pstore: Add console log messages support
[deliverable/linux.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
07f3f05c 40#include "internal.h"
b2dba1af 41#include "mount.h"
1da177e4 42
789680d1
NP
43/*
44 * Usage:
873feea0
NP
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
23044507
NP
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
b7ab39f6 57 * - d_count
da502956 58 * - d_unhashed()
2fd6b7f5
NP
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
b23fb0a6 61 * - d_alias, d_inode
789680d1
NP
62 *
63 * Ordering:
873feea0 64 * dentry->d_inode->i_lock
b5c84bf6
NP
65 * dentry->d_lock
66 * dcache_lru_lock
ceb5bdc2
NP
67 * dcache_hash_bucket lock
68 * s_anon lock
789680d1 69 *
da502956
NP
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
789680d1
NP
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
fa3536cc 81int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
82EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
23044507 84static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99#define D_HASHBITS d_hash_shift
100#define D_HASHMASK d_hash_mask
101
fa3536cc
ED
102static unsigned int d_hash_mask __read_mostly;
103static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 104
b07ad996 105static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 106
8966be90 107static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 108 unsigned int hash)
ceb5bdc2 109{
6d7d1a0d
LT
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 hash = hash + (hash >> D_HASHBITS);
ceb5bdc2
NP
112 return dentry_hashtable + (hash & D_HASHMASK);
113}
114
1da177e4
LT
115/* Statistics gathering. */
116struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118};
119
3e880fb5 120static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
121
122#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
123static int get_nr_dentry(void)
124{
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
130}
131
312d3ca8
CH
132int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
134{
3e880fb5 135 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
136 return proc_dointvec(table, write, buffer, lenp, ppos);
137}
138#endif
139
5483f18e
LT
140/*
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
143 */
e419b4cc
LT
144#ifdef CONFIG_DCACHE_WORD_ACCESS
145
146#include <asm/word-at-a-time.h>
147/*
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
152 *
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
155 */
94753db5 156static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 157{
bfcfaa77 158 unsigned long a,b,mask;
bfcfaa77
LT
159
160 for (;;) {
12f8ad4b 161 a = *(unsigned long *)cs;
e419b4cc 162 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
163 if (tcount < sizeof(unsigned long))
164 break;
165 if (unlikely(a != b))
166 return 1;
167 cs += sizeof(unsigned long);
168 ct += sizeof(unsigned long);
169 tcount -= sizeof(unsigned long);
170 if (!tcount)
171 return 0;
172 }
173 mask = ~(~0ul << tcount*8);
174 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
175}
176
bfcfaa77 177#else
e419b4cc 178
94753db5 179static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 180{
5483f18e
LT
181 do {
182 if (*cs != *ct)
183 return 1;
184 cs++;
185 ct++;
186 tcount--;
187 } while (tcount);
188 return 0;
189}
190
e419b4cc
LT
191#endif
192
94753db5
LT
193static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
194{
6326c71f 195 const unsigned char *cs;
94753db5
LT
196 /*
197 * Be careful about RCU walk racing with rename:
198 * use ACCESS_ONCE to fetch the name pointer.
199 *
200 * NOTE! Even if a rename will mean that the length
201 * was not loaded atomically, we don't care. The
202 * RCU walk will check the sequence count eventually,
203 * and catch it. And we won't overrun the buffer,
204 * because we're reading the name pointer atomically,
205 * and a dentry name is guaranteed to be properly
206 * terminated with a NUL byte.
207 *
208 * End result: even if 'len' is wrong, we'll exit
209 * early because the data cannot match (there can
210 * be no NUL in the ct/tcount data)
211 */
6326c71f
LT
212 cs = ACCESS_ONCE(dentry->d_name.name);
213 smp_read_barrier_depends();
214 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
215}
216
9c82ab9c 217static void __d_free(struct rcu_head *head)
1da177e4 218{
9c82ab9c
CH
219 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
220
fd217f4d 221 WARN_ON(!list_empty(&dentry->d_alias));
1da177e4
LT
222 if (dname_external(dentry))
223 kfree(dentry->d_name.name);
224 kmem_cache_free(dentry_cache, dentry);
225}
226
227/*
b5c84bf6 228 * no locks, please.
1da177e4
LT
229 */
230static void d_free(struct dentry *dentry)
231{
b7ab39f6 232 BUG_ON(dentry->d_count);
3e880fb5 233 this_cpu_dec(nr_dentry);
1da177e4
LT
234 if (dentry->d_op && dentry->d_op->d_release)
235 dentry->d_op->d_release(dentry);
312d3ca8 236
dea3667b
LT
237 /* if dentry was never visible to RCU, immediate free is OK */
238 if (!(dentry->d_flags & DCACHE_RCUACCESS))
9c82ab9c 239 __d_free(&dentry->d_u.d_rcu);
b3423415 240 else
9c82ab9c 241 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
242}
243
31e6b01f
NP
244/**
245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 246 * @dentry: the target dentry
31e6b01f
NP
247 * After this call, in-progress rcu-walk path lookup will fail. This
248 * should be called after unhashing, and after changing d_inode (if
249 * the dentry has not already been unhashed).
250 */
251static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
252{
253 assert_spin_locked(&dentry->d_lock);
254 /* Go through a barrier */
255 write_seqcount_barrier(&dentry->d_seq);
256}
257
1da177e4
LT
258/*
259 * Release the dentry's inode, using the filesystem
31e6b01f
NP
260 * d_iput() operation if defined. Dentry has no refcount
261 * and is unhashed.
1da177e4 262 */
858119e1 263static void dentry_iput(struct dentry * dentry)
31f3e0b3 264 __releases(dentry->d_lock)
873feea0 265 __releases(dentry->d_inode->i_lock)
1da177e4
LT
266{
267 struct inode *inode = dentry->d_inode;
268 if (inode) {
269 dentry->d_inode = NULL;
270 list_del_init(&dentry->d_alias);
271 spin_unlock(&dentry->d_lock);
873feea0 272 spin_unlock(&inode->i_lock);
f805fbda
LT
273 if (!inode->i_nlink)
274 fsnotify_inoderemove(inode);
1da177e4
LT
275 if (dentry->d_op && dentry->d_op->d_iput)
276 dentry->d_op->d_iput(dentry, inode);
277 else
278 iput(inode);
279 } else {
280 spin_unlock(&dentry->d_lock);
1da177e4
LT
281 }
282}
283
31e6b01f
NP
284/*
285 * Release the dentry's inode, using the filesystem
286 * d_iput() operation if defined. dentry remains in-use.
287 */
288static void dentry_unlink_inode(struct dentry * dentry)
289 __releases(dentry->d_lock)
873feea0 290 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
291{
292 struct inode *inode = dentry->d_inode;
293 dentry->d_inode = NULL;
294 list_del_init(&dentry->d_alias);
295 dentry_rcuwalk_barrier(dentry);
296 spin_unlock(&dentry->d_lock);
873feea0 297 spin_unlock(&inode->i_lock);
31e6b01f
NP
298 if (!inode->i_nlink)
299 fsnotify_inoderemove(inode);
300 if (dentry->d_op && dentry->d_op->d_iput)
301 dentry->d_op->d_iput(dentry, inode);
302 else
303 iput(inode);
304}
305
da3bbdd4 306/*
f0023bc6 307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
da3bbdd4
KM
308 */
309static void dentry_lru_add(struct dentry *dentry)
310{
a4633357 311 if (list_empty(&dentry->d_lru)) {
23044507 312 spin_lock(&dcache_lru_lock);
a4633357
CH
313 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 315 dentry_stat.nr_unused++;
23044507 316 spin_unlock(&dcache_lru_lock);
a4633357 317 }
da3bbdd4
KM
318}
319
23044507
NP
320static void __dentry_lru_del(struct dentry *dentry)
321{
322 list_del_init(&dentry->d_lru);
eaf5f907 323 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
23044507
NP
324 dentry->d_sb->s_nr_dentry_unused--;
325 dentry_stat.nr_unused--;
326}
327
f0023bc6
SW
328/*
329 * Remove a dentry with references from the LRU.
330 */
da3bbdd4
KM
331static void dentry_lru_del(struct dentry *dentry)
332{
333 if (!list_empty(&dentry->d_lru)) {
23044507
NP
334 spin_lock(&dcache_lru_lock);
335 __dentry_lru_del(dentry);
336 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
337 }
338}
339
f0023bc6
SW
340/*
341 * Remove a dentry that is unreferenced and about to be pruned
342 * (unhashed and destroyed) from the LRU, and inform the file system.
343 * This wrapper should be called _prior_ to unhashing a victim dentry.
344 */
345static void dentry_lru_prune(struct dentry *dentry)
346{
347 if (!list_empty(&dentry->d_lru)) {
348 if (dentry->d_flags & DCACHE_OP_PRUNE)
349 dentry->d_op->d_prune(dentry);
350
351 spin_lock(&dcache_lru_lock);
352 __dentry_lru_del(dentry);
353 spin_unlock(&dcache_lru_lock);
354 }
355}
356
b48f03b3 357static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
da3bbdd4 358{
23044507 359 spin_lock(&dcache_lru_lock);
a4633357 360 if (list_empty(&dentry->d_lru)) {
b48f03b3 361 list_add_tail(&dentry->d_lru, list);
a4633357 362 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 363 dentry_stat.nr_unused++;
a4633357 364 } else {
b48f03b3 365 list_move_tail(&dentry->d_lru, list);
da3bbdd4 366 }
23044507 367 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
368}
369
d52b9086
MS
370/**
371 * d_kill - kill dentry and return parent
372 * @dentry: dentry to kill
ff5fdb61 373 * @parent: parent dentry
d52b9086 374 *
31f3e0b3 375 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
376 *
377 * If this is the root of the dentry tree, return NULL.
23044507 378 *
b5c84bf6
NP
379 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
380 * d_kill.
d52b9086 381 */
2fd6b7f5 382static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 383 __releases(dentry->d_lock)
2fd6b7f5 384 __releases(parent->d_lock)
873feea0 385 __releases(dentry->d_inode->i_lock)
d52b9086 386{
d52b9086 387 list_del(&dentry->d_u.d_child);
c83ce989
TM
388 /*
389 * Inform try_to_ascend() that we are no longer attached to the
390 * dentry tree
391 */
392 dentry->d_flags |= DCACHE_DISCONNECTED;
2fd6b7f5
NP
393 if (parent)
394 spin_unlock(&parent->d_lock);
d52b9086 395 dentry_iput(dentry);
b7ab39f6
NP
396 /*
397 * dentry_iput drops the locks, at which point nobody (except
398 * transient RCU lookups) can reach this dentry.
399 */
d52b9086 400 d_free(dentry);
871c0067 401 return parent;
d52b9086
MS
402}
403
c6627c60
DH
404/*
405 * Unhash a dentry without inserting an RCU walk barrier or checking that
406 * dentry->d_lock is locked. The caller must take care of that, if
407 * appropriate.
408 */
409static void __d_shrink(struct dentry *dentry)
410{
411 if (!d_unhashed(dentry)) {
412 struct hlist_bl_head *b;
413 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
414 b = &dentry->d_sb->s_anon;
415 else
416 b = d_hash(dentry->d_parent, dentry->d_name.hash);
417
418 hlist_bl_lock(b);
419 __hlist_bl_del(&dentry->d_hash);
420 dentry->d_hash.pprev = NULL;
421 hlist_bl_unlock(b);
422 }
423}
424
789680d1
NP
425/**
426 * d_drop - drop a dentry
427 * @dentry: dentry to drop
428 *
429 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
430 * be found through a VFS lookup any more. Note that this is different from
431 * deleting the dentry - d_delete will try to mark the dentry negative if
432 * possible, giving a successful _negative_ lookup, while d_drop will
433 * just make the cache lookup fail.
434 *
435 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
436 * reason (NFS timeouts or autofs deletes).
437 *
438 * __d_drop requires dentry->d_lock.
439 */
440void __d_drop(struct dentry *dentry)
441{
dea3667b 442 if (!d_unhashed(dentry)) {
c6627c60 443 __d_shrink(dentry);
dea3667b 444 dentry_rcuwalk_barrier(dentry);
789680d1
NP
445 }
446}
447EXPORT_SYMBOL(__d_drop);
448
449void d_drop(struct dentry *dentry)
450{
789680d1
NP
451 spin_lock(&dentry->d_lock);
452 __d_drop(dentry);
453 spin_unlock(&dentry->d_lock);
789680d1
NP
454}
455EXPORT_SYMBOL(d_drop);
456
44396f4b
JB
457/*
458 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
459 * @dentry: dentry to drop
460 *
461 * This is called when we do a lookup on a placeholder dentry that needed to be
462 * looked up. The dentry should have been hashed in order for it to be found by
463 * the lookup code, but now needs to be unhashed while we do the actual lookup
464 * and clear the DCACHE_NEED_LOOKUP flag.
465 */
466void d_clear_need_lookup(struct dentry *dentry)
467{
468 spin_lock(&dentry->d_lock);
469 __d_drop(dentry);
470 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
471 spin_unlock(&dentry->d_lock);
472}
473EXPORT_SYMBOL(d_clear_need_lookup);
474
77812a1e
NP
475/*
476 * Finish off a dentry we've decided to kill.
477 * dentry->d_lock must be held, returns with it unlocked.
478 * If ref is non-zero, then decrement the refcount too.
479 * Returns dentry requiring refcount drop, or NULL if we're done.
