[PATCH] Remove unnecessary check in fs/fat/inode.c
[deliverable/linux.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4
LT
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
27#include <linux/smp_lock.h>
16f7e0fe 28#include <linux/capability.h>
1da177e4
LT
29#include <linux/blkdev.h>
30#include <linux/file.h>
31#include <linux/quotaops.h>
32#include <linux/highmem.h>
33#include <linux/module.h>
34#include <linux/writeback.h>
35#include <linux/hash.h>
36#include <linux/suspend.h>
37#include <linux/buffer_head.h>
38#include <linux/bio.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/bitops.h>
42#include <linux/mpage.h>
fb1c8f93 43#include <linux/bit_spinlock.h>
1da177e4
LT
44
45static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46static void invalidate_bh_lrus(void);
47
48#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50inline void
51init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52{
53 bh->b_end_io = handler;
54 bh->b_private = private;
55}
56
57static int sync_buffer(void *word)
58{
59 struct block_device *bd;
60 struct buffer_head *bh
61 = container_of(word, struct buffer_head, b_state);
62
63 smp_mb();
64 bd = bh->b_bdev;
65 if (bd)
66 blk_run_address_space(bd->bd_inode->i_mapping);
67 io_schedule();
68 return 0;
69}
70
71void fastcall __lock_buffer(struct buffer_head *bh)
72{
73 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 TASK_UNINTERRUPTIBLE);
75}
76EXPORT_SYMBOL(__lock_buffer);
77
78void fastcall unlock_buffer(struct buffer_head *bh)
79{
80 clear_buffer_locked(bh);
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh->b_state, BH_Lock);
83}
84
85/*
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
89 */
90void __wait_on_buffer(struct buffer_head * bh)
91{
92 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93}
94
95static void
96__clear_page_buffers(struct page *page)
97{
98 ClearPagePrivate(page);
4c21e2f2 99 set_page_private(page, 0);
1da177e4
LT
100 page_cache_release(page);
101}
102
103static void buffer_io_error(struct buffer_head *bh)
104{
105 char b[BDEVNAME_SIZE];
106
107 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108 bdevname(bh->b_bdev, b),
109 (unsigned long long)bh->b_blocknr);
110}
111
112/*
113 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
114 * unlock the buffer. This is what ll_rw_block uses too.
115 */
116void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
117{
118 if (uptodate) {
119 set_buffer_uptodate(bh);
120 } else {
121 /* This happens, due to failed READA attempts. */
122 clear_buffer_uptodate(bh);
123 }
124 unlock_buffer(bh);
125 put_bh(bh);
126}
127
128void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
129{
130 char b[BDEVNAME_SIZE];
131
132 if (uptodate) {
133 set_buffer_uptodate(bh);
134 } else {
135 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
136 buffer_io_error(bh);
137 printk(KERN_WARNING "lost page write due to "
138 "I/O error on %s\n",
139 bdevname(bh->b_bdev, b));
140 }
141 set_buffer_write_io_error(bh);
142 clear_buffer_uptodate(bh);
143 }
144 unlock_buffer(bh);
145 put_bh(bh);
146}
147
148/*
149 * Write out and wait upon all the dirty data associated with a block
150 * device via its mapping. Does not take the superblock lock.
151 */
152int sync_blockdev(struct block_device *bdev)
153{
154 int ret = 0;
155
28fd1298
OH
156 if (bdev)
157 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
1da177e4
LT
158 return ret;
159}
160EXPORT_SYMBOL(sync_blockdev);
161
1da177e4
LT
162/*
163 * Write out and wait upon all dirty data associated with this
164 * device. Filesystem data as well as the underlying block
165 * device. Takes the superblock lock.
166 */
167int fsync_bdev(struct block_device *bdev)
168{
169 struct super_block *sb = get_super(bdev);
170 if (sb) {
171 int res = fsync_super(sb);
172 drop_super(sb);
173 return res;
174 }
175 return sync_blockdev(bdev);
176}
177
178/**
179 * freeze_bdev -- lock a filesystem and force it into a consistent state
180 * @bdev: blockdevice to lock
181 *
c039e313 182 * This takes the block device bd_mount_mutex to make sure no new mounts
1da177e4
LT
183 * happen on bdev until thaw_bdev() is called.
184 * If a superblock is found on this device, we take the s_umount semaphore
185 * on it to make sure nobody unmounts until the snapshot creation is done.
186 */
187struct super_block *freeze_bdev(struct block_device *bdev)
188{
189 struct super_block *sb;
190
c039e313 191 mutex_lock(&bdev->bd_mount_mutex);
1da177e4
LT
192 sb = get_super(bdev);
193 if (sb && !(sb->s_flags & MS_RDONLY)) {
194 sb->s_frozen = SB_FREEZE_WRITE;
d59dd462 195 smp_wmb();
1da177e4 196
d25b9a1f 197 __fsync_super(sb);
1da177e4
LT
198
199 sb->s_frozen = SB_FREEZE_TRANS;
d59dd462 200 smp_wmb();
1da177e4
LT
201
202 sync_blockdev(sb->s_bdev);
203
204 if (sb->s_op->write_super_lockfs)
205 sb->s_op->write_super_lockfs(sb);
206 }
207
208 sync_blockdev(bdev);
209 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
210}
211EXPORT_SYMBOL(freeze_bdev);
212
213/**
214 * thaw_bdev -- unlock filesystem
215 * @bdev: blockdevice to unlock
216 * @sb: associated superblock
217 *
218 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
219 */
220void thaw_bdev(struct block_device *bdev, struct super_block *sb)
221{
222 if (sb) {
223 BUG_ON(sb->s_bdev != bdev);
224
225 if (sb->s_op->unlockfs)
226 sb->s_op->unlockfs(sb);
227 sb->s_frozen = SB_UNFROZEN;
d59dd462 228 smp_wmb();
1da177e4
LT
229 wake_up(&sb->s_wait_unfrozen);
230 drop_super(sb);
231 }
232
c039e313 233 mutex_unlock(&bdev->bd_mount_mutex);
1da177e4
LT
234}
235EXPORT_SYMBOL(thaw_bdev);
236
1da177e4
LT
237/*
238 * Various filesystems appear to want __find_get_block to be non-blocking.
239 * But it's the page lock which protects the buffers. To get around this,
240 * we get exclusion from try_to_free_buffers with the blockdev mapping's
241 * private_lock.
242 *
243 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
244 * may be quite high. This code could TryLock the page, and if that
245 * succeeds, there is no need to take private_lock. (But if
246 * private_lock is contended then so is mapping->tree_lock).
247 */
248static struct buffer_head *
385fd4c5 249__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
250{
251 struct inode *bd_inode = bdev->bd_inode;
252 struct address_space *bd_mapping = bd_inode->i_mapping;
253 struct buffer_head *ret = NULL;
254 pgoff_t index;
255 struct buffer_head *bh;
256 struct buffer_head *head;
257 struct page *page;
258 int all_mapped = 1;
259
260 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
261 page = find_get_page(bd_mapping, index);
262 if (!page)
263 goto out;
264
265 spin_lock(&bd_mapping->private_lock);
266 if (!page_has_buffers(page))
267 goto out_unlock;
268 head = page_buffers(page);
269 bh = head;
270 do {
271 if (bh->b_blocknr == block) {
272 ret = bh;
273 get_bh(bh);
274 goto out_unlock;
275 }
276 if (!buffer_mapped(bh))
277 all_mapped = 0;
278 bh = bh->b_this_page;
279 } while (bh != head);
280
281 /* we might be here because some of the buffers on this page are
282 * not mapped. This is due to various races between
283 * file io on the block device and getblk. It gets dealt with
284 * elsewhere, don't buffer_error if we had some unmapped buffers
285 */
286 if (all_mapped) {
287 printk("__find_get_block_slow() failed. "
288 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
289 (unsigned long long)block,
290 (unsigned long long)bh->b_blocknr);
291 printk("b_state=0x%08lx, b_size=%zu\n",
292 bh->b_state, bh->b_size);
1da177e4
LT
293 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
294 }
295out_unlock:
296 spin_unlock(&bd_mapping->private_lock);
297 page_cache_release(page);
298out:
299 return ret;
300}
301
302/* If invalidate_buffers() will trash dirty buffers, it means some kind
303 of fs corruption is going on. Trashing dirty data always imply losing
304 information that was supposed to be just stored on the physical layer
305 by the user.
306
307 Thus invalidate_buffers in general usage is not allwowed to trash
308 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
309 be preserved. These buffers are simply skipped.
310
311 We also skip buffers which are still in use. For example this can
312 happen if a userspace program is reading the block device.
313
314 NOTE: In the case where the user removed a removable-media-disk even if
315 there's still dirty data not synced on disk (due a bug in the device driver
316 or due an error of the user), by not destroying the dirty buffers we could
317 generate corruption also on the next media inserted, thus a parameter is
318 necessary to handle this case in the most safe way possible (trying
319 to not corrupt also the new disk inserted with the data belonging to
320 the old now corrupted disk). Also for the ramdisk the natural thing
321 to do in order to release the ramdisk memory is to destroy dirty buffers.
322
323 These are two special cases. Normal usage imply the device driver
324 to issue a sync on the device (without waiting I/O completion) and
325 then an invalidate_buffers call that doesn't trash dirty buffers.
326
327 For handling cache coherency with the blkdev pagecache the 'update' case
328 is been introduced. It is needed to re-read from disk any pinned
329 buffer. NOTE: re-reading from disk is destructive so we can do it only
330 when we assume nobody is changing the buffercache under our I/O and when
331 we think the disk contains more recent information than the buffercache.
332 The update == 1 pass marks the buffers we need to update, the update == 2
333 pass does the actual I/O. */
334void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
335{
0e1dfc66
AM
336 struct address_space *mapping = bdev->bd_inode->i_mapping;
337
338 if (mapping->nrpages == 0)
339 return;
340
1da177e4
LT
341 invalidate_bh_lrus();
342 /*
343 * FIXME: what about destroy_dirty_buffers?
344 * We really want to use invalidate_inode_pages2() for
345 * that, but not until that's cleaned up.
346 */
0e1dfc66 347 invalidate_inode_pages(mapping);
1da177e4
LT
348}
349
350/*
351 * Kick pdflush then try to free up some ZONE_NORMAL memory.
352 */
353static void free_more_memory(void)
354{
355 struct zone **zones;
356 pg_data_t *pgdat;
357
687a21ce 358 wakeup_pdflush(1024);
1da177e4
LT
359 yield();
360
ec936fc5 361 for_each_online_pgdat(pgdat) {
af4ca457 362 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
1da177e4 363 if (*zones)
1ad539b2 364 try_to_free_pages(zones, GFP_NOFS);
1da177e4
LT
365 }
366}
367
368/*
369 * I/O completion handler for block_read_full_page() - pages
370 * which come unlocked at the end of I/O.
371 */
372static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
373{
1da177e4 374 unsigned long flags;
a3972203 375 struct buffer_head *first;
1da177e4
LT
376 struct buffer_head *tmp;
377 struct page *page;
378 int page_uptodate = 1;
379
380 BUG_ON(!buffer_async_read(bh));
381
382 page = bh->b_page;
383 if (uptodate) {
384 set_buffer_uptodate(bh);
385 } else {
386 clear_buffer_uptodate(bh);
387 if (printk_ratelimit())
388 buffer_io_error(bh);
389 SetPageError(page);
390 }
391
392 /*
393 * Be _very_ careful from here on. Bad things can happen if
394 * two buffer heads end IO at almost the same time and both
395 * decide that the page is now completely done.
396 */
a3972203
NP
397 first = page_buffers(page);
398 local_irq_save(flags);
399 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
400 clear_buffer_async_read(bh);
401 unlock_buffer(bh);
402 tmp = bh;
403 do {
404 if (!buffer_uptodate(tmp))
405 page_uptodate = 0;
406 if (buffer_async_read(tmp)) {
407 BUG_ON(!buffer_locked(tmp));
408 goto still_busy;
409 }
410 tmp = tmp->b_this_page;
411 } while (tmp != bh);
a3972203
NP
412 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
413 local_irq_restore(flags);
1da177e4
LT
414
415 /*
416 * If none of the buffers had errors and they are all
417 * uptodate then we can set the page uptodate.
