Allow sharing external names after __d_move()
[deliverable/linux.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
07f3f05c 41#include "internal.h"
b2dba1af 42#include "mount.h"
1da177e4 43
789680d1
NP
44/*
45 * Usage:
873feea0
NP
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
19156840 52 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
b7ab39f6 58 * - d_count
da502956 59 * - d_unhashed()
2fd6b7f5
NP
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
b23fb0a6 62 * - d_alias, d_inode
789680d1
NP
63 *
64 * Ordering:
873feea0 65 * dentry->d_inode->i_lock
b5c84bf6 66 * dentry->d_lock
19156840 67 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
68 * dcache_hash_bucket lock
69 * s_anon lock
789680d1 70 *
da502956
NP
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
789680d1
NP
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
fa3536cc 82int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
83EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
1da177e4 99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
8966be90 105static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 106 unsigned int hash)
ceb5bdc2 107{
6d7d1a0d 108 hash += (unsigned long) parent / L1_CACHE_BYTES;
99d263d4 109 return dentry_hashtable + hash_32(hash, d_hash_shift);
ceb5bdc2
NP
110}
111
1da177e4
LT
112/* Statistics gathering. */
113struct dentry_stat_t dentry_stat = {
114 .age_limit = 45,
115};
116
3942c07c 117static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 118static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
119
120#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
121
122/*
123 * Here we resort to our own counters instead of using generic per-cpu counters
124 * for consistency with what the vfs inode code does. We are expected to harvest
125 * better code and performance by having our own specialized counters.
126 *
127 * Please note that the loop is done over all possible CPUs, not over all online
128 * CPUs. The reason for this is that we don't want to play games with CPUs going
129 * on and off. If one of them goes off, we will just keep their counters.
130 *
131 * glommer: See cffbc8a for details, and if you ever intend to change this,
132 * please update all vfs counters to match.
133 */
3942c07c 134static long get_nr_dentry(void)
3e880fb5
NP
135{
136 int i;
3942c07c 137 long sum = 0;
3e880fb5
NP
138 for_each_possible_cpu(i)
139 sum += per_cpu(nr_dentry, i);
140 return sum < 0 ? 0 : sum;
141}
142
62d36c77
DC
143static long get_nr_dentry_unused(void)
144{
145 int i;
146 long sum = 0;
147 for_each_possible_cpu(i)
148 sum += per_cpu(nr_dentry_unused, i);
149 return sum < 0 ? 0 : sum;
150}
151
1f7e0616 152int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
153 size_t *lenp, loff_t *ppos)
154{
3e880fb5 155 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 156 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 157 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
158}
159#endif
160
5483f18e
LT
161/*
162 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163 * The strings are both count bytes long, and count is non-zero.
164 */
e419b4cc
LT
165#ifdef CONFIG_DCACHE_WORD_ACCESS
166
167#include <asm/word-at-a-time.h>
168/*
169 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170 * aligned allocation for this particular component. We don't
171 * strictly need the load_unaligned_zeropad() safety, but it
172 * doesn't hurt either.
173 *
174 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175 * need the careful unaligned handling.
176 */
94753db5 177static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 178{
bfcfaa77 179 unsigned long a,b,mask;
bfcfaa77
LT
180
181 for (;;) {
12f8ad4b 182 a = *(unsigned long *)cs;
e419b4cc 183 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
184 if (tcount < sizeof(unsigned long))
185 break;
186 if (unlikely(a != b))
187 return 1;
188 cs += sizeof(unsigned long);
189 ct += sizeof(unsigned long);
190 tcount -= sizeof(unsigned long);
191 if (!tcount)
192 return 0;
193 }
a5c21dce 194 mask = bytemask_from_count(tcount);
bfcfaa77 195 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
196}
197
bfcfaa77 198#else
e419b4cc 199
94753db5 200static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 201{
5483f18e
LT
202 do {
203 if (*cs != *ct)
204 return 1;
205 cs++;
206 ct++;
207 tcount--;
208 } while (tcount);
209 return 0;
210}
211
e419b4cc
LT
212#endif
213
94753db5
LT
214static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
215{
6326c71f 216 const unsigned char *cs;
94753db5
LT
217 /*
218 * Be careful about RCU walk racing with rename:
219 * use ACCESS_ONCE to fetch the name pointer.
220 *
221 * NOTE! Even if a rename will mean that the length
222 * was not loaded atomically, we don't care. The
223 * RCU walk will check the sequence count eventually,
224 * and catch it. And we won't overrun the buffer,
225 * because we're reading the name pointer atomically,
226 * and a dentry name is guaranteed to be properly
227 * terminated with a NUL byte.
228 *
229 * End result: even if 'len' is wrong, we'll exit
230 * early because the data cannot match (there can
231 * be no NUL in the ct/tcount data)
232 */
6326c71f
LT
233 cs = ACCESS_ONCE(dentry->d_name.name);
234 smp_read_barrier_depends();
235 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
236}
237
8d85b484
AV
238struct external_name {
239 union {
240 atomic_t count;
241 struct rcu_head head;
242 } u;
243 unsigned char name[];
244};
245
246static inline struct external_name *external_name(struct dentry *dentry)
247{
248 return container_of(dentry->d_name.name, struct external_name, name[0]);
249}
250
9c82ab9c 251static void __d_free(struct rcu_head *head)
1da177e4 252{
9c82ab9c
CH
253 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
254
b3d9b7a3 255 WARN_ON(!hlist_unhashed(&dentry->d_alias));
8d85b484
AV
256 kmem_cache_free(dentry_cache, dentry);
257}
258
259static void __d_free_external(struct rcu_head *head)
260{
261 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
262 WARN_ON(!hlist_unhashed(&dentry->d_alias));
263 kfree(external_name(dentry));
1da177e4
LT
264 kmem_cache_free(dentry_cache, dentry);
265}
266
b4f0354e
AV
267static void dentry_free(struct dentry *dentry)
268{
8d85b484
AV
269 if (unlikely(dname_external(dentry))) {
270 struct external_name *p = external_name(dentry);
271 if (likely(atomic_dec_and_test(&p->u.count))) {
272 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
273 return;
274 }
275 }
b4f0354e
AV
276 /* if dentry was never visible to RCU, immediate free is OK */
277 if (!(dentry->d_flags & DCACHE_RCUACCESS))
278 __d_free(&dentry->d_u.d_rcu);
279 else
280 call_rcu(&dentry->d_u.d_rcu, __d_free);
281}
282
31e6b01f
NP
283/**
284 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 285 * @dentry: the target dentry
31e6b01f
NP
286 * After this call, in-progress rcu-walk path lookup will fail. This
287 * should be called after unhashing, and after changing d_inode (if
288 * the dentry has not already been unhashed).
289 */
290static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
291{
292 assert_spin_locked(&dentry->d_lock);
293 /* Go through a barrier */
294 write_seqcount_barrier(&dentry->d_seq);
295}
296
1da177e4
LT
297/*
298 * Release the dentry's inode, using the filesystem
31e6b01f
NP
299 * d_iput() operation if defined. Dentry has no refcount
300 * and is unhashed.
1da177e4 301 */
858119e1 302static void dentry_iput(struct dentry * dentry)
31f3e0b3 303 __releases(dentry->d_lock)
873feea0 304 __releases(dentry->d_inode->i_lock)
1da177e4
LT
305{
306 struct inode *inode = dentry->d_inode;
307 if (inode) {
308 dentry->d_inode = NULL;
b3d9b7a3 309 hlist_del_init(&dentry->d_alias);
1da177e4 310 spin_unlock(&dentry->d_lock);
873feea0 311 spin_unlock(&inode->i_lock);
f805fbda
LT
312 if (!inode->i_nlink)
313 fsnotify_inoderemove(inode);
1da177e4
LT
314 if (dentry->d_op && dentry->d_op->d_iput)
315 dentry->d_op->d_iput(dentry, inode);
316 else
317 iput(inode);
318 } else {
319 spin_unlock(&dentry->d_lock);
1da177e4
LT
320 }
321}
322
31e6b01f
NP
323/*
324 * Release the dentry's inode, using the filesystem
325 * d_iput() operation if defined. dentry remains in-use.