480 */
481static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
482 __releases(dentry->d_lock)
483{
873feea0 484 struct inode *inode;
77812a1e
NP
485 struct dentry *parent;
486
873feea0
NP
487 inode = dentry->d_inode;
488 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e
NP
489relock:
490 spin_unlock(&dentry->d_lock);
491 cpu_relax();
492 return dentry; /* try again with same dentry */
493 }
494 if (IS_ROOT(dentry))
495 parent = NULL;
496 else
497 parent = dentry->d_parent;
498 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
499 if (inode)
500 spin_unlock(&inode->i_lock);
77812a1e
NP
501 goto relock;
502 }
31e6b01f 503
77812a1e
NP
504 if (ref)
505 dentry->d_count--;
f0023bc6
SW
506 /*
507 * if dentry was on the d_lru list delete it from there.
508 * inform the fs via d_prune that this dentry is about to be
509 * unhashed and destroyed.
510 */
511 dentry_lru_prune(dentry);
77812a1e
NP
512 /* if it was on the hash then remove it */
513 __d_drop(dentry);
514 return d_kill(dentry, parent);
515}
516
1da177e4
LT
517/*
518 * This is dput
519 *
520 * This is complicated by the fact that we do not want to put
521 * dentries that are no longer on any hash chain on the unused
522 * list: we'd much rather just get rid of them immediately.
523 *
524 * However, that implies that we have to traverse the dentry
525 * tree upwards to the parents which might _also_ now be
526 * scheduled for deletion (it may have been only waiting for
527 * its last child to go away).
528 *
529 * This tail recursion is done by hand as we don't want to depend
530 * on the compiler to always get this right (gcc generally doesn't).
531 * Real recursion would eat up our stack space.
532 */
533
534/*
535 * dput - release a dentry
536 * @dentry: dentry to release
537 *
538 * Release a dentry. This will drop the usage count and if appropriate
539 * call the dentry unlink method as well as removing it from the queues and
540 * releasing its resources. If the parent dentries were scheduled for release
541 * they too may now get deleted.
1da177e4 542 */
1da177e4
LT
543void dput(struct dentry *dentry)
544{
545 if (!dentry)
546 return;
547
548repeat:
b7ab39f6 549 if (dentry->d_count == 1)
1da177e4 550 might_sleep();
1da177e4 551 spin_lock(&dentry->d_lock);
61f3dee4
NP
552 BUG_ON(!dentry->d_count);
553 if (dentry->d_count > 1) {
554 dentry->d_count--;
1da177e4 555 spin_unlock(&dentry->d_lock);
1da177e4
LT
556 return;
557 }
558
fb045adb 559 if (dentry->d_flags & DCACHE_OP_DELETE) {
1da177e4 560 if (dentry->d_op->d_delete(dentry))
61f3dee4 561 goto kill_it;
1da177e4 562 }
265ac902 563
1da177e4
LT
564 /* Unreachable? Get rid of it */
565 if (d_unhashed(dentry))
566 goto kill_it;
265ac902 567
44396f4b
JB
568 /*
569 * If this dentry needs lookup, don't set the referenced flag so that it
570 * is more likely to be cleaned up by the dcache shrinker in case of
571 * memory pressure.
572 */
573 if (!d_need_lookup(dentry))
574 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 575 dentry_lru_add(dentry);
265ac902 576
61f3dee4
NP
577 dentry->d_count--;
578 spin_unlock(&dentry->d_lock);
1da177e4
LT
579 return;
580
d52b9086 581kill_it:
77812a1e 582 dentry = dentry_kill(dentry, 1);
d52b9086
MS
583 if (dentry)
584 goto repeat;
1da177e4 585}
ec4f8605 586EXPORT_SYMBOL(dput);
1da177e4
LT
587
588/**
589 * d_invalidate - invalidate a dentry
590 * @dentry: dentry to invalidate
591 *
592 * Try to invalidate the dentry if it turns out to be
593 * possible. If there are other dentries that can be
594 * reached through this one we can't delete it and we
595 * return -EBUSY. On success we return 0.
596 *
597 * no dcache lock.
598 */
599
600int d_invalidate(struct dentry * dentry)
601{
602 /*
603 * If it's already been dropped, return OK.
604 */
da502956 605 spin_lock(&dentry->d_lock);
1da177e4 606 if (d_unhashed(dentry)) {
da502956 607 spin_unlock(&dentry->d_lock);
1da177e4
LT
608 return 0;
609 }
610 /*
611 * Check whether to do a partial shrink_dcache
612 * to get rid of unused child entries.
613 */
614 if (!list_empty(&dentry->d_subdirs)) {
da502956 615 spin_unlock(&dentry->d_lock);
1da177e4 616 shrink_dcache_parent(dentry);
da502956 617 spin_lock(&dentry->d_lock);
1da177e4
LT
618 }
619
620 /*
621 * Somebody else still using it?
622 *
623 * If it's a directory, we can't drop it
624 * for fear of somebody re-populating it
625 * with children (even though dropping it
626 * would make it unreachable from the root,
627 * we might still populate it if it was a
628 * working directory or similar).
50e69630
AV
629 * We also need to leave mountpoints alone,
630 * directory or not.
1da177e4 631 */
50e69630
AV
632 if (dentry->d_count > 1 && dentry->d_inode) {
633 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 634 spin_unlock(&dentry->d_lock);
1da177e4
LT
635 return -EBUSY;
636 }
637 }
638
639 __d_drop(dentry);
640 spin_unlock(&dentry->d_lock);
1da177e4
LT
641 return 0;
642}
ec4f8605 643EXPORT_SYMBOL(d_invalidate);
1da177e4 644
b5c84bf6 645/* This must be called with d_lock held */
dc0474be 646static inline void __dget_dlock(struct dentry *dentry)
23044507 647{
b7ab39f6 648 dentry->d_count++;
23044507
NP
649}
650
dc0474be 651static inline void __dget(struct dentry *dentry)
1da177e4 652{
23044507 653 spin_lock(&dentry->d_lock);
dc0474be 654 __dget_dlock(dentry);
23044507 655 spin_unlock(&dentry->d_lock);
1da177e4
LT
656}
657
b7ab39f6
NP
658struct dentry *dget_parent(struct dentry *dentry)
659{
660 struct dentry *ret;
661
662repeat:
a734eb45
NP
663 /*
664 * Don't need rcu_dereference because we re-check it was correct under
665 * the lock.
666 */
667 rcu_read_lock();
b7ab39f6 668 ret = dentry->d_parent;
a734eb45
NP
669 spin_lock(&ret->d_lock);
670 if (unlikely(ret != dentry->d_parent)) {
671 spin_unlock(&ret->d_lock);
672 rcu_read_unlock();
b7ab39f6
NP
673 goto repeat;
674 }
a734eb45 675 rcu_read_unlock();
b7ab39f6
NP
676 BUG_ON(!ret->d_count);
677 ret->d_count++;
678 spin_unlock(&ret->d_lock);
b7ab39f6
NP
679 return ret;
680}
681EXPORT_SYMBOL(dget_parent);
682
1da177e4
LT
683/**
684 * d_find_alias - grab a hashed alias of inode
685 * @inode: inode in question
1da177e4
LT
686 *
687 * If inode has a hashed alias, or is a directory and has any alias,
688 * acquire the reference to alias and return it. Otherwise return NULL.
689 * Notice that if inode is a directory there can be only one alias and
690 * it can be unhashed only if it has no children, or if it is the root
691 * of a filesystem.
692 *
21c0d8fd 693 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
3f50fff4 694 * any other hashed alias over that.
1da177e4 695 */
3f50fff4 696static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 697{
da502956 698 struct dentry *alias, *discon_alias;
1da177e4 699
da502956
NP
700again:
701 discon_alias = NULL;
702 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
703 spin_lock(&alias->d_lock);
1da177e4 704 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 705 if (IS_ROOT(alias) &&
da502956 706 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 707 discon_alias = alias;
3f50fff4 708 } else {
dc0474be 709 __dget_dlock(alias);
da502956
NP
710 spin_unlock(&alias->d_lock);
711 return alias;
712 }
713 }
714 spin_unlock(&alias->d_lock);
715 }
716 if (discon_alias) {
717 alias = discon_alias;
718 spin_lock(&alias->d_lock);
719 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
720 if (IS_ROOT(alias) &&
721 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 722 __dget_dlock(alias);
da502956 723 spin_unlock(&alias->d_lock);
1da177e4
LT
724 return alias;
725 }
726 }
da502956
NP
727 spin_unlock(&alias->d_lock);
728 goto again;
1da177e4 729 }
da502956 730 return NULL;
1da177e4
LT
731}
732
da502956 733struct dentry *d_find_alias(struct inode *inode)
1da177e4 734{
214fda1f
DH
735 struct dentry *de = NULL;
736
737 if (!list_empty(&inode->i_dentry)) {
873feea0 738 spin_lock(&inode->i_lock);
3f50fff4 739 de = __d_find_alias(inode);
873feea0 740 spin_unlock(&inode->i_lock);
214fda1f 741 }
1da177e4
LT
742 return de;
743}
ec4f8605 744EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
745
746/*
747 * Try to kill dentries associated with this inode.
748 * WARNING: you must own a reference to inode.
749 */
750void d_prune_aliases(struct inode *inode)
751{
0cdca3f9 752 struct dentry *dentry;
1da177e4 753restart:
873feea0 754 spin_lock(&inode->i_lock);
0cdca3f9 755 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 756 spin_lock(&dentry->d_lock);
b7ab39f6 757 if (!dentry->d_count) {
dc0474be 758 __dget_dlock(dentry);
1da177e4
LT
759 __d_drop(dentry);
760 spin_unlock(&dentry->d_lock);
873feea0 761 spin_unlock(&inode->i_lock);
1da177e4
LT
762 dput(dentry);
763 goto restart;
764 }
765 spin_unlock(&dentry->d_lock);
766 }
873feea0 767 spin_unlock(&inode->i_lock);
1da177e4 768}
ec4f8605 769EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
770
771/*
77812a1e
NP
772 * Try to throw away a dentry - free the inode, dput the parent.
773 * Requires dentry->d_lock is held, and dentry->d_count == 0.
774 * Releases dentry->d_lock.
d702ccb3 775 *
77812a1e 776 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 777 */
77812a1e 778static void try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 779 __releases(dentry->d_lock)
1da177e4 780{
77812a1e 781 struct dentry *parent;
d52b9086 782
77812a1e 783 parent = dentry_kill(dentry, 0);
d52b9086 784 /*
77812a1e
NP
785 * If dentry_kill returns NULL, we have nothing more to do.
786 * if it returns the same dentry, trylocks failed. In either
787 * case, just loop again.
788 *
789 * Otherwise, we need to prune ancestors too. This is necessary
790 * to prevent quadratic behavior of shrink_dcache_parent(), but
791 * is also expected to be beneficial in reducing dentry cache
792 * fragmentation.
d52b9086 793 */
77812a1e
NP
794 if (!parent)
795 return;
796 if (parent == dentry)
797 return;
798
799 /* Prune ancestors. */
800 dentry = parent;
d52b9086 801 while (dentry) {
b7ab39f6 802 spin_lock(&dentry->d_lock);
89e60548
NP
803 if (dentry->d_count > 1) {
804 dentry->d_count--;
805 spin_unlock(&dentry->d_lock);
806 return;
807 }
77812a1e 808 dentry = dentry_kill(dentry, 1);
d52b9086 809 }
1da177e4
LT
810}
811
3049cfe2 812static void shrink_dentry_list(struct list_head *list)
1da177e4 813{
da3bbdd4 814 struct dentry *dentry;
da3bbdd4 815
ec33679d
NP
816 rcu_read_lock();
817 for (;;) {
ec33679d
NP
818 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
819 if (&dentry->d_lru == list)
820 break; /* empty */
821 spin_lock(&dentry->d_lock);
822 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
823 spin_unlock(&dentry->d_lock);
23044507
NP
824 continue;
825 }
826
1da177e4
LT
827 /*
828 * We found an inuse dentry which was not removed from
da3bbdd4
KM
829 * the LRU because of laziness during lookup. Do not free
830 * it - just keep it off the LRU list.
1da177e4 831 */
b7ab39f6 832 if (dentry->d_count) {
ec33679d 833 dentry_lru_del(dentry);
da3bbdd4 834 spin_unlock(&dentry->d_lock);
1da177e4
LT
835 continue;
836 }
ec33679d 837
ec33679d 838 rcu_read_unlock();
77812a1e
NP
839
840 try_prune_one_dentry(dentry);
841
ec33679d 842 rcu_read_lock();
da3bbdd4 843 }
ec33679d 844 rcu_read_unlock();
3049cfe2
CH
845}
846
847/**
b48f03b3
DC
848 * prune_dcache_sb - shrink the dcache
849 * @sb: superblock
850 * @count: number of entries to try to free
851 *
852 * Attempt to shrink the superblock dcache LRU by @count entries. This is
853 * done when we need more memory an called from the superblock shrinker
854 * function.
3049cfe2 855 *
b48f03b3
DC
856 * This function may fail to free any resources if all the dentries are in
857 * use.