418 */
419 if (page_uptodate && !PageError(page))
420 SetPageUptodate(page);
421 unlock_page(page);
422 return;
423
424still_busy:
a3972203
NP
425 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
426 local_irq_restore(flags);
1da177e4
LT
427 return;
428}
429
430/*
431 * Completion handler for block_write_full_page() - pages which are unlocked
432 * during I/O, and which have PageWriteback cleared upon I/O completion.
433 */
b6cd0b77 434static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4
LT
435{
436 char b[BDEVNAME_SIZE];
1da177e4 437 unsigned long flags;
a3972203 438 struct buffer_head *first;
1da177e4
LT
439 struct buffer_head *tmp;
440 struct page *page;
441
442 BUG_ON(!buffer_async_write(bh));
443
444 page = bh->b_page;
445 if (uptodate) {
446 set_buffer_uptodate(bh);
447 } else {
448 if (printk_ratelimit()) {
449 buffer_io_error(bh);
450 printk(KERN_WARNING "lost page write due to "
451 "I/O error on %s\n",
452 bdevname(bh->b_bdev, b));
453 }
454 set_bit(AS_EIO, &page->mapping->flags);
455 clear_buffer_uptodate(bh);
456 SetPageError(page);
457 }
458
a3972203
NP
459 first = page_buffers(page);
460 local_irq_save(flags);
461 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
462
1da177e4
LT
463 clear_buffer_async_write(bh);
464 unlock_buffer(bh);
465 tmp = bh->b_this_page;
466 while (tmp != bh) {
467 if (buffer_async_write(tmp)) {
468 BUG_ON(!buffer_locked(tmp));
469 goto still_busy;
470 }
471 tmp = tmp->b_this_page;
472 }
a3972203
NP
473 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
474 local_irq_restore(flags);
1da177e4
LT
475 end_page_writeback(page);
476 return;
477
478still_busy:
a3972203
NP
479 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
480 local_irq_restore(flags);
1da177e4
LT
481 return;
482}
483
484/*
485 * If a page's buffers are under async readin (end_buffer_async_read
486 * completion) then there is a possibility that another thread of
487 * control could lock one of the buffers after it has completed
488 * but while some of the other buffers have not completed. This
489 * locked buffer would confuse end_buffer_async_read() into not unlocking
490 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
491 * that this buffer is not under async I/O.
492 *
493 * The page comes unlocked when it has no locked buffer_async buffers
494 * left.
495 *
496 * PageLocked prevents anyone starting new async I/O reads any of
497 * the buffers.
498 *
499 * PageWriteback is used to prevent simultaneous writeout of the same
500 * page.
501 *
502 * PageLocked prevents anyone from starting writeback of a page which is
503 * under read I/O (PageWriteback is only ever set against a locked page).
504 */
505static void mark_buffer_async_read(struct buffer_head *bh)
506{
507 bh->b_end_io = end_buffer_async_read;
508 set_buffer_async_read(bh);
509}
510
511void mark_buffer_async_write(struct buffer_head *bh)
512{
513 bh->b_end_io = end_buffer_async_write;
514 set_buffer_async_write(bh);
515}
516EXPORT_SYMBOL(mark_buffer_async_write);
517
518
519/*
520 * fs/buffer.c contains helper functions for buffer-backed address space's
521 * fsync functions. A common requirement for buffer-based filesystems is
522 * that certain data from the backing blockdev needs to be written out for
523 * a successful fsync(). For example, ext2 indirect blocks need to be
524 * written back and waited upon before fsync() returns.
525 *
526 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
527 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
528 * management of a list of dependent buffers at ->i_mapping->private_list.
529 *
530 * Locking is a little subtle: try_to_free_buffers() will remove buffers
531 * from their controlling inode's queue when they are being freed. But
532 * try_to_free_buffers() will be operating against the *blockdev* mapping
533 * at the time, not against the S_ISREG file which depends on those buffers.
534 * So the locking for private_list is via the private_lock in the address_space
535 * which backs the buffers. Which is different from the address_space
536 * against which the buffers are listed. So for a particular address_space,
537 * mapping->private_lock does *not* protect mapping->private_list! In fact,
538 * mapping->private_list will always be protected by the backing blockdev's
539 * ->private_lock.
540 *
541 * Which introduces a requirement: all buffers on an address_space's
542 * ->private_list must be from the same address_space: the blockdev's.
543 *
544 * address_spaces which do not place buffers at ->private_list via these
545 * utility functions are free to use private_lock and private_list for
546 * whatever they want. The only requirement is that list_empty(private_list)
547 * be true at clear_inode() time.
548 *
549 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
550 * filesystems should do that. invalidate_inode_buffers() should just go
551 * BUG_ON(!list_empty).
552 *
553 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
554 * take an address_space, not an inode. And it should be called
555 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
556 * queued up.
557 *
558 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
559 * list if it is already on a list. Because if the buffer is on a list,
560 * it *must* already be on the right one. If not, the filesystem is being
561 * silly. This will save a ton of locking. But first we have to ensure
562 * that buffers are taken *off* the old inode's list when they are freed
563 * (presumably in truncate). That requires careful auditing of all
564 * filesystems (do it inside bforget()). It could also be done by bringing
565 * b_inode back.
566 */
567
568/*
569 * The buffer's backing address_space's private_lock must be held
570 */
571static inline void __remove_assoc_queue(struct buffer_head *bh)
572{
573 list_del_init(&bh->b_assoc_buffers);
574}
575
576int inode_has_buffers(struct inode *inode)
577{
578 return !list_empty(&inode->i_data.private_list);
579}
580
581/*
582 * osync is designed to support O_SYNC io. It waits synchronously for
583 * all already-submitted IO to complete, but does not queue any new
584 * writes to the disk.
585 *
586 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
587 * you dirty the buffers, and then use osync_inode_buffers to wait for
588 * completion. Any other dirty buffers which are not yet queued for
589 * write will not be flushed to disk by the osync.
590 */
591static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
592{
593 struct buffer_head *bh;
594 struct list_head *p;
595 int err = 0;
596
597 spin_lock(lock);
598repeat:
599 list_for_each_prev(p, list) {
600 bh = BH_ENTRY(p);
601 if (buffer_locked(bh)) {
602 get_bh(bh);
603 spin_unlock(lock);
604 wait_on_buffer(bh);
605 if (!buffer_uptodate(bh))
606 err = -EIO;
607 brelse(bh);
608 spin_lock(lock);
609 goto repeat;
610 }
611 }
612 spin_unlock(lock);
613 return err;
614}
615
616/**
617 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
618 * buffers
67be2dd1 619 * @mapping: the mapping which wants those buffers written
1da177e4
LT
620 *
621 * Starts I/O against the buffers at mapping->private_list, and waits upon
622 * that I/O.
623 *
67be2dd1
MW
624 * Basically, this is a convenience function for fsync().
625 * @mapping is a file or directory which needs those buffers to be written for
626 * a successful fsync().
1da177e4
LT
627 */
628int sync_mapping_buffers(struct address_space *mapping)
629{
630 struct address_space *buffer_mapping = mapping->assoc_mapping;
631
632 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
633 return 0;
634
635 return fsync_buffers_list(&buffer_mapping->private_lock,
636 &mapping->private_list);
637}
638EXPORT_SYMBOL(sync_mapping_buffers);
639
640/*
641 * Called when we've recently written block `bblock', and it is known that
642 * `bblock' was for a buffer_boundary() buffer. This means that the block at
643 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
644 * dirty, schedule it for IO. So that indirects merge nicely with their data.
645 */
646void write_boundary_block(struct block_device *bdev,
647 sector_t bblock, unsigned blocksize)
648{
649 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
650 if (bh) {
651 if (buffer_dirty(bh))
652 ll_rw_block(WRITE, 1, &bh);
653 put_bh(bh);
654 }
655}
656
657void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
658{
659 struct address_space *mapping = inode->i_mapping;
660 struct address_space *buffer_mapping = bh->b_page->mapping;
661
662 mark_buffer_dirty(bh);
663 if (!mapping->assoc_mapping) {
664 mapping->assoc_mapping = buffer_mapping;
665 } else {
e827f923 666 BUG_ON(mapping->assoc_mapping != buffer_mapping);
1da177e4
LT
667 }
668 if (list_empty(&bh->b_assoc_buffers)) {
669 spin_lock(&buffer_mapping->private_lock);
670 list_move_tail(&bh->b_assoc_buffers,
671 &mapping->private_list);
672 spin_unlock(&buffer_mapping->private_lock);
673 }
674}
675EXPORT_SYMBOL(mark_buffer_dirty_inode);
676
677/*
678 * Add a page to the dirty page list.
679 *
680 * It is a sad fact of life that this function is called from several places
681 * deeply under spinlocking. It may not sleep.
682 *
683 * If the page has buffers, the uptodate buffers are set dirty, to preserve
684 * dirty-state coherency between the page and the buffers. It the page does
685 * not have buffers then when they are later attached they will all be set
686 * dirty.
687 *
688 * The buffers are dirtied before the page is dirtied. There's a small race
689 * window in which a writepage caller may see the page cleanness but not the
690 * buffer dirtiness. That's fine. If this code were to set the page dirty
691 * before the buffers, a concurrent writepage caller could clear the page dirty
692 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
693 * page on the dirty page list.
694 *
695 * We use private_lock to lock against try_to_free_buffers while using the
696 * page's buffer list. Also use this to protect against clean buffers being
697 * added to the page after it was set dirty.
698 *
699 * FIXME: may need to call ->reservepage here as well. That's rather up to the
700 * address_space though.
701 */
702int __set_page_dirty_buffers(struct page *page)
703{
ebf7a227
NP
704 struct address_space * const mapping = page_mapping(page);
705
706 if (unlikely(!mapping))
707 return !TestSetPageDirty(page);
1da177e4
LT
708
709 spin_lock(&mapping->private_lock);
710 if (page_has_buffers(page)) {
711 struct buffer_head *head = page_buffers(page);
712 struct buffer_head *bh = head;
713
714 do {
715 set_buffer_dirty(bh);
716 bh = bh->b_this_page;
717 } while (bh != head);
718 }
719 spin_unlock(&mapping->private_lock);
720
721 if (!TestSetPageDirty(page)) {
722 write_lock_irq(&mapping->tree_lock);
723 if (page->mapping) { /* Race with truncate? */
724 if (mapping_cap_account_dirty(mapping))
b1e7a8fd 725 __inc_zone_page_state(page, NR_FILE_DIRTY);
1da177e4
LT
726 radix_tree_tag_set(&mapping->page_tree,
727 page_index(page),
728 PAGECACHE_TAG_DIRTY);
729 }
730 write_unlock_irq(&mapping->tree_lock);
731 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
4741c9fd 732 return 1;
1da177e4 733 }
1da177e4
LT
734 return 0;
735}
736EXPORT_SYMBOL(__set_page_dirty_buffers);
737
738/*
739 * Write out and wait upon a list of buffers.
740 *
741 * We have conflicting pressures: we want to make sure that all
742 * initially dirty buffers get waited on, but that any subsequently
743 * dirtied buffers don't. After all, we don't want fsync to last
744 * forever if somebody is actively writing to the file.
745 *
746 * Do this in two main stages: first we copy dirty buffers to a
747 * temporary inode list, queueing the writes as we go. Then we clean
748 * up, waiting for those writes to complete.
749 *
750 * During this second stage, any subsequent updates to the file may end
751 * up refiling the buffer on the original inode's dirty list again, so
752 * there is a chance we will end up with a buffer queued for write but
753 * not yet completed on that list. So, as a final cleanup we go through
754 * the osync code to catch these locked, dirty buffers without requeuing
755 * any newly dirty buffers for write.
756 */
757static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
758{
759 struct buffer_head *bh;
760 struct list_head tmp;
761 int err = 0, err2;
762
763 INIT_LIST_HEAD(&tmp);
764
765 spin_lock(lock);
766 while (!list_empty(list)) {
767 bh = BH_ENTRY(list->next);
768 list_del_init(&bh->b_assoc_buffers);
769 if (buffer_dirty(bh) || buffer_locked(bh)) {
770 list_add(&bh->b_assoc_buffers, &tmp);
771 if (buffer_dirty(bh)) {
772 get_bh(bh);
773 spin_unlock(lock);
774 /*
775 * Ensure any pending I/O completes so that
776 * ll_rw_block() actually writes the current
777 * contents - it is a noop if I/O is still in
778 * flight on potentially older contents.
