fs: dcache reduce dput locking
[deliverable/linux.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
26#include <linux/module.h>
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
07f3f05c 36#include "internal.h"
1da177e4 37
789680d1
NP
38/*
39 * Usage:
b23fb0a6
NP
40 * dcache_inode_lock protects:
41 * - i_dentry, d_alias, d_inode
23044507
NP
42 * dcache_hash_lock protects:
43 * - the dcache hash table, s_anon lists
44 * dcache_lru_lock protects:
45 * - the dcache lru lists and counters
46 * d_lock protects:
47 * - d_flags
48 * - d_name
49 * - d_lru
b7ab39f6 50 * - d_count
da502956 51 * - d_unhashed()
2fd6b7f5
NP
52 * - d_parent and d_subdirs
53 * - childrens' d_child and d_parent
b23fb0a6 54 * - d_alias, d_inode
789680d1
NP
55 *
56 * Ordering:
b5c84bf6
NP
57 * dcache_inode_lock
58 * dentry->d_lock
59 * dcache_lru_lock
60 * dcache_hash_lock
789680d1 61 *
da502956
NP
62 * If there is an ancestor relationship:
63 * dentry->d_parent->...->d_parent->d_lock
64 * ...
65 * dentry->d_parent->d_lock
66 * dentry->d_lock
67 *
68 * If no ancestor relationship:
789680d1
NP
69 * if (dentry1 < dentry2)
70 * dentry1->d_lock
71 * dentry2->d_lock
72 */
fa3536cc 73int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
74EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
75
b23fb0a6 76__cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_inode_lock);
789680d1 77static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_hash_lock);
23044507 78static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 80
949854d0 81EXPORT_SYMBOL(rename_lock);
b23fb0a6 82EXPORT_SYMBOL(dcache_inode_lock);
1da177e4 83
e18b890b 84static struct kmem_cache *dentry_cache __read_mostly;
1da177e4
LT
85
86#define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
87
88/*
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
92 *
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
95 */
96#define D_HASHBITS d_hash_shift
97#define D_HASHMASK d_hash_mask
98
fa3536cc
ED
99static unsigned int d_hash_mask __read_mostly;
100static unsigned int d_hash_shift __read_mostly;
101static struct hlist_head *dentry_hashtable __read_mostly;
1da177e4
LT
102
103/* Statistics gathering. */
104struct dentry_stat_t dentry_stat = {
105 .age_limit = 45,
106};
107
3e880fb5 108static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
109
110#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
111static int get_nr_dentry(void)
112{
113 int i;
114 int sum = 0;
115 for_each_possible_cpu(i)
116 sum += per_cpu(nr_dentry, i);
117 return sum < 0 ? 0 : sum;
118}
119
312d3ca8
CH
120int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
121 size_t *lenp, loff_t *ppos)
122{
3e880fb5 123 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
124 return proc_dointvec(table, write, buffer, lenp, ppos);
125}
126#endif
127
9c82ab9c 128static void __d_free(struct rcu_head *head)
1da177e4 129{
9c82ab9c
CH
130 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
131
fd217f4d 132 WARN_ON(!list_empty(&dentry->d_alias));
1da177e4
LT
133 if (dname_external(dentry))
134 kfree(dentry->d_name.name);
135 kmem_cache_free(dentry_cache, dentry);
136}
137
138/*
b5c84bf6 139 * no locks, please.
1da177e4
LT
140 */
141static void d_free(struct dentry *dentry)
142{
b7ab39f6 143 BUG_ON(dentry->d_count);
3e880fb5 144 this_cpu_dec(nr_dentry);
1da177e4
LT
145 if (dentry->d_op && dentry->d_op->d_release)
146 dentry->d_op->d_release(dentry);
312d3ca8 147
b3423415 148 /* if dentry was never inserted into hash, immediate free is OK */
e8462caa 149 if (hlist_unhashed(&dentry->d_hash))
9c82ab9c 150 __d_free(&dentry->d_u.d_rcu);
b3423415 151 else
9c82ab9c 152 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
153}
154
155/*
156 * Release the dentry's inode, using the filesystem
157 * d_iput() operation if defined.
1da177e4 158 */
858119e1 159static void dentry_iput(struct dentry * dentry)
31f3e0b3 160 __releases(dentry->d_lock)
b23fb0a6 161 __releases(dcache_inode_lock)
1da177e4
LT
162{
163 struct inode *inode = dentry->d_inode;
164 if (inode) {
165 dentry->d_inode = NULL;
166 list_del_init(&dentry->d_alias);
167 spin_unlock(&dentry->d_lock);
b23fb0a6 168 spin_unlock(&dcache_inode_lock);
f805fbda
LT
169 if (!inode->i_nlink)
170 fsnotify_inoderemove(inode);
1da177e4
LT
171 if (dentry->d_op && dentry->d_op->d_iput)
172 dentry->d_op->d_iput(dentry, inode);
173 else
174 iput(inode);
175 } else {
176 spin_unlock(&dentry->d_lock);
b23fb0a6 177 spin_unlock(&dcache_inode_lock);
1da177e4
LT
178 }
179}
180
da3bbdd4 181/*
23044507 182 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
da3bbdd4
KM
183 */
184static void dentry_lru_add(struct dentry *dentry)
185{
a4633357 186 if (list_empty(&dentry->d_lru)) {
23044507 187 spin_lock(&dcache_lru_lock);
a4633357
CH
188 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
189 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 190 dentry_stat.nr_unused++;
23044507 191 spin_unlock(&dcache_lru_lock);
a4633357 192 }
da3bbdd4
KM
193}
194
23044507
NP
195static void __dentry_lru_del(struct dentry *dentry)
196{
197 list_del_init(&dentry->d_lru);
198 dentry->d_sb->s_nr_dentry_unused--;
199 dentry_stat.nr_unused--;
200}
201
da3bbdd4
KM
202static void dentry_lru_del(struct dentry *dentry)
203{
204 if (!list_empty(&dentry->d_lru)) {
23044507
NP
205 spin_lock(&dcache_lru_lock);
206 __dentry_lru_del(dentry);
207 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
208 }
209}
210
a4633357 211static void dentry_lru_move_tail(struct dentry *dentry)
da3bbdd4 212{
23044507 213 spin_lock(&dcache_lru_lock);
a4633357
CH
214 if (list_empty(&dentry->d_lru)) {
215 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
216 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 217 dentry_stat.nr_unused++;
a4633357
CH
218 } else {
219 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
da3bbdd4 220 }
23044507 221 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
222}
223
d52b9086
MS
224/**
225 * d_kill - kill dentry and return parent
226 * @dentry: dentry to kill
227 *
31f3e0b3 228 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
229 *
230 * If this is the root of the dentry tree, return NULL.
23044507 231 *
b5c84bf6
NP
232 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
233 * d_kill.
d52b9086 234 */
2fd6b7f5 235static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 236 __releases(dentry->d_lock)
2fd6b7f5 237 __releases(parent->d_lock)
b23fb0a6 238 __releases(dcache_inode_lock)
d52b9086 239{
949854d0 240 dentry->d_parent = NULL;
d52b9086 241 list_del(&dentry->d_u.d_child);
2fd6b7f5
NP
242 if (parent)
243 spin_unlock(&parent->d_lock);
d52b9086 244 dentry_iput(dentry);
b7ab39f6
NP
245 /*
246 * dentry_iput drops the locks, at which point nobody (except
247 * transient RCU lookups) can reach this dentry.
248 */
d52b9086 249 d_free(dentry);
871c0067 250 return parent;
d52b9086
MS
251}
252
789680d1
NP
253/**
254 * d_drop - drop a dentry
255 * @dentry: dentry to drop
256 *
257 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
258 * be found through a VFS lookup any more. Note that this is different from
259 * deleting the dentry - d_delete will try to mark the dentry negative if
260 * possible, giving a successful _negative_ lookup, while d_drop will
261 * just make the cache lookup fail.
262 *
263 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
264 * reason (NFS timeouts or autofs deletes).
265 *
266 * __d_drop requires dentry->d_lock.
267 */
268void __d_drop(struct dentry *dentry)
269{
270 if (!(dentry->d_flags & DCACHE_UNHASHED)) {
271 dentry->d_flags |= DCACHE_UNHASHED;
272 spin_lock(&dcache_hash_lock);
273 hlist_del_rcu(&dentry->d_hash);
274 spin_unlock(&dcache_hash_lock);
275 }
276}
277EXPORT_SYMBOL(__d_drop);
278
279void d_drop(struct dentry *dentry)
280{
789680d1
NP
281 spin_lock(&dentry->d_lock);
282 __d_drop(dentry);
283 spin_unlock(&dentry->d_lock);
789680d1
NP
284}
285EXPORT_SYMBOL(d_drop);
286
1da177e4
LT
287/*
288 * This is dput
289 *
290 * This is complicated by the fact that we do not want to put
291 * dentries that are no longer on any hash chain on the unused
292 * list: we'd much rather just get rid of them immediately.
293 *
294 * However, that implies that we have to traverse the dentry
295 * tree upwards to the parents which might _also_ now be
296 * scheduled for deletion (it may have been only waiting for
297 * its last child to go away).
298 *
299 * This tail recursion is done by hand as we don't want to depend
300 * on the compiler to always get this right (gcc generally doesn't).
301 * Real recursion would eat up our stack space.
302 */
303
304/*
305 * dput - release a dentry
306 * @dentry: dentry to release
307 *
308 * Release a dentry. This will drop the usage count and if appropriate
309 * call the dentry unlink method as well as removing it from the queues and
310 * releasing its resources. If the parent dentries were scheduled for release
311 * they too may now get deleted.
312 *
313 * no dcache lock, please.
314 */
315
316void dput(struct dentry *dentry)
317{
2fd6b7f5 318 struct dentry *parent;
1da177e4
LT
319 if (!dentry)
320 return;
321
322repeat:
b7ab39f6 323 if (dentry->d_count == 1)
1da177e4 324 might_sleep();
1da177e4 325 spin_lock(&dentry->d_lock);
61f3dee4
NP
326 BUG_ON(!dentry->d_count);
327 if (dentry->d_count > 1) {
328 dentry->d_count--;
1da177e4 329 spin_unlock(&dentry->d_lock);
1da177e4
LT
330 return;
331 }
332
1da177e4
LT
333 if (dentry->d_op && dentry->d_op->d_delete) {
334 if (dentry->d_op->d_delete(dentry))
61f3dee4 335 goto kill_it;
1da177e4 336 }
265ac902 337
1da177e4
LT
338 /* Unreachable? Get rid of it */
339 if (d_unhashed(dentry))
340 goto kill_it;
265ac902
NP
341
342 /* Otherwise leave it cached and ensure it's on the LRU */
343 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 344 dentry_lru_add(dentry);
265ac902 345
61f3dee4
NP
346 dentry->d_count--;
347 spin_unlock(&dentry->d_lock);
1da177e4
LT
348 return;
349
d52b9086 350kill_it:
61f3dee4
NP
351 if (!spin_trylock(&dcache_inode_lock)) {
352relock:
353 spin_unlock(&dentry->d_lock);
354 cpu_relax();
355 goto repeat;
356 }
357 if (IS_ROOT(dentry))
358 parent = NULL;
359 else
360 parent = dentry->d_parent;
361 if (parent && !spin_trylock(&parent->d_lock)) {
362 spin_unlock(&dcache_inode_lock);
363 goto relock;
364 }
365 dentry->d_count--;
da3bbdd4
KM
366 /* if dentry was on the d_lru list delete it from there */
367 dentry_lru_del(dentry);
61f3dee4
NP
368 /* if it was on the hash (d_delete case), then remove it */
369 __d_drop(dentry);
2fd6b7f5 370 dentry = d_kill(dentry, parent);
d52b9086
MS
371 if (dentry)
372 goto repeat;
1da177e4 373}
ec4f8605 374EXPORT_SYMBOL(dput);
1da177e4
LT
375
376/**
377 * d_invalidate - invalidate a dentry
378 * @dentry: dentry to invalidate
379 *
380 * Try to invalidate the dentry if it turns out to be
381 * possible. If there are other dentries that can be
382 * reached through this one we can't delete it and we
383 * return -EBUSY. On success we return 0.
384 *
385 * no dcache lock.
386 */
387
388int d_invalidate(struct dentry * dentry)
389{
390 /*
391 * If it's already been dropped, return OK.
392 */
da502956 393 spin_lock(&dentry->d_lock);
1da177e4 394 if (d_unhashed(dentry)) {
da502956 395 spin_unlock(&dentry->d_lock);
1da177e4
LT
396 return 0;
397 }
398 /*
399 * Check whether to do a partial shrink_dcache
400 * to get rid of unused child entries.