3049cfe2 858 */
b48f03b3 859void prune_dcache_sb(struct super_block *sb, int count)
3049cfe2 860{
3049cfe2
CH
861 struct dentry *dentry;
862 LIST_HEAD(referenced);
863 LIST_HEAD(tmp);
3049cfe2 864
23044507
NP
865relock:
866 spin_lock(&dcache_lru_lock);
3049cfe2
CH
867 while (!list_empty(&sb->s_dentry_lru)) {
868 dentry = list_entry(sb->s_dentry_lru.prev,
869 struct dentry, d_lru);
870 BUG_ON(dentry->d_sb != sb);
871
23044507
NP
872 if (!spin_trylock(&dentry->d_lock)) {
873 spin_unlock(&dcache_lru_lock);
874 cpu_relax();
875 goto relock;
876 }
877
b48f03b3 878 if (dentry->d_flags & DCACHE_REFERENCED) {
23044507
NP
879 dentry->d_flags &= ~DCACHE_REFERENCED;
880 list_move(&dentry->d_lru, &referenced);
3049cfe2 881 spin_unlock(&dentry->d_lock);
23044507
NP
882 } else {
883 list_move_tail(&dentry->d_lru, &tmp);
eaf5f907 884 dentry->d_flags |= DCACHE_SHRINK_LIST;
23044507 885 spin_unlock(&dentry->d_lock);
b0d40c92 886 if (!--count)
23044507 887 break;
3049cfe2 888 }
ec33679d 889 cond_resched_lock(&dcache_lru_lock);
3049cfe2 890 }
da3bbdd4
KM
891 if (!list_empty(&referenced))
892 list_splice(&referenced, &sb->s_dentry_lru);
23044507 893 spin_unlock(&dcache_lru_lock);
ec33679d
NP
894
895 shrink_dentry_list(&tmp);
da3bbdd4
KM
896}
897
1da177e4
LT
898/**
899 * shrink_dcache_sb - shrink dcache for a superblock
900 * @sb: superblock
901 *
3049cfe2
CH
902 * Shrink the dcache for the specified super block. This is used to free
903 * the dcache before unmounting a file system.
1da177e4 904 */
3049cfe2 905void shrink_dcache_sb(struct super_block *sb)
1da177e4 906{
3049cfe2
CH
907 LIST_HEAD(tmp);
908
23044507 909 spin_lock(&dcache_lru_lock);
3049cfe2
CH
910 while (!list_empty(&sb->s_dentry_lru)) {
911 list_splice_init(&sb->s_dentry_lru, &tmp);
ec33679d 912 spin_unlock(&dcache_lru_lock);
3049cfe2 913 shrink_dentry_list(&tmp);
ec33679d 914 spin_lock(&dcache_lru_lock);
3049cfe2 915 }
23044507 916 spin_unlock(&dcache_lru_lock);
1da177e4 917}
ec4f8605 918EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 919
c636ebdb
DH
920/*
921 * destroy a single subtree of dentries for unmount
922 * - see the comments on shrink_dcache_for_umount() for a description of the
923 * locking
924 */
925static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
926{
927 struct dentry *parent;
928
929 BUG_ON(!IS_ROOT(dentry));
930
c636ebdb
DH
931 for (;;) {
932 /* descend to the first leaf in the current subtree */
43c1c9cd 933 while (!list_empty(&dentry->d_subdirs))
c636ebdb
DH
934 dentry = list_entry(dentry->d_subdirs.next,
935 struct dentry, d_u.d_child);
c636ebdb
DH
936
937 /* consume the dentries from this leaf up through its parents
938 * until we find one with children or run out altogether */
939 do {
940 struct inode *inode;
941
f0023bc6
SW
942 /*
943 * remove the dentry from the lru, and inform
944 * the fs that this dentry is about to be
945 * unhashed and destroyed.
946 */
947 dentry_lru_prune(dentry);
43c1c9cd
DH
948 __d_shrink(dentry);
949
b7ab39f6 950 if (dentry->d_count != 0) {
c636ebdb
DH
951 printk(KERN_ERR
952 "BUG: Dentry %p{i=%lx,n=%s}"
953 " still in use (%d)"
954 " [unmount of %s %s]\n",
955 dentry,
956 dentry->d_inode ?
957 dentry->d_inode->i_ino : 0UL,
958 dentry->d_name.name,
b7ab39f6 959 dentry->d_count,
c636ebdb
DH
960 dentry->d_sb->s_type->name,
961 dentry->d_sb->s_id);
962 BUG();
963 }
964
2fd6b7f5 965 if (IS_ROOT(dentry)) {
c636ebdb 966 parent = NULL;
2fd6b7f5
NP
967 list_del(&dentry->d_u.d_child);
968 } else {
871c0067 969 parent = dentry->d_parent;
b7ab39f6 970 parent->d_count--;
2fd6b7f5 971 list_del(&dentry->d_u.d_child);
871c0067 972 }
c636ebdb 973
c636ebdb
DH
974 inode = dentry->d_inode;
975 if (inode) {
976 dentry->d_inode = NULL;
977 list_del_init(&dentry->d_alias);
978 if (dentry->d_op && dentry->d_op->d_iput)
979 dentry->d_op->d_iput(dentry, inode);
980 else
981 iput(inode);
982 }
983
984 d_free(dentry);
985
986 /* finished when we fall off the top of the tree,
987 * otherwise we ascend to the parent and move to the
988 * next sibling if there is one */
989 if (!parent)
312d3ca8 990 return;
c636ebdb 991 dentry = parent;
c636ebdb
DH
992 } while (list_empty(&dentry->d_subdirs));
993
994 dentry = list_entry(dentry->d_subdirs.next,
995 struct dentry, d_u.d_child);
996 }
997}
998
999/*
1000 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 1001 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
1002 * - the superblock is detached from all mountings and open files, so the
1003 * dentry trees will not be rearranged by the VFS
1004 * - s_umount is write-locked, so the memory pressure shrinker will ignore
1005 * any dentries belonging to this superblock that it comes across
1006 * - the filesystem itself is no longer permitted to rearrange the dentries
1007 * in this superblock
1008 */
1009void shrink_dcache_for_umount(struct super_block *sb)
1010{
1011 struct dentry *dentry;
1012
1013 if (down_read_trylock(&sb->s_umount))
1014 BUG();
1015
1016 dentry = sb->s_root;
1017 sb->s_root = NULL;
b7ab39f6 1018 dentry->d_count--;
c636ebdb
DH
1019 shrink_dcache_for_umount_subtree(dentry);
1020
ceb5bdc2
NP
1021 while (!hlist_bl_empty(&sb->s_anon)) {
1022 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
1023 shrink_dcache_for_umount_subtree(dentry);
1024 }
1025}
1026
c826cb7d
LT
1027/*
1028 * This tries to ascend one level of parenthood, but
1029 * we can race with renaming, so we need to re-check
1030 * the parenthood after dropping the lock and check
1031 * that the sequence number still matches.
1032 */
1033static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1034{
1035 struct dentry *new = old->d_parent;
1036
1037 rcu_read_lock();
1038 spin_unlock(&old->d_lock);
1039 spin_lock(&new->d_lock);
1040
1041 /*
1042 * might go back up the wrong parent if we have had a rename
1043 * or deletion
1044 */
1045 if (new != old->d_parent ||
c83ce989 1046 (old->d_flags & DCACHE_DISCONNECTED) ||
c826cb7d
LT
1047 (!locked && read_seqretry(&rename_lock, seq))) {
1048 spin_unlock(&new->d_lock);
1049 new = NULL;
1050 }
1051 rcu_read_unlock();
1052 return new;
1053}
1054
1055
1da177e4
LT
1056/*
1057 * Search for at least 1 mount point in the dentry's subdirs.
1058 * We descend to the next level whenever the d_subdirs
1059 * list is non-empty and continue searching.
1060 */
1061
1062/**
1063 * have_submounts - check for mounts over a dentry
1064 * @parent: dentry to check.
1065 *
1066 * Return true if the parent or its subdirectories contain
1067 * a mount point
1068 */
1da177e4
LT
1069int have_submounts(struct dentry *parent)
1070{
949854d0 1071 struct dentry *this_parent;
1da177e4 1072 struct list_head *next;
949854d0 1073 unsigned seq;
58db63d0 1074 int locked = 0;
949854d0 1075
949854d0 1076 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1077again:
1078 this_parent = parent;
1da177e4 1079
1da177e4
LT
1080 if (d_mountpoint(parent))
1081 goto positive;
2fd6b7f5 1082 spin_lock(&this_parent->d_lock);
1da177e4
LT
1083repeat:
1084 next = this_parent->d_subdirs.next;
1085resume:
1086 while (next != &this_parent->d_subdirs) {
1087 struct list_head *tmp = next;
5160ee6f 1088 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1089 next = tmp->next;
2fd6b7f5
NP
1090
1091 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 1092 /* Have we found a mount point ? */
2fd6b7f5
NP
1093 if (d_mountpoint(dentry)) {
1094 spin_unlock(&dentry->d_lock);
1095 spin_unlock(&this_parent->d_lock);
1da177e4 1096 goto positive;
2fd6b7f5 1097 }
1da177e4 1098 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1099 spin_unlock(&this_parent->d_lock);
1100 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1101 this_parent = dentry;
2fd6b7f5 1102 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1103 goto repeat;
1104 }
2fd6b7f5 1105 spin_unlock(&dentry->d_lock);
1da177e4
LT
1106 }
1107 /*
1108 * All done at this level ... ascend and resume the search.
1109 */
1110 if (this_parent != parent) {
c826cb7d
LT
1111 struct dentry *child = this_parent;
1112 this_parent = try_to_ascend(this_parent, locked, seq);
1113 if (!this_parent)
949854d0 1114 goto rename_retry;
949854d0 1115 next = child->d_u.d_child.next;
1da177e4
LT
1116 goto resume;
1117 }
2fd6b7f5 1118 spin_unlock(&this_parent->d_lock);
58db63d0 1119 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1120 goto rename_retry;
58db63d0
NP
1121 if (locked)
1122 write_sequnlock(&rename_lock);
1da177e4
LT
1123 return 0; /* No mount points found in tree */
1124positive:
58db63d0 1125 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1126 goto rename_retry;
58db63d0
NP
1127 if (locked)
1128 write_sequnlock(&rename_lock);
1da177e4 1129 return 1;
58db63d0
NP
1130
1131rename_retry:
1132 locked = 1;
1133 write_seqlock(&rename_lock);
1134 goto again;
1da177e4 1135}
ec4f8605 1136EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1137
1138/*
1139 * Search the dentry child list for the specified parent,
1140 * and move any unused dentries to the end of the unused
1141 * list for prune_dcache(). We descend to the next level
1142 * whenever the d_subdirs list is non-empty and continue
1143 * searching.
1144 *
1145 * It returns zero iff there are no unused children,
1146 * otherwise it returns the number of children moved to
1147 * the end of the unused list. This may not be the total
1148 * number of unused children, because select_parent can
1149 * drop the lock and return early due to latency
1150 * constraints.
1151 */
b48f03b3 1152static int select_parent(struct dentry *parent, struct list_head *dispose)
1da177e4 1153{
949854d0 1154 struct dentry *this_parent;
1da177e4 1155 struct list_head *next;
949854d0 1156 unsigned seq;
1da177e4 1157 int found = 0;
58db63d0 1158 int locked = 0;
1da177e4 1159
949854d0 1160 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1161again:
1162 this_parent = parent;
2fd6b7f5 1163 spin_lock(&this_parent->d_lock);
1da177e4
LT
1164repeat:
1165 next = this_parent->d_subdirs.next;
1166resume:
1167 while (next != &this_parent->d_subdirs) {
1168 struct list_head *tmp = next;
5160ee6f 1169 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1170 next = tmp->next;
1171
2fd6b7f5 1172 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1173
b48f03b3
DC
1174 /*
1175 * move only zero ref count dentries to the dispose list.
eaf5f907
MS
1176 *
1177 * Those which are presently on the shrink list, being processed
1178 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1179 * loop in shrink_dcache_parent() might not make any progress
1180 * and loop forever.
1da177e4 1181 */
eaf5f907
MS
1182 if (dentry->d_count) {
1183 dentry_lru_del(dentry);
1184 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
b48f03b3 1185 dentry_lru_move_list(dentry, dispose);
eaf5f907 1186 dentry->d_flags |= DCACHE_SHRINK_LIST;
1da177e4
LT
1187 found++;
1188 }
1da177e4
LT
1189 /*
1190 * We can return to the caller if we have found some (this
1191 * ensures forward progress). We'll be coming back to find
1192 * the rest.
1193 */
2fd6b7f5
NP
1194 if (found && need_resched()) {
1195 spin_unlock(&dentry->d_lock);
1da177e4 1196 goto out;
2fd6b7f5 1197 }
1da177e4
LT
1198
1199 /*
1200 * Descend a level if the d_subdirs list is non-empty.
1201 */
1202 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1203 spin_unlock(&this_parent->d_lock);
1204 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1205 this_parent = dentry;
2fd6b7f5 1206 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1207 goto repeat;
1208 }
2fd6b7f5
NP
1209
1210 spin_unlock(&dentry->d_lock);
1da177e4
LT
1211 }
1212 /*
1213 * All done at this level ... ascend and resume the search.
