8790d502
CM
4957 } else {
4958 /*
4959 * after this do_div call, stripe_nr is the number of stripes
4960 * on this device we have to walk to find the data, and
4961 * stripe_index is the number of our device in the stripe array
4962 */
4963 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 4964 mirror_num = stripe_index + 1;
8790d502 4965 }
593060d7 4966 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 4967
472262f3 4968 num_alloc_stripes = num_stripes;
ad6d620e
SB
4969 if (dev_replace_is_ongoing) {
4970 if (rw & (REQ_WRITE | REQ_DISCARD))
4971 num_alloc_stripes <<= 1;
4972 if (rw & REQ_GET_READ_MIRRORS)
4973 num_alloc_stripes++;
4974 }
472262f3 4975 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
de11cc12 4976 if (!bbio) {
eb2067f7 4977 kfree(raid_map);
de11cc12
LZ
4978 ret = -ENOMEM;
4979 goto out;
4980 }
4981 atomic_set(&bbio->error, 0);
4982
fce3bb9a 4983 if (rw & REQ_DISCARD) {
ec9ef7a1
LZ
4984 int factor = 0;
4985 int sub_stripes = 0;
4986 u64 stripes_per_dev = 0;
4987 u32 remaining_stripes = 0;
b89203f7 4988 u32 last_stripe = 0;
ec9ef7a1
LZ
4989
4990 if (map->type &
4991 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
4992 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4993 sub_stripes = 1;
4994 else
4995 sub_stripes = map->sub_stripes;
4996
4997 factor = map->num_stripes / sub_stripes;
4998 stripes_per_dev = div_u64_rem(stripe_nr_end -
4999 stripe_nr_orig,
5000 factor,
5001 &remaining_stripes);
b89203f7
LB
5002 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5003 last_stripe *= sub_stripes;
ec9ef7a1
LZ
5004 }
5005
fce3bb9a 5006 for (i = 0; i < num_stripes; i++) {
a1d3c478 5007 bbio->stripes[i].physical =
f2d8d74d
CM
5008 map->stripes[stripe_index].physical +
5009 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 5010 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 5011
ec9ef7a1
LZ
5012 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5013 BTRFS_BLOCK_GROUP_RAID10)) {
5014 bbio->stripes[i].length = stripes_per_dev *
5015 map->stripe_len;
b89203f7 5016
ec9ef7a1
LZ
5017 if (i / sub_stripes < remaining_stripes)
5018 bbio->stripes[i].length +=
5019 map->stripe_len;
b89203f7
LB
5020
5021 /*
5022 * Special for the first stripe and
5023 * the last stripe:
5024 *
5025 * |-------|...|-------|
5026 * |----------|
5027 * off end_off
5028 */
ec9ef7a1 5029 if (i < sub_stripes)
a1d3c478 5030 bbio->stripes[i].length -=
fce3bb9a 5031 stripe_offset;
b89203f7
LB
5032
5033 if (stripe_index >= last_stripe &&
5034 stripe_index <= (last_stripe +
5035 sub_stripes - 1))
a1d3c478 5036 bbio->stripes[i].length -=
fce3bb9a 5037 stripe_end_offset;
b89203f7 5038
ec9ef7a1
LZ
5039 if (i == sub_stripes - 1)
5040 stripe_offset = 0;
fce3bb9a 5041 } else
a1d3c478 5042 bbio->stripes[i].length = *length;
fce3bb9a
LD
5043
5044 stripe_index++;
5045 if (stripe_index == map->num_stripes) {
5046 /* This could only happen for RAID0/10 */
5047 stripe_index = 0;
5048 stripe_nr++;
5049 }
5050 }
5051 } else {
5052 for (i = 0; i < num_stripes; i++) {
a1d3c478 5053 bbio->stripes[i].physical =
212a17ab
LT
5054 map->stripes[stripe_index].physical +
5055 stripe_offset +
5056 stripe_nr * map->stripe_len;
a1d3c478 5057 bbio->stripes[i].dev =
212a17ab 5058 map->stripes[stripe_index].dev;
fce3bb9a 5059 stripe_index++;
f2d8d74d 5060 }
593060d7 5061 }
de11cc12 5062
29a8d9a0 5063 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
de11cc12
LZ
5064 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5065 BTRFS_BLOCK_GROUP_RAID10 |
53b381b3 5066 BTRFS_BLOCK_GROUP_RAID5 |
de11cc12
LZ
5067 BTRFS_BLOCK_GROUP_DUP)) {
5068 max_errors = 1;
53b381b3
DW
5069 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5070 max_errors = 2;
de11cc12 5071 }
f2d8d74d 5072 }
de11cc12 5073
472262f3
SB
5074 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5075 dev_replace->tgtdev != NULL) {
5076 int index_where_to_add;
5077 u64 srcdev_devid = dev_replace->srcdev->devid;
5078
5079 /*
5080 * duplicate the write operations while the dev replace
5081 * procedure is running. Since the copying of the old disk
5082 * to the new disk takes place at run time while the
5083 * filesystem is mounted writable, the regular write
5084 * operations to the old disk have to be duplicated to go
5085 * to the new disk as well.
5086 * Note that device->missing is handled by the caller, and
5087 * that the write to the old disk is already set up in the
5088 * stripes array.
5089 */
5090 index_where_to_add = num_stripes;
5091 for (i = 0; i < num_stripes; i++) {
5092 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5093 /* write to new disk, too */
5094 struct btrfs_bio_stripe *new =
5095 bbio->stripes + index_where_to_add;
5096 struct btrfs_bio_stripe *old =
5097 bbio->stripes + i;
5098
5099 new->physical = old->physical;
5100 new->length = old->length;
5101 new->dev = dev_replace->tgtdev;
5102 index_where_to_add++;
5103 max_errors++;
5104 }
5105 }
5106 num_stripes = index_where_to_add;
ad6d620e
SB
5107 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5108 dev_replace->tgtdev != NULL) {
5109 u64 srcdev_devid = dev_replace->srcdev->devid;
5110 int index_srcdev = 0;
5111 int found = 0;
5112 u64 physical_of_found = 0;
5113
5114 /*
5115 * During the dev-replace procedure, the target drive can
5116 * also be used to read data in case it is needed to repair
5117 * a corrupt block elsewhere. This is possible if the
5118 * requested area is left of the left cursor. In this area,
5119 * the target drive is a full copy of the source drive.