401 */
402 if (!list_empty(&dentry->d_subdirs)) {
da502956 403 spin_unlock(&dentry->d_lock);
1da177e4 404 shrink_dcache_parent(dentry);
da502956 405 spin_lock(&dentry->d_lock);
1da177e4
LT
406 }
407
408 /*
409 * Somebody else still using it?
410 *
411 * If it's a directory, we can't drop it
412 * for fear of somebody re-populating it
413 * with children (even though dropping it
414 * would make it unreachable from the root,
415 * we might still populate it if it was a
416 * working directory or similar).
417 */
b7ab39f6 418 if (dentry->d_count > 1) {
1da177e4
LT
419 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
420 spin_unlock(&dentry->d_lock);
1da177e4
LT
421 return -EBUSY;
422 }
423 }
424
425 __d_drop(dentry);
426 spin_unlock(&dentry->d_lock);
1da177e4
LT
427 return 0;
428}
ec4f8605 429EXPORT_SYMBOL(d_invalidate);
1da177e4 430
b5c84bf6 431/* This must be called with d_lock held */
23044507
NP
432static inline struct dentry * __dget_locked_dlock(struct dentry *dentry)
433{
b7ab39f6 434 dentry->d_count++;
23044507
NP
435 dentry_lru_del(dentry);
436 return dentry;
437}
438
b5c84bf6 439/* This must be called with d_lock held */
1da177e4
LT
440static inline struct dentry * __dget_locked(struct dentry *dentry)
441{
23044507 442 spin_lock(&dentry->d_lock);
b7ab39f6 443 __dget_locked_dlock(dentry);
23044507 444 spin_unlock(&dentry->d_lock);
1da177e4
LT
445 return dentry;
446}
447
b7ab39f6
NP
448struct dentry * dget_locked_dlock(struct dentry *dentry)
449{
450 return __dget_locked_dlock(dentry);
451}
452
1da177e4
LT
453struct dentry * dget_locked(struct dentry *dentry)
454{
455 return __dget_locked(dentry);
456}
ec4f8605 457EXPORT_SYMBOL(dget_locked);
1da177e4 458
b7ab39f6
NP
459struct dentry *dget_parent(struct dentry *dentry)
460{
461 struct dentry *ret;
462
463repeat:
464 spin_lock(&dentry->d_lock);
465 ret = dentry->d_parent;
466 if (!ret)
467 goto out;
468 if (dentry == ret) {
469 ret->d_count++;
470 goto out;
471 }
472 if (!spin_trylock(&ret->d_lock)) {
473 spin_unlock(&dentry->d_lock);
474 cpu_relax();
475 goto repeat;
476 }
477 BUG_ON(!ret->d_count);
478 ret->d_count++;
479 spin_unlock(&ret->d_lock);
480out:
481 spin_unlock(&dentry->d_lock);
482 return ret;
483}
484EXPORT_SYMBOL(dget_parent);
485
1da177e4
LT
486/**
487 * d_find_alias - grab a hashed alias of inode
488 * @inode: inode in question
489 * @want_discon: flag, used by d_splice_alias, to request
490 * that only a DISCONNECTED alias be returned.
491 *
492 * If inode has a hashed alias, or is a directory and has any alias,
493 * acquire the reference to alias and return it. Otherwise return NULL.
494 * Notice that if inode is a directory there can be only one alias and
495 * it can be unhashed only if it has no children, or if it is the root
496 * of a filesystem.
497 *
21c0d8fd 498 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1da177e4 499 * any other hashed alias over that one unless @want_discon is set,
21c0d8fd 500 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 501 */
da502956 502static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 503{
da502956 504 struct dentry *alias, *discon_alias;
1da177e4 505
da502956
NP
506again:
507 discon_alias = NULL;
508 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
509 spin_lock(&alias->d_lock);
1da177e4 510 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 511 if (IS_ROOT(alias) &&
da502956 512 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 513 discon_alias = alias;
da502956
NP
514 } else if (!want_discon) {
515 __dget_locked_dlock(alias);
516 spin_unlock(&alias->d_lock);
517 return alias;
518 }
519 }
520 spin_unlock(&alias->d_lock);
521 }
522 if (discon_alias) {
523 alias = discon_alias;
524 spin_lock(&alias->d_lock);
525 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
526 if (IS_ROOT(alias) &&
527 (alias->d_flags & DCACHE_DISCONNECTED)) {
528 __dget_locked_dlock(alias);
529 spin_unlock(&alias->d_lock);
1da177e4
LT
530 return alias;
531 }
532 }
da502956
NP
533 spin_unlock(&alias->d_lock);
534 goto again;
1da177e4 535 }
da502956 536 return NULL;
1da177e4
LT
537}
538
da502956 539struct dentry *d_find_alias(struct inode *inode)
1da177e4 540{
214fda1f
DH
541 struct dentry *de = NULL;
542
543 if (!list_empty(&inode->i_dentry)) {
b23fb0a6 544 spin_lock(&dcache_inode_lock);
214fda1f 545 de = __d_find_alias(inode, 0);
b23fb0a6 546 spin_unlock(&dcache_inode_lock);
214fda1f 547 }
1da177e4
LT
548 return de;
549}
ec4f8605 550EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
551
552/*
553 * Try to kill dentries associated with this inode.
554 * WARNING: you must own a reference to inode.
555 */
556void d_prune_aliases(struct inode *inode)
557{
0cdca3f9 558 struct dentry *dentry;
1da177e4 559restart:
b23fb0a6 560 spin_lock(&dcache_inode_lock);
0cdca3f9 561 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 562 spin_lock(&dentry->d_lock);
b7ab39f6 563 if (!dentry->d_count) {
23044507 564 __dget_locked_dlock(dentry);
1da177e4
LT
565 __d_drop(dentry);
566 spin_unlock(&dentry->d_lock);
b23fb0a6 567 spin_unlock(&dcache_inode_lock);
1da177e4
LT
568 dput(dentry);
569 goto restart;
570 }
571 spin_unlock(&dentry->d_lock);
572 }
b23fb0a6 573 spin_unlock(&dcache_inode_lock);
1da177e4 574}
ec4f8605 575EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
576
577/*
d702ccb3
AM
578 * Throw away a dentry - free the inode, dput the parent. This requires that
579 * the LRU list has already been removed.
580 *
85864e10
MS
581 * Try to prune ancestors as well. This is necessary to prevent
582 * quadratic behavior of shrink_dcache_parent(), but is also expected
583 * to be beneficial in reducing dentry cache fragmentation.
1da177e4 584 */
2fd6b7f5 585static void prune_one_dentry(struct dentry *dentry, struct dentry *parent)
31f3e0b3 586 __releases(dentry->d_lock)
2fd6b7f5 587 __releases(parent->d_lock)
b23fb0a6 588 __releases(dcache_inode_lock)
1da177e4 589{
1da177e4 590 __d_drop(dentry);
2fd6b7f5 591 dentry = d_kill(dentry, parent);
d52b9086
MS
592
593 /*
b5c84bf6 594 * Prune ancestors.
d52b9086 595 */
d52b9086 596 while (dentry) {
b23fb0a6 597 spin_lock(&dcache_inode_lock);
2fd6b7f5 598again:
b7ab39f6 599 spin_lock(&dentry->d_lock);
2fd6b7f5
NP
600 if (IS_ROOT(dentry))
601 parent = NULL;
602 else
603 parent = dentry->d_parent;
604 if (parent && !spin_trylock(&parent->d_lock)) {
605 spin_unlock(&dentry->d_lock);
606 goto again;
607 }
b7ab39f6
NP
608 dentry->d_count--;
609 if (dentry->d_count) {
2fd6b7f5
NP
610 if (parent)
611 spin_unlock(&parent->d_lock);
b7ab39f6 612 spin_unlock(&dentry->d_lock);
b23fb0a6 613 spin_unlock(&dcache_inode_lock);
d52b9086 614 return;
23044507 615 }
d52b9086 616
a4633357 617 dentry_lru_del(dentry);
d52b9086 618 __d_drop(dentry);
2fd6b7f5 619 dentry = d_kill(dentry, parent);
d52b9086 620 }
1da177e4
LT
621}
622
3049cfe2 623static void shrink_dentry_list(struct list_head *list)
1da177e4 624{
da3bbdd4 625 struct dentry *dentry;
da3bbdd4 626
3049cfe2 627 while (!list_empty(list)) {
2fd6b7f5
NP
628 struct dentry *parent;
629
3049cfe2 630 dentry = list_entry(list->prev, struct dentry, d_lru);
23044507
NP
631
632 if (!spin_trylock(&dentry->d_lock)) {
2fd6b7f5 633relock:
23044507
NP
634 spin_unlock(&dcache_lru_lock);
635 cpu_relax();
636 spin_lock(&dcache_lru_lock);
637 continue;
638 }
639
1da177e4
LT
640 /*
641 * We found an inuse dentry which was not removed from
da3bbdd4
KM
642 * the LRU because of laziness during lookup. Do not free
643 * it - just keep it off the LRU list.
1da177e4 644 */
b7ab39f6 645 if (dentry->d_count) {
2fd6b7f5 646 __dentry_lru_del(dentry);
da3bbdd4 647 spin_unlock(&dentry->d_lock);
1da177e4
LT
648 continue;
649 }
2fd6b7f5
NP
650 if (IS_ROOT(dentry))
651 parent = NULL;
652 else
653 parent = dentry->d_parent;
654 if (parent && !spin_trylock(&parent->d_lock)) {
655 spin_unlock(&dentry->d_lock);
656 goto relock;
657 }
658 __dentry_lru_del(dentry);
23044507
NP
659 spin_unlock(&dcache_lru_lock);
660
2fd6b7f5 661 prune_one_dentry(dentry, parent);
b5c84bf6 662 /* dcache_inode_lock and dentry->d_lock dropped */
b23fb0a6 663 spin_lock(&dcache_inode_lock);
23044507 664 spin_lock(&dcache_lru_lock);
da3bbdd4 665 }
3049cfe2
CH
666}
667
668/**
669 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
670 * @sb: superblock to shrink dentry LRU.
671 * @count: number of entries to prune
672 * @flags: flags to control the dentry processing
673 *
674 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
675 */
676static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
677{
678 /* called from prune_dcache() and shrink_dcache_parent() */
679 struct dentry *dentry;
680 LIST_HEAD(referenced);
681 LIST_HEAD(tmp);
682 int cnt = *count;
683
b23fb0a6 684 spin_lock(&dcache_inode_lock);
23044507
NP
685relock:
686 spin_lock(&dcache_lru_lock);
3049cfe2
CH
687 while (!list_empty(&sb->s_dentry_lru)) {
688 dentry = list_entry(sb->s_dentry_lru.prev,
689 struct dentry, d_lru);
690 BUG_ON(dentry->d_sb != sb);
691
23044507
NP
692 if (!spin_trylock(&dentry->d_lock)) {
693 spin_unlock(&dcache_lru_lock);
694 cpu_relax();
695 goto relock;
696 }
697
3049cfe2
CH
698 /*
699 * If we are honouring the DCACHE_REFERENCED flag and the
700 * dentry has this flag set, don't free it. Clear the flag
701 * and put it back on the LRU.
702 */
23044507
NP
703 if (flags & DCACHE_REFERENCED &&
704 dentry->d_flags & DCACHE_REFERENCED) {
705 dentry->d_flags &= ~DCACHE_REFERENCED;
706 list_move(&dentry->d_lru, &referenced);
3049cfe2 707 spin_unlock(&dentry->d_lock);
23044507
NP
708 } else {
709 list_move_tail(&dentry->d_lru, &tmp);
710 spin_unlock(&dentry->d_lock);
711 if (!--cnt)
712 break;
3049cfe2 713 }
23044507 714 /* XXX: re-add cond_resched_lock when dcache_lock goes away */
3049cfe2
CH
715 }
716
717 *count = cnt;
718 shrink_dentry_list(&tmp);
719
da3bbdd4
KM
720 if (!list_empty(&referenced))
721 list_splice(&referenced, &sb->s_dentry_lru);
23044507 722 spin_unlock(&dcache_lru_lock);
b23fb0a6 723 spin_unlock(&dcache_inode_lock);
da3bbdd4
KM
724}
725
726/**
727 * prune_dcache - shrink the dcache
728 * @count: number of entries to try to free
729 *
730 * Shrink the dcache. This is done when we need more memory, or simply when we
731 * need to unmount something (at which point we need to unuse all dentries).
732 *
733 * This function may fail to free any resources if all the dentries are in use.