1214 */
1215 if (this_parent != parent) {
c826cb7d
LT
1216 struct dentry *child = this_parent;
1217 this_parent = try_to_ascend(this_parent, locked, seq);
1218 if (!this_parent)
949854d0 1219 goto rename_retry;
949854d0 1220 next = child->d_u.d_child.next;
1da177e4
LT
1221 goto resume;
1222 }
1223out:
2fd6b7f5 1224 spin_unlock(&this_parent->d_lock);
58db63d0 1225 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1226 goto rename_retry;
58db63d0
NP
1227 if (locked)
1228 write_sequnlock(&rename_lock);
1da177e4 1229 return found;
58db63d0
NP
1230
1231rename_retry:
1232 if (found)
1233 return found;
1234 locked = 1;
1235 write_seqlock(&rename_lock);
1236 goto again;
1da177e4
LT
1237}
1238
1239/**
1240 * shrink_dcache_parent - prune dcache
1241 * @parent: parent of entries to prune
1242 *
1243 * Prune the dcache to remove unused children of the parent dentry.
1244 */
1da177e4
LT
1245void shrink_dcache_parent(struct dentry * parent)
1246{
b48f03b3 1247 LIST_HEAD(dispose);
1da177e4
LT
1248 int found;
1249
b48f03b3
DC
1250 while ((found = select_parent(parent, &dispose)) != 0)
1251 shrink_dentry_list(&dispose);
1da177e4 1252}
ec4f8605 1253EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1254
1da177e4 1255/**
a4464dbc
AV
1256 * __d_alloc - allocate a dcache entry
1257 * @sb: filesystem it will belong to
1da177e4
LT
1258 * @name: qstr of the name
1259 *
1260 * Allocates a dentry. It returns %NULL if there is insufficient memory
1261 * available. On a success the dentry is returned. The name passed in is
1262 * copied and the copy passed in may be reused after this call.
1263 */
1264
a4464dbc 1265struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1266{
1267 struct dentry *dentry;
1268 char *dname;
1269
e12ba74d 1270 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1271 if (!dentry)
1272 return NULL;
1273
6326c71f
LT
1274 /*
1275 * We guarantee that the inline name is always NUL-terminated.
1276 * This way the memcpy() done by the name switching in rename
1277 * will still always have a NUL at the end, even if we might
1278 * be overwriting an internal NUL character
1279 */
1280 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4
LT
1281 if (name->len > DNAME_INLINE_LEN-1) {
1282 dname = kmalloc(name->len + 1, GFP_KERNEL);
1283 if (!dname) {
1284 kmem_cache_free(dentry_cache, dentry);
1285 return NULL;
1286 }
1287 } else {
1288 dname = dentry->d_iname;
1289 }
1da177e4
LT
1290
1291 dentry->d_name.len = name->len;
1292 dentry->d_name.hash = name->hash;
1293 memcpy(dname, name->name, name->len);
1294 dname[name->len] = 0;
1295
6326c71f
LT
1296 /* Make sure we always see the terminating NUL character */
1297 smp_wmb();
1298 dentry->d_name.name = dname;
1299
b7ab39f6 1300 dentry->d_count = 1;
dea3667b 1301 dentry->d_flags = 0;
1da177e4 1302 spin_lock_init(&dentry->d_lock);
31e6b01f 1303 seqcount_init(&dentry->d_seq);
1da177e4 1304 dentry->d_inode = NULL;
a4464dbc
AV
1305 dentry->d_parent = dentry;
1306 dentry->d_sb = sb;
1da177e4
LT
1307 dentry->d_op = NULL;
1308 dentry->d_fsdata = NULL;
ceb5bdc2 1309 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1310 INIT_LIST_HEAD(&dentry->d_lru);
1311 INIT_LIST_HEAD(&dentry->d_subdirs);
1312 INIT_LIST_HEAD(&dentry->d_alias);
2fd6b7f5 1313 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1314 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1315
3e880fb5 1316 this_cpu_inc(nr_dentry);
312d3ca8 1317
1da177e4
LT
1318 return dentry;
1319}
a4464dbc
AV
1320
1321/**
1322 * d_alloc - allocate a dcache entry
1323 * @parent: parent of entry to allocate
1324 * @name: qstr of the name
1325 *
1326 * Allocates a dentry. It returns %NULL if there is insufficient memory
1327 * available. On a success the dentry is returned. The name passed in is
1328 * copied and the copy passed in may be reused after this call.
1329 */
1330struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1331{
1332 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1333 if (!dentry)
1334 return NULL;
1335
1336 spin_lock(&parent->d_lock);
1337 /*
1338 * don't need child lock because it is not subject
1339 * to concurrency here
1340 */
1341 __dget_dlock(parent);
1342 dentry->d_parent = parent;
1343 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1344 spin_unlock(&parent->d_lock);
1345
1346 return dentry;
1347}
ec4f8605 1348EXPORT_SYMBOL(d_alloc);
1da177e4 1349
4b936885
NP
1350struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1351{
a4464dbc
AV
1352 struct dentry *dentry = __d_alloc(sb, name);
1353 if (dentry)
4b936885 1354 dentry->d_flags |= DCACHE_DISCONNECTED;
4b936885
NP
1355 return dentry;
1356}
1357EXPORT_SYMBOL(d_alloc_pseudo);
1358
1da177e4
LT
1359struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1360{
1361 struct qstr q;
1362
1363 q.name = name;
1364 q.len = strlen(name);
1365 q.hash = full_name_hash(q.name, q.len);
1366 return d_alloc(parent, &q);
1367}
ef26ca97 1368EXPORT_SYMBOL(d_alloc_name);
1da177e4 1369
fb045adb
NP
1370void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1371{
6f7f7caa
LT
1372 WARN_ON_ONCE(dentry->d_op);
1373 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1374 DCACHE_OP_COMPARE |
1375 DCACHE_OP_REVALIDATE |
1376 DCACHE_OP_DELETE ));
1377 dentry->d_op = op;
1378 if (!op)
1379 return;
1380 if (op->d_hash)
1381 dentry->d_flags |= DCACHE_OP_HASH;
1382 if (op->d_compare)
1383 dentry->d_flags |= DCACHE_OP_COMPARE;
1384 if (op->d_revalidate)
1385 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1386 if (op->d_delete)
1387 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1388 if (op->d_prune)
1389 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1390
1391}
1392EXPORT_SYMBOL(d_set_d_op);
1393
360da900
OH
1394static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1395{
b23fb0a6 1396 spin_lock(&dentry->d_lock);
9875cf80
DH
1397 if (inode) {
1398 if (unlikely(IS_AUTOMOUNT(inode)))
1399 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
360da900 1400 list_add(&dentry->d_alias, &inode->i_dentry);
9875cf80 1401 }
360da900 1402 dentry->d_inode = inode;
31e6b01f 1403 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1404 spin_unlock(&dentry->d_lock);
360da900
OH
1405 fsnotify_d_instantiate(dentry, inode);
1406}
1407
1da177e4
LT
1408/**
1409 * d_instantiate - fill in inode information for a dentry
1410 * @entry: dentry to complete
1411 * @inode: inode to attach to this dentry
1412 *
1413 * Fill in inode information in the entry.
1414 *
1415 * This turns negative dentries into productive full members
1416 * of society.
1417 *
1418 * NOTE! This assumes that the inode count has been incremented
1419 * (or otherwise set) by the caller to indicate that it is now
1420 * in use by the dcache.
1421 */
1422
1423void d_instantiate(struct dentry *entry, struct inode * inode)
1424{
28133c7b 1425 BUG_ON(!list_empty(&entry->d_alias));
873feea0
NP
1426 if (inode)
1427 spin_lock(&inode->i_lock);
360da900 1428 __d_instantiate(entry, inode);
873feea0
NP
1429 if (inode)
1430 spin_unlock(&inode->i_lock);
1da177e4
LT
1431 security_d_instantiate(entry, inode);
1432}
ec4f8605 1433EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1434
1435/**
1436 * d_instantiate_unique - instantiate a non-aliased dentry
1437 * @entry: dentry to instantiate
1438 * @inode: inode to attach to this dentry
1439 *
1440 * Fill in inode information in the entry. On success, it returns NULL.
1441 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1442 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1443 *
1444 * Note that in order to avoid conflicts with rename() etc, the caller
1445 * had better be holding the parent directory semaphore.
e866cfa9
OD
1446 *
1447 * This also assumes that the inode count has been incremented
1448 * (or otherwise set) by the caller to indicate that it is now
1449 * in use by the dcache.
1da177e4 1450 */
770bfad8
DH
1451static struct dentry *__d_instantiate_unique(struct dentry *entry,
1452 struct inode *inode)
1da177e4
LT
1453{
1454 struct dentry *alias;
1455 int len = entry->d_name.len;
1456 const char *name = entry->d_name.name;
1457 unsigned int hash = entry->d_name.hash;
1458
770bfad8 1459 if (!inode) {
360da900 1460 __d_instantiate(entry, NULL);
770bfad8
DH
1461 return NULL;
1462 }
1463
1da177e4 1464 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1465 /*
1466 * Don't need alias->d_lock here, because aliases with
1467 * d_parent == entry->d_parent are not subject to name or
1468 * parent changes, because the parent inode i_mutex is held.
1469 */
12f8ad4b 1470 if (alias->d_name.hash != hash)
1da177e4
LT
1471 continue;
1472 if (alias->d_parent != entry->d_parent)
1473 continue;
ee983e89
LT
1474 if (alias->d_name.len != len)
1475 continue;
12f8ad4b 1476 if (dentry_cmp(alias, name, len))
1da177e4 1477 continue;
dc0474be 1478 __dget(alias);
1da177e4
LT
1479 return alias;
1480 }
770bfad8 1481
360da900 1482 __d_instantiate(entry, inode);
1da177e4
LT
1483 return NULL;
1484}
770bfad8
DH
1485
1486struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1487{
1488 struct dentry *result;
1489
1490 BUG_ON(!list_empty(&entry->d_alias));
1491
873feea0
NP
1492 if (inode)
1493 spin_lock(&inode->i_lock);
770bfad8 1494 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1495 if (inode)
1496 spin_unlock(&inode->i_lock);
770bfad8
DH
1497
1498 if (!result) {
1499 security_d_instantiate(entry, inode);
1500 return NULL;
1501 }
1502
1503 BUG_ON(!d_unhashed(result));
1504 iput(inode);
1505 return result;
1506}
1507
1da177e4
LT
1508EXPORT_SYMBOL(d_instantiate_unique);
1509
adc0e91a
AV
1510struct dentry *d_make_root(struct inode *root_inode)
1511{
1512 struct dentry *res = NULL;
1513
1514 if (root_inode) {
26fe5750 1515 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1516
1517 res = __d_alloc(root_inode->i_sb, &name);
1518 if (res)
1519 d_instantiate(res, root_inode);
1520 else
1521 iput(root_inode);
1522 }
1523 return res;
1524}
1525EXPORT_SYMBOL(d_make_root);
1526
d891eedb
BF
1527static struct dentry * __d_find_any_alias(struct inode *inode)
1528{
1529 struct dentry *alias;
1530
1531 if (list_empty(&inode->i_dentry))
1532 return NULL;
1533 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1534 __dget(alias);
1535 return alias;
1536}
1537
46f72b34
SW
1538/**
1539 * d_find_any_alias - find any alias for a given inode
1540 * @inode: inode to find an alias for
1541 *
1542 * If any aliases exist for the given inode, take and return a
1543 * reference for one of them. If no aliases exist, return %NULL.
1544 */
1545struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1546{
1547 struct dentry *de;
1548
1549 spin_lock(&inode->i_lock);
1550 de = __d_find_any_alias(inode);
1551 spin_unlock(&inode->i_lock);
1552 return de;
1553}
46f72b34 1554EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1555
4ea3ada2
CH
1556/**
1557 * d_obtain_alias - find or allocate a dentry for a given inode
1558 * @inode: inode to allocate the dentry for
1559 *
1560 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1561 * similar open by handle operations. The returned dentry may be anonymous,
1562 * or may have a full name (if the inode was already in the cache).
1563 *
1564 * When called on a directory inode, we must ensure that the inode only ever
1565 * has one dentry. If a dentry is found, that is returned instead of
1566 * allocating a new one.
1567 *
1568 * On successful return, the reference to the inode has been transferred
44003728
CH
1569 * to the dentry. In case of an error the reference on the inode is released.
1570 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1571 * be passed in and will be the error will be propagate to the return value,
1572 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1573 */
1574struct dentry *d_obtain_alias(struct inode *inode)
1575{
9308a612
CH
1576 static const struct qstr anonstring = { .name = "" };
1577 struct dentry *tmp;
1578 struct dentry *res;
4ea3ada2
CH
1579
1580 if (!inode)
44003728 1581 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1582 if (IS_ERR(inode))
1583 return ERR_CAST(inode);
1584
d891eedb 1585 res = d_find_any_alias(inode);
9308a612
CH
1586 if (res)
1587 goto out_iput;
1588
a4464dbc 1589 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1590 if (!tmp) {
1591 res = ERR_PTR(-ENOMEM);
1592 goto out_iput;
4ea3ada2 1593 }
b5c84bf6 1594
873feea0 1595 spin_lock(&inode->i_lock);
d891eedb 1596 res = __d_find_any_alias(inode);
9308a612 1597 if (res) {
873feea0 1598 spin_unlock(&inode->i_lock);
9308a612
CH
1599 dput(tmp);
1600 goto out_iput;
1601 }
1602
1603 /* attach a disconnected dentry */
1604 spin_lock(&tmp->d_lock);
9308a612
CH
1605 tmp->d_inode = inode;
1606 tmp->d_flags |= DCACHE_DISCONNECTED;
9308a612 1607 list_add(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1608 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1609 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1610 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1611 spin_unlock(&tmp->d_lock);
873feea0 1612 spin_unlock(&inode->i_lock);
24ff6663 1613 security_d_instantiate(tmp, inode);
9308a612 1614
9308a612
CH
1615 return tmp;
1616
1617 out_iput:
24ff6663
JB
1618 if (res && !IS_ERR(res))
1619 security_d_instantiate(res, inode);
9308a612
CH
1620 iput(inode);
1621 return res;
4ea3ada2 1622}
adc48720 1623EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1624
1625/**
1626 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1627 * @inode: the inode which may have a disconnected dentry
1628 * @dentry: a negative dentry which we want to point to the inode.