326 */
327static void dentry_unlink_inode(struct dentry * dentry)
328 __releases(dentry->d_lock)
873feea0 329 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
330{
331 struct inode *inode = dentry->d_inode;
b18825a7 332 __d_clear_type(dentry);
31e6b01f 333 dentry->d_inode = NULL;
b3d9b7a3 334 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
335 dentry_rcuwalk_barrier(dentry);
336 spin_unlock(&dentry->d_lock);
873feea0 337 spin_unlock(&inode->i_lock);
31e6b01f
NP
338 if (!inode->i_nlink)
339 fsnotify_inoderemove(inode);
340 if (dentry->d_op && dentry->d_op->d_iput)
341 dentry->d_op->d_iput(dentry, inode);
342 else
343 iput(inode);
344}
345
89dc77bc
LT
346/*
347 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
348 * is in use - which includes both the "real" per-superblock
349 * LRU list _and_ the DCACHE_SHRINK_LIST use.
350 *
351 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
352 * on the shrink list (ie not on the superblock LRU list).
353 *
354 * The per-cpu "nr_dentry_unused" counters are updated with
355 * the DCACHE_LRU_LIST bit.
356 *
357 * These helper functions make sure we always follow the
358 * rules. d_lock must be held by the caller.
359 */
360#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
361static void d_lru_add(struct dentry *dentry)
362{
363 D_FLAG_VERIFY(dentry, 0);
364 dentry->d_flags |= DCACHE_LRU_LIST;
365 this_cpu_inc(nr_dentry_unused);
366 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
367}
368
369static void d_lru_del(struct dentry *dentry)
370{
371 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
372 dentry->d_flags &= ~DCACHE_LRU_LIST;
373 this_cpu_dec(nr_dentry_unused);
374 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
375}
376
377static void d_shrink_del(struct dentry *dentry)
378{
379 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
380 list_del_init(&dentry->d_lru);
381 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
382 this_cpu_dec(nr_dentry_unused);
383}
384
385static void d_shrink_add(struct dentry *dentry, struct list_head *list)
386{
387 D_FLAG_VERIFY(dentry, 0);
388 list_add(&dentry->d_lru, list);
389 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
390 this_cpu_inc(nr_dentry_unused);
391}
392
393/*
394 * These can only be called under the global LRU lock, ie during the
395 * callback for freeing the LRU list. "isolate" removes it from the
396 * LRU lists entirely, while shrink_move moves it to the indicated
397 * private list.
398 */
399static void d_lru_isolate(struct dentry *dentry)
400{
401 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
402 dentry->d_flags &= ~DCACHE_LRU_LIST;
403 this_cpu_dec(nr_dentry_unused);
404 list_del_init(&dentry->d_lru);
405}
406
407static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
408{
409 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 dentry->d_flags |= DCACHE_SHRINK_LIST;
411 list_move_tail(&dentry->d_lru, list);
412}
413
da3bbdd4 414/*
f6041567 415 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
416 */
417static void dentry_lru_add(struct dentry *dentry)
418{
89dc77bc
LT
419 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
420 d_lru_add(dentry);
da3bbdd4
KM
421}
422
789680d1
NP
423/**
424 * d_drop - drop a dentry
425 * @dentry: dentry to drop
426 *
427 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
428 * be found through a VFS lookup any more. Note that this is different from
429 * deleting the dentry - d_delete will try to mark the dentry negative if
430 * possible, giving a successful _negative_ lookup, while d_drop will
431 * just make the cache lookup fail.
432 *
433 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
434 * reason (NFS timeouts or autofs deletes).
435 *
436 * __d_drop requires dentry->d_lock.
437 */
438void __d_drop(struct dentry *dentry)
439{
dea3667b 440 if (!d_unhashed(dentry)) {
b61625d2 441 struct hlist_bl_head *b;
7632e465
BF
442 /*
443 * Hashed dentries are normally on the dentry hashtable,
444 * with the exception of those newly allocated by
445 * d_obtain_alias, which are always IS_ROOT:
446 */
447 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
448 b = &dentry->d_sb->s_anon;
449 else
450 b = d_hash(dentry->d_parent, dentry->d_name.hash);
451
452 hlist_bl_lock(b);
453 __hlist_bl_del(&dentry->d_hash);
454 dentry->d_hash.pprev = NULL;
455 hlist_bl_unlock(b);
dea3667b 456 dentry_rcuwalk_barrier(dentry);
789680d1
NP
457 }
458}
459EXPORT_SYMBOL(__d_drop);
460
461void d_drop(struct dentry *dentry)
462{
789680d1
NP
463 spin_lock(&dentry->d_lock);
464 __d_drop(dentry);
465 spin_unlock(&dentry->d_lock);
789680d1
NP
466}
467EXPORT_SYMBOL(d_drop);
468
e55fd011 469static void __dentry_kill(struct dentry *dentry)
77812a1e 470{
41edf278
AV
471 struct dentry *parent = NULL;
472 bool can_free = true;
41edf278 473 if (!IS_ROOT(dentry))
77812a1e 474 parent = dentry->d_parent;
31e6b01f 475
0d98439e
LT
476 /*
477 * The dentry is now unrecoverably dead to the world.
478 */
479 lockref_mark_dead(&dentry->d_lockref);
480
f0023bc6 481 /*
f0023bc6
SW
482 * inform the fs via d_prune that this dentry is about to be
483 * unhashed and destroyed.
484 */
590fb51f 485 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
61572bb1
YZ
486 dentry->d_op->d_prune(dentry);
487
01b60351
AV
488 if (dentry->d_flags & DCACHE_LRU_LIST) {
489 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
490 d_lru_del(dentry);
01b60351 491 }
77812a1e
NP
492 /* if it was on the hash then remove it */
493 __d_drop(dentry);
03b3b889
AV
494 list_del(&dentry->d_u.d_child);
495 /*
496 * Inform d_walk() that we are no longer attached to the
497 * dentry tree
498 */
499 dentry->d_flags |= DCACHE_DENTRY_KILLED;
500 if (parent)
501 spin_unlock(&parent->d_lock);
502 dentry_iput(dentry);
503 /*
504 * dentry_iput drops the locks, at which point nobody (except
505 * transient RCU lookups) can reach this dentry.
506 */
507 BUG_ON((int)dentry->d_lockref.count > 0);
508 this_cpu_dec(nr_dentry);
509 if (dentry->d_op && dentry->d_op->d_release)
510 dentry->d_op->d_release(dentry);
511
41edf278
AV
512 spin_lock(&dentry->d_lock);
513 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
514 dentry->d_flags |= DCACHE_MAY_FREE;
515 can_free = false;
516 }
517 spin_unlock(&dentry->d_lock);
41edf278
AV
518 if (likely(can_free))
519 dentry_free(dentry);
e55fd011
AV
520}
521
522/*
523 * Finish off a dentry we've decided to kill.
524 * dentry->d_lock must be held, returns with it unlocked.
525 * If ref is non-zero, then decrement the refcount too.
526 * Returns dentry requiring refcount drop, or NULL if we're done.
527 */
8cbf74da 528static struct dentry *dentry_kill(struct dentry *dentry)
e55fd011
AV
529 __releases(dentry->d_lock)
530{
531 struct inode *inode = dentry->d_inode;
532 struct dentry *parent = NULL;
533
534 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
535 goto failed;
536
537 if (!IS_ROOT(dentry)) {
538 parent = dentry->d_parent;
539 if (unlikely(!spin_trylock(&parent->d_lock))) {
540 if (inode)
541 spin_unlock(&inode->i_lock);
542 goto failed;
543 }
544 }
545
546 __dentry_kill(dentry);
03b3b889 547 return parent;
e55fd011
AV
548
549failed:
8cbf74da
AV
550 spin_unlock(&dentry->d_lock);
551 cpu_relax();
e55fd011 552 return dentry; /* try again with same dentry */
77812a1e
NP
553}
554
046b961b
AV
555static inline struct dentry *lock_parent(struct dentry *dentry)
556{
557 struct dentry *parent = dentry->d_parent;
558 if (IS_ROOT(dentry))
559 return NULL;
c2338f2d
AV
560 if (unlikely((int)dentry->d_lockref.count < 0))
561 return NULL;
046b961b
AV
562 if (likely(spin_trylock(&parent->d_lock)))
563 return parent;
046b961b 564 rcu_read_lock();
c2338f2d 565 spin_unlock(&dentry->d_lock);
046b961b
AV
566again:
567 parent = ACCESS_ONCE(dentry->d_parent);
568 spin_lock(&parent->d_lock);
569 /*
570 * We can't blindly lock dentry until we are sure
571 * that we won't violate the locking order.
