Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
26#include <linux/module.h>
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
07f3f05c 39#include "internal.h"
1da177e4 40
789680d1
NP
41/*
42 * Usage:
873feea0
NP
43 * dcache->d_inode->i_lock protects:
44 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
45 * dcache_hash_bucket lock protects:
46 * - the dcache hash table
47 * s_anon bl list spinlock protects:
48 * - the s_anon list (see __d_drop)
23044507
NP
49 * dcache_lru_lock protects:
50 * - the dcache lru lists and counters
51 * d_lock protects:
52 * - d_flags
53 * - d_name
54 * - d_lru
b7ab39f6 55 * - d_count
da502956 56 * - d_unhashed()
2fd6b7f5
NP
57 * - d_parent and d_subdirs
58 * - childrens' d_child and d_parent
b23fb0a6 59 * - d_alias, d_inode
789680d1
NP
60 *
61 * Ordering:
873feea0 62 * dentry->d_inode->i_lock
b5c84bf6
NP
63 * dentry->d_lock
64 * dcache_lru_lock
ceb5bdc2
NP
65 * dcache_hash_bucket lock
66 * s_anon lock
789680d1 67 *
da502956
NP
68 * If there is an ancestor relationship:
69 * dentry->d_parent->...->d_parent->d_lock
70 * ...
71 * dentry->d_parent->d_lock
72 * dentry->d_lock
73 *
74 * If no ancestor relationship:
789680d1
NP
75 * if (dentry1 < dentry2)
76 * dentry1->d_lock
77 * dentry2->d_lock
78 */
fa3536cc 79int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
80EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
81
23044507 82static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 83__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 84
949854d0 85EXPORT_SYMBOL(rename_lock);
1da177e4 86
e18b890b 87static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 88
1da177e4
LT
89/*
90 * This is the single most critical data structure when it comes
91 * to the dcache: the hashtable for lookups. Somebody should try
92 * to make this good - I've just made it work.
93 *
94 * This hash-function tries to avoid losing too many bits of hash
95 * information, yet avoid using a prime hash-size or similar.
96 */
97#define D_HASHBITS d_hash_shift
98#define D_HASHMASK d_hash_mask
99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
b07ad996 105static inline struct hlist_bl_head *d_hash(struct dentry *parent,
ceb5bdc2
NP
106 unsigned long hash)
107{
108 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
109 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
110 return dentry_hashtable + (hash & D_HASHMASK);
111}
112
1da177e4
LT
113/* Statistics gathering. */
114struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
116};
117
3e880fb5 118static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
119
120#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
121static int get_nr_dentry(void)
122{
123 int i;
124 int sum = 0;
125 for_each_possible_cpu(i)
126 sum += per_cpu(nr_dentry, i);
127 return sum < 0 ? 0 : sum;
128}
129
312d3ca8
CH
130int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
131 size_t *lenp, loff_t *ppos)
132{
3e880fb5 133 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
134 return proc_dointvec(table, write, buffer, lenp, ppos);
135}
136#endif
137
9c82ab9c 138static void __d_free(struct rcu_head *head)
1da177e4 139{
9c82ab9c
CH
140 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
141
fd217f4d 142 WARN_ON(!list_empty(&dentry->d_alias));
1da177e4
LT
143 if (dname_external(dentry))
144 kfree(dentry->d_name.name);
145 kmem_cache_free(dentry_cache, dentry);
146}
147
148/*
b5c84bf6 149 * no locks, please.
1da177e4
LT
150 */
151static void d_free(struct dentry *dentry)
152{
b7ab39f6 153 BUG_ON(dentry->d_count);
3e880fb5 154 this_cpu_dec(nr_dentry);
1da177e4
LT
155 if (dentry->d_op && dentry->d_op->d_release)
156 dentry->d_op->d_release(dentry);
312d3ca8 157
dea3667b
LT
158 /* if dentry was never visible to RCU, immediate free is OK */
159 if (!(dentry->d_flags & DCACHE_RCUACCESS))
9c82ab9c 160 __d_free(&dentry->d_u.d_rcu);
b3423415 161 else
9c82ab9c 162 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
163}
164
31e6b01f
NP
165/**
166 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 167 * @dentry: the target dentry
31e6b01f
NP
168 * After this call, in-progress rcu-walk path lookup will fail. This
169 * should be called after unhashing, and after changing d_inode (if
170 * the dentry has not already been unhashed).
171 */
172static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
173{
174 assert_spin_locked(&dentry->d_lock);
175 /* Go through a barrier */
176 write_seqcount_barrier(&dentry->d_seq);
177}
178
1da177e4
LT
179/*
180 * Release the dentry's inode, using the filesystem
31e6b01f
NP
181 * d_iput() operation if defined. Dentry has no refcount
182 * and is unhashed.
1da177e4 183 */
858119e1 184static void dentry_iput(struct dentry * dentry)
31f3e0b3 185 __releases(dentry->d_lock)
873feea0 186 __releases(dentry->d_inode->i_lock)
1da177e4
LT
187{
188 struct inode *inode = dentry->d_inode;
189 if (inode) {
190 dentry->d_inode = NULL;
191 list_del_init(&dentry->d_alias);
192 spin_unlock(&dentry->d_lock);
873feea0 193 spin_unlock(&inode->i_lock);
f805fbda
LT
194 if (!inode->i_nlink)
195 fsnotify_inoderemove(inode);
1da177e4
LT
196 if (dentry->d_op && dentry->d_op->d_iput)
197 dentry->d_op->d_iput(dentry, inode);
198 else
199 iput(inode);
200 } else {
201 spin_unlock(&dentry->d_lock);
1da177e4
LT
202 }
203}
204
31e6b01f
NP
205/*
206 * Release the dentry's inode, using the filesystem
207 * d_iput() operation if defined. dentry remains in-use.
208 */
209static void dentry_unlink_inode(struct dentry * dentry)
210 __releases(dentry->d_lock)
873feea0 211 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
212{
213 struct inode *inode = dentry->d_inode;
214 dentry->d_inode = NULL;
215 list_del_init(&dentry->d_alias);
216 dentry_rcuwalk_barrier(dentry);
217 spin_unlock(&dentry->d_lock);
873feea0 218 spin_unlock(&inode->i_lock);
31e6b01f
NP
219 if (!inode->i_nlink)
220 fsnotify_inoderemove(inode);
221 if (dentry->d_op && dentry->d_op->d_iput)
222 dentry->d_op->d_iput(dentry, inode);
223 else
224 iput(inode);
225}
226
da3bbdd4 227/*
23044507 228 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
da3bbdd4
KM
229 */
230static void dentry_lru_add(struct dentry *dentry)
231{
a4633357 232 if (list_empty(&dentry->d_lru)) {
23044507 233 spin_lock(&dcache_lru_lock);
a4633357
CH
234 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
235 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 236 dentry_stat.nr_unused++;
23044507 237 spin_unlock(&dcache_lru_lock);
a4633357 238 }
da3bbdd4
KM
239}
240
23044507
NP
241static void __dentry_lru_del(struct dentry *dentry)
242{
243 list_del_init(&dentry->d_lru);
244 dentry->d_sb->s_nr_dentry_unused--;
245 dentry_stat.nr_unused--;
246}
247
da3bbdd4
KM
248static void dentry_lru_del(struct dentry *dentry)
249{
250 if (!list_empty(&dentry->d_lru)) {
23044507
NP
251 spin_lock(&dcache_lru_lock);
252 __dentry_lru_del(dentry);
253 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
254 }
255}
256
a4633357 257static void dentry_lru_move_tail(struct dentry *dentry)
da3bbdd4 258{
23044507 259 spin_lock(&dcache_lru_lock);
a4633357
CH
260 if (list_empty(&dentry->d_lru)) {
261 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
262 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 263 dentry_stat.nr_unused++;
a4633357
CH
264 } else {
265 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
da3bbdd4 266 }
23044507 267 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
268}
269
d52b9086
MS
270/**
271 * d_kill - kill dentry and return parent
272 * @dentry: dentry to kill
ff5fdb61 273 * @parent: parent dentry
d52b9086 274 *
31f3e0b3 275 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
276 *
277 * If this is the root of the dentry tree, return NULL.
23044507 278 *
b5c84bf6
NP
279 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
280 * d_kill.
d52b9086 281 */
2fd6b7f5 282static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 283 __releases(dentry->d_lock)
2fd6b7f5 284 __releases(parent->d_lock)
873feea0 285 __releases(dentry->d_inode->i_lock)
d52b9086 286{
d52b9086 287 list_del(&dentry->d_u.d_child);
c83ce989
TM
288 /*
289 * Inform try_to_ascend() that we are no longer attached to the
290 * dentry tree
291 */
292 dentry->d_flags |= DCACHE_DISCONNECTED;
2fd6b7f5
NP
293 if (parent)
294 spin_unlock(&parent->d_lock);
d52b9086 295 dentry_iput(dentry);
b7ab39f6
NP
296 /*
297 * dentry_iput drops the locks, at which point nobody (except
298 * transient RCU lookups) can reach this dentry.
299 */
d52b9086 300 d_free(dentry);
871c0067 301 return parent;
d52b9086
MS
302}
303
c6627c60
DH
304/*
305 * Unhash a dentry without inserting an RCU walk barrier or checking that
306 * dentry->d_lock is locked. The caller must take care of that, if
307 * appropriate.
308 */
309static void __d_shrink(struct dentry *dentry)
310{
311 if (!d_unhashed(dentry)) {
312 struct hlist_bl_head *b;
313 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
314 b = &dentry->d_sb->s_anon;
315 else
316 b = d_hash(dentry->d_parent, dentry->d_name.hash);
317
318 hlist_bl_lock(b);
319 __hlist_bl_del(&dentry->d_hash);
320 dentry->d_hash.pprev = NULL;
321 hlist_bl_unlock(b);
322 }
323}
324
789680d1
NP
325/**
326 * d_drop - drop a dentry
327 * @dentry: dentry to drop
328 *
329 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
330 * be found through a VFS lookup any more. Note that this is different from
331 * deleting the dentry - d_delete will try to mark the dentry negative if
332 * possible, giving a successful _negative_ lookup, while d_drop will
333 * just make the cache lookup fail.
334 *
335 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
336 * reason (NFS timeouts or autofs deletes).
337 *
338 * __d_drop requires dentry->d_lock.
339 */
340void __d_drop(struct dentry *dentry)
341{
dea3667b 342 if (!d_unhashed(dentry)) {
c6627c60 343 __d_shrink(dentry);
dea3667b 344 dentry_rcuwalk_barrier(dentry);
789680d1
NP
345 }
346}
347EXPORT_SYMBOL(__d_drop);
348
349void d_drop(struct dentry *dentry)
350{
789680d1
NP
351 spin_lock(&dentry->d_lock);
352 __d_drop(dentry);
353 spin_unlock(&dentry->d_lock);
789680d1
NP
354}
355EXPORT_SYMBOL(d_drop);
356
44396f4b
JB
357/*
358 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
359 * @dentry: dentry to drop
360 *
361 * This is called when we do a lookup on a placeholder dentry that needed to be
362 * looked up. The dentry should have been hashed in order for it to be found by
363 * the lookup code, but now needs to be unhashed while we do the actual lookup
364 * and clear the DCACHE_NEED_LOOKUP flag.
365 */
366void d_clear_need_lookup(struct dentry *dentry)
367{
368 spin_lock(&dentry->d_lock);
369 __d_drop(dentry);
370 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
371 spin_unlock(&dentry->d_lock);
372}
373EXPORT_SYMBOL(d_clear_need_lookup);
374
77812a1e
NP
375/*
376 * Finish off a dentry we've decided to kill.
377 * dentry->d_lock must be held, returns with it unlocked.
378 * If ref is non-zero, then decrement the refcount too.
379 * Returns dentry requiring refcount drop, or NULL if we're done.
380 */
381static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
382 __releases(dentry->d_lock)
383{
873feea0 384 struct inode *inode;
77812a1e
NP
385 struct dentry *parent;
386
873feea0
NP
387 inode = dentry->d_inode;
388 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e
NP
389relock:
390 spin_unlock(&dentry->d_lock);
391 cpu_relax();
392 return dentry; /* try again with same dentry */
393 }
394 if (IS_ROOT(dentry))
395 parent = NULL;
396 else
397 parent = dentry->d_parent;
398 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
399 if (inode)
400 spin_unlock(&inode->i_lock);
77812a1e
NP
401 goto relock;
402 }
31e6b01f 403
77812a1e
NP
404 if (ref)
405 dentry->d_count--;
406 /* if dentry was on the d_lru list delete it from there */
407 dentry_lru_del(dentry);
408 /* if it was on the hash then remove it */
409 __d_drop(dentry);
410 return d_kill(dentry, parent);
411}
412
1da177e4
LT
413/*
414 * This is dput
415 *
416 * This is complicated by the fact that we do not want to put
417 * dentries that are no longer on any hash chain on the unused
418 * list: we'd much rather just get rid of them immediately.