734 */
735static void prune_dcache(int count)
736{
dca33252 737 struct super_block *sb, *p = NULL;
da3bbdd4 738 int w_count;
86c8749e 739 int unused = dentry_stat.nr_unused;
da3bbdd4
KM
740 int prune_ratio;
741 int pruned;
742
743 if (unused == 0 || count == 0)
744 return;
da3bbdd4
KM
745 if (count >= unused)
746 prune_ratio = 1;
747 else
748 prune_ratio = unused / count;
749 spin_lock(&sb_lock);
dca33252 750 list_for_each_entry(sb, &super_blocks, s_list) {
551de6f3
AV
751 if (list_empty(&sb->s_instances))
752 continue;
da3bbdd4 753 if (sb->s_nr_dentry_unused == 0)
1da177e4 754 continue;
da3bbdd4
KM
755 sb->s_count++;
756 /* Now, we reclaim unused dentrins with fairness.
757 * We reclaim them same percentage from each superblock.
758 * We calculate number of dentries to scan on this sb
759 * as follows, but the implementation is arranged to avoid
760 * overflows:
761 * number of dentries to scan on this sb =
762 * count * (number of dentries on this sb /
763 * number of dentries in the machine)
0feae5c4 764 */
da3bbdd4
KM
765 spin_unlock(&sb_lock);
766 if (prune_ratio != 1)
767 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
768 else
769 w_count = sb->s_nr_dentry_unused;
770 pruned = w_count;
0feae5c4 771 /*
da3bbdd4
KM
772 * We need to be sure this filesystem isn't being unmounted,
773 * otherwise we could race with generic_shutdown_super(), and
774 * end up holding a reference to an inode while the filesystem
775 * is unmounted. So we try to get s_umount, and make sure
776 * s_root isn't NULL.
0feae5c4 777 */
da3bbdd4
KM
778 if (down_read_trylock(&sb->s_umount)) {
779 if ((sb->s_root != NULL) &&
780 (!list_empty(&sb->s_dentry_lru))) {
da3bbdd4
KM
781 __shrink_dcache_sb(sb, &w_count,
782 DCACHE_REFERENCED);
783 pruned -= w_count;
0feae5c4 784 }
da3bbdd4 785 up_read(&sb->s_umount);
0feae5c4 786 }
da3bbdd4 787 spin_lock(&sb_lock);
dca33252
AV
788 if (p)
789 __put_super(p);
da3bbdd4 790 count -= pruned;
dca33252 791 p = sb;
79893c17
AV
792 /* more work left to do? */
793 if (count <= 0)
794 break;
1da177e4 795 }
dca33252
AV
796 if (p)
797 __put_super(p);
da3bbdd4 798 spin_unlock(&sb_lock);
1da177e4
LT
799}
800
1da177e4
LT
801/**
802 * shrink_dcache_sb - shrink dcache for a superblock
803 * @sb: superblock
804 *
3049cfe2
CH
805 * Shrink the dcache for the specified super block. This is used to free
806 * the dcache before unmounting a file system.
1da177e4 807 */
3049cfe2 808void shrink_dcache_sb(struct super_block *sb)
1da177e4 809{
3049cfe2
CH
810 LIST_HEAD(tmp);
811
b23fb0a6 812 spin_lock(&dcache_inode_lock);
23044507 813 spin_lock(&dcache_lru_lock);
3049cfe2
CH
814 while (!list_empty(&sb->s_dentry_lru)) {
815 list_splice_init(&sb->s_dentry_lru, &tmp);
816 shrink_dentry_list(&tmp);
817 }
23044507 818 spin_unlock(&dcache_lru_lock);
b23fb0a6 819 spin_unlock(&dcache_inode_lock);
1da177e4 820}
ec4f8605 821EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 822
c636ebdb
DH
823/*
824 * destroy a single subtree of dentries for unmount
825 * - see the comments on shrink_dcache_for_umount() for a description of the
826 * locking
827 */
828static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
829{
830 struct dentry *parent;
f8713576 831 unsigned detached = 0;
c636ebdb
DH
832
833 BUG_ON(!IS_ROOT(dentry));
834
835 /* detach this root from the system */
23044507 836 spin_lock(&dentry->d_lock);
a4633357 837 dentry_lru_del(dentry);
c636ebdb 838 __d_drop(dentry);
da502956 839 spin_unlock(&dentry->d_lock);
c636ebdb
DH
840
841 for (;;) {
842 /* descend to the first leaf in the current subtree */
843 while (!list_empty(&dentry->d_subdirs)) {
844 struct dentry *loop;
845
846 /* this is a branch with children - detach all of them
847 * from the system in one go */
2fd6b7f5 848 spin_lock(&dentry->d_lock);
c636ebdb
DH
849 list_for_each_entry(loop, &dentry->d_subdirs,
850 d_u.d_child) {
2fd6b7f5
NP
851 spin_lock_nested(&loop->d_lock,
852 DENTRY_D_LOCK_NESTED);
a4633357 853 dentry_lru_del(loop);
c636ebdb 854 __d_drop(loop);
da502956 855 spin_unlock(&loop->d_lock);
c636ebdb 856 }
2fd6b7f5 857 spin_unlock(&dentry->d_lock);
c636ebdb
DH
858
859 /* move to the first child */
860 dentry = list_entry(dentry->d_subdirs.next,
861 struct dentry, d_u.d_child);
862 }
863
864 /* consume the dentries from this leaf up through its parents
865 * until we find one with children or run out altogether */
866 do {
867 struct inode *inode;
868
b7ab39f6 869 if (dentry->d_count != 0) {
c636ebdb
DH
870 printk(KERN_ERR
871 "BUG: Dentry %p{i=%lx,n=%s}"
872 " still in use (%d)"
873 " [unmount of %s %s]\n",
874 dentry,
875 dentry->d_inode ?
876 dentry->d_inode->i_ino : 0UL,
877 dentry->d_name.name,
b7ab39f6 878 dentry->d_count,
c636ebdb
DH
879 dentry->d_sb->s_type->name,
880 dentry->d_sb->s_id);
881 BUG();
882 }
883
2fd6b7f5 884 if (IS_ROOT(dentry)) {
c636ebdb 885 parent = NULL;
2fd6b7f5
NP
886 list_del(&dentry->d_u.d_child);
887 } else {
871c0067 888 parent = dentry->d_parent;
b7ab39f6
NP
889 spin_lock(&parent->d_lock);
890 parent->d_count--;
2fd6b7f5 891 list_del(&dentry->d_u.d_child);
b7ab39f6 892 spin_unlock(&parent->d_lock);
871c0067 893 }
c636ebdb 894
f8713576 895 detached++;
c636ebdb
DH
896
897 inode = dentry->d_inode;
898 if (inode) {
899 dentry->d_inode = NULL;
900 list_del_init(&dentry->d_alias);
901 if (dentry->d_op && dentry->d_op->d_iput)
902 dentry->d_op->d_iput(dentry, inode);
903 else
904 iput(inode);
905 }
906
907 d_free(dentry);
908
909 /* finished when we fall off the top of the tree,
910 * otherwise we ascend to the parent and move to the
911 * next sibling if there is one */
912 if (!parent)
312d3ca8 913 return;
c636ebdb 914 dentry = parent;
c636ebdb
DH
915 } while (list_empty(&dentry->d_subdirs));
916
917 dentry = list_entry(dentry->d_subdirs.next,
918 struct dentry, d_u.d_child);
919 }
920}
921
922/*
923 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 924 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
925 * - the superblock is detached from all mountings and open files, so the
926 * dentry trees will not be rearranged by the VFS
927 * - s_umount is write-locked, so the memory pressure shrinker will ignore
928 * any dentries belonging to this superblock that it comes across
929 * - the filesystem itself is no longer permitted to rearrange the dentries
930 * in this superblock
931 */
932void shrink_dcache_for_umount(struct super_block *sb)
933{
934 struct dentry *dentry;
935
936 if (down_read_trylock(&sb->s_umount))
937 BUG();
938
939 dentry = sb->s_root;
940 sb->s_root = NULL;
b7ab39f6
NP
941 spin_lock(&dentry->d_lock);
942 dentry->d_count--;
943 spin_unlock(&dentry->d_lock);
c636ebdb
DH
944 shrink_dcache_for_umount_subtree(dentry);
945
946 while (!hlist_empty(&sb->s_anon)) {
947 dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
948 shrink_dcache_for_umount_subtree(dentry);
949 }
950}
951
1da177e4
LT
952/*
953 * Search for at least 1 mount point in the dentry's subdirs.
954 * We descend to the next level whenever the d_subdirs
955 * list is non-empty and continue searching.
956 */
957
958/**
959 * have_submounts - check for mounts over a dentry
960 * @parent: dentry to check.
961 *
962 * Return true if the parent or its subdirectories contain
963 * a mount point
964 */
1da177e4
LT
965int have_submounts(struct dentry *parent)
966{
949854d0 967 struct dentry *this_parent;
1da177e4 968 struct list_head *next;
949854d0 969 unsigned seq;
58db63d0 970 int locked = 0;
949854d0 971
949854d0 972 seq = read_seqbegin(&rename_lock);
58db63d0
NP
973again:
974 this_parent = parent;
1da177e4 975
1da177e4
LT
976 if (d_mountpoint(parent))
977 goto positive;
2fd6b7f5 978 spin_lock(&this_parent->d_lock);
1da177e4
LT
979repeat:
980 next = this_parent->d_subdirs.next;
981resume:
982 while (next != &this_parent->d_subdirs) {
983 struct list_head *tmp = next;
5160ee6f 984 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 985 next = tmp->next;
2fd6b7f5
NP
986
987 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 988 /* Have we found a mount point ? */
2fd6b7f5
NP
989 if (d_mountpoint(dentry)) {
990 spin_unlock(&dentry->d_lock);
991 spin_unlock(&this_parent->d_lock);
1da177e4 992 goto positive;
2fd6b7f5 993 }
1da177e4 994 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
995 spin_unlock(&this_parent->d_lock);
996 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 997 this_parent = dentry;
2fd6b7f5 998 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
999 goto repeat;
1000 }
2fd6b7f5 1001 spin_unlock(&dentry->d_lock);
1da177e4
LT
1002 }
1003 /*
1004 * All done at this level ... ascend and resume the search.
1005 */
1006 if (this_parent != parent) {
949854d0
NP
1007 struct dentry *tmp;
1008 struct dentry *child;
1009
1010 tmp = this_parent->d_parent;
1011 rcu_read_lock();
2fd6b7f5 1012 spin_unlock(&this_parent->d_lock);
949854d0
NP
1013 child = this_parent;
1014 this_parent = tmp;
2fd6b7f5 1015 spin_lock(&this_parent->d_lock);
949854d0
NP
1016 /* might go back up the wrong parent if we have had a rename
1017 * or deletion */
1018 if (this_parent != child->d_parent ||
58db63d0 1019 (!locked && read_seqretry(&rename_lock, seq))) {
949854d0 1020 spin_unlock(&this_parent->d_lock);
949854d0
NP
1021 rcu_read_unlock();
1022 goto rename_retry;
1023 }
1024 rcu_read_unlock();
1025 next = child->d_u.d_child.next;
1da177e4
LT
1026 goto resume;
1027 }
2fd6b7f5 1028 spin_unlock(&this_parent->d_lock);
58db63d0 1029 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1030 goto rename_retry;
58db63d0
NP
1031 if (locked)
1032 write_sequnlock(&rename_lock);
1da177e4
LT
1033 return 0; /* No mount points found in tree */
1034positive:
58db63d0 1035 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1036 goto rename_retry;
58db63d0
NP
1037 if (locked)
1038 write_sequnlock(&rename_lock);
1da177e4 1039 return 1;
58db63d0
NP
1040
1041rename_retry:
1042 locked = 1;
1043 write_seqlock(&rename_lock);
1044 goto again;
1da177e4 1045}
ec4f8605 1046EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1047
1048/*
1049 * Search the dentry child list for the specified parent,
1050 * and move any unused dentries to the end of the unused
1051 * list for prune_dcache(). We descend to the next level
1052 * whenever the d_subdirs list is non-empty and continue
1053 * searching.
1054 *
1055 * It returns zero iff there are no unused children,
1056 * otherwise it returns the number of children moved to
1057 * the end of the unused list. This may not be the total
1058 * number of unused children, because select_parent can
1059 * drop the lock and return early due to latency
1060 * constraints.