779 */
a7662236 780 ll_rw_block(SWRITE, 1, &bh);
1da177e4
LT
781 brelse(bh);
782 spin_lock(lock);
783 }
784 }
785 }
786
787 while (!list_empty(&tmp)) {
788 bh = BH_ENTRY(tmp.prev);
789 __remove_assoc_queue(bh);
790 get_bh(bh);
791 spin_unlock(lock);
792 wait_on_buffer(bh);
793 if (!buffer_uptodate(bh))
794 err = -EIO;
795 brelse(bh);
796 spin_lock(lock);
797 }
798
799 spin_unlock(lock);
800 err2 = osync_buffers_list(lock, list);
801 if (err)
802 return err;
803 else
804 return err2;
805}
806
807/*
808 * Invalidate any and all dirty buffers on a given inode. We are
809 * probably unmounting the fs, but that doesn't mean we have already
810 * done a sync(). Just drop the buffers from the inode list.
811 *
812 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
813 * assumes that all the buffers are against the blockdev. Not true
814 * for reiserfs.
815 */
816void invalidate_inode_buffers(struct inode *inode)
817{
818 if (inode_has_buffers(inode)) {
819 struct address_space *mapping = &inode->i_data;
820 struct list_head *list = &mapping->private_list;
821 struct address_space *buffer_mapping = mapping->assoc_mapping;
822
823 spin_lock(&buffer_mapping->private_lock);
824 while (!list_empty(list))
825 __remove_assoc_queue(BH_ENTRY(list->next));
826 spin_unlock(&buffer_mapping->private_lock);
827 }
828}
829
830/*
831 * Remove any clean buffers from the inode's buffer list. This is called
832 * when we're trying to free the inode itself. Those buffers can pin it.
833 *
834 * Returns true if all buffers were removed.
835 */
836int remove_inode_buffers(struct inode *inode)
837{
838 int ret = 1;
839
840 if (inode_has_buffers(inode)) {
841 struct address_space *mapping = &inode->i_data;
842 struct list_head *list = &mapping->private_list;
843 struct address_space *buffer_mapping = mapping->assoc_mapping;
844
845 spin_lock(&buffer_mapping->private_lock);
846 while (!list_empty(list)) {
847 struct buffer_head *bh = BH_ENTRY(list->next);
848 if (buffer_dirty(bh)) {
849 ret = 0;
850 break;
851 }
852 __remove_assoc_queue(bh);
853 }
854 spin_unlock(&buffer_mapping->private_lock);
855 }
856 return ret;
857}
858
859/*
860 * Create the appropriate buffers when given a page for data area and
861 * the size of each buffer.. Use the bh->b_this_page linked list to
862 * follow the buffers created. Return NULL if unable to create more
863 * buffers.
864 *
865 * The retry flag is used to differentiate async IO (paging, swapping)
866 * which may not fail from ordinary buffer allocations.
867 */
868struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
869 int retry)
870{
871 struct buffer_head *bh, *head;
872 long offset;
873
874try_again:
875 head = NULL;
876 offset = PAGE_SIZE;
877 while ((offset -= size) >= 0) {
878 bh = alloc_buffer_head(GFP_NOFS);
879 if (!bh)
880 goto no_grow;
881
882 bh->b_bdev = NULL;
883 bh->b_this_page = head;
884 bh->b_blocknr = -1;
885 head = bh;
886
887 bh->b_state = 0;
888 atomic_set(&bh->b_count, 0);
fc5cd582 889 bh->b_private = NULL;
1da177e4
LT
890 bh->b_size = size;
891
892 /* Link the buffer to its page */
893 set_bh_page(bh, page, offset);
894
01ffe339 895 init_buffer(bh, NULL, NULL);
1da177e4
LT
896 }
897 return head;
898/*
899 * In case anything failed, we just free everything we got.
900 */
901no_grow:
902 if (head) {
903 do {
904 bh = head;
905 head = head->b_this_page;
906 free_buffer_head(bh);
907 } while (head);
908 }
909
910 /*
911 * Return failure for non-async IO requests. Async IO requests
912 * are not allowed to fail, so we have to wait until buffer heads
913 * become available. But we don't want tasks sleeping with
914 * partially complete buffers, so all were released above.
915 */
916 if (!retry)
917 return NULL;
918
919 /* We're _really_ low on memory. Now we just
920 * wait for old buffer heads to become free due to
921 * finishing IO. Since this is an async request and
922 * the reserve list is empty, we're sure there are
923 * async buffer heads in use.
924 */
925 free_more_memory();
926 goto try_again;
927}
928EXPORT_SYMBOL_GPL(alloc_page_buffers);
929
930static inline void
931link_dev_buffers(struct page *page, struct buffer_head *head)
932{
933 struct buffer_head *bh, *tail;
934
935 bh = head;
936 do {
937 tail = bh;
938 bh = bh->b_this_page;
939 } while (bh);
940 tail->b_this_page = head;
941 attach_page_buffers(page, head);
942}
943
944/*
945 * Initialise the state of a blockdev page's buffers.
946 */
947static void
948init_page_buffers(struct page *page, struct block_device *bdev,
949 sector_t block, int size)
950{
951 struct buffer_head *head = page_buffers(page);
952 struct buffer_head *bh = head;
953 int uptodate = PageUptodate(page);
954
955 do {
956 if (!buffer_mapped(bh)) {
957 init_buffer(bh, NULL, NULL);
958 bh->b_bdev = bdev;
959 bh->b_blocknr = block;
960 if (uptodate)
961 set_buffer_uptodate(bh);
962 set_buffer_mapped(bh);
963 }
964 block++;
965 bh = bh->b_this_page;
966 } while (bh != head);
967}
968
969/*
970 * Create the page-cache page that contains the requested block.
971 *
972 * This is user purely for blockdev mappings.
973 */
974static struct page *
975grow_dev_page(struct block_device *bdev, sector_t block,
976 pgoff_t index, int size)
977{
978 struct inode *inode = bdev->bd_inode;
979 struct page *page;
980 struct buffer_head *bh;
981
982 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
983 if (!page)
984 return NULL;
985
e827f923 986 BUG_ON(!PageLocked(page));
1da177e4
LT
987
988 if (page_has_buffers(page)) {
989 bh = page_buffers(page);
990 if (bh->b_size == size) {
991 init_page_buffers(page, bdev, block, size);
992 return page;
993 }
994 if (!try_to_free_buffers(page))
995 goto failed;
996 }
997
998 /*
999 * Allocate some buffers for this page
1000 */
1001 bh = alloc_page_buffers(page, size, 0);
1002 if (!bh)
1003 goto failed;
1004
1005 /*
1006 * Link the page to the buffers and initialise them. Take the
1007 * lock to be atomic wrt __find_get_block(), which does not
1008 * run under the page lock.
1009 */
1010 spin_lock(&inode->i_mapping->private_lock);
1011 link_dev_buffers(page, bh);
1012 init_page_buffers(page, bdev, block, size);
1013 spin_unlock(&inode->i_mapping->private_lock);
1014 return page;
1015
1016failed:
1017 BUG();
1018 unlock_page(page);
1019 page_cache_release(page);
1020 return NULL;
1021}
1022
1023/*
1024 * Create buffers for the specified block device block's page. If
1025 * that page was dirty, the buffers are set dirty also.
1026 *
1027 * Except that's a bug. Attaching dirty buffers to a dirty
1028 * blockdev's page can result in filesystem corruption, because
1029 * some of those buffers may be aliases of filesystem data.
1030 * grow_dev_page() will go BUG() if this happens.
1031 */
858119e1 1032static int
1da177e4
LT
1033grow_buffers(struct block_device *bdev, sector_t block, int size)
1034{
1035 struct page *page;
1036 pgoff_t index;
1037 int sizebits;
1038
1039 sizebits = -1;
1040 do {
1041 sizebits++;
1042 } while ((size << sizebits) < PAGE_SIZE);
1043
1044 index = block >> sizebits;
1da177e4 1045
e5657933
AM
1046 /*
1047 * Check for a block which wants to lie outside our maximum possible
1048 * pagecache index. (this comparison is done using sector_t types).
1049 */
1050 if (unlikely(index != block >> sizebits)) {
1051 char b[BDEVNAME_SIZE];
1052
1053 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1054 "device %s\n",
1055 __FUNCTION__, (unsigned long long)block,
1056 bdevname(bdev, b));
1057 return -EIO;
1058 }
1059 block = index << sizebits;
1da177e4
LT
1060 /* Create a page with the proper size buffers.. */
1061 page = grow_dev_page(bdev, block, index, size);
1062 if (!page)
1063 return 0;
1064 unlock_page(page);
1065 page_cache_release(page);
1066 return 1;
1067}
1068
75c96f85 1069static struct buffer_head *
1da177e4
LT
1070__getblk_slow(struct block_device *bdev, sector_t block, int size)
1071{
1072 /* Size must be multiple of hard sectorsize */
1073 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1074 (size < 512 || size > PAGE_SIZE))) {
1075 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1076 size);
1077 printk(KERN_ERR "hardsect size: %d\n",
1078 bdev_hardsect_size(bdev));
1079
1080 dump_stack();
1081 return NULL;
1082 }
1083
1084 for (;;) {
1085 struct buffer_head * bh;
e5657933 1086 int ret;
1da177e4
LT
1087
1088 bh = __find_get_block(bdev, block, size);
1089 if (bh)
1090 return bh;
1091
e5657933
AM
1092 ret = grow_buffers(bdev, block, size);
1093 if (ret < 0)
1094 return NULL;
1095 if (ret == 0)
1da177e4
LT
1096 free_more_memory();
1097 }
1098}
1099
1100/*
1101 * The relationship between dirty buffers and dirty pages:
1102 *
1103 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1104 * the page is tagged dirty in its radix tree.
1105 *
1106 * At all times, the dirtiness of the buffers represents the dirtiness of
1107 * subsections of the page. If the page has buffers, the page dirty bit is
1108 * merely a hint about the true dirty state.
1109 *
1110 * When a page is set dirty in its entirety, all its buffers are marked dirty
1111 * (if the page has buffers).
1112 *
1113 * When a buffer is marked dirty, its page is dirtied, but the page's other
1114 * buffers are not.
1115 *
1116 * Also. When blockdev buffers are explicitly read with bread(), they
1117 * individually become uptodate. But their backing page remains not
1118 * uptodate - even if all of its buffers are uptodate. A subsequent
1119 * block_read_full_page() against that page will discover all the uptodate
1120 * buffers, will set the page uptodate and will perform no I/O.
1121 */
1122
1123/**
1124 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1125 * @bh: the buffer_head to mark dirty
1da177e4
LT
1126 *
1127 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1128 * backing page dirty, then tag the page as dirty in its address_space's radix
1129 * tree and then attach the address_space's inode to its superblock's dirty
1130 * inode list.
1131 *
1132 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1133 * mapping->tree_lock and the global inode_lock.
1134 */
1135void fastcall mark_buffer_dirty(struct buffer_head *bh)
1136{
1137 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1138 __set_page_dirty_nobuffers(bh->b_page);
1139}
1140
1141/*
1142 * Decrement a buffer_head's reference count. If all buffers against a page
1143 * have zero reference count, are clean and unlocked, and if the page is clean
1144 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1145 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1146 * a page but it ends up not being freed, and buffers may later be reattached).
1147 */
1148void __brelse(struct buffer_head * buf)
1149{
1150 if (atomic_read(&buf->b_count)) {
1151 put_bh(buf);
1152 return;
1153 }
1154 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1155 WARN_ON(1);
1156}
1157
1158/*
1159 * bforget() is like brelse(), except it discards any
1160 * potentially dirty data.