419 *
420 * However, that implies that we have to traverse the dentry
421 * tree upwards to the parents which might _also_ now be
422 * scheduled for deletion (it may have been only waiting for
423 * its last child to go away).
424 *
425 * This tail recursion is done by hand as we don't want to depend
426 * on the compiler to always get this right (gcc generally doesn't).
427 * Real recursion would eat up our stack space.
428 */
429
430/*
431 * dput - release a dentry
432 * @dentry: dentry to release
433 *
434 * Release a dentry. This will drop the usage count and if appropriate
435 * call the dentry unlink method as well as removing it from the queues and
436 * releasing its resources. If the parent dentries were scheduled for release
437 * they too may now get deleted.
1da177e4 438 */
1da177e4
LT
439void dput(struct dentry *dentry)
440{
441 if (!dentry)
442 return;
443
444repeat:
b7ab39f6 445 if (dentry->d_count == 1)
1da177e4 446 might_sleep();
1da177e4 447 spin_lock(&dentry->d_lock);
61f3dee4
NP
448 BUG_ON(!dentry->d_count);
449 if (dentry->d_count > 1) {
450 dentry->d_count--;
1da177e4 451 spin_unlock(&dentry->d_lock);
1da177e4
LT
452 return;
453 }
454
fb045adb 455 if (dentry->d_flags & DCACHE_OP_DELETE) {
1da177e4 456 if (dentry->d_op->d_delete(dentry))
61f3dee4 457 goto kill_it;
1da177e4 458 }
265ac902 459
1da177e4
LT
460 /* Unreachable? Get rid of it */
461 if (d_unhashed(dentry))
462 goto kill_it;
265ac902 463
44396f4b
JB
464 /*
465 * If this dentry needs lookup, don't set the referenced flag so that it
466 * is more likely to be cleaned up by the dcache shrinker in case of
467 * memory pressure.
468 */
469 if (!d_need_lookup(dentry))
470 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 471 dentry_lru_add(dentry);
265ac902 472
61f3dee4
NP
473 dentry->d_count--;
474 spin_unlock(&dentry->d_lock);
1da177e4
LT
475 return;
476
d52b9086 477kill_it:
77812a1e 478 dentry = dentry_kill(dentry, 1);
d52b9086
MS
479 if (dentry)
480 goto repeat;
1da177e4 481}
ec4f8605 482EXPORT_SYMBOL(dput);
1da177e4
LT
483
484/**
485 * d_invalidate - invalidate a dentry
486 * @dentry: dentry to invalidate
487 *
488 * Try to invalidate the dentry if it turns out to be
489 * possible. If there are other dentries that can be
490 * reached through this one we can't delete it and we
491 * return -EBUSY. On success we return 0.
492 *
493 * no dcache lock.
494 */
495
496int d_invalidate(struct dentry * dentry)
497{
498 /*
499 * If it's already been dropped, return OK.
500 */
da502956 501 spin_lock(&dentry->d_lock);
1da177e4 502 if (d_unhashed(dentry)) {
da502956 503 spin_unlock(&dentry->d_lock);
1da177e4
LT
504 return 0;
505 }
506 /*
507 * Check whether to do a partial shrink_dcache
508 * to get rid of unused child entries.
509 */
510 if (!list_empty(&dentry->d_subdirs)) {
da502956 511 spin_unlock(&dentry->d_lock);
1da177e4 512 shrink_dcache_parent(dentry);
da502956 513 spin_lock(&dentry->d_lock);
1da177e4
LT
514 }
515
516 /*
517 * Somebody else still using it?
518 *
519 * If it's a directory, we can't drop it
520 * for fear of somebody re-populating it
521 * with children (even though dropping it
522 * would make it unreachable from the root,
523 * we might still populate it if it was a
524 * working directory or similar).
525 */
b7ab39f6 526 if (dentry->d_count > 1) {
1da177e4
LT
527 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
528 spin_unlock(&dentry->d_lock);
1da177e4
LT
529 return -EBUSY;
530 }
531 }
532
533 __d_drop(dentry);
534 spin_unlock(&dentry->d_lock);
1da177e4
LT
535 return 0;
536}
ec4f8605 537EXPORT_SYMBOL(d_invalidate);
1da177e4 538
b5c84bf6 539/* This must be called with d_lock held */
dc0474be 540static inline void __dget_dlock(struct dentry *dentry)
23044507 541{
b7ab39f6 542 dentry->d_count++;
23044507
NP
543}
544
dc0474be 545static inline void __dget(struct dentry *dentry)
1da177e4 546{
23044507 547 spin_lock(&dentry->d_lock);
dc0474be 548 __dget_dlock(dentry);
23044507 549 spin_unlock(&dentry->d_lock);
1da177e4
LT
550}
551
b7ab39f6
NP
552struct dentry *dget_parent(struct dentry *dentry)
553{
554 struct dentry *ret;
555
556repeat:
a734eb45
NP
557 /*
558 * Don't need rcu_dereference because we re-check it was correct under
559 * the lock.
560 */
561 rcu_read_lock();
b7ab39f6 562 ret = dentry->d_parent;
a734eb45
NP
563 spin_lock(&ret->d_lock);
564 if (unlikely(ret != dentry->d_parent)) {
565 spin_unlock(&ret->d_lock);
566 rcu_read_unlock();
b7ab39f6
NP
567 goto repeat;
568 }
a734eb45 569 rcu_read_unlock();
b7ab39f6
NP
570 BUG_ON(!ret->d_count);
571 ret->d_count++;
572 spin_unlock(&ret->d_lock);
b7ab39f6
NP
573 return ret;
574}
575EXPORT_SYMBOL(dget_parent);
576
1da177e4
LT
577/**
578 * d_find_alias - grab a hashed alias of inode
579 * @inode: inode in question
580 * @want_discon: flag, used by d_splice_alias, to request
581 * that only a DISCONNECTED alias be returned.
582 *
583 * If inode has a hashed alias, or is a directory and has any alias,
584 * acquire the reference to alias and return it. Otherwise return NULL.
585 * Notice that if inode is a directory there can be only one alias and
586 * it can be unhashed only if it has no children, or if it is the root
587 * of a filesystem.
588 *
21c0d8fd 589 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1da177e4 590 * any other hashed alias over that one unless @want_discon is set,
21c0d8fd 591 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 592 */
da502956 593static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 594{
da502956 595 struct dentry *alias, *discon_alias;
1da177e4 596
da502956
NP
597again:
598 discon_alias = NULL;
599 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
600 spin_lock(&alias->d_lock);
1da177e4 601 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 602 if (IS_ROOT(alias) &&
da502956 603 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 604 discon_alias = alias;
da502956 605 } else if (!want_discon) {
dc0474be 606 __dget_dlock(alias);
da502956
NP
607 spin_unlock(&alias->d_lock);
608 return alias;
609 }
610 }
611 spin_unlock(&alias->d_lock);
612 }
613 if (discon_alias) {
614 alias = discon_alias;
615 spin_lock(&alias->d_lock);
616 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
617 if (IS_ROOT(alias) &&
618 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 619 __dget_dlock(alias);
da502956 620 spin_unlock(&alias->d_lock);
1da177e4
LT
621 return alias;
622 }
623 }
da502956
NP
624 spin_unlock(&alias->d_lock);
625 goto again;
1da177e4 626 }
da502956 627 return NULL;
1da177e4
LT
628}
629
da502956 630struct dentry *d_find_alias(struct inode *inode)
1da177e4 631{
214fda1f
DH
632 struct dentry *de = NULL;
633
634 if (!list_empty(&inode->i_dentry)) {
873feea0 635 spin_lock(&inode->i_lock);
214fda1f 636 de = __d_find_alias(inode, 0);
873feea0 637 spin_unlock(&inode->i_lock);
214fda1f 638 }
1da177e4
LT
639 return de;
640}
ec4f8605 641EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
642
643/*
644 * Try to kill dentries associated with this inode.
645 * WARNING: you must own a reference to inode.
646 */
647void d_prune_aliases(struct inode *inode)
648{
0cdca3f9 649 struct dentry *dentry;
1da177e4 650restart:
873feea0 651 spin_lock(&inode->i_lock);
0cdca3f9 652 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 653 spin_lock(&dentry->d_lock);
b7ab39f6 654 if (!dentry->d_count) {
dc0474be 655 __dget_dlock(dentry);
1da177e4
LT
656 __d_drop(dentry);
657 spin_unlock(&dentry->d_lock);
873feea0 658 spin_unlock(&inode->i_lock);
1da177e4
LT
659 dput(dentry);
660 goto restart;
661 }
662 spin_unlock(&dentry->d_lock);
663 }
873feea0 664 spin_unlock(&inode->i_lock);
1da177e4 665}
ec4f8605 666EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
667
668/*
77812a1e
NP
669 * Try to throw away a dentry - free the inode, dput the parent.
670 * Requires dentry->d_lock is held, and dentry->d_count == 0.
671 * Releases dentry->d_lock.
d702ccb3 672 *
77812a1e 673 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 674 */
77812a1e 675static void try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 676 __releases(dentry->d_lock)
1da177e4 677{
77812a1e 678 struct dentry *parent;
d52b9086 679
77812a1e 680 parent = dentry_kill(dentry, 0);
d52b9086 681 /*
77812a1e
NP
682 * If dentry_kill returns NULL, we have nothing more to do.
683 * if it returns the same dentry, trylocks failed. In either
684 * case, just loop again.
685 *
686 * Otherwise, we need to prune ancestors too. This is necessary
687 * to prevent quadratic behavior of shrink_dcache_parent(), but
688 * is also expected to be beneficial in reducing dentry cache
689 * fragmentation.
d52b9086 690 */
77812a1e
NP
691 if (!parent)
692 return;
693 if (parent == dentry)
694 return;
695
696 /* Prune ancestors. */
697 dentry = parent;
d52b9086 698 while (dentry) {
b7ab39f6 699 spin_lock(&dentry->d_lock);
89e60548
NP
700 if (dentry->d_count > 1) {
701 dentry->d_count--;
702 spin_unlock(&dentry->d_lock);
703 return;
704 }
77812a1e 705 dentry = dentry_kill(dentry, 1);
d52b9086 706 }
1da177e4
LT
707}
708
3049cfe2 709static void shrink_dentry_list(struct list_head *list)
1da177e4 710{
da3bbdd4 711 struct dentry *dentry;
da3bbdd4 712
ec33679d
NP
713 rcu_read_lock();
714 for (;;) {
ec33679d
NP
715 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
716 if (&dentry->d_lru == list)
717 break; /* empty */
718 spin_lock(&dentry->d_lock);
719 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
720 spin_unlock(&dentry->d_lock);
23044507
NP
721 continue;
722 }
723
1da177e4
LT
724 /*
725 * We found an inuse dentry which was not removed from
da3bbdd4
KM
726 * the LRU because of laziness during lookup. Do not free
727 * it - just keep it off the LRU list.
1da177e4 728 */
b7ab39f6 729 if (dentry->d_count) {
ec33679d 730 dentry_lru_del(dentry);
da3bbdd4 731 spin_unlock(&dentry->d_lock);
1da177e4
LT
732 continue;
733 }
ec33679d 734
ec33679d 735 rcu_read_unlock();
77812a1e
NP
736
737 try_prune_one_dentry(dentry);
738
ec33679d 739 rcu_read_lock();
da3bbdd4 740 }
ec33679d 741 rcu_read_unlock();
3049cfe2
CH
742}
743
744/**
745 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
746 * @sb: superblock to shrink dentry LRU.
747 * @count: number of entries to prune
748 * @flags: flags to control the dentry processing
749 *
750 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
751 */
b0d40c92 752static void __shrink_dcache_sb(struct super_block *sb, int count, int flags)
3049cfe2 753{
3049cfe2
CH
754 struct dentry *dentry;
755 LIST_HEAD(referenced);
756 LIST_HEAD(tmp);
3049cfe2 757
23044507
NP
758relock:
759 spin_lock(&dcache_lru_lock);
3049cfe2
CH
760 while (!list_empty(&sb->s_dentry_lru)) {
761 dentry = list_entry(sb->s_dentry_lru.prev,
762 struct dentry, d_lru);
763 BUG_ON(dentry->d_sb != sb);
764
23044507
NP
765 if (!spin_trylock(&dentry->d_lock)) {
766 spin_unlock(&dcache_lru_lock);
767 cpu_relax();
768 goto relock;
769 }
770
3049cfe2
CH
771 /*
772 * If we are honouring the DCACHE_REFERENCED flag and the
773 * dentry has this flag set, don't free it. Clear the flag
774 * and put it back on the LRU.