1061 */
1062static int select_parent(struct dentry * parent)
1063{
949854d0 1064 struct dentry *this_parent;
1da177e4 1065 struct list_head *next;
949854d0 1066 unsigned seq;
1da177e4 1067 int found = 0;
58db63d0 1068 int locked = 0;
1da177e4 1069
949854d0 1070 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1071again:
1072 this_parent = parent;
2fd6b7f5 1073 spin_lock(&this_parent->d_lock);
1da177e4
LT
1074repeat:
1075 next = this_parent->d_subdirs.next;
1076resume:
1077 while (next != &this_parent->d_subdirs) {
1078 struct list_head *tmp = next;
5160ee6f 1079 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1080 next = tmp->next;
1081
2fd6b7f5 1082 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1083
1da177e4
LT
1084 /*
1085 * move only zero ref count dentries to the end
1086 * of the unused list for prune_dcache
1087 */
b7ab39f6 1088 if (!dentry->d_count) {
a4633357 1089 dentry_lru_move_tail(dentry);
1da177e4 1090 found++;
a4633357
CH
1091 } else {
1092 dentry_lru_del(dentry);
1da177e4
LT
1093 }
1094
1095 /*
1096 * We can return to the caller if we have found some (this
1097 * ensures forward progress). We'll be coming back to find
1098 * the rest.
1099 */
2fd6b7f5
NP
1100 if (found && need_resched()) {
1101 spin_unlock(&dentry->d_lock);
1da177e4 1102 goto out;
2fd6b7f5 1103 }
1da177e4
LT
1104
1105 /*
1106 * Descend a level if the d_subdirs list is non-empty.
1107 */
1108 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1109 spin_unlock(&this_parent->d_lock);
1110 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1111 this_parent = dentry;
2fd6b7f5 1112 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1113 goto repeat;
1114 }
2fd6b7f5
NP
1115
1116 spin_unlock(&dentry->d_lock);
1da177e4
LT
1117 }
1118 /*
1119 * All done at this level ... ascend and resume the search.
1120 */
1121 if (this_parent != parent) {
2fd6b7f5 1122 struct dentry *tmp;
949854d0
NP
1123 struct dentry *child;
1124
2fd6b7f5 1125 tmp = this_parent->d_parent;
949854d0 1126 rcu_read_lock();
2fd6b7f5 1127 spin_unlock(&this_parent->d_lock);
949854d0 1128 child = this_parent;
2fd6b7f5
NP
1129 this_parent = tmp;
1130 spin_lock(&this_parent->d_lock);
949854d0
NP
1131 /* might go back up the wrong parent if we have had a rename
1132 * or deletion */
1133 if (this_parent != child->d_parent ||
58db63d0 1134 (!locked && read_seqretry(&rename_lock, seq))) {
949854d0 1135 spin_unlock(&this_parent->d_lock);
949854d0
NP
1136 rcu_read_unlock();
1137 goto rename_retry;
1138 }
1139 rcu_read_unlock();
1140 next = child->d_u.d_child.next;
1da177e4
LT
1141 goto resume;
1142 }
1143out:
2fd6b7f5 1144 spin_unlock(&this_parent->d_lock);
58db63d0 1145 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1146 goto rename_retry;
58db63d0
NP
1147 if (locked)
1148 write_sequnlock(&rename_lock);
1da177e4 1149 return found;
58db63d0
NP
1150
1151rename_retry:
1152 if (found)
1153 return found;
1154 locked = 1;
1155 write_seqlock(&rename_lock);
1156 goto again;
1da177e4
LT
1157}
1158
1159/**
1160 * shrink_dcache_parent - prune dcache
1161 * @parent: parent of entries to prune
1162 *
1163 * Prune the dcache to remove unused children of the parent dentry.
1164 */
1165
1166void shrink_dcache_parent(struct dentry * parent)
1167{
da3bbdd4 1168 struct super_block *sb = parent->d_sb;
1da177e4
LT
1169 int found;
1170
1171 while ((found = select_parent(parent)) != 0)
da3bbdd4 1172 __shrink_dcache_sb(sb, &found, 0);
1da177e4 1173}
ec4f8605 1174EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1175
1da177e4
LT
1176/*
1177 * Scan `nr' dentries and return the number which remain.
1178 *
1179 * We need to avoid reentering the filesystem if the caller is performing a
1180 * GFP_NOFS allocation attempt. One example deadlock is:
1181 *
1182 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1183 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1184 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1185 *
1186 * In this case we return -1 to tell the caller that we baled.
1187 */
7f8275d0 1188static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
1da177e4
LT
1189{
1190 if (nr) {
1191 if (!(gfp_mask & __GFP_FS))
1192 return -1;
da3bbdd4 1193 prune_dcache(nr);
1da177e4 1194 }
312d3ca8 1195
86c8749e 1196 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1da177e4
LT
1197}
1198
8e1f936b
RR
1199static struct shrinker dcache_shrinker = {
1200 .shrink = shrink_dcache_memory,
1201 .seeks = DEFAULT_SEEKS,
1202};
1203
1da177e4
LT
1204/**
1205 * d_alloc - allocate a dcache entry
1206 * @parent: parent of entry to allocate
1207 * @name: qstr of the name
1208 *
1209 * Allocates a dentry. It returns %NULL if there is insufficient memory
1210 * available. On a success the dentry is returned. The name passed in is
1211 * copied and the copy passed in may be reused after this call.
1212 */
1213
1214struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1215{
1216 struct dentry *dentry;
1217 char *dname;
1218
e12ba74d 1219 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1220 if (!dentry)
1221 return NULL;
1222
1223 if (name->len > DNAME_INLINE_LEN-1) {
1224 dname = kmalloc(name->len + 1, GFP_KERNEL);
1225 if (!dname) {
1226 kmem_cache_free(dentry_cache, dentry);
1227 return NULL;
1228 }
1229 } else {
1230 dname = dentry->d_iname;
1231 }
1232 dentry->d_name.name = dname;
1233
1234 dentry->d_name.len = name->len;
1235 dentry->d_name.hash = name->hash;
1236 memcpy(dname, name->name, name->len);
1237 dname[name->len] = 0;
1238
b7ab39f6 1239 dentry->d_count = 1;
1da177e4
LT
1240 dentry->d_flags = DCACHE_UNHASHED;
1241 spin_lock_init(&dentry->d_lock);
1242 dentry->d_inode = NULL;
1243 dentry->d_parent = NULL;
1244 dentry->d_sb = NULL;
1245 dentry->d_op = NULL;
1246 dentry->d_fsdata = NULL;
1247 dentry->d_mounted = 0;
1da177e4
LT
1248 INIT_HLIST_NODE(&dentry->d_hash);
1249 INIT_LIST_HEAD(&dentry->d_lru);
1250 INIT_LIST_HEAD(&dentry->d_subdirs);
1251 INIT_LIST_HEAD(&dentry->d_alias);
2fd6b7f5 1252 INIT_LIST_HEAD(&dentry->d_u.d_child);
1da177e4
LT
1253
1254 if (parent) {
2fd6b7f5
NP
1255 spin_lock(&parent->d_lock);
1256 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1257 dentry->d_parent = dget_dlock(parent);
1da177e4 1258 dentry->d_sb = parent->d_sb;
5160ee6f 1259 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
2fd6b7f5
NP
1260 spin_unlock(&dentry->d_lock);
1261 spin_unlock(&parent->d_lock);
2fd6b7f5 1262 }
1da177e4 1263
3e880fb5 1264 this_cpu_inc(nr_dentry);
312d3ca8 1265
1da177e4
LT
1266 return dentry;
1267}
ec4f8605 1268EXPORT_SYMBOL(d_alloc);
1da177e4
LT
1269
1270struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1271{
1272 struct qstr q;
1273
1274 q.name = name;
1275 q.len = strlen(name);
1276 q.hash = full_name_hash(q.name, q.len);
1277 return d_alloc(parent, &q);
1278}
ef26ca97 1279EXPORT_SYMBOL(d_alloc_name);
1da177e4 1280
360da900
OH
1281static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1282{
b23fb0a6 1283 spin_lock(&dentry->d_lock);
360da900
OH
1284 if (inode)
1285 list_add(&dentry->d_alias, &inode->i_dentry);
1286 dentry->d_inode = inode;
b23fb0a6 1287 spin_unlock(&dentry->d_lock);
360da900
OH
1288 fsnotify_d_instantiate(dentry, inode);
1289}
1290
1da177e4
LT
1291/**
1292 * d_instantiate - fill in inode information for a dentry
1293 * @entry: dentry to complete
1294 * @inode: inode to attach to this dentry
1295 *
1296 * Fill in inode information in the entry.
1297 *
1298 * This turns negative dentries into productive full members
1299 * of society.
1300 *
1301 * NOTE! This assumes that the inode count has been incremented
1302 * (or otherwise set) by the caller to indicate that it is now
1303 * in use by the dcache.
1304 */
1305
1306void d_instantiate(struct dentry *entry, struct inode * inode)
1307{
28133c7b 1308 BUG_ON(!list_empty(&entry->d_alias));
b23fb0a6 1309 spin_lock(&dcache_inode_lock);
360da900 1310 __d_instantiate(entry, inode);
b23fb0a6 1311 spin_unlock(&dcache_inode_lock);
1da177e4
LT
1312 security_d_instantiate(entry, inode);
1313}
ec4f8605 1314EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1315
1316/**
1317 * d_instantiate_unique - instantiate a non-aliased dentry
1318 * @entry: dentry to instantiate
1319 * @inode: inode to attach to this dentry
1320 *
1321 * Fill in inode information in the entry. On success, it returns NULL.
1322 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1323 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1324 *
1325 * Note that in order to avoid conflicts with rename() etc, the caller
1326 * had better be holding the parent directory semaphore.
e866cfa9
OD
1327 *
1328 * This also assumes that the inode count has been incremented
1329 * (or otherwise set) by the caller to indicate that it is now
1330 * in use by the dcache.
1da177e4 1331 */
770bfad8
DH
1332static struct dentry *__d_instantiate_unique(struct dentry *entry,
1333 struct inode *inode)
1da177e4
LT
1334{
1335 struct dentry *alias;
1336 int len = entry->d_name.len;
1337 const char *name = entry->d_name.name;
1338 unsigned int hash = entry->d_name.hash;
1339
770bfad8 1340 if (!inode) {
360da900 1341 __d_instantiate(entry, NULL);
770bfad8
DH
1342 return NULL;
1343 }
1344
1da177e4
LT
1345 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1346 struct qstr *qstr = &alias->d_name;
1347
9abca360
NP
1348 /*
1349 * Don't need alias->d_lock here, because aliases with
1350 * d_parent == entry->d_parent are not subject to name or
1351 * parent changes, because the parent inode i_mutex is held.
1352 */
1da177e4
LT
1353 if (qstr->hash != hash)
1354 continue;
1355 if (alias->d_parent != entry->d_parent)
1356 continue;
1357 if (qstr->len != len)
1358 continue;
1359 if (memcmp(qstr->name, name, len))
1360 continue;
1361 dget_locked(alias);
1da177e4
LT
1362 return alias;
1363 }
770bfad8 1364
360da900 1365 __d_instantiate(entry, inode);
1da177e4
LT
1366 return NULL;
1367}
770bfad8
DH
1368
1369struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1370{
1371 struct dentry *result;
1372
1373 BUG_ON(!list_empty(&entry->d_alias));
1374
b23fb0a6 1375 spin_lock(&dcache_inode_lock);
770bfad8 1376 result = __d_instantiate_unique(entry, inode);
b23fb0a6 1377 spin_unlock(&dcache_inode_lock);
770bfad8
DH
1378
1379 if (!result) {
1380 security_d_instantiate(entry, inode);
1381 return NULL;
1382 }
1383
1384 BUG_ON(!d_unhashed(result));
1385 iput(inode);
1386 return result;
1387}
1388
1da177e4
LT
1389EXPORT_SYMBOL(d_instantiate_unique);
1390
1391/**
1392 * d_alloc_root - allocate root dentry
1393 * @root_inode: inode to allocate the root for
1394 *
1395 * Allocate a root ("/") dentry for the inode given. The inode is
1396 * instantiated and returned. %NULL is returned if there is insufficient
1397 * memory or the inode passed is %NULL.
1398 */
1399
1400struct dentry * d_alloc_root(struct inode * root_inode)
1401{
1402 struct dentry *res = NULL;
1403
1404 if (root_inode) {
1405 static const struct qstr name = { .name = "/", .len = 1 };
1406
1407 res = d_alloc(NULL, &name);
1408 if (res) {
1409 res->d_sb = root_inode->i_sb;
1410 res->d_parent = res;
1411 d_instantiate(res, root_inode);
1412 }
1413 }
1414 return res;
1415}
ec4f8605 1416EXPORT_SYMBOL(d_alloc_root);
1da177e4
LT
1417
1418static inline struct hlist_head *d_hash(struct dentry *parent,
1419 unsigned long hash)
1420{
1421 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1422 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1423 return dentry_hashtable + (hash & D_HASHMASK);
1424}
1425
4ea3ada2
CH
1426/**
1427 * d_obtain_alias - find or allocate a dentry for a given inode
1428 * @inode: inode to allocate the dentry for
1429 *
1430 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1431 * similar open by handle operations. The returned dentry may be anonymous,
1432 * or may have a full name (if the inode was already in the cache).