1161 */
1162void __bforget(struct buffer_head *bh)
1163{
1164 clear_buffer_dirty(bh);
1165 if (!list_empty(&bh->b_assoc_buffers)) {
1166 struct address_space *buffer_mapping = bh->b_page->mapping;
1167
1168 spin_lock(&buffer_mapping->private_lock);
1169 list_del_init(&bh->b_assoc_buffers);
1170 spin_unlock(&buffer_mapping->private_lock);
1171 }
1172 __brelse(bh);
1173}
1174
1175static struct buffer_head *__bread_slow(struct buffer_head *bh)
1176{
1177 lock_buffer(bh);
1178 if (buffer_uptodate(bh)) {
1179 unlock_buffer(bh);
1180 return bh;
1181 } else {
1182 get_bh(bh);
1183 bh->b_end_io = end_buffer_read_sync;
1184 submit_bh(READ, bh);
1185 wait_on_buffer(bh);
1186 if (buffer_uptodate(bh))
1187 return bh;
1188 }
1189 brelse(bh);
1190 return NULL;
1191}
1192
1193/*
1194 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1195 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1196 * refcount elevated by one when they're in an LRU. A buffer can only appear
1197 * once in a particular CPU's LRU. A single buffer can be present in multiple
1198 * CPU's LRUs at the same time.
1199 *
1200 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1201 * sb_find_get_block().
1202 *
1203 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1204 * a local interrupt disable for that.
1205 */
1206
1207#define BH_LRU_SIZE 8
1208
1209struct bh_lru {
1210 struct buffer_head *bhs[BH_LRU_SIZE];
1211};
1212
1213static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1214
1215#ifdef CONFIG_SMP
1216#define bh_lru_lock() local_irq_disable()
1217#define bh_lru_unlock() local_irq_enable()
1218#else
1219#define bh_lru_lock() preempt_disable()
1220#define bh_lru_unlock() preempt_enable()
1221#endif
1222
1223static inline void check_irqs_on(void)
1224{
1225#ifdef irqs_disabled
1226 BUG_ON(irqs_disabled());
1227#endif
1228}
1229
1230/*
1231 * The LRU management algorithm is dopey-but-simple. Sorry.
1232 */
1233static void bh_lru_install(struct buffer_head *bh)
1234{
1235 struct buffer_head *evictee = NULL;
1236 struct bh_lru *lru;
1237
1238 check_irqs_on();
1239 bh_lru_lock();
1240 lru = &__get_cpu_var(bh_lrus);
1241 if (lru->bhs[0] != bh) {
1242 struct buffer_head *bhs[BH_LRU_SIZE];
1243 int in;
1244 int out = 0;
1245
1246 get_bh(bh);
1247 bhs[out++] = bh;
1248 for (in = 0; in < BH_LRU_SIZE; in++) {
1249 struct buffer_head *bh2 = lru->bhs[in];
1250
1251 if (bh2 == bh) {
1252 __brelse(bh2);
1253 } else {
1254 if (out >= BH_LRU_SIZE) {
1255 BUG_ON(evictee != NULL);
1256 evictee = bh2;
1257 } else {
1258 bhs[out++] = bh2;
1259 }
1260 }
1261 }
1262 while (out < BH_LRU_SIZE)
1263 bhs[out++] = NULL;
1264 memcpy(lru->bhs, bhs, sizeof(bhs));
1265 }
1266 bh_lru_unlock();
1267
1268 if (evictee)
1269 __brelse(evictee);
1270}
1271
1272/*
1273 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1274 */
858119e1 1275static struct buffer_head *
1da177e4
LT
1276lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1277{
1278 struct buffer_head *ret = NULL;
1279 struct bh_lru *lru;
1280 int i;
1281
1282 check_irqs_on();
1283 bh_lru_lock();
1284 lru = &__get_cpu_var(bh_lrus);
1285 for (i = 0; i < BH_LRU_SIZE; i++) {
1286 struct buffer_head *bh = lru->bhs[i];
1287
1288 if (bh && bh->b_bdev == bdev &&
1289 bh->b_blocknr == block && bh->b_size == size) {
1290 if (i) {
1291 while (i) {
1292 lru->bhs[i] = lru->bhs[i - 1];
1293 i--;
1294 }
1295 lru->bhs[0] = bh;
1296 }
1297 get_bh(bh);
1298 ret = bh;
1299 break;
1300 }
1301 }
1302 bh_lru_unlock();
1303 return ret;
1304}
1305
1306/*
1307 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1308 * it in the LRU and mark it as accessed. If it is not present then return
1309 * NULL
1310 */
1311struct buffer_head *
1312__find_get_block(struct block_device *bdev, sector_t block, int size)
1313{
1314 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1315
1316 if (bh == NULL) {
385fd4c5 1317 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1318 if (bh)
1319 bh_lru_install(bh);
1320 }
1321 if (bh)
1322 touch_buffer(bh);
1323 return bh;
1324}
1325EXPORT_SYMBOL(__find_get_block);
1326
1327/*
1328 * __getblk will locate (and, if necessary, create) the buffer_head
1329 * which corresponds to the passed block_device, block and size. The
1330 * returned buffer has its reference count incremented.
1331 *
1332 * __getblk() cannot fail - it just keeps trying. If you pass it an
1333 * illegal block number, __getblk() will happily return a buffer_head
1334 * which represents the non-existent block. Very weird.
1335 *
1336 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1337 * attempt is failing. FIXME, perhaps?
1338 */
1339struct buffer_head *
1340__getblk(struct block_device *bdev, sector_t block, int size)
1341{
1342 struct buffer_head *bh = __find_get_block(bdev, block, size);
1343
1344 might_sleep();
1345 if (bh == NULL)
1346 bh = __getblk_slow(bdev, block, size);
1347 return bh;
1348}
1349EXPORT_SYMBOL(__getblk);
1350
1351/*
1352 * Do async read-ahead on a buffer..
1353 */
1354void __breadahead(struct block_device *bdev, sector_t block, int size)
1355{
1356 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5
AM
1357 if (likely(bh)) {
1358 ll_rw_block(READA, 1, &bh);
1359 brelse(bh);
1360 }
1da177e4
LT
1361}
1362EXPORT_SYMBOL(__breadahead);
1363
1364/**
1365 * __bread() - reads a specified block and returns the bh
67be2dd1 1366 * @bdev: the block_device to read from
1da177e4
LT
1367 * @block: number of block
1368 * @size: size (in bytes) to read
1369 *
1370 * Reads a specified block, and returns buffer head that contains it.
1371 * It returns NULL if the block was unreadable.
1372 */
1373struct buffer_head *
1374__bread(struct block_device *bdev, sector_t block, int size)
1375{
1376 struct buffer_head *bh = __getblk(bdev, block, size);
1377
a3e713b5 1378 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1379 bh = __bread_slow(bh);
1380 return bh;
1381}
1382EXPORT_SYMBOL(__bread);
1383
1384/*
1385 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1386 * This doesn't race because it runs in each cpu either in irq
1387 * or with preempt disabled.
1388 */
1389static void invalidate_bh_lru(void *arg)
1390{
1391 struct bh_lru *b = &get_cpu_var(bh_lrus);
1392 int i;
1393
1394 for (i = 0; i < BH_LRU_SIZE; i++) {
1395 brelse(b->bhs[i]);
1396 b->bhs[i] = NULL;
1397 }
1398 put_cpu_var(bh_lrus);
1399}
1400
1401static void invalidate_bh_lrus(void)
1402{
1403 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1404}
1405
1406void set_bh_page(struct buffer_head *bh,
1407 struct page *page, unsigned long offset)
1408{
1409 bh->b_page = page;
e827f923 1410 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1411 if (PageHighMem(page))
1412 /*
1413 * This catches illegal uses and preserves the offset:
1414 */
1415 bh->b_data = (char *)(0 + offset);
1416 else
1417 bh->b_data = page_address(page) + offset;
1418}
1419EXPORT_SYMBOL(set_bh_page);
1420
1421/*
1422 * Called when truncating a buffer on a page completely.
1423 */
858119e1 1424static void discard_buffer(struct buffer_head * bh)
1da177e4
LT
1425{
1426 lock_buffer(bh);
1427 clear_buffer_dirty(bh);
1428 bh->b_bdev = NULL;
1429 clear_buffer_mapped(bh);
1430 clear_buffer_req(bh);
1431 clear_buffer_new(bh);
1432 clear_buffer_delay(bh);
1433 unlock_buffer(bh);
1434}
1435
1da177e4
LT
1436/**
1437 * block_invalidatepage - invalidate part of all of a buffer-backed page
1438 *
1439 * @page: the page which is affected
1440 * @offset: the index of the truncation point
1441 *
1442 * block_invalidatepage() is called when all or part of the page has become
1443 * invalidatedby a truncate operation.
1444 *
1445 * block_invalidatepage() does not have to release all buffers, but it must
1446 * ensure that no dirty buffer is left outside @offset and that no I/O
1447 * is underway against any of the blocks which are outside the truncation
1448 * point. Because the caller is about to free (and possibly reuse) those
1449 * blocks on-disk.
1450 */
2ff28e22 1451void block_invalidatepage(struct page *page, unsigned long offset)
1da177e4
LT
1452{
1453 struct buffer_head *head, *bh, *next;
1454 unsigned int curr_off = 0;
1da177e4
LT
1455
1456 BUG_ON(!PageLocked(page));
1457 if (!page_has_buffers(page))
1458 goto out;
1459
1460 head = page_buffers(page);
1461 bh = head;
1462 do {
1463 unsigned int next_off = curr_off + bh->b_size;
1464 next = bh->b_this_page;
1465
1466 /*
1467 * is this block fully invalidated?
1468 */
1469 if (offset <= curr_off)
1470 discard_buffer(bh);
1471 curr_off = next_off;
1472 bh = next;
1473 } while (bh != head);
1474
1475 /*
1476 * We release buffers only if the entire page is being invalidated.
1477 * The get_block cached value has been unconditionally invalidated,
1478 * so real IO is not possible anymore.
1479 */
1480 if (offset == 0)
2ff28e22 1481 try_to_release_page(page, 0);
1da177e4 1482out:
2ff28e22 1483 return;
1da177e4
LT
1484}
1485EXPORT_SYMBOL(block_invalidatepage);
1486
1487/*
1488 * We attach and possibly dirty the buffers atomically wrt
1489 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1490 * is already excluded via the page lock.
1491 */
1492void create_empty_buffers(struct page *page,
1493 unsigned long blocksize, unsigned long b_state)
1494{
1495 struct buffer_head *bh, *head, *tail;
1496
1497 head = alloc_page_buffers(page, blocksize, 1);
1498 bh = head;
1499 do {
1500 bh->b_state |= b_state;
1501 tail = bh;
1502 bh = bh->b_this_page;
1503 } while (bh);
1504 tail->b_this_page = head;
1505
1506 spin_lock(&page->mapping->private_lock);
1507 if (PageUptodate(page) || PageDirty(page)) {
1508 bh = head;
1509 do {
1510 if (PageDirty(page))
1511 set_buffer_dirty(bh);
1512 if (PageUptodate(page))
1513 set_buffer_uptodate(bh);
1514 bh = bh->b_this_page;
1515 } while (bh != head);
1516 }
1517 attach_page_buffers(page, head);
1518 spin_unlock(&page->mapping->private_lock);
1519}
1520EXPORT_SYMBOL(create_empty_buffers);
1521
1522/*
1523 * We are taking a block for data and we don't want any output from any
1524 * buffer-cache aliases starting from return from that function and
1525 * until the moment when something will explicitly mark the buffer
1526 * dirty (hopefully that will not happen until we will free that block ;-)
1527 * We don't even need to mark it not-uptodate - nobody can expect
1528 * anything from a newly allocated buffer anyway. We used to used
1529 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1530 * don't want to mark the alias unmapped, for example - it would confuse
1531 * anyone who might pick it with bread() afterwards...
1532 *
1533 * Also.. Note that bforget() doesn't lock the buffer. So there can
1534 * be writeout I/O going on against recently-freed buffers. We don't
1535 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1536 * only if we really need to. That happens here.
1537 */
1538void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1539{
1540 struct buffer_head *old_bh;
1541
1542 might_sleep();
1543
385fd4c5 1544 old_bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1545 if (old_bh) {
1546 clear_buffer_dirty(old_bh);
1547 wait_on_buffer(old_bh);
1548 clear_buffer_req(old_bh);
1549 __brelse(old_bh);
1550 }
1551}
1552EXPORT_SYMBOL(unmap_underlying_metadata);
1553
1554/*
1555 * NOTE! All mapped/uptodate combinations are valid:
1556 *
1557 * Mapped Uptodate Meaning
1558 *
1559 * No No "unknown" - must do get_block()
1560 * No Yes "hole" - zero-filled
1561 * Yes No "allocated" - allocated on disk, not read in
1562 * Yes Yes "valid" - allocated and up-to-date in memory.
