fscrypto: don't let data integrity writebacks fail with ENOMEM
[deliverable/linux.git] / fs / crypto / crypto.c
CommitLineData
0b81d077
JK
1/*
2 * This contains encryption functions for per-file encryption.
3 *
4 * Copyright (C) 2015, Google, Inc.
5 * Copyright (C) 2015, Motorola Mobility
6 *
7 * Written by Michael Halcrow, 2014.
8 *
9 * Filename encryption additions
10 * Uday Savagaonkar, 2014
11 * Encryption policy handling additions
12 * Ildar Muslukhov, 2014
13 * Add fscrypt_pullback_bio_page()
14 * Jaegeuk Kim, 2015.
15 *
16 * This has not yet undergone a rigorous security audit.
17 *
18 * The usage of AES-XTS should conform to recommendations in NIST
19 * Special Publication 800-38E and IEEE P1619/D16.
20 */
21
0b81d077
JK
22#include <linux/pagemap.h>
23#include <linux/mempool.h>
24#include <linux/module.h>
25#include <linux/scatterlist.h>
26#include <linux/ratelimit.h>
27#include <linux/bio.h>
28#include <linux/dcache.h>
29#include <linux/fscrypto.h>
d407574e 30#include <linux/ecryptfs.h>
0b81d077
JK
31
32static unsigned int num_prealloc_crypto_pages = 32;
33static unsigned int num_prealloc_crypto_ctxs = 128;
34
35module_param(num_prealloc_crypto_pages, uint, 0444);
36MODULE_PARM_DESC(num_prealloc_crypto_pages,
37 "Number of crypto pages to preallocate");
38module_param(num_prealloc_crypto_ctxs, uint, 0444);
39MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
40 "Number of crypto contexts to preallocate");
41
42static mempool_t *fscrypt_bounce_page_pool = NULL;
43
44static LIST_HEAD(fscrypt_free_ctxs);
45static DEFINE_SPINLOCK(fscrypt_ctx_lock);
46
47static struct workqueue_struct *fscrypt_read_workqueue;
48static DEFINE_MUTEX(fscrypt_init_mutex);
49
50static struct kmem_cache *fscrypt_ctx_cachep;
51struct kmem_cache *fscrypt_info_cachep;
52
53/**
54 * fscrypt_release_ctx() - Releases an encryption context
55 * @ctx: The encryption context to release.
56 *
57 * If the encryption context was allocated from the pre-allocated pool, returns
58 * it to that pool. Else, frees it.
59 *
60 * If there's a bounce page in the context, this frees that.
61 */
62void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
63{
64 unsigned long flags;
65
66 if (ctx->flags & FS_WRITE_PATH_FL && ctx->w.bounce_page) {
67 mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
68 ctx->w.bounce_page = NULL;
69 }
70 ctx->w.control_page = NULL;
71 if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
72 kmem_cache_free(fscrypt_ctx_cachep, ctx);
73 } else {
74 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
75 list_add(&ctx->free_list, &fscrypt_free_ctxs);
76 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
77 }
78}
79EXPORT_SYMBOL(fscrypt_release_ctx);
80
81/**
82 * fscrypt_get_ctx() - Gets an encryption context
83 * @inode: The inode for which we are doing the crypto
b32e4482 84 * @gfp_flags: The gfp flag for memory allocation
0b81d077
JK
85 *
86 * Allocates and initializes an encryption context.
87 *
88 * Return: An allocated and initialized encryption context on success; error
89 * value or NULL otherwise.
90 */
b32e4482 91struct fscrypt_ctx *fscrypt_get_ctx(struct inode *inode, gfp_t gfp_flags)
0b81d077
JK
92{
93 struct fscrypt_ctx *ctx = NULL;
94 struct fscrypt_info *ci = inode->i_crypt_info;
95 unsigned long flags;
96
97 if (ci == NULL)
98 return ERR_PTR(-ENOKEY);
99
100 /*
101 * We first try getting the ctx from a free list because in
102 * the common case the ctx will have an allocated and
103 * initialized crypto tfm, so it's probably a worthwhile
104 * optimization. For the bounce page, we first try getting it
105 * from the kernel allocator because that's just about as fast
106 * as getting it from a list and because a cache of free pages
107 * should generally be a "last resort" option for a filesystem
108 * to be able to do its job.