5120 */
5121 for (i = 0; i < num_stripes; i++) {
5122 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5123 /*
5124 * In case of DUP, in order to keep it
5125 * simple, only add the mirror with the
5126 * lowest physical address
5127 */
5128 if (found &&
5129 physical_of_found <=
5130 bbio->stripes[i].physical)
5131 continue;
5132 index_srcdev = i;
5133 found = 1;
5134 physical_of_found = bbio->stripes[i].physical;
5135 }
5136 }
5137 if (found) {
5138 u64 length = map->stripe_len;
5139
5140 if (physical_of_found + length <=
5141 dev_replace->cursor_left) {
5142 struct btrfs_bio_stripe *tgtdev_stripe =
5143 bbio->stripes + num_stripes;
5144
5145 tgtdev_stripe->physical = physical_of_found;
5146 tgtdev_stripe->length =
5147 bbio->stripes[index_srcdev].length;
5148 tgtdev_stripe->dev = dev_replace->tgtdev;
5149
5150 num_stripes++;
5151 }
5152 }
472262f3
SB
5153 }
5154
de11cc12
LZ
5155 *bbio_ret = bbio;
5156 bbio->num_stripes = num_stripes;
5157 bbio->max_errors = max_errors;
5158 bbio->mirror_num = mirror_num;
ad6d620e
SB
5159
5160 /*
5161 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5162 * mirror_num == num_stripes + 1 && dev_replace target drive is
5163 * available as a mirror
5164 */
5165 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5166 WARN_ON(num_stripes > 1);
5167 bbio->stripes[0].dev = dev_replace->tgtdev;
5168 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5169 bbio->mirror_num = map->num_stripes + 1;
5170 }
53b381b3
DW
5171 if (raid_map) {
5172 sort_parity_stripes(bbio, raid_map);
5173 *raid_map_ret = raid_map;
5174 }
cea9e445 5175out:
472262f3
SB
5176 if (dev_replace_is_ongoing)
5177 btrfs_dev_replace_unlock(dev_replace);
0b86a832 5178 free_extent_map(em);
de11cc12 5179 return ret;
0b86a832
CM
5180}
5181
3ec706c8 5182int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5183 u64 logical, u64 *length,
a1d3c478 5184 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5185{
3ec706c8 5186 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
53b381b3 5187 mirror_num, NULL);
f2d8d74d
CM
5188}
5189
a512bbf8
YZ
5190int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5191 u64 chunk_start, u64 physical, u64 devid,
5192 u64 **logical, int *naddrs, int *stripe_len)
5193{
5194 struct extent_map_tree *em_tree = &map_tree->map_tree;
5195 struct extent_map *em;
5196 struct map_lookup *map;
5197 u64 *buf;
5198 u64 bytenr;
5199 u64 length;
5200 u64 stripe_nr;
53b381b3 5201 u64 rmap_len;
a512bbf8
YZ
5202 int i, j, nr = 0;
5203
890871be 5204 read_lock(&em_tree->lock);
a512bbf8 5205 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5206 read_unlock(&em_tree->lock);
a512bbf8 5207
835d974f 5208 if (!em) {
efe120a0 5209 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
835d974f
JB
5210 chunk_start);
5211 return -EIO;
5212 }
5213
5214 if (em->start != chunk_start) {
efe120a0 5215 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
835d974f
JB
5216 em->start, chunk_start);
5217 free_extent_map(em);
5218 return -EIO;
5219 }
a512bbf8
YZ
5220 map = (struct map_lookup *)em->bdev;
5221
5222 length = em->len;
53b381b3
DW
5223 rmap_len = map->stripe_len;
5224
a512bbf8
YZ
5225 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5226 do_div(length, map->num_stripes / map->sub_stripes);
5227 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5228 do_div(length, map->num_stripes);
53b381b3
DW
5229 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5230 BTRFS_BLOCK_GROUP_RAID6)) {
5231 do_div(length, nr_data_stripes(map));
5232 rmap_len = map->stripe_len * nr_data_stripes(map);
5233 }
a512bbf8
YZ
5234
5235 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
79787eaa 5236 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5237
5238 for (i = 0; i < map->num_stripes; i++) {
5239 if (devid && map->stripes[i].dev->devid != devid)
5240 continue;
5241 if (map->stripes[i].physical > physical ||
5242 map->stripes[i].physical + length <= physical)
5243 continue;
5244
5245 stripe_nr = physical - map->stripes[i].physical;
5246 do_div(stripe_nr, map->stripe_len);
5247
5248 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5249 stripe_nr = stripe_nr * map->num_stripes + i;
5250 do_div(stripe_nr, map->sub_stripes);
5251 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5252 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5253 } /* else if RAID[56], multiply by nr_data_stripes().