1563 *
1564 * "Dirty" is valid only with the last case (mapped+uptodate).
1565 */
1566
1567/*
1568 * While block_write_full_page is writing back the dirty buffers under
1569 * the page lock, whoever dirtied the buffers may decide to clean them
1570 * again at any time. We handle that by only looking at the buffer
1571 * state inside lock_buffer().
1572 *
1573 * If block_write_full_page() is called for regular writeback
1574 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1575 * locked buffer. This only can happen if someone has written the buffer
1576 * directly, with submit_bh(). At the address_space level PageWriteback
1577 * prevents this contention from occurring.
1578 */
1579static int __block_write_full_page(struct inode *inode, struct page *page,
1580 get_block_t *get_block, struct writeback_control *wbc)
1581{
1582 int err;
1583 sector_t block;
1584 sector_t last_block;
f0fbd5fc 1585 struct buffer_head *bh, *head;
b0cf2321 1586 const unsigned blocksize = 1 << inode->i_blkbits;
1da177e4
LT
1587 int nr_underway = 0;
1588
1589 BUG_ON(!PageLocked(page));
1590
1591 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1592
1593 if (!page_has_buffers(page)) {
b0cf2321 1594 create_empty_buffers(page, blocksize,
1da177e4
LT
1595 (1 << BH_Dirty)|(1 << BH_Uptodate));
1596 }
1597
1598 /*
1599 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1600 * here, and the (potentially unmapped) buffers may become dirty at
1601 * any time. If a buffer becomes dirty here after we've inspected it
1602 * then we just miss that fact, and the page stays dirty.
1603 *
1604 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1605 * handle that here by just cleaning them.
1606 */
1607
54b21a79 1608 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
1609 head = page_buffers(page);
1610 bh = head;
1611
1612 /*
1613 * Get all the dirty buffers mapped to disk addresses and
1614 * handle any aliases from the underlying blockdev's mapping.
1615 */
1616 do {
1617 if (block > last_block) {
1618 /*
1619 * mapped buffers outside i_size will occur, because
1620 * this page can be outside i_size when there is a
1621 * truncate in progress.
1622 */
1623 /*
1624 * The buffer was zeroed by block_write_full_page()
1625 */
1626 clear_buffer_dirty(bh);
1627 set_buffer_uptodate(bh);
1628 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
b0cf2321 1629 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1630 err = get_block(inode, block, bh, 1);
1631 if (err)
1632 goto recover;
1633 if (buffer_new(bh)) {
1634 /* blockdev mappings never come here */
1635 clear_buffer_new(bh);
1636 unmap_underlying_metadata(bh->b_bdev,
1637 bh->b_blocknr);
1638 }
1639 }
1640 bh = bh->b_this_page;
1641 block++;
1642 } while (bh != head);
1643
1644 do {
1da177e4
LT
1645 if (!buffer_mapped(bh))
1646 continue;
1647 /*
1648 * If it's a fully non-blocking write attempt and we cannot
1649 * lock the buffer then redirty the page. Note that this can
1650 * potentially cause a busy-wait loop from pdflush and kswapd
1651 * activity, but those code paths have their own higher-level
1652 * throttling.
1653 */
1654 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1655 lock_buffer(bh);
1656 } else if (test_set_buffer_locked(bh)) {
1657 redirty_page_for_writepage(wbc, page);
1658 continue;
1659 }
1660 if (test_clear_buffer_dirty(bh)) {
1661 mark_buffer_async_write(bh);
1662 } else {
1663 unlock_buffer(bh);
1664 }
1665 } while ((bh = bh->b_this_page) != head);
1666
1667 /*
1668 * The page and its buffers are protected by PageWriteback(), so we can
1669 * drop the bh refcounts early.
1670 */
1671 BUG_ON(PageWriteback(page));
1672 set_page_writeback(page);
1da177e4
LT
1673
1674 do {
1675 struct buffer_head *next = bh->b_this_page;
1676 if (buffer_async_write(bh)) {
1677 submit_bh(WRITE, bh);
1678 nr_underway++;
1679 }
1da177e4
LT
1680 bh = next;
1681 } while (bh != head);
05937baa 1682 unlock_page(page);
1da177e4
LT
1683
1684 err = 0;
1685done:
1686 if (nr_underway == 0) {
1687 /*
1688 * The page was marked dirty, but the buffers were
1689 * clean. Someone wrote them back by hand with
1690 * ll_rw_block/submit_bh. A rare case.
1691 */
1692 int uptodate = 1;
1693 do {
1694 if (!buffer_uptodate(bh)) {
1695 uptodate = 0;
1696 break;
1697 }
1698 bh = bh->b_this_page;
1699 } while (bh != head);
1700 if (uptodate)
1701 SetPageUptodate(page);
1702 end_page_writeback(page);
1703 /*
1704 * The page and buffer_heads can be released at any time from
1705 * here on.
1706 */
1707 wbc->pages_skipped++; /* We didn't write this page */
1708 }
1709 return err;
1710
1711recover:
1712 /*
1713 * ENOSPC, or some other error. We may already have added some
1714 * blocks to the file, so we need to write these out to avoid
1715 * exposing stale data.
1716 * The page is currently locked and not marked for writeback
1717 */
1718 bh = head;
1719 /* Recovery: lock and submit the mapped buffers */
1720 do {
1da177e4
LT
1721 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1722 lock_buffer(bh);
1723 mark_buffer_async_write(bh);
1724 } else {
1725 /*
1726 * The buffer may have been set dirty during
1727 * attachment to a dirty page.
1728 */
1729 clear_buffer_dirty(bh);
1730 }
1731 } while ((bh = bh->b_this_page) != head);
1732 SetPageError(page);
1733 BUG_ON(PageWriteback(page));
1734 set_page_writeback(page);
1735 unlock_page(page);
1736 do {
1737 struct buffer_head *next = bh->b_this_page;
1738 if (buffer_async_write(bh)) {
1739 clear_buffer_dirty(bh);
1740 submit_bh(WRITE, bh);
1741 nr_underway++;
1742 }
1da177e4
LT
1743 bh = next;
1744 } while (bh != head);
1745 goto done;
1746}
1747
1748static int __block_prepare_write(struct inode *inode, struct page *page,
1749 unsigned from, unsigned to, get_block_t *get_block)
1750{
1751 unsigned block_start, block_end;
1752 sector_t block;
1753 int err = 0;
1754 unsigned blocksize, bbits;
1755 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1756
1757 BUG_ON(!PageLocked(page));
1758 BUG_ON(from > PAGE_CACHE_SIZE);
1759 BUG_ON(to > PAGE_CACHE_SIZE);
1760 BUG_ON(from > to);
1761
1762 blocksize = 1 << inode->i_blkbits;
1763 if (!page_has_buffers(page))
1764 create_empty_buffers(page, blocksize, 0);
1765 head = page_buffers(page);
1766
1767 bbits = inode->i_blkbits;
1768 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1769
1770 for(bh = head, block_start = 0; bh != head || !block_start;
1771 block++, block_start=block_end, bh = bh->b_this_page) {
1772 block_end = block_start + blocksize;
1773 if (block_end <= from || block_start >= to) {
1774 if (PageUptodate(page)) {
1775 if (!buffer_uptodate(bh))
1776 set_buffer_uptodate(bh);
1777 }
1778 continue;
1779 }
1780 if (buffer_new(bh))
1781 clear_buffer_new(bh);
1782 if (!buffer_mapped(bh)) {
b0cf2321 1783 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1784 err = get_block(inode, block, bh, 1);
1785 if (err)
f3ddbdc6 1786 break;
1da177e4 1787 if (buffer_new(bh)) {
1da177e4
LT
1788 unmap_underlying_metadata(bh->b_bdev,
1789 bh->b_blocknr);
1790 if (PageUptodate(page)) {
1791 set_buffer_uptodate(bh);
1792 continue;
1793 }
1794 if (block_end > to || block_start < from) {
1795 void *kaddr;
1796
1797 kaddr = kmap_atomic(page, KM_USER0);
1798 if (block_end > to)
1799 memset(kaddr+to, 0,
1800 block_end-to);
1801 if (block_start < from)
1802 memset(kaddr+block_start,
1803 0, from-block_start);
1804 flush_dcache_page(page);
1805 kunmap_atomic(kaddr, KM_USER0);
1806 }
1807 continue;
1808 }
1809 }
1810 if (PageUptodate(page)) {
1811 if (!buffer_uptodate(bh))
1812 set_buffer_uptodate(bh);
1813 continue;
1814 }
1815 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1816 (block_start < from || block_end > to)) {
1817 ll_rw_block(READ, 1, &bh);
1818 *wait_bh++=bh;
1819 }
1820 }
1821 /*
1822 * If we issued read requests - let them complete.
1823 */
1824 while(wait_bh > wait) {
1825 wait_on_buffer(*--wait_bh);
1826 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 1827 err = -EIO;
1da177e4 1828 }
152becd2
AA
1829 if (!err) {
1830 bh = head;
1831 do {
1832 if (buffer_new(bh))
1833 clear_buffer_new(bh);
1834 } while ((bh = bh->b_this_page) != head);
1835 return 0;
1836 }
f3ddbdc6 1837 /* Error case: */
1da177e4
LT
1838 /*
1839 * Zero out any newly allocated blocks to avoid exposing stale
1840 * data. If BH_New is set, we know that the block was newly
1841 * allocated in the above loop.
1842 */
1843 bh = head;
1844 block_start = 0;
1845 do {
1846 block_end = block_start+blocksize;
1847 if (block_end <= from)
1848 goto next_bh;
1849 if (block_start >= to)
1850 break;
1851 if (buffer_new(bh)) {
1852 void *kaddr;
1853
1854 clear_buffer_new(bh);
1855 kaddr = kmap_atomic(page, KM_USER0);
1856 memset(kaddr+block_start, 0, bh->b_size);
1857 kunmap_atomic(kaddr, KM_USER0);
1858 set_buffer_uptodate(bh);
1859 mark_buffer_dirty(bh);
1860 }
1861next_bh:
1862 block_start = block_end;
1863 bh = bh->b_this_page;
1864 } while (bh != head);
1865 return err;
1866}
1867
1868static int __block_commit_write(struct inode *inode, struct page *page,
1869 unsigned from, unsigned to)
1870{
1871 unsigned block_start, block_end;
1872 int partial = 0;
1873 unsigned blocksize;
1874 struct buffer_head *bh, *head;
1875
1876 blocksize = 1 << inode->i_blkbits;
1877
1878 for(bh = head = page_buffers(page), block_start = 0;
1879 bh != head || !block_start;
1880 block_start=block_end, bh = bh->b_this_page) {
1881 block_end = block_start + blocksize;
1882 if (block_end <= from || block_start >= to) {
1883 if (!buffer_uptodate(bh))
1884 partial = 1;
1885 } else {
1886 set_buffer_uptodate(bh);
1887 mark_buffer_dirty(bh);
1888 }
1889 }
1890
1891 /*
1892 * If this is a partial write which happened to make all buffers
1893 * uptodate then we can optimize away a bogus readpage() for
1894 * the next read(). Here we 'discover' whether the page went
1895 * uptodate as a result of this (potentially partial) write.
1896 */
1897 if (!partial)
1898 SetPageUptodate(page);
1899 return 0;
1900}
1901
1902/*
1903 * Generic "read page" function for block devices that have the normal
1904 * get_block functionality. This is most of the block device filesystems.
1905 * Reads the page asynchronously --- the unlock_buffer() and
1906 * set/clear_buffer_uptodate() functions propagate buffer state into the
1907 * page struct once IO has completed.
