Merge branch 'kconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
26#include <linux/module.h>
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
07f3f05c 39#include "internal.h"
1da177e4 40
789680d1
NP
41/*
42 * Usage:
873feea0
NP
43 * dcache->d_inode->i_lock protects:
44 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
45 * dcache_hash_bucket lock protects:
46 * - the dcache hash table
47 * s_anon bl list spinlock protects:
48 * - the s_anon list (see __d_drop)
23044507
NP
49 * dcache_lru_lock protects:
50 * - the dcache lru lists and counters
51 * d_lock protects:
52 * - d_flags
53 * - d_name
54 * - d_lru
b7ab39f6 55 * - d_count
da502956 56 * - d_unhashed()
2fd6b7f5
NP
57 * - d_parent and d_subdirs
58 * - childrens' d_child and d_parent
b23fb0a6 59 * - d_alias, d_inode
789680d1
NP
60 *
61 * Ordering:
873feea0 62 * dentry->d_inode->i_lock
b5c84bf6
NP
63 * dentry->d_lock
64 * dcache_lru_lock
ceb5bdc2
NP
65 * dcache_hash_bucket lock
66 * s_anon lock
789680d1 67 *
da502956
NP
68 * If there is an ancestor relationship:
69 * dentry->d_parent->...->d_parent->d_lock
70 * ...
71 * dentry->d_parent->d_lock
72 * dentry->d_lock
73 *
74 * If no ancestor relationship:
789680d1
NP
75 * if (dentry1 < dentry2)
76 * dentry1->d_lock
77 * dentry2->d_lock
78 */
fa3536cc 79int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
80EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
81
23044507 82static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 83__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 84
949854d0 85EXPORT_SYMBOL(rename_lock);
1da177e4 86
e18b890b 87static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 88
1da177e4
LT
89/*
90 * This is the single most critical data structure when it comes
91 * to the dcache: the hashtable for lookups. Somebody should try
92 * to make this good - I've just made it work.
93 *
94 * This hash-function tries to avoid losing too many bits of hash
95 * information, yet avoid using a prime hash-size or similar.
96 */
97#define D_HASHBITS d_hash_shift
98#define D_HASHMASK d_hash_mask
99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
b07ad996 105static inline struct hlist_bl_head *d_hash(struct dentry *parent,
ceb5bdc2
NP
106 unsigned long hash)
107{
108 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
109 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
110 return dentry_hashtable + (hash & D_HASHMASK);
111}
112
1da177e4
LT
113/* Statistics gathering. */
114struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
116};
117
3e880fb5 118static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
119
120#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
121static int get_nr_dentry(void)
122{
123 int i;
124 int sum = 0;
125 for_each_possible_cpu(i)
126 sum += per_cpu(nr_dentry, i);
127 return sum < 0 ? 0 : sum;
128}
129
312d3ca8
CH
130int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
131 size_t *lenp, loff_t *ppos)
132{
3e880fb5 133 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
134 return proc_dointvec(table, write, buffer, lenp, ppos);
135}
136#endif
137
9c82ab9c 138static void __d_free(struct rcu_head *head)
1da177e4 139{
9c82ab9c
CH
140 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
141
fd217f4d 142 WARN_ON(!list_empty(&dentry->d_alias));
1da177e4
LT
143 if (dname_external(dentry))
144 kfree(dentry->d_name.name);
145 kmem_cache_free(dentry_cache, dentry);
146}
147
148/*
b5c84bf6 149 * no locks, please.
1da177e4
LT
150 */
151static void d_free(struct dentry *dentry)
152{
b7ab39f6 153 BUG_ON(dentry->d_count);
3e880fb5 154 this_cpu_dec(nr_dentry);
1da177e4
LT
155 if (dentry->d_op && dentry->d_op->d_release)
156 dentry->d_op->d_release(dentry);
312d3ca8 157
dea3667b
LT
158 /* if dentry was never visible to RCU, immediate free is OK */
159 if (!(dentry->d_flags & DCACHE_RCUACCESS))
9c82ab9c 160 __d_free(&dentry->d_u.d_rcu);
b3423415 161 else
9c82ab9c 162 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
163}
164
31e6b01f
NP
165/**
166 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 167 * @dentry: the target dentry
31e6b01f
NP
168 * After this call, in-progress rcu-walk path lookup will fail. This
169 * should be called after unhashing, and after changing d_inode (if
170 * the dentry has not already been unhashed).
171 */
172static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
173{
174 assert_spin_locked(&dentry->d_lock);
175 /* Go through a barrier */
176 write_seqcount_barrier(&dentry->d_seq);
177}
178
1da177e4
LT
179/*
180 * Release the dentry's inode, using the filesystem
31e6b01f
NP
181 * d_iput() operation if defined. Dentry has no refcount
182 * and is unhashed.
1da177e4 183 */
858119e1 184static void dentry_iput(struct dentry * dentry)
31f3e0b3 185 __releases(dentry->d_lock)
873feea0 186 __releases(dentry->d_inode->i_lock)
1da177e4
LT
187{
188 struct inode *inode = dentry->d_inode;
189 if (inode) {
190 dentry->d_inode = NULL;
191 list_del_init(&dentry->d_alias);
192 spin_unlock(&dentry->d_lock);
873feea0 193 spin_unlock(&inode->i_lock);
f805fbda
LT
194 if (!inode->i_nlink)
195 fsnotify_inoderemove(inode);
1da177e4
LT
196 if (dentry->d_op && dentry->d_op->d_iput)
197 dentry->d_op->d_iput(dentry, inode);
198 else
199 iput(inode);
200 } else {
201 spin_unlock(&dentry->d_lock);
1da177e4
LT
202 }
203}
204
31e6b01f
NP
205/*
206 * Release the dentry's inode, using the filesystem
207 * d_iput() operation if defined. dentry remains in-use.
208 */
209static void dentry_unlink_inode(struct dentry * dentry)
210 __releases(dentry->d_lock)
873feea0 211 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
212{
213 struct inode *inode = dentry->d_inode;
214 dentry->d_inode = NULL;
215 list_del_init(&dentry->d_alias);
216 dentry_rcuwalk_barrier(dentry);
217 spin_unlock(&dentry->d_lock);
873feea0 218 spin_unlock(&inode->i_lock);
31e6b01f
NP
219 if (!inode->i_nlink)
220 fsnotify_inoderemove(inode);
221 if (dentry->d_op && dentry->d_op->d_iput)
222 dentry->d_op->d_iput(dentry, inode);
223 else
224 iput(inode);
225}
226
da3bbdd4 227/*
f0023bc6 228 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
da3bbdd4
KM
229 */
230static void dentry_lru_add(struct dentry *dentry)
231{
a4633357 232 if (list_empty(&dentry->d_lru)) {
23044507 233 spin_lock(&dcache_lru_lock);
a4633357
CH
234 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
235 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 236 dentry_stat.nr_unused++;
23044507 237 spin_unlock(&dcache_lru_lock);
a4633357 238 }
da3bbdd4
KM
239}
240
23044507
NP
241static void __dentry_lru_del(struct dentry *dentry)
242{
243 list_del_init(&dentry->d_lru);
244 dentry->d_sb->s_nr_dentry_unused--;
245 dentry_stat.nr_unused--;
246}
247
f0023bc6
SW
248/*
249 * Remove a dentry with references from the LRU.
250 */
da3bbdd4
KM
251static void dentry_lru_del(struct dentry *dentry)
252{
253 if (!list_empty(&dentry->d_lru)) {
23044507
NP
254 spin_lock(&dcache_lru_lock);
255 __dentry_lru_del(dentry);
256 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
257 }
258}
259
f0023bc6
SW
260/*
261 * Remove a dentry that is unreferenced and about to be pruned
262 * (unhashed and destroyed) from the LRU, and inform the file system.
263 * This wrapper should be called _prior_ to unhashing a victim dentry.
264 */
265static void dentry_lru_prune(struct dentry *dentry)
266{
267 if (!list_empty(&dentry->d_lru)) {
268 if (dentry->d_flags & DCACHE_OP_PRUNE)
269 dentry->d_op->d_prune(dentry);
270
271 spin_lock(&dcache_lru_lock);
272 __dentry_lru_del(dentry);
273 spin_unlock(&dcache_lru_lock);
274 }
275}
276
a4633357 277static void dentry_lru_move_tail(struct dentry *dentry)
da3bbdd4 278{
23044507 279 spin_lock(&dcache_lru_lock);
a4633357
CH
280 if (list_empty(&dentry->d_lru)) {
281 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
282 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 283 dentry_stat.nr_unused++;
a4633357
CH
284 } else {
285 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
da3bbdd4 286 }
23044507 287 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
288}
289
d52b9086
MS
290/**
291 * d_kill - kill dentry and return parent
292 * @dentry: dentry to kill
ff5fdb61 293 * @parent: parent dentry
d52b9086 294 *
31f3e0b3 295 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
296 *
297 * If this is the root of the dentry tree, return NULL.
23044507 298 *
b5c84bf6
NP
299 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
300 * d_kill.
d52b9086 301 */
2fd6b7f5 302static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 303 __releases(dentry->d_lock)
2fd6b7f5 304 __releases(parent->d_lock)
873feea0 305 __releases(dentry->d_inode->i_lock)
d52b9086 306{
d52b9086 307 list_del(&dentry->d_u.d_child);
c83ce989
TM
308 /*
309 * Inform try_to_ascend() that we are no longer attached to the
310 * dentry tree
311 */
312 dentry->d_flags |= DCACHE_DISCONNECTED;
2fd6b7f5
NP
313 if (parent)
314 spin_unlock(&parent->d_lock);
d52b9086 315 dentry_iput(dentry);
b7ab39f6
NP
316 /*
317 * dentry_iput drops the locks, at which point nobody (except
318 * transient RCU lookups) can reach this dentry.
319 */
d52b9086 320 d_free(dentry);
871c0067 321 return parent;
d52b9086
MS
322}
323
c6627c60
DH
324/*
325 * Unhash a dentry without inserting an RCU walk barrier or checking that
326 * dentry->d_lock is locked. The caller must take care of that, if
327 * appropriate.
328 */
329static void __d_shrink(struct dentry *dentry)
330{
331 if (!d_unhashed(dentry)) {
332 struct hlist_bl_head *b;
333 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
334 b = &dentry->d_sb->s_anon;
335 else
336 b = d_hash(dentry->d_parent, dentry->d_name.hash);
337
338 hlist_bl_lock(b);
339 __hlist_bl_del(&dentry->d_hash);
340 dentry->d_hash.pprev = NULL;
341 hlist_bl_unlock(b);
342 }
343}
344
789680d1
NP
345/**
346 * d_drop - drop a dentry
347 * @dentry: dentry to drop
348 *
349 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
350 * be found through a VFS lookup any more. Note that this is different from
351 * deleting the dentry - d_delete will try to mark the dentry negative if
352 * possible, giving a successful _negative_ lookup, while d_drop will
353 * just make the cache lookup fail.
354 *
355 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
356 * reason (NFS timeouts or autofs deletes).
357 *
358 * __d_drop requires dentry->d_lock.
359 */
360void __d_drop(struct dentry *dentry)
361{
dea3667b 362 if (!d_unhashed(dentry)) {
c6627c60 363 __d_shrink(dentry);
dea3667b 364 dentry_rcuwalk_barrier(dentry);
789680d1
NP
365 }
366}
367EXPORT_SYMBOL(__d_drop);
368
369void d_drop(struct dentry *dentry)
370{
789680d1
NP
371 spin_lock(&dentry->d_lock);
372 __d_drop(dentry);
373 spin_unlock(&dentry->d_lock);
789680d1
NP
374}
375EXPORT_SYMBOL(d_drop);
376
44396f4b
JB
377/*
378 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
379 * @dentry: dentry to drop
380 *
381 * This is called when we do a lookup on a placeholder dentry that needed to be
382 * looked up. The dentry should have been hashed in order for it to be found by
383 * the lookup code, but now needs to be unhashed while we do the actual lookup
384 * and clear the DCACHE_NEED_LOOKUP flag.
385 */
386void d_clear_need_lookup(struct dentry *dentry)
387{
388 spin_lock(&dentry->d_lock);
389 __d_drop(dentry);
390 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
391 spin_unlock(&dentry->d_lock);
392}
393EXPORT_SYMBOL(d_clear_need_lookup);
394
77812a1e
NP
395/*
396 * Finish off a dentry we've decided to kill.
397 * dentry->d_lock must be held, returns with it unlocked.
398 * If ref is non-zero, then decrement the refcount too.
399 * Returns dentry requiring refcount drop, or NULL if we're done.
400 */
401static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
402 __releases(dentry->d_lock)
403{
873feea0 404 struct inode *inode;
77812a1e
NP
405 struct dentry *parent;
406
873feea0
NP
407 inode = dentry->d_inode;
408 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e
NP
409relock:
410 spin_unlock(&dentry->d_lock);
411 cpu_relax();
412 return dentry; /* try again with same dentry */
413 }
414 if (IS_ROOT(dentry))
415 parent = NULL;
416 else
417 parent = dentry->d_parent;
418 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
419 if (inode)
420 spin_unlock(&inode->i_lock);
77812a1e
NP
421 goto relock;
422 }
31e6b01f 423
77812a1e
NP
424 if (ref)
425 dentry->d_count--;
f0023bc6
SW
426 /*
427 * if dentry was on the d_lru list delete it from there.