572 * Any changes of dentry->d_parent must have
573 * been done with parent->d_lock held, so
574 * spin_lock() above is enough of a barrier
575 * for checking if it's still our child.
576 */
577 if (unlikely(parent != dentry->d_parent)) {
578 spin_unlock(&parent->d_lock);
579 goto again;
580 }
581 rcu_read_unlock();
582 if (parent != dentry)
9f12600f 583 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
046b961b
AV
584 else
585 parent = NULL;
586 return parent;
587}
588
1da177e4
LT
589/*
590 * This is dput
591 *
592 * This is complicated by the fact that we do not want to put
593 * dentries that are no longer on any hash chain on the unused
594 * list: we'd much rather just get rid of them immediately.
595 *
596 * However, that implies that we have to traverse the dentry
597 * tree upwards to the parents which might _also_ now be
598 * scheduled for deletion (it may have been only waiting for
599 * its last child to go away).
600 *
601 * This tail recursion is done by hand as we don't want to depend
602 * on the compiler to always get this right (gcc generally doesn't).
603 * Real recursion would eat up our stack space.
604 */
605
606/*
607 * dput - release a dentry
608 * @dentry: dentry to release
609 *
610 * Release a dentry. This will drop the usage count and if appropriate
611 * call the dentry unlink method as well as removing it from the queues and
612 * releasing its resources. If the parent dentries were scheduled for release
613 * they too may now get deleted.
1da177e4 614 */
1da177e4
LT
615void dput(struct dentry *dentry)
616{
8aab6a27 617 if (unlikely(!dentry))
1da177e4
LT
618 return;
619
620repeat:
98474236 621 if (lockref_put_or_lock(&dentry->d_lockref))
1da177e4 622 return;
1da177e4 623
8aab6a27
LT
624 /* Unreachable? Get rid of it */
625 if (unlikely(d_unhashed(dentry)))
626 goto kill_it;
627
628 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 629 if (dentry->d_op->d_delete(dentry))
61f3dee4 630 goto kill_it;
1da177e4 631 }
265ac902 632
358eec18
LT
633 if (!(dentry->d_flags & DCACHE_REFERENCED))
634 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 635 dentry_lru_add(dentry);
265ac902 636
98474236 637 dentry->d_lockref.count--;
61f3dee4 638 spin_unlock(&dentry->d_lock);
1da177e4
LT
639 return;
640
d52b9086 641kill_it:
8cbf74da 642 dentry = dentry_kill(dentry);
d52b9086
MS
643 if (dentry)
644 goto repeat;
1da177e4 645}
ec4f8605 646EXPORT_SYMBOL(dput);
1da177e4
LT
647
648/**
649 * d_invalidate - invalidate a dentry
650 * @dentry: dentry to invalidate
651 *
652 * Try to invalidate the dentry if it turns out to be
653 * possible. If there are other dentries that can be
654 * reached through this one we can't delete it and we
655 * return -EBUSY. On success we return 0.
656 *
657 * no dcache lock.
658 */
659
660int d_invalidate(struct dentry * dentry)
661{
662 /*
663 * If it's already been dropped, return OK.
664 */
da502956 665 spin_lock(&dentry->d_lock);
1da177e4 666 if (d_unhashed(dentry)) {
da502956 667 spin_unlock(&dentry->d_lock);
1da177e4
LT
668 return 0;
669 }
670 /*
671 * Check whether to do a partial shrink_dcache
672 * to get rid of unused child entries.
673 */
674 if (!list_empty(&dentry->d_subdirs)) {
da502956 675 spin_unlock(&dentry->d_lock);
1da177e4 676 shrink_dcache_parent(dentry);
da502956 677 spin_lock(&dentry->d_lock);
1da177e4
LT
678 }
679
680 /*
681 * Somebody else still using it?
682 *
683 * If it's a directory, we can't drop it
684 * for fear of somebody re-populating it
685 * with children (even though dropping it
686 * would make it unreachable from the root,
687 * we might still populate it if it was a
688 * working directory or similar).
50e69630
AV
689 * We also need to leave mountpoints alone,
690 * directory or not.
1da177e4 691 */
98474236 692 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
50e69630 693 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 694 spin_unlock(&dentry->d_lock);
1da177e4
LT
695 return -EBUSY;
696 }
697 }
698
699 __d_drop(dentry);
700 spin_unlock(&dentry->d_lock);
1da177e4
LT
701 return 0;
702}
ec4f8605 703EXPORT_SYMBOL(d_invalidate);
1da177e4 704
b5c84bf6 705/* This must be called with d_lock held */
dc0474be 706static inline void __dget_dlock(struct dentry *dentry)
23044507 707{
98474236 708 dentry->d_lockref.count++;
23044507
NP
709}
710
dc0474be 711static inline void __dget(struct dentry *dentry)
1da177e4 712{
98474236 713 lockref_get(&dentry->d_lockref);
1da177e4
LT
714}
715
b7ab39f6
NP
716struct dentry *dget_parent(struct dentry *dentry)
717{
df3d0bbc 718 int gotref;
b7ab39f6
NP
719 struct dentry *ret;
720
df3d0bbc
WL
721 /*
722 * Do optimistic parent lookup without any
723 * locking.
724 */
725 rcu_read_lock();
726 ret = ACCESS_ONCE(dentry->d_parent);
727 gotref = lockref_get_not_zero(&ret->d_lockref);
728 rcu_read_unlock();
729 if (likely(gotref)) {
730 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
731 return ret;
732 dput(ret);
733 }
734
b7ab39f6 735repeat:
a734eb45
NP
736 /*
737 * Don't need rcu_dereference because we re-check it was correct under
738 * the lock.
739 */
740 rcu_read_lock();
b7ab39f6 741 ret = dentry->d_parent;
a734eb45
NP
742 spin_lock(&ret->d_lock);
743 if (unlikely(ret != dentry->d_parent)) {
744 spin_unlock(&ret->d_lock);
745 rcu_read_unlock();
b7ab39f6
NP
746 goto repeat;
747 }
a734eb45 748 rcu_read_unlock();
98474236
WL
749 BUG_ON(!ret->d_lockref.count);
750 ret->d_lockref.count++;
b7ab39f6 751 spin_unlock(&ret->d_lock);
b7ab39f6
NP
752 return ret;
753}
754EXPORT_SYMBOL(dget_parent);
755
1da177e4
LT
756/**
757 * d_find_alias - grab a hashed alias of inode
758 * @inode: inode in question
1da177e4
LT
759 *
760 * If inode has a hashed alias, or is a directory and has any alias,
761 * acquire the reference to alias and return it. Otherwise return NULL.
762 * Notice that if inode is a directory there can be only one alias and
763 * it can be unhashed only if it has no children, or if it is the root
764 * of a filesystem.
765 *
21c0d8fd 766 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 767 * any other hashed alias over that one.