5254 * Alternatively, just use rmap_len below instead of
5255 * map->stripe_len */
5256
5257 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5258 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5259 for (j = 0; j < nr; j++) {
5260 if (buf[j] == bytenr)
5261 break;
5262 }
934d375b
CM
5263 if (j == nr) {
5264 WARN_ON(nr >= map->num_stripes);
a512bbf8 5265 buf[nr++] = bytenr;
934d375b 5266 }
a512bbf8
YZ
5267 }
5268
a512bbf8
YZ
5269 *logical = buf;
5270 *naddrs = nr;
53b381b3 5271 *stripe_len = rmap_len;
a512bbf8
YZ
5272
5273 free_extent_map(em);
5274 return 0;
f2d8d74d
CM
5275}
5276
a1d3c478 5277static void btrfs_end_bio(struct bio *bio, int err)
8790d502 5278{
9be3395b 5279 struct btrfs_bio *bbio = bio->bi_private;
c404e0dc 5280 struct btrfs_device *dev = bbio->stripes[0].dev;
7d2b4daa 5281 int is_orig_bio = 0;
8790d502 5282
442a4f63 5283 if (err) {
a1d3c478 5284 atomic_inc(&bbio->error);
442a4f63
SB
5285 if (err == -EIO || err == -EREMOTEIO) {
5286 unsigned int stripe_index =
9be3395b 5287 btrfs_io_bio(bio)->stripe_index;
442a4f63
SB
5288
5289 BUG_ON(stripe_index >= bbio->num_stripes);
5290 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5291 if (dev->bdev) {
5292 if (bio->bi_rw & WRITE)
5293 btrfs_dev_stat_inc(dev,
5294 BTRFS_DEV_STAT_WRITE_ERRS);
5295 else
5296 btrfs_dev_stat_inc(dev,
5297 BTRFS_DEV_STAT_READ_ERRS);
5298 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5299 btrfs_dev_stat_inc(dev,
5300 BTRFS_DEV_STAT_FLUSH_ERRS);
5301 btrfs_dev_stat_print_on_error(dev);
5302 }
442a4f63
SB
5303 }
5304 }
8790d502 5305
a1d3c478 5306 if (bio == bbio->orig_bio)
7d2b4daa
CM
5307 is_orig_bio = 1;
5308
c404e0dc
MX
5309 btrfs_bio_counter_dec(bbio->fs_info);
5310
a1d3c478 5311 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5312 if (!is_orig_bio) {
5313 bio_put(bio);
a1d3c478 5314 bio = bbio->orig_bio;
7d2b4daa 5315 }
c7b22bb1
MK
5316
5317 /*
5318 * We have original bio now. So increment bi_remaining to
5319 * account for it in endio
5320 */
5321 atomic_inc(&bio->bi_remaining);
5322
a1d3c478
JS
5323 bio->bi_private = bbio->private;
5324 bio->bi_end_io = bbio->end_io;
9be3395b 5325 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 5326 /* only send an error to the higher layers if it is
53b381b3 5327 * beyond the tolerance of the btrfs bio
a236aed1 5328 */
a1d3c478 5329 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 5330 err = -EIO;
5dbc8fca 5331 } else {
1259ab75
CM
5332 /*
5333 * this bio is actually up to date, we didn't
5334 * go over the max number of errors
5335 */
5336 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 5337 err = 0;
1259ab75 5338 }
a1d3c478 5339 kfree(bbio);
8790d502
CM
5340
5341 bio_endio(bio, err);
7d2b4daa 5342 } else if (!is_orig_bio) {
8790d502
CM
5343 bio_put(bio);
5344 }
8790d502
CM
5345}
5346
8b712842
CM
5347/*
5348 * see run_scheduled_bios for a description of why bios are collected for
5349 * async submit.
5350 *
5351 * This will add one bio to the pending list for a device and make sure
5352 * the work struct is scheduled.
5353 */
48a3b636
ES
5354static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5355 struct btrfs_device *device,
5356 int rw, struct bio *bio)
8b712842
CM
5357{
5358 int should_queue = 1;
ffbd517d 5359 struct btrfs_pending_bios *pending_bios;
8b712842 5360
53b381b3
DW
5361 if (device->missing || !device->bdev) {
5362 bio_endio(bio, -EIO);
5363 return;
5364 }
5365
8b712842 5366 /* don't bother with additional async steps for reads, right now */
7b6d91da 5367 if (!(rw & REQ_WRITE)) {
492bb6de 5368 bio_get(bio);
21adbd5c 5369 btrfsic_submit_bio(rw, bio);
492bb6de 5370 bio_put(bio);
143bede5 5371 return;
8b712842
CM
5372 }
5373
5374 /*
0986fe9e 5375 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
5376 * higher layers. Otherwise, the async bio makes it appear we have
5377 * made progress against dirty pages when we've really just put it
5378 * on a queue for later
5379 */
0986fe9e 5380 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 5381 WARN_ON(bio->bi_next);
8b712842
CM
5382 bio->bi_next = NULL;
5383 bio->bi_rw |= rw;
5384
5385 spin_lock(&device->io_lock);
7b6d91da 5386 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
5387 pending_bios = &device->pending_sync_bios;
5388 else
5389 pending_bios = &device->pending_bios;
8b712842 5390
ffbd517d
CM
5391 if (pending_bios->tail)
5392 pending_bios->tail->bi_next = bio;
8b712842 5393
ffbd517d
CM
5394 pending_bios->tail = bio;
5395 if (!pending_bios->head)
5396 pending_bios->head = bio;
8b712842
CM
5397 if (device->running_pending)
5398 should_queue = 0;
5399
5400 spin_unlock(&device->io_lock);
5401
5402 if (should_queue)
a8c93d4e
QW
5403 btrfs_queue_work(root->fs_info->submit_workers,
5404 &device->work);
8b712842
CM
5405}
5406
de1ee92a
JB
5407static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5408 sector_t sector)
5409{
5410 struct bio_vec *prev;
5411 struct request_queue *q = bdev_get_queue(bdev);
475bf36f 5412 unsigned int max_sectors = queue_max_sectors(q);
de1ee92a
JB
5413 struct bvec_merge_data bvm = {
5414 .bi_bdev = bdev,
5415 .bi_sector = sector,
5416 .bi_rw = bio->bi_rw,
5417 };
5418