428 * inform the fs via d_prune that this dentry is about to be
429 * unhashed and destroyed.
430 */
431 dentry_lru_prune(dentry);
77812a1e
NP
432 /* if it was on the hash then remove it */
433 __d_drop(dentry);
434 return d_kill(dentry, parent);
435}
436
1da177e4
LT
437/*
438 * This is dput
439 *
440 * This is complicated by the fact that we do not want to put
441 * dentries that are no longer on any hash chain on the unused
442 * list: we'd much rather just get rid of them immediately.
443 *
444 * However, that implies that we have to traverse the dentry
445 * tree upwards to the parents which might _also_ now be
446 * scheduled for deletion (it may have been only waiting for
447 * its last child to go away).
448 *
449 * This tail recursion is done by hand as we don't want to depend
450 * on the compiler to always get this right (gcc generally doesn't).
451 * Real recursion would eat up our stack space.
452 */
453
454/*
455 * dput - release a dentry
456 * @dentry: dentry to release
457 *
458 * Release a dentry. This will drop the usage count and if appropriate
459 * call the dentry unlink method as well as removing it from the queues and
460 * releasing its resources. If the parent dentries were scheduled for release
461 * they too may now get deleted.
1da177e4 462 */
1da177e4
LT
463void dput(struct dentry *dentry)
464{
465 if (!dentry)
466 return;
467
468repeat:
b7ab39f6 469 if (dentry->d_count == 1)
1da177e4 470 might_sleep();
1da177e4 471 spin_lock(&dentry->d_lock);
61f3dee4
NP
472 BUG_ON(!dentry->d_count);
473 if (dentry->d_count > 1) {
474 dentry->d_count--;
1da177e4 475 spin_unlock(&dentry->d_lock);
1da177e4
LT
476 return;
477 }
478
fb045adb 479 if (dentry->d_flags & DCACHE_OP_DELETE) {
1da177e4 480 if (dentry->d_op->d_delete(dentry))
61f3dee4 481 goto kill_it;
1da177e4 482 }
265ac902 483
1da177e4
LT
484 /* Unreachable? Get rid of it */
485 if (d_unhashed(dentry))
486 goto kill_it;
265ac902 487
44396f4b
JB
488 /*
489 * If this dentry needs lookup, don't set the referenced flag so that it
490 * is more likely to be cleaned up by the dcache shrinker in case of
491 * memory pressure.
492 */
493 if (!d_need_lookup(dentry))
494 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 495 dentry_lru_add(dentry);
265ac902 496
61f3dee4
NP
497 dentry->d_count--;
498 spin_unlock(&dentry->d_lock);
1da177e4
LT
499 return;
500
d52b9086 501kill_it:
77812a1e 502 dentry = dentry_kill(dentry, 1);
d52b9086
MS
503 if (dentry)
504 goto repeat;
1da177e4 505}
ec4f8605 506EXPORT_SYMBOL(dput);
1da177e4
LT
507
508/**
509 * d_invalidate - invalidate a dentry
510 * @dentry: dentry to invalidate
511 *
512 * Try to invalidate the dentry if it turns out to be
513 * possible. If there are other dentries that can be
514 * reached through this one we can't delete it and we
515 * return -EBUSY. On success we return 0.
516 *
517 * no dcache lock.
518 */
519
520int d_invalidate(struct dentry * dentry)
521{
522 /*
523 * If it's already been dropped, return OK.
524 */
da502956 525 spin_lock(&dentry->d_lock);
1da177e4 526 if (d_unhashed(dentry)) {
da502956 527 spin_unlock(&dentry->d_lock);
1da177e4
LT
528 return 0;
529 }
530 /*
531 * Check whether to do a partial shrink_dcache
532 * to get rid of unused child entries.
533 */
534 if (!list_empty(&dentry->d_subdirs)) {
da502956 535 spin_unlock(&dentry->d_lock);
1da177e4 536 shrink_dcache_parent(dentry);
da502956 537 spin_lock(&dentry->d_lock);
1da177e4
LT
538 }
539
540 /*
541 * Somebody else still using it?
542 *
543 * If it's a directory, we can't drop it
544 * for fear of somebody re-populating it
545 * with children (even though dropping it
546 * would make it unreachable from the root,
547 * we might still populate it if it was a
548 * working directory or similar).
549 */
b7ab39f6 550 if (dentry->d_count > 1) {
1da177e4
LT
551 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
552 spin_unlock(&dentry->d_lock);
1da177e4
LT
553 return -EBUSY;
554 }
555 }
556
557 __d_drop(dentry);
558 spin_unlock(&dentry->d_lock);
1da177e4
LT
559 return 0;
560}
ec4f8605 561EXPORT_SYMBOL(d_invalidate);
1da177e4 562
b5c84bf6 563/* This must be called with d_lock held */
dc0474be 564static inline void __dget_dlock(struct dentry *dentry)
23044507 565{
b7ab39f6 566 dentry->d_count++;
23044507
NP
567}
568
dc0474be 569static inline void __dget(struct dentry *dentry)
1da177e4 570{
23044507 571 spin_lock(&dentry->d_lock);
dc0474be 572 __dget_dlock(dentry);
23044507 573 spin_unlock(&dentry->d_lock);
1da177e4
LT
574}
575
b7ab39f6
NP
576struct dentry *dget_parent(struct dentry *dentry)
577{
578 struct dentry *ret;
579
580repeat:
a734eb45
NP
581 /*
582 * Don't need rcu_dereference because we re-check it was correct under
583 * the lock.
584 */
585 rcu_read_lock();
b7ab39f6 586 ret = dentry->d_parent;
a734eb45
NP
587 spin_lock(&ret->d_lock);
588 if (unlikely(ret != dentry->d_parent)) {
589 spin_unlock(&ret->d_lock);
590 rcu_read_unlock();
b7ab39f6
NP
591 goto repeat;
592 }
a734eb45 593 rcu_read_unlock();
b7ab39f6
NP
594 BUG_ON(!ret->d_count);
595 ret->d_count++;
596 spin_unlock(&ret->d_lock);
b7ab39f6
NP
597 return ret;
598}
599EXPORT_SYMBOL(dget_parent);
600
1da177e4
LT
601/**
602 * d_find_alias - grab a hashed alias of inode
603 * @inode: inode in question
604 * @want_discon: flag, used by d_splice_alias, to request
605 * that only a DISCONNECTED alias be returned.
606 *
607 * If inode has a hashed alias, or is a directory and has any alias,
608 * acquire the reference to alias and return it. Otherwise return NULL.
609 * Notice that if inode is a directory there can be only one alias and
610 * it can be unhashed only if it has no children, or if it is the root
611 * of a filesystem.
612 *
21c0d8fd 613 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1da177e4 614 * any other hashed alias over that one unless @want_discon is set,
21c0d8fd 615 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 616 */
da502956 617static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 618{
da502956 619 struct dentry *alias, *discon_alias;
1da177e4 620
da502956
NP
621again:
622 discon_alias = NULL;
623 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
624 spin_lock(&alias->d_lock);
1da177e4 625 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 626 if (IS_ROOT(alias) &&
da502956 627 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 628 discon_alias = alias;
da502956 629 } else if (!want_discon) {
dc0474be 630 __dget_dlock(alias);
da502956
NP
631 spin_unlock(&alias->d_lock);
632 return alias;
633 }
634 }
635 spin_unlock(&alias->d_lock);
636 }
637 if (discon_alias) {
638 alias = discon_alias;
639 spin_lock(&alias->d_lock);
640 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
641 if (IS_ROOT(alias) &&
642 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 643 __dget_dlock(alias);
da502956 644 spin_unlock(&alias->d_lock);
1da177e4
LT
645 return alias;
646 }
647 }
da502956
NP
648 spin_unlock(&alias->d_lock);
649 goto again;
1da177e4 650 }
da502956 651 return NULL;
1da177e4
LT
652}
653
da502956 654struct dentry *d_find_alias(struct inode *inode)
1da177e4 655{
214fda1f
DH
656 struct dentry *de = NULL;
657
658 if (!list_empty(&inode->i_dentry)) {
873feea0 659 spin_lock(&inode->i_lock);
214fda1f 660 de = __d_find_alias(inode, 0);
873feea0 661 spin_unlock(&inode->i_lock);
214fda1f 662 }
1da177e4
LT
663 return de;
664}
ec4f8605 665EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
666
667/*
668 * Try to kill dentries associated with this inode.
669 * WARNING: you must own a reference to inode.
670 */
671void d_prune_aliases(struct inode *inode)
672{
0cdca3f9 673 struct dentry *dentry;
1da177e4 674restart:
873feea0 675 spin_lock(&inode->i_lock);
0cdca3f9 676 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 677 spin_lock(&dentry->d_lock);
b7ab39f6 678 if (!dentry->d_count) {
dc0474be 679 __dget_dlock(dentry);
1da177e4
LT
680 __d_drop(dentry);
681 spin_unlock(&dentry->d_lock);
873feea0 682 spin_unlock(&inode->i_lock);
1da177e4
LT
683 dput(dentry);
684 goto restart;
685 }
686 spin_unlock(&dentry->d_lock);
687 }
873feea0 688 spin_unlock(&inode->i_lock);
1da177e4 689}
ec4f8605 690EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
691
692/*
77812a1e
NP
693 * Try to throw away a dentry - free the inode, dput the parent.
694 * Requires dentry->d_lock is held, and dentry->d_count == 0.
695 * Releases dentry->d_lock.
d702ccb3 696 *
77812a1e 697 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 698 */
77812a1e 699static void try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 700 __releases(dentry->d_lock)
1da177e4 701{
77812a1e 702 struct dentry *parent;
d52b9086 703
77812a1e 704 parent = dentry_kill(dentry, 0);
d52b9086 705 /*
77812a1e
NP
706 * If dentry_kill returns NULL, we have nothing more to do.
707 * if it returns the same dentry, trylocks failed. In either
708 * case, just loop again.
709 *
710 * Otherwise, we need to prune ancestors too. This is necessary
711 * to prevent quadratic behavior of shrink_dcache_parent(), but
712 * is also expected to be beneficial in reducing dentry cache
713 * fragmentation.
d52b9086 714 */
77812a1e
NP
715 if (!parent)
716 return;
717 if (parent == dentry)
718 return;
719
720 /* Prune ancestors. */
721 dentry = parent;
d52b9086 722 while (dentry) {
b7ab39f6 723 spin_lock(&dentry->d_lock);
89e60548
NP
724 if (dentry->d_count > 1) {
725 dentry->d_count--;
726 spin_unlock(&dentry->d_lock);
727 return;
728 }
77812a1e 729 dentry = dentry_kill(dentry, 1);
d52b9086 730 }
1da177e4
LT
731}
732
3049cfe2 733static void shrink_dentry_list(struct list_head *list)
1da177e4 734{
da3bbdd4 735 struct dentry *dentry;
da3bbdd4 736
ec33679d
NP
737 rcu_read_lock();
738 for (;;) {
ec33679d
NP
739 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
740 if (&dentry->d_lru == list)
741 break; /* empty */
742 spin_lock(&dentry->d_lock);
743 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
744 spin_unlock(&dentry->d_lock);
23044507
NP
745 continue;
746 }
747
1da177e4
LT
748 /*
749 * We found an inuse dentry which was not removed from
da3bbdd4
KM
750 * the LRU because of laziness during lookup. Do not free
751 * it - just keep it off the LRU list.
1da177e4 752 */
b7ab39f6 753 if (dentry->d_count) {
ec33679d 754 dentry_lru_del(dentry);
da3bbdd4 755 spin_unlock(&dentry->d_lock);
1da177e4
LT
756 continue;
757 }
ec33679d 758
ec33679d 759 rcu_read_unlock();
77812a1e
NP
760
761 try_prune_one_dentry(dentry);
762
ec33679d 763 rcu_read_lock();
da3bbdd4 764 }
ec33679d 765 rcu_read_unlock();
3049cfe2
CH
766}
767
768/**
769 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
770 * @sb: superblock to shrink dentry LRU.
771 * @count: number of entries to prune
772 * @flags: flags to control the dentry processing
773 *
774 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
775 */
b0d40c92 776static void __shrink_dcache_sb(struct super_block *sb, int count, int flags)
3049cfe2 777{
3049cfe2
CH
778 struct dentry *dentry;
779 LIST_HEAD(referenced);
780 LIST_HEAD(tmp);
3049cfe2 781
23044507
NP
782relock:
783 spin_lock(&dcache_lru_lock);
3049cfe2
CH
784 while (!list_empty(&sb->s_dentry_lru)) {
785 dentry = list_entry(sb->s_dentry_lru.prev,
786 struct dentry, d_lru);
787 BUG_ON(dentry->d_sb != sb);
788
23044507
NP
789 if (!spin_trylock(&dentry->d_lock)) {
790 spin_unlock(&dcache_lru_lock);
791 cpu_relax();
792 goto relock;
793 }
794
3049cfe2
CH
795 /*
796 * If we are honouring the DCACHE_REFERENCED flag and the
797 * dentry has this flag set, don't free it. Clear the flag
798 * and put it back on the LRU.