109 */
110 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
111 ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
112 struct fscrypt_ctx, free_list);
113 if (ctx)
114 list_del(&ctx->free_list);
115 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
116 if (!ctx) {
b32e4482 117 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
0b81d077
JK
118 if (!ctx)
119 return ERR_PTR(-ENOMEM);
120 ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
121 } else {
122 ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
123 }
124 ctx->flags &= ~FS_WRITE_PATH_FL;
125 return ctx;
126}
127EXPORT_SYMBOL(fscrypt_get_ctx);
128
129/**
130 * fscrypt_complete() - The completion callback for page encryption
131 * @req: The asynchronous encryption request context
132 * @res: The result of the encryption operation
133 */
134static void fscrypt_complete(struct crypto_async_request *req, int res)
135{
136 struct fscrypt_completion_result *ecr = req->data;
137
138 if (res == -EINPROGRESS)
139 return;
140 ecr->res = res;
141 complete(&ecr->completion);
142}
143
144typedef enum {
145 FS_DECRYPT = 0,
146 FS_ENCRYPT,
147} fscrypt_direction_t;
148
149static int do_page_crypto(struct inode *inode,
150 fscrypt_direction_t rw, pgoff_t index,
b32e4482
JK
151 struct page *src_page, struct page *dest_page,
152 gfp_t gfp_flags)
0b81d077
JK
153{
154 u8 xts_tweak[FS_XTS_TWEAK_SIZE];
d407574e 155 struct skcipher_request *req = NULL;
0b81d077
JK
156 DECLARE_FS_COMPLETION_RESULT(ecr);
157 struct scatterlist dst, src;
158 struct fscrypt_info *ci = inode->i_crypt_info;
d407574e 159 struct crypto_skcipher *tfm = ci->ci_ctfm;
0b81d077
JK
160 int res = 0;
161
b32e4482 162 req = skcipher_request_alloc(tfm, gfp_flags);
0b81d077
JK
163 if (!req) {
164 printk_ratelimited(KERN_ERR
165 "%s: crypto_request_alloc() failed\n",
166 __func__);
167 return -ENOMEM;
168 }
169
d407574e 170 skcipher_request_set_callback(
0b81d077
JK
171 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
172 fscrypt_complete, &ecr);
173
174 BUILD_BUG_ON(FS_XTS_TWEAK_SIZE < sizeof(index));
02fc59a0 175 memcpy(xts_tweak, &index, sizeof(index));
0b81d077
JK
176 memset(&xts_tweak[sizeof(index)], 0,
177 FS_XTS_TWEAK_SIZE - sizeof(index));
178
179 sg_init_table(&dst, 1);
09cbfeaf 180 sg_set_page(&dst, dest_page, PAGE_SIZE, 0);
0b81d077 181 sg_init_table(&src, 1);
09cbfeaf
KS
182 sg_set_page(&src, src_page, PAGE_SIZE, 0);
183 skcipher_request_set_crypt(req, &src, &dst, PAGE_SIZE,
0b81d077
JK
184 xts_tweak);
185 if (rw == FS_DECRYPT)
d407574e 186 res = crypto_skcipher_decrypt(req);
0b81d077 187 else
d407574e 188 res = crypto_skcipher_encrypt(req);
0b81d077
JK
189 if (res == -EINPROGRESS || res == -EBUSY) {
190 BUG_ON(req->base.data != &ecr);
191 wait_for_completion(&ecr.completion);
192 res = ecr.res;
193 }
d407574e 194 skcipher_request_free(req);
0b81d077
JK
195 if (res) {
196 printk_ratelimited(KERN_ERR
d407574e 197 "%s: crypto_skcipher_encrypt() returned %d\n",
0b81d077
JK
198 __func__, res);
199 return res;
200 }
201 return 0;
202}
203
b32e4482 204static struct page *alloc_bounce_page(struct fscrypt_ctx *ctx, gfp_t gfp_flags)
0b81d077 205{
b32e4482 206 ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
0b81d077
JK
207 if (ctx->w.bounce_page == NULL)
208 return ERR_PTR(-ENOMEM);
209 ctx->flags |= FS_WRITE_PATH_FL;
210 return ctx->w.bounce_page;
211}
212
213/**
214 * fscypt_encrypt_page() - Encrypts a page
215 * @inode: The inode for which the encryption should take place
216 * @plaintext_page: The page to encrypt. Must be locked.
b32e4482 217 * @gfp_flags: The gfp flag for memory allocation
0b81d077
JK
218 *
219 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
220 * encryption context.