1908 */
1909int block_read_full_page(struct page *page, get_block_t *get_block)
1910{
1911 struct inode *inode = page->mapping->host;
1912 sector_t iblock, lblock;
1913 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
1914 unsigned int blocksize;
1915 int nr, i;
1916 int fully_mapped = 1;
1917
cd7619d6 1918 BUG_ON(!PageLocked(page));
1da177e4
LT
1919 blocksize = 1 << inode->i_blkbits;
1920 if (!page_has_buffers(page))
1921 create_empty_buffers(page, blocksize, 0);
1922 head = page_buffers(page);
1923
1924 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1925 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
1926 bh = head;
1927 nr = 0;
1928 i = 0;
1929
1930 do {
1931 if (buffer_uptodate(bh))
1932 continue;
1933
1934 if (!buffer_mapped(bh)) {
c64610ba
AM
1935 int err = 0;
1936
1da177e4
LT
1937 fully_mapped = 0;
1938 if (iblock < lblock) {
b0cf2321 1939 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
1940 err = get_block(inode, iblock, bh, 0);
1941 if (err)
1da177e4
LT
1942 SetPageError(page);
1943 }
1944 if (!buffer_mapped(bh)) {
1945 void *kaddr = kmap_atomic(page, KM_USER0);
1946 memset(kaddr + i * blocksize, 0, blocksize);
1947 flush_dcache_page(page);
1948 kunmap_atomic(kaddr, KM_USER0);
c64610ba
AM
1949 if (!err)
1950 set_buffer_uptodate(bh);
1da177e4
LT
1951 continue;
1952 }
1953 /*
1954 * get_block() might have updated the buffer
1955 * synchronously
1956 */
1957 if (buffer_uptodate(bh))
1958 continue;
1959 }
1960 arr[nr++] = bh;
1961 } while (i++, iblock++, (bh = bh->b_this_page) != head);
1962
1963 if (fully_mapped)
1964 SetPageMappedToDisk(page);
1965
1966 if (!nr) {
1967 /*
1968 * All buffers are uptodate - we can set the page uptodate
1969 * as well. But not if get_block() returned an error.
1970 */
1971 if (!PageError(page))
1972 SetPageUptodate(page);
1973 unlock_page(page);
1974 return 0;
1975 }
1976
1977 /* Stage two: lock the buffers */
1978 for (i = 0; i < nr; i++) {
1979 bh = arr[i];
1980 lock_buffer(bh);
1981 mark_buffer_async_read(bh);
1982 }
1983
1984 /*
1985 * Stage 3: start the IO. Check for uptodateness
1986 * inside the buffer lock in case another process reading
1987 * the underlying blockdev brought it uptodate (the sct fix).
1988 */
1989 for (i = 0; i < nr; i++) {
1990 bh = arr[i];
1991 if (buffer_uptodate(bh))
1992 end_buffer_async_read(bh, 1);
1993 else
1994 submit_bh(READ, bh);
1995 }
1996 return 0;
1997}
1998
1999/* utility function for filesystems that need to do work on expanding
2000 * truncates. Uses prepare/commit_write to allow the filesystem to
2001 * deal with the hole.
2002 */
05eb0b51
OH
2003static int __generic_cont_expand(struct inode *inode, loff_t size,
2004 pgoff_t index, unsigned int offset)
1da177e4
LT
2005{
2006 struct address_space *mapping = inode->i_mapping;
2007 struct page *page;
05eb0b51 2008 unsigned long limit;
1da177e4
LT
2009 int err;
2010
2011 err = -EFBIG;
2012 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2013 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2014 send_sig(SIGXFSZ, current, 0);
2015 goto out;
2016 }
2017 if (size > inode->i_sb->s_maxbytes)
2018 goto out;
2019
1da177e4
LT
2020 err = -ENOMEM;
2021 page = grab_cache_page(mapping, index);
2022 if (!page)
2023 goto out;
2024 err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
05eb0b51
OH
2025 if (err) {
2026 /*
2027 * ->prepare_write() may have instantiated a few blocks
2028 * outside i_size. Trim these off again.
2029 */
2030 unlock_page(page);
2031 page_cache_release(page);
2032 vmtruncate(inode, inode->i_size);
2033 goto out;
1da177e4 2034 }
05eb0b51
OH
2035
2036 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2037
1da177e4
LT
2038 unlock_page(page);
2039 page_cache_release(page);
2040 if (err > 0)
2041 err = 0;
2042out:
2043 return err;
2044}
2045
05eb0b51
OH
2046int generic_cont_expand(struct inode *inode, loff_t size)
2047{
2048 pgoff_t index;
2049 unsigned int offset;
2050
2051 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2052
2053 /* ugh. in prepare/commit_write, if from==to==start of block, we
2054 ** skip the prepare. make sure we never send an offset for the start
2055 ** of a block
2056 */
2057 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2058 /* caller must handle this extra byte. */
2059 offset++;
2060 }
2061 index = size >> PAGE_CACHE_SHIFT;
2062
2063 return __generic_cont_expand(inode, size, index, offset);
2064}
2065
2066int generic_cont_expand_simple(struct inode *inode, loff_t size)
2067{
2068 loff_t pos = size - 1;
2069 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2070 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2071
2072 /* prepare/commit_write can handle even if from==to==start of block. */
2073 return __generic_cont_expand(inode, size, index, offset);
2074}
2075
1da177e4
LT
2076/*
2077 * For moronic filesystems that do not allow holes in file.
2078 * We may have to extend the file.
2079 */
2080
2081int cont_prepare_write(struct page *page, unsigned offset,
2082 unsigned to, get_block_t *get_block, loff_t *bytes)
2083{
2084 struct address_space *mapping = page->mapping;
2085 struct inode *inode = mapping->host;
2086 struct page *new_page;
2087 pgoff_t pgpos;
2088 long status;
2089 unsigned zerofrom;
2090 unsigned blocksize = 1 << inode->i_blkbits;
2091 void *kaddr;
2092
2093 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2094 status = -ENOMEM;
2095 new_page = grab_cache_page(mapping, pgpos);
2096 if (!new_page)
2097 goto out;
2098 /* we might sleep */
2099 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2100 unlock_page(new_page);
2101 page_cache_release(new_page);
2102 continue;
2103 }
2104 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2105 if (zerofrom & (blocksize-1)) {
2106 *bytes |= (blocksize-1);
2107 (*bytes)++;
2108 }
2109 status = __block_prepare_write(inode, new_page, zerofrom,
2110 PAGE_CACHE_SIZE, get_block);
2111 if (status)
2112 goto out_unmap;
2113 kaddr = kmap_atomic(new_page, KM_USER0);
2114 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2115 flush_dcache_page(new_page);
2116 kunmap_atomic(kaddr, KM_USER0);
2117 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2118 unlock_page(new_page);
2119 page_cache_release(new_page);
2120 }
2121
2122 if (page->index < pgpos) {
2123 /* completely inside the area */
2124 zerofrom = offset;
2125 } else {
2126 /* page covers the boundary, find the boundary offset */
2127 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2128
2129 /* if we will expand the thing last block will be filled */
2130 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2131 *bytes |= (blocksize-1);
2132 (*bytes)++;
2133 }
2134
2135 /* starting below the boundary? Nothing to zero out */
2136 if (offset <= zerofrom)
2137 zerofrom = offset;
2138 }
2139 status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2140 if (status)
2141 goto out1;
2142 if (zerofrom < offset) {
2143 kaddr = kmap_atomic(page, KM_USER0);
2144 memset(kaddr+zerofrom, 0, offset-zerofrom);
2145 flush_dcache_page(page);
2146 kunmap_atomic(kaddr, KM_USER0);
2147 __block_commit_write(inode, page, zerofrom, offset);
2148 }
2149 return 0;
2150out1:
2151 ClearPageUptodate(page);
2152 return status;
2153
2154out_unmap:
2155 ClearPageUptodate(new_page);
2156 unlock_page(new_page);
2157 page_cache_release(new_page);
2158out:
2159 return status;
2160}
2161
2162int block_prepare_write(struct page *page, unsigned from, unsigned to,
2163 get_block_t *get_block)
2164{
2165 struct inode *inode = page->mapping->host;
2166 int err = __block_prepare_write(inode, page, from, to, get_block);
2167 if (err)
2168 ClearPageUptodate(page);
2169 return err;
2170}
2171
2172int block_commit_write(struct page *page, unsigned from, unsigned to)
2173{
2174 struct inode *inode = page->mapping->host;
2175 __block_commit_write(inode,page,from,to);
2176 return 0;
2177}
2178
2179int generic_commit_write(struct file *file, struct page *page,
2180 unsigned from, unsigned to)
2181{
2182 struct inode *inode = page->mapping->host;
2183 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2184 __block_commit_write(inode,page,from,to);
2185 /*
2186 * No need to use i_size_read() here, the i_size
1b1dcc1b 2187 * cannot change under us because we hold i_mutex.
1da177e4
LT
2188 */
2189 if (pos > inode->i_size) {
2190 i_size_write(inode, pos);
2191 mark_inode_dirty(inode);
2192 }
2193 return 0;
2194}
2195
2196
2197/*
2198 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2199 * immediately, while under the page lock. So it needs a special end_io
2200 * handler which does not touch the bh after unlocking it.
2201 *
2202 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2203 * a race there is benign: unlock_buffer() only use the bh's address for
2204 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2205 * itself.
2206 */
2207static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2208{
2209 if (uptodate) {
2210 set_buffer_uptodate(bh);
2211 } else {
2212 /* This happens, due to failed READA attempts. */
2213 clear_buffer_uptodate(bh);
2214 }
2215 unlock_buffer(bh);
2216}
2217
2218/*
2219 * On entry, the page is fully not uptodate.
2220 * On exit the page is fully uptodate in the areas outside (from,to)
2221 */
2222int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2223 get_block_t *get_block)
2224{
2225 struct inode *inode = page->mapping->host;
2226 const unsigned blkbits = inode->i_blkbits;
2227 const unsigned blocksize = 1 << blkbits;
2228 struct buffer_head map_bh;
2229 struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2230 unsigned block_in_page;
2231 unsigned block_start;
2232 sector_t block_in_file;
2233 char *kaddr;
2234 int nr_reads = 0;
2235 int i;
2236 int ret = 0;
2237 int is_mapped_to_disk = 1;
2238 int dirtied_it = 0;
2239
2240 if (PageMappedToDisk(page))
2241 return 0;
2242
2243 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2244 map_bh.b_page = page;
2245
2246 /*
2247 * We loop across all blocks in the page, whether or not they are
2248 * part of the affected region. This is so we can discover if the
2249 * page is fully mapped-to-disk.
2250 */
2251 for (block_start = 0, block_in_page = 0;
2252 block_start < PAGE_CACHE_SIZE;
2253 block_in_page++, block_start += blocksize) {
2254 unsigned block_end = block_start + blocksize;
2255 int create;
2256
2257 map_bh.b_state = 0;
2258 create = 1;
2259 if (block_start >= to)
2260 create = 0;
b0cf2321 2261 map_bh.b_size = blocksize;
1da177e4
LT
2262 ret = get_block(inode, block_in_file + block_in_page,
2263 &map_bh, create);
2264 if (ret)
2265 goto failed;
2266 if (!buffer_mapped(&map_bh))
2267 is_mapped_to_disk = 0;
2268 if (buffer_new(&map_bh))
2269 unmap_underlying_metadata(map_bh.b_bdev,
2270 map_bh.b_blocknr);
2271 if (PageUptodate(page))
2272 continue;
2273 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2274 kaddr = kmap_atomic(page, KM_USER0);
2275 if (block_start < from) {
2276 memset(kaddr+block_start, 0, from-block_start);
2277 dirtied_it = 1;
2278 }
2279 if (block_end > to) {
2280 memset(kaddr + to, 0, block_end - to);
2281 dirtied_it = 1;
2282 }
2283 flush_dcache_page(page);
2284 kunmap_atomic(kaddr, KM_USER0);
2285 continue;
2286 }
2287 if (buffer_uptodate(&map_bh))
2288 continue; /* reiserfs does this */
2289 if (block_start < from || block_end > to) {
2290 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2291
2292 if (!bh) {
2293 ret = -ENOMEM;
2294 goto failed;
2295 }
2296 bh->b_state = map_bh.b_state;
2297 atomic_set(&bh->b_count, 0);
2298 bh->b_this_page = NULL;
2299 bh->b_page = page;
2300 bh->b_blocknr = map_bh.b_blocknr;
2301 bh->b_size = blocksize;
2302 bh->b_data = (char *)(long)block_start;
2303 bh->b_bdev = map_bh.b_bdev;
2304 bh->b_private = NULL;
2305 read_bh[nr_reads++] = bh;
2306 }
2307 }
2308
2309 if (nr_reads) {
2310 struct buffer_head *bh;
2311
2312 /*
2313 * The page is locked, so these buffers are protected from
2314 * any VM or truncate activity. Hence we don't need to care
2315 * for the buffer_head refcounts.