1433 *
1434 * When called on a directory inode, we must ensure that the inode only ever
1435 * has one dentry. If a dentry is found, that is returned instead of
1436 * allocating a new one.
1437 *
1438 * On successful return, the reference to the inode has been transferred
44003728
CH
1439 * to the dentry. In case of an error the reference on the inode is released.
1440 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1441 * be passed in and will be the error will be propagate to the return value,
1442 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1443 */
1444struct dentry *d_obtain_alias(struct inode *inode)
1445{
9308a612
CH
1446 static const struct qstr anonstring = { .name = "" };
1447 struct dentry *tmp;
1448 struct dentry *res;
4ea3ada2
CH
1449
1450 if (!inode)
44003728 1451 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1452 if (IS_ERR(inode))
1453 return ERR_CAST(inode);
1454
9308a612
CH
1455 res = d_find_alias(inode);
1456 if (res)
1457 goto out_iput;
1458
1459 tmp = d_alloc(NULL, &anonstring);
1460 if (!tmp) {
1461 res = ERR_PTR(-ENOMEM);
1462 goto out_iput;
4ea3ada2 1463 }
9308a612
CH
1464 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1465
b5c84bf6 1466
b23fb0a6 1467 spin_lock(&dcache_inode_lock);
9308a612
CH
1468 res = __d_find_alias(inode, 0);
1469 if (res) {
b23fb0a6 1470 spin_unlock(&dcache_inode_lock);
9308a612
CH
1471 dput(tmp);
1472 goto out_iput;
1473 }
1474
1475 /* attach a disconnected dentry */
1476 spin_lock(&tmp->d_lock);
1477 tmp->d_sb = inode->i_sb;
1478 tmp->d_inode = inode;
1479 tmp->d_flags |= DCACHE_DISCONNECTED;
1480 tmp->d_flags &= ~DCACHE_UNHASHED;
1481 list_add(&tmp->d_alias, &inode->i_dentry);
789680d1 1482 spin_lock(&dcache_hash_lock);
9308a612 1483 hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
789680d1 1484 spin_unlock(&dcache_hash_lock);
9308a612 1485 spin_unlock(&tmp->d_lock);
b23fb0a6 1486 spin_unlock(&dcache_inode_lock);
9308a612 1487
9308a612
CH
1488 return tmp;
1489
1490 out_iput:
1491 iput(inode);
1492 return res;
4ea3ada2 1493}
adc48720 1494EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1495
1496/**
1497 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1498 * @inode: the inode which may have a disconnected dentry
1499 * @dentry: a negative dentry which we want to point to the inode.
1500 *
1501 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1502 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1503 * and return it, else simply d_add the inode to the dentry and return NULL.
1504 *
1505 * This is needed in the lookup routine of any filesystem that is exportable
1506 * (via knfsd) so that we can build dcache paths to directories effectively.
1507 *
1508 * If a dentry was found and moved, then it is returned. Otherwise NULL
1509 * is returned. This matches the expected return value of ->lookup.
1510 *
1511 */
1512struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1513{
1514 struct dentry *new = NULL;
1515
21c0d8fd 1516 if (inode && S_ISDIR(inode->i_mode)) {
b23fb0a6 1517 spin_lock(&dcache_inode_lock);
1da177e4
LT
1518 new = __d_find_alias(inode, 1);
1519 if (new) {
1520 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
b23fb0a6 1521 spin_unlock(&dcache_inode_lock);
1da177e4 1522 security_d_instantiate(new, inode);
1da177e4
LT
1523 d_move(new, dentry);
1524 iput(inode);
1525 } else {
b5c84bf6 1526 /* already taking dcache_inode_lock, so d_add() by hand */
360da900 1527 __d_instantiate(dentry, inode);
b23fb0a6 1528 spin_unlock(&dcache_inode_lock);
1da177e4
LT
1529 security_d_instantiate(dentry, inode);
1530 d_rehash(dentry);
1531 }
1532 } else
1533 d_add(dentry, inode);
1534 return new;
1535}
ec4f8605 1536EXPORT_SYMBOL(d_splice_alias);
1da177e4 1537
9403540c
BN
1538/**
1539 * d_add_ci - lookup or allocate new dentry with case-exact name
1540 * @inode: the inode case-insensitive lookup has found
1541 * @dentry: the negative dentry that was passed to the parent's lookup func
1542 * @name: the case-exact name to be associated with the returned dentry
1543 *
1544 * This is to avoid filling the dcache with case-insensitive names to the
1545 * same inode, only the actual correct case is stored in the dcache for
1546 * case-insensitive filesystems.
1547 *
1548 * For a case-insensitive lookup match and if the the case-exact dentry
1549 * already exists in in the dcache, use it and return it.
1550 *
1551 * If no entry exists with the exact case name, allocate new dentry with
1552 * the exact case, and return the spliced entry.
1553 */
e45b590b 1554struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1555 struct qstr *name)
1556{
1557 int error;
1558 struct dentry *found;
1559 struct dentry *new;
1560
b6520c81
CH
1561 /*
1562 * First check if a dentry matching the name already exists,
1563 * if not go ahead and create it now.
1564 */
9403540c 1565 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1566 if (!found) {
1567 new = d_alloc(dentry->d_parent, name);
1568 if (!new) {
1569 error = -ENOMEM;
1570 goto err_out;
1571 }
b6520c81 1572
9403540c
BN
1573 found = d_splice_alias(inode, new);
1574 if (found) {
1575 dput(new);
1576 return found;
1577 }
1578 return new;
1579 }
b6520c81
CH
1580
1581 /*
1582 * If a matching dentry exists, and it's not negative use it.
1583 *
1584 * Decrement the reference count to balance the iget() done
1585 * earlier on.
1586 */
9403540c
BN
1587 if (found->d_inode) {
1588 if (unlikely(found->d_inode != inode)) {
1589 /* This can't happen because bad inodes are unhashed. */
1590 BUG_ON(!is_bad_inode(inode));
1591 BUG_ON(!is_bad_inode(found->d_inode));
1592 }
9403540c
BN
1593 iput(inode);
1594 return found;
1595 }
b6520c81 1596
9403540c
BN
1597 /*
1598 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1599 * already has a dentry.
9403540c 1600 */
b23fb0a6 1601 spin_lock(&dcache_inode_lock);
b6520c81 1602 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
360da900 1603 __d_instantiate(found, inode);
b23fb0a6 1604 spin_unlock(&dcache_inode_lock);
9403540c
BN
1605 security_d_instantiate(found, inode);
1606 return found;
1607 }
b6520c81 1608
9403540c 1609 /*
b6520c81
CH
1610 * In case a directory already has a (disconnected) entry grab a
1611 * reference to it, move it in place and use it.
9403540c
BN
1612 */
1613 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1614 dget_locked(new);
b23fb0a6 1615 spin_unlock(&dcache_inode_lock);
9403540c 1616 security_d_instantiate(found, inode);
9403540c 1617 d_move(new, found);
9403540c 1618 iput(inode);
9403540c 1619 dput(found);
9403540c
BN
1620 return new;
1621
1622err_out:
1623 iput(inode);
1624 return ERR_PTR(error);
1625}
ec4f8605 1626EXPORT_SYMBOL(d_add_ci);
1da177e4
LT
1627
1628/**
1629 * d_lookup - search for a dentry
1630 * @parent: parent dentry
1631 * @name: qstr of name we wish to find
b04f784e 1632 * Returns: dentry, or NULL
1da177e4 1633 *
b04f784e
NP
1634 * d_lookup searches the children of the parent dentry for the name in
1635 * question. If the dentry is found its reference count is incremented and the
1636 * dentry is returned. The caller must use dput to free the entry when it has
1637 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1638 */
1da177e4
LT
1639struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1640{
1641 struct dentry * dentry = NULL;
949854d0 1642 unsigned seq;
1da177e4
LT
1643
1644 do {
1645 seq = read_seqbegin(&rename_lock);
1646 dentry = __d_lookup(parent, name);
1647 if (dentry)
1648 break;
1649 } while (read_seqretry(&rename_lock, seq));
1650 return dentry;
1651}
ec4f8605 1652EXPORT_SYMBOL(d_lookup);
1da177e4 1653
b04f784e
NP
1654/*
1655 * __d_lookup - search for a dentry (racy)
1656 * @parent: parent dentry
1657 * @name: qstr of name we wish to find
1658 * Returns: dentry, or NULL
1659 *
1660 * __d_lookup is like d_lookup, however it may (rarely) return a
1661 * false-negative result due to unrelated rename activity.
1662 *
1663 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1664 * however it must be used carefully, eg. with a following d_lookup in
1665 * the case of failure.
1666 *
1667 * __d_lookup callers must be commented.
1668 */
1da177e4
LT
1669struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1670{
1671 unsigned int len = name->len;
1672 unsigned int hash = name->hash;
1673 const unsigned char *str = name->name;
1674 struct hlist_head *head = d_hash(parent,hash);
1675 struct dentry *found = NULL;
1676 struct hlist_node *node;
665a7583 1677 struct dentry *dentry;
1da177e4 1678
b04f784e
NP
1679 /*
1680 * The hash list is protected using RCU.
1681 *
1682 * Take d_lock when comparing a candidate dentry, to avoid races
1683 * with d_move().
1684 *
1685 * It is possible that concurrent renames can mess up our list
1686 * walk here and result in missing our dentry, resulting in the
1687 * false-negative result. d_lookup() protects against concurrent
1688 * renames using rename_lock seqlock.
1689 *
1690 * See Documentation/vfs/dcache-locking.txt for more details.
1691 */
1da177e4
LT
1692 rcu_read_lock();
1693
665a7583 1694 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1da177e4
LT
1695 struct qstr *qstr;
1696
1da177e4
LT
1697 if (dentry->d_name.hash != hash)
1698 continue;
1699 if (dentry->d_parent != parent)
1700 continue;
1701
1702 spin_lock(&dentry->d_lock);
1703
1704 /*
1705 * Recheck the dentry after taking the lock - d_move may have
b04f784e
NP
1706 * changed things. Don't bother checking the hash because
1707 * we're about to compare the whole name anyway.
1da177e4
LT
1708 */
1709 if (dentry->d_parent != parent)
1710 goto next;
1711
d0185c08
LT
1712 /* non-existing due to RCU? */
1713 if (d_unhashed(dentry))
1714 goto next;
1715
1da177e4
LT
1716 /*
1717 * It is safe to compare names since d_move() cannot
1718 * change the qstr (protected by d_lock).
1719 */
1720 qstr = &dentry->d_name;
1721 if (parent->d_op && parent->d_op->d_compare) {
621e155a
NP
1722 if (parent->d_op->d_compare(parent, parent->d_inode,
1723 dentry, dentry->d_inode,
1724 qstr->len, qstr->name, name))
1da177e4
LT
1725 goto next;
1726 } else {
1727 if (qstr->len != len)
1728 goto next;
1729 if (memcmp(qstr->name, str, len))
1730 goto next;
1731 }
1732
b7ab39f6 1733 dentry->d_count++;
d0185c08 1734 found = dentry;
1da177e4
LT
1735 spin_unlock(&dentry->d_lock);
1736 break;
1737next:
1738 spin_unlock(&dentry->d_lock);
1739 }
1740 rcu_read_unlock();
1741
1742 return found;
1743}
1744
3e7e241f
EB
1745/**
1746 * d_hash_and_lookup - hash the qstr then search for a dentry
1747 * @dir: Directory to search in
1748 * @name: qstr of name we wish to find
1749 *
1750 * On hash failure or on lookup failure NULL is returned.
1751 */
1752struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1753{
1754 struct dentry *dentry = NULL;
1755
1756 /*
1757 * Check for a fs-specific hash function. Note that we must
1758 * calculate the standard hash first, as the d_op->d_hash()
1759 * routine may choose to leave the hash value unchanged.
1760 */
1761 name->hash = full_name_hash(name->name, name->len);
1762 if (dir->d_op && dir->d_op->d_hash) {
b1e6a015 1763 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
3e7e241f
EB
1764 goto out;
1765 }
1766 dentry = d_lookup(dir, name);
1767out:
1768 return dentry;
1769}
1770
1da177e4 1771/**
786a5e15 1772 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4
LT
1773 * @dentry: The dentry alleged to be valid child of @dparent
1774 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
1775 *
1776 * An insecure source has sent us a dentry, here we verify it and dget() it.