775 */
23044507
NP
776 if (flags & DCACHE_REFERENCED &&
777 dentry->d_flags & DCACHE_REFERENCED) {
778 dentry->d_flags &= ~DCACHE_REFERENCED;
779 list_move(&dentry->d_lru, &referenced);
3049cfe2 780 spin_unlock(&dentry->d_lock);
23044507
NP
781 } else {
782 list_move_tail(&dentry->d_lru, &tmp);
783 spin_unlock(&dentry->d_lock);
b0d40c92 784 if (!--count)
23044507 785 break;
3049cfe2 786 }
ec33679d 787 cond_resched_lock(&dcache_lru_lock);
3049cfe2 788 }
da3bbdd4
KM
789 if (!list_empty(&referenced))
790 list_splice(&referenced, &sb->s_dentry_lru);
23044507 791 spin_unlock(&dcache_lru_lock);
ec33679d
NP
792
793 shrink_dentry_list(&tmp);
da3bbdd4
KM
794}
795
796/**
b0d40c92 797 * prune_dcache_sb - shrink the dcache
2af14162 798 * @sb: superblock
b0d40c92 799 * @nr_to_scan: number of entries to try to free
da3bbdd4 800 *
b0d40c92
DC
801 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
802 * done when we need more memory an called from the superblock shrinker
803 * function.
da3bbdd4 804 *
b0d40c92
DC
805 * This function may fail to free any resources if all the dentries are in
806 * use.
da3bbdd4 807 */
b0d40c92 808void prune_dcache_sb(struct super_block *sb, int nr_to_scan)
da3bbdd4 809{
b0d40c92 810 __shrink_dcache_sb(sb, nr_to_scan, DCACHE_REFERENCED);
1da177e4
LT
811}
812
1da177e4
LT
813/**
814 * shrink_dcache_sb - shrink dcache for a superblock
815 * @sb: superblock
816 *
3049cfe2
CH
817 * Shrink the dcache for the specified super block. This is used to free
818 * the dcache before unmounting a file system.
1da177e4 819 */
3049cfe2 820void shrink_dcache_sb(struct super_block *sb)
1da177e4 821{
3049cfe2
CH
822 LIST_HEAD(tmp);
823
23044507 824 spin_lock(&dcache_lru_lock);
3049cfe2
CH
825 while (!list_empty(&sb->s_dentry_lru)) {
826 list_splice_init(&sb->s_dentry_lru, &tmp);
ec33679d 827 spin_unlock(&dcache_lru_lock);
3049cfe2 828 shrink_dentry_list(&tmp);
ec33679d 829 spin_lock(&dcache_lru_lock);
3049cfe2 830 }
23044507 831 spin_unlock(&dcache_lru_lock);
1da177e4 832}
ec4f8605 833EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 834
c636ebdb
DH
835/*
836 * destroy a single subtree of dentries for unmount
837 * - see the comments on shrink_dcache_for_umount() for a description of the
838 * locking
839 */
840static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
841{
842 struct dentry *parent;
843
844 BUG_ON(!IS_ROOT(dentry));
845
c636ebdb
DH
846 for (;;) {
847 /* descend to the first leaf in the current subtree */
43c1c9cd 848 while (!list_empty(&dentry->d_subdirs))
c636ebdb
DH
849 dentry = list_entry(dentry->d_subdirs.next,
850 struct dentry, d_u.d_child);
c636ebdb
DH
851
852 /* consume the dentries from this leaf up through its parents
853 * until we find one with children or run out altogether */
854 do {
855 struct inode *inode;
856
43c1c9cd
DH
857 /* detach from the system */
858 dentry_lru_del(dentry);
859 __d_shrink(dentry);
860
b7ab39f6 861 if (dentry->d_count != 0) {
c636ebdb
DH
862 printk(KERN_ERR
863 "BUG: Dentry %p{i=%lx,n=%s}"
864 " still in use (%d)"
865 " [unmount of %s %s]\n",
866 dentry,
867 dentry->d_inode ?
868 dentry->d_inode->i_ino : 0UL,
869 dentry->d_name.name,
b7ab39f6 870 dentry->d_count,
c636ebdb
DH
871 dentry->d_sb->s_type->name,
872 dentry->d_sb->s_id);
873 BUG();
874 }
875
2fd6b7f5 876 if (IS_ROOT(dentry)) {
c636ebdb 877 parent = NULL;
2fd6b7f5
NP
878 list_del(&dentry->d_u.d_child);
879 } else {
871c0067 880 parent = dentry->d_parent;
b7ab39f6 881 parent->d_count--;
2fd6b7f5 882 list_del(&dentry->d_u.d_child);
871c0067 883 }
c636ebdb 884
c636ebdb
DH
885 inode = dentry->d_inode;
886 if (inode) {
887 dentry->d_inode = NULL;
888 list_del_init(&dentry->d_alias);
889 if (dentry->d_op && dentry->d_op->d_iput)
890 dentry->d_op->d_iput(dentry, inode);
891 else
892 iput(inode);
893 }
894
895 d_free(dentry);
896
897 /* finished when we fall off the top of the tree,
898 * otherwise we ascend to the parent and move to the
899 * next sibling if there is one */
900 if (!parent)
312d3ca8 901 return;
c636ebdb 902 dentry = parent;
c636ebdb
DH
903 } while (list_empty(&dentry->d_subdirs));
904
905 dentry = list_entry(dentry->d_subdirs.next,
906 struct dentry, d_u.d_child);
907 }
908}
909
910/*
911 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 912 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
913 * - the superblock is detached from all mountings and open files, so the
914 * dentry trees will not be rearranged by the VFS
915 * - s_umount is write-locked, so the memory pressure shrinker will ignore
916 * any dentries belonging to this superblock that it comes across
917 * - the filesystem itself is no longer permitted to rearrange the dentries
918 * in this superblock
919 */
920void shrink_dcache_for_umount(struct super_block *sb)
921{
922 struct dentry *dentry;
923
924 if (down_read_trylock(&sb->s_umount))
925 BUG();
926
927 dentry = sb->s_root;
928 sb->s_root = NULL;
b7ab39f6 929 dentry->d_count--;
c636ebdb
DH
930 shrink_dcache_for_umount_subtree(dentry);
931
ceb5bdc2
NP
932 while (!hlist_bl_empty(&sb->s_anon)) {
933 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
934 shrink_dcache_for_umount_subtree(dentry);
935 }
936}
937
c826cb7d
LT
938/*
939 * This tries to ascend one level of parenthood, but
940 * we can race with renaming, so we need to re-check
941 * the parenthood after dropping the lock and check
942 * that the sequence number still matches.
943 */
944static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
945{
946 struct dentry *new = old->d_parent;
947
948 rcu_read_lock();
949 spin_unlock(&old->d_lock);
950 spin_lock(&new->d_lock);
951
952 /*
953 * might go back up the wrong parent if we have had a rename
954 * or deletion
955 */
956 if (new != old->d_parent ||
c83ce989 957 (old->d_flags & DCACHE_DISCONNECTED) ||
c826cb7d
LT
958 (!locked && read_seqretry(&rename_lock, seq))) {
959 spin_unlock(&new->d_lock);
960 new = NULL;
961 }
962 rcu_read_unlock();
963 return new;
964}
965
966
1da177e4
LT
967/*
968 * Search for at least 1 mount point in the dentry's subdirs.
969 * We descend to the next level whenever the d_subdirs
970 * list is non-empty and continue searching.
971 */
972
973/**
974 * have_submounts - check for mounts over a dentry
975 * @parent: dentry to check.
976 *
977 * Return true if the parent or its subdirectories contain
978 * a mount point
979 */
1da177e4
LT
980int have_submounts(struct dentry *parent)
981{
949854d0 982 struct dentry *this_parent;
1da177e4 983 struct list_head *next;
949854d0 984 unsigned seq;
58db63d0 985 int locked = 0;
949854d0 986
949854d0 987 seq = read_seqbegin(&rename_lock);
58db63d0
NP
988again:
989 this_parent = parent;
1da177e4 990
1da177e4
LT
991 if (d_mountpoint(parent))
992 goto positive;
2fd6b7f5 993 spin_lock(&this_parent->d_lock);
1da177e4
LT
994repeat:
995 next = this_parent->d_subdirs.next;
996resume:
997 while (next != &this_parent->d_subdirs) {
998 struct list_head *tmp = next;
5160ee6f 999 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1000 next = tmp->next;
2fd6b7f5
NP
1001
1002 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 1003 /* Have we found a mount point ? */
2fd6b7f5
NP
1004 if (d_mountpoint(dentry)) {
1005 spin_unlock(&dentry->d_lock);
1006 spin_unlock(&this_parent->d_lock);
1da177e4 1007 goto positive;
2fd6b7f5 1008 }
1da177e4 1009 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1010 spin_unlock(&this_parent->d_lock);
1011 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1012 this_parent = dentry;
2fd6b7f5 1013 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1014 goto repeat;
1015 }
2fd6b7f5 1016 spin_unlock(&dentry->d_lock);
1da177e4
LT
1017 }
1018 /*
1019 * All done at this level ... ascend and resume the search.
1020 */
1021 if (this_parent != parent) {
c826cb7d
LT
1022 struct dentry *child = this_parent;
1023 this_parent = try_to_ascend(this_parent, locked, seq);
1024 if (!this_parent)
949854d0 1025 goto rename_retry;
949854d0 1026 next = child->d_u.d_child.next;
1da177e4
LT
1027 goto resume;
1028 }
2fd6b7f5 1029 spin_unlock(&this_parent->d_lock);
58db63d0 1030 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1031 goto rename_retry;
58db63d0
NP
1032 if (locked)
1033 write_sequnlock(&rename_lock);
1da177e4
LT
1034 return 0; /* No mount points found in tree */
1035positive:
58db63d0 1036 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1037 goto rename_retry;
58db63d0
NP
1038 if (locked)
1039 write_sequnlock(&rename_lock);
1da177e4 1040 return 1;
58db63d0
NP
1041
1042rename_retry:
1043 locked = 1;
1044 write_seqlock(&rename_lock);
1045 goto again;
1da177e4 1046}
ec4f8605 1047EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1048
1049/*
1050 * Search the dentry child list for the specified parent,
1051 * and move any unused dentries to the end of the unused
1052 * list for prune_dcache(). We descend to the next level
1053 * whenever the d_subdirs list is non-empty and continue
1054 * searching.
1055 *
1056 * It returns zero iff there are no unused children,
1057 * otherwise it returns the number of children moved to
1058 * the end of the unused list. This may not be the total
1059 * number of unused children, because select_parent can
1060 * drop the lock and return early due to latency
1061 * constraints.
1062 */
1063static int select_parent(struct dentry * parent)
1064{
949854d0 1065 struct dentry *this_parent;
1da177e4 1066 struct list_head *next;
949854d0 1067 unsigned seq;
1da177e4 1068 int found = 0;
58db63d0 1069 int locked = 0;
1da177e4 1070
949854d0 1071 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1072again:
1073 this_parent = parent;
2fd6b7f5 1074 spin_lock(&this_parent->d_lock);
1da177e4
LT
1075repeat:
1076 next = this_parent->d_subdirs.next;
1077resume:
1078 while (next != &this_parent->d_subdirs) {
1079 struct list_head *tmp = next;
5160ee6f 1080 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1081 next = tmp->next;
1082
2fd6b7f5 1083 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1084
1da177e4
LT
1085 /*
1086 * move only zero ref count dentries to the end
1087 * of the unused list for prune_dcache
1088 */
b7ab39f6 1089 if (!dentry->d_count) {
a4633357 1090 dentry_lru_move_tail(dentry);
1da177e4 1091 found++;
a4633357
CH
1092 } else {
1093 dentry_lru_del(dentry);
1da177e4
LT
1094 }
1095
1096 /*
1097 * We can return to the caller if we have found some (this
1098 * ensures forward progress). We'll be coming back to find
1099 * the rest.
1100 */
2fd6b7f5
NP
1101 if (found && need_resched()) {
1102 spin_unlock(&dentry->d_lock);
1da177e4 1103 goto out;
2fd6b7f5 1104 }
1da177e4
LT
1105
1106 /*
1107 * Descend a level if the d_subdirs list is non-empty.
1108 */
1109 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1110 spin_unlock(&this_parent->d_lock);
1111 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1112 this_parent = dentry;
2fd6b7f5 1113 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1114 goto repeat;
1115 }
2fd6b7f5
NP
1116
1117 spin_unlock(&dentry->d_lock);
1da177e4
LT
1118 }
1119 /*
1120 * All done at this level ... ascend and resume the search.
1121 */
1122 if (this_parent != parent) {
c826cb7d
LT
1123 struct dentry *child = this_parent;
1124 this_parent = try_to_ascend(this_parent, locked, seq);
1125 if (!this_parent)
949854d0 1126 goto rename_retry;
949854d0 1127 next = child->d_u.d_child.next;
1da177e4
LT
1128 goto resume;
1129 }
1130out:
2fd6b7f5 1131 spin_unlock(&this_parent->d_lock);
58db63d0 1132 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1133 goto rename_retry;
58db63d0
NP
1134 if (locked)
1135 write_sequnlock(&rename_lock);
1da177e4 1136 return found;
58db63d0
NP
1137
1138rename_retry:
1139 if (found)
1140 return found;
1141 locked = 1;
1142 write_seqlock(&rename_lock);
1143 goto again;
1da177e4
LT
1144}
1145
1146/**
1147 * shrink_dcache_parent - prune dcache
1148 * @parent: parent of entries to prune
1149 *
1150 * Prune the dcache to remove unused children of the parent dentry.