fae7f21c 5419 if (WARN_ON(bio->bi_vcnt == 0))
de1ee92a 5420 return 1;
de1ee92a
JB
5421
5422 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
aa8b57aa 5423 if (bio_sectors(bio) > max_sectors)
de1ee92a
JB
5424 return 0;
5425
5426 if (!q->merge_bvec_fn)
5427 return 1;
5428
4f024f37 5429 bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
de1ee92a
JB
5430 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5431 return 0;
5432 return 1;
5433}
5434
5435static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5436 struct bio *bio, u64 physical, int dev_nr,
5437 int rw, int async)
5438{
5439 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5440
5441 bio->bi_private = bbio;
9be3395b 5442 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 5443 bio->bi_end_io = btrfs_end_bio;
4f024f37 5444 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
5445#ifdef DEBUG
5446 {
5447 struct rcu_string *name;
5448
5449 rcu_read_lock();
5450 name = rcu_dereference(dev->name);
d1423248 5451 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a
JB
5452 "(%s id %llu), size=%u\n", rw,
5453 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5454 name->str, dev->devid, bio->bi_size);
5455 rcu_read_unlock();
5456 }
5457#endif
5458 bio->bi_bdev = dev->bdev;
c404e0dc
MX
5459
5460 btrfs_bio_counter_inc_noblocked(root->fs_info);
5461
de1ee92a 5462 if (async)
53b381b3 5463 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
5464 else
5465 btrfsic_submit_bio(rw, bio);
5466}
5467
5468static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5469 struct bio *first_bio, struct btrfs_device *dev,
5470 int dev_nr, int rw, int async)
5471{
5472 struct bio_vec *bvec = first_bio->bi_io_vec;
5473 struct bio *bio;
5474 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5475 u64 physical = bbio->stripes[dev_nr].physical;
5476
5477again:
5478 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5479 if (!bio)
5480 return -ENOMEM;
5481
5482 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5483 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5484 bvec->bv_offset) < bvec->bv_len) {
4f024f37 5485 u64 len = bio->bi_iter.bi_size;
de1ee92a
JB
5486
5487 atomic_inc(&bbio->stripes_pending);
5488 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5489 rw, async);
5490 physical += len;
5491 goto again;
5492 }
5493 bvec++;
5494 }
5495
5496 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5497 return 0;
5498}
5499
5500static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5501{
5502 atomic_inc(&bbio->error);
5503 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5504 bio->bi_private = bbio->private;
5505 bio->bi_end_io = bbio->end_io;
9be3395b 5506 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 5507 bio->bi_iter.bi_sector = logical >> 9;
de1ee92a
JB
5508 kfree(bbio);
5509 bio_endio(bio, -EIO);
5510 }
5511}
5512
f188591e 5513int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 5514 int mirror_num, int async_submit)
0b86a832 5515{
0b86a832 5516 struct btrfs_device *dev;
8790d502 5517 struct bio *first_bio = bio;
4f024f37 5518 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
5519 u64 length = 0;
5520 u64 map_length;
53b381b3 5521 u64 *raid_map = NULL;
0b86a832 5522 int ret;
8790d502
CM
5523 int dev_nr = 0;
5524 int total_devs = 1;
a1d3c478 5525 struct btrfs_bio *bbio = NULL;
0b86a832 5526
4f024f37 5527 length = bio->bi_iter.bi_size;
0b86a832 5528 map_length = length;
cea9e445 5529
c404e0dc 5530 btrfs_bio_counter_inc_blocked(root->fs_info);
53b381b3
DW
5531 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5532 mirror_num, &raid_map);
c404e0dc
MX
5533 if (ret) {
5534 btrfs_bio_counter_dec(root->fs_info);
79787eaa 5535 return ret;
c404e0dc 5536 }
cea9e445 5537
a1d3c478 5538 total_devs = bbio->num_stripes;
53b381b3
DW
5539 bbio->orig_bio = first_bio;
5540 bbio->private = first_bio->bi_private;
5541 bbio->end_io = first_bio->bi_end_io;
c404e0dc 5542 bbio->fs_info = root->fs_info;
53b381b3
DW
5543 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5544
5545 if (raid_map) {
5546 /* In this case, map_length has been set to the length of
5547 a single stripe; not the whole write */
5548 if (rw & WRITE) {
c404e0dc
MX
5549 ret = raid56_parity_write(root, bio, bbio,
5550 raid_map, map_length);
53b381b3 5551 } else {
c404e0dc
MX
5552 ret = raid56_parity_recover(root, bio, bbio,
5553 raid_map, map_length,
5554 mirror_num);
53b381b3 5555 }
c404e0dc
MX
5556 /*
5557 * FIXME, replace dosen't support raid56 yet, please fix
5558 * it in the future.
5559 */
5560 btrfs_bio_counter_dec(root->fs_info);
5561 return ret;
53b381b3
DW
5562 }
5563
cea9e445 5564 if (map_length < length) {
c2cf52eb 5565 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 5566 logical, length, map_length);
cea9e445
CM
5567 BUG();
5568 }
a1d3c478 5569
d397712b 5570 while (dev_nr < total_devs) {
de1ee92a
JB
5571 dev = bbio->stripes[dev_nr].dev;
5572 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5573 bbio_error(bbio, first_bio, logical);
5574 dev_nr++;
5575 continue;
5576 }
5577
5578 /*
5579 * Check and see if we're ok with this bio based on it's size
5580 * and offset with the given device.