799 */
23044507
NP
800 if (flags & DCACHE_REFERENCED &&
801 dentry->d_flags & DCACHE_REFERENCED) {
802 dentry->d_flags &= ~DCACHE_REFERENCED;
803 list_move(&dentry->d_lru, &referenced);
3049cfe2 804 spin_unlock(&dentry->d_lock);
23044507
NP
805 } else {
806 list_move_tail(&dentry->d_lru, &tmp);
807 spin_unlock(&dentry->d_lock);
b0d40c92 808 if (!--count)
23044507 809 break;
3049cfe2 810 }
ec33679d 811 cond_resched_lock(&dcache_lru_lock);
3049cfe2 812 }
da3bbdd4
KM
813 if (!list_empty(&referenced))
814 list_splice(&referenced, &sb->s_dentry_lru);
23044507 815 spin_unlock(&dcache_lru_lock);
ec33679d
NP
816
817 shrink_dentry_list(&tmp);
da3bbdd4
KM
818}
819
820/**
b0d40c92 821 * prune_dcache_sb - shrink the dcache
2af14162 822 * @sb: superblock
b0d40c92 823 * @nr_to_scan: number of entries to try to free
da3bbdd4 824 *
b0d40c92
DC
825 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
826 * done when we need more memory an called from the superblock shrinker
827 * function.
da3bbdd4 828 *
b0d40c92
DC
829 * This function may fail to free any resources if all the dentries are in
830 * use.
da3bbdd4 831 */
b0d40c92 832void prune_dcache_sb(struct super_block *sb, int nr_to_scan)
da3bbdd4 833{
b0d40c92 834 __shrink_dcache_sb(sb, nr_to_scan, DCACHE_REFERENCED);
1da177e4
LT
835}
836
1da177e4
LT
837/**
838 * shrink_dcache_sb - shrink dcache for a superblock
839 * @sb: superblock
840 *
3049cfe2
CH
841 * Shrink the dcache for the specified super block. This is used to free
842 * the dcache before unmounting a file system.
1da177e4 843 */
3049cfe2 844void shrink_dcache_sb(struct super_block *sb)
1da177e4 845{
3049cfe2
CH
846 LIST_HEAD(tmp);
847
23044507 848 spin_lock(&dcache_lru_lock);
3049cfe2
CH
849 while (!list_empty(&sb->s_dentry_lru)) {
850 list_splice_init(&sb->s_dentry_lru, &tmp);
ec33679d 851 spin_unlock(&dcache_lru_lock);
3049cfe2 852 shrink_dentry_list(&tmp);
ec33679d 853 spin_lock(&dcache_lru_lock);
3049cfe2 854 }
23044507 855 spin_unlock(&dcache_lru_lock);
1da177e4 856}
ec4f8605 857EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 858
c636ebdb
DH
859/*
860 * destroy a single subtree of dentries for unmount
861 * - see the comments on shrink_dcache_for_umount() for a description of the
862 * locking
863 */
864static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
865{
866 struct dentry *parent;
867
868 BUG_ON(!IS_ROOT(dentry));
869
c636ebdb
DH
870 for (;;) {
871 /* descend to the first leaf in the current subtree */
43c1c9cd 872 while (!list_empty(&dentry->d_subdirs))
c636ebdb
DH
873 dentry = list_entry(dentry->d_subdirs.next,
874 struct dentry, d_u.d_child);
c636ebdb
DH
875
876 /* consume the dentries from this leaf up through its parents
877 * until we find one with children or run out altogether */
878 do {
879 struct inode *inode;
880
f0023bc6
SW
881 /*
882 * remove the dentry from the lru, and inform
883 * the fs that this dentry is about to be
884 * unhashed and destroyed.
885 */
886 dentry_lru_prune(dentry);
43c1c9cd
DH
887 __d_shrink(dentry);
888
b7ab39f6 889 if (dentry->d_count != 0) {
c636ebdb
DH
890 printk(KERN_ERR
891 "BUG: Dentry %p{i=%lx,n=%s}"
892 " still in use (%d)"
893 " [unmount of %s %s]\n",
894 dentry,
895 dentry->d_inode ?
896 dentry->d_inode->i_ino : 0UL,
897 dentry->d_name.name,
b7ab39f6 898 dentry->d_count,
c636ebdb
DH
899 dentry->d_sb->s_type->name,
900 dentry->d_sb->s_id);
901 BUG();
902 }
903
2fd6b7f5 904 if (IS_ROOT(dentry)) {
c636ebdb 905 parent = NULL;
2fd6b7f5
NP
906 list_del(&dentry->d_u.d_child);
907 } else {
871c0067 908 parent = dentry->d_parent;
b7ab39f6 909 parent->d_count--;
2fd6b7f5 910 list_del(&dentry->d_u.d_child);
871c0067 911 }
c636ebdb 912
c636ebdb
DH
913 inode = dentry->d_inode;
914 if (inode) {
915 dentry->d_inode = NULL;
916 list_del_init(&dentry->d_alias);
917 if (dentry->d_op && dentry->d_op->d_iput)
918 dentry->d_op->d_iput(dentry, inode);
919 else
920 iput(inode);
921 }
922
923 d_free(dentry);
924
925 /* finished when we fall off the top of the tree,
926 * otherwise we ascend to the parent and move to the
927 * next sibling if there is one */
928 if (!parent)
312d3ca8 929 return;
c636ebdb 930 dentry = parent;
c636ebdb
DH
931 } while (list_empty(&dentry->d_subdirs));
932
933 dentry = list_entry(dentry->d_subdirs.next,
934 struct dentry, d_u.d_child);
935 }
936}
937
938/*
939 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 940 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
941 * - the superblock is detached from all mountings and open files, so the
942 * dentry trees will not be rearranged by the VFS
943 * - s_umount is write-locked, so the memory pressure shrinker will ignore
944 * any dentries belonging to this superblock that it comes across
945 * - the filesystem itself is no longer permitted to rearrange the dentries
946 * in this superblock
947 */
948void shrink_dcache_for_umount(struct super_block *sb)
949{
950 struct dentry *dentry;
951
952 if (down_read_trylock(&sb->s_umount))
953 BUG();
954
955 dentry = sb->s_root;
956 sb->s_root = NULL;
b7ab39f6 957 dentry->d_count--;
c636ebdb
DH
958 shrink_dcache_for_umount_subtree(dentry);
959
ceb5bdc2
NP
960 while (!hlist_bl_empty(&sb->s_anon)) {
961 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
962 shrink_dcache_for_umount_subtree(dentry);
963 }
964}
965
c826cb7d
LT
966/*
967 * This tries to ascend one level of parenthood, but
968 * we can race with renaming, so we need to re-check
969 * the parenthood after dropping the lock and check
970 * that the sequence number still matches.
971 */
972static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
973{
974 struct dentry *new = old->d_parent;
975
976 rcu_read_lock();
977 spin_unlock(&old->d_lock);
978 spin_lock(&new->d_lock);
979
980 /*
981 * might go back up the wrong parent if we have had a rename
982 * or deletion
983 */
984 if (new != old->d_parent ||
c83ce989 985 (old->d_flags & DCACHE_DISCONNECTED) ||
c826cb7d
LT
986 (!locked && read_seqretry(&rename_lock, seq))) {
987 spin_unlock(&new->d_lock);
988 new = NULL;
989 }
990 rcu_read_unlock();
991 return new;
992}
993
994
1da177e4
LT
995/*
996 * Search for at least 1 mount point in the dentry's subdirs.
997 * We descend to the next level whenever the d_subdirs
998 * list is non-empty and continue searching.
999 */
1000
1001/**
1002 * have_submounts - check for mounts over a dentry
1003 * @parent: dentry to check.
1004 *
1005 * Return true if the parent or its subdirectories contain
1006 * a mount point
1007 */
1da177e4
LT
1008int have_submounts(struct dentry *parent)
1009{
949854d0 1010 struct dentry *this_parent;
1da177e4 1011 struct list_head *next;
949854d0 1012 unsigned seq;
58db63d0 1013 int locked = 0;
949854d0 1014
949854d0 1015 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1016again:
1017 this_parent = parent;
1da177e4 1018
1da177e4
LT
1019 if (d_mountpoint(parent))
1020 goto positive;
2fd6b7f5 1021 spin_lock(&this_parent->d_lock);
1da177e4
LT
1022repeat:
1023 next = this_parent->d_subdirs.next;
1024resume:
1025 while (next != &this_parent->d_subdirs) {
1026 struct list_head *tmp = next;
5160ee6f 1027 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1028 next = tmp->next;
2fd6b7f5
NP
1029
1030 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 1031 /* Have we found a mount point ? */
2fd6b7f5
NP
1032 if (d_mountpoint(dentry)) {
1033 spin_unlock(&dentry->d_lock);
1034 spin_unlock(&this_parent->d_lock);
1da177e4 1035 goto positive;
2fd6b7f5 1036 }
1da177e4 1037 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1038 spin_unlock(&this_parent->d_lock);
1039 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1040 this_parent = dentry;
2fd6b7f5 1041 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1042 goto repeat;
1043 }
2fd6b7f5 1044 spin_unlock(&dentry->d_lock);
1da177e4
LT
1045 }
1046 /*
1047 * All done at this level ... ascend and resume the search.
1048 */
1049 if (this_parent != parent) {
c826cb7d
LT
1050 struct dentry *child = this_parent;
1051 this_parent = try_to_ascend(this_parent, locked, seq);
1052 if (!this_parent)
949854d0 1053 goto rename_retry;
949854d0 1054 next = child->d_u.d_child.next;
1da177e4
LT
1055 goto resume;
1056 }
2fd6b7f5 1057 spin_unlock(&this_parent->d_lock);
58db63d0 1058 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1059 goto rename_retry;
58db63d0
NP
1060 if (locked)
1061 write_sequnlock(&rename_lock);
1da177e4
LT
1062 return 0; /* No mount points found in tree */
1063positive:
58db63d0 1064 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1065 goto rename_retry;
58db63d0
NP
1066 if (locked)
1067 write_sequnlock(&rename_lock);
1da177e4 1068 return 1;
58db63d0
NP
1069
1070rename_retry:
1071 locked = 1;
1072 write_seqlock(&rename_lock);
1073 goto again;
1da177e4 1074}
ec4f8605 1075EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1076
1077/*
1078 * Search the dentry child list for the specified parent,
1079 * and move any unused dentries to the end of the unused
1080 * list for prune_dcache(). We descend to the next level
1081 * whenever the d_subdirs list is non-empty and continue
1082 * searching.
1083 *
1084 * It returns zero iff there are no unused children,
1085 * otherwise it returns the number of children moved to
1086 * the end of the unused list. This may not be the total
1087 * number of unused children, because select_parent can
1088 * drop the lock and return early due to latency
1089 * constraints.
1090 */
1091static int select_parent(struct dentry * parent)
1092{
949854d0 1093 struct dentry *this_parent;
1da177e4 1094 struct list_head *next;
949854d0 1095 unsigned seq;
1da177e4 1096 int found = 0;
58db63d0 1097 int locked = 0;
1da177e4 1098
949854d0 1099 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1100again:
1101 this_parent = parent;
2fd6b7f5 1102 spin_lock(&this_parent->d_lock);
1da177e4
LT
1103repeat:
1104 next = this_parent->d_subdirs.next;
1105resume:
1106 while (next != &this_parent->d_subdirs) {
1107 struct list_head *tmp = next;
5160ee6f 1108 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1109 next = tmp->next;
1110
2fd6b7f5 1111 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1112
1da177e4
LT
1113 /*
1114 * move only zero ref count dentries to the end
1115 * of the unused list for prune_dcache
1116 */
b7ab39f6 1117 if (!dentry->d_count) {
a4633357 1118 dentry_lru_move_tail(dentry);
1da177e4 1119 found++;
a4633357
CH
1120 } else {
1121 dentry_lru_del(dentry);
1da177e4
LT
1122 }
1123
1124 /*
1125 * We can return to the caller if we have found some (this
1126 * ensures forward progress). We'll be coming back to find
1127 * the rest.
1128 */
2fd6b7f5
NP
1129 if (found && need_resched()) {
1130 spin_unlock(&dentry->d_lock);
1da177e4 1131 goto out;
2fd6b7f5 1132 }
1da177e4
LT
1133
1134 /*
1135 * Descend a level if the d_subdirs list is non-empty.
1136 */
1137 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1138 spin_unlock(&this_parent->d_lock);
1139 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1140 this_parent = dentry;
2fd6b7f5 1141 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1142 goto repeat;
1143 }
2fd6b7f5
NP
1144
1145 spin_unlock(&dentry->d_lock);
1da177e4
LT
1146 }
1147 /*
1148 * All done at this level ... ascend and resume the search.