1da177e4 768 */
52ed46f0 769static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 770{
da502956 771 struct dentry *alias, *discon_alias;
1da177e4 772
da502956
NP
773again:
774 discon_alias = NULL;
b67bfe0d 775 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
da502956 776 spin_lock(&alias->d_lock);
1da177e4 777 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 778 if (IS_ROOT(alias) &&
da502956 779 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 780 discon_alias = alias;
52ed46f0 781 } else {
dc0474be 782 __dget_dlock(alias);
da502956
NP
783 spin_unlock(&alias->d_lock);
784 return alias;
785 }
786 }
787 spin_unlock(&alias->d_lock);
788 }
789 if (discon_alias) {
790 alias = discon_alias;
791 spin_lock(&alias->d_lock);
792 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
793 __dget_dlock(alias);
794 spin_unlock(&alias->d_lock);
795 return alias;
1da177e4 796 }
da502956
NP
797 spin_unlock(&alias->d_lock);
798 goto again;
1da177e4 799 }
da502956 800 return NULL;
1da177e4
LT
801}
802
da502956 803struct dentry *d_find_alias(struct inode *inode)
1da177e4 804{
214fda1f
DH
805 struct dentry *de = NULL;
806
b3d9b7a3 807 if (!hlist_empty(&inode->i_dentry)) {
873feea0 808 spin_lock(&inode->i_lock);
52ed46f0 809 de = __d_find_alias(inode);
873feea0 810 spin_unlock(&inode->i_lock);
214fda1f 811 }
1da177e4
LT
812 return de;
813}
ec4f8605 814EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
815
816/*
817 * Try to kill dentries associated with this inode.
818 * WARNING: you must own a reference to inode.
819 */
820void d_prune_aliases(struct inode *inode)
821{
0cdca3f9 822 struct dentry *dentry;
1da177e4 823restart:
873feea0 824 spin_lock(&inode->i_lock);
b67bfe0d 825 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 826 spin_lock(&dentry->d_lock);
98474236 827 if (!dentry->d_lockref.count) {
590fb51f
YZ
828 /*
829 * inform the fs via d_prune that this dentry
830 * is about to be unhashed and destroyed.
831 */
832 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
833 !d_unhashed(dentry))
834 dentry->d_op->d_prune(dentry);
835
dc0474be 836 __dget_dlock(dentry);
1da177e4
LT
837 __d_drop(dentry);
838 spin_unlock(&dentry->d_lock);
873feea0 839 spin_unlock(&inode->i_lock);
1da177e4
LT
840 dput(dentry);
841 goto restart;
842 }
843 spin_unlock(&dentry->d_lock);
844 }
873feea0 845 spin_unlock(&inode->i_lock);
1da177e4 846}
ec4f8605 847EXPORT_SYMBOL(d_prune_aliases);
1da177e4 848
3049cfe2 849static void shrink_dentry_list(struct list_head *list)
1da177e4 850{
5c47e6d0 851 struct dentry *dentry, *parent;
da3bbdd4 852
60942f2f 853 while (!list_empty(list)) {
ff2fde99 854 struct inode *inode;
60942f2f 855 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 856 spin_lock(&dentry->d_lock);
046b961b
AV
857 parent = lock_parent(dentry);
858
dd1f6b2e
DC
859 /*
860 * The dispose list is isolated and dentries are not accounted
861 * to the LRU here, so we can simply remove it from the list
862 * here regardless of whether it is referenced or not.
863 */
89dc77bc 864 d_shrink_del(dentry);
dd1f6b2e 865
1da177e4
LT
866 /*
867 * We found an inuse dentry which was not removed from
dd1f6b2e 868 * the LRU because of laziness during lookup. Do not free it.
1da177e4 869 */
41edf278 870 if ((int)dentry->d_lockref.count > 0) {
da3bbdd4 871 spin_unlock(&dentry->d_lock);
046b961b
AV
872 if (parent)
873 spin_unlock(&parent->d_lock);
1da177e4
LT
874 continue;
875 }
77812a1e 876
64fd72e0
AV
877
878 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
879 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
880 spin_unlock(&dentry->d_lock);
046b961b
AV
881 if (parent)
882 spin_unlock(&parent->d_lock);
64fd72e0
AV
883 if (can_free)
884 dentry_free(dentry);
885 continue;
886 }
887
ff2fde99
AV
888 inode = dentry->d_inode;
889 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
89dc77bc 890 d_shrink_add(dentry, list);
dd1f6b2e 891 spin_unlock(&dentry->d_lock);
046b961b
AV
892 if (parent)
893 spin_unlock(&parent->d_lock);
5c47e6d0 894 continue;
dd1f6b2e 895 }
ff2fde99 896
ff2fde99 897 __dentry_kill(dentry);
046b961b 898
5c47e6d0
AV
899 /*
900 * We need to prune ancestors too. This is necessary to prevent
901 * quadratic behavior of shrink_dcache_parent(), but is also
902 * expected to be beneficial in reducing dentry cache
903 * fragmentation.
904 */
905 dentry = parent;
b2b80195
AV
906 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
907 parent = lock_parent(dentry);
908 if (dentry->d_lockref.count != 1) {
909 dentry->d_lockref.count--;
910 spin_unlock(&dentry->d_lock);
911 if (parent)
912 spin_unlock(&parent->d_lock);
913 break;
914 }
915 inode = dentry->d_inode; /* can't be NULL */
916 if (unlikely(!spin_trylock(&inode->i_lock))) {
917 spin_unlock(&dentry->d_lock);
918 if (parent)
919 spin_unlock(&parent->d_lock);
920 cpu_relax();
921 continue;
922 }
923 __dentry_kill(dentry);
924 dentry = parent;
925 }
da3bbdd4 926 }
3049cfe2
CH
927}
928
f6041567
DC
929static enum lru_status
930dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
931{
932 struct list_head *freeable = arg;
933 struct dentry *dentry = container_of(item, struct dentry, d_lru);
934
935
936 /*
937 * we are inverting the lru lock/dentry->d_lock here,
938 * so use a trylock. If we fail to get the lock, just skip
939 * it
940 */
941 if (!spin_trylock(&dentry->d_lock))
942 return LRU_SKIP;
943
944 /*
945 * Referenced dentries are still in use. If they have active
946 * counts, just remove them from the LRU. Otherwise give them
947 * another pass through the LRU.
948 */
949 if (dentry->d_lockref.count) {
89dc77bc 950 d_lru_isolate(dentry);
f6041567
DC
951 spin_unlock(&dentry->d_lock);
952 return LRU_REMOVED;
953 }
954
955 if (dentry->d_flags & DCACHE_REFERENCED) {
956 dentry->d_flags &= ~DCACHE_REFERENCED;
957 spin_unlock(&dentry->d_lock);
958
959 /*
960 * The list move itself will be made by the common LRU code. At
961 * this point, we've dropped the dentry->d_lock but keep the
962 * lru lock. This is safe to do, since every list movement is
963 * protected by the lru lock even if both locks are held.
964 *
965 * This is guaranteed by the fact that all LRU management
966 * functions are intermediated by the LRU API calls like
967 * list_lru_add and list_lru_del. List movement in this file
968 * only ever occur through this functions or through callbacks
969 * like this one, that are called from the LRU API.
970 *
971 * The only exceptions to this are functions like
972 * shrink_dentry_list, and code that first checks for the
973 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
974 * operating only with stack provided lists after they are
975 * properly isolated from the main list. It is thus, always a
976 * local access.
977 */
978 return LRU_ROTATE;
979 }
980
89dc77bc 981 d_lru_shrink_move(dentry, freeable);
f6041567
DC
982 spin_unlock(&dentry->d_lock);
983
984 return LRU_REMOVED;
985}
986
3049cfe2 987/**
b48f03b3
DC
988 * prune_dcache_sb - shrink the dcache
989 * @sb: superblock
f6041567 990 * @nr_to_scan : number of entries to try to free
9b17c623 991 * @nid: which node to scan for freeable entities
b48f03b3 992 *
f6041567 993 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
b48f03b3
DC
994 * done when we need more memory an called from the superblock shrinker
995 * function.
3049cfe2 996 *
b48f03b3
DC
997 * This function may fail to free any resources if all the dentries are in
998 * use.