5581 */
5582 if (!bio_size_ok(dev->bdev, first_bio,
5583 bbio->stripes[dev_nr].physical >> 9)) {
5584 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5585 dev_nr, rw, async_submit);
5586 BUG_ON(ret);
5587 dev_nr++;
5588 continue;
5589 }
5590
a1d3c478 5591 if (dev_nr < total_devs - 1) {
9be3395b 5592 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 5593 BUG_ON(!bio); /* -ENOMEM */
a1d3c478
JS
5594 } else {
5595 bio = first_bio;
8790d502 5596 }
de1ee92a
JB
5597
5598 submit_stripe_bio(root, bbio, bio,
5599 bbio->stripes[dev_nr].physical, dev_nr, rw,
5600 async_submit);
8790d502
CM
5601 dev_nr++;
5602 }
c404e0dc 5603 btrfs_bio_counter_dec(root->fs_info);
0b86a832
CM
5604 return 0;
5605}
5606
aa1b8cd4 5607struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 5608 u8 *uuid, u8 *fsid)
0b86a832 5609{
2b82032c
YZ
5610 struct btrfs_device *device;
5611 struct btrfs_fs_devices *cur_devices;
5612
aa1b8cd4 5613 cur_devices = fs_info->fs_devices;
2b82032c
YZ
5614 while (cur_devices) {
5615 if (!fsid ||
5616 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5617 device = __find_device(&cur_devices->devices,
5618 devid, uuid);
5619 if (device)
5620 return device;
5621 }
5622 cur_devices = cur_devices->seed;
5623 }
5624 return NULL;
0b86a832
CM
5625}
5626
dfe25020
CM
5627static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5628 u64 devid, u8 *dev_uuid)
5629{
5630 struct btrfs_device *device;
5631 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5632
12bd2fc0
ID
5633 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5634 if (IS_ERR(device))
7cbd8a83 5635 return NULL;
12bd2fc0
ID
5636
5637 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 5638 device->fs_devices = fs_devices;
dfe25020 5639 fs_devices->num_devices++;
12bd2fc0
ID
5640
5641 device->missing = 1;
cd02dca5 5642 fs_devices->missing_devices++;
12bd2fc0 5643
dfe25020
CM
5644 return device;
5645}
5646
12bd2fc0
ID
5647/**
5648 * btrfs_alloc_device - allocate struct btrfs_device
5649 * @fs_info: used only for generating a new devid, can be NULL if
5650 * devid is provided (i.e. @devid != NULL).
5651 * @devid: a pointer to devid for this device. If NULL a new devid
5652 * is generated.
5653 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5654 * is generated.
5655 *
5656 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5657 * on error. Returned struct is not linked onto any lists and can be
5658 * destroyed with kfree() right away.
5659 */
5660struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5661 const u64 *devid,
5662 const u8 *uuid)
5663{
5664 struct btrfs_device *dev;
5665 u64 tmp;
5666
fae7f21c 5667 if (WARN_ON(!devid && !fs_info))
12bd2fc0 5668 return ERR_PTR(-EINVAL);
12bd2fc0
ID
5669
5670 dev = __alloc_device();
5671 if (IS_ERR(dev))
5672 return dev;
5673
5674 if (devid)
5675 tmp = *devid;
5676 else {
5677 int ret;
5678
5679 ret = find_next_devid(fs_info, &tmp);
5680 if (ret) {
5681 kfree(dev);
5682 return ERR_PTR(ret);
5683 }
5684 }
5685 dev->devid = tmp;
5686
5687 if (uuid)
5688 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5689 else
5690 generate_random_uuid(dev->uuid);
5691
a8c93d4e 5692 btrfs_init_work(&dev->work, pending_bios_fn, NULL, NULL);
12bd2fc0
ID
5693
5694 return dev;
5695}
5696
0b86a832
CM
5697static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5698 struct extent_buffer *leaf,
5699 struct btrfs_chunk *chunk)
5700{
5701 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5702 struct map_lookup *map;
5703 struct extent_map *em;
5704 u64 logical;
5705 u64 length;
5706 u64 devid;
a443755f 5707 u8 uuid[BTRFS_UUID_SIZE];
593060d7 5708 int num_stripes;
0b86a832 5709 int ret;
593060d7 5710 int i;
0b86a832 5711
e17cade2
CM
5712 logical = key->offset;
5713 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 5714
890871be 5715 read_lock(&map_tree->map_tree.lock);
0b86a832 5716 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 5717 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
5718
5719 /* already mapped? */
5720 if (em && em->start <= logical && em->start + em->len > logical) {
5721 free_extent_map(em);
0b86a832
CM
5722 return 0;
5723 } else if (em) {
5724 free_extent_map(em);
5725 }
0b86a832 5726
172ddd60 5727 em = alloc_extent_map();
0b86a832
CM
5728 if (!em)
5729 return -ENOMEM;
593060d7
CM
5730 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5731 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
5732 if (!map) {
5733 free_extent_map(em);
5734 return -ENOMEM;
5735 }
5736
5737 em->bdev = (struct block_device *)map;
5738 em->start = logical;
5739 em->len = length;
70c8a91c 5740 em->orig_start = 0;
0b86a832 5741 em->block_start = 0;
c8b97818 5742 em->block_len = em->len;
0b86a832 5743
593060d7
CM
5744 map->num_stripes = num_stripes;
5745 map->io_width = btrfs_chunk_io_width(leaf, chunk);
5746 map->io_align = btrfs_chunk_io_align(leaf, chunk);
5747 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5748 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5749 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 5750 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
5751 for (i = 0; i < num_stripes; i++) {
5752 map->stripes[i].physical =
5753 btrfs_stripe_offset_nr(leaf, chunk, i);
5754 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
5755 read_extent_buffer(leaf, uuid, (unsigned long)
5756 btrfs_stripe_dev_uuid_nr(chunk, i),
5757 BTRFS_UUID_SIZE);
aa1b8cd4
SB
5758 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5759 uuid, NULL);
dfe25020 5760 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
5761 kfree(map);
5762 free_extent_map(em);
5763 return -EIO;
5764 }
dfe25020
CM
5765 if (!map->stripes[i].dev) {
5766 map->stripes[i].dev =
5767 add_missing_dev(root, devid, uuid);