1149 */
1150 if (this_parent != parent) {
c826cb7d
LT
1151 struct dentry *child = this_parent;
1152 this_parent = try_to_ascend(this_parent, locked, seq);
1153 if (!this_parent)
949854d0 1154 goto rename_retry;
949854d0 1155 next = child->d_u.d_child.next;
1da177e4
LT
1156 goto resume;
1157 }
1158out:
2fd6b7f5 1159 spin_unlock(&this_parent->d_lock);
58db63d0 1160 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1161 goto rename_retry;
58db63d0
NP
1162 if (locked)
1163 write_sequnlock(&rename_lock);
1da177e4 1164 return found;
58db63d0
NP
1165
1166rename_retry:
1167 if (found)
1168 return found;
1169 locked = 1;
1170 write_seqlock(&rename_lock);
1171 goto again;
1da177e4
LT
1172}
1173
1174/**
1175 * shrink_dcache_parent - prune dcache
1176 * @parent: parent of entries to prune
1177 *
1178 * Prune the dcache to remove unused children of the parent dentry.
1179 */
1180
1181void shrink_dcache_parent(struct dentry * parent)
1182{
da3bbdd4 1183 struct super_block *sb = parent->d_sb;
1da177e4
LT
1184 int found;
1185
1186 while ((found = select_parent(parent)) != 0)
b0d40c92 1187 __shrink_dcache_sb(sb, found, 0);
1da177e4 1188}
ec4f8605 1189EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1190
1da177e4 1191/**
a4464dbc
AV
1192 * __d_alloc - allocate a dcache entry
1193 * @sb: filesystem it will belong to
1da177e4
LT
1194 * @name: qstr of the name
1195 *
1196 * Allocates a dentry. It returns %NULL if there is insufficient memory
1197 * available. On a success the dentry is returned. The name passed in is
1198 * copied and the copy passed in may be reused after this call.
1199 */
1200
a4464dbc 1201struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1202{
1203 struct dentry *dentry;
1204 char *dname;
1205
e12ba74d 1206 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1207 if (!dentry)
1208 return NULL;
1209
1210 if (name->len > DNAME_INLINE_LEN-1) {
1211 dname = kmalloc(name->len + 1, GFP_KERNEL);
1212 if (!dname) {
1213 kmem_cache_free(dentry_cache, dentry);
1214 return NULL;
1215 }
1216 } else {
1217 dname = dentry->d_iname;
1218 }
1219 dentry->d_name.name = dname;
1220
1221 dentry->d_name.len = name->len;
1222 dentry->d_name.hash = name->hash;
1223 memcpy(dname, name->name, name->len);
1224 dname[name->len] = 0;
1225
b7ab39f6 1226 dentry->d_count = 1;
dea3667b 1227 dentry->d_flags = 0;
1da177e4 1228 spin_lock_init(&dentry->d_lock);
31e6b01f 1229 seqcount_init(&dentry->d_seq);
1da177e4 1230 dentry->d_inode = NULL;
a4464dbc
AV
1231 dentry->d_parent = dentry;
1232 dentry->d_sb = sb;
1da177e4
LT
1233 dentry->d_op = NULL;
1234 dentry->d_fsdata = NULL;
ceb5bdc2 1235 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1236 INIT_LIST_HEAD(&dentry->d_lru);
1237 INIT_LIST_HEAD(&dentry->d_subdirs);
1238 INIT_LIST_HEAD(&dentry->d_alias);
2fd6b7f5 1239 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1240 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1241
3e880fb5 1242 this_cpu_inc(nr_dentry);
312d3ca8 1243
1da177e4
LT
1244 return dentry;
1245}
a4464dbc
AV
1246
1247/**
1248 * d_alloc - allocate a dcache entry
1249 * @parent: parent of entry to allocate
1250 * @name: qstr of the name
1251 *
1252 * Allocates a dentry. It returns %NULL if there is insufficient memory
1253 * available. On a success the dentry is returned. The name passed in is
1254 * copied and the copy passed in may be reused after this call.
1255 */
1256struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1257{
1258 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1259 if (!dentry)
1260 return NULL;
1261
1262 spin_lock(&parent->d_lock);
1263 /*
1264 * don't need child lock because it is not subject
1265 * to concurrency here
1266 */
1267 __dget_dlock(parent);
1268 dentry->d_parent = parent;
1269 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1270 spin_unlock(&parent->d_lock);
1271
1272 return dentry;
1273}
ec4f8605 1274EXPORT_SYMBOL(d_alloc);
1da177e4 1275
4b936885
NP
1276struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1277{
a4464dbc
AV
1278 struct dentry *dentry = __d_alloc(sb, name);
1279 if (dentry)
4b936885 1280 dentry->d_flags |= DCACHE_DISCONNECTED;
4b936885
NP
1281 return dentry;
1282}
1283EXPORT_SYMBOL(d_alloc_pseudo);
1284
1da177e4
LT
1285struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1286{
1287 struct qstr q;
1288
1289 q.name = name;
1290 q.len = strlen(name);
1291 q.hash = full_name_hash(q.name, q.len);
1292 return d_alloc(parent, &q);
1293}
ef26ca97 1294EXPORT_SYMBOL(d_alloc_name);
1da177e4 1295
fb045adb
NP
1296void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1297{
6f7f7caa
LT
1298 WARN_ON_ONCE(dentry->d_op);
1299 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1300 DCACHE_OP_COMPARE |
1301 DCACHE_OP_REVALIDATE |
1302 DCACHE_OP_DELETE ));
1303 dentry->d_op = op;
1304 if (!op)
1305 return;
1306 if (op->d_hash)
1307 dentry->d_flags |= DCACHE_OP_HASH;
1308 if (op->d_compare)
1309 dentry->d_flags |= DCACHE_OP_COMPARE;
1310 if (op->d_revalidate)
1311 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1312 if (op->d_delete)
1313 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1314 if (op->d_prune)
1315 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1316
1317}
1318EXPORT_SYMBOL(d_set_d_op);
1319
360da900
OH
1320static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1321{
b23fb0a6 1322 spin_lock(&dentry->d_lock);
9875cf80
DH
1323 if (inode) {
1324 if (unlikely(IS_AUTOMOUNT(inode)))
1325 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
360da900 1326 list_add(&dentry->d_alias, &inode->i_dentry);
9875cf80 1327 }
360da900 1328 dentry->d_inode = inode;
31e6b01f 1329 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1330 spin_unlock(&dentry->d_lock);
360da900
OH
1331 fsnotify_d_instantiate(dentry, inode);
1332}
1333
1da177e4
LT
1334/**
1335 * d_instantiate - fill in inode information for a dentry
1336 * @entry: dentry to complete
1337 * @inode: inode to attach to this dentry
1338 *
1339 * Fill in inode information in the entry.
1340 *
1341 * This turns negative dentries into productive full members
1342 * of society.
1343 *
1344 * NOTE! This assumes that the inode count has been incremented
1345 * (or otherwise set) by the caller to indicate that it is now
1346 * in use by the dcache.
1347 */
1348
1349void d_instantiate(struct dentry *entry, struct inode * inode)
1350{
28133c7b 1351 BUG_ON(!list_empty(&entry->d_alias));
873feea0
NP
1352 if (inode)
1353 spin_lock(&inode->i_lock);
360da900 1354 __d_instantiate(entry, inode);
873feea0
NP
1355 if (inode)
1356 spin_unlock(&inode->i_lock);
1da177e4
LT
1357 security_d_instantiate(entry, inode);
1358}
ec4f8605 1359EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1360
1361/**
1362 * d_instantiate_unique - instantiate a non-aliased dentry
1363 * @entry: dentry to instantiate
1364 * @inode: inode to attach to this dentry
1365 *
1366 * Fill in inode information in the entry. On success, it returns NULL.
1367 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1368 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1369 *
1370 * Note that in order to avoid conflicts with rename() etc, the caller
1371 * had better be holding the parent directory semaphore.
e866cfa9
OD
1372 *
1373 * This also assumes that the inode count has been incremented
1374 * (or otherwise set) by the caller to indicate that it is now
1375 * in use by the dcache.
1da177e4 1376 */
770bfad8
DH
1377static struct dentry *__d_instantiate_unique(struct dentry *entry,
1378 struct inode *inode)
1da177e4
LT
1379{
1380 struct dentry *alias;
1381 int len = entry->d_name.len;
1382 const char *name = entry->d_name.name;
1383 unsigned int hash = entry->d_name.hash;
1384
770bfad8 1385 if (!inode) {
360da900 1386 __d_instantiate(entry, NULL);
770bfad8
DH
1387 return NULL;
1388 }
1389
1da177e4
LT
1390 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1391 struct qstr *qstr = &alias->d_name;
1392
9abca360
NP
1393 /*
1394 * Don't need alias->d_lock here, because aliases with
1395 * d_parent == entry->d_parent are not subject to name or
1396 * parent changes, because the parent inode i_mutex is held.
1397 */
1da177e4
LT
1398 if (qstr->hash != hash)
1399 continue;
1400 if (alias->d_parent != entry->d_parent)
1401 continue;
9d55c369 1402 if (dentry_cmp(qstr->name, qstr->len, name, len))
1da177e4 1403 continue;
dc0474be 1404 __dget(alias);
1da177e4
LT
1405 return alias;
1406 }
770bfad8 1407
360da900 1408 __d_instantiate(entry, inode);
1da177e4
LT
1409 return NULL;
1410}
770bfad8
DH
1411
1412struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1413{
1414 struct dentry *result;
1415
1416 BUG_ON(!list_empty(&entry->d_alias));
1417
873feea0
NP
1418 if (inode)
1419 spin_lock(&inode->i_lock);
770bfad8 1420 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1421 if (inode)
1422 spin_unlock(&inode->i_lock);
770bfad8
DH
1423
1424 if (!result) {
1425 security_d_instantiate(entry, inode);
1426 return NULL;
1427 }
1428
1429 BUG_ON(!d_unhashed(result));
1430 iput(inode);
1431 return result;
1432}
1433
1da177e4
LT
1434EXPORT_SYMBOL(d_instantiate_unique);
1435
1436/**
1437 * d_alloc_root - allocate root dentry
1438 * @root_inode: inode to allocate the root for
1439 *
1440 * Allocate a root ("/") dentry for the inode given. The inode is
1441 * instantiated and returned. %NULL is returned if there is insufficient
1442 * memory or the inode passed is %NULL.
1443 */
1444
1445struct dentry * d_alloc_root(struct inode * root_inode)
1446{
1447 struct dentry *res = NULL;
1448
1449 if (root_inode) {
1450 static const struct qstr name = { .name = "/", .len = 1 };
1451
a4464dbc
AV
1452 res = __d_alloc(root_inode->i_sb, &name);
1453 if (res)
1da177e4 1454 d_instantiate(res, root_inode);
1da177e4
LT
1455 }
1456 return res;
1457}
ec4f8605 1458EXPORT_SYMBOL(d_alloc_root);
1da177e4 1459
d891eedb
BF
1460static struct dentry * __d_find_any_alias(struct inode *inode)
1461{
1462 struct dentry *alias;
1463
1464 if (list_empty(&inode->i_dentry))
1465 return NULL;
1466 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1467 __dget(alias);
1468 return alias;
1469}
1470
1471static struct dentry * d_find_any_alias(struct inode *inode)
1472{
1473 struct dentry *de;
1474
1475 spin_lock(&inode->i_lock);
1476 de = __d_find_any_alias(inode);
1477 spin_unlock(&inode->i_lock);
1478 return de;
1479}
1480
1481
4ea3ada2
CH
1482/**
1483 * d_obtain_alias - find or allocate a dentry for a given inode
1484 * @inode: inode to allocate the dentry for
1485 *
1486 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1487 * similar open by handle operations. The returned dentry may be anonymous,
1488 * or may have a full name (if the inode was already in the cache).
1489 *
1490 * When called on a directory inode, we must ensure that the inode only ever
1491 * has one dentry. If a dentry is found, that is returned instead of
1492 * allocating a new one.
1493 *
1494 * On successful return, the reference to the inode has been transferred
44003728
CH
1495 * to the dentry. In case of an error the reference on the inode is released.