3049cfe2 999 */
9b17c623
DC
1000long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
1001 int nid)
3049cfe2 1002{
f6041567
DC
1003 LIST_HEAD(dispose);
1004 long freed;
3049cfe2 1005
9b17c623
DC
1006 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
1007 &dispose, &nr_to_scan);
f6041567 1008 shrink_dentry_list(&dispose);
0a234c6d 1009 return freed;
da3bbdd4 1010}
23044507 1011
4e717f5c
GC
1012static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1013 spinlock_t *lru_lock, void *arg)
dd1f6b2e 1014{
4e717f5c
GC
1015 struct list_head *freeable = arg;
1016 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1017
4e717f5c
GC
1018 /*
1019 * we are inverting the lru lock/dentry->d_lock here,
1020 * so use a trylock. If we fail to get the lock, just skip
1021 * it
1022 */
1023 if (!spin_trylock(&dentry->d_lock))
1024 return LRU_SKIP;
1025
89dc77bc 1026 d_lru_shrink_move(dentry, freeable);
4e717f5c 1027 spin_unlock(&dentry->d_lock);
ec33679d 1028
4e717f5c 1029 return LRU_REMOVED;
da3bbdd4
KM
1030}
1031
4e717f5c 1032
1da177e4
LT
1033/**
1034 * shrink_dcache_sb - shrink dcache for a superblock
1035 * @sb: superblock
1036 *
3049cfe2
CH
1037 * Shrink the dcache for the specified super block. This is used to free
1038 * the dcache before unmounting a file system.
1da177e4 1039 */
3049cfe2 1040void shrink_dcache_sb(struct super_block *sb)
1da177e4 1041{
4e717f5c
GC
1042 long freed;
1043
1044 do {
1045 LIST_HEAD(dispose);
1046
1047 freed = list_lru_walk(&sb->s_dentry_lru,
1048 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
3049cfe2 1049
4e717f5c
GC
1050 this_cpu_sub(nr_dentry_unused, freed);
1051 shrink_dentry_list(&dispose);
1052 } while (freed > 0);
1da177e4 1053}
ec4f8605 1054EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1055
db14fc3a
MS
1056/**
1057 * enum d_walk_ret - action to talke during tree walk
1058 * @D_WALK_CONTINUE: contrinue walk
1059 * @D_WALK_QUIT: quit walk
1060 * @D_WALK_NORETRY: quit when retry is needed
1061 * @D_WALK_SKIP: skip this dentry and its children
1062 */
1063enum d_walk_ret {
1064 D_WALK_CONTINUE,
1065 D_WALK_QUIT,
1066 D_WALK_NORETRY,
1067 D_WALK_SKIP,
1068};
c826cb7d 1069
1da177e4 1070/**
db14fc3a
MS
1071 * d_walk - walk the dentry tree
1072 * @parent: start of walk
1073 * @data: data passed to @enter() and @finish()
1074 * @enter: callback when first entering the dentry
1075 * @finish: callback when successfully finished the walk
1da177e4 1076 *
db14fc3a 1077 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1078 */
db14fc3a
MS
1079static void d_walk(struct dentry *parent, void *data,
1080 enum d_walk_ret (*enter)(void *, struct dentry *),
1081 void (*finish)(void *))
1da177e4 1082{
949854d0 1083 struct dentry *this_parent;
1da177e4 1084 struct list_head *next;
48f5ec21 1085 unsigned seq = 0;
db14fc3a
MS
1086 enum d_walk_ret ret;
1087 bool retry = true;
949854d0 1088
58db63d0 1089again:
48f5ec21 1090 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1091 this_parent = parent;
2fd6b7f5 1092 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1093
1094 ret = enter(data, this_parent);
1095 switch (ret) {
1096 case D_WALK_CONTINUE:
1097 break;
1098 case D_WALK_QUIT:
1099 case D_WALK_SKIP:
1100 goto out_unlock;
1101 case D_WALK_NORETRY:
1102 retry = false;
1103 break;
1104 }
1da177e4
LT
1105repeat:
1106 next = this_parent->d_subdirs.next;
1107resume:
1108 while (next != &this_parent->d_subdirs) {
1109 struct list_head *tmp = next;
5160ee6f 1110 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1111 next = tmp->next;
2fd6b7f5
NP
1112
1113 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1114
1115 ret = enter(data, dentry);
1116 switch (ret) {
1117 case D_WALK_CONTINUE:
1118 break;
1119 case D_WALK_QUIT:
2fd6b7f5 1120 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1121 goto out_unlock;
1122 case D_WALK_NORETRY:
1123 retry = false;
1124 break;
1125 case D_WALK_SKIP:
1126 spin_unlock(&dentry->d_lock);
1127 continue;
2fd6b7f5 1128 }
db14fc3a 1129
1da177e4 1130 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1131 spin_unlock(&this_parent->d_lock);
1132 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1133 this_parent = dentry;
2fd6b7f5 1134 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1135 goto repeat;
1136 }
2fd6b7f5 1137 spin_unlock(&dentry->d_lock);
1da177e4
LT
1138 }
1139 /*
1140 * All done at this level ... ascend and resume the search.
1141 */
1142 if (this_parent != parent) {
c826cb7d 1143 struct dentry *child = this_parent;
31dec132
AV
1144 this_parent = child->d_parent;
1145
1146 rcu_read_lock();
1147 spin_unlock(&child->d_lock);
1148 spin_lock(&this_parent->d_lock);
1149
1150 /*
1151 * might go back up the wrong parent if we have had a rename
1152 * or deletion
1153 */
1154 if (this_parent != child->d_parent ||
1155 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1156 need_seqretry(&rename_lock, seq)) {
1157 spin_unlock(&this_parent->d_lock);
1158 rcu_read_unlock();
949854d0 1159 goto rename_retry;
31dec132
AV
1160 }
1161 rcu_read_unlock();
949854d0 1162 next = child->d_u.d_child.next;
1da177e4
LT
1163 goto resume;
1164 }
48f5ec21 1165 if (need_seqretry(&rename_lock, seq)) {
db14fc3a 1166 spin_unlock(&this_parent->d_lock);
949854d0 1167 goto rename_retry;
db14fc3a
MS
1168 }
1169 if (finish)
1170 finish(data);
1171
1172out_unlock:
1173 spin_unlock(&this_parent->d_lock);
48f5ec21 1174 done_seqretry(&rename_lock, seq);
db14fc3a 1175 return;
58db63d0
NP
1176
1177rename_retry:
db14fc3a
MS
1178 if (!retry)
1179 return;
48f5ec21 1180 seq = 1;
58db63d0 1181 goto again;
1da177e4 1182}
db14fc3a
MS
1183
1184/*
1185 * Search for at least 1 mount point in the dentry's subdirs.
1186 * We descend to the next level whenever the d_subdirs
1187 * list is non-empty and continue searching.
1188 */
1189
db14fc3a
MS
1190static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1191{
1192 int *ret = data;
1193 if (d_mountpoint(dentry)) {
1194 *ret = 1;
1195 return D_WALK_QUIT;
1196 }
1197 return D_WALK_CONTINUE;
1198}
1199
69c88dc7
RD
1200/**
1201 * have_submounts - check for mounts over a dentry
1202 * @parent: dentry to check.
1203 *
1204 * Return true if the parent or its subdirectories contain
1205 * a mount point
1206 */
db14fc3a
MS
1207int have_submounts(struct dentry *parent)
1208{
1209 int ret = 0;
1210
1211 d_walk(parent, &ret, check_mount, NULL);
1212
1213 return ret;
1214}
ec4f8605 1215EXPORT_SYMBOL(have_submounts);
1da177e4 1216
eed81007
MS
1217/*
1218 * Called by mount code to set a mountpoint and check if the mountpoint is
1219 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1220 * subtree can become unreachable).
1221 *
1222 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1223 * this reason take rename_lock and d_lock on dentry and ancestors.