5768 if (!map->stripes[i].dev) {
5769 kfree(map);
5770 free_extent_map(em);
5771 return -EIO;
5772 }
5773 }
5774 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
5775 }
5776
890871be 5777 write_lock(&map_tree->map_tree.lock);
09a2a8f9 5778 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 5779 write_unlock(&map_tree->map_tree.lock);
79787eaa 5780 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
5781 free_extent_map(em);
5782
5783 return 0;
5784}
5785
143bede5 5786static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
5787 struct btrfs_dev_item *dev_item,
5788 struct btrfs_device *device)
5789{
5790 unsigned long ptr;
0b86a832
CM
5791
5792 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
5793 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5794 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
5795 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5796 device->type = btrfs_device_type(leaf, dev_item);
5797 device->io_align = btrfs_device_io_align(leaf, dev_item);
5798 device->io_width = btrfs_device_io_width(leaf, dev_item);
5799 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 5800 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 5801 device->is_tgtdev_for_dev_replace = 0;
0b86a832 5802
410ba3a2 5803 ptr = btrfs_device_uuid(dev_item);
e17cade2 5804 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
5805}
5806
2b82032c
YZ
5807static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5808{
5809 struct btrfs_fs_devices *fs_devices;
5810 int ret;
5811
b367e47f 5812 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
5813
5814 fs_devices = root->fs_info->fs_devices->seed;
5815 while (fs_devices) {
5816 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5817 ret = 0;
5818 goto out;
5819 }
5820 fs_devices = fs_devices->seed;
5821 }
5822
5823 fs_devices = find_fsid(fsid);
5824 if (!fs_devices) {
5825 ret = -ENOENT;
5826 goto out;
5827 }
e4404d6e
YZ
5828
5829 fs_devices = clone_fs_devices(fs_devices);
5830 if (IS_ERR(fs_devices)) {
5831 ret = PTR_ERR(fs_devices);
2b82032c
YZ
5832 goto out;
5833 }
5834
97288f2c 5835 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 5836 root->fs_info->bdev_holder);
48d28232
JL
5837 if (ret) {
5838 free_fs_devices(fs_devices);
2b82032c 5839 goto out;
48d28232 5840 }
2b82032c
YZ
5841
5842 if (!fs_devices->seeding) {
5843 __btrfs_close_devices(fs_devices);
e4404d6e 5844 free_fs_devices(fs_devices);
2b82032c
YZ
5845 ret = -EINVAL;
5846 goto out;
5847 }
5848
5849 fs_devices->seed = root->fs_info->fs_devices->seed;
5850 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 5851out:
2b82032c
YZ
5852 return ret;
5853}
5854
0d81ba5d 5855static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
5856 struct extent_buffer *leaf,
5857 struct btrfs_dev_item *dev_item)
5858{
5859 struct btrfs_device *device;
5860 u64 devid;
5861 int ret;
2b82032c 5862 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
5863 u8 dev_uuid[BTRFS_UUID_SIZE];
5864
0b86a832 5865 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 5866 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 5867 BTRFS_UUID_SIZE);
1473b24e 5868 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
5869 BTRFS_UUID_SIZE);
5870
5871 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5872 ret = open_seed_devices(root, fs_uuid);
e4404d6e 5873 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 5874 return ret;
2b82032c
YZ
5875 }
5876
aa1b8cd4 5877 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
2b82032c 5878 if (!device || !device->bdev) {
e4404d6e 5879 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
5880 return -EIO;
5881
5882 if (!device) {
c1c9ff7c 5883 btrfs_warn(root->fs_info, "devid %llu missing", devid);
2b82032c
YZ
5884 device = add_missing_dev(root, devid, dev_uuid);
5885 if (!device)
5886 return -ENOMEM;
cd02dca5
CM
5887 } else if (!device->missing) {
5888 /*
5889 * this happens when a device that was properly setup
5890 * in the device info lists suddenly goes bad.
5891 * device->bdev is NULL, and so we have to set
5892 * device->missing to one here
5893 */
5894 root->fs_info->fs_devices->missing_devices++;
5895 device->missing = 1;
2b82032c
YZ
5896 }
5897 }
5898
5899 if (device->fs_devices != root->fs_info->fs_devices) {
5900 BUG_ON(device->writeable);
5901 if (device->generation !=
5902 btrfs_device_generation(leaf, dev_item))
5903 return -EINVAL;
6324fbf3 5904 }
0b86a832
CM
5905
5906 fill_device_from_item(leaf, dev_item, device);
dfe25020 5907 device->in_fs_metadata = 1;
63a212ab 5908 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 5909 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
5910 spin_lock(&root->fs_info->free_chunk_lock);
5911 root->fs_info->free_chunk_space += device->total_bytes -
5912 device->bytes_used;
5913 spin_unlock(&root->fs_info->free_chunk_lock);
5914 }
0b86a832 5915 ret = 0;
0b86a832
CM
5916 return ret;
5917}
5918
e4404d6e 5919int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 5920{
6c41761f 5921 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 5922 struct extent_buffer *sb;
0b86a832 5923 struct btrfs_disk_key *disk_key;
0b86a832 5924 struct btrfs_chunk *chunk;
84eed90f
CM
5925 u8 *ptr;
5926 unsigned long sb_ptr;
5927 int ret = 0;
0b86a832
CM
5928 u32 num_stripes;
5929 u32 array_size;
5930 u32 len = 0;
0b86a832 5931 u32 cur;
84eed90f 5932 struct btrfs_key key;
0b86a832 5933
e4404d6e 5934 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
5935 BTRFS_SUPER_INFO_SIZE);
5936 if (!sb)
5937 return -ENOMEM;
5938 btrfs_set_buffer_uptodate(sb);
85d4e461 5939 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
5940 /*
5941 * The sb extent buffer is artifical and just used to read the system array.