1629 *
1630 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1631 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1632 * and return it, else simply d_add the inode to the dentry and return NULL.
1633 *
1634 * This is needed in the lookup routine of any filesystem that is exportable
1635 * (via knfsd) so that we can build dcache paths to directories effectively.
1636 *
1637 * If a dentry was found and moved, then it is returned. Otherwise NULL
1638 * is returned. This matches the expected return value of ->lookup.
1639 *
1640 */
1641struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1642{
1643 struct dentry *new = NULL;
1644
a9049376
AV
1645 if (IS_ERR(inode))
1646 return ERR_CAST(inode);
1647
21c0d8fd 1648 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1649 spin_lock(&inode->i_lock);
7732a557 1650 new = __d_find_any_alias(inode);
1da177e4 1651 if (new) {
873feea0 1652 spin_unlock(&inode->i_lock);
1da177e4 1653 security_d_instantiate(new, inode);
1da177e4
LT
1654 d_move(new, dentry);
1655 iput(inode);
1656 } else {
873feea0 1657 /* already taking inode->i_lock, so d_add() by hand */
360da900 1658 __d_instantiate(dentry, inode);
873feea0 1659 spin_unlock(&inode->i_lock);
1da177e4
LT
1660 security_d_instantiate(dentry, inode);
1661 d_rehash(dentry);
1662 }
1663 } else
1664 d_add(dentry, inode);
1665 return new;
1666}
ec4f8605 1667EXPORT_SYMBOL(d_splice_alias);
1da177e4 1668
9403540c
BN
1669/**
1670 * d_add_ci - lookup or allocate new dentry with case-exact name
1671 * @inode: the inode case-insensitive lookup has found
1672 * @dentry: the negative dentry that was passed to the parent's lookup func
1673 * @name: the case-exact name to be associated with the returned dentry
1674 *
1675 * This is to avoid filling the dcache with case-insensitive names to the
1676 * same inode, only the actual correct case is stored in the dcache for
1677 * case-insensitive filesystems.
1678 *
1679 * For a case-insensitive lookup match and if the the case-exact dentry
1680 * already exists in in the dcache, use it and return it.
1681 *
1682 * If no entry exists with the exact case name, allocate new dentry with
1683 * the exact case, and return the spliced entry.
1684 */
e45b590b 1685struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1686 struct qstr *name)
1687{
1688 int error;
1689 struct dentry *found;
1690 struct dentry *new;
1691
b6520c81
CH
1692 /*
1693 * First check if a dentry matching the name already exists,
1694 * if not go ahead and create it now.
1695 */
9403540c 1696 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1697 if (!found) {
1698 new = d_alloc(dentry->d_parent, name);
1699 if (!new) {
1700 error = -ENOMEM;
1701 goto err_out;
1702 }
b6520c81 1703
9403540c
BN
1704 found = d_splice_alias(inode, new);
1705 if (found) {
1706 dput(new);
1707 return found;
1708 }
1709 return new;
1710 }
b6520c81
CH
1711
1712 /*
1713 * If a matching dentry exists, and it's not negative use it.
1714 *
1715 * Decrement the reference count to balance the iget() done
1716 * earlier on.
1717 */
9403540c
BN
1718 if (found->d_inode) {
1719 if (unlikely(found->d_inode != inode)) {
1720 /* This can't happen because bad inodes are unhashed. */
1721 BUG_ON(!is_bad_inode(inode));
1722 BUG_ON(!is_bad_inode(found->d_inode));
1723 }
9403540c
BN
1724 iput(inode);
1725 return found;
1726 }
b6520c81 1727
9403540c 1728 /*
44396f4b
JB
1729 * We are going to instantiate this dentry, unhash it and clear the
1730 * lookup flag so we can do that.
9403540c 1731 */
44396f4b
JB
1732 if (unlikely(d_need_lookup(found)))
1733 d_clear_need_lookup(found);
b6520c81 1734
9403540c 1735 /*
9403540c 1736 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1737 * already has a dentry.
9403540c 1738 */
4513d899
AV
1739 new = d_splice_alias(inode, found);
1740 if (new) {
1741 dput(found);
1742 found = new;
9403540c 1743 }
4513d899 1744 return found;
9403540c
BN
1745
1746err_out:
1747 iput(inode);
1748 return ERR_PTR(error);
1749}
ec4f8605 1750EXPORT_SYMBOL(d_add_ci);
1da177e4 1751
12f8ad4b
LT
1752/*
1753 * Do the slow-case of the dentry name compare.
1754 *
1755 * Unlike the dentry_cmp() function, we need to atomically
1756 * load the name, length and inode information, so that the
1757 * filesystem can rely on them, and can use the 'name' and
1758 * 'len' information without worrying about walking off the
1759 * end of memory etc.
1760 *
1761 * Thus the read_seqcount_retry() and the "duplicate" info
1762 * in arguments (the low-level filesystem should not look
1763 * at the dentry inode or name contents directly, since
1764 * rename can change them while we're in RCU mode).
1765 */
1766enum slow_d_compare {
1767 D_COMP_OK,
1768 D_COMP_NOMATCH,
1769 D_COMP_SEQRETRY,
1770};
1771
1772static noinline enum slow_d_compare slow_dentry_cmp(
1773 const struct dentry *parent,
1774 struct inode *inode,
1775 struct dentry *dentry,
1776 unsigned int seq,
1777 const struct qstr *name)
1778{
1779 int tlen = dentry->d_name.len;
1780 const char *tname = dentry->d_name.name;
1781 struct inode *i = dentry->d_inode;
1782
1783 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1784 cpu_relax();
1785 return D_COMP_SEQRETRY;
1786 }
1787 if (parent->d_op->d_compare(parent, inode,
1788 dentry, i,
1789 tlen, tname, name))
1790 return D_COMP_NOMATCH;
1791 return D_COMP_OK;
1792}
1793
31e6b01f
NP
1794/**
1795 * __d_lookup_rcu - search for a dentry (racy, store-free)
1796 * @parent: parent dentry
1797 * @name: qstr of name we wish to find
1f1e6e52 1798 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
1799 * @inode: returns dentry->d_inode when the inode was found valid.
1800 * Returns: dentry, or NULL
1801 *
1802 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1803 * resolution (store-free path walking) design described in
1804 * Documentation/filesystems/path-lookup.txt.
1805 *
1806 * This is not to be used outside core vfs.
1807 *
1808 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1809 * held, and rcu_read_lock held. The returned dentry must not be stored into
1810 * without taking d_lock and checking d_seq sequence count against @seq
1811 * returned here.
1812 *
1813 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1814 * function.
1815 *
1816 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1817 * the returned dentry, so long as its parent's seqlock is checked after the
1818 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1819 * is formed, giving integrity down the path walk.
12f8ad4b
LT
1820 *
1821 * NOTE! The caller *has* to check the resulting dentry against the sequence
1822 * number we've returned before using any of the resulting dentry state!
31e6b01f 1823 */
8966be90
LT
1824struct dentry *__d_lookup_rcu(const struct dentry *parent,
1825 const struct qstr *name,
12f8ad4b 1826 unsigned *seqp, struct inode *inode)
31e6b01f 1827{
26fe5750 1828 u64 hashlen = name->hash_len;
31e6b01f 1829 const unsigned char *str = name->name;
26fe5750 1830 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 1831 struct hlist_bl_node *node;
31e6b01f
NP
1832 struct dentry *dentry;
1833
1834 /*
1835 * Note: There is significant duplication with __d_lookup_rcu which is
1836 * required to prevent single threaded performance regressions
1837 * especially on architectures where smp_rmb (in seqcounts) are costly.
1838 * Keep the two functions in sync.
1839 */
1840
1841 /*
1842 * The hash list is protected using RCU.
1843 *
1844 * Carefully use d_seq when comparing a candidate dentry, to avoid
1845 * races with d_move().
1846 *
1847 * It is possible that concurrent renames can mess up our list
1848 * walk here and result in missing our dentry, resulting in the
1849 * false-negative result. d_lookup() protects against concurrent
1850 * renames using rename_lock seqlock.
1851 *
b0a4bb83 1852 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 1853 */
b07ad996 1854 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 1855 unsigned seq;
31e6b01f 1856
31e6b01f 1857seqretry:
12f8ad4b
LT
1858 /*
1859 * The dentry sequence count protects us from concurrent
1860 * renames, and thus protects inode, parent and name fields.
1861 *
1862 * The caller must perform a seqcount check in order
1863 * to do anything useful with the returned dentry,
1864 * including using the 'd_inode' pointer.
1865 *
1866 * NOTE! We do a "raw" seqcount_begin here. That means that
1867 * we don't wait for the sequence count to stabilize if it
1868 * is in the middle of a sequence change. If we do the slow
1869 * dentry compare, we will do seqretries until it is stable,
1870 * and if we end up with a successful lookup, we actually
1871 * want to exit RCU lookup anyway.
1872 */
1873 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
1874 if (dentry->d_parent != parent)
1875 continue;
2e321806
LT
1876 if (d_unhashed(dentry))
1877 continue;
12f8ad4b
LT
1878 *seqp = seq;
1879
830c0f0e 1880 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
1881 if (dentry->d_name.hash != hashlen_hash(hashlen))
1882 continue;
12f8ad4b
LT
1883 switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1884 case D_COMP_OK:
1885 return dentry;
1886 case D_COMP_NOMATCH:
31e6b01f 1887 continue;
12f8ad4b
LT
1888 default:
1889 goto seqretry;
1890 }
31e6b01f 1891 }
12f8ad4b 1892
26fe5750 1893 if (dentry->d_name.hash_len != hashlen)
ee983e89 1894 continue;
26fe5750 1895 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 1896 return dentry;
31e6b01f
NP
1897 }
1898 return NULL;
1899}
1900
1da177e4
LT
1901/**
1902 * d_lookup - search for a dentry
1903 * @parent: parent dentry
1904 * @name: qstr of name we wish to find
b04f784e 1905 * Returns: dentry, or NULL
1da177e4 1906 *
b04f784e
NP
1907 * d_lookup searches the children of the parent dentry for the name in
1908 * question. If the dentry is found its reference count is incremented and the
1909 * dentry is returned. The caller must use dput to free the entry when it has
1910 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1911 */
31e6b01f 1912struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1da177e4 1913{
31e6b01f 1914 struct dentry *dentry;
949854d0 1915 unsigned seq;
1da177e4
LT
1916
1917 do {
1918 seq = read_seqbegin(&rename_lock);
1919 dentry = __d_lookup(parent, name);
1920 if (dentry)
1921 break;
1922 } while (read_seqretry(&rename_lock, seq));
1923 return dentry;
1924}
ec4f8605 1925EXPORT_SYMBOL(d_lookup);
1da177e4 1926
31e6b01f 1927/**
b04f784e
NP
1928 * __d_lookup - search for a dentry (racy)
1929 * @parent: parent dentry
1930 * @name: qstr of name we wish to find
1931 * Returns: dentry, or NULL
1932 *
1933 * __d_lookup is like d_lookup, however it may (rarely) return a
1934 * false-negative result due to unrelated rename activity.
1935 *
1936 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1937 * however it must be used carefully, eg. with a following d_lookup in
1938 * the case of failure.
1939 *
1940 * __d_lookup callers must be commented.
1941 */
31e6b01f 1942struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1da177e4
LT
1943{
1944 unsigned int len = name->len;
1945 unsigned int hash = name->hash;
1946 const unsigned char *str = name->name;
b07ad996 1947 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1948 struct hlist_bl_node *node;
31e6b01f 1949 struct dentry *found = NULL;
665a7583 1950 struct dentry *dentry;
1da177e4 1951
31e6b01f
NP
1952 /*
1953 * Note: There is significant duplication with __d_lookup_rcu which is
1954 * required to prevent single threaded performance regressions
1955 * especially on architectures where smp_rmb (in seqcounts) are costly.
1956 * Keep the two functions in sync.
1957 */
1958
b04f784e
NP
1959 /*
1960 * The hash list is protected using RCU.
1961 *
1962 * Take d_lock when comparing a candidate dentry, to avoid races
1963 * with d_move().
1964 *
1965 * It is possible that concurrent renames can mess up our list
1966 * walk here and result in missing our dentry, resulting in the
1967 * false-negative result. d_lookup() protects against concurrent
1968 * renames using rename_lock seqlock.
1969 *
b0a4bb83 1970 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 1971 */
1da177e4
LT
1972 rcu_read_lock();
1973
b07ad996 1974 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 1975
1da177e4
LT
1976 if (dentry->d_name.hash != hash)
1977 continue;
1da177e4
LT
1978
1979 spin_lock(&dentry->d_lock);
1da177e4
LT
1980 if (dentry->d_parent != parent)
1981 goto next;
d0185c08
LT
1982 if (d_unhashed(dentry))
1983 goto next;
1984
1da177e4
LT
1985 /*
1986 * It is safe to compare names since d_move() cannot
1987 * change the qstr (protected by d_lock).