1224 */
1225int d_set_mounted(struct dentry *dentry)
1226{
1227 struct dentry *p;
1228 int ret = -ENOENT;
1229 write_seqlock(&rename_lock);
1230 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1231 /* Need exclusion wrt. check_submounts_and_drop() */
1232 spin_lock(&p->d_lock);
1233 if (unlikely(d_unhashed(p))) {
1234 spin_unlock(&p->d_lock);
1235 goto out;
1236 }
1237 spin_unlock(&p->d_lock);
1238 }
1239 spin_lock(&dentry->d_lock);
1240 if (!d_unlinked(dentry)) {
1241 dentry->d_flags |= DCACHE_MOUNTED;
1242 ret = 0;
1243 }
1244 spin_unlock(&dentry->d_lock);
1245out:
1246 write_sequnlock(&rename_lock);
1247 return ret;
1248}
1249
1da177e4 1250/*
fd517909 1251 * Search the dentry child list of the specified parent,
1da177e4
LT
1252 * and move any unused dentries to the end of the unused
1253 * list for prune_dcache(). We descend to the next level
1254 * whenever the d_subdirs list is non-empty and continue
1255 * searching.
1256 *
1257 * It returns zero iff there are no unused children,
1258 * otherwise it returns the number of children moved to
1259 * the end of the unused list. This may not be the total
1260 * number of unused children, because select_parent can
1261 * drop the lock and return early due to latency
1262 * constraints.
1263 */
1da177e4 1264
db14fc3a
MS
1265struct select_data {
1266 struct dentry *start;
1267 struct list_head dispose;
1268 int found;
1269};
23044507 1270
db14fc3a
MS
1271static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1272{
1273 struct select_data *data = _data;
1274 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1275
db14fc3a
MS
1276 if (data->start == dentry)
1277 goto out;
2fd6b7f5 1278
fe91522a 1279 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1280 data->found++;
fe91522a
AV
1281 } else {
1282 if (dentry->d_flags & DCACHE_LRU_LIST)
1283 d_lru_del(dentry);
1284 if (!dentry->d_lockref.count) {
1285 d_shrink_add(dentry, &data->dispose);
1286 data->found++;
1287 }
1da177e4 1288 }
db14fc3a
MS
1289 /*
1290 * We can return to the caller if we have found some (this
1291 * ensures forward progress). We'll be coming back to find
1292 * the rest.
1293 */
fe91522a
AV
1294 if (!list_empty(&data->dispose))
1295 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1296out:
db14fc3a 1297 return ret;
1da177e4
LT
1298}
1299
1300/**
1301 * shrink_dcache_parent - prune dcache
1302 * @parent: parent of entries to prune
1303 *
1304 * Prune the dcache to remove unused children of the parent dentry.
1305 */
db14fc3a 1306void shrink_dcache_parent(struct dentry *parent)
1da177e4 1307{
db14fc3a
MS
1308 for (;;) {
1309 struct select_data data;
1da177e4 1310
db14fc3a
MS
1311 INIT_LIST_HEAD(&data.dispose);
1312 data.start = parent;
1313 data.found = 0;
1314
1315 d_walk(parent, &data, select_collect, NULL);
1316 if (!data.found)
1317 break;
1318
1319 shrink_dentry_list(&data.dispose);
421348f1
GT
1320 cond_resched();
1321 }
1da177e4 1322}
ec4f8605 1323EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1324
9c8c10e2 1325static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1326{
9c8c10e2
AV
1327 /* it has busy descendents; complain about those instead */
1328 if (!list_empty(&dentry->d_subdirs))
1329 return D_WALK_CONTINUE;
42c32608 1330
9c8c10e2
AV
1331 /* root with refcount 1 is fine */
1332 if (dentry == _data && dentry->d_lockref.count == 1)
1333 return D_WALK_CONTINUE;
1334
1335 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1336 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1337 dentry,
1338 dentry->d_inode ?
1339 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1340 dentry,
42c32608
AV
1341 dentry->d_lockref.count,
1342 dentry->d_sb->s_type->name,
1343 dentry->d_sb->s_id);
9c8c10e2
AV
1344 WARN_ON(1);
1345 return D_WALK_CONTINUE;
1346}
1347
1348static void do_one_tree(struct dentry *dentry)
1349{
1350 shrink_dcache_parent(dentry);
1351 d_walk(dentry, dentry, umount_check, NULL);
1352 d_drop(dentry);
1353 dput(dentry);
42c32608
AV
1354}
1355
1356/*
1357 * destroy the dentries attached to a superblock on unmounting
1358 */
1359void shrink_dcache_for_umount(struct super_block *sb)
1360{
1361 struct dentry *dentry;
1362
9c8c10e2 1363 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1364
1365 dentry = sb->s_root;
1366 sb->s_root = NULL;
9c8c10e2 1367 do_one_tree(dentry);
42c32608
AV
1368
1369 while (!hlist_bl_empty(&sb->s_anon)) {
9c8c10e2
AV
1370 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1371 do_one_tree(dentry);
42c32608
AV
1372 }
1373}
1374
848ac114
MS
1375static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1376{
1377 struct select_data *data = _data;
1378
1379 if (d_mountpoint(dentry)) {
1380 data->found = -EBUSY;
1381 return D_WALK_QUIT;
1382 }
1383
1384 return select_collect(_data, dentry);
1385}
1386
1387static void check_and_drop(void *_data)
1388{
1389 struct select_data *data = _data;
1390
1391 if (d_mountpoint(data->start))
1392 data->found = -EBUSY;
1393 if (!data->found)
1394 __d_drop(data->start);
1395}
1396
1397/**
1398 * check_submounts_and_drop - prune dcache, check for submounts and drop
1399 *
1400 * All done as a single atomic operation relative to has_unlinked_ancestor().
1401 * Returns 0 if successfully unhashed @parent. If there were submounts then
1402 * return -EBUSY.
1403 *
1404 * @dentry: dentry to prune and drop
1405 */
1406int check_submounts_and_drop(struct dentry *dentry)
1407{
1408 int ret = 0;
1409
1410 /* Negative dentries can be dropped without further checks */
1411 if (!dentry->d_inode) {
1412 d_drop(dentry);
1413 goto out;
1414 }
1415
1416 for (;;) {
1417 struct select_data data;
1418
1419 INIT_LIST_HEAD(&data.dispose);
1420 data.start = dentry;
1421 data.found = 0;
1422
1423 d_walk(dentry, &data, check_and_collect, check_and_drop);
1424 ret = data.found;
1425
1426 if (!list_empty(&data.dispose))
1427 shrink_dentry_list(&data.dispose);
1428
1429 if (ret <= 0)
1430 break;
1431
1432 cond_resched();
1433 }
1434
1435out:
1436 return ret;
1437}
1438EXPORT_SYMBOL(check_submounts_and_drop);
1439
1da177e4 1440/**
a4464dbc
AV
1441 * __d_alloc - allocate a dcache entry
1442 * @sb: filesystem it will belong to
1da177e4
LT
1443 * @name: qstr of the name
1444 *
1445 * Allocates a dentry. It returns %NULL if there is insufficient memory
1446 * available. On a success the dentry is returned. The name passed in is
1447 * copied and the copy passed in may be reused after this call.
1448 */
1449
a4464dbc 1450struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1451{
1452 struct dentry *dentry;
1453 char *dname;
1454
e12ba74d 1455 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1456 if (!dentry)
1457 return NULL;
1458
6326c71f
LT
1459 /*
1460 * We guarantee that the inline name is always NUL-terminated.