5942 * btrfs_set_buffer_uptodate() call does not properly mark all it's
5943 * pages up-to-date when the page is larger: extent does not cover the
5944 * whole page and consequently check_page_uptodate does not find all
5945 * the page's extents up-to-date (the hole beyond sb),
5946 * write_extent_buffer then triggers a WARN_ON.
5947 *
5948 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
5949 * but sb spans only this function. Add an explicit SetPageUptodate call
5950 * to silence the warning eg. on PowerPC 64.
5951 */
5952 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 5953 SetPageUptodate(sb->pages[0]);
4008c04a 5954
a061fc8d 5955 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
5956 array_size = btrfs_super_sys_array_size(super_copy);
5957
0b86a832
CM
5958 ptr = super_copy->sys_chunk_array;
5959 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
5960 cur = 0;
5961
5962 while (cur < array_size) {
5963 disk_key = (struct btrfs_disk_key *)ptr;
5964 btrfs_disk_key_to_cpu(&key, disk_key);
5965
a061fc8d 5966 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
5967 sb_ptr += len;
5968 cur += len;
5969
0d81ba5d 5970 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 5971 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 5972 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
5973 if (ret)
5974 break;
0b86a832
CM
5975 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
5976 len = btrfs_chunk_item_size(num_stripes);
5977 } else {
84eed90f
CM
5978 ret = -EIO;
5979 break;
0b86a832
CM
5980 }
5981 ptr += len;
5982 sb_ptr += len;
5983 cur += len;
5984 }
a061fc8d 5985 free_extent_buffer(sb);
84eed90f 5986 return ret;
0b86a832
CM
5987}
5988
5989int btrfs_read_chunk_tree(struct btrfs_root *root)
5990{
5991 struct btrfs_path *path;
5992 struct extent_buffer *leaf;
5993 struct btrfs_key key;
5994 struct btrfs_key found_key;
5995 int ret;
5996 int slot;
5997
5998 root = root->fs_info->chunk_root;
5999
6000 path = btrfs_alloc_path();
6001 if (!path)
6002 return -ENOMEM;
6003
b367e47f
LZ
6004 mutex_lock(&uuid_mutex);
6005 lock_chunks(root);
6006
395927a9
FDBM
6007 /*
6008 * Read all device items, and then all the chunk items. All
6009 * device items are found before any chunk item (their object id
6010 * is smaller than the lowest possible object id for a chunk
6011 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6012 */
6013 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6014 key.offset = 0;
6015 key.type = 0;
0b86a832 6016 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6017 if (ret < 0)
6018 goto error;
d397712b 6019 while (1) {
0b86a832
CM
6020 leaf = path->nodes[0];
6021 slot = path->slots[0];
6022 if (slot >= btrfs_header_nritems(leaf)) {
6023 ret = btrfs_next_leaf(root, path);
6024 if (ret == 0)
6025 continue;
6026 if (ret < 0)
6027 goto error;
6028 break;
6029 }
6030 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6031 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6032 struct btrfs_dev_item *dev_item;
6033 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6034 struct btrfs_dev_item);
395927a9
FDBM
6035 ret = read_one_dev(root, leaf, dev_item);
6036 if (ret)
6037 goto error;
0b86a832
CM
6038 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6039 struct btrfs_chunk *chunk;
6040 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6041 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6042 if (ret)
6043 goto error;
0b86a832
CM
6044 }
6045 path->slots[0]++;
6046 }
0b86a832
CM
6047 ret = 0;
6048error:
b367e47f
LZ
6049 unlock_chunks(root);
6050 mutex_unlock(&uuid_mutex);
6051
2b82032c 6052 btrfs_free_path(path);
0b86a832
CM
6053 return ret;
6054}
442a4f63 6055
cb517eab
MX
6056void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6057{
6058 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6059 struct btrfs_device *device;
6060
6061 mutex_lock(&fs_devices->device_list_mutex);
6062 list_for_each_entry(device, &fs_devices->devices, dev_list)
6063 device->dev_root = fs_info->dev_root;
6064 mutex_unlock(&fs_devices->device_list_mutex);
6065}
6066
733f4fbb
SB
6067static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6068{
6069 int i;
6070
6071 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6072 btrfs_dev_stat_reset(dev, i);
6073}
6074
6075int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6076{
6077 struct btrfs_key key;
6078 struct btrfs_key found_key;
6079 struct btrfs_root *dev_root = fs_info->dev_root;
6080 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6081 struct extent_buffer *eb;
6082 int slot;
6083 int ret = 0;
6084 struct btrfs_device *device;
6085 struct btrfs_path *path = NULL;
6086 int i;
6087
6088 path = btrfs_alloc_path();
6089 if (!path) {
6090 ret = -ENOMEM;
6091 goto out;
6092 }
6093
6094 mutex_lock(&fs_devices->device_list_mutex);
6095 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6096 int item_size;
6097 struct btrfs_dev_stats_item *ptr;
6098
6099 key.objectid = 0;
6100 key.type = BTRFS_DEV_STATS_KEY;
6101 key.offset = device->devid;
6102 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6103 if (ret) {
733f4fbb
SB
6104 __btrfs_reset_dev_stats(device);
6105 device->dev_stats_valid = 1;
6106 btrfs_release_path(path);
6107 continue;
6108 }
6109 slot = path->slots[0];
6110 eb = path->nodes[0];
6111 btrfs_item_key_to_cpu(eb, &found_key, slot);
6112 item_size = btrfs_item_size_nr(eb, slot);
6113
6114 ptr = btrfs_item_ptr(eb, slot,
6115 struct btrfs_dev_stats_item);
6116
6117 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6118 if (item_size >= (1 + i) * sizeof(__le64))
6119 btrfs_dev_stat_set(device, i,
6120 btrfs_dev_stats_value(eb, ptr, i));
6121 else
6122 btrfs_dev_stat_reset(device, i);
6123 }
6124
6125 device->dev_stats_valid = 1;
6126 btrfs_dev_stat_print_on_load(device);
6127 btrfs_release_path(path);
6128 }
6129 mutex_unlock(&fs_devices->device_list_mutex);
6130
6131out:
6132 btrfs_free_path(path);
6133 return ret < 0 ? ret : 0;
6134}
6135