1496 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1497 * be passed in and will be the error will be propagate to the return value,
1498 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1499 */
1500struct dentry *d_obtain_alias(struct inode *inode)
1501{
9308a612
CH
1502 static const struct qstr anonstring = { .name = "" };
1503 struct dentry *tmp;
1504 struct dentry *res;
4ea3ada2
CH
1505
1506 if (!inode)
44003728 1507 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1508 if (IS_ERR(inode))
1509 return ERR_CAST(inode);
1510
d891eedb 1511 res = d_find_any_alias(inode);
9308a612
CH
1512 if (res)
1513 goto out_iput;
1514
a4464dbc 1515 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1516 if (!tmp) {
1517 res = ERR_PTR(-ENOMEM);
1518 goto out_iput;
4ea3ada2 1519 }
b5c84bf6 1520
873feea0 1521 spin_lock(&inode->i_lock);
d891eedb 1522 res = __d_find_any_alias(inode);
9308a612 1523 if (res) {
873feea0 1524 spin_unlock(&inode->i_lock);
9308a612
CH
1525 dput(tmp);
1526 goto out_iput;
1527 }
1528
1529 /* attach a disconnected dentry */
1530 spin_lock(&tmp->d_lock);
9308a612
CH
1531 tmp->d_inode = inode;
1532 tmp->d_flags |= DCACHE_DISCONNECTED;
9308a612 1533 list_add(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1534 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1535 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1536 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1537 spin_unlock(&tmp->d_lock);
873feea0 1538 spin_unlock(&inode->i_lock);
24ff6663 1539 security_d_instantiate(tmp, inode);
9308a612 1540
9308a612
CH
1541 return tmp;
1542
1543 out_iput:
24ff6663
JB
1544 if (res && !IS_ERR(res))
1545 security_d_instantiate(res, inode);
9308a612
CH
1546 iput(inode);
1547 return res;
4ea3ada2 1548}
adc48720 1549EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1550
1551/**
1552 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1553 * @inode: the inode which may have a disconnected dentry
1554 * @dentry: a negative dentry which we want to point to the inode.
1555 *
1556 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1557 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1558 * and return it, else simply d_add the inode to the dentry and return NULL.
1559 *
1560 * This is needed in the lookup routine of any filesystem that is exportable
1561 * (via knfsd) so that we can build dcache paths to directories effectively.
1562 *
1563 * If a dentry was found and moved, then it is returned. Otherwise NULL
1564 * is returned. This matches the expected return value of ->lookup.
1565 *
1566 */
1567struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1568{
1569 struct dentry *new = NULL;
1570
a9049376
AV
1571 if (IS_ERR(inode))
1572 return ERR_CAST(inode);
1573
21c0d8fd 1574 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1575 spin_lock(&inode->i_lock);
1da177e4
LT
1576 new = __d_find_alias(inode, 1);
1577 if (new) {
1578 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1579 spin_unlock(&inode->i_lock);
1da177e4 1580 security_d_instantiate(new, inode);
1da177e4
LT
1581 d_move(new, dentry);
1582 iput(inode);
1583 } else {
873feea0 1584 /* already taking inode->i_lock, so d_add() by hand */
360da900 1585 __d_instantiate(dentry, inode);
873feea0 1586 spin_unlock(&inode->i_lock);
1da177e4
LT
1587 security_d_instantiate(dentry, inode);
1588 d_rehash(dentry);
1589 }
1590 } else
1591 d_add(dentry, inode);
1592 return new;
1593}
ec4f8605 1594EXPORT_SYMBOL(d_splice_alias);
1da177e4 1595
9403540c
BN
1596/**
1597 * d_add_ci - lookup or allocate new dentry with case-exact name
1598 * @inode: the inode case-insensitive lookup has found
1599 * @dentry: the negative dentry that was passed to the parent's lookup func
1600 * @name: the case-exact name to be associated with the returned dentry
1601 *
1602 * This is to avoid filling the dcache with case-insensitive names to the
1603 * same inode, only the actual correct case is stored in the dcache for
1604 * case-insensitive filesystems.
1605 *
1606 * For a case-insensitive lookup match and if the the case-exact dentry
1607 * already exists in in the dcache, use it and return it.
1608 *
1609 * If no entry exists with the exact case name, allocate new dentry with
1610 * the exact case, and return the spliced entry.
1611 */
e45b590b 1612struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1613 struct qstr *name)
1614{
1615 int error;
1616 struct dentry *found;
1617 struct dentry *new;
1618
b6520c81
CH
1619 /*
1620 * First check if a dentry matching the name already exists,
1621 * if not go ahead and create it now.
1622 */
9403540c 1623 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1624 if (!found) {
1625 new = d_alloc(dentry->d_parent, name);
1626 if (!new) {
1627 error = -ENOMEM;
1628 goto err_out;
1629 }
b6520c81 1630
9403540c
BN
1631 found = d_splice_alias(inode, new);
1632 if (found) {
1633 dput(new);
1634 return found;
1635 }
1636 return new;
1637 }
b6520c81
CH
1638
1639 /*
1640 * If a matching dentry exists, and it's not negative use it.
1641 *
1642 * Decrement the reference count to balance the iget() done
1643 * earlier on.
1644 */
9403540c
BN
1645 if (found->d_inode) {
1646 if (unlikely(found->d_inode != inode)) {
1647 /* This can't happen because bad inodes are unhashed. */
1648 BUG_ON(!is_bad_inode(inode));
1649 BUG_ON(!is_bad_inode(found->d_inode));
1650 }
9403540c
BN
1651 iput(inode);
1652 return found;
1653 }
b6520c81 1654
9403540c 1655 /*
44396f4b
JB
1656 * We are going to instantiate this dentry, unhash it and clear the
1657 * lookup flag so we can do that.
9403540c 1658 */
44396f4b
JB
1659 if (unlikely(d_need_lookup(found)))
1660 d_clear_need_lookup(found);
b6520c81 1661
9403540c 1662 /*
9403540c 1663 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1664 * already has a dentry.
9403540c 1665 */
4513d899
AV
1666 new = d_splice_alias(inode, found);
1667 if (new) {
1668 dput(found);
1669 found = new;
9403540c 1670 }
4513d899 1671 return found;
9403540c
BN
1672
1673err_out:
1674 iput(inode);
1675 return ERR_PTR(error);
1676}
ec4f8605 1677EXPORT_SYMBOL(d_add_ci);
1da177e4 1678
31e6b01f
NP
1679/**
1680 * __d_lookup_rcu - search for a dentry (racy, store-free)
1681 * @parent: parent dentry
1682 * @name: qstr of name we wish to find
1683 * @seq: returns d_seq value at the point where the dentry was found
1684 * @inode: returns dentry->d_inode when the inode was found valid.
1685 * Returns: dentry, or NULL
1686 *
1687 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1688 * resolution (store-free path walking) design described in
1689 * Documentation/filesystems/path-lookup.txt.
1690 *
1691 * This is not to be used outside core vfs.
1692 *
1693 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1694 * held, and rcu_read_lock held. The returned dentry must not be stored into
1695 * without taking d_lock and checking d_seq sequence count against @seq
1696 * returned here.
1697 *
1698 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1699 * function.
1700 *
1701 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1702 * the returned dentry, so long as its parent's seqlock is checked after the
1703 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1704 * is formed, giving integrity down the path walk.
1705 */
1706struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1707 unsigned *seq, struct inode **inode)
1708{
1709 unsigned int len = name->len;
1710 unsigned int hash = name->hash;
1711 const unsigned char *str = name->name;
b07ad996 1712 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1713 struct hlist_bl_node *node;
31e6b01f
NP
1714 struct dentry *dentry;
1715
1716 /*
1717 * Note: There is significant duplication with __d_lookup_rcu which is
1718 * required to prevent single threaded performance regressions
1719 * especially on architectures where smp_rmb (in seqcounts) are costly.
1720 * Keep the two functions in sync.
1721 */
1722
1723 /*
1724 * The hash list is protected using RCU.
1725 *
1726 * Carefully use d_seq when comparing a candidate dentry, to avoid
1727 * races with d_move().
1728 *
1729 * It is possible that concurrent renames can mess up our list
1730 * walk here and result in missing our dentry, resulting in the
1731 * false-negative result. d_lookup() protects against concurrent
1732 * renames using rename_lock seqlock.
1733 *
b0a4bb83 1734 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 1735 */
b07ad996 1736 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
31e6b01f
NP
1737 struct inode *i;
1738 const char *tname;
1739 int tlen;
1740
1741 if (dentry->d_name.hash != hash)
1742 continue;
1743
1744seqretry:
1745 *seq = read_seqcount_begin(&dentry->d_seq);
1746 if (dentry->d_parent != parent)
1747 continue;
1748 if (d_unhashed(dentry))
1749 continue;
1750 tlen = dentry->d_name.len;
1751 tname = dentry->d_name.name;
1752 i = dentry->d_inode;
e1bb5782 1753 prefetch(tname);
31e6b01f
NP
1754 /*
1755 * This seqcount check is required to ensure name and
1756 * len are loaded atomically, so as not to walk off the
1757 * edge of memory when walking. If we could load this
1758 * atomically some other way, we could drop this check.
1759 */
1760 if (read_seqcount_retry(&dentry->d_seq, *seq))
1761 goto seqretry;
830c0f0e 1762 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
31e6b01f
NP
1763 if (parent->d_op->d_compare(parent, *inode,
1764 dentry, i,
1765 tlen, tname, name))
1766 continue;
1767 } else {
9d55c369 1768 if (dentry_cmp(tname, tlen, str, len))
31e6b01f
NP
1769 continue;
1770 }
1771 /*
1772 * No extra seqcount check is required after the name
1773 * compare. The caller must perform a seqcount check in
1774 * order to do anything useful with the returned dentry
1775 * anyway.
1776 */
1777 *inode = i;
1778 return dentry;
1779 }
1780 return NULL;
1781}
1782
1da177e4
LT
1783/**
1784 * d_lookup - search for a dentry
1785 * @parent: parent dentry
1786 * @name: qstr of name we wish to find
b04f784e 1787 * Returns: dentry, or NULL
1da177e4 1788 *
b04f784e
NP
1789 * d_lookup searches the children of the parent dentry for the name in
1790 * question. If the dentry is found its reference count is incremented and the
1791 * dentry is returned. The caller must use dput to free the entry when it has
1792 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1793 */
31e6b01f 1794struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1da177e4 1795{
31e6b01f 1796 struct dentry *dentry;
949854d0 1797 unsigned seq;
1da177e4
LT
1798
1799 do {
1800 seq = read_seqbegin(&rename_lock);
1801 dentry = __d_lookup(parent, name);
1802 if (dentry)
1803 break;
1804 } while (read_seqretry(&rename_lock, seq));
1805 return dentry;
1806}
ec4f8605 1807EXPORT_SYMBOL(d_lookup);
1da177e4 1808
31e6b01f 1809/**
b04f784e
NP
1810 * __d_lookup - search for a dentry (racy)
1811 * @parent: parent dentry
1812 * @name: qstr of name we wish to find
1813 * Returns: dentry, or NULL
1814 *
1815 * __d_lookup is like d_lookup, however it may (rarely) return a
1816 * false-negative result due to unrelated rename activity.
1817 *
1818 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1819 * however it must be used carefully, eg. with a following d_lookup in
1820 * the case of failure.
1821 *
1822 * __d_lookup callers must be commented.
1823 */
31e6b01f 1824struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1da177e4
LT
1825{
1826 unsigned int len = name->len;
1827 unsigned int hash = name->hash;
1828 const unsigned char *str = name->name;
b07ad996 1829 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1830 struct hlist_bl_node *node;
31e6b01f 1831 struct dentry *found = NULL;
665a7583 1832 struct dentry *dentry;
1da177e4 1833
31e6b01f
NP
1834 /*
1835 * Note: There is significant duplication with __d_lookup_rcu which is
1836 * required to prevent single threaded performance regressions
1837 * especially on architectures where smp_rmb (in seqcounts) are costly.
1838 * Keep the two functions in sync.
1839 */
1840
b04f784e
NP
1841 /*
1842 * The hash list is protected using RCU.
1843 *
1844 * Take d_lock when comparing a candidate dentry, to avoid races
1845 * with d_move().
1846 *
1847 * It is possible that concurrent renames can mess up our list
1848 * walk here and result in missing our dentry, resulting in the
1849 * false-negative result. d_lookup() protects against concurrent
1850 * renames using rename_lock seqlock.
1851 *
b0a4bb83 1852 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 1853 */
1da177e4
LT
1854 rcu_read_lock();
1855
b07ad996 1856 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
31e6b01f
NP
1857 const char *tname;
1858 int tlen;
1da177e4 1859
1da177e4
LT
1860 if (dentry->d_name.hash != hash)
1861 continue;
1da177e4
LT
1862
1863 spin_lock(&dentry->d_lock);
1da177e4
LT
1864 if (dentry->d_parent != parent)
1865 goto next;
d0185c08
LT
1866 if (d_unhashed(dentry))
1867 goto next;
1868
1da177e4
LT
1869 /*
1870 * It is safe to compare names since d_move() cannot
1871 * change the qstr (protected by d_lock).
1872 */
31e6b01f
NP
1873 tlen = dentry->d_name.len;
1874 tname = dentry->d_name.name;
fb045adb 1875 if (parent->d_flags & DCACHE_OP_COMPARE) {
621e155a
NP
1876 if (parent->d_op->d_compare(parent, parent->d_inode,
1877 dentry, dentry->d_inode,
31e6b01f 1878 tlen, tname, name))
1da177e4
LT
1879 goto next;
1880 } else {
9d55c369 1881 if (dentry_cmp(tname, tlen, str, len))
1da177e4
LT
1882 goto next;
1883 }
1884
b7ab39f6 1885 dentry->d_count++;
d0185c08 1886 found = dentry;
1da177e4
LT
1887 spin_unlock(&dentry->d_lock);
1888 break;
1889next:
1890 spin_unlock(&dentry->d_lock);
1891 }
1892 rcu_read_unlock();
1893
1894 return found;
1895}
1896
3e7e241f
EB
1897/**
1898 * d_hash_and_lookup - hash the qstr then search for a dentry
1899 * @dir: Directory to search in
1900 * @name: qstr of name we wish to find
1901 *
1902 * On hash failure or on lookup failure NULL is returned.