221 *
222 * Called on the page write path. The caller must call
223 * fscrypt_restore_control_page() on the returned ciphertext page to
224 * release the bounce buffer and the encryption context.
225 *
226 * Return: An allocated page with the encrypted content on success. Else, an
227 * error value or NULL.
228 */
229struct page *fscrypt_encrypt_page(struct inode *inode,
b32e4482 230 struct page *plaintext_page, gfp_t gfp_flags)
0b81d077
JK
231{
232 struct fscrypt_ctx *ctx;
233 struct page *ciphertext_page = NULL;
234 int err;
235
236 BUG_ON(!PageLocked(plaintext_page));
237
b32e4482 238 ctx = fscrypt_get_ctx(inode, gfp_flags);
0b81d077
JK
239 if (IS_ERR(ctx))
240 return (struct page *)ctx;
241
242 /* The encryption operation will require a bounce page. */
b32e4482 243 ciphertext_page = alloc_bounce_page(ctx, gfp_flags);
0b81d077
JK
244 if (IS_ERR(ciphertext_page))
245 goto errout;
246
247 ctx->w.control_page = plaintext_page;
248 err = do_page_crypto(inode, FS_ENCRYPT, plaintext_page->index,
b32e4482
JK
249 plaintext_page, ciphertext_page,
250 gfp_flags);
0b81d077
JK
251 if (err) {
252 ciphertext_page = ERR_PTR(err);
253 goto errout;
254 }
255 SetPagePrivate(ciphertext_page);
256 set_page_private(ciphertext_page, (unsigned long)ctx);
257 lock_page(ciphertext_page);
258 return ciphertext_page;
259
260errout:
261 fscrypt_release_ctx(ctx);
262 return ciphertext_page;
263}
264EXPORT_SYMBOL(fscrypt_encrypt_page);
265
266/**
267 * f2crypt_decrypt_page() - Decrypts a page in-place
268 * @page: The page to decrypt. Must be locked.
269 *
270 * Decrypts page in-place using the ctx encryption context.
271 *
272 * Called from the read completion callback.
273 *
274 * Return: Zero on success, non-zero otherwise.
275 */
276int fscrypt_decrypt_page(struct page *page)
277{
278 BUG_ON(!PageLocked(page));
279
280 return do_page_crypto(page->mapping->host,
b32e4482 281 FS_DECRYPT, page->index, page, page, GFP_NOFS);
0b81d077
JK
282}
283EXPORT_SYMBOL(fscrypt_decrypt_page);
284
285int fscrypt_zeroout_range(struct inode *inode, pgoff_t lblk,
286 sector_t pblk, unsigned int len)
287{
288 struct fscrypt_ctx *ctx;
289 struct page *ciphertext_page = NULL;
290 struct bio *bio;
291 int ret, err = 0;
292
09cbfeaf 293 BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE);
0b81d077 294
b32e4482 295 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
0b81d077
JK
296 if (IS_ERR(ctx))
297 return PTR_ERR(ctx);
298
b32e4482 299 ciphertext_page = alloc_bounce_page(ctx, GFP_NOWAIT);
0b81d077
JK
300 if (IS_ERR(ciphertext_page)) {
301 err = PTR_ERR(ciphertext_page);
302 goto errout;
303 }
304
305 while (len--) {
306 err = do_page_crypto(inode, FS_ENCRYPT, lblk,
b32e4482
JK
307 ZERO_PAGE(0), ciphertext_page,
308 GFP_NOFS);
0b81d077
JK
309 if (err)
310 goto errout;
311
b32e4482 312 bio = bio_alloc(GFP_NOWAIT, 1);
0b81d077
JK
313 if (!bio) {
314 err = -ENOMEM;
315 goto errout;
316 }
317 bio->bi_bdev = inode->i_sb->s_bdev;
318 bio->bi_iter.bi_sector =
319 pblk << (inode->i_sb->s_blocksize_bits - 9);
320 ret = bio_add_page(bio, ciphertext_page,
321 inode->i_sb->s_blocksize, 0);
322 if (ret != inode->i_sb->s_blocksize) {
323 /* should never happen! */
324 WARN_ON(1);
325 bio_put(bio);
326 err = -EIO;
327 goto errout;
328 }
329 err = submit_bio_wait(WRITE, bio);
330 if ((err == 0) && bio->bi_error)
331 err = -EIO;
332 bio_put(bio);
333 if (err)
334 goto errout;
335 lblk++;
336 pblk++;
337 }
338 err = 0;
339errout:
340 fscrypt_release_ctx(ctx);
341 return err;
342}
343EXPORT_SYMBOL(fscrypt_zeroout_range);
344
345/*
346 * Validate dentries for encrypted directories to make sure we aren't
347 * potentially caching stale data after a key has been added or
348 * removed.