6136static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6137 struct btrfs_root *dev_root,
6138 struct btrfs_device *device)
6139{
6140 struct btrfs_path *path;
6141 struct btrfs_key key;
6142 struct extent_buffer *eb;
6143 struct btrfs_dev_stats_item *ptr;
6144 int ret;
6145 int i;
6146
6147 key.objectid = 0;
6148 key.type = BTRFS_DEV_STATS_KEY;
6149 key.offset = device->devid;
6150
6151 path = btrfs_alloc_path();
6152 BUG_ON(!path);
6153 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6154 if (ret < 0) {
efe120a0
FH
6155 printk_in_rcu(KERN_WARNING "BTRFS: "
6156 "error %d while searching for dev_stats item for device %s!\n",
606686ee 6157 ret, rcu_str_deref(device->name));
733f4fbb
SB
6158 goto out;
6159 }
6160
6161 if (ret == 0 &&
6162 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6163 /* need to delete old one and insert a new one */
6164 ret = btrfs_del_item(trans, dev_root, path);
6165 if (ret != 0) {
efe120a0
FH
6166 printk_in_rcu(KERN_WARNING "BTRFS: "
6167 "delete too small dev_stats item for device %s failed %d!\n",
606686ee 6168 rcu_str_deref(device->name), ret);
733f4fbb
SB
6169 goto out;
6170 }
6171 ret = 1;
6172 }
6173
6174 if (ret == 1) {
6175 /* need to insert a new item */
6176 btrfs_release_path(path);
6177 ret = btrfs_insert_empty_item(trans, dev_root, path,
6178 &key, sizeof(*ptr));
6179 if (ret < 0) {
efe120a0
FH
6180 printk_in_rcu(KERN_WARNING "BTRFS: "
6181 "insert dev_stats item for device %s failed %d!\n",
606686ee 6182 rcu_str_deref(device->name), ret);
733f4fbb
SB
6183 goto out;
6184 }
6185 }
6186
6187 eb = path->nodes[0];
6188 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6189 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6190 btrfs_set_dev_stats_value(eb, ptr, i,
6191 btrfs_dev_stat_read(device, i));
6192 btrfs_mark_buffer_dirty(eb);
6193
6194out:
6195 btrfs_free_path(path);
6196 return ret;
6197}
6198
6199/*
6200 * called from commit_transaction. Writes all changed device stats to disk.
6201 */
6202int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6203 struct btrfs_fs_info *fs_info)
6204{
6205 struct btrfs_root *dev_root = fs_info->dev_root;
6206 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6207 struct btrfs_device *device;
6208 int ret = 0;
6209
6210 mutex_lock(&fs_devices->device_list_mutex);
6211 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6212 if (!device->dev_stats_valid || !device->dev_stats_dirty)
6213 continue;
6214
6215 ret = update_dev_stat_item(trans, dev_root, device);
6216 if (!ret)
6217 device->dev_stats_dirty = 0;
6218 }
6219 mutex_unlock(&fs_devices->device_list_mutex);
6220
6221 return ret;
6222}
6223
442a4f63
SB
6224void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6225{
6226 btrfs_dev_stat_inc(dev, index);
6227 btrfs_dev_stat_print_on_error(dev);
6228}
6229
48a3b636 6230static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 6231{
733f4fbb
SB
6232 if (!dev->dev_stats_valid)
6233 return;
efe120a0
FH
6234 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6235 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6236 rcu_str_deref(dev->name),
442a4f63
SB
6237 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6238 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6239 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
6240 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6241 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 6242}
c11d2c23 6243
733f4fbb
SB
6244static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6245{
a98cdb85
SB
6246 int i;
6247
6248 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6249 if (btrfs_dev_stat_read(dev, i) != 0)
6250 break;
6251 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6252 return; /* all values == 0, suppress message */
6253
efe120a0
FH
6254 printk_in_rcu(KERN_INFO "BTRFS: "
6255 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6256 rcu_str_deref(dev->name),
733f4fbb
SB
6257 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6258 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6259 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6260 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6261 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6262}
6263
c11d2c23 6264int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 6265 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
6266{
6267 struct btrfs_device *dev;
6268 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6269 int i;
6270
6271 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 6272 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
6273 mutex_unlock(&fs_devices->device_list_mutex);
6274
6275 if (!dev) {
efe120a0 6276 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
c11d2c23 6277 return -ENODEV;
733f4fbb 6278 } else if (!dev->dev_stats_valid) {
efe120a0 6279 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
733f4fbb 6280 return -ENODEV;
b27f7c0c 6281 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
6282 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6283 if (stats->nr_items > i)
6284 stats->values[i] =
6285 btrfs_dev_stat_read_and_reset(dev, i);
6286 else
6287 btrfs_dev_stat_reset(dev, i);
6288 }
6289 } else {
6290 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6291 if (stats->nr_items > i)
6292 stats->values[i] = btrfs_dev_stat_read(dev, i);
6293 }
6294 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6295 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6296 return 0;
6297}
a8a6dab7
SB
6298
6299int btrfs_scratch_superblock(struct btrfs_device *device)
6300{
6301 struct buffer_head *bh;
6302 struct btrfs_super_block *disk_super;
6303
6304 bh = btrfs_read_dev_super(device->bdev);
6305 if (!bh)
6306 return -EINVAL;
6307 disk_super = (struct btrfs_super_block *)bh->b_data;
6308
6309 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6310 set_buffer_dirty(bh);
6311 sync_dirty_buffer(bh);
6312 brelse(bh);
6313
6314 return 0;
6315}
This page took 0.669295 seconds and 5 git commands to generate.