1777 * This is used by ncpfs in its readdir implementation.
1778 * Zero is returned in the dentry is invalid.
786a5e15
NP
1779 *
1780 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 1781 */
d3a23e16 1782int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 1783{
786a5e15 1784 struct dentry *child;
d3a23e16 1785
2fd6b7f5 1786 spin_lock(&dparent->d_lock);
786a5e15
NP
1787 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1788 if (dentry == child) {
2fd6b7f5
NP
1789 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1790 __dget_locked_dlock(dentry);
1791 spin_unlock(&dentry->d_lock);
1792 spin_unlock(&dparent->d_lock);
1da177e4
LT
1793 return 1;
1794 }
1795 }
2fd6b7f5 1796 spin_unlock(&dparent->d_lock);
786a5e15 1797
1da177e4
LT
1798 return 0;
1799}
ec4f8605 1800EXPORT_SYMBOL(d_validate);
1da177e4
LT
1801
1802/*
1803 * When a file is deleted, we have two options:
1804 * - turn this dentry into a negative dentry
1805 * - unhash this dentry and free it.
1806 *
1807 * Usually, we want to just turn this into
1808 * a negative dentry, but if anybody else is
1809 * currently using the dentry or the inode
1810 * we can't do that and we fall back on removing
1811 * it from the hash queues and waiting for
1812 * it to be deleted later when it has no users
1813 */
1814
1815/**
1816 * d_delete - delete a dentry
1817 * @dentry: The dentry to delete
1818 *
1819 * Turn the dentry into a negative dentry if possible, otherwise
1820 * remove it from the hash queues so it can be deleted later
1821 */
1822
1823void d_delete(struct dentry * dentry)
1824{
7a91bf7f 1825 int isdir = 0;
1da177e4
LT
1826 /*
1827 * Are we the only user?
1828 */
b23fb0a6 1829 spin_lock(&dcache_inode_lock);
1da177e4 1830 spin_lock(&dentry->d_lock);
7a91bf7f 1831 isdir = S_ISDIR(dentry->d_inode->i_mode);
b7ab39f6 1832 if (dentry->d_count == 1) {
13e3c5e5 1833 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1da177e4 1834 dentry_iput(dentry);
7a91bf7f 1835 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
1836 return;
1837 }
1838
1839 if (!d_unhashed(dentry))
1840 __d_drop(dentry);
1841
1842 spin_unlock(&dentry->d_lock);
b23fb0a6 1843 spin_unlock(&dcache_inode_lock);
7a91bf7f
JM
1844
1845 fsnotify_nameremove(dentry, isdir);
1da177e4 1846}
ec4f8605 1847EXPORT_SYMBOL(d_delete);
1da177e4
LT
1848
1849static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1850{
1851
1852 entry->d_flags &= ~DCACHE_UNHASHED;
1853 hlist_add_head_rcu(&entry->d_hash, list);
1854}
1855
770bfad8
DH
1856static void _d_rehash(struct dentry * entry)
1857{
1858 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1859}
1860
1da177e4
LT
1861/**
1862 * d_rehash - add an entry back to the hash
1863 * @entry: dentry to add to the hash
1864 *
1865 * Adds a dentry to the hash according to its name.
1866 */
1867
1868void d_rehash(struct dentry * entry)
1869{
1da177e4 1870 spin_lock(&entry->d_lock);
789680d1 1871 spin_lock(&dcache_hash_lock);
770bfad8 1872 _d_rehash(entry);
789680d1 1873 spin_unlock(&dcache_hash_lock);
1da177e4 1874 spin_unlock(&entry->d_lock);
1da177e4 1875}
ec4f8605 1876EXPORT_SYMBOL(d_rehash);
1da177e4 1877
fb2d5b86
NP
1878/**
1879 * dentry_update_name_case - update case insensitive dentry with a new name
1880 * @dentry: dentry to be updated
1881 * @name: new name
1882 *
1883 * Update a case insensitive dentry with new case of name.
1884 *
1885 * dentry must have been returned by d_lookup with name @name. Old and new
1886 * name lengths must match (ie. no d_compare which allows mismatched name
1887 * lengths).
1888 *
1889 * Parent inode i_mutex must be held over d_lookup and into this call (to
1890 * keep renames and concurrent inserts, and readdir(2) away).
1891 */
1892void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
1893{
1894 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
1895 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
1896
fb2d5b86
NP
1897 spin_lock(&dentry->d_lock);
1898 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
1899 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
1900}
1901EXPORT_SYMBOL(dentry_update_name_case);
1902
1da177e4
LT
1903static void switch_names(struct dentry *dentry, struct dentry *target)
1904{
1905 if (dname_external(target)) {
1906 if (dname_external(dentry)) {
1907 /*
1908 * Both external: swap the pointers
1909 */
9a8d5bb4 1910 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
1911 } else {
1912 /*
1913 * dentry:internal, target:external. Steal target's
1914 * storage and make target internal.
1915 */
321bcf92
BF
1916 memcpy(target->d_iname, dentry->d_name.name,
1917 dentry->d_name.len + 1);
1da177e4
LT
1918 dentry->d_name.name = target->d_name.name;
1919 target->d_name.name = target->d_iname;
1920 }
1921 } else {
1922 if (dname_external(dentry)) {
1923 /*
1924 * dentry:external, target:internal. Give dentry's
1925 * storage to target and make dentry internal
1926 */
1927 memcpy(dentry->d_iname, target->d_name.name,
1928 target->d_name.len + 1);
1929 target->d_name.name = dentry->d_name.name;
1930 dentry->d_name.name = dentry->d_iname;
1931 } else {
1932 /*
1933 * Both are internal. Just copy target to dentry
1934 */
1935 memcpy(dentry->d_iname, target->d_name.name,
1936 target->d_name.len + 1);
dc711ca3
AV
1937 dentry->d_name.len = target->d_name.len;
1938 return;
1da177e4
LT
1939 }
1940 }
9a8d5bb4 1941 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
1942}
1943
2fd6b7f5
NP
1944static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
1945{
1946 /*
1947 * XXXX: do we really need to take target->d_lock?
1948 */
1949 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
1950 spin_lock(&target->d_parent->d_lock);
1951 else {
1952 if (d_ancestor(dentry->d_parent, target->d_parent)) {
1953 spin_lock(&dentry->d_parent->d_lock);
1954 spin_lock_nested(&target->d_parent->d_lock,
1955 DENTRY_D_LOCK_NESTED);
1956 } else {
1957 spin_lock(&target->d_parent->d_lock);
1958 spin_lock_nested(&dentry->d_parent->d_lock,
1959 DENTRY_D_LOCK_NESTED);
1960 }
1961 }
1962 if (target < dentry) {
1963 spin_lock_nested(&target->d_lock, 2);
1964 spin_lock_nested(&dentry->d_lock, 3);
1965 } else {
1966 spin_lock_nested(&dentry->d_lock, 2);
1967 spin_lock_nested(&target->d_lock, 3);
1968 }
1969}
1970
1971static void dentry_unlock_parents_for_move(struct dentry *dentry,
1972 struct dentry *target)
1973{
1974 if (target->d_parent != dentry->d_parent)
1975 spin_unlock(&dentry->d_parent->d_lock);
1976 if (target->d_parent != target)
1977 spin_unlock(&target->d_parent->d_lock);
1978}
1979
1da177e4 1980/*
2fd6b7f5
NP
1981 * When switching names, the actual string doesn't strictly have to
1982 * be preserved in the target - because we're dropping the target
1983 * anyway. As such, we can just do a simple memcpy() to copy over
1984 * the new name before we switch.
1985 *
1986 * Note that we have to be a lot more careful about getting the hash
1987 * switched - we have to switch the hash value properly even if it
1988 * then no longer matches the actual (corrupted) string of the target.
1989 * The hash value has to match the hash queue that the dentry is on..
1da177e4 1990 */
9eaef27b 1991/*
b5c84bf6 1992 * d_move - move a dentry
1da177e4
LT
1993 * @dentry: entry to move
1994 * @target: new dentry
1995 *
1996 * Update the dcache to reflect the move of a file name. Negative
1997 * dcache entries should not be moved in this way.
1998 */
b5c84bf6 1999void d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2000{
1da177e4
LT
2001 if (!dentry->d_inode)
2002 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2003
2fd6b7f5
NP
2004 BUG_ON(d_ancestor(dentry, target));
2005 BUG_ON(d_ancestor(target, dentry));
2006
1da177e4 2007 write_seqlock(&rename_lock);
2fd6b7f5
NP
2008
2009 dentry_lock_for_move(dentry, target);
1da177e4
LT
2010
2011 /* Move the dentry to the target hash queue, if on different bucket */
789680d1
NP
2012 spin_lock(&dcache_hash_lock);
2013 if (!d_unhashed(dentry))
2014 hlist_del_rcu(&dentry->d_hash);
2015 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2016 spin_unlock(&dcache_hash_lock);
1da177e4
LT
2017
2018 /* Unhash the target: dput() will then get rid of it */
2019 __d_drop(target);
2020
5160ee6f
ED
2021 list_del(&dentry->d_u.d_child);
2022 list_del(&target->d_u.d_child);
1da177e4
LT
2023
2024 /* Switch the names.. */
2025 switch_names(dentry, target);
9a8d5bb4 2026 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2027
2028 /* ... and switch the parents */
2029 if (IS_ROOT(dentry)) {
2030 dentry->d_parent = target->d_parent;
2031 target->d_parent = target;
5160ee6f 2032 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2033 } else {
9a8d5bb4 2034 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2035
2036 /* And add them back to the (new) parent lists */
5160ee6f 2037 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2038 }
2039
5160ee6f 2040 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5
NP
2041
2042 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2043 spin_unlock(&target->d_lock);
c32ccd87 2044 fsnotify_d_move(dentry);
1da177e4
LT
2045 spin_unlock(&dentry->d_lock);
2046 write_sequnlock(&rename_lock);
9eaef27b 2047}
ec4f8605 2048EXPORT_SYMBOL(d_move);
1da177e4 2049
e2761a11
OH
2050/**
2051 * d_ancestor - search for an ancestor
2052 * @p1: ancestor dentry
2053 * @p2: child dentry
2054 *
2055 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2056 * an ancestor of p2, else NULL.
9eaef27b 2057 */
e2761a11 2058struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2059{
2060 struct dentry *p;
2061
871c0067 2062 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2063 if (p->d_parent == p1)
e2761a11 2064 return p;
9eaef27b 2065 }
e2761a11 2066 return NULL;
9eaef27b
TM
2067}
2068
2069/*
2070 * This helper attempts to cope with remotely renamed directories
2071 *
2072 * It assumes that the caller is already holding
b5c84bf6 2073 * dentry->d_parent->d_inode->i_mutex and the dcache_inode_lock
9eaef27b
TM
2074 *
2075 * Note: If ever the locking in lock_rename() changes, then please
2076 * remember to update this too...
9eaef27b
TM
2077 */
2078static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
b23fb0a6 2079 __releases(dcache_inode_lock)
9eaef27b
TM
2080{
2081 struct mutex *m1 = NULL, *m2 = NULL;
2082 struct dentry *ret;
2083
2084 /* If alias and dentry share a parent, then no extra locks required */
2085 if (alias->d_parent == dentry->d_parent)
2086 goto out_unalias;
2087
2088 /* Check for loops */
2089 ret = ERR_PTR(-ELOOP);
e2761a11 2090 if (d_ancestor(alias, dentry))
9eaef27b
TM
2091 goto out_err;
2092
2093 /* See lock_rename() */
2094 ret = ERR_PTR(-EBUSY);
2095 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2096 goto out_err;
2097 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2098 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2099 goto out_err;
2100 m2 = &alias->d_parent->d_inode->i_mutex;
2101out_unalias:
b5c84bf6 2102 d_move(alias, dentry);
9eaef27b
TM
2103 ret = alias;
2104out_err:
b23fb0a6 2105 spin_unlock(&dcache_inode_lock);
9eaef27b
TM
2106 if (m2)
2107 mutex_unlock(m2);
2108 if (m1)
2109 mutex_unlock(m1);
2110 return ret;
2111}
2112
770bfad8
DH
2113/*
2114 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2115 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2116 * returns with anon->d_lock held!