1151 */
1152
1153void shrink_dcache_parent(struct dentry * parent)
1154{
da3bbdd4 1155 struct super_block *sb = parent->d_sb;
1da177e4
LT
1156 int found;
1157
1158 while ((found = select_parent(parent)) != 0)
b0d40c92 1159 __shrink_dcache_sb(sb, found, 0);
1da177e4 1160}
ec4f8605 1161EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1162
1da177e4 1163/**
a4464dbc
AV
1164 * __d_alloc - allocate a dcache entry
1165 * @sb: filesystem it will belong to
1da177e4
LT
1166 * @name: qstr of the name
1167 *
1168 * Allocates a dentry. It returns %NULL if there is insufficient memory
1169 * available. On a success the dentry is returned. The name passed in is
1170 * copied and the copy passed in may be reused after this call.
1171 */
1172
a4464dbc 1173struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1174{
1175 struct dentry *dentry;
1176 char *dname;
1177
e12ba74d 1178 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1179 if (!dentry)
1180 return NULL;
1181
1182 if (name->len > DNAME_INLINE_LEN-1) {
1183 dname = kmalloc(name->len + 1, GFP_KERNEL);
1184 if (!dname) {
1185 kmem_cache_free(dentry_cache, dentry);
1186 return NULL;
1187 }
1188 } else {
1189 dname = dentry->d_iname;
1190 }
1191 dentry->d_name.name = dname;
1192
1193 dentry->d_name.len = name->len;
1194 dentry->d_name.hash = name->hash;
1195 memcpy(dname, name->name, name->len);
1196 dname[name->len] = 0;
1197
b7ab39f6 1198 dentry->d_count = 1;
dea3667b 1199 dentry->d_flags = 0;
1da177e4 1200 spin_lock_init(&dentry->d_lock);
31e6b01f 1201 seqcount_init(&dentry->d_seq);
1da177e4 1202 dentry->d_inode = NULL;
a4464dbc
AV
1203 dentry->d_parent = dentry;
1204 dentry->d_sb = sb;
1da177e4
LT
1205 dentry->d_op = NULL;
1206 dentry->d_fsdata = NULL;
ceb5bdc2 1207 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1208 INIT_LIST_HEAD(&dentry->d_lru);
1209 INIT_LIST_HEAD(&dentry->d_subdirs);
1210 INIT_LIST_HEAD(&dentry->d_alias);
2fd6b7f5 1211 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1212 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1213
3e880fb5 1214 this_cpu_inc(nr_dentry);
312d3ca8 1215
1da177e4
LT
1216 return dentry;
1217}
a4464dbc
AV
1218
1219/**
1220 * d_alloc - allocate a dcache entry
1221 * @parent: parent of entry to allocate
1222 * @name: qstr of the name
1223 *
1224 * Allocates a dentry. It returns %NULL if there is insufficient memory
1225 * available. On a success the dentry is returned. The name passed in is
1226 * copied and the copy passed in may be reused after this call.
1227 */
1228struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1229{
1230 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1231 if (!dentry)
1232 return NULL;
1233
1234 spin_lock(&parent->d_lock);
1235 /*
1236 * don't need child lock because it is not subject
1237 * to concurrency here
1238 */
1239 __dget_dlock(parent);
1240 dentry->d_parent = parent;
1241 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1242 spin_unlock(&parent->d_lock);
1243
1244 return dentry;
1245}
ec4f8605 1246EXPORT_SYMBOL(d_alloc);
1da177e4 1247
4b936885
NP
1248struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1249{
a4464dbc
AV
1250 struct dentry *dentry = __d_alloc(sb, name);
1251 if (dentry)
4b936885 1252 dentry->d_flags |= DCACHE_DISCONNECTED;
4b936885
NP
1253 return dentry;
1254}
1255EXPORT_SYMBOL(d_alloc_pseudo);
1256
1da177e4
LT
1257struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1258{
1259 struct qstr q;
1260
1261 q.name = name;
1262 q.len = strlen(name);
1263 q.hash = full_name_hash(q.name, q.len);
1264 return d_alloc(parent, &q);
1265}
ef26ca97 1266EXPORT_SYMBOL(d_alloc_name);
1da177e4 1267
fb045adb
NP
1268void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1269{
6f7f7caa
LT
1270 WARN_ON_ONCE(dentry->d_op);
1271 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1272 DCACHE_OP_COMPARE |
1273 DCACHE_OP_REVALIDATE |
1274 DCACHE_OP_DELETE ));
1275 dentry->d_op = op;
1276 if (!op)
1277 return;
1278 if (op->d_hash)
1279 dentry->d_flags |= DCACHE_OP_HASH;
1280 if (op->d_compare)
1281 dentry->d_flags |= DCACHE_OP_COMPARE;
1282 if (op->d_revalidate)
1283 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1284 if (op->d_delete)
1285 dentry->d_flags |= DCACHE_OP_DELETE;
1286
1287}
1288EXPORT_SYMBOL(d_set_d_op);
1289
360da900
OH
1290static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1291{
b23fb0a6 1292 spin_lock(&dentry->d_lock);
9875cf80
DH
1293 if (inode) {
1294 if (unlikely(IS_AUTOMOUNT(inode)))
1295 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
360da900 1296 list_add(&dentry->d_alias, &inode->i_dentry);
9875cf80 1297 }
360da900 1298 dentry->d_inode = inode;
31e6b01f 1299 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1300 spin_unlock(&dentry->d_lock);
360da900
OH
1301 fsnotify_d_instantiate(dentry, inode);
1302}
1303
1da177e4
LT
1304/**
1305 * d_instantiate - fill in inode information for a dentry
1306 * @entry: dentry to complete
1307 * @inode: inode to attach to this dentry
1308 *
1309 * Fill in inode information in the entry.
1310 *
1311 * This turns negative dentries into productive full members
1312 * of society.
1313 *
1314 * NOTE! This assumes that the inode count has been incremented
1315 * (or otherwise set) by the caller to indicate that it is now
1316 * in use by the dcache.
1317 */
1318
1319void d_instantiate(struct dentry *entry, struct inode * inode)
1320{
28133c7b 1321 BUG_ON(!list_empty(&entry->d_alias));
873feea0
NP
1322 if (inode)
1323 spin_lock(&inode->i_lock);
360da900 1324 __d_instantiate(entry, inode);
873feea0
NP
1325 if (inode)
1326 spin_unlock(&inode->i_lock);
1da177e4
LT
1327 security_d_instantiate(entry, inode);
1328}
ec4f8605 1329EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1330
1331/**
1332 * d_instantiate_unique - instantiate a non-aliased dentry
1333 * @entry: dentry to instantiate
1334 * @inode: inode to attach to this dentry
1335 *
1336 * Fill in inode information in the entry. On success, it returns NULL.
1337 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1338 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1339 *
1340 * Note that in order to avoid conflicts with rename() etc, the caller
1341 * had better be holding the parent directory semaphore.
e866cfa9
OD
1342 *
1343 * This also assumes that the inode count has been incremented
1344 * (or otherwise set) by the caller to indicate that it is now
1345 * in use by the dcache.
1da177e4 1346 */
770bfad8
DH
1347static struct dentry *__d_instantiate_unique(struct dentry *entry,
1348 struct inode *inode)
1da177e4
LT
1349{
1350 struct dentry *alias;
1351 int len = entry->d_name.len;
1352 const char *name = entry->d_name.name;
1353 unsigned int hash = entry->d_name.hash;
1354
770bfad8 1355 if (!inode) {
360da900 1356 __d_instantiate(entry, NULL);
770bfad8
DH
1357 return NULL;
1358 }
1359
1da177e4
LT
1360 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1361 struct qstr *qstr = &alias->d_name;
1362
9abca360
NP
1363 /*
1364 * Don't need alias->d_lock here, because aliases with
1365 * d_parent == entry->d_parent are not subject to name or
1366 * parent changes, because the parent inode i_mutex is held.
1367 */
1da177e4
LT
1368 if (qstr->hash != hash)
1369 continue;
1370 if (alias->d_parent != entry->d_parent)
1371 continue;
9d55c369 1372 if (dentry_cmp(qstr->name, qstr->len, name, len))
1da177e4 1373 continue;
dc0474be 1374 __dget(alias);
1da177e4
LT
1375 return alias;
1376 }
770bfad8 1377
360da900 1378 __d_instantiate(entry, inode);
1da177e4
LT
1379 return NULL;
1380}
770bfad8
DH
1381
1382struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1383{
1384 struct dentry *result;
1385
1386 BUG_ON(!list_empty(&entry->d_alias));
1387
873feea0
NP
1388 if (inode)
1389 spin_lock(&inode->i_lock);
770bfad8 1390 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1391 if (inode)
1392 spin_unlock(&inode->i_lock);
770bfad8
DH
1393
1394 if (!result) {
1395 security_d_instantiate(entry, inode);
1396 return NULL;
1397 }
1398
1399 BUG_ON(!d_unhashed(result));
1400 iput(inode);
1401 return result;
1402}
1403
1da177e4
LT
1404EXPORT_SYMBOL(d_instantiate_unique);
1405
1406/**
1407 * d_alloc_root - allocate root dentry
1408 * @root_inode: inode to allocate the root for
1409 *
1410 * Allocate a root ("/") dentry for the inode given. The inode is
1411 * instantiated and returned. %NULL is returned if there is insufficient
1412 * memory or the inode passed is %NULL.
1413 */
1414
1415struct dentry * d_alloc_root(struct inode * root_inode)
1416{
1417 struct dentry *res = NULL;
1418
1419 if (root_inode) {
1420 static const struct qstr name = { .name = "/", .len = 1 };
1421
a4464dbc
AV
1422 res = __d_alloc(root_inode->i_sb, &name);
1423 if (res)
1da177e4 1424 d_instantiate(res, root_inode);
1da177e4
LT
1425 }
1426 return res;
1427}
ec4f8605 1428EXPORT_SYMBOL(d_alloc_root);
1da177e4 1429
d891eedb
BF
1430static struct dentry * __d_find_any_alias(struct inode *inode)
1431{
1432 struct dentry *alias;
1433
1434 if (list_empty(&inode->i_dentry))
1435 return NULL;
1436 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1437 __dget(alias);
1438 return alias;
1439}
1440
1441static struct dentry * d_find_any_alias(struct inode *inode)
1442{
1443 struct dentry *de;
1444
1445 spin_lock(&inode->i_lock);
1446 de = __d_find_any_alias(inode);
1447 spin_unlock(&inode->i_lock);
1448 return de;
1449}
1450
1451
4ea3ada2
CH
1452/**
1453 * d_obtain_alias - find or allocate a dentry for a given inode
1454 * @inode: inode to allocate the dentry for
1455 *
1456 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1457 * similar open by handle operations. The returned dentry may be anonymous,
1458 * or may have a full name (if the inode was already in the cache).
1459 *
1460 * When called on a directory inode, we must ensure that the inode only ever
1461 * has one dentry. If a dentry is found, that is returned instead of
1462 * allocating a new one.
1463 *
1464 * On successful return, the reference to the inode has been transferred
44003728
CH
1465 * to the dentry. In case of an error the reference on the inode is released.
1466 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1467 * be passed in and will be the error will be propagate to the return value,
1468 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1469 */
1470struct dentry *d_obtain_alias(struct inode *inode)
1471{
9308a612
CH
1472 static const struct qstr anonstring = { .name = "" };
1473 struct dentry *tmp;
1474 struct dentry *res;
4ea3ada2
CH
1475
1476 if (!inode)
44003728 1477 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1478 if (IS_ERR(inode))
1479 return ERR_CAST(inode);
1480
d891eedb 1481 res = d_find_any_alias(inode);
9308a612
CH
1482 if (res)
1483 goto out_iput;
1484
a4464dbc 1485 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1486 if (!tmp) {
1487 res = ERR_PTR(-ENOMEM);
1488 goto out_iput;
4ea3ada2 1489 }
b5c84bf6 1490
873feea0 1491 spin_lock(&inode->i_lock);
d891eedb 1492 res = __d_find_any_alias(inode);
9308a612 1493 if (res) {
873feea0 1494 spin_unlock(&inode->i_lock);
9308a612
CH
1495 dput(tmp);
1496 goto out_iput;
1497 }
1498
1499 /* attach a disconnected dentry */
1500 spin_lock(&tmp->d_lock);
9308a612
CH
1501 tmp->d_inode = inode;
1502 tmp->d_flags |= DCACHE_DISCONNECTED;
9308a612 1503 list_add(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1504 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1505 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1506 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1507 spin_unlock(&tmp->d_lock);
873feea0 1508 spin_unlock(&inode->i_lock);
24ff6663 1509 security_d_instantiate(tmp, inode);
9308a612 1510
9308a612
CH
1511 return tmp;
1512
1513 out_iput:
24ff6663
JB
1514 if (res && !IS_ERR(res))
1515 security_d_instantiate(res, inode);
9308a612
CH
1516 iput(inode);
1517 return res;
4ea3ada2 1518}
adc48720 1519EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1520
1521/**
1522 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1523 * @inode: the inode which may have a disconnected dentry
1524 * @dentry: a negative dentry which we want to point to the inode.