1903 */
1904struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1905{
1906 struct dentry *dentry = NULL;
1907
1908 /*
1909 * Check for a fs-specific hash function. Note that we must
1910 * calculate the standard hash first, as the d_op->d_hash()
1911 * routine may choose to leave the hash value unchanged.
1912 */
1913 name->hash = full_name_hash(name->name, name->len);
fb045adb 1914 if (dir->d_flags & DCACHE_OP_HASH) {
b1e6a015 1915 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
3e7e241f
EB
1916 goto out;
1917 }
1918 dentry = d_lookup(dir, name);
1919out:
1920 return dentry;
1921}
1922
1da177e4 1923/**
786a5e15 1924 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 1925 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 1926 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
1927 *
1928 * An insecure source has sent us a dentry, here we verify it and dget() it.
1929 * This is used by ncpfs in its readdir implementation.
1930 * Zero is returned in the dentry is invalid.
786a5e15
NP
1931 *
1932 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 1933 */
d3a23e16 1934int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 1935{
786a5e15 1936 struct dentry *child;
d3a23e16 1937
2fd6b7f5 1938 spin_lock(&dparent->d_lock);
786a5e15
NP
1939 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1940 if (dentry == child) {
2fd6b7f5 1941 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 1942 __dget_dlock(dentry);
2fd6b7f5
NP
1943 spin_unlock(&dentry->d_lock);
1944 spin_unlock(&dparent->d_lock);
1da177e4
LT
1945 return 1;
1946 }
1947 }
2fd6b7f5 1948 spin_unlock(&dparent->d_lock);
786a5e15 1949
1da177e4
LT
1950 return 0;
1951}
ec4f8605 1952EXPORT_SYMBOL(d_validate);
1da177e4
LT
1953
1954/*
1955 * When a file is deleted, we have two options:
1956 * - turn this dentry into a negative dentry
1957 * - unhash this dentry and free it.
1958 *
1959 * Usually, we want to just turn this into
1960 * a negative dentry, but if anybody else is
1961 * currently using the dentry or the inode
1962 * we can't do that and we fall back on removing
1963 * it from the hash queues and waiting for
1964 * it to be deleted later when it has no users
1965 */
1966
1967/**
1968 * d_delete - delete a dentry
1969 * @dentry: The dentry to delete
1970 *
1971 * Turn the dentry into a negative dentry if possible, otherwise
1972 * remove it from the hash queues so it can be deleted later
1973 */
1974
1975void d_delete(struct dentry * dentry)
1976{
873feea0 1977 struct inode *inode;
7a91bf7f 1978 int isdir = 0;
1da177e4
LT
1979 /*
1980 * Are we the only user?
1981 */
357f8e65 1982again:
1da177e4 1983 spin_lock(&dentry->d_lock);
873feea0
NP
1984 inode = dentry->d_inode;
1985 isdir = S_ISDIR(inode->i_mode);
b7ab39f6 1986 if (dentry->d_count == 1) {
873feea0 1987 if (inode && !spin_trylock(&inode->i_lock)) {
357f8e65
NP
1988 spin_unlock(&dentry->d_lock);
1989 cpu_relax();
1990 goto again;
1991 }
13e3c5e5 1992 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 1993 dentry_unlink_inode(dentry);
7a91bf7f 1994 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
1995 return;
1996 }
1997
1998 if (!d_unhashed(dentry))
1999 __d_drop(dentry);
2000
2001 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2002
2003 fsnotify_nameremove(dentry, isdir);
1da177e4 2004}
ec4f8605 2005EXPORT_SYMBOL(d_delete);
1da177e4 2006
b07ad996 2007static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2008{
ceb5bdc2 2009 BUG_ON(!d_unhashed(entry));
1879fd6a 2010 hlist_bl_lock(b);
dea3667b 2011 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2012 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2013 hlist_bl_unlock(b);
1da177e4
LT
2014}
2015
770bfad8
DH
2016static void _d_rehash(struct dentry * entry)
2017{
2018 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2019}
2020
1da177e4
LT
2021/**
2022 * d_rehash - add an entry back to the hash
2023 * @entry: dentry to add to the hash
2024 *
2025 * Adds a dentry to the hash according to its name.
2026 */
2027
2028void d_rehash(struct dentry * entry)
2029{
1da177e4 2030 spin_lock(&entry->d_lock);
770bfad8 2031 _d_rehash(entry);
1da177e4 2032 spin_unlock(&entry->d_lock);
1da177e4 2033}
ec4f8605 2034EXPORT_SYMBOL(d_rehash);
1da177e4 2035
fb2d5b86
NP
2036/**
2037 * dentry_update_name_case - update case insensitive dentry with a new name
2038 * @dentry: dentry to be updated
2039 * @name: new name
2040 *
2041 * Update a case insensitive dentry with new case of name.
2042 *
2043 * dentry must have been returned by d_lookup with name @name. Old and new
2044 * name lengths must match (ie. no d_compare which allows mismatched name
2045 * lengths).
2046 *
2047 * Parent inode i_mutex must be held over d_lookup and into this call (to
2048 * keep renames and concurrent inserts, and readdir(2) away).
2049 */
2050void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2051{
7ebfa57f 2052 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2053 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2054
fb2d5b86 2055 spin_lock(&dentry->d_lock);
31e6b01f 2056 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2057 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2058 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2059 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2060}
2061EXPORT_SYMBOL(dentry_update_name_case);
2062
1da177e4
LT
2063static void switch_names(struct dentry *dentry, struct dentry *target)
2064{
2065 if (dname_external(target)) {
2066 if (dname_external(dentry)) {
2067 /*
2068 * Both external: swap the pointers
2069 */
9a8d5bb4 2070 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2071 } else {
2072 /*
2073 * dentry:internal, target:external. Steal target's
2074 * storage and make target internal.
2075 */
321bcf92
BF
2076 memcpy(target->d_iname, dentry->d_name.name,
2077 dentry->d_name.len + 1);
1da177e4
LT
2078 dentry->d_name.name = target->d_name.name;
2079 target->d_name.name = target->d_iname;
2080 }
2081 } else {
2082 if (dname_external(dentry)) {
2083 /*
2084 * dentry:external, target:internal. Give dentry's
2085 * storage to target and make dentry internal
2086 */
2087 memcpy(dentry->d_iname, target->d_name.name,
2088 target->d_name.len + 1);
2089 target->d_name.name = dentry->d_name.name;
2090 dentry->d_name.name = dentry->d_iname;
2091 } else {
2092 /*
2093 * Both are internal. Just copy target to dentry
2094 */
2095 memcpy(dentry->d_iname, target->d_name.name,
2096 target->d_name.len + 1);
dc711ca3
AV
2097 dentry->d_name.len = target->d_name.len;
2098 return;
1da177e4
LT
2099 }
2100 }
9a8d5bb4 2101 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2102}
2103
2fd6b7f5
NP
2104static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2105{
2106 /*
2107 * XXXX: do we really need to take target->d_lock?
2108 */
2109 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2110 spin_lock(&target->d_parent->d_lock);
2111 else {
2112 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2113 spin_lock(&dentry->d_parent->d_lock);
2114 spin_lock_nested(&target->d_parent->d_lock,
2115 DENTRY_D_LOCK_NESTED);
2116 } else {
2117 spin_lock(&target->d_parent->d_lock);
2118 spin_lock_nested(&dentry->d_parent->d_lock,
2119 DENTRY_D_LOCK_NESTED);
2120 }
2121 }
2122 if (target < dentry) {
2123 spin_lock_nested(&target->d_lock, 2);
2124 spin_lock_nested(&dentry->d_lock, 3);
2125 } else {
2126 spin_lock_nested(&dentry->d_lock, 2);
2127 spin_lock_nested(&target->d_lock, 3);
2128 }
2129}
2130
2131static void dentry_unlock_parents_for_move(struct dentry *dentry,
2132 struct dentry *target)
2133{
2134 if (target->d_parent != dentry->d_parent)
2135 spin_unlock(&dentry->d_parent->d_lock);
2136 if (target->d_parent != target)
2137 spin_unlock(&target->d_parent->d_lock);
2138}
2139
1da177e4 2140/*
2fd6b7f5
NP
2141 * When switching names, the actual string doesn't strictly have to
2142 * be preserved in the target - because we're dropping the target
2143 * anyway. As such, we can just do a simple memcpy() to copy over
2144 * the new name before we switch.
2145 *
2146 * Note that we have to be a lot more careful about getting the hash
2147 * switched - we have to switch the hash value properly even if it
2148 * then no longer matches the actual (corrupted) string of the target.
2149 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2150 */
9eaef27b 2151/*
18367501 2152 * __d_move - move a dentry
1da177e4
LT
2153 * @dentry: entry to move
2154 * @target: new dentry
2155 *
2156 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2157 * dcache entries should not be moved in this way. Caller must hold
2158 * rename_lock, the i_mutex of the source and target directories,
2159 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2160 */
18367501 2161static void __d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2162{
1da177e4
LT
2163 if (!dentry->d_inode)
2164 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2165
2fd6b7f5
NP
2166 BUG_ON(d_ancestor(dentry, target));
2167 BUG_ON(d_ancestor(target, dentry));
2168
2fd6b7f5 2169 dentry_lock_for_move(dentry, target);
1da177e4 2170
31e6b01f
NP
2171 write_seqcount_begin(&dentry->d_seq);
2172 write_seqcount_begin(&target->d_seq);
2173
ceb5bdc2
NP
2174 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2175
2176 /*
2177 * Move the dentry to the target hash queue. Don't bother checking
2178 * for the same hash queue because of how unlikely it is.
2179 */
2180 __d_drop(dentry);
789680d1 2181 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2182
2183 /* Unhash the target: dput() will then get rid of it */
2184 __d_drop(target);
2185
5160ee6f
ED
2186 list_del(&dentry->d_u.d_child);
2187 list_del(&target->d_u.d_child);
1da177e4
LT
2188
2189 /* Switch the names.. */
2190 switch_names(dentry, target);
9a8d5bb4 2191 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2192
2193 /* ... and switch the parents */
2194 if (IS_ROOT(dentry)) {
2195 dentry->d_parent = target->d_parent;
2196 target->d_parent = target;
5160ee6f 2197 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2198 } else {
9a8d5bb4 2199 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2200
2201 /* And add them back to the (new) parent lists */
5160ee6f 2202 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2203 }
2204
5160ee6f 2205 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2206
31e6b01f
NP
2207 write_seqcount_end(&target->d_seq);
2208 write_seqcount_end(&dentry->d_seq);
2209
2fd6b7f5 2210 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2211 spin_unlock(&target->d_lock);
c32ccd87 2212 fsnotify_d_move(dentry);
1da177e4 2213 spin_unlock(&dentry->d_lock);
18367501
AV
2214}
2215
2216/*
2217 * d_move - move a dentry
2218 * @dentry: entry to move
2219 * @target: new dentry
2220 *
2221 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2222 * dcache entries should not be moved in this way. See the locking
2223 * requirements for __d_move.
18367501
AV
2224 */
2225void d_move(struct dentry *dentry, struct dentry *target)
2226{
2227 write_seqlock(&rename_lock);
2228 __d_move(dentry, target);
1da177e4 2229 write_sequnlock(&rename_lock);
9eaef27b 2230}
ec4f8605 2231EXPORT_SYMBOL(d_move);
1da177e4 2232
e2761a11
OH
2233/**
2234 * d_ancestor - search for an ancestor
2235 * @p1: ancestor dentry
2236 * @p2: child dentry
2237 *
2238 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2239 * an ancestor of p2, else NULL.
9eaef27b 2240 */
e2761a11 2241struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2242{
2243 struct dentry *p;
2244
871c0067 2245 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2246 if (p->d_parent == p1)
e2761a11 2247 return p;
9eaef27b 2248 }
e2761a11 2249 return NULL;
9eaef27b
TM
2250}
2251
2252/*
2253 * This helper attempts to cope with remotely renamed directories
2254 *
2255 * It assumes that the caller is already holding
18367501 2256 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2257 *
2258 * Note: If ever the locking in lock_rename() changes, then please
2259 * remember to update this too...