1461 * This way the memcpy() done by the name switching in rename
1462 * will still always have a NUL at the end, even if we might
1463 * be overwriting an internal NUL character
1464 */
1465 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4 1466 if (name->len > DNAME_INLINE_LEN-1) {
8d85b484
AV
1467 size_t size = offsetof(struct external_name, name[1]);
1468 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1469 if (!p) {
1da177e4
LT
1470 kmem_cache_free(dentry_cache, dentry);
1471 return NULL;
1472 }
8d85b484
AV
1473 atomic_set(&p->u.count, 1);
1474 dname = p->name;
1da177e4
LT
1475 } else {
1476 dname = dentry->d_iname;
1477 }
1da177e4
LT
1478
1479 dentry->d_name.len = name->len;
1480 dentry->d_name.hash = name->hash;
1481 memcpy(dname, name->name, name->len);
1482 dname[name->len] = 0;
1483
6326c71f
LT
1484 /* Make sure we always see the terminating NUL character */
1485 smp_wmb();
1486 dentry->d_name.name = dname;
1487
98474236 1488 dentry->d_lockref.count = 1;
dea3667b 1489 dentry->d_flags = 0;
1da177e4 1490 spin_lock_init(&dentry->d_lock);
31e6b01f 1491 seqcount_init(&dentry->d_seq);
1da177e4 1492 dentry->d_inode = NULL;
a4464dbc
AV
1493 dentry->d_parent = dentry;
1494 dentry->d_sb = sb;
1da177e4
LT
1495 dentry->d_op = NULL;
1496 dentry->d_fsdata = NULL;
ceb5bdc2 1497 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1498 INIT_LIST_HEAD(&dentry->d_lru);
1499 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1500 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1501 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1502 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1503
3e880fb5 1504 this_cpu_inc(nr_dentry);
312d3ca8 1505
1da177e4
LT
1506 return dentry;
1507}
a4464dbc
AV
1508
1509/**
1510 * d_alloc - allocate a dcache entry
1511 * @parent: parent of entry to allocate
1512 * @name: qstr of the name
1513 *
1514 * Allocates a dentry. It returns %NULL if there is insufficient memory
1515 * available. On a success the dentry is returned. The name passed in is
1516 * copied and the copy passed in may be reused after this call.
1517 */
1518struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1519{
1520 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1521 if (!dentry)
1522 return NULL;
1523
1524 spin_lock(&parent->d_lock);
1525 /*
1526 * don't need child lock because it is not subject
1527 * to concurrency here
1528 */
1529 __dget_dlock(parent);
1530 dentry->d_parent = parent;
1531 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1532 spin_unlock(&parent->d_lock);
1533
1534 return dentry;
1535}
ec4f8605 1536EXPORT_SYMBOL(d_alloc);
1da177e4 1537
e1a24bb0
BF
1538/**
1539 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1540 * @sb: the superblock
1541 * @name: qstr of the name
1542 *
1543 * For a filesystem that just pins its dentries in memory and never
1544 * performs lookups at all, return an unhashed IS_ROOT dentry.
1545 */
4b936885
NP
1546struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1547{
e1a24bb0 1548 return __d_alloc(sb, name);
4b936885
NP
1549}
1550EXPORT_SYMBOL(d_alloc_pseudo);
1551
1da177e4
LT
1552struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1553{
1554 struct qstr q;
1555
1556 q.name = name;
1557 q.len = strlen(name);
1558 q.hash = full_name_hash(q.name, q.len);
1559 return d_alloc(parent, &q);
1560}
ef26ca97 1561EXPORT_SYMBOL(d_alloc_name);
1da177e4 1562
fb045adb
NP
1563void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1564{
6f7f7caa
LT
1565 WARN_ON_ONCE(dentry->d_op);
1566 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1567 DCACHE_OP_COMPARE |
1568 DCACHE_OP_REVALIDATE |
ecf3d1f1 1569 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1570 DCACHE_OP_DELETE ));
1571 dentry->d_op = op;
1572 if (!op)
1573 return;
1574 if (op->d_hash)
1575 dentry->d_flags |= DCACHE_OP_HASH;
1576 if (op->d_compare)
1577 dentry->d_flags |= DCACHE_OP_COMPARE;
1578 if (op->d_revalidate)
1579 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1580 if (op->d_weak_revalidate)
1581 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1582 if (op->d_delete)
1583 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1584 if (op->d_prune)
1585 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1586
1587}
1588EXPORT_SYMBOL(d_set_d_op);
1589
b18825a7
DH
1590static unsigned d_flags_for_inode(struct inode *inode)
1591{
1592 unsigned add_flags = DCACHE_FILE_TYPE;
1593
1594 if (!inode)
1595 return DCACHE_MISS_TYPE;
1596
1597 if (S_ISDIR(inode->i_mode)) {
1598 add_flags = DCACHE_DIRECTORY_TYPE;
1599 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1600 if (unlikely(!inode->i_op->lookup))
1601 add_flags = DCACHE_AUTODIR_TYPE;
1602 else
1603 inode->i_opflags |= IOP_LOOKUP;
1604 }
1605 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1606 if (unlikely(inode->i_op->follow_link))
1607 add_flags = DCACHE_SYMLINK_TYPE;
1608 else
1609 inode->i_opflags |= IOP_NOFOLLOW;
1610 }
1611
1612 if (unlikely(IS_AUTOMOUNT(inode)))
1613 add_flags |= DCACHE_NEED_AUTOMOUNT;
1614 return add_flags;
1615}
1616
360da900
OH
1617static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1618{
b18825a7
DH
1619 unsigned add_flags = d_flags_for_inode(inode);
1620
b23fb0a6 1621 spin_lock(&dentry->d_lock);
22213318 1622 __d_set_type(dentry, add_flags);
b18825a7 1623 if (inode)
b3d9b7a3 1624 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
360da900 1625 dentry->d_inode = inode;
31e6b01f 1626 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1627 spin_unlock(&dentry->d_lock);
360da900
OH
1628 fsnotify_d_instantiate(dentry, inode);
1629}
1630
1da177e4
LT
1631/**
1632 * d_instantiate - fill in inode information for a dentry
1633 * @entry: dentry to complete
1634 * @inode: inode to attach to this dentry
1635 *
1636 * Fill in inode information in the entry.
1637 *
1638 * This turns negative dentries into productive full members
1639 * of society.
1640 *
1641 * NOTE! This assumes that the inode count has been incremented
1642 * (or otherwise set) by the caller to indicate that it is now
1643 * in use by the dcache.
1644 */
1645
1646void d_instantiate(struct dentry *entry, struct inode * inode)
1647{
b3d9b7a3 1648 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1649 if (inode)
1650 spin_lock(&inode->i_lock);
360da900 1651 __d_instantiate(entry, inode);
873feea0
NP
1652 if (inode)
1653 spin_unlock(&inode->i_lock);
1da177e4
LT
1654 security_d_instantiate(entry, inode);
1655}
ec4f8605 1656EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1657
1658/**
1659 * d_instantiate_unique - instantiate a non-aliased dentry
1660 * @entry: dentry to instantiate
1661 * @inode: inode to attach to this dentry
1662 *
1663 * Fill in inode information in the entry. On success, it returns NULL.
1664 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1665 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1666 *
1667 * Note that in order to avoid conflicts with rename() etc, the caller
1668 * had better be holding the parent directory semaphore.
e866cfa9
OD
1669 *
1670 * This also assumes that the inode count has been incremented
1671 * (or otherwise set) by the caller to indicate that it is now
1672 * in use by the dcache.
1da177e4 1673 */
770bfad8
DH
1674static struct dentry *__d_instantiate_unique(struct dentry *entry,
1675 struct inode *inode)
1da177e4
LT
1676{
1677 struct dentry *alias;
1678 int len = entry->d_name.len;
1679 const char *name = entry->d_name.name;
1680 unsigned int hash = entry->d_name.hash;
1681
770bfad8 1682 if (!inode) {
360da900 1683 __d_instantiate(entry, NULL);
770bfad8
DH
1684 return NULL;
1685 }
1686
b67bfe0d 1687 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1688 /*
1689 * Don't need alias->d_lock here, because aliases with
1690 * d_parent == entry->d_parent are not subject to name or
1691 * parent changes, because the parent inode i_mutex is held.