770bfad8
DH
2117 */
2118static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2119{
2120 struct dentry *dparent, *aparent;
2121
2fd6b7f5 2122 dentry_lock_for_move(anon, dentry);
770bfad8
DH
2123
2124 dparent = dentry->d_parent;
2125 aparent = anon->d_parent;
2126
2fd6b7f5
NP
2127 switch_names(dentry, anon);
2128 swap(dentry->d_name.hash, anon->d_name.hash);
2129
770bfad8
DH
2130 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2131 list_del(&dentry->d_u.d_child);
2132 if (!IS_ROOT(dentry))
2133 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2134 else
2135 INIT_LIST_HEAD(&dentry->d_u.d_child);
2136
2137 anon->d_parent = (dparent == dentry) ? anon : dparent;
2138 list_del(&anon->d_u.d_child);
2139 if (!IS_ROOT(anon))
2140 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2141 else
2142 INIT_LIST_HEAD(&anon->d_u.d_child);
2143
2fd6b7f5
NP
2144 dentry_unlock_parents_for_move(anon, dentry);
2145 spin_unlock(&dentry->d_lock);
2146
2147 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2148 anon->d_flags &= ~DCACHE_DISCONNECTED;
2149}
2150
2151/**
2152 * d_materialise_unique - introduce an inode into the tree
2153 * @dentry: candidate dentry
2154 * @inode: inode to bind to the dentry, to which aliases may be attached
2155 *
2156 * Introduces an dentry into the tree, substituting an extant disconnected
2157 * root directory alias in its place if there is one
2158 */
2159struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2160{
9eaef27b 2161 struct dentry *actual;
770bfad8
DH
2162
2163 BUG_ON(!d_unhashed(dentry));
2164
b23fb0a6 2165 spin_lock(&dcache_inode_lock);
770bfad8
DH
2166
2167 if (!inode) {
2168 actual = dentry;
360da900 2169 __d_instantiate(dentry, NULL);
770bfad8
DH
2170 goto found_lock;
2171 }
2172
9eaef27b
TM
2173 if (S_ISDIR(inode->i_mode)) {
2174 struct dentry *alias;
2175
2176 /* Does an aliased dentry already exist? */
2177 alias = __d_find_alias(inode, 0);
2178 if (alias) {
2179 actual = alias;
2180 /* Is this an anonymous mountpoint that we could splice
2181 * into our tree? */
2182 if (IS_ROOT(alias)) {
9eaef27b
TM
2183 __d_materialise_dentry(dentry, alias);
2184 __d_drop(alias);
2185 goto found;
2186 }
2187 /* Nope, but we must(!) avoid directory aliasing */
2188 actual = __d_unalias(dentry, alias);
2189 if (IS_ERR(actual))
2190 dput(alias);
2191 goto out_nolock;
2192 }
770bfad8
DH
2193 }
2194
2195 /* Add a unique reference */
2196 actual = __d_instantiate_unique(dentry, inode);
2197 if (!actual)
2198 actual = dentry;
2199 else if (unlikely(!d_unhashed(actual)))
2200 goto shouldnt_be_hashed;
2201
2202found_lock:
2203 spin_lock(&actual->d_lock);
2204found:
789680d1 2205 spin_lock(&dcache_hash_lock);
770bfad8 2206 _d_rehash(actual);
789680d1 2207 spin_unlock(&dcache_hash_lock);
770bfad8 2208 spin_unlock(&actual->d_lock);
b23fb0a6 2209 spin_unlock(&dcache_inode_lock);
9eaef27b 2210out_nolock:
770bfad8
DH
2211 if (actual == dentry) {
2212 security_d_instantiate(dentry, inode);
2213 return NULL;
2214 }
2215
2216 iput(inode);
2217 return actual;
2218
770bfad8 2219shouldnt_be_hashed:
b23fb0a6 2220 spin_unlock(&dcache_inode_lock);
770bfad8 2221 BUG();
770bfad8 2222}
ec4f8605 2223EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2224
cdd16d02 2225static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2226{
2227 *buflen -= namelen;
2228 if (*buflen < 0)
2229 return -ENAMETOOLONG;
2230 *buffer -= namelen;
2231 memcpy(*buffer, str, namelen);
2232 return 0;
2233}
2234
cdd16d02
MS
2235static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2236{
2237 return prepend(buffer, buflen, name->name, name->len);
2238}
2239
1da177e4 2240/**
f2eb6575
MS
2241 * Prepend path string to a buffer
2242 *
9d1bc601
MS
2243 * @path: the dentry/vfsmount to report
2244 * @root: root vfsmnt/dentry (may be modified by this function)
f2eb6575
MS
2245 * @buffer: pointer to the end of the buffer
2246 * @buflen: pointer to buffer length
552ce544 2247 *
949854d0 2248 * Caller holds the rename_lock.
9d1bc601
MS
2249 *
2250 * If path is not reachable from the supplied root, then the value of
2251 * root is changed (without modifying refcounts).
1da177e4 2252 */
f2eb6575
MS
2253static int prepend_path(const struct path *path, struct path *root,
2254 char **buffer, int *buflen)
1da177e4 2255{
9d1bc601
MS
2256 struct dentry *dentry = path->dentry;
2257 struct vfsmount *vfsmnt = path->mnt;
f2eb6575
MS
2258 bool slash = false;
2259 int error = 0;
6092d048 2260
99b7db7b 2261 br_read_lock(vfsmount_lock);
f2eb6575 2262 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2263 struct dentry * parent;
2264
1da177e4 2265 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2266 /* Global root? */
1da177e4 2267 if (vfsmnt->mnt_parent == vfsmnt) {
1da177e4
LT
2268 goto global_root;
2269 }
2270 dentry = vfsmnt->mnt_mountpoint;
2271 vfsmnt = vfsmnt->mnt_parent;
1da177e4
LT
2272 continue;
2273 }
2274 parent = dentry->d_parent;
2275 prefetch(parent);
9abca360 2276 spin_lock(&dentry->d_lock);
f2eb6575 2277 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2278 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2279 if (!error)
2280 error = prepend(buffer, buflen, "/", 1);
2281 if (error)
2282 break;
2283
2284 slash = true;
1da177e4
LT
2285 dentry = parent;
2286 }
2287
be285c71 2288out:
f2eb6575
MS
2289 if (!error && !slash)
2290 error = prepend(buffer, buflen, "/", 1);
2291
99b7db7b 2292 br_read_unlock(vfsmount_lock);
f2eb6575 2293 return error;
1da177e4
LT
2294
2295global_root:
98dc568b
MS
2296 /*
2297 * Filesystems needing to implement special "root names"
2298 * should do so with ->d_dname()
2299 */
2300 if (IS_ROOT(dentry) &&
2301 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2302 WARN(1, "Root dentry has weird name <%.*s>\n",
2303 (int) dentry->d_name.len, dentry->d_name.name);
2304 }
9d1bc601
MS
2305 root->mnt = vfsmnt;
2306 root->dentry = dentry;
be285c71 2307 goto out;
f2eb6575 2308}
be285c71 2309
f2eb6575
MS
2310/**
2311 * __d_path - return the path of a dentry
2312 * @path: the dentry/vfsmount to report
2313 * @root: root vfsmnt/dentry (may be modified by this function)
cd956a1c 2314 * @buf: buffer to return value in
f2eb6575
MS
2315 * @buflen: buffer length
2316 *
ffd1f4ed 2317 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2318 *
2319 * Returns a pointer into the buffer or an error code if the
2320 * path was too long.
2321 *
be148247 2322 * "buflen" should be positive.
f2eb6575
MS
2323 *
2324 * If path is not reachable from the supplied root, then the value of
2325 * root is changed (without modifying refcounts).
2326 */
2327char *__d_path(const struct path *path, struct path *root,
2328 char *buf, int buflen)
2329{
2330 char *res = buf + buflen;
2331 int error;
2332
2333 prepend(&res, &buflen, "\0", 1);
949854d0 2334 write_seqlock(&rename_lock);
f2eb6575 2335 error = prepend_path(path, root, &res, &buflen);
949854d0 2336 write_sequnlock(&rename_lock);
be148247 2337
f2eb6575
MS
2338 if (error)
2339 return ERR_PTR(error);
f2eb6575 2340 return res;
1da177e4
LT
2341}
2342
ffd1f4ed
MS
2343/*
2344 * same as __d_path but appends "(deleted)" for unlinked files.
2345 */
2346static int path_with_deleted(const struct path *path, struct path *root,
2347 char **buf, int *buflen)
2348{
2349 prepend(buf, buflen, "\0", 1);
2350 if (d_unlinked(path->dentry)) {
2351 int error = prepend(buf, buflen, " (deleted)", 10);
2352 if (error)
2353 return error;
2354 }
2355
2356 return prepend_path(path, root, buf, buflen);
2357}
2358
8df9d1a4
MS
2359static int prepend_unreachable(char **buffer, int *buflen)
2360{
2361 return prepend(buffer, buflen, "(unreachable)", 13);
2362}
2363
a03a8a70
JB
2364/**
2365 * d_path - return the path of a dentry
cf28b486 2366 * @path: path to report
a03a8a70
JB
2367 * @buf: buffer to return value in
2368 * @buflen: buffer length
2369 *
2370 * Convert a dentry into an ASCII path name. If the entry has been deleted
2371 * the string " (deleted)" is appended. Note that this is ambiguous.
2372 *
52afeefb
AV
2373 * Returns a pointer into the buffer or an error code if the path was
2374 * too long. Note: Callers should use the returned pointer, not the passed
2375 * in buffer, to use the name! The implementation often starts at an offset
2376 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2377 *
31f3e0b3 2378 * "buflen" should be positive.
a03a8a70 2379 */
20d4fdc1 2380char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2381{
ffd1f4ed 2382 char *res = buf + buflen;
6ac08c39 2383 struct path root;
9d1bc601 2384 struct path tmp;
ffd1f4ed 2385 int error;
1da177e4 2386
c23fbb6b
ED
2387 /*
2388 * We have various synthetic filesystems that never get mounted. On
2389 * these filesystems dentries are never used for lookup purposes, and
2390 * thus don't need to be hashed. They also don't need a name until a
2391 * user wants to identify the object in /proc/pid/fd/. The little hack
2392 * below allows us to generate a name for these objects on demand:
2393 */
cf28b486
JB
2394 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2395 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2396
f7ad3c6b 2397 get_fs_root(current->fs, &root);
949854d0 2398 write_seqlock(&rename_lock);
9d1bc601 2399 tmp = root;
ffd1f4ed
MS
2400 error = path_with_deleted(path, &tmp, &res, &buflen);
2401 if (error)
2402 res = ERR_PTR(error);
949854d0 2403 write_sequnlock(&rename_lock);
6ac08c39 2404 path_put(&root);
1da177e4
LT
2405 return res;
2406}
ec4f8605 2407EXPORT_SYMBOL(d_path);
1da177e4 2408
8df9d1a4
MS
2409/**
2410 * d_path_with_unreachable - return the path of a dentry
2411 * @path: path to report
2412 * @buf: buffer to return value in
2413 * @buflen: buffer length
2414 *
2415 * The difference from d_path() is that this prepends "(unreachable)"
2416 * to paths which are unreachable from the current process' root.
2417 */
2418char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2419{
2420 char *res = buf + buflen;
2421 struct path root;
2422 struct path tmp;
2423 int error;
2424
2425 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2426 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2427
2428 get_fs_root(current->fs, &root);
949854d0 2429 write_seqlock(&rename_lock);
8df9d1a4
MS
2430 tmp = root;
2431 error = path_with_deleted(path, &tmp, &res, &buflen);
2432 if (!error && !path_equal(&tmp, &root))
2433 error = prepend_unreachable(&res, &buflen);
949854d0 2434 write_sequnlock(&rename_lock);
8df9d1a4
MS
2435 path_put(&root);
2436 if (error)
2437 res = ERR_PTR(error);
2438
2439 return res;
2440}
2441
c23fbb6b
ED
2442/*
2443 * Helper function for dentry_operations.d_dname() members
2444 */
2445char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2446 const char *fmt, ...)
2447{
2448 va_list args;
2449 char temp[64];
2450 int sz;
2451
2452 va_start(args, fmt);
2453 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2454 va_end(args);
2455
2456 if (sz > sizeof(temp) || sz > buflen)
2457 return ERR_PTR(-ENAMETOOLONG);
2458
2459 buffer += buflen - sz;
2460 return memcpy(buffer, temp, sz);
2461}
2462
6092d048
RP
2463/*
2464 * Write full pathname from the root of the filesystem into the buffer.