9eaef27b 2260 */
873feea0
NP
2261static struct dentry *__d_unalias(struct inode *inode,
2262 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2263{
2264 struct mutex *m1 = NULL, *m2 = NULL;
2265 struct dentry *ret;
2266
2267 /* If alias and dentry share a parent, then no extra locks required */
2268 if (alias->d_parent == dentry->d_parent)
2269 goto out_unalias;
2270
9eaef27b
TM
2271 /* See lock_rename() */
2272 ret = ERR_PTR(-EBUSY);
2273 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2274 goto out_err;
2275 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2276 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2277 goto out_err;
2278 m2 = &alias->d_parent->d_inode->i_mutex;
2279out_unalias:
18367501 2280 __d_move(alias, dentry);
9eaef27b
TM
2281 ret = alias;
2282out_err:
873feea0 2283 spin_unlock(&inode->i_lock);
9eaef27b
TM
2284 if (m2)
2285 mutex_unlock(m2);
2286 if (m1)
2287 mutex_unlock(m1);
2288 return ret;
2289}
2290
770bfad8
DH
2291/*
2292 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2293 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2294 * returns with anon->d_lock held!
770bfad8
DH
2295 */
2296static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2297{
2298 struct dentry *dparent, *aparent;
2299
2fd6b7f5 2300 dentry_lock_for_move(anon, dentry);
770bfad8 2301
31e6b01f
NP
2302 write_seqcount_begin(&dentry->d_seq);
2303 write_seqcount_begin(&anon->d_seq);
2304
770bfad8
DH
2305 dparent = dentry->d_parent;
2306 aparent = anon->d_parent;
2307
2fd6b7f5
NP
2308 switch_names(dentry, anon);
2309 swap(dentry->d_name.hash, anon->d_name.hash);
2310
770bfad8
DH
2311 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2312 list_del(&dentry->d_u.d_child);
2313 if (!IS_ROOT(dentry))
2314 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2315 else
2316 INIT_LIST_HEAD(&dentry->d_u.d_child);
2317
2318 anon->d_parent = (dparent == dentry) ? anon : dparent;
2319 list_del(&anon->d_u.d_child);
2320 if (!IS_ROOT(anon))
2321 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2322 else
2323 INIT_LIST_HEAD(&anon->d_u.d_child);
2324
31e6b01f
NP
2325 write_seqcount_end(&dentry->d_seq);
2326 write_seqcount_end(&anon->d_seq);
2327
2fd6b7f5
NP
2328 dentry_unlock_parents_for_move(anon, dentry);
2329 spin_unlock(&dentry->d_lock);
2330
2331 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2332 anon->d_flags &= ~DCACHE_DISCONNECTED;
2333}
2334
2335/**
2336 * d_materialise_unique - introduce an inode into the tree
2337 * @dentry: candidate dentry
2338 * @inode: inode to bind to the dentry, to which aliases may be attached
2339 *
2340 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2341 * root directory alias in its place if there is one. Caller must hold the
2342 * i_mutex of the parent directory.
770bfad8
DH
2343 */
2344struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2345{
9eaef27b 2346 struct dentry *actual;
770bfad8
DH
2347
2348 BUG_ON(!d_unhashed(dentry));
2349
770bfad8
DH
2350 if (!inode) {
2351 actual = dentry;
360da900 2352 __d_instantiate(dentry, NULL);
357f8e65
NP
2353 d_rehash(actual);
2354 goto out_nolock;
770bfad8
DH
2355 }
2356
873feea0 2357 spin_lock(&inode->i_lock);
357f8e65 2358
9eaef27b
TM
2359 if (S_ISDIR(inode->i_mode)) {
2360 struct dentry *alias;
2361
2362 /* Does an aliased dentry already exist? */
2363 alias = __d_find_alias(inode, 0);
2364 if (alias) {
2365 actual = alias;
18367501
AV
2366 write_seqlock(&rename_lock);
2367
2368 if (d_ancestor(alias, dentry)) {
2369 /* Check for loops */
2370 actual = ERR_PTR(-ELOOP);
2371 } else if (IS_ROOT(alias)) {
2372 /* Is this an anonymous mountpoint that we
2373 * could splice into our tree? */
9eaef27b 2374 __d_materialise_dentry(dentry, alias);
18367501 2375 write_sequnlock(&rename_lock);
9eaef27b
TM
2376 __d_drop(alias);
2377 goto found;
18367501
AV
2378 } else {
2379 /* Nope, but we must(!) avoid directory
2380 * aliasing */
2381 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2382 }
18367501 2383 write_sequnlock(&rename_lock);
9eaef27b
TM
2384 if (IS_ERR(actual))
2385 dput(alias);
2386 goto out_nolock;
2387 }
770bfad8
DH
2388 }
2389
2390 /* Add a unique reference */
2391 actual = __d_instantiate_unique(dentry, inode);
2392 if (!actual)
2393 actual = dentry;
357f8e65
NP
2394 else
2395 BUG_ON(!d_unhashed(actual));
770bfad8 2396
770bfad8
DH
2397 spin_lock(&actual->d_lock);
2398found:
2399 _d_rehash(actual);
2400 spin_unlock(&actual->d_lock);
873feea0 2401 spin_unlock(&inode->i_lock);
9eaef27b 2402out_nolock:
770bfad8
DH
2403 if (actual == dentry) {
2404 security_d_instantiate(dentry, inode);
2405 return NULL;
2406 }
2407
2408 iput(inode);
2409 return actual;
770bfad8 2410}
ec4f8605 2411EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2412
cdd16d02 2413static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2414{
2415 *buflen -= namelen;
2416 if (*buflen < 0)
2417 return -ENAMETOOLONG;
2418 *buffer -= namelen;
2419 memcpy(*buffer, str, namelen);
2420 return 0;
2421}
2422
cdd16d02
MS
2423static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2424{
2425 return prepend(buffer, buflen, name->name, name->len);
2426}
2427
1da177e4 2428/**
208898c1 2429 * prepend_path - Prepend path string to a buffer
9d1bc601
MS
2430 * @path: the dentry/vfsmount to report
2431 * @root: root vfsmnt/dentry (may be modified by this function)
f2eb6575
MS
2432 * @buffer: pointer to the end of the buffer
2433 * @buflen: pointer to buffer length
552ce544 2434 *
949854d0 2435 * Caller holds the rename_lock.
9d1bc601
MS
2436 *
2437 * If path is not reachable from the supplied root, then the value of
2438 * root is changed (without modifying refcounts).
1da177e4 2439 */
f2eb6575
MS
2440static int prepend_path(const struct path *path, struct path *root,
2441 char **buffer, int *buflen)
1da177e4 2442{
9d1bc601
MS
2443 struct dentry *dentry = path->dentry;
2444 struct vfsmount *vfsmnt = path->mnt;
f2eb6575
MS
2445 bool slash = false;
2446 int error = 0;
6092d048 2447
99b7db7b 2448 br_read_lock(vfsmount_lock);
f2eb6575 2449 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2450 struct dentry * parent;
2451
1da177e4 2452 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2453 /* Global root? */
1da177e4 2454 if (vfsmnt->mnt_parent == vfsmnt) {
1da177e4
LT
2455 goto global_root;
2456 }
2457 dentry = vfsmnt->mnt_mountpoint;
2458 vfsmnt = vfsmnt->mnt_parent;
1da177e4
LT
2459 continue;
2460 }
2461 parent = dentry->d_parent;
2462 prefetch(parent);
9abca360 2463 spin_lock(&dentry->d_lock);
f2eb6575 2464 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2465 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2466 if (!error)
2467 error = prepend(buffer, buflen, "/", 1);
2468 if (error)
2469 break;
2470
2471 slash = true;
1da177e4
LT
2472 dentry = parent;
2473 }
2474
be285c71 2475out:
f2eb6575
MS
2476 if (!error && !slash)
2477 error = prepend(buffer, buflen, "/", 1);
2478
99b7db7b 2479 br_read_unlock(vfsmount_lock);
f2eb6575 2480 return error;
1da177e4
LT
2481
2482global_root:
98dc568b
MS
2483 /*
2484 * Filesystems needing to implement special "root names"
2485 * should do so with ->d_dname()
2486 */
2487 if (IS_ROOT(dentry) &&
2488 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2489 WARN(1, "Root dentry has weird name <%.*s>\n",
2490 (int) dentry->d_name.len, dentry->d_name.name);
2491 }
9d1bc601
MS
2492 root->mnt = vfsmnt;
2493 root->dentry = dentry;
be285c71 2494 goto out;
f2eb6575 2495}
be285c71 2496
f2eb6575
MS
2497/**
2498 * __d_path - return the path of a dentry
2499 * @path: the dentry/vfsmount to report
2500 * @root: root vfsmnt/dentry (may be modified by this function)
cd956a1c 2501 * @buf: buffer to return value in
f2eb6575
MS
2502 * @buflen: buffer length
2503 *
ffd1f4ed 2504 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2505 *
2506 * Returns a pointer into the buffer or an error code if the
2507 * path was too long.
2508 *
be148247 2509 * "buflen" should be positive.
f2eb6575
MS
2510 *
2511 * If path is not reachable from the supplied root, then the value of
2512 * root is changed (without modifying refcounts).
2513 */
2514char *__d_path(const struct path *path, struct path *root,
2515 char *buf, int buflen)
2516{
2517 char *res = buf + buflen;
2518 int error;
2519
2520 prepend(&res, &buflen, "\0", 1);
949854d0 2521 write_seqlock(&rename_lock);
f2eb6575 2522 error = prepend_path(path, root, &res, &buflen);
949854d0 2523 write_sequnlock(&rename_lock);
be148247 2524
f2eb6575
MS
2525 if (error)
2526 return ERR_PTR(error);
f2eb6575 2527 return res;
1da177e4
LT
2528}
2529
ffd1f4ed
MS
2530/*
2531 * same as __d_path but appends "(deleted)" for unlinked files.
2532 */
2533static int path_with_deleted(const struct path *path, struct path *root,
2534 char **buf, int *buflen)
2535{
2536 prepend(buf, buflen, "\0", 1);
2537 if (d_unlinked(path->dentry)) {
2538 int error = prepend(buf, buflen, " (deleted)", 10);
2539 if (error)
2540 return error;
2541 }
2542
2543 return prepend_path(path, root, buf, buflen);
2544}
2545
8df9d1a4
MS
2546static int prepend_unreachable(char **buffer, int *buflen)
2547{
2548 return prepend(buffer, buflen, "(unreachable)", 13);
2549}
2550
a03a8a70
JB
2551/**
2552 * d_path - return the path of a dentry
cf28b486 2553 * @path: path to report
a03a8a70
JB
2554 * @buf: buffer to return value in
2555 * @buflen: buffer length
2556 *
2557 * Convert a dentry into an ASCII path name. If the entry has been deleted
2558 * the string " (deleted)" is appended. Note that this is ambiguous.
2559 *
52afeefb
AV
2560 * Returns a pointer into the buffer or an error code if the path was
2561 * too long. Note: Callers should use the returned pointer, not the passed
2562 * in buffer, to use the name! The implementation often starts at an offset
2563 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2564 *
31f3e0b3 2565 * "buflen" should be positive.
a03a8a70 2566 */
20d4fdc1 2567char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2568{
ffd1f4ed 2569 char *res = buf + buflen;
6ac08c39 2570 struct path root;
9d1bc601 2571 struct path tmp;
ffd1f4ed 2572 int error;
1da177e4 2573
c23fbb6b
ED
2574 /*
2575 * We have various synthetic filesystems that never get mounted. On
2576 * these filesystems dentries are never used for lookup purposes, and
2577 * thus don't need to be hashed. They also don't need a name until a
2578 * user wants to identify the object in /proc/pid/fd/. The little hack
2579 * below allows us to generate a name for these objects on demand:
2580 */
cf28b486
JB
2581 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2582 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2583
f7ad3c6b 2584 get_fs_root(current->fs, &root);
949854d0 2585 write_seqlock(&rename_lock);
9d1bc601 2586 tmp = root;
ffd1f4ed
MS
2587 error = path_with_deleted(path, &tmp, &res, &buflen);
2588 if (error)
2589 res = ERR_PTR(error);
949854d0 2590 write_sequnlock(&rename_lock);
6ac08c39 2591 path_put(&root);
1da177e4
LT
2592 return res;
2593}
ec4f8605 2594EXPORT_SYMBOL(d_path);
1da177e4 2595
8df9d1a4
MS
2596/**
2597 * d_path_with_unreachable - return the path of a dentry
2598 * @path: path to report
2599 * @buf: buffer to return value in
2600 * @buflen: buffer length
2601 *
2602 * The difference from d_path() is that this prepends "(unreachable)"
2603 * to paths which are unreachable from the current process' root.
2604 */
2605char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2606{
2607 char *res = buf + buflen;
2608 struct path root;
2609 struct path tmp;
2610 int error;
2611
2612 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2613 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2614
2615 get_fs_root(current->fs, &root);
949854d0 2616 write_seqlock(&rename_lock);
8df9d1a4
MS
2617 tmp = root;
2618 error = path_with_deleted(path, &tmp, &res, &buflen);
2619 if (!error && !path_equal(&tmp, &root))
2620 error = prepend_unreachable(&res, &buflen);
949854d0 2621 write_sequnlock(&rename_lock);
8df9d1a4
MS
2622 path_put(&root);
2623 if (error)
2624 res = ERR_PTR(error);
2625
2626 return res;
2627}
2628
c23fbb6b
ED
2629/*
2630 * Helper function for dentry_operations.d_dname() members
2631 */
2632char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2633 const char *fmt, ...)