1525 *
1526 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1527 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1528 * and return it, else simply d_add the inode to the dentry and return NULL.
1529 *
1530 * This is needed in the lookup routine of any filesystem that is exportable
1531 * (via knfsd) so that we can build dcache paths to directories effectively.
1532 *
1533 * If a dentry was found and moved, then it is returned. Otherwise NULL
1534 * is returned. This matches the expected return value of ->lookup.
1535 *
1536 */
1537struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1538{
1539 struct dentry *new = NULL;
1540
a9049376
AV
1541 if (IS_ERR(inode))
1542 return ERR_CAST(inode);
1543
21c0d8fd 1544 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1545 spin_lock(&inode->i_lock);
1da177e4
LT
1546 new = __d_find_alias(inode, 1);
1547 if (new) {
1548 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1549 spin_unlock(&inode->i_lock);
1da177e4 1550 security_d_instantiate(new, inode);
1da177e4
LT
1551 d_move(new, dentry);
1552 iput(inode);
1553 } else {
873feea0 1554 /* already taking inode->i_lock, so d_add() by hand */
360da900 1555 __d_instantiate(dentry, inode);
873feea0 1556 spin_unlock(&inode->i_lock);
1da177e4
LT
1557 security_d_instantiate(dentry, inode);
1558 d_rehash(dentry);
1559 }
1560 } else
1561 d_add(dentry, inode);
1562 return new;
1563}
ec4f8605 1564EXPORT_SYMBOL(d_splice_alias);
1da177e4 1565
9403540c
BN
1566/**
1567 * d_add_ci - lookup or allocate new dentry with case-exact name
1568 * @inode: the inode case-insensitive lookup has found
1569 * @dentry: the negative dentry that was passed to the parent's lookup func
1570 * @name: the case-exact name to be associated with the returned dentry
1571 *
1572 * This is to avoid filling the dcache with case-insensitive names to the
1573 * same inode, only the actual correct case is stored in the dcache for
1574 * case-insensitive filesystems.
1575 *
1576 * For a case-insensitive lookup match and if the the case-exact dentry
1577 * already exists in in the dcache, use it and return it.
1578 *
1579 * If no entry exists with the exact case name, allocate new dentry with
1580 * the exact case, and return the spliced entry.
1581 */
e45b590b 1582struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1583 struct qstr *name)
1584{
1585 int error;
1586 struct dentry *found;
1587 struct dentry *new;
1588
b6520c81
CH
1589 /*
1590 * First check if a dentry matching the name already exists,
1591 * if not go ahead and create it now.
1592 */
9403540c 1593 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1594 if (!found) {
1595 new = d_alloc(dentry->d_parent, name);
1596 if (!new) {
1597 error = -ENOMEM;
1598 goto err_out;
1599 }
b6520c81 1600
9403540c
BN
1601 found = d_splice_alias(inode, new);
1602 if (found) {
1603 dput(new);
1604 return found;
1605 }
1606 return new;
1607 }
b6520c81
CH
1608
1609 /*
1610 * If a matching dentry exists, and it's not negative use it.
1611 *
1612 * Decrement the reference count to balance the iget() done
1613 * earlier on.
1614 */
9403540c
BN
1615 if (found->d_inode) {
1616 if (unlikely(found->d_inode != inode)) {
1617 /* This can't happen because bad inodes are unhashed. */
1618 BUG_ON(!is_bad_inode(inode));
1619 BUG_ON(!is_bad_inode(found->d_inode));
1620 }
9403540c
BN
1621 iput(inode);
1622 return found;
1623 }
b6520c81 1624
9403540c 1625 /*
44396f4b
JB
1626 * We are going to instantiate this dentry, unhash it and clear the
1627 * lookup flag so we can do that.
9403540c 1628 */
44396f4b
JB
1629 if (unlikely(d_need_lookup(found)))
1630 d_clear_need_lookup(found);
b6520c81 1631
9403540c 1632 /*
9403540c 1633 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1634 * already has a dentry.
9403540c 1635 */
4513d899
AV
1636 new = d_splice_alias(inode, found);
1637 if (new) {
1638 dput(found);
1639 found = new;
9403540c 1640 }
4513d899 1641 return found;
9403540c
BN
1642
1643err_out:
1644 iput(inode);
1645 return ERR_PTR(error);
1646}
ec4f8605 1647EXPORT_SYMBOL(d_add_ci);
1da177e4 1648
31e6b01f
NP
1649/**
1650 * __d_lookup_rcu - search for a dentry (racy, store-free)
1651 * @parent: parent dentry
1652 * @name: qstr of name we wish to find
1653 * @seq: returns d_seq value at the point where the dentry was found
1654 * @inode: returns dentry->d_inode when the inode was found valid.
1655 * Returns: dentry, or NULL
1656 *
1657 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1658 * resolution (store-free path walking) design described in
1659 * Documentation/filesystems/path-lookup.txt.
1660 *
1661 * This is not to be used outside core vfs.
1662 *
1663 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1664 * held, and rcu_read_lock held. The returned dentry must not be stored into
1665 * without taking d_lock and checking d_seq sequence count against @seq
1666 * returned here.
1667 *
1668 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1669 * function.
1670 *
1671 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1672 * the returned dentry, so long as its parent's seqlock is checked after the
1673 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1674 * is formed, giving integrity down the path walk.
1675 */
1676struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1677 unsigned *seq, struct inode **inode)
1678{
1679 unsigned int len = name->len;
1680 unsigned int hash = name->hash;
1681 const unsigned char *str = name->name;
b07ad996 1682 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1683 struct hlist_bl_node *node;
31e6b01f
NP
1684 struct dentry *dentry;
1685
1686 /*
1687 * Note: There is significant duplication with __d_lookup_rcu which is
1688 * required to prevent single threaded performance regressions
1689 * especially on architectures where smp_rmb (in seqcounts) are costly.
1690 * Keep the two functions in sync.
1691 */
1692
1693 /*
1694 * The hash list is protected using RCU.
1695 *
1696 * Carefully use d_seq when comparing a candidate dentry, to avoid
1697 * races with d_move().
1698 *
1699 * It is possible that concurrent renames can mess up our list
1700 * walk here and result in missing our dentry, resulting in the
1701 * false-negative result. d_lookup() protects against concurrent
1702 * renames using rename_lock seqlock.
1703 *
b0a4bb83 1704 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 1705 */
b07ad996 1706 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
31e6b01f
NP
1707 struct inode *i;
1708 const char *tname;
1709 int tlen;
1710
1711 if (dentry->d_name.hash != hash)
1712 continue;
1713
1714seqretry:
1715 *seq = read_seqcount_begin(&dentry->d_seq);
1716 if (dentry->d_parent != parent)
1717 continue;
1718 if (d_unhashed(dentry))
1719 continue;
1720 tlen = dentry->d_name.len;
1721 tname = dentry->d_name.name;
1722 i = dentry->d_inode;
e1bb5782 1723 prefetch(tname);
31e6b01f
NP
1724 /*
1725 * This seqcount check is required to ensure name and
1726 * len are loaded atomically, so as not to walk off the
1727 * edge of memory when walking. If we could load this
1728 * atomically some other way, we could drop this check.
1729 */
1730 if (read_seqcount_retry(&dentry->d_seq, *seq))
1731 goto seqretry;
fb045adb 1732 if (parent->d_flags & DCACHE_OP_COMPARE) {
31e6b01f
NP
1733 if (parent->d_op->d_compare(parent, *inode,
1734 dentry, i,
1735 tlen, tname, name))
1736 continue;
1737 } else {
9d55c369 1738 if (dentry_cmp(tname, tlen, str, len))
31e6b01f
NP
1739 continue;
1740 }
1741 /*
1742 * No extra seqcount check is required after the name
1743 * compare. The caller must perform a seqcount check in
1744 * order to do anything useful with the returned dentry
1745 * anyway.
1746 */
1747 *inode = i;
1748 return dentry;
1749 }
1750 return NULL;
1751}
1752
1da177e4
LT
1753/**
1754 * d_lookup - search for a dentry
1755 * @parent: parent dentry
1756 * @name: qstr of name we wish to find
b04f784e 1757 * Returns: dentry, or NULL
1da177e4 1758 *
b04f784e
NP
1759 * d_lookup searches the children of the parent dentry for the name in
1760 * question. If the dentry is found its reference count is incremented and the
1761 * dentry is returned. The caller must use dput to free the entry when it has
1762 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1763 */
31e6b01f 1764struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1da177e4 1765{
31e6b01f 1766 struct dentry *dentry;
949854d0 1767 unsigned seq;
1da177e4
LT
1768
1769 do {
1770 seq = read_seqbegin(&rename_lock);
1771 dentry = __d_lookup(parent, name);
1772 if (dentry)
1773 break;
1774 } while (read_seqretry(&rename_lock, seq));
1775 return dentry;
1776}
ec4f8605 1777EXPORT_SYMBOL(d_lookup);
1da177e4 1778
31e6b01f 1779/**
b04f784e
NP
1780 * __d_lookup - search for a dentry (racy)
1781 * @parent: parent dentry
1782 * @name: qstr of name we wish to find
1783 * Returns: dentry, or NULL
1784 *
1785 * __d_lookup is like d_lookup, however it may (rarely) return a
1786 * false-negative result due to unrelated rename activity.
1787 *
1788 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1789 * however it must be used carefully, eg. with a following d_lookup in
1790 * the case of failure.
1791 *
1792 * __d_lookup callers must be commented.
1793 */
31e6b01f 1794struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1da177e4
LT
1795{
1796 unsigned int len = name->len;
1797 unsigned int hash = name->hash;
1798 const unsigned char *str = name->name;
b07ad996 1799 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1800 struct hlist_bl_node *node;
31e6b01f 1801 struct dentry *found = NULL;
665a7583 1802 struct dentry *dentry;
1da177e4 1803
31e6b01f
NP
1804 /*
1805 * Note: There is significant duplication with __d_lookup_rcu which is
1806 * required to prevent single threaded performance regressions
1807 * especially on architectures where smp_rmb (in seqcounts) are costly.
1808 * Keep the two functions in sync.
1809 */
1810
b04f784e
NP
1811 /*
1812 * The hash list is protected using RCU.
1813 *
1814 * Take d_lock when comparing a candidate dentry, to avoid races
1815 * with d_move().
1816 *
1817 * It is possible that concurrent renames can mess up our list
1818 * walk here and result in missing our dentry, resulting in the
1819 * false-negative result. d_lookup() protects against concurrent
1820 * renames using rename_lock seqlock.
1821 *
b0a4bb83 1822 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 1823 */
1da177e4
LT
1824 rcu_read_lock();
1825
b07ad996 1826 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
31e6b01f
NP
1827 const char *tname;
1828 int tlen;
1da177e4 1829
1da177e4
LT
1830 if (dentry->d_name.hash != hash)
1831 continue;
1da177e4
LT
1832
1833 spin_lock(&dentry->d_lock);
1da177e4
LT
1834 if (dentry->d_parent != parent)
1835 goto next;
d0185c08
LT
1836 if (d_unhashed(dentry))
1837 goto next;
1838
1da177e4
LT
1839 /*
1840 * It is safe to compare names since d_move() cannot
1841 * change the qstr (protected by d_lock).
1842 */
31e6b01f
NP
1843 tlen = dentry->d_name.len;
1844 tname = dentry->d_name.name;
fb045adb 1845 if (parent->d_flags & DCACHE_OP_COMPARE) {
621e155a
NP
1846 if (parent->d_op->d_compare(parent, parent->d_inode,
1847 dentry, dentry->d_inode,
31e6b01f 1848 tlen, tname, name))
1da177e4
LT
1849 goto next;
1850 } else {
9d55c369 1851 if (dentry_cmp(tname, tlen, str, len))
1da177e4
LT
1852 goto next;
1853 }
1854
b7ab39f6 1855 dentry->d_count++;
d0185c08 1856 found = dentry;
1da177e4
LT
1857 spin_unlock(&dentry->d_lock);
1858 break;
1859next:
1860 spin_unlock(&dentry->d_lock);
1861 }
1862 rcu_read_unlock();
1863
1864 return found;
1865}
1866
3e7e241f
EB
1867/**
1868 * d_hash_and_lookup - hash the qstr then search for a dentry
1869 * @dir: Directory to search in
1870 * @name: qstr of name we wish to find
1871 *
1872 * On hash failure or on lookup failure NULL is returned.