1988 */
fb045adb 1989 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
1990 int tlen = dentry->d_name.len;
1991 const char *tname = dentry->d_name.name;
621e155a
NP
1992 if (parent->d_op->d_compare(parent, parent->d_inode,
1993 dentry, dentry->d_inode,
31e6b01f 1994 tlen, tname, name))
1da177e4
LT
1995 goto next;
1996 } else {
ee983e89
LT
1997 if (dentry->d_name.len != len)
1998 goto next;
12f8ad4b 1999 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2000 goto next;
2001 }
2002
b7ab39f6 2003 dentry->d_count++;
d0185c08 2004 found = dentry;
1da177e4
LT
2005 spin_unlock(&dentry->d_lock);
2006 break;
2007next:
2008 spin_unlock(&dentry->d_lock);
2009 }
2010 rcu_read_unlock();
2011
2012 return found;
2013}
2014
3e7e241f
EB
2015/**
2016 * d_hash_and_lookup - hash the qstr then search for a dentry
2017 * @dir: Directory to search in
2018 * @name: qstr of name we wish to find
2019 *
2020 * On hash failure or on lookup failure NULL is returned.
2021 */
2022struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2023{
2024 struct dentry *dentry = NULL;
2025
2026 /*
2027 * Check for a fs-specific hash function. Note that we must
2028 * calculate the standard hash first, as the d_op->d_hash()
2029 * routine may choose to leave the hash value unchanged.
2030 */
2031 name->hash = full_name_hash(name->name, name->len);
fb045adb 2032 if (dir->d_flags & DCACHE_OP_HASH) {
b1e6a015 2033 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
3e7e241f
EB
2034 goto out;
2035 }
2036 dentry = d_lookup(dir, name);
2037out:
2038 return dentry;
2039}
2040
1da177e4 2041/**
786a5e15 2042 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2043 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2044 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2045 *
2046 * An insecure source has sent us a dentry, here we verify it and dget() it.
2047 * This is used by ncpfs in its readdir implementation.
2048 * Zero is returned in the dentry is invalid.
786a5e15
NP
2049 *
2050 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2051 */
d3a23e16 2052int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2053{
786a5e15 2054 struct dentry *child;
d3a23e16 2055
2fd6b7f5 2056 spin_lock(&dparent->d_lock);
786a5e15
NP
2057 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2058 if (dentry == child) {
2fd6b7f5 2059 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2060 __dget_dlock(dentry);
2fd6b7f5
NP
2061 spin_unlock(&dentry->d_lock);
2062 spin_unlock(&dparent->d_lock);
1da177e4
LT
2063 return 1;
2064 }
2065 }
2fd6b7f5 2066 spin_unlock(&dparent->d_lock);
786a5e15 2067
1da177e4
LT
2068 return 0;
2069}
ec4f8605 2070EXPORT_SYMBOL(d_validate);
1da177e4
LT
2071
2072/*
2073 * When a file is deleted, we have two options:
2074 * - turn this dentry into a negative dentry
2075 * - unhash this dentry and free it.
2076 *
2077 * Usually, we want to just turn this into
2078 * a negative dentry, but if anybody else is
2079 * currently using the dentry or the inode
2080 * we can't do that and we fall back on removing
2081 * it from the hash queues and waiting for
2082 * it to be deleted later when it has no users
2083 */
2084
2085/**
2086 * d_delete - delete a dentry
2087 * @dentry: The dentry to delete
2088 *
2089 * Turn the dentry into a negative dentry if possible, otherwise
2090 * remove it from the hash queues so it can be deleted later
2091 */
2092
2093void d_delete(struct dentry * dentry)
2094{
873feea0 2095 struct inode *inode;
7a91bf7f 2096 int isdir = 0;
1da177e4
LT
2097 /*
2098 * Are we the only user?
2099 */
357f8e65 2100again:
1da177e4 2101 spin_lock(&dentry->d_lock);
873feea0
NP
2102 inode = dentry->d_inode;
2103 isdir = S_ISDIR(inode->i_mode);
b7ab39f6 2104 if (dentry->d_count == 1) {
873feea0 2105 if (inode && !spin_trylock(&inode->i_lock)) {
357f8e65
NP
2106 spin_unlock(&dentry->d_lock);
2107 cpu_relax();
2108 goto again;
2109 }
13e3c5e5 2110 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2111 dentry_unlink_inode(dentry);
7a91bf7f 2112 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2113 return;
2114 }
2115
2116 if (!d_unhashed(dentry))
2117 __d_drop(dentry);
2118
2119 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2120
2121 fsnotify_nameremove(dentry, isdir);
1da177e4 2122}
ec4f8605 2123EXPORT_SYMBOL(d_delete);
1da177e4 2124
b07ad996 2125static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2126{
ceb5bdc2 2127 BUG_ON(!d_unhashed(entry));
1879fd6a 2128 hlist_bl_lock(b);
dea3667b 2129 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2130 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2131 hlist_bl_unlock(b);
1da177e4
LT
2132}
2133
770bfad8
DH
2134static void _d_rehash(struct dentry * entry)
2135{
2136 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2137}
2138
1da177e4
LT
2139/**
2140 * d_rehash - add an entry back to the hash
2141 * @entry: dentry to add to the hash
2142 *
2143 * Adds a dentry to the hash according to its name.
2144 */
2145
2146void d_rehash(struct dentry * entry)
2147{
1da177e4 2148 spin_lock(&entry->d_lock);
770bfad8 2149 _d_rehash(entry);
1da177e4 2150 spin_unlock(&entry->d_lock);
1da177e4 2151}
ec4f8605 2152EXPORT_SYMBOL(d_rehash);
1da177e4 2153
fb2d5b86
NP
2154/**
2155 * dentry_update_name_case - update case insensitive dentry with a new name
2156 * @dentry: dentry to be updated
2157 * @name: new name
2158 *
2159 * Update a case insensitive dentry with new case of name.
2160 *
2161 * dentry must have been returned by d_lookup with name @name. Old and new
2162 * name lengths must match (ie. no d_compare which allows mismatched name
2163 * lengths).
2164 *
2165 * Parent inode i_mutex must be held over d_lookup and into this call (to
2166 * keep renames and concurrent inserts, and readdir(2) away).
2167 */
2168void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2169{
7ebfa57f 2170 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2171 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2172
fb2d5b86 2173 spin_lock(&dentry->d_lock);
31e6b01f 2174 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2175 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2176 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2177 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2178}
2179EXPORT_SYMBOL(dentry_update_name_case);
2180
1da177e4
LT
2181static void switch_names(struct dentry *dentry, struct dentry *target)
2182{
2183 if (dname_external(target)) {
2184 if (dname_external(dentry)) {
2185 /*
2186 * Both external: swap the pointers
2187 */
9a8d5bb4 2188 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2189 } else {
2190 /*
2191 * dentry:internal, target:external. Steal target's
2192 * storage and make target internal.
2193 */
321bcf92
BF
2194 memcpy(target->d_iname, dentry->d_name.name,
2195 dentry->d_name.len + 1);
1da177e4
LT
2196 dentry->d_name.name = target->d_name.name;
2197 target->d_name.name = target->d_iname;
2198 }
2199 } else {
2200 if (dname_external(dentry)) {
2201 /*
2202 * dentry:external, target:internal. Give dentry's
2203 * storage to target and make dentry internal
2204 */
2205 memcpy(dentry->d_iname, target->d_name.name,
2206 target->d_name.len + 1);
2207 target->d_name.name = dentry->d_name.name;
2208 dentry->d_name.name = dentry->d_iname;
2209 } else {
2210 /*
2211 * Both are internal. Just copy target to dentry
2212 */
2213 memcpy(dentry->d_iname, target->d_name.name,
2214 target->d_name.len + 1);
dc711ca3
AV
2215 dentry->d_name.len = target->d_name.len;
2216 return;
1da177e4
LT
2217 }
2218 }
9a8d5bb4 2219 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2220}
2221
2fd6b7f5
NP
2222static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2223{
2224 /*
2225 * XXXX: do we really need to take target->d_lock?
2226 */
2227 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2228 spin_lock(&target->d_parent->d_lock);
2229 else {
2230 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2231 spin_lock(&dentry->d_parent->d_lock);
2232 spin_lock_nested(&target->d_parent->d_lock,
2233 DENTRY_D_LOCK_NESTED);
2234 } else {
2235 spin_lock(&target->d_parent->d_lock);
2236 spin_lock_nested(&dentry->d_parent->d_lock,
2237 DENTRY_D_LOCK_NESTED);
2238 }
2239 }
2240 if (target < dentry) {
2241 spin_lock_nested(&target->d_lock, 2);
2242 spin_lock_nested(&dentry->d_lock, 3);
2243 } else {
2244 spin_lock_nested(&dentry->d_lock, 2);
2245 spin_lock_nested(&target->d_lock, 3);
2246 }
2247}
2248
2249static void dentry_unlock_parents_for_move(struct dentry *dentry,
2250 struct dentry *target)
2251{
2252 if (target->d_parent != dentry->d_parent)
2253 spin_unlock(&dentry->d_parent->d_lock);
2254 if (target->d_parent != target)
2255 spin_unlock(&target->d_parent->d_lock);
2256}
2257
1da177e4 2258/*
2fd6b7f5
NP
2259 * When switching names, the actual string doesn't strictly have to
2260 * be preserved in the target - because we're dropping the target
2261 * anyway. As such, we can just do a simple memcpy() to copy over
2262 * the new name before we switch.
2263 *
2264 * Note that we have to be a lot more careful about getting the hash
2265 * switched - we have to switch the hash value properly even if it
2266 * then no longer matches the actual (corrupted) string of the target.
2267 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2268 */
9eaef27b 2269/*
18367501 2270 * __d_move - move a dentry
1da177e4
LT
2271 * @dentry: entry to move
2272 * @target: new dentry
2273 *
2274 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2275 * dcache entries should not be moved in this way. Caller must hold
2276 * rename_lock, the i_mutex of the source and target directories,
2277 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2278 */
18367501 2279static void __d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2280{
1da177e4
LT
2281 if (!dentry->d_inode)
2282 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2283
2fd6b7f5
NP
2284 BUG_ON(d_ancestor(dentry, target));
2285 BUG_ON(d_ancestor(target, dentry));
2286
2fd6b7f5 2287 dentry_lock_for_move(dentry, target);
1da177e4 2288
31e6b01f
NP
2289 write_seqcount_begin(&dentry->d_seq);
2290 write_seqcount_begin(&target->d_seq);
2291
ceb5bdc2
NP
2292 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2293
2294 /*
2295 * Move the dentry to the target hash queue. Don't bother checking
2296 * for the same hash queue because of how unlikely it is.
2297 */
2298 __d_drop(dentry);
789680d1 2299 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2300
2301 /* Unhash the target: dput() will then get rid of it */
2302 __d_drop(target);
2303
5160ee6f
ED
2304 list_del(&dentry->d_u.d_child);
2305 list_del(&target->d_u.d_child);
1da177e4
LT
2306
2307 /* Switch the names.. */
2308 switch_names(dentry, target);
9a8d5bb4 2309 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2310
2311 /* ... and switch the parents */
2312 if (IS_ROOT(dentry)) {
2313 dentry->d_parent = target->d_parent;
2314 target->d_parent = target;
5160ee6f 2315 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2316 } else {
9a8d5bb4 2317 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2318
2319 /* And add them back to the (new) parent lists */
5160ee6f 2320 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2321 }
2322
5160ee6f 2323 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2324
31e6b01f
NP
2325 write_seqcount_end(&target->d_seq);
2326 write_seqcount_end(&dentry->d_seq);
2327
2fd6b7f5 2328 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2329 spin_unlock(&target->d_lock);
c32ccd87 2330 fsnotify_d_move(dentry);
1da177e4 2331 spin_unlock(&dentry->d_lock);
18367501
AV
2332}
2333
2334/*
2335 * d_move - move a dentry
2336 * @dentry: entry to move
2337 * @target: new dentry
2338 *
2339 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2340 * dcache entries should not be moved in this way. See the locking
2341 * requirements for __d_move.
18367501
AV
2342 */
2343void d_move(struct dentry *dentry, struct dentry *target)
2344{
2345 write_seqlock(&rename_lock);
2346 __d_move(dentry, target);
1da177e4 2347 write_sequnlock(&rename_lock);
9eaef27b 2348}
ec4f8605 2349EXPORT_SYMBOL(d_move);
1da177e4 2350
e2761a11
OH
2351/**
2352 * d_ancestor - search for an ancestor
2353 * @p1: ancestor dentry
2354 * @p2: child dentry
2355 *
2356 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2357 * an ancestor of p2, else NULL.
9eaef27b 2358 */
e2761a11 2359struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2360{
2361 struct dentry *p;
2362
871c0067 2363 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2364 if (p->d_parent == p1)
e2761a11 2365 return p;
9eaef27b 2366 }
e2761a11 2367 return NULL;
9eaef27b
TM
2368}
2369
2370/*
2371 * This helper attempts to cope with remotely renamed directories
2372 *
2373 * It assumes that the caller is already holding
18367501 2374 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2375 *
2376 * Note: If ever the locking in lock_rename() changes, then please
2377 * remember to update this too...