2634{
2635 va_list args;
2636 char temp[64];
2637 int sz;
2638
2639 va_start(args, fmt);
2640 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2641 va_end(args);
2642
2643 if (sz > sizeof(temp) || sz > buflen)
2644 return ERR_PTR(-ENAMETOOLONG);
2645
2646 buffer += buflen - sz;
2647 return memcpy(buffer, temp, sz);
2648}
2649
6092d048
RP
2650/*
2651 * Write full pathname from the root of the filesystem into the buffer.
2652 */
ec2447c2 2653static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2654{
2655 char *end = buf + buflen;
2656 char *retval;
2657
6092d048 2658 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2659 if (buflen < 1)
2660 goto Elong;
2661 /* Get '/' right */
2662 retval = end-1;
2663 *retval = '/';
2664
cdd16d02
MS
2665 while (!IS_ROOT(dentry)) {
2666 struct dentry *parent = dentry->d_parent;
9abca360 2667 int error;
6092d048 2668
6092d048 2669 prefetch(parent);
9abca360
NP
2670 spin_lock(&dentry->d_lock);
2671 error = prepend_name(&end, &buflen, &dentry->d_name);
2672 spin_unlock(&dentry->d_lock);
2673 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2674 goto Elong;
2675
2676 retval = end;
2677 dentry = parent;
2678 }
c103135c
AV
2679 return retval;
2680Elong:
2681 return ERR_PTR(-ENAMETOOLONG);
2682}
ec2447c2
NP
2683
2684char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2685{
2686 char *retval;
2687
949854d0 2688 write_seqlock(&rename_lock);
ec2447c2 2689 retval = __dentry_path(dentry, buf, buflen);
949854d0 2690 write_sequnlock(&rename_lock);
ec2447c2
NP
2691
2692 return retval;
2693}
2694EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2695
2696char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2697{
2698 char *p = NULL;
2699 char *retval;
2700
949854d0 2701 write_seqlock(&rename_lock);
c103135c
AV
2702 if (d_unlinked(dentry)) {
2703 p = buf + buflen;
2704 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2705 goto Elong;
2706 buflen++;
2707 }
2708 retval = __dentry_path(dentry, buf, buflen);
949854d0 2709 write_sequnlock(&rename_lock);
c103135c
AV
2710 if (!IS_ERR(retval) && p)
2711 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2712 return retval;
2713Elong:
6092d048
RP
2714 return ERR_PTR(-ENAMETOOLONG);
2715}
2716
1da177e4
LT
2717/*
2718 * NOTE! The user-level library version returns a
2719 * character pointer. The kernel system call just
2720 * returns the length of the buffer filled (which
2721 * includes the ending '\0' character), or a negative
2722 * error value. So libc would do something like
2723 *
2724 * char *getcwd(char * buf, size_t size)
2725 * {
2726 * int retval;
2727 *
2728 * retval = sys_getcwd(buf, size);
2729 * if (retval >= 0)
2730 * return buf;
2731 * errno = -retval;
2732 * return NULL;
2733 * }
2734 */
3cdad428 2735SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2736{
552ce544 2737 int error;
6ac08c39 2738 struct path pwd, root;
552ce544 2739 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2740
2741 if (!page)
2742 return -ENOMEM;
2743
f7ad3c6b 2744 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2745
552ce544 2746 error = -ENOENT;
949854d0 2747 write_seqlock(&rename_lock);
f3da392e 2748 if (!d_unlinked(pwd.dentry)) {
552ce544 2749 unsigned long len;
9d1bc601 2750 struct path tmp = root;
8df9d1a4
MS
2751 char *cwd = page + PAGE_SIZE;
2752 int buflen = PAGE_SIZE;
1da177e4 2753
8df9d1a4
MS
2754 prepend(&cwd, &buflen, "\0", 1);
2755 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
949854d0 2756 write_sequnlock(&rename_lock);
552ce544 2757
8df9d1a4 2758 if (error)
552ce544
LT
2759 goto out;
2760
8df9d1a4
MS
2761 /* Unreachable from current root */
2762 if (!path_equal(&tmp, &root)) {
2763 error = prepend_unreachable(&cwd, &buflen);
2764 if (error)
2765 goto out;
2766 }
2767
552ce544
LT
2768 error = -ERANGE;
2769 len = PAGE_SIZE + page - cwd;
2770 if (len <= size) {
2771 error = len;
2772 if (copy_to_user(buf, cwd, len))
2773 error = -EFAULT;
2774 }
949854d0
NP
2775 } else {
2776 write_sequnlock(&rename_lock);
949854d0 2777 }
1da177e4
LT
2778
2779out:
6ac08c39
JB
2780 path_put(&pwd);
2781 path_put(&root);
1da177e4
LT
2782 free_page((unsigned long) page);
2783 return error;
2784}
2785
2786/*
2787 * Test whether new_dentry is a subdirectory of old_dentry.
2788 *
2789 * Trivially implemented using the dcache structure
2790 */
2791
2792/**
2793 * is_subdir - is new dentry a subdirectory of old_dentry
2794 * @new_dentry: new dentry
2795 * @old_dentry: old dentry
2796 *
2797 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2798 * Returns 0 otherwise.
2799 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2800 */
2801
e2761a11 2802int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2803{
2804 int result;
949854d0 2805 unsigned seq;
1da177e4 2806
e2761a11
OH
2807 if (new_dentry == old_dentry)
2808 return 1;
2809
e2761a11 2810 do {
1da177e4 2811 /* for restarting inner loop in case of seq retry */
1da177e4 2812 seq = read_seqbegin(&rename_lock);
949854d0
NP
2813 /*
2814 * Need rcu_readlock to protect against the d_parent trashing
2815 * due to d_move
2816 */
2817 rcu_read_lock();
e2761a11 2818 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2819 result = 1;
e2761a11
OH
2820 else
2821 result = 0;
949854d0 2822 rcu_read_unlock();
1da177e4 2823 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2824
2825 return result;
2826}
2827
2096f759
AV
2828int path_is_under(struct path *path1, struct path *path2)
2829{
2830 struct vfsmount *mnt = path1->mnt;
2831 struct dentry *dentry = path1->dentry;
2832 int res;
99b7db7b
NP
2833
2834 br_read_lock(vfsmount_lock);
2096f759
AV
2835 if (mnt != path2->mnt) {
2836 for (;;) {
2837 if (mnt->mnt_parent == mnt) {
99b7db7b 2838 br_read_unlock(vfsmount_lock);
2096f759
AV
2839 return 0;
2840 }
2841 if (mnt->mnt_parent == path2->mnt)
2842 break;
2843 mnt = mnt->mnt_parent;
2844 }
2845 dentry = mnt->mnt_mountpoint;
2846 }
2847 res = is_subdir(dentry, path2->dentry);
99b7db7b 2848 br_read_unlock(vfsmount_lock);
2096f759
AV
2849 return res;
2850}
2851EXPORT_SYMBOL(path_is_under);
2852
1da177e4
LT
2853void d_genocide(struct dentry *root)
2854{
949854d0 2855 struct dentry *this_parent;
1da177e4 2856 struct list_head *next;
949854d0 2857 unsigned seq;
58db63d0 2858 int locked = 0;
1da177e4 2859
949854d0 2860 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2861again:
2862 this_parent = root;
2fd6b7f5 2863 spin_lock(&this_parent->d_lock);
1da177e4
LT
2864repeat:
2865 next = this_parent->d_subdirs.next;
2866resume:
2867 while (next != &this_parent->d_subdirs) {
2868 struct list_head *tmp = next;
5160ee6f 2869 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2870 next = tmp->next;
949854d0 2871
da502956
NP
2872 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2873 if (d_unhashed(dentry) || !dentry->d_inode) {
2874 spin_unlock(&dentry->d_lock);
1da177e4 2875 continue;
da502956 2876 }
1da177e4 2877 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2878 spin_unlock(&this_parent->d_lock);
2879 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2880 this_parent = dentry;
2fd6b7f5 2881 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2882 goto repeat;
2883 }
949854d0
NP
2884 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2885 dentry->d_flags |= DCACHE_GENOCIDE;
2886 dentry->d_count--;
2887 }
b7ab39f6 2888 spin_unlock(&dentry->d_lock);
1da177e4
LT
2889 }
2890 if (this_parent != root) {
c826cb7d 2891 struct dentry *child = this_parent;
949854d0
NP
2892 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2893 this_parent->d_flags |= DCACHE_GENOCIDE;
2894 this_parent->d_count--;
2895 }
c826cb7d
LT
2896 this_parent = try_to_ascend(this_parent, locked, seq);
2897 if (!this_parent)
949854d0 2898 goto rename_retry;
949854d0 2899 next = child->d_u.d_child.next;
1da177e4
LT
2900 goto resume;
2901 }
2fd6b7f5 2902 spin_unlock(&this_parent->d_lock);
58db63d0 2903 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 2904 goto rename_retry;
58db63d0
NP
2905 if (locked)
2906 write_sequnlock(&rename_lock);
2907 return;
2908
2909rename_retry:
2910 locked = 1;
2911 write_seqlock(&rename_lock);
2912 goto again;
1da177e4
LT
2913}
2914
2915/**
2916 * find_inode_number - check for dentry with name
2917 * @dir: directory to check
2918 * @name: Name to find.
2919 *
2920 * Check whether a dentry already exists for the given name,
2921 * and return the inode number if it has an inode. Otherwise
2922 * 0 is returned.
2923 *
2924 * This routine is used to post-process directory listings for
2925 * filesystems using synthetic inode numbers, and is necessary
2926 * to keep getcwd() working.
2927 */
2928
2929ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2930{
2931 struct dentry * dentry;
2932 ino_t ino = 0;
2933
3e7e241f
EB
2934 dentry = d_hash_and_lookup(dir, name);
2935 if (dentry) {
1da177e4
LT
2936 if (dentry->d_inode)
2937 ino = dentry->d_inode->i_ino;
2938 dput(dentry);
2939 }
1da177e4
LT
2940 return ino;
2941}
ec4f8605 2942EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
2943
2944static __initdata unsigned long dhash_entries;
2945static int __init set_dhash_entries(char *str)
2946{
2947 if (!str)
2948 return 0;
2949 dhash_entries = simple_strtoul(str, &str, 0);
2950 return 1;
2951}
2952__setup("dhash_entries=", set_dhash_entries);
2953
2954static void __init dcache_init_early(void)
2955{
2956 int loop;
2957
2958 /* If hashes are distributed across NUMA nodes, defer
2959 * hash allocation until vmalloc space is available.
2960 */
2961 if (hashdist)
2962 return;
2963
2964 dentry_hashtable =
2965 alloc_large_system_hash("Dentry cache",
b07ad996 2966 sizeof(struct hlist_bl_head),
1da177e4
LT
2967 dhash_entries,
2968 13,
2969 HASH_EARLY,
2970 &d_hash_shift,
2971 &d_hash_mask,
2972 0);
2973
2974 for (loop = 0; loop < (1 << d_hash_shift); loop++)
b07ad996 2975 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
2976}
2977
74bf17cf 2978static void __init dcache_init(void)
1da177e4
LT
2979{
2980 int loop;
2981
2982 /*
2983 * A constructor could be added for stable state like the lists,
2984 * but it is probably not worth it because of the cache nature
2985 * of the dcache.
2986 */
0a31bd5f
CL
2987 dentry_cache = KMEM_CACHE(dentry,
2988 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
2989
2990 /* Hash may have been set up in dcache_init_early */
2991 if (!hashdist)
2992 return;
2993
2994 dentry_hashtable =
2995 alloc_large_system_hash("Dentry cache",
b07ad996 2996 sizeof(struct hlist_bl_head),
1da177e4
LT
2997 dhash_entries,
2998 13,
2999 0,
3000 &d_hash_shift,
3001 &d_hash_mask,
3002 0);
3003
3004 for (loop = 0; loop < (1 << d_hash_shift); loop++)
b07ad996 3005 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3006}
3007
3008/* SLAB cache for __getname() consumers */
e18b890b 3009struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3010EXPORT_SYMBOL(names_cachep);
1da177e4 3011
1da177e4
LT
3012EXPORT_SYMBOL(d_genocide);
3013
1da177e4
LT
3014void __init vfs_caches_init_early(void)
3015{
3016 dcache_init_early();
3017 inode_init_early();
3018}
3019
3020void __init vfs_caches_init(unsigned long mempages)
3021{
3022 unsigned long reserve;
3023
3024 /* Base hash sizes on available memory, with a reserve equal to
3025 150% of current kernel size */
3026
3027 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3028 mempages -= reserve;
3029
3030 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3031 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3032
74bf17cf
DC
3033 dcache_init();
3034 inode_init();
1da177e4 3035 files_init(mempages);
74bf17cf 3036 mnt_init();
1da177e4
LT
3037 bdev_cache_init();
3038 chrdev_init();
3039}
This page took 0.830597 seconds and 5 git commands to generate.