2316 */
2317 for (i = 0; i < nr_reads; i++) {
2318 bh = read_bh[i];
2319 lock_buffer(bh);
2320 bh->b_end_io = end_buffer_read_nobh;
2321 submit_bh(READ, bh);
2322 }
2323 for (i = 0; i < nr_reads; i++) {
2324 bh = read_bh[i];
2325 wait_on_buffer(bh);
2326 if (!buffer_uptodate(bh))
2327 ret = -EIO;
2328 free_buffer_head(bh);
2329 read_bh[i] = NULL;
2330 }
2331 if (ret)
2332 goto failed;
2333 }
2334
2335 if (is_mapped_to_disk)
2336 SetPageMappedToDisk(page);
2337 SetPageUptodate(page);
2338
2339 /*
2340 * Setting the page dirty here isn't necessary for the prepare_write
2341 * function - commit_write will do that. But if/when this function is
2342 * used within the pagefault handler to ensure that all mmapped pages
2343 * have backing space in the filesystem, we will need to dirty the page
2344 * if its contents were altered.
2345 */
2346 if (dirtied_it)
2347 set_page_dirty(page);
2348
2349 return 0;
2350
2351failed:
2352 for (i = 0; i < nr_reads; i++) {
2353 if (read_bh[i])
2354 free_buffer_head(read_bh[i]);
2355 }
2356
2357 /*
2358 * Error recovery is pretty slack. Clear the page and mark it dirty
2359 * so we'll later zero out any blocks which _were_ allocated.
2360 */
2361 kaddr = kmap_atomic(page, KM_USER0);
2362 memset(kaddr, 0, PAGE_CACHE_SIZE);
2363 kunmap_atomic(kaddr, KM_USER0);
2364 SetPageUptodate(page);
2365 set_page_dirty(page);
2366 return ret;
2367}
2368EXPORT_SYMBOL(nobh_prepare_write);
2369
2370int nobh_commit_write(struct file *file, struct page *page,
2371 unsigned from, unsigned to)
2372{
2373 struct inode *inode = page->mapping->host;
2374 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2375
2376 set_page_dirty(page);
2377 if (pos > inode->i_size) {
2378 i_size_write(inode, pos);
2379 mark_inode_dirty(inode);
2380 }
2381 return 0;
2382}
2383EXPORT_SYMBOL(nobh_commit_write);
2384
2385/*
2386 * nobh_writepage() - based on block_full_write_page() except
2387 * that it tries to operate without attaching bufferheads to
2388 * the page.
2389 */
2390int nobh_writepage(struct page *page, get_block_t *get_block,
2391 struct writeback_control *wbc)
2392{
2393 struct inode * const inode = page->mapping->host;
2394 loff_t i_size = i_size_read(inode);
2395 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2396 unsigned offset;
2397 void *kaddr;
2398 int ret;
2399
2400 /* Is the page fully inside i_size? */
2401 if (page->index < end_index)
2402 goto out;
2403
2404 /* Is the page fully outside i_size? (truncate in progress) */
2405 offset = i_size & (PAGE_CACHE_SIZE-1);
2406 if (page->index >= end_index+1 || !offset) {
2407 /*
2408 * The page may have dirty, unmapped buffers. For example,
2409 * they may have been added in ext3_writepage(). Make them
2410 * freeable here, so the page does not leak.
2411 */
2412#if 0
2413 /* Not really sure about this - do we need this ? */
2414 if (page->mapping->a_ops->invalidatepage)
2415 page->mapping->a_ops->invalidatepage(page, offset);
2416#endif
2417 unlock_page(page);
2418 return 0; /* don't care */
2419 }
2420
2421 /*
2422 * The page straddles i_size. It must be zeroed out on each and every
2423 * writepage invocation because it may be mmapped. "A file is mapped
2424 * in multiples of the page size. For a file that is not a multiple of
2425 * the page size, the remaining memory is zeroed when mapped, and
2426 * writes to that region are not written out to the file."
2427 */
2428 kaddr = kmap_atomic(page, KM_USER0);
2429 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2430 flush_dcache_page(page);
2431 kunmap_atomic(kaddr, KM_USER0);
2432out:
2433 ret = mpage_writepage(page, get_block, wbc);
2434 if (ret == -EAGAIN)
2435 ret = __block_write_full_page(inode, page, get_block, wbc);
2436 return ret;
2437}
2438EXPORT_SYMBOL(nobh_writepage);
2439
2440/*
2441 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2442 */
2443int nobh_truncate_page(struct address_space *mapping, loff_t from)
2444{
2445 struct inode *inode = mapping->host;
2446 unsigned blocksize = 1 << inode->i_blkbits;
2447 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2448 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2449 unsigned to;
2450 struct page *page;
f5e54d6e 2451 const struct address_space_operations *a_ops = mapping->a_ops;
1da177e4
LT
2452 char *kaddr;
2453 int ret = 0;
2454
2455 if ((offset & (blocksize - 1)) == 0)
2456 goto out;
2457
2458 ret = -ENOMEM;
2459 page = grab_cache_page(mapping, index);
2460 if (!page)
2461 goto out;
2462
2463 to = (offset + blocksize) & ~(blocksize - 1);
2464 ret = a_ops->prepare_write(NULL, page, offset, to);
2465 if (ret == 0) {
2466 kaddr = kmap_atomic(page, KM_USER0);
2467 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2468 flush_dcache_page(page);
2469 kunmap_atomic(kaddr, KM_USER0);
2470 set_page_dirty(page);
2471 }
2472 unlock_page(page);
2473 page_cache_release(page);
2474out:
2475 return ret;
2476}
2477EXPORT_SYMBOL(nobh_truncate_page);
2478
2479int block_truncate_page(struct address_space *mapping,
2480 loff_t from, get_block_t *get_block)
2481{
2482 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2483 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2484 unsigned blocksize;
54b21a79 2485 sector_t iblock;
1da177e4
LT
2486 unsigned length, pos;
2487 struct inode *inode = mapping->host;
2488 struct page *page;
2489 struct buffer_head *bh;
2490 void *kaddr;
2491 int err;
2492
2493 blocksize = 1 << inode->i_blkbits;
2494 length = offset & (blocksize - 1);
2495
2496 /* Block boundary? Nothing to do */
2497 if (!length)
2498 return 0;
2499
2500 length = blocksize - length;
54b21a79 2501 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
2502
2503 page = grab_cache_page(mapping, index);
2504 err = -ENOMEM;
2505 if (!page)
2506 goto out;
2507
2508 if (!page_has_buffers(page))
2509 create_empty_buffers(page, blocksize, 0);
2510
2511 /* Find the buffer that contains "offset" */
2512 bh = page_buffers(page);
2513 pos = blocksize;
2514 while (offset >= pos) {
2515 bh = bh->b_this_page;
2516 iblock++;
2517 pos += blocksize;
2518 }
2519
2520 err = 0;
2521 if (!buffer_mapped(bh)) {
b0cf2321 2522 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2523 err = get_block(inode, iblock, bh, 0);
2524 if (err)
2525 goto unlock;
2526 /* unmapped? It's a hole - nothing to do */
2527 if (!buffer_mapped(bh))
2528 goto unlock;
2529 }
2530
2531 /* Ok, it's mapped. Make sure it's up-to-date */
2532 if (PageUptodate(page))
2533 set_buffer_uptodate(bh);
2534
2535 if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2536 err = -EIO;
2537 ll_rw_block(READ, 1, &bh);
2538 wait_on_buffer(bh);
2539 /* Uhhuh. Read error. Complain and punt. */
2540 if (!buffer_uptodate(bh))
2541 goto unlock;
2542 }
2543
2544 kaddr = kmap_atomic(page, KM_USER0);
2545 memset(kaddr + offset, 0, length);
2546 flush_dcache_page(page);
2547 kunmap_atomic(kaddr, KM_USER0);
2548
2549 mark_buffer_dirty(bh);
2550 err = 0;
2551
2552unlock:
2553 unlock_page(page);
2554 page_cache_release(page);
2555out:
2556 return err;
2557}
2558
2559/*
2560 * The generic ->writepage function for buffer-backed address_spaces
2561 */
2562int block_write_full_page(struct page *page, get_block_t *get_block,
2563 struct writeback_control *wbc)
2564{
2565 struct inode * const inode = page->mapping->host;
2566 loff_t i_size = i_size_read(inode);
2567 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2568 unsigned offset;
2569 void *kaddr;
2570
2571 /* Is the page fully inside i_size? */
2572 if (page->index < end_index)
2573 return __block_write_full_page(inode, page, get_block, wbc);
2574
2575 /* Is the page fully outside i_size? (truncate in progress) */
2576 offset = i_size & (PAGE_CACHE_SIZE-1);
2577 if (page->index >= end_index+1 || !offset) {
2578 /*
2579 * The page may have dirty, unmapped buffers. For example,
2580 * they may have been added in ext3_writepage(). Make them
2581 * freeable here, so the page does not leak.
2582 */
aaa4059b 2583 do_invalidatepage(page, 0);
1da177e4
LT
2584 unlock_page(page);
2585 return 0; /* don't care */
2586 }
2587
2588 /*
2589 * The page straddles i_size. It must be zeroed out on each and every
2590 * writepage invokation because it may be mmapped. "A file is mapped
2591 * in multiples of the page size. For a file that is not a multiple of
2592 * the page size, the remaining memory is zeroed when mapped, and
2593 * writes to that region are not written out to the file."
2594 */
2595 kaddr = kmap_atomic(page, KM_USER0);
2596 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2597 flush_dcache_page(page);
2598 kunmap_atomic(kaddr, KM_USER0);
2599 return __block_write_full_page(inode, page, get_block, wbc);
2600}
2601
2602sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2603 get_block_t *get_block)
2604{
2605 struct buffer_head tmp;
2606 struct inode *inode = mapping->host;
2607 tmp.b_state = 0;
2608 tmp.b_blocknr = 0;
b0cf2321 2609 tmp.b_size = 1 << inode->i_blkbits;
1da177e4
LT
2610 get_block(inode, block, &tmp, 0);
2611 return tmp.b_blocknr;
2612}
2613
2614static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2615{
2616 struct buffer_head *bh = bio->bi_private;
2617
2618 if (bio->bi_size)
2619 return 1;
2620
2621 if (err == -EOPNOTSUPP) {
2622 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2623 set_bit(BH_Eopnotsupp, &bh->b_state);
2624 }
2625
2626 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2627 bio_put(bio);
2628 return 0;
2629}
2630
2631int submit_bh(int rw, struct buffer_head * bh)
2632{
2633 struct bio *bio;
2634 int ret = 0;
2635
2636 BUG_ON(!buffer_locked(bh));
2637 BUG_ON(!buffer_mapped(bh));
2638 BUG_ON(!bh->b_end_io);
2639
2640 if (buffer_ordered(bh) && (rw == WRITE))
2641 rw = WRITE_BARRIER;
2642
2643 /*
2644 * Only clear out a write error when rewriting, should this
2645 * include WRITE_SYNC as well?
2646 */
2647 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2648 clear_buffer_write_io_error(bh);
2649
2650 /*
2651 * from here on down, it's all bio -- do the initial mapping,
2652 * submit_bio -> generic_make_request may further map this bio around
2653 */
2654 bio = bio_alloc(GFP_NOIO, 1);
2655
2656 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2657 bio->bi_bdev = bh->b_bdev;
2658 bio->bi_io_vec[0].bv_page = bh->b_page;
2659 bio->bi_io_vec[0].bv_len = bh->b_size;
2660 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2661
2662 bio->bi_vcnt = 1;
2663 bio->bi_idx = 0;
2664 bio->bi_size = bh->b_size;
2665
2666 bio->bi_end_io = end_bio_bh_io_sync;
2667 bio->bi_private = bh;
2668
2669 bio_get(bio);
2670 submit_bio(rw, bio);
2671
2672 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2673 ret = -EOPNOTSUPP;
2674
2675 bio_put(bio);
2676 return ret;
2677}
2678
2679/**
2680 * ll_rw_block: low-level access to block devices (DEPRECATED)
a7662236 2681 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
1da177e4
LT
2682 * @nr: number of &struct buffer_heads in the array
2683 * @bhs: array of pointers to &struct buffer_head
2684 *
a7662236
JK
2685 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2686 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2687 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2688 * are sent to disk. The fourth %READA option is described in the documentation
2689 * for generic_make_request() which ll_rw_block() calls.