349 */
350static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
351{
d7d75352
JK
352 struct dentry *dir;
353 struct fscrypt_info *ci;
0b81d077
JK
354 int dir_has_key, cached_with_key;
355
d7d75352
JK
356 dir = dget_parent(dentry);
357 if (!d_inode(dir)->i_sb->s_cop->is_encrypted(d_inode(dir))) {
358 dput(dir);
0b81d077 359 return 0;
d7d75352 360 }
0b81d077 361
d7d75352 362 ci = d_inode(dir)->i_crypt_info;
0b81d077
JK
363 if (ci && ci->ci_keyring_key &&
364 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
365 (1 << KEY_FLAG_REVOKED) |
366 (1 << KEY_FLAG_DEAD))))
367 ci = NULL;
368
369 /* this should eventually be an flag in d_flags */
370 spin_lock(&dentry->d_lock);
371 cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
372 spin_unlock(&dentry->d_lock);
373 dir_has_key = (ci != NULL);
d7d75352 374 dput(dir);
0b81d077
JK
375
376 /*
377 * If the dentry was cached without the key, and it is a
378 * negative dentry, it might be a valid name. We can't check
379 * if the key has since been made available due to locking
380 * reasons, so we fail the validation so ext4_lookup() can do
381 * this check.
382 *
383 * We also fail the validation if the dentry was created with
384 * the key present, but we no longer have the key, or vice versa.
385 */
386 if ((!cached_with_key && d_is_negative(dentry)) ||
387 (!cached_with_key && dir_has_key) ||
388 (cached_with_key && !dir_has_key))
389 return 0;
390 return 1;
391}
392
393const struct dentry_operations fscrypt_d_ops = {
394 .d_revalidate = fscrypt_d_revalidate,
395};
396EXPORT_SYMBOL(fscrypt_d_ops);
397
398/*
399 * Call fscrypt_decrypt_page on every single page, reusing the encryption
400 * context.