2465 */
ec2447c2 2466static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2467{
2468 char *end = buf + buflen;
2469 char *retval;
2470
6092d048 2471 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2472 if (buflen < 1)
2473 goto Elong;
2474 /* Get '/' right */
2475 retval = end-1;
2476 *retval = '/';
2477
cdd16d02
MS
2478 while (!IS_ROOT(dentry)) {
2479 struct dentry *parent = dentry->d_parent;
9abca360 2480 int error;
6092d048 2481
6092d048 2482 prefetch(parent);
9abca360
NP
2483 spin_lock(&dentry->d_lock);
2484 error = prepend_name(&end, &buflen, &dentry->d_name);
2485 spin_unlock(&dentry->d_lock);
2486 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2487 goto Elong;
2488
2489 retval = end;
2490 dentry = parent;
2491 }
c103135c
AV
2492 return retval;
2493Elong:
2494 return ERR_PTR(-ENAMETOOLONG);
2495}
ec2447c2
NP
2496
2497char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2498{
2499 char *retval;
2500
949854d0 2501 write_seqlock(&rename_lock);
ec2447c2 2502 retval = __dentry_path(dentry, buf, buflen);
949854d0 2503 write_sequnlock(&rename_lock);
ec2447c2
NP
2504
2505 return retval;
2506}
2507EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2508
2509char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2510{
2511 char *p = NULL;
2512 char *retval;
2513
949854d0 2514 write_seqlock(&rename_lock);
c103135c
AV
2515 if (d_unlinked(dentry)) {
2516 p = buf + buflen;
2517 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2518 goto Elong;
2519 buflen++;
2520 }
2521 retval = __dentry_path(dentry, buf, buflen);
949854d0 2522 write_sequnlock(&rename_lock);
c103135c
AV
2523 if (!IS_ERR(retval) && p)
2524 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2525 return retval;
2526Elong:
6092d048
RP
2527 return ERR_PTR(-ENAMETOOLONG);
2528}
2529
1da177e4
LT
2530/*
2531 * NOTE! The user-level library version returns a
2532 * character pointer. The kernel system call just
2533 * returns the length of the buffer filled (which
2534 * includes the ending '\0' character), or a negative
2535 * error value. So libc would do something like
2536 *
2537 * char *getcwd(char * buf, size_t size)
2538 * {
2539 * int retval;
2540 *
2541 * retval = sys_getcwd(buf, size);
2542 * if (retval >= 0)
2543 * return buf;
2544 * errno = -retval;
2545 * return NULL;
2546 * }
2547 */
3cdad428 2548SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2549{
552ce544 2550 int error;
6ac08c39 2551 struct path pwd, root;
552ce544 2552 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2553
2554 if (!page)
2555 return -ENOMEM;
2556
f7ad3c6b 2557 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2558
552ce544 2559 error = -ENOENT;
949854d0 2560 write_seqlock(&rename_lock);
f3da392e 2561 if (!d_unlinked(pwd.dentry)) {
552ce544 2562 unsigned long len;
9d1bc601 2563 struct path tmp = root;
8df9d1a4
MS
2564 char *cwd = page + PAGE_SIZE;
2565 int buflen = PAGE_SIZE;
1da177e4 2566
8df9d1a4
MS
2567 prepend(&cwd, &buflen, "\0", 1);
2568 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
949854d0 2569 write_sequnlock(&rename_lock);
552ce544 2570
8df9d1a4 2571 if (error)
552ce544
LT
2572 goto out;
2573
8df9d1a4
MS
2574 /* Unreachable from current root */
2575 if (!path_equal(&tmp, &root)) {
2576 error = prepend_unreachable(&cwd, &buflen);
2577 if (error)
2578 goto out;
2579 }
2580
552ce544
LT
2581 error = -ERANGE;
2582 len = PAGE_SIZE + page - cwd;
2583 if (len <= size) {
2584 error = len;
2585 if (copy_to_user(buf, cwd, len))
2586 error = -EFAULT;
2587 }
949854d0
NP
2588 } else {
2589 write_sequnlock(&rename_lock);
949854d0 2590 }
1da177e4
LT
2591
2592out:
6ac08c39
JB
2593 path_put(&pwd);
2594 path_put(&root);
1da177e4
LT
2595 free_page((unsigned long) page);
2596 return error;
2597}
2598
2599/*
2600 * Test whether new_dentry is a subdirectory of old_dentry.
2601 *
2602 * Trivially implemented using the dcache structure
2603 */
2604
2605/**
2606 * is_subdir - is new dentry a subdirectory of old_dentry
2607 * @new_dentry: new dentry
2608 * @old_dentry: old dentry
2609 *
2610 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2611 * Returns 0 otherwise.
2612 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2613 */
2614
e2761a11 2615int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2616{
2617 int result;
949854d0 2618 unsigned seq;
1da177e4 2619
e2761a11
OH
2620 if (new_dentry == old_dentry)
2621 return 1;
2622
e2761a11 2623 do {
1da177e4 2624 /* for restarting inner loop in case of seq retry */
1da177e4 2625 seq = read_seqbegin(&rename_lock);
949854d0
NP
2626 /*
2627 * Need rcu_readlock to protect against the d_parent trashing
2628 * due to d_move
2629 */
2630 rcu_read_lock();
e2761a11 2631 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2632 result = 1;
e2761a11
OH
2633 else
2634 result = 0;
949854d0 2635 rcu_read_unlock();
1da177e4 2636 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2637
2638 return result;
2639}
2640
2096f759
AV
2641int path_is_under(struct path *path1, struct path *path2)
2642{
2643 struct vfsmount *mnt = path1->mnt;
2644 struct dentry *dentry = path1->dentry;
2645 int res;
99b7db7b
NP
2646
2647 br_read_lock(vfsmount_lock);
2096f759
AV
2648 if (mnt != path2->mnt) {
2649 for (;;) {
2650 if (mnt->mnt_parent == mnt) {
99b7db7b 2651 br_read_unlock(vfsmount_lock);
2096f759
AV
2652 return 0;
2653 }
2654 if (mnt->mnt_parent == path2->mnt)
2655 break;
2656 mnt = mnt->mnt_parent;
2657 }
2658 dentry = mnt->mnt_mountpoint;
2659 }
2660 res = is_subdir(dentry, path2->dentry);
99b7db7b 2661 br_read_unlock(vfsmount_lock);
2096f759
AV
2662 return res;
2663}
2664EXPORT_SYMBOL(path_is_under);
2665
1da177e4
LT
2666void d_genocide(struct dentry *root)
2667{
949854d0 2668 struct dentry *this_parent;
1da177e4 2669 struct list_head *next;
949854d0 2670 unsigned seq;
58db63d0 2671 int locked = 0;
1da177e4 2672
949854d0 2673 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2674again:
2675 this_parent = root;
2fd6b7f5 2676 spin_lock(&this_parent->d_lock);
1da177e4
LT
2677repeat:
2678 next = this_parent->d_subdirs.next;
2679resume:
2680 while (next != &this_parent->d_subdirs) {
2681 struct list_head *tmp = next;
5160ee6f 2682 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2683 next = tmp->next;
949854d0 2684
da502956
NP
2685 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2686 if (d_unhashed(dentry) || !dentry->d_inode) {
2687 spin_unlock(&dentry->d_lock);
1da177e4 2688 continue;
da502956 2689 }
1da177e4 2690 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2691 spin_unlock(&this_parent->d_lock);
2692 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2693 this_parent = dentry;
2fd6b7f5 2694 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2695 goto repeat;
2696 }
949854d0
NP
2697 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2698 dentry->d_flags |= DCACHE_GENOCIDE;
2699 dentry->d_count--;
2700 }
b7ab39f6 2701 spin_unlock(&dentry->d_lock);
1da177e4
LT
2702 }
2703 if (this_parent != root) {
949854d0
NP
2704 struct dentry *tmp;
2705 struct dentry *child;
2706
2707 tmp = this_parent->d_parent;
2708 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2709 this_parent->d_flags |= DCACHE_GENOCIDE;
2710 this_parent->d_count--;
2711 }
2712 rcu_read_lock();
b7ab39f6 2713 spin_unlock(&this_parent->d_lock);
949854d0
NP
2714 child = this_parent;
2715 this_parent = tmp;
2fd6b7f5 2716 spin_lock(&this_parent->d_lock);
949854d0
NP
2717 /* might go back up the wrong parent if we have had a rename
2718 * or deletion */
2719 if (this_parent != child->d_parent ||
58db63d0 2720 (!locked && read_seqretry(&rename_lock, seq))) {
949854d0 2721 spin_unlock(&this_parent->d_lock);
949854d0
NP
2722 rcu_read_unlock();
2723 goto rename_retry;
2724 }
2725 rcu_read_unlock();
2726 next = child->d_u.d_child.next;
1da177e4
LT
2727 goto resume;
2728 }
2fd6b7f5 2729 spin_unlock(&this_parent->d_lock);
58db63d0 2730 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 2731 goto rename_retry;
58db63d0
NP
2732 if (locked)
2733 write_sequnlock(&rename_lock);
2734 return;
2735
2736rename_retry:
2737 locked = 1;
2738 write_seqlock(&rename_lock);
2739 goto again;
1da177e4
LT
2740}
2741
2742/**
2743 * find_inode_number - check for dentry with name
2744 * @dir: directory to check
2745 * @name: Name to find.
2746 *
2747 * Check whether a dentry already exists for the given name,
2748 * and return the inode number if it has an inode. Otherwise
2749 * 0 is returned.
2750 *
2751 * This routine is used to post-process directory listings for
2752 * filesystems using synthetic inode numbers, and is necessary
2753 * to keep getcwd() working.
2754 */
2755
2756ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2757{
2758 struct dentry * dentry;
2759 ino_t ino = 0;
2760
3e7e241f
EB
2761 dentry = d_hash_and_lookup(dir, name);
2762 if (dentry) {
1da177e4
LT
2763 if (dentry->d_inode)
2764 ino = dentry->d_inode->i_ino;
2765 dput(dentry);
2766 }
1da177e4
LT
2767 return ino;
2768}
ec4f8605 2769EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
2770
2771static __initdata unsigned long dhash_entries;
2772static int __init set_dhash_entries(char *str)
2773{
2774 if (!str)
2775 return 0;
2776 dhash_entries = simple_strtoul(str, &str, 0);
2777 return 1;
2778}
2779__setup("dhash_entries=", set_dhash_entries);
2780
2781static void __init dcache_init_early(void)
2782{
2783 int loop;
2784
2785 /* If hashes are distributed across NUMA nodes, defer
2786 * hash allocation until vmalloc space is available.
2787 */
2788 if (hashdist)
2789 return;
2790
2791 dentry_hashtable =
2792 alloc_large_system_hash("Dentry cache",
2793 sizeof(struct hlist_head),
2794 dhash_entries,
2795 13,
2796 HASH_EARLY,
2797 &d_hash_shift,
2798 &d_hash_mask,
2799 0);
2800
2801 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2802 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2803}
2804
74bf17cf 2805static void __init dcache_init(void)
1da177e4
LT
2806{
2807 int loop;
2808
2809 /*
2810 * A constructor could be added for stable state like the lists,
2811 * but it is probably not worth it because of the cache nature
2812 * of the dcache.
2813 */
0a31bd5f
CL
2814 dentry_cache = KMEM_CACHE(dentry,
2815 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4 2816
8e1f936b 2817 register_shrinker(&dcache_shrinker);
1da177e4
LT
2818
2819 /* Hash may have been set up in dcache_init_early */
2820 if (!hashdist)
2821 return;
2822
2823 dentry_hashtable =
2824 alloc_large_system_hash("Dentry cache",
2825 sizeof(struct hlist_head),
2826 dhash_entries,
2827 13,
2828 0,
2829 &d_hash_shift,
2830 &d_hash_mask,
2831 0);
2832
2833 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2834 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2835}
2836
2837/* SLAB cache for __getname() consumers */
e18b890b 2838struct kmem_cache *names_cachep __read_mostly;
ec4f8605 2839EXPORT_SYMBOL(names_cachep);
1da177e4 2840
1da177e4
LT
2841EXPORT_SYMBOL(d_genocide);
2842
1da177e4
LT
2843void __init vfs_caches_init_early(void)
2844{
2845 dcache_init_early();
2846 inode_init_early();
2847}
2848
2849void __init vfs_caches_init(unsigned long mempages)
2850{
2851 unsigned long reserve;
2852
2853 /* Base hash sizes on available memory, with a reserve equal to
2854 150% of current kernel size */
2855
2856 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2857 mempages -= reserve;
2858
2859 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 2860 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 2861
74bf17cf
DC
2862 dcache_init();
2863 inode_init();
1da177e4 2864 files_init(mempages);
74bf17cf 2865 mnt_init();
1da177e4
LT
2866 bdev_cache_init();
2867 chrdev_init();
2868}
This page took 0.948102 seconds and 5 git commands to generate.