9eaef27b 2378 */
873feea0
NP
2379static struct dentry *__d_unalias(struct inode *inode,
2380 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2381{
2382 struct mutex *m1 = NULL, *m2 = NULL;
2383 struct dentry *ret;
2384
2385 /* If alias and dentry share a parent, then no extra locks required */
2386 if (alias->d_parent == dentry->d_parent)
2387 goto out_unalias;
2388
9eaef27b
TM
2389 /* See lock_rename() */
2390 ret = ERR_PTR(-EBUSY);
2391 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2392 goto out_err;
2393 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2394 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2395 goto out_err;
2396 m2 = &alias->d_parent->d_inode->i_mutex;
2397out_unalias:
18367501 2398 __d_move(alias, dentry);
9eaef27b
TM
2399 ret = alias;
2400out_err:
873feea0 2401 spin_unlock(&inode->i_lock);
9eaef27b
TM
2402 if (m2)
2403 mutex_unlock(m2);
2404 if (m1)
2405 mutex_unlock(m1);
2406 return ret;
2407}
2408
770bfad8
DH
2409/*
2410 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2411 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2412 * returns with anon->d_lock held!
770bfad8
DH
2413 */
2414static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2415{
2416 struct dentry *dparent, *aparent;
2417
2fd6b7f5 2418 dentry_lock_for_move(anon, dentry);
770bfad8 2419
31e6b01f
NP
2420 write_seqcount_begin(&dentry->d_seq);
2421 write_seqcount_begin(&anon->d_seq);
2422
770bfad8
DH
2423 dparent = dentry->d_parent;
2424 aparent = anon->d_parent;
2425
2fd6b7f5
NP
2426 switch_names(dentry, anon);
2427 swap(dentry->d_name.hash, anon->d_name.hash);
2428
770bfad8
DH
2429 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2430 list_del(&dentry->d_u.d_child);
2431 if (!IS_ROOT(dentry))
2432 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2433 else
2434 INIT_LIST_HEAD(&dentry->d_u.d_child);
2435
2436 anon->d_parent = (dparent == dentry) ? anon : dparent;
2437 list_del(&anon->d_u.d_child);
2438 if (!IS_ROOT(anon))
2439 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2440 else
2441 INIT_LIST_HEAD(&anon->d_u.d_child);
2442
31e6b01f
NP
2443 write_seqcount_end(&dentry->d_seq);
2444 write_seqcount_end(&anon->d_seq);
2445
2fd6b7f5
NP
2446 dentry_unlock_parents_for_move(anon, dentry);
2447 spin_unlock(&dentry->d_lock);
2448
2449 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2450 anon->d_flags &= ~DCACHE_DISCONNECTED;
2451}
2452
2453/**
2454 * d_materialise_unique - introduce an inode into the tree
2455 * @dentry: candidate dentry
2456 * @inode: inode to bind to the dentry, to which aliases may be attached
2457 *
2458 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2459 * root directory alias in its place if there is one. Caller must hold the
2460 * i_mutex of the parent directory.
770bfad8
DH
2461 */
2462struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2463{
9eaef27b 2464 struct dentry *actual;
770bfad8
DH
2465
2466 BUG_ON(!d_unhashed(dentry));
2467
770bfad8
DH
2468 if (!inode) {
2469 actual = dentry;
360da900 2470 __d_instantiate(dentry, NULL);
357f8e65
NP
2471 d_rehash(actual);
2472 goto out_nolock;
770bfad8
DH
2473 }
2474
873feea0 2475 spin_lock(&inode->i_lock);
357f8e65 2476
9eaef27b
TM
2477 if (S_ISDIR(inode->i_mode)) {
2478 struct dentry *alias;
2479
2480 /* Does an aliased dentry already exist? */
3f50fff4 2481 alias = __d_find_alias(inode);
9eaef27b
TM
2482 if (alias) {
2483 actual = alias;
18367501
AV
2484 write_seqlock(&rename_lock);
2485
2486 if (d_ancestor(alias, dentry)) {
2487 /* Check for loops */
2488 actual = ERR_PTR(-ELOOP);
b18dafc8 2489 spin_unlock(&inode->i_lock);
18367501
AV
2490 } else if (IS_ROOT(alias)) {
2491 /* Is this an anonymous mountpoint that we
2492 * could splice into our tree? */
9eaef27b 2493 __d_materialise_dentry(dentry, alias);
18367501 2494 write_sequnlock(&rename_lock);
9eaef27b
TM
2495 __d_drop(alias);
2496 goto found;
18367501
AV
2497 } else {
2498 /* Nope, but we must(!) avoid directory
b18dafc8 2499 * aliasing. This drops inode->i_lock */
18367501 2500 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2501 }
18367501 2502 write_sequnlock(&rename_lock);
dd179946
DH
2503 if (IS_ERR(actual)) {
2504 if (PTR_ERR(actual) == -ELOOP)
2505 pr_warn_ratelimited(
2506 "VFS: Lookup of '%s' in %s %s"
2507 " would have caused loop\n",
2508 dentry->d_name.name,
2509 inode->i_sb->s_type->name,
2510 inode->i_sb->s_id);
9eaef27b 2511 dput(alias);
dd179946 2512 }
9eaef27b
TM
2513 goto out_nolock;
2514 }
770bfad8
DH
2515 }
2516
2517 /* Add a unique reference */
2518 actual = __d_instantiate_unique(dentry, inode);
2519 if (!actual)
2520 actual = dentry;
357f8e65
NP
2521 else
2522 BUG_ON(!d_unhashed(actual));
770bfad8 2523
770bfad8
DH
2524 spin_lock(&actual->d_lock);
2525found:
2526 _d_rehash(actual);
2527 spin_unlock(&actual->d_lock);
873feea0 2528 spin_unlock(&inode->i_lock);
9eaef27b 2529out_nolock:
770bfad8
DH
2530 if (actual == dentry) {
2531 security_d_instantiate(dentry, inode);
2532 return NULL;
2533 }
2534
2535 iput(inode);
2536 return actual;
770bfad8 2537}
ec4f8605 2538EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2539
cdd16d02 2540static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2541{
2542 *buflen -= namelen;
2543 if (*buflen < 0)
2544 return -ENAMETOOLONG;
2545 *buffer -= namelen;
2546 memcpy(*buffer, str, namelen);
2547 return 0;
2548}
2549
cdd16d02
MS
2550static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2551{
2552 return prepend(buffer, buflen, name->name, name->len);
2553}
2554
1da177e4 2555/**
208898c1 2556 * prepend_path - Prepend path string to a buffer
9d1bc601 2557 * @path: the dentry/vfsmount to report
02125a82 2558 * @root: root vfsmnt/dentry
f2eb6575
MS
2559 * @buffer: pointer to the end of the buffer
2560 * @buflen: pointer to buffer length
552ce544 2561 *
949854d0 2562 * Caller holds the rename_lock.
1da177e4 2563 */
02125a82
AV
2564static int prepend_path(const struct path *path,
2565 const struct path *root,
f2eb6575 2566 char **buffer, int *buflen)
1da177e4 2567{
9d1bc601
MS
2568 struct dentry *dentry = path->dentry;
2569 struct vfsmount *vfsmnt = path->mnt;
0714a533 2570 struct mount *mnt = real_mount(vfsmnt);
f2eb6575
MS
2571 bool slash = false;
2572 int error = 0;
6092d048 2573
962830df 2574 br_read_lock(&vfsmount_lock);
f2eb6575 2575 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2576 struct dentry * parent;
2577
1da177e4 2578 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2579 /* Global root? */
676da58d 2580 if (!mnt_has_parent(mnt))
1da177e4 2581 goto global_root;
a73324da 2582 dentry = mnt->mnt_mountpoint;
0714a533
AV
2583 mnt = mnt->mnt_parent;
2584 vfsmnt = &mnt->mnt;
1da177e4
LT
2585 continue;
2586 }
2587 parent = dentry->d_parent;
2588 prefetch(parent);
9abca360 2589 spin_lock(&dentry->d_lock);
f2eb6575 2590 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2591 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2592 if (!error)
2593 error = prepend(buffer, buflen, "/", 1);
2594 if (error)
2595 break;
2596
2597 slash = true;
1da177e4
LT
2598 dentry = parent;
2599 }
2600
f2eb6575
MS
2601 if (!error && !slash)
2602 error = prepend(buffer, buflen, "/", 1);
2603
02125a82 2604out:
962830df 2605 br_read_unlock(&vfsmount_lock);
f2eb6575 2606 return error;
1da177e4
LT
2607
2608global_root:
98dc568b
MS
2609 /*
2610 * Filesystems needing to implement special "root names"
2611 * should do so with ->d_dname()
2612 */
2613 if (IS_ROOT(dentry) &&
2614 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2615 WARN(1, "Root dentry has weird name <%.*s>\n",
2616 (int) dentry->d_name.len, dentry->d_name.name);
2617 }
02125a82
AV
2618 if (!slash)
2619 error = prepend(buffer, buflen, "/", 1);
2620 if (!error)
143c8c91 2621 error = real_mount(vfsmnt)->mnt_ns ? 1 : 2;
be285c71 2622 goto out;
f2eb6575 2623}
be285c71 2624
f2eb6575
MS
2625/**
2626 * __d_path - return the path of a dentry
2627 * @path: the dentry/vfsmount to report
02125a82 2628 * @root: root vfsmnt/dentry
cd956a1c 2629 * @buf: buffer to return value in
f2eb6575
MS
2630 * @buflen: buffer length
2631 *
ffd1f4ed 2632 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2633 *
2634 * Returns a pointer into the buffer or an error code if the
2635 * path was too long.
2636 *
be148247 2637 * "buflen" should be positive.
f2eb6575 2638 *
02125a82 2639 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2640 */
02125a82
AV
2641char *__d_path(const struct path *path,
2642 const struct path *root,
f2eb6575
MS
2643 char *buf, int buflen)
2644{
2645 char *res = buf + buflen;
2646 int error;
2647
2648 prepend(&res, &buflen, "\0", 1);
949854d0 2649 write_seqlock(&rename_lock);
f2eb6575 2650 error = prepend_path(path, root, &res, &buflen);
949854d0 2651 write_sequnlock(&rename_lock);
be148247 2652
02125a82
AV
2653 if (error < 0)
2654 return ERR_PTR(error);
2655 if (error > 0)
2656 return NULL;
2657 return res;
2658}
2659
2660char *d_absolute_path(const struct path *path,
2661 char *buf, int buflen)
2662{
2663 struct path root = {};
2664 char *res = buf + buflen;
2665 int error;
2666
2667 prepend(&res, &buflen, "\0", 1);
2668 write_seqlock(&rename_lock);
2669 error = prepend_path(path, &root, &res, &buflen);
2670 write_sequnlock(&rename_lock);
2671
2672 if (error > 1)
2673 error = -EINVAL;
2674 if (error < 0)
f2eb6575 2675 return ERR_PTR(error);
f2eb6575 2676 return res;
1da177e4
LT
2677}
2678
ffd1f4ed
MS
2679/*
2680 * same as __d_path but appends "(deleted)" for unlinked files.
2681 */
02125a82
AV
2682static int path_with_deleted(const struct path *path,
2683 const struct path *root,
2684 char **buf, int *buflen)
ffd1f4ed
MS
2685{
2686 prepend(buf, buflen, "\0", 1);
2687 if (d_unlinked(path->dentry)) {
2688 int error = prepend(buf, buflen, " (deleted)", 10);
2689 if (error)
2690 return error;
2691 }
2692
2693 return prepend_path(path, root, buf, buflen);
2694}
2695
8df9d1a4
MS
2696static int prepend_unreachable(char **buffer, int *buflen)
2697{
2698 return prepend(buffer, buflen, "(unreachable)", 13);
2699}
2700
a03a8a70
JB
2701/**
2702 * d_path - return the path of a dentry
cf28b486 2703 * @path: path to report
a03a8a70
JB
2704 * @buf: buffer to return value in
2705 * @buflen: buffer length
2706 *
2707 * Convert a dentry into an ASCII path name. If the entry has been deleted
2708 * the string " (deleted)" is appended. Note that this is ambiguous.
2709 *
52afeefb
AV
2710 * Returns a pointer into the buffer or an error code if the path was
2711 * too long. Note: Callers should use the returned pointer, not the passed
2712 * in buffer, to use the name! The implementation often starts at an offset
2713 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2714 *
31f3e0b3 2715 * "buflen" should be positive.
a03a8a70 2716 */
20d4fdc1 2717char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2718{
ffd1f4ed 2719 char *res = buf + buflen;
6ac08c39 2720 struct path root;
ffd1f4ed 2721 int error;
1da177e4 2722
c23fbb6b
ED
2723 /*
2724 * We have various synthetic filesystems that never get mounted. On
2725 * these filesystems dentries are never used for lookup purposes, and
2726 * thus don't need to be hashed. They also don't need a name until a
2727 * user wants to identify the object in /proc/pid/fd/. The little hack
2728 * below allows us to generate a name for these objects on demand:
2729 */
cf28b486
JB
2730 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2731 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2732
f7ad3c6b 2733 get_fs_root(current->fs, &root);
949854d0 2734 write_seqlock(&rename_lock);
02125a82
AV
2735 error = path_with_deleted(path, &root, &res, &buflen);
2736 if (error < 0)
ffd1f4ed 2737 res = ERR_PTR(error);
949854d0 2738 write_sequnlock(&rename_lock);
6ac08c39 2739 path_put(&root);
1da177e4
LT
2740 return res;
2741}
ec4f8605 2742EXPORT_SYMBOL(d_path);
1da177e4 2743
8df9d1a4
MS
2744/**
2745 * d_path_with_unreachable - return the path of a dentry
2746 * @path: path to report
2747 * @buf: buffer to return value in
2748 * @buflen: buffer length
2749 *
2750 * The difference from d_path() is that this prepends "(unreachable)"
2751 * to paths which are unreachable from the current process' root.