401 */
402static void completion_pages(struct work_struct *work)
403{
404 struct fscrypt_ctx *ctx =
405 container_of(work, struct fscrypt_ctx, r.work);
406 struct bio *bio = ctx->r.bio;
407 struct bio_vec *bv;
408 int i;
409
410 bio_for_each_segment_all(bv, bio, i) {
411 struct page *page = bv->bv_page;
412 int ret = fscrypt_decrypt_page(page);
413
414 if (ret) {
415 WARN_ON_ONCE(1);
416 SetPageError(page);
417 } else {
418 SetPageUptodate(page);
419 }
420 unlock_page(page);
421 }
422 fscrypt_release_ctx(ctx);
423 bio_put(bio);
424}
425
426void fscrypt_decrypt_bio_pages(struct fscrypt_ctx *ctx, struct bio *bio)
427{
428 INIT_WORK(&ctx->r.work, completion_pages);
429 ctx->r.bio = bio;
430 queue_work(fscrypt_read_workqueue, &ctx->r.work);
431}
432EXPORT_SYMBOL(fscrypt_decrypt_bio_pages);
433
434void fscrypt_pullback_bio_page(struct page **page, bool restore)
435{
436 struct fscrypt_ctx *ctx;
437 struct page *bounce_page;
438
439 /* The bounce data pages are unmapped. */
440 if ((*page)->mapping)
441 return;
442
443 /* The bounce data page is unmapped. */
444 bounce_page = *page;
445 ctx = (struct fscrypt_ctx *)page_private(bounce_page);
446
447 /* restore control page */
448 *page = ctx->w.control_page;
449
450 if (restore)
451 fscrypt_restore_control_page(bounce_page);
452}
453EXPORT_SYMBOL(fscrypt_pullback_bio_page);
454
455void fscrypt_restore_control_page(struct page *page)
456{
457 struct fscrypt_ctx *ctx;
458
459 ctx = (struct fscrypt_ctx *)page_private(page);
460 set_page_private(page, (unsigned long)NULL);
461 ClearPagePrivate(page);
462 unlock_page(page);
463 fscrypt_release_ctx(ctx);
464}
465EXPORT_SYMBOL(fscrypt_restore_control_page);
466
467static void fscrypt_destroy(void)
468{
469 struct fscrypt_ctx *pos, *n;
470
471 list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
472 kmem_cache_free(fscrypt_ctx_cachep, pos);
473 INIT_LIST_HEAD(&fscrypt_free_ctxs);
474 mempool_destroy(fscrypt_bounce_page_pool);
475 fscrypt_bounce_page_pool = NULL;
476}
477
478/**
479 * fscrypt_initialize() - allocate major buffers for fs encryption.
480 *
481 * We only call this when we start accessing encrypted files, since it
482 * results in memory getting allocated that wouldn't otherwise be used.
483 *
484 * Return: Zero on success, non-zero otherwise.
485 */
486int fscrypt_initialize(void)
487{
488 int i, res = -ENOMEM;
489
490 if (fscrypt_bounce_page_pool)
491 return 0;
492
493 mutex_lock(&fscrypt_init_mutex);
494 if (fscrypt_bounce_page_pool)
495 goto already_initialized;
496
497 for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
498 struct fscrypt_ctx *ctx;
499
500 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
501 if (!ctx)
502 goto fail;
503 list_add(&ctx->free_list, &fscrypt_free_ctxs);
504 }
505
506 fscrypt_bounce_page_pool =
507 mempool_create_page_pool(num_prealloc_crypto_pages, 0);
508 if (!fscrypt_bounce_page_pool)
509 goto fail;
510
511already_initialized:
512 mutex_unlock(&fscrypt_init_mutex);
513 return 0;
514fail:
515 fscrypt_destroy();
516 mutex_unlock(&fscrypt_init_mutex);
517 return res;
518}
519EXPORT_SYMBOL(fscrypt_initialize);
520
521/**
522 * fscrypt_init() - Set up for fs encryption.
523 */
524static int __init fscrypt_init(void)
525{
526 fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
527 WQ_HIGHPRI, 0);
528 if (!fscrypt_read_workqueue)
529 goto fail;
530
531 fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
532 if (!fscrypt_ctx_cachep)
533 goto fail_free_queue;
534
535 fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
536 if (!fscrypt_info_cachep)
537 goto fail_free_ctx;
538
539 return 0;
540
541fail_free_ctx:
542 kmem_cache_destroy(fscrypt_ctx_cachep);
543fail_free_queue:
544 destroy_workqueue(fscrypt_read_workqueue);
545fail:
546 return -ENOMEM;
547}
548module_init(fscrypt_init)
549
550/**
551 * fscrypt_exit() - Shutdown the fs encryption system
552 */
553static void __exit fscrypt_exit(void)
554{
555 fscrypt_destroy();
556
557 if (fscrypt_read_workqueue)
558 destroy_workqueue(fscrypt_read_workqueue);
559 kmem_cache_destroy(fscrypt_ctx_cachep);
560 kmem_cache_destroy(fscrypt_info_cachep);
561}
562module_exit(fscrypt_exit);
563
564MODULE_LICENSE("GPL");
This page took 0.050394 seconds and 5 git commands to generate.