1da177e4
LT
2690 *
2691 * This function drops any buffer that it cannot get a lock on (with the
a7662236
JK
2692 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2693 * clean when doing a write request, and any buffer that appears to be
2694 * up-to-date when doing read request. Further it marks as clean buffers that
2695 * are processed for writing (the buffer cache won't assume that they are
2696 * actually clean until the buffer gets unlocked).
1da177e4
LT
2697 *
2698 * ll_rw_block sets b_end_io to simple completion handler that marks
2699 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2700 * any waiters.
2701 *
2702 * All of the buffers must be for the same device, and must also be a
2703 * multiple of the current approved size for the device.
2704 */
2705void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2706{
2707 int i;
2708
2709 for (i = 0; i < nr; i++) {
2710 struct buffer_head *bh = bhs[i];
2711
a7662236
JK
2712 if (rw == SWRITE)
2713 lock_buffer(bh);
2714 else if (test_set_buffer_locked(bh))
1da177e4
LT
2715 continue;
2716
a7662236 2717 if (rw == WRITE || rw == SWRITE) {
1da177e4 2718 if (test_clear_buffer_dirty(bh)) {
76c3073a 2719 bh->b_end_io = end_buffer_write_sync;
e60e5c50 2720 get_bh(bh);
1da177e4
LT
2721 submit_bh(WRITE, bh);
2722 continue;
2723 }
2724 } else {
1da177e4 2725 if (!buffer_uptodate(bh)) {
76c3073a 2726 bh->b_end_io = end_buffer_read_sync;
e60e5c50 2727 get_bh(bh);
1da177e4
LT
2728 submit_bh(rw, bh);
2729 continue;
2730 }
2731 }
2732 unlock_buffer(bh);
1da177e4
LT
2733 }
2734}
2735
2736/*
2737 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2738 * and then start new I/O and then wait upon it. The caller must have a ref on
2739 * the buffer_head.
2740 */
2741int sync_dirty_buffer(struct buffer_head *bh)
2742{
2743 int ret = 0;
2744
2745 WARN_ON(atomic_read(&bh->b_count) < 1);
2746 lock_buffer(bh);
2747 if (test_clear_buffer_dirty(bh)) {
2748 get_bh(bh);
2749 bh->b_end_io = end_buffer_write_sync;
2750 ret = submit_bh(WRITE, bh);
2751 wait_on_buffer(bh);
2752 if (buffer_eopnotsupp(bh)) {
2753 clear_buffer_eopnotsupp(bh);
2754 ret = -EOPNOTSUPP;
2755 }
2756 if (!ret && !buffer_uptodate(bh))
2757 ret = -EIO;
2758 } else {
2759 unlock_buffer(bh);
2760 }
2761 return ret;
2762}
2763
2764/*
2765 * try_to_free_buffers() checks if all the buffers on this particular page
2766 * are unused, and releases them if so.
2767 *
2768 * Exclusion against try_to_free_buffers may be obtained by either
2769 * locking the page or by holding its mapping's private_lock.
2770 *
2771 * If the page is dirty but all the buffers are clean then we need to
2772 * be sure to mark the page clean as well. This is because the page
2773 * may be against a block device, and a later reattachment of buffers
2774 * to a dirty page will set *all* buffers dirty. Which would corrupt
2775 * filesystem data on the same device.
2776 *
2777 * The same applies to regular filesystem pages: if all the buffers are
2778 * clean then we set the page clean and proceed. To do that, we require
2779 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2780 * private_lock.
2781 *
2782 * try_to_free_buffers() is non-blocking.
2783 */
2784static inline int buffer_busy(struct buffer_head *bh)
2785{
2786 return atomic_read(&bh->b_count) |
2787 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2788}
2789
2790static int
2791drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2792{
2793 struct buffer_head *head = page_buffers(page);
2794 struct buffer_head *bh;
2795
2796 bh = head;
2797 do {
de7d5a3b 2798 if (buffer_write_io_error(bh) && page->mapping)
1da177e4
LT
2799 set_bit(AS_EIO, &page->mapping->flags);
2800 if (buffer_busy(bh))
2801 goto failed;
2802 bh = bh->b_this_page;
2803 } while (bh != head);
2804
2805 do {
2806 struct buffer_head *next = bh->b_this_page;
2807
2808 if (!list_empty(&bh->b_assoc_buffers))
2809 __remove_assoc_queue(bh);
2810 bh = next;
2811 } while (bh != head);
2812 *buffers_to_free = head;
2813 __clear_page_buffers(page);
2814 return 1;
2815failed:
2816 return 0;
2817}
2818
2819int try_to_free_buffers(struct page *page)
2820{
2821 struct address_space * const mapping = page->mapping;
2822 struct buffer_head *buffers_to_free = NULL;
2823 int ret = 0;
2824
2825 BUG_ON(!PageLocked(page));
2826 if (PageWriteback(page))
2827 return 0;
2828
2829 if (mapping == NULL) { /* can this still happen? */
2830 ret = drop_buffers(page, &buffers_to_free);
2831 goto out;
2832 }
2833
2834 spin_lock(&mapping->private_lock);
2835 ret = drop_buffers(page, &buffers_to_free);
d08b3851 2836 spin_unlock(&mapping->private_lock);
1da177e4
LT
2837 if (ret) {
2838 /*
2839 * If the filesystem writes its buffers by hand (eg ext3)
2840 * then we can have clean buffers against a dirty page. We
2841 * clean the page here; otherwise later reattachment of buffers
2842 * could encounter a non-uptodate page, which is unresolvable.
2843 * This only applies in the rare case where try_to_free_buffers
2844 * succeeds but the page is not freed.
2845 */
2846 clear_page_dirty(page);
2847 }
1da177e4
LT
2848out:
2849 if (buffers_to_free) {
2850 struct buffer_head *bh = buffers_to_free;
2851
2852 do {
2853 struct buffer_head *next = bh->b_this_page;
2854 free_buffer_head(bh);
2855 bh = next;
2856 } while (bh != buffers_to_free);
2857 }
2858 return ret;
2859}
2860EXPORT_SYMBOL(try_to_free_buffers);
2861
3978d717 2862void block_sync_page(struct page *page)
1da177e4
LT
2863{
2864 struct address_space *mapping;
2865
2866 smp_mb();
2867 mapping = page_mapping(page);
2868 if (mapping)
2869 blk_run_backing_dev(mapping->backing_dev_info, page);
1da177e4
LT
2870}
2871
2872/*
2873 * There are no bdflush tunables left. But distributions are
2874 * still running obsolete flush daemons, so we terminate them here.
2875 *
2876 * Use of bdflush() is deprecated and will be removed in a future kernel.
2877 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2878 */
2879asmlinkage long sys_bdflush(int func, long data)
2880{
2881 static int msg_count;
2882
2883 if (!capable(CAP_SYS_ADMIN))
2884 return -EPERM;
2885
2886 if (msg_count < 5) {
2887 msg_count++;
2888 printk(KERN_INFO
2889 "warning: process `%s' used the obsolete bdflush"
2890 " system call\n", current->comm);
2891 printk(KERN_INFO "Fix your initscripts?\n");
2892 }
2893
2894 if (func == 1)
2895 do_exit(0);
2896 return 0;
2897}
2898
2899/*
2900 * Buffer-head allocation
2901 */
2902static kmem_cache_t *bh_cachep;
2903
2904/*
2905 * Once the number of bh's in the machine exceeds this level, we start
2906 * stripping them in writeback.
2907 */
2908static int max_buffer_heads;
2909
2910int buffer_heads_over_limit;
2911
2912struct bh_accounting {
2913 int nr; /* Number of live bh's */
2914 int ratelimit; /* Limit cacheline bouncing */
2915};
2916
2917static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2918
2919static void recalc_bh_state(void)
2920{
2921 int i;
2922 int tot = 0;
2923
2924 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
2925 return;
2926 __get_cpu_var(bh_accounting).ratelimit = 0;
8a143426 2927 for_each_online_cpu(i)
1da177e4
LT
2928 tot += per_cpu(bh_accounting, i).nr;
2929 buffer_heads_over_limit = (tot > max_buffer_heads);
2930}
2931
dd0fc66f 2932struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4
LT
2933{
2934 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
2935 if (ret) {
736c7b80 2936 get_cpu_var(bh_accounting).nr++;
1da177e4 2937 recalc_bh_state();
736c7b80 2938 put_cpu_var(bh_accounting);
1da177e4
LT
2939 }
2940 return ret;
2941}
2942EXPORT_SYMBOL(alloc_buffer_head);
2943
2944void free_buffer_head(struct buffer_head *bh)
2945{
2946 BUG_ON(!list_empty(&bh->b_assoc_buffers));
2947 kmem_cache_free(bh_cachep, bh);
736c7b80 2948 get_cpu_var(bh_accounting).nr--;
1da177e4 2949 recalc_bh_state();
736c7b80 2950 put_cpu_var(bh_accounting);
1da177e4
LT
2951}
2952EXPORT_SYMBOL(free_buffer_head);
2953
2954static void
2955init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
2956{
2957 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2958 SLAB_CTOR_CONSTRUCTOR) {
2959 struct buffer_head * bh = (struct buffer_head *)data;
2960
2961 memset(bh, 0, sizeof(*bh));
2962 INIT_LIST_HEAD(&bh->b_assoc_buffers);
2963 }
2964}
2965
2966#ifdef CONFIG_HOTPLUG_CPU
2967static void buffer_exit_cpu(int cpu)
2968{
2969 int i;
2970 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2971
2972 for (i = 0; i < BH_LRU_SIZE; i++) {
2973 brelse(b->bhs[i]);
2974 b->bhs[i] = NULL;
2975 }
8a143426
ED
2976 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
2977 per_cpu(bh_accounting, cpu).nr = 0;
2978 put_cpu_var(bh_accounting);
1da177e4
LT
2979}
2980
2981static int buffer_cpu_notify(struct notifier_block *self,
2982 unsigned long action, void *hcpu)
2983{
2984 if (action == CPU_DEAD)
2985 buffer_exit_cpu((unsigned long)hcpu);
2986 return NOTIFY_OK;
2987}
2988#endif /* CONFIG_HOTPLUG_CPU */
2989
2990void __init buffer_init(void)
2991{
2992 int nrpages;
2993
2994 bh_cachep = kmem_cache_create("buffer_head",
b0196009
PJ
2995 sizeof(struct buffer_head), 0,
2996 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2997 SLAB_MEM_SPREAD),
2998 init_buffer_head,
2999 NULL);
1da177e4
LT
3000
3001 /*
3002 * Limit the bh occupancy to 10% of ZONE_NORMAL
3003 */
3004 nrpages = (nr_free_buffer_pages() * 10) / 100;
3005 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3006 hotcpu_notifier(buffer_cpu_notify, 0);
3007}
3008
3009EXPORT_SYMBOL(__bforget);
3010EXPORT_SYMBOL(__brelse);
3011EXPORT_SYMBOL(__wait_on_buffer);
3012EXPORT_SYMBOL(block_commit_write);
3013EXPORT_SYMBOL(block_prepare_write);
3014EXPORT_SYMBOL(block_read_full_page);
3015EXPORT_SYMBOL(block_sync_page);
3016EXPORT_SYMBOL(block_truncate_page);
3017EXPORT_SYMBOL(block_write_full_page);
3018EXPORT_SYMBOL(cont_prepare_write);
1da177e4
LT
3019EXPORT_SYMBOL(end_buffer_read_sync);
3020EXPORT_SYMBOL(end_buffer_write_sync);
3021EXPORT_SYMBOL(file_fsync);
3022EXPORT_SYMBOL(fsync_bdev);
3023EXPORT_SYMBOL(generic_block_bmap);
3024EXPORT_SYMBOL(generic_commit_write);
3025EXPORT_SYMBOL(generic_cont_expand);
05eb0b51 3026EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4
LT
3027EXPORT_SYMBOL(init_buffer);
3028EXPORT_SYMBOL(invalidate_bdev);
3029EXPORT_SYMBOL(ll_rw_block);
3030EXPORT_SYMBOL(mark_buffer_dirty);
3031EXPORT_SYMBOL(submit_bh);
3032EXPORT_SYMBOL(sync_dirty_buffer);
3033EXPORT_SYMBOL(unlock_buffer);
This page took 0.31981 seconds and 5 git commands to generate.