2752 */
2753char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2754{
2755 char *res = buf + buflen;
2756 struct path root;
8df9d1a4
MS
2757 int error;
2758
2759 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2760 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2761
2762 get_fs_root(current->fs, &root);
949854d0 2763 write_seqlock(&rename_lock);
02125a82
AV
2764 error = path_with_deleted(path, &root, &res, &buflen);
2765 if (error > 0)
8df9d1a4 2766 error = prepend_unreachable(&res, &buflen);
949854d0 2767 write_sequnlock(&rename_lock);
8df9d1a4
MS
2768 path_put(&root);
2769 if (error)
2770 res = ERR_PTR(error);
2771
2772 return res;
2773}
2774
c23fbb6b
ED
2775/*
2776 * Helper function for dentry_operations.d_dname() members
2777 */
2778char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2779 const char *fmt, ...)
2780{
2781 va_list args;
2782 char temp[64];
2783 int sz;
2784
2785 va_start(args, fmt);
2786 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2787 va_end(args);
2788
2789 if (sz > sizeof(temp) || sz > buflen)
2790 return ERR_PTR(-ENAMETOOLONG);
2791
2792 buffer += buflen - sz;
2793 return memcpy(buffer, temp, sz);
2794}
2795
6092d048
RP
2796/*
2797 * Write full pathname from the root of the filesystem into the buffer.
2798 */
ec2447c2 2799static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2800{
2801 char *end = buf + buflen;
2802 char *retval;
2803
6092d048 2804 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2805 if (buflen < 1)
2806 goto Elong;
2807 /* Get '/' right */
2808 retval = end-1;
2809 *retval = '/';
2810
cdd16d02
MS
2811 while (!IS_ROOT(dentry)) {
2812 struct dentry *parent = dentry->d_parent;
9abca360 2813 int error;
6092d048 2814
6092d048 2815 prefetch(parent);
9abca360
NP
2816 spin_lock(&dentry->d_lock);
2817 error = prepend_name(&end, &buflen, &dentry->d_name);
2818 spin_unlock(&dentry->d_lock);
2819 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2820 goto Elong;
2821
2822 retval = end;
2823 dentry = parent;
2824 }
c103135c
AV
2825 return retval;
2826Elong:
2827 return ERR_PTR(-ENAMETOOLONG);
2828}
ec2447c2
NP
2829
2830char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2831{
2832 char *retval;
2833
949854d0 2834 write_seqlock(&rename_lock);
ec2447c2 2835 retval = __dentry_path(dentry, buf, buflen);
949854d0 2836 write_sequnlock(&rename_lock);
ec2447c2
NP
2837
2838 return retval;
2839}
2840EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2841
2842char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2843{
2844 char *p = NULL;
2845 char *retval;
2846
949854d0 2847 write_seqlock(&rename_lock);
c103135c
AV
2848 if (d_unlinked(dentry)) {
2849 p = buf + buflen;
2850 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2851 goto Elong;
2852 buflen++;
2853 }
2854 retval = __dentry_path(dentry, buf, buflen);
949854d0 2855 write_sequnlock(&rename_lock);
c103135c
AV
2856 if (!IS_ERR(retval) && p)
2857 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2858 return retval;
2859Elong:
6092d048
RP
2860 return ERR_PTR(-ENAMETOOLONG);
2861}
2862
1da177e4
LT
2863/*
2864 * NOTE! The user-level library version returns a
2865 * character pointer. The kernel system call just
2866 * returns the length of the buffer filled (which
2867 * includes the ending '\0' character), or a negative
2868 * error value. So libc would do something like
2869 *
2870 * char *getcwd(char * buf, size_t size)
2871 * {
2872 * int retval;
2873 *
2874 * retval = sys_getcwd(buf, size);
2875 * if (retval >= 0)
2876 * return buf;
2877 * errno = -retval;
2878 * return NULL;
2879 * }
2880 */
3cdad428 2881SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2882{
552ce544 2883 int error;
6ac08c39 2884 struct path pwd, root;
552ce544 2885 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2886
2887 if (!page)
2888 return -ENOMEM;
2889
f7ad3c6b 2890 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2891
552ce544 2892 error = -ENOENT;
949854d0 2893 write_seqlock(&rename_lock);
f3da392e 2894 if (!d_unlinked(pwd.dentry)) {
552ce544 2895 unsigned long len;
8df9d1a4
MS
2896 char *cwd = page + PAGE_SIZE;
2897 int buflen = PAGE_SIZE;
1da177e4 2898
8df9d1a4 2899 prepend(&cwd, &buflen, "\0", 1);
02125a82 2900 error = prepend_path(&pwd, &root, &cwd, &buflen);
949854d0 2901 write_sequnlock(&rename_lock);
552ce544 2902
02125a82 2903 if (error < 0)
552ce544
LT
2904 goto out;
2905
8df9d1a4 2906 /* Unreachable from current root */
02125a82 2907 if (error > 0) {
8df9d1a4
MS
2908 error = prepend_unreachable(&cwd, &buflen);
2909 if (error)
2910 goto out;
2911 }
2912
552ce544
LT
2913 error = -ERANGE;
2914 len = PAGE_SIZE + page - cwd;
2915 if (len <= size) {
2916 error = len;
2917 if (copy_to_user(buf, cwd, len))
2918 error = -EFAULT;
2919 }
949854d0
NP
2920 } else {
2921 write_sequnlock(&rename_lock);
949854d0 2922 }
1da177e4
LT
2923
2924out:
6ac08c39
JB
2925 path_put(&pwd);
2926 path_put(&root);
1da177e4
LT
2927 free_page((unsigned long) page);
2928 return error;
2929}
2930
2931/*
2932 * Test whether new_dentry is a subdirectory of old_dentry.
2933 *
2934 * Trivially implemented using the dcache structure
2935 */
2936
2937/**
2938 * is_subdir - is new dentry a subdirectory of old_dentry
2939 * @new_dentry: new dentry
2940 * @old_dentry: old dentry
2941 *
2942 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2943 * Returns 0 otherwise.
2944 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2945 */
2946
e2761a11 2947int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2948{
2949 int result;
949854d0 2950 unsigned seq;
1da177e4 2951
e2761a11
OH
2952 if (new_dentry == old_dentry)
2953 return 1;
2954
e2761a11 2955 do {
1da177e4 2956 /* for restarting inner loop in case of seq retry */
1da177e4 2957 seq = read_seqbegin(&rename_lock);
949854d0
NP
2958 /*
2959 * Need rcu_readlock to protect against the d_parent trashing
2960 * due to d_move
2961 */
2962 rcu_read_lock();
e2761a11 2963 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2964 result = 1;
e2761a11
OH
2965 else
2966 result = 0;
949854d0 2967 rcu_read_unlock();
1da177e4 2968 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2969
2970 return result;
2971}
2972
2973void d_genocide(struct dentry *root)
2974{
949854d0 2975 struct dentry *this_parent;
1da177e4 2976 struct list_head *next;
949854d0 2977 unsigned seq;
58db63d0 2978 int locked = 0;
1da177e4 2979
949854d0 2980 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2981again:
2982 this_parent = root;
2fd6b7f5 2983 spin_lock(&this_parent->d_lock);
1da177e4
LT
2984repeat:
2985 next = this_parent->d_subdirs.next;
2986resume:
2987 while (next != &this_parent->d_subdirs) {
2988 struct list_head *tmp = next;
5160ee6f 2989 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2990 next = tmp->next;
949854d0 2991
da502956
NP
2992 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2993 if (d_unhashed(dentry) || !dentry->d_inode) {
2994 spin_unlock(&dentry->d_lock);
1da177e4 2995 continue;
da502956 2996 }
1da177e4 2997 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2998 spin_unlock(&this_parent->d_lock);
2999 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 3000 this_parent = dentry;
2fd6b7f5 3001 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
3002 goto repeat;
3003 }
949854d0
NP
3004 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3005 dentry->d_flags |= DCACHE_GENOCIDE;
3006 dentry->d_count--;
3007 }
b7ab39f6 3008 spin_unlock(&dentry->d_lock);
1da177e4
LT
3009 }
3010 if (this_parent != root) {
c826cb7d 3011 struct dentry *child = this_parent;
949854d0
NP
3012 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
3013 this_parent->d_flags |= DCACHE_GENOCIDE;
3014 this_parent->d_count--;
3015 }
c826cb7d
LT
3016 this_parent = try_to_ascend(this_parent, locked, seq);
3017 if (!this_parent)
949854d0 3018 goto rename_retry;
949854d0 3019 next = child->d_u.d_child.next;
1da177e4
LT
3020 goto resume;
3021 }
2fd6b7f5 3022 spin_unlock(&this_parent->d_lock);
58db63d0 3023 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 3024 goto rename_retry;
58db63d0
NP
3025 if (locked)
3026 write_sequnlock(&rename_lock);
3027 return;
3028
3029rename_retry:
3030 locked = 1;
3031 write_seqlock(&rename_lock);
3032 goto again;
1da177e4
LT
3033}
3034
3035/**
3036 * find_inode_number - check for dentry with name
3037 * @dir: directory to check
3038 * @name: Name to find.
3039 *
3040 * Check whether a dentry already exists for the given name,
3041 * and return the inode number if it has an inode. Otherwise
3042 * 0 is returned.
3043 *
3044 * This routine is used to post-process directory listings for
3045 * filesystems using synthetic inode numbers, and is necessary
3046 * to keep getcwd() working.
3047 */
3048
3049ino_t find_inode_number(struct dentry *dir, struct qstr *name)
3050{
3051 struct dentry * dentry;
3052 ino_t ino = 0;
3053
3e7e241f
EB
3054 dentry = d_hash_and_lookup(dir, name);
3055 if (dentry) {
1da177e4
LT
3056 if (dentry->d_inode)
3057 ino = dentry->d_inode->i_ino;
3058 dput(dentry);
3059 }
1da177e4
LT
3060 return ino;
3061}
ec4f8605 3062EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
3063
3064static __initdata unsigned long dhash_entries;
3065static int __init set_dhash_entries(char *str)
3066{
3067 if (!str)
3068 return 0;
3069 dhash_entries = simple_strtoul(str, &str, 0);
3070 return 1;
3071}
3072__setup("dhash_entries=", set_dhash_entries);
3073
3074static void __init dcache_init_early(void)
3075{
074b8517 3076 unsigned int loop;
1da177e4
LT
3077
3078 /* If hashes are distributed across NUMA nodes, defer
3079 * hash allocation until vmalloc space is available.
3080 */
3081 if (hashdist)
3082 return;
3083
3084 dentry_hashtable =
3085 alloc_large_system_hash("Dentry cache",
b07ad996 3086 sizeof(struct hlist_bl_head),
1da177e4
LT
3087 dhash_entries,
3088 13,
3089 HASH_EARLY,
3090 &d_hash_shift,
3091 &d_hash_mask,
31fe62b9 3092 0,
1da177e4
LT
3093 0);
3094
074b8517 3095 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3096 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3097}
3098
74bf17cf 3099static void __init dcache_init(void)
1da177e4 3100{
074b8517 3101 unsigned int loop;
1da177e4
LT
3102
3103 /*
3104 * A constructor could be added for stable state like the lists,
3105 * but it is probably not worth it because of the cache nature
3106 * of the dcache.
3107 */
0a31bd5f
CL
3108 dentry_cache = KMEM_CACHE(dentry,
3109 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3110
3111 /* Hash may have been set up in dcache_init_early */
3112 if (!hashdist)
3113 return;
3114
3115 dentry_hashtable =
3116 alloc_large_system_hash("Dentry cache",
b07ad996 3117 sizeof(struct hlist_bl_head),
1da177e4
LT
3118 dhash_entries,
3119 13,
3120 0,
3121 &d_hash_shift,
3122 &d_hash_mask,
31fe62b9 3123 0,
1da177e4
LT
3124 0);
3125
074b8517 3126 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3127 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3128}
3129
3130/* SLAB cache for __getname() consumers */
e18b890b 3131struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3132EXPORT_SYMBOL(names_cachep);
1da177e4 3133
1da177e4
LT
3134EXPORT_SYMBOL(d_genocide);
3135
1da177e4
LT
3136void __init vfs_caches_init_early(void)
3137{
3138 dcache_init_early();
3139 inode_init_early();
3140}
3141
3142void __init vfs_caches_init(unsigned long mempages)
3143{
3144 unsigned long reserve;
3145
3146 /* Base hash sizes on available memory, with a reserve equal to
3147 150% of current kernel size */
3148
3149 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3150 mempages -= reserve;
3151
3152 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3153 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3154
74bf17cf
DC
3155 dcache_init();
3156 inode_init();
1da177e4 3157 files_init(mempages);
74bf17cf 3158 mnt_init();
1da177e4
LT
3159 bdev_cache_init();
3160 chrdev_init();
3161}
This page took 1.429971 seconds and 5 git commands to generate.