1873 */
1874struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1875{
1876 struct dentry *dentry = NULL;
1877
1878 /*
1879 * Check for a fs-specific hash function. Note that we must
1880 * calculate the standard hash first, as the d_op->d_hash()
1881 * routine may choose to leave the hash value unchanged.
1882 */
1883 name->hash = full_name_hash(name->name, name->len);
fb045adb 1884 if (dir->d_flags & DCACHE_OP_HASH) {
b1e6a015 1885 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
3e7e241f
EB
1886 goto out;
1887 }
1888 dentry = d_lookup(dir, name);
1889out:
1890 return dentry;
1891}
1892
1da177e4 1893/**
786a5e15 1894 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 1895 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 1896 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
1897 *
1898 * An insecure source has sent us a dentry, here we verify it and dget() it.
1899 * This is used by ncpfs in its readdir implementation.
1900 * Zero is returned in the dentry is invalid.
786a5e15
NP
1901 *
1902 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 1903 */
d3a23e16 1904int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 1905{
786a5e15 1906 struct dentry *child;
d3a23e16 1907
2fd6b7f5 1908 spin_lock(&dparent->d_lock);
786a5e15
NP
1909 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1910 if (dentry == child) {
2fd6b7f5 1911 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 1912 __dget_dlock(dentry);
2fd6b7f5
NP
1913 spin_unlock(&dentry->d_lock);
1914 spin_unlock(&dparent->d_lock);
1da177e4
LT
1915 return 1;
1916 }
1917 }
2fd6b7f5 1918 spin_unlock(&dparent->d_lock);
786a5e15 1919
1da177e4
LT
1920 return 0;
1921}
ec4f8605 1922EXPORT_SYMBOL(d_validate);
1da177e4
LT
1923
1924/*
1925 * When a file is deleted, we have two options:
1926 * - turn this dentry into a negative dentry
1927 * - unhash this dentry and free it.
1928 *
1929 * Usually, we want to just turn this into
1930 * a negative dentry, but if anybody else is
1931 * currently using the dentry or the inode
1932 * we can't do that and we fall back on removing
1933 * it from the hash queues and waiting for
1934 * it to be deleted later when it has no users
1935 */
1936
1937/**
1938 * d_delete - delete a dentry
1939 * @dentry: The dentry to delete
1940 *
1941 * Turn the dentry into a negative dentry if possible, otherwise
1942 * remove it from the hash queues so it can be deleted later
1943 */
1944
1945void d_delete(struct dentry * dentry)
1946{
873feea0 1947 struct inode *inode;
7a91bf7f 1948 int isdir = 0;
1da177e4
LT
1949 /*
1950 * Are we the only user?
1951 */
357f8e65 1952again:
1da177e4 1953 spin_lock(&dentry->d_lock);
873feea0
NP
1954 inode = dentry->d_inode;
1955 isdir = S_ISDIR(inode->i_mode);
b7ab39f6 1956 if (dentry->d_count == 1) {
873feea0 1957 if (inode && !spin_trylock(&inode->i_lock)) {
357f8e65
NP
1958 spin_unlock(&dentry->d_lock);
1959 cpu_relax();
1960 goto again;
1961 }
13e3c5e5 1962 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 1963 dentry_unlink_inode(dentry);
7a91bf7f 1964 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
1965 return;
1966 }
1967
1968 if (!d_unhashed(dentry))
1969 __d_drop(dentry);
1970
1971 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
1972
1973 fsnotify_nameremove(dentry, isdir);
1da177e4 1974}
ec4f8605 1975EXPORT_SYMBOL(d_delete);
1da177e4 1976
b07ad996 1977static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 1978{
ceb5bdc2 1979 BUG_ON(!d_unhashed(entry));
1879fd6a 1980 hlist_bl_lock(b);
dea3667b 1981 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 1982 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 1983 hlist_bl_unlock(b);
1da177e4
LT
1984}
1985
770bfad8
DH
1986static void _d_rehash(struct dentry * entry)
1987{
1988 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1989}
1990
1da177e4
LT
1991/**
1992 * d_rehash - add an entry back to the hash
1993 * @entry: dentry to add to the hash
1994 *
1995 * Adds a dentry to the hash according to its name.
1996 */
1997
1998void d_rehash(struct dentry * entry)
1999{
1da177e4 2000 spin_lock(&entry->d_lock);
770bfad8 2001 _d_rehash(entry);
1da177e4 2002 spin_unlock(&entry->d_lock);
1da177e4 2003}
ec4f8605 2004EXPORT_SYMBOL(d_rehash);
1da177e4 2005
fb2d5b86
NP
2006/**
2007 * dentry_update_name_case - update case insensitive dentry with a new name
2008 * @dentry: dentry to be updated
2009 * @name: new name
2010 *
2011 * Update a case insensitive dentry with new case of name.
2012 *
2013 * dentry must have been returned by d_lookup with name @name. Old and new
2014 * name lengths must match (ie. no d_compare which allows mismatched name
2015 * lengths).
2016 *
2017 * Parent inode i_mutex must be held over d_lookup and into this call (to
2018 * keep renames and concurrent inserts, and readdir(2) away).
2019 */
2020void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2021{
7ebfa57f 2022 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2023 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2024
fb2d5b86 2025 spin_lock(&dentry->d_lock);
31e6b01f 2026 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2027 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2028 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2029 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2030}
2031EXPORT_SYMBOL(dentry_update_name_case);
2032
1da177e4
LT
2033static void switch_names(struct dentry *dentry, struct dentry *target)
2034{
2035 if (dname_external(target)) {
2036 if (dname_external(dentry)) {
2037 /*
2038 * Both external: swap the pointers
2039 */
9a8d5bb4 2040 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2041 } else {
2042 /*
2043 * dentry:internal, target:external. Steal target's
2044 * storage and make target internal.
2045 */
321bcf92
BF
2046 memcpy(target->d_iname, dentry->d_name.name,
2047 dentry->d_name.len + 1);
1da177e4
LT
2048 dentry->d_name.name = target->d_name.name;
2049 target->d_name.name = target->d_iname;
2050 }
2051 } else {
2052 if (dname_external(dentry)) {
2053 /*
2054 * dentry:external, target:internal. Give dentry's
2055 * storage to target and make dentry internal
2056 */
2057 memcpy(dentry->d_iname, target->d_name.name,
2058 target->d_name.len + 1);
2059 target->d_name.name = dentry->d_name.name;
2060 dentry->d_name.name = dentry->d_iname;
2061 } else {
2062 /*
2063 * Both are internal. Just copy target to dentry
2064 */
2065 memcpy(dentry->d_iname, target->d_name.name,
2066 target->d_name.len + 1);
dc711ca3
AV
2067 dentry->d_name.len = target->d_name.len;
2068 return;
1da177e4
LT
2069 }
2070 }
9a8d5bb4 2071 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2072}
2073
2fd6b7f5
NP
2074static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2075{
2076 /*
2077 * XXXX: do we really need to take target->d_lock?
2078 */
2079 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2080 spin_lock(&target->d_parent->d_lock);
2081 else {
2082 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2083 spin_lock(&dentry->d_parent->d_lock);
2084 spin_lock_nested(&target->d_parent->d_lock,
2085 DENTRY_D_LOCK_NESTED);
2086 } else {
2087 spin_lock(&target->d_parent->d_lock);
2088 spin_lock_nested(&dentry->d_parent->d_lock,
2089 DENTRY_D_LOCK_NESTED);
2090 }
2091 }
2092 if (target < dentry) {
2093 spin_lock_nested(&target->d_lock, 2);
2094 spin_lock_nested(&dentry->d_lock, 3);
2095 } else {
2096 spin_lock_nested(&dentry->d_lock, 2);
2097 spin_lock_nested(&target->d_lock, 3);
2098 }
2099}
2100
2101static void dentry_unlock_parents_for_move(struct dentry *dentry,
2102 struct dentry *target)
2103{
2104 if (target->d_parent != dentry->d_parent)
2105 spin_unlock(&dentry->d_parent->d_lock);
2106 if (target->d_parent != target)
2107 spin_unlock(&target->d_parent->d_lock);
2108}
2109
1da177e4 2110/*
2fd6b7f5
NP
2111 * When switching names, the actual string doesn't strictly have to
2112 * be preserved in the target - because we're dropping the target
2113 * anyway. As such, we can just do a simple memcpy() to copy over
2114 * the new name before we switch.
2115 *
2116 * Note that we have to be a lot more careful about getting the hash
2117 * switched - we have to switch the hash value properly even if it
2118 * then no longer matches the actual (corrupted) string of the target.
2119 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2120 */
9eaef27b 2121/*
18367501 2122 * __d_move - move a dentry
1da177e4
LT
2123 * @dentry: entry to move
2124 * @target: new dentry
2125 *
2126 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2127 * dcache entries should not be moved in this way. Caller must hold
2128 * rename_lock, the i_mutex of the source and target directories,
2129 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2130 */
18367501 2131static void __d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2132{
1da177e4
LT
2133 if (!dentry->d_inode)
2134 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2135
2fd6b7f5
NP
2136 BUG_ON(d_ancestor(dentry, target));
2137 BUG_ON(d_ancestor(target, dentry));
2138
2fd6b7f5 2139 dentry_lock_for_move(dentry, target);
1da177e4 2140
31e6b01f
NP
2141 write_seqcount_begin(&dentry->d_seq);
2142 write_seqcount_begin(&target->d_seq);
2143
ceb5bdc2
NP
2144 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2145
2146 /*
2147 * Move the dentry to the target hash queue. Don't bother checking
2148 * for the same hash queue because of how unlikely it is.
2149 */
2150 __d_drop(dentry);
789680d1 2151 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2152
2153 /* Unhash the target: dput() will then get rid of it */
2154 __d_drop(target);
2155
5160ee6f
ED
2156 list_del(&dentry->d_u.d_child);
2157 list_del(&target->d_u.d_child);
1da177e4
LT
2158
2159 /* Switch the names.. */
2160 switch_names(dentry, target);
9a8d5bb4 2161 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2162
2163 /* ... and switch the parents */
2164 if (IS_ROOT(dentry)) {
2165 dentry->d_parent = target->d_parent;
2166 target->d_parent = target;
5160ee6f 2167 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2168 } else {
9a8d5bb4 2169 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2170
2171 /* And add them back to the (new) parent lists */
5160ee6f 2172 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2173 }
2174
5160ee6f 2175 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2176
31e6b01f
NP
2177 write_seqcount_end(&target->d_seq);
2178 write_seqcount_end(&dentry->d_seq);
2179
2fd6b7f5 2180 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2181 spin_unlock(&target->d_lock);
c32ccd87 2182 fsnotify_d_move(dentry);
1da177e4 2183 spin_unlock(&dentry->d_lock);
18367501
AV
2184}
2185
2186/*
2187 * d_move - move a dentry
2188 * @dentry: entry to move
2189 * @target: new dentry
2190 *
2191 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2192 * dcache entries should not be moved in this way. See the locking
2193 * requirements for __d_move.
18367501
AV
2194 */
2195void d_move(struct dentry *dentry, struct dentry *target)
2196{
2197 write_seqlock(&rename_lock);
2198 __d_move(dentry, target);
1da177e4 2199 write_sequnlock(&rename_lock);
9eaef27b 2200}
ec4f8605 2201EXPORT_SYMBOL(d_move);
1da177e4 2202
e2761a11
OH
2203/**
2204 * d_ancestor - search for an ancestor
2205 * @p1: ancestor dentry
2206 * @p2: child dentry
2207 *
2208 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2209 * an ancestor of p2, else NULL.
9eaef27b 2210 */
e2761a11 2211struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2212{
2213 struct dentry *p;
2214
871c0067 2215 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2216 if (p->d_parent == p1)
e2761a11 2217 return p;
9eaef27b 2218 }
e2761a11 2219 return NULL;
9eaef27b
TM
2220}
2221
2222/*
2223 * This helper attempts to cope with remotely renamed directories
2224 *
2225 * It assumes that the caller is already holding
18367501 2226 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2227 *
2228 * Note: If ever the locking in lock_rename() changes, then please
2229 * remember to update this too...
9eaef27b 2230 */
873feea0
NP
2231static struct dentry *__d_unalias(struct inode *inode,
2232 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2233{
2234 struct mutex *m1 = NULL, *m2 = NULL;
2235 struct dentry *ret;
2236
2237 /* If alias and dentry share a parent, then no extra locks required */
2238 if (alias->d_parent == dentry->d_parent)
2239 goto out_unalias;
2240
9eaef27b
TM
2241 /* See lock_rename() */
2242 ret = ERR_PTR(-EBUSY);
2243 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2244 goto out_err;
2245 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2246 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2247 goto out_err;
2248 m2 = &alias->d_parent->d_inode->i_mutex;
2249out_unalias:
18367501 2250 __d_move(alias, dentry);
9eaef27b
TM
2251 ret = alias;
2252out_err:
873feea0 2253 spin_unlock(&inode->i_lock);
9eaef27b
TM
2254 if (m2)
2255 mutex_unlock(m2);
2256 if (m1)
2257 mutex_unlock(m1);
2258 return ret;
2259}
2260
770bfad8
DH
2261/*
2262 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2263 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2264 * returns with anon->d_lock held!
770bfad8
DH
2265 */
2266static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2267{
2268 struct dentry *dparent, *aparent;
2269
2fd6b7f5 2270 dentry_lock_for_move(anon, dentry);
770bfad8 2271
31e6b01f
NP
2272 write_seqcount_begin(&dentry->d_seq);
2273 write_seqcount_begin(&anon->d_seq);
2274
770bfad8
DH
2275 dparent = dentry->d_parent;
2276 aparent = anon->d_parent;
2277
2fd6b7f5
NP
2278 switch_names(dentry, anon);
2279 swap(dentry->d_name.hash, anon->d_name.hash);
2280
770bfad8
DH
2281 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2282 list_del(&dentry->d_u.d_child);
2283 if (!IS_ROOT(dentry))
2284 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2285 else
2286 INIT_LIST_HEAD(&dentry->d_u.d_child);
2287
2288 anon->d_parent = (dparent == dentry) ? anon : dparent;
2289 list_del(&anon->d_u.d_child);
2290 if (!IS_ROOT(anon))
2291 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2292 else
2293 INIT_LIST_HEAD(&anon->d_u.d_child);
2294
31e6b01f
NP
2295 write_seqcount_end(&dentry->d_seq);
2296 write_seqcount_end(&anon->d_seq);
2297
2fd6b7f5
NP
2298 dentry_unlock_parents_for_move(anon, dentry);
2299 spin_unlock(&dentry->d_lock);
2300
2301 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2302 anon->d_flags &= ~DCACHE_DISCONNECTED;
2303}
2304
2305/**
2306 * d_materialise_unique - introduce an inode into the tree
2307 * @dentry: candidate dentry
2308 * @inode: inode to bind to the dentry, to which aliases may be attached
2309 *
2310 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2311 * root directory alias in its place if there is one. Caller must hold the
2312 * i_mutex of the parent directory.
770bfad8
DH
2313 */
2314struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2315{
9eaef27b 2316 struct dentry *actual;
770bfad8
DH
2317
2318 BUG_ON(!d_unhashed(dentry));
2319
770bfad8
DH
2320 if (!inode) {
2321 actual = dentry;
360da900 2322 __d_instantiate(dentry, NULL);
357f8e65
NP
2323 d_rehash(actual);
2324 goto out_nolock;
770bfad8
DH
2325 }
2326
873feea0 2327 spin_lock(&inode->i_lock);
357f8e65 2328
9eaef27b
TM
2329 if (S_ISDIR(inode->i_mode)) {
2330 struct dentry *alias;
2331
2332 /* Does an aliased dentry already exist? */
2333 alias = __d_find_alias(inode, 0);
2334 if (alias) {
2335 actual = alias;
18367501
AV
2336 write_seqlock(&rename_lock);
2337
2338 if (d_ancestor(alias, dentry)) {
2339 /* Check for loops */
2340 actual = ERR_PTR(-ELOOP);
2341 } else if (IS_ROOT(alias)) {
2342 /* Is this an anonymous mountpoint that we
2343 * could splice into our tree? */
9eaef27b 2344 __d_materialise_dentry(dentry, alias);
18367501 2345 write_sequnlock(&rename_lock);
9eaef27b
TM
2346 __d_drop(alias);
2347 goto found;
18367501
AV
2348 } else {
2349 /* Nope, but we must(!) avoid directory
2350 * aliasing */
2351 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2352 }
18367501 2353 write_sequnlock(&rename_lock);
9eaef27b
TM
2354 if (IS_ERR(actual))
2355 dput(alias);
2356 goto out_nolock;
2357 }
770bfad8
DH
2358 }
2359
2360 /* Add a unique reference */
2361 actual = __d_instantiate_unique(dentry, inode);
2362 if (!actual)
2363 actual = dentry;
357f8e65
NP
2364 else
2365 BUG_ON(!d_unhashed(actual));
770bfad8 2366
770bfad8
DH
2367 spin_lock(&actual->d_lock);
2368found:
2369 _d_rehash(actual);
2370 spin_unlock(&actual->d_lock);
873feea0 2371 spin_unlock(&inode->i_lock);
9eaef27b 2372out_nolock:
770bfad8
DH
2373 if (actual == dentry) {
2374 security_d_instantiate(dentry, inode);
2375 return NULL;
2376 }
2377
2378 iput(inode);
2379 return actual;
770bfad8 2380}
ec4f8605 2381EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2382
cdd16d02 2383static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2384{
2385 *buflen -= namelen;
2386 if (*buflen < 0)
2387 return -ENAMETOOLONG;
2388 *buffer -= namelen;
2389 memcpy(*buffer, str, namelen);
2390 return 0;
2391}
2392
cdd16d02
MS
2393static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2394{
2395 return prepend(buffer, buflen, name->name, name->len);
2396}
2397
1da177e4 2398/**
208898c1 2399 * prepend_path - Prepend path string to a buffer
9d1bc601
MS
2400 * @path: the dentry/vfsmount to report
2401 * @root: root vfsmnt/dentry (may be modified by this function)
f2eb6575
MS
2402 * @buffer: pointer to the end of the buffer
2403 * @buflen: pointer to buffer length
552ce544 2404 *
949854d0 2405 * Caller holds the rename_lock.
9d1bc601
MS
2406 *
2407 * If path is not reachable from the supplied root, then the value of
2408 * root is changed (without modifying refcounts).
1da177e4 2409 */
f2eb6575
MS
2410static int prepend_path(const struct path *path, struct path *root,
2411 char **buffer, int *buflen)
1da177e4 2412{
9d1bc601
MS
2413 struct dentry *dentry = path->dentry;
2414 struct vfsmount *vfsmnt = path->mnt;
f2eb6575
MS
2415 bool slash = false;
2416 int error = 0;
6092d048 2417
99b7db7b 2418 br_read_lock(vfsmount_lock);
f2eb6575 2419 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2420 struct dentry * parent;
2421
1da177e4 2422 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2423 /* Global root? */
1da177e4 2424 if (vfsmnt->mnt_parent == vfsmnt) {
1da177e4
LT
2425 goto global_root;
2426 }
2427 dentry = vfsmnt->mnt_mountpoint;
2428 vfsmnt = vfsmnt->mnt_parent;
1da177e4
LT
2429 continue;
2430 }
2431 parent = dentry->d_parent;
2432 prefetch(parent);
9abca360 2433 spin_lock(&dentry->d_lock);
f2eb6575 2434 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2435 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2436 if (!error)
2437 error = prepend(buffer, buflen, "/", 1);
2438 if (error)
2439 break;
2440
2441 slash = true;
1da177e4
LT
2442 dentry = parent;
2443 }
2444
be285c71 2445out:
f2eb6575
MS
2446 if (!error && !slash)
2447 error = prepend(buffer, buflen, "/", 1);
2448
99b7db7b 2449 br_read_unlock(vfsmount_lock);
f2eb6575 2450 return error;
1da177e4
LT
2451
2452global_root:
98dc568b
MS
2453 /*
2454 * Filesystems needing to implement special "root names"
2455 * should do so with ->d_dname()
2456 */
2457 if (IS_ROOT(dentry) &&
2458 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2459 WARN(1, "Root dentry has weird name <%.*s>\n",
2460 (int) dentry->d_name.len, dentry->d_name.name);
2461 }
9d1bc601
MS
2462 root->mnt = vfsmnt;
2463 root->dentry = dentry;
be285c71 2464 goto out;
f2eb6575 2465}
be285c71 2466
f2eb6575
MS
2467/**
2468 * __d_path - return the path of a dentry
2469 * @path: the dentry/vfsmount to report
2470 * @root: root vfsmnt/dentry (may be modified by this function)
cd956a1c 2471 * @buf: buffer to return value in
f2eb6575
MS
2472 * @buflen: buffer length
2473 *
ffd1f4ed 2474 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2475 *
2476 * Returns a pointer into the buffer or an error code if the
2477 * path was too long.
2478 *
be148247 2479 * "buflen" should be positive.
f2eb6575
MS
2480 *
2481 * If path is not reachable from the supplied root, then the value of
2482 * root is changed (without modifying refcounts).
2483 */
2484char *__d_path(const struct path *path, struct path *root,
2485 char *buf, int buflen)
2486{
2487 char *res = buf + buflen;
2488 int error;
2489
2490 prepend(&res, &buflen, "\0", 1);
949854d0 2491 write_seqlock(&rename_lock);
f2eb6575 2492 error = prepend_path(path, root, &res, &buflen);
949854d0 2493 write_sequnlock(&rename_lock);
be148247 2494
f2eb6575
MS
2495 if (error)
2496 return ERR_PTR(error);
f2eb6575 2497 return res;
1da177e4
LT
2498}
2499
ffd1f4ed
MS
2500/*
2501 * same as __d_path but appends "(deleted)" for unlinked files.
2502 */
2503static int path_with_deleted(const struct path *path, struct path *root,
2504 char **buf, int *buflen)
2505{
2506 prepend(buf, buflen, "\0", 1);
2507 if (d_unlinked(path->dentry)) {
2508 int error = prepend(buf, buflen, " (deleted)", 10);
2509 if (error)
2510 return error;
2511 }
2512
2513 return prepend_path(path, root, buf, buflen);
2514}
2515
8df9d1a4
MS
2516static int prepend_unreachable(char **buffer, int *buflen)
2517{
2518 return prepend(buffer, buflen, "(unreachable)", 13);
2519}
2520
a03a8a70
JB
2521/**
2522 * d_path - return the path of a dentry
cf28b486 2523 * @path: path to report
a03a8a70
JB
2524 * @buf: buffer to return value in
2525 * @buflen: buffer length
2526 *
2527 * Convert a dentry into an ASCII path name. If the entry has been deleted
2528 * the string " (deleted)" is appended. Note that this is ambiguous.
2529 *
52afeefb
AV
2530 * Returns a pointer into the buffer or an error code if the path was
2531 * too long. Note: Callers should use the returned pointer, not the passed
2532 * in buffer, to use the name! The implementation often starts at an offset
2533 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2534 *
31f3e0b3 2535 * "buflen" should be positive.
a03a8a70 2536 */
20d4fdc1 2537char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2538{
ffd1f4ed 2539 char *res = buf + buflen;
6ac08c39 2540 struct path root;
9d1bc601 2541 struct path tmp;
ffd1f4ed 2542 int error;
1da177e4 2543
c23fbb6b
ED
2544 /*
2545 * We have various synthetic filesystems that never get mounted. On
2546 * these filesystems dentries are never used for lookup purposes, and
2547 * thus don't need to be hashed. They also don't need a name until a
2548 * user wants to identify the object in /proc/pid/fd/. The little hack
2549 * below allows us to generate a name for these objects on demand:
2550 */
cf28b486
JB
2551 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2552 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2553
f7ad3c6b 2554 get_fs_root(current->fs, &root);
949854d0 2555 write_seqlock(&rename_lock);
9d1bc601 2556 tmp = root;
ffd1f4ed
MS
2557 error = path_with_deleted(path, &tmp, &res, &buflen);
2558 if (error)
2559 res = ERR_PTR(error);
949854d0 2560 write_sequnlock(&rename_lock);
6ac08c39 2561 path_put(&root);
1da177e4
LT
2562 return res;
2563}
ec4f8605 2564EXPORT_SYMBOL(d_path);
1da177e4 2565
8df9d1a4
MS
2566/**
2567 * d_path_with_unreachable - return the path of a dentry
2568 * @path: path to report
2569 * @buf: buffer to return value in
2570 * @buflen: buffer length
2571 *
2572 * The difference from d_path() is that this prepends "(unreachable)"
2573 * to paths which are unreachable from the current process' root.
2574 */
2575char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2576{
2577 char *res = buf + buflen;
2578 struct path root;
2579 struct path tmp;
2580 int error;
2581
2582 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2583 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2584
2585 get_fs_root(current->fs, &root);
949854d0 2586 write_seqlock(&rename_lock);
8df9d1a4
MS
2587 tmp = root;
2588 error = path_with_deleted(path, &tmp, &res, &buflen);
2589 if (!error && !path_equal(&tmp, &root))
2590 error = prepend_unreachable(&res, &buflen);
949854d0 2591 write_sequnlock(&rename_lock);
8df9d1a4
MS
2592 path_put(&root);
2593 if (error)
2594 res = ERR_PTR(error);
2595
2596 return res;
2597}
2598
c23fbb6b
ED
2599/*
2600 * Helper function for dentry_operations.d_dname() members
2601 */
2602char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2603 const char *fmt, ...)
2604{
2605 va_list args;
2606 char temp[64];
2607 int sz;
2608
2609 va_start(args, fmt);
2610 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2611 va_end(args);
2612
2613 if (sz > sizeof(temp) || sz > buflen)
2614 return ERR_PTR(-ENAMETOOLONG);
2615
2616 buffer += buflen - sz;
2617 return memcpy(buffer, temp, sz);
2618}
2619
6092d048
RP
2620/*
2621 * Write full pathname from the root of the filesystem into the buffer.
2622 */
ec2447c2 2623static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2624{
2625 char *end = buf + buflen;
2626 char *retval;
2627
6092d048 2628 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2629 if (buflen < 1)
2630 goto Elong;
2631 /* Get '/' right */
2632 retval = end-1;
2633 *retval = '/';
2634
cdd16d02
MS
2635 while (!IS_ROOT(dentry)) {
2636 struct dentry *parent = dentry->d_parent;
9abca360 2637 int error;
6092d048 2638
6092d048 2639 prefetch(parent);
9abca360
NP
2640 spin_lock(&dentry->d_lock);
2641 error = prepend_name(&end, &buflen, &dentry->d_name);
2642 spin_unlock(&dentry->d_lock);
2643 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2644 goto Elong;
2645
2646 retval = end;
2647 dentry = parent;
2648 }
c103135c
AV
2649 return retval;
2650Elong:
2651 return ERR_PTR(-ENAMETOOLONG);
2652}
ec2447c2
NP
2653
2654char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2655{
2656 char *retval;
2657
949854d0 2658 write_seqlock(&rename_lock);
ec2447c2 2659 retval = __dentry_path(dentry, buf, buflen);
949854d0 2660 write_sequnlock(&rename_lock);
ec2447c2
NP
2661
2662 return retval;
2663}
2664EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2665
2666char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2667{
2668 char *p = NULL;
2669 char *retval;
2670
949854d0 2671 write_seqlock(&rename_lock);
c103135c
AV
2672 if (d_unlinked(dentry)) {
2673 p = buf + buflen;
2674 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2675 goto Elong;
2676 buflen++;
2677 }
2678 retval = __dentry_path(dentry, buf, buflen);
949854d0 2679 write_sequnlock(&rename_lock);
c103135c
AV
2680 if (!IS_ERR(retval) && p)
2681 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2682 return retval;
2683Elong:
6092d048
RP
2684 return ERR_PTR(-ENAMETOOLONG);
2685}
2686
1da177e4
LT
2687/*
2688 * NOTE! The user-level library version returns a
2689 * character pointer. The kernel system call just
2690 * returns the length of the buffer filled (which
2691 * includes the ending '\0' character), or a negative
2692 * error value. So libc would do something like
2693 *
2694 * char *getcwd(char * buf, size_t size)
2695 * {
2696 * int retval;
2697 *
2698 * retval = sys_getcwd(buf, size);
2699 * if (retval >= 0)
2700 * return buf;
2701 * errno = -retval;
2702 * return NULL;
2703 * }
2704 */
3cdad428 2705SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2706{
552ce544 2707 int error;
6ac08c39 2708 struct path pwd, root;
552ce544 2709 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2710
2711 if (!page)
2712 return -ENOMEM;
2713
f7ad3c6b 2714 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2715
552ce544 2716 error = -ENOENT;
949854d0 2717 write_seqlock(&rename_lock);
f3da392e 2718 if (!d_unlinked(pwd.dentry)) {
552ce544 2719 unsigned long len;
9d1bc601 2720 struct path tmp = root;
8df9d1a4
MS
2721 char *cwd = page + PAGE_SIZE;
2722 int buflen = PAGE_SIZE;
1da177e4 2723
8df9d1a4
MS
2724 prepend(&cwd, &buflen, "\0", 1);
2725 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
949854d0 2726 write_sequnlock(&rename_lock);
552ce544 2727
8df9d1a4 2728 if (error)
552ce544
LT
2729 goto out;
2730
8df9d1a4
MS
2731 /* Unreachable from current root */
2732 if (!path_equal(&tmp, &root)) {
2733 error = prepend_unreachable(&cwd, &buflen);
2734 if (error)
2735 goto out;
2736 }
2737
552ce544
LT
2738 error = -ERANGE;
2739 len = PAGE_SIZE + page - cwd;
2740 if (len <= size) {
2741 error = len;
2742 if (copy_to_user(buf, cwd, len))
2743 error = -EFAULT;
2744 }
949854d0
NP
2745 } else {
2746 write_sequnlock(&rename_lock);
949854d0 2747 }
1da177e4
LT
2748
2749out:
6ac08c39
JB
2750 path_put(&pwd);
2751 path_put(&root);
1da177e4
LT
2752 free_page((unsigned long) page);
2753 return error;
2754}
2755
2756/*
2757 * Test whether new_dentry is a subdirectory of old_dentry.
2758 *
2759 * Trivially implemented using the dcache structure
2760 */
2761
2762/**
2763 * is_subdir - is new dentry a subdirectory of old_dentry
2764 * @new_dentry: new dentry
2765 * @old_dentry: old dentry
2766 *
2767 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2768 * Returns 0 otherwise.
2769 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2770 */
2771
e2761a11 2772int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2773{
2774 int result;
949854d0 2775 unsigned seq;
1da177e4 2776
e2761a11
OH
2777 if (new_dentry == old_dentry)
2778 return 1;
2779
e2761a11 2780 do {
1da177e4 2781 /* for restarting inner loop in case of seq retry */
1da177e4 2782 seq = read_seqbegin(&rename_lock);
949854d0
NP
2783 /*
2784 * Need rcu_readlock to protect against the d_parent trashing
2785 * due to d_move
2786 */
2787 rcu_read_lock();
e2761a11 2788 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2789 result = 1;
e2761a11
OH
2790 else
2791 result = 0;
949854d0 2792 rcu_read_unlock();
1da177e4 2793 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2794
2795 return result;
2796}
2797
2096f759
AV
2798int path_is_under(struct path *path1, struct path *path2)
2799{
2800 struct vfsmount *mnt = path1->mnt;
2801 struct dentry *dentry = path1->dentry;
2802 int res;
99b7db7b
NP
2803
2804 br_read_lock(vfsmount_lock);
2096f759
AV
2805 if (mnt != path2->mnt) {
2806 for (;;) {
2807 if (mnt->mnt_parent == mnt) {
99b7db7b 2808 br_read_unlock(vfsmount_lock);
2096f759
AV
2809 return 0;
2810 }
2811 if (mnt->mnt_parent == path2->mnt)
2812 break;
2813 mnt = mnt->mnt_parent;
2814 }
2815 dentry = mnt->mnt_mountpoint;
2816 }
2817 res = is_subdir(dentry, path2->dentry);
99b7db7b 2818 br_read_unlock(vfsmount_lock);
2096f759
AV
2819 return res;
2820}
2821EXPORT_SYMBOL(path_is_under);
2822
1da177e4
LT
2823void d_genocide(struct dentry *root)
2824{
949854d0 2825 struct dentry *this_parent;
1da177e4 2826 struct list_head *next;
949854d0 2827 unsigned seq;
58db63d0 2828 int locked = 0;
1da177e4 2829
949854d0 2830 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2831again:
2832 this_parent = root;
2fd6b7f5 2833 spin_lock(&this_parent->d_lock);
1da177e4
LT
2834repeat:
2835 next = this_parent->d_subdirs.next;
2836resume:
2837 while (next != &this_parent->d_subdirs) {
2838 struct list_head *tmp = next;
5160ee6f 2839 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2840 next = tmp->next;
949854d0 2841
da502956
NP
2842 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2843 if (d_unhashed(dentry) || !dentry->d_inode) {
2844 spin_unlock(&dentry->d_lock);
1da177e4 2845 continue;
da502956 2846 }
1da177e4 2847 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2848 spin_unlock(&this_parent->d_lock);
2849 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2850 this_parent = dentry;
2fd6b7f5 2851 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2852 goto repeat;
2853 }
949854d0
NP
2854 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2855 dentry->d_flags |= DCACHE_GENOCIDE;
2856 dentry->d_count--;
2857 }
b7ab39f6 2858 spin_unlock(&dentry->d_lock);
1da177e4
LT
2859 }
2860 if (this_parent != root) {
c826cb7d 2861 struct dentry *child = this_parent;
949854d0
NP
2862 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2863 this_parent->d_flags |= DCACHE_GENOCIDE;
2864 this_parent->d_count--;
2865 }
c826cb7d
LT
2866 this_parent = try_to_ascend(this_parent, locked, seq);
2867 if (!this_parent)
949854d0 2868 goto rename_retry;
949854d0 2869 next = child->d_u.d_child.next;
1da177e4
LT
2870 goto resume;
2871 }
2fd6b7f5 2872 spin_unlock(&this_parent->d_lock);
58db63d0 2873 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 2874 goto rename_retry;
58db63d0
NP
2875 if (locked)
2876 write_sequnlock(&rename_lock);
2877 return;
2878
2879rename_retry:
2880 locked = 1;
2881 write_seqlock(&rename_lock);
2882 goto again;
1da177e4
LT
2883}
2884
2885/**
2886 * find_inode_number - check for dentry with name
2887 * @dir: directory to check
2888 * @name: Name to find.
2889 *
2890 * Check whether a dentry already exists for the given name,
2891 * and return the inode number if it has an inode. Otherwise
2892 * 0 is returned.
2893 *
2894 * This routine is used to post-process directory listings for
2895 * filesystems using synthetic inode numbers, and is necessary
2896 * to keep getcwd() working.
2897 */
2898
2899ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2900{
2901 struct dentry * dentry;
2902 ino_t ino = 0;
2903
3e7e241f
EB
2904 dentry = d_hash_and_lookup(dir, name);
2905 if (dentry) {
1da177e4
LT
2906 if (dentry->d_inode)
2907 ino = dentry->d_inode->i_ino;
2908 dput(dentry);
2909 }
1da177e4
LT
2910 return ino;
2911}
ec4f8605 2912EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
2913
2914static __initdata unsigned long dhash_entries;
2915static int __init set_dhash_entries(char *str)
2916{
2917 if (!str)
2918 return 0;
2919 dhash_entries = simple_strtoul(str, &str, 0);
2920 return 1;
2921}
2922__setup("dhash_entries=", set_dhash_entries);
2923
2924static void __init dcache_init_early(void)
2925{
2926 int loop;
2927
2928 /* If hashes are distributed across NUMA nodes, defer
2929 * hash allocation until vmalloc space is available.
2930 */
2931 if (hashdist)
2932 return;
2933
2934 dentry_hashtable =
2935 alloc_large_system_hash("Dentry cache",
b07ad996 2936 sizeof(struct hlist_bl_head),
1da177e4
LT
2937 dhash_entries,
2938 13,
2939 HASH_EARLY,
2940 &d_hash_shift,
2941 &d_hash_mask,
2942 0);
2943
2944 for (loop = 0; loop < (1 << d_hash_shift); loop++)
b07ad996 2945 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
2946}
2947
74bf17cf 2948static void __init dcache_init(void)
1da177e4
LT
2949{
2950 int loop;
2951
2952 /*
2953 * A constructor could be added for stable state like the lists,
2954 * but it is probably not worth it because of the cache nature
2955 * of the dcache.
2956 */
0a31bd5f
CL
2957 dentry_cache = KMEM_CACHE(dentry,
2958 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
2959
2960 /* Hash may have been set up in dcache_init_early */
2961 if (!hashdist)
2962 return;
2963
2964 dentry_hashtable =
2965 alloc_large_system_hash("Dentry cache",
b07ad996 2966 sizeof(struct hlist_bl_head),
1da177e4
LT
2967 dhash_entries,
2968 13,
2969 0,
2970 &d_hash_shift,
2971 &d_hash_mask,
2972 0);
2973
2974 for (loop = 0; loop < (1 << d_hash_shift); loop++)
b07ad996 2975 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
2976}
2977
2978/* SLAB cache for __getname() consumers */
e18b890b 2979struct kmem_cache *names_cachep __read_mostly;
ec4f8605 2980EXPORT_SYMBOL(names_cachep);
1da177e4 2981
1da177e4
LT
2982EXPORT_SYMBOL(d_genocide);
2983
1da177e4
LT
2984void __init vfs_caches_init_early(void)
2985{
2986 dcache_init_early();
2987 inode_init_early();
2988}
2989
2990void __init vfs_caches_init(unsigned long mempages)
2991{
2992 unsigned long reserve;
2993
2994 /* Base hash sizes on available memory, with a reserve equal to
2995 150% of current kernel size */
2996
2997 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2998 mempages -= reserve;
2999
3000 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3001 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3002
74bf17cf
DC
3003 dcache_init();
3004 inode_init();
1da177e4 3005 files_init(mempages);
74bf17cf 3006 mnt_init();
1da177e4
LT
3007 bdev_cache_init();
3008 chrdev_init();
3009}
This page took 0.795764 seconds and 5 git commands to generate.