1692 */
12f8ad4b 1693 if (alias->d_name.hash != hash)
1da177e4
LT
1694 continue;
1695 if (alias->d_parent != entry->d_parent)
1696 continue;
ee983e89
LT
1697 if (alias->d_name.len != len)
1698 continue;
12f8ad4b 1699 if (dentry_cmp(alias, name, len))
1da177e4 1700 continue;
dc0474be 1701 __dget(alias);
1da177e4
LT
1702 return alias;
1703 }
770bfad8 1704
360da900 1705 __d_instantiate(entry, inode);
1da177e4
LT
1706 return NULL;
1707}
770bfad8
DH
1708
1709struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1710{
1711 struct dentry *result;
1712
b3d9b7a3 1713 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1714
873feea0
NP
1715 if (inode)
1716 spin_lock(&inode->i_lock);
770bfad8 1717 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1718 if (inode)
1719 spin_unlock(&inode->i_lock);
770bfad8
DH
1720
1721 if (!result) {
1722 security_d_instantiate(entry, inode);
1723 return NULL;
1724 }
1725
1726 BUG_ON(!d_unhashed(result));
1727 iput(inode);
1728 return result;
1729}
1730
1da177e4
LT
1731EXPORT_SYMBOL(d_instantiate_unique);
1732
b70a80e7
MS
1733/**
1734 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1735 * @entry: dentry to complete
1736 * @inode: inode to attach to this dentry
1737 *
1738 * Fill in inode information in the entry. If a directory alias is found, then
1739 * return an error (and drop inode). Together with d_materialise_unique() this
1740 * guarantees that a directory inode may never have more than one alias.
1741 */
1742int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1743{
1744 BUG_ON(!hlist_unhashed(&entry->d_alias));
1745
1746 spin_lock(&inode->i_lock);
1747 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1748 spin_unlock(&inode->i_lock);
1749 iput(inode);
1750 return -EBUSY;
1751 }
1752 __d_instantiate(entry, inode);
1753 spin_unlock(&inode->i_lock);
1754 security_d_instantiate(entry, inode);
1755
1756 return 0;
1757}
1758EXPORT_SYMBOL(d_instantiate_no_diralias);
1759
adc0e91a
AV
1760struct dentry *d_make_root(struct inode *root_inode)
1761{
1762 struct dentry *res = NULL;
1763
1764 if (root_inode) {
26fe5750 1765 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1766
1767 res = __d_alloc(root_inode->i_sb, &name);
1768 if (res)
1769 d_instantiate(res, root_inode);
1770 else
1771 iput(root_inode);
1772 }
1773 return res;
1774}
1775EXPORT_SYMBOL(d_make_root);
1776
d891eedb
BF
1777static struct dentry * __d_find_any_alias(struct inode *inode)
1778{
1779 struct dentry *alias;
1780
b3d9b7a3 1781 if (hlist_empty(&inode->i_dentry))
d891eedb 1782 return NULL;
b3d9b7a3 1783 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1784 __dget(alias);
1785 return alias;
1786}
1787
46f72b34
SW
1788/**
1789 * d_find_any_alias - find any alias for a given inode
1790 * @inode: inode to find an alias for
1791 *
1792 * If any aliases exist for the given inode, take and return a
1793 * reference for one of them. If no aliases exist, return %NULL.
1794 */
1795struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1796{
1797 struct dentry *de;
1798
1799 spin_lock(&inode->i_lock);
1800 de = __d_find_any_alias(inode);
1801 spin_unlock(&inode->i_lock);
1802 return de;
1803}
46f72b34 1804EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1805
49c7dd28 1806static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
4ea3ada2 1807{
b911a6bd 1808 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1809 struct dentry *tmp;
1810 struct dentry *res;
b18825a7 1811 unsigned add_flags;
4ea3ada2
CH
1812
1813 if (!inode)
44003728 1814 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1815 if (IS_ERR(inode))
1816 return ERR_CAST(inode);
1817
d891eedb 1818 res = d_find_any_alias(inode);
9308a612
CH
1819 if (res)
1820 goto out_iput;
1821
a4464dbc 1822 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1823 if (!tmp) {
1824 res = ERR_PTR(-ENOMEM);
1825 goto out_iput;
4ea3ada2 1826 }
b5c84bf6 1827
873feea0 1828 spin_lock(&inode->i_lock);
d891eedb 1829 res = __d_find_any_alias(inode);
9308a612 1830 if (res) {
873feea0 1831 spin_unlock(&inode->i_lock);
9308a612
CH
1832 dput(tmp);
1833 goto out_iput;
1834 }
1835
1836 /* attach a disconnected dentry */
1a0a397e
BF
1837 add_flags = d_flags_for_inode(inode);
1838
1839 if (disconnected)
1840 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1841
9308a612 1842 spin_lock(&tmp->d_lock);
9308a612 1843 tmp->d_inode = inode;
b18825a7 1844 tmp->d_flags |= add_flags;
b3d9b7a3 1845 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1846 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1847 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1848 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1849 spin_unlock(&tmp->d_lock);
873feea0 1850 spin_unlock(&inode->i_lock);
24ff6663 1851 security_d_instantiate(tmp, inode);
9308a612 1852
9308a612
CH
1853 return tmp;
1854
1855 out_iput:
24ff6663
JB
1856 if (res && !IS_ERR(res))
1857 security_d_instantiate(res, inode);
9308a612
CH
1858 iput(inode);
1859 return res;
4ea3ada2 1860}
1a0a397e
BF
1861
1862/**
1863 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1864 * @inode: inode to allocate the dentry for
1865 *
1866 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1867 * similar open by handle operations. The returned dentry may be anonymous,
1868 * or may have a full name (if the inode was already in the cache).
1869 *
1870 * When called on a directory inode, we must ensure that the inode only ever
1871 * has one dentry. If a dentry is found, that is returned instead of
1872 * allocating a new one.
1873 *
1874 * On successful return, the reference to the inode has been transferred
1875 * to the dentry. In case of an error the reference on the inode is released.
1876 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1877 * be passed in and the error will be propagated to the return value,
1878 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1879 */
1880struct dentry *d_obtain_alias(struct inode *inode)
1881{
1882 return __d_obtain_alias(inode, 1);
1883}
adc48720 1884EXPORT_SYMBOL(d_obtain_alias);
1da177e4 1885
1a0a397e
BF
1886/**
1887 * d_obtain_root - find or allocate a dentry for a given inode
1888 * @inode: inode to allocate the dentry for
1889 *
1890 * Obtain an IS_ROOT dentry for the root of a filesystem.
1891 *
1892 * We must ensure that directory inodes only ever have one dentry. If a
1893 * dentry is found, that is returned instead of allocating a new one.
1894 *
1895 * On successful return, the reference to the inode has been transferred
1896 * to the dentry. In case of an error the reference on the inode is
1897 * released. A %NULL or IS_ERR inode may be passed in and will be the
1898 * error will be propagate to the return value, with a %NULL @inode
1899 * replaced by ERR_PTR(-ESTALE).
1900 */
1901struct dentry *d_obtain_root(struct inode *inode)
1902{
1903 return __d_obtain_alias(inode, 0);
1904}
1905EXPORT_SYMBOL(d_obtain_root);
1906
9403540c
BN
1907/**
1908 * d_add_ci - lookup or allocate new dentry with case-exact name
1909 * @inode: the inode case-insensitive lookup has found
1910 * @dentry: the negative dentry that was passed to the parent's lookup func
1911 * @name: the case-exact name to be associated with the returned dentry
1912 *
1913 * This is to avoid filling the dcache with case-insensitive names to the
1914 * same inode, only the actual correct case is stored in the dcache for
1915 * case-insensitive filesystems.
1916 *
1917 * For a case-insensitive lookup match and if the the case-exact dentry
1918 * already exists in in the dcache, use it and return it.
1919 *
1920 * If no entry exists with the exact case name, allocate new dentry with
1921 * the exact case, and return the spliced entry.
1922 */
e45b590b 1923struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1924 struct qstr *name)
1925{
9403540c
BN
1926 struct dentry *found;
1927 struct dentry *new;
1928
b6520c81
CH
1929 /*
1930 * First check if a dentry matching the name already exists,
1931 * if not go ahead and create it now.
1932 */
9403540c 1933 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
1934 if (unlikely(IS_ERR(found)))
1935 goto err_out;
9403540c
BN
1936 if (!found) {
1937 new = d_alloc(dentry->d_parent, name);
1938 if (!new) {
4f522a24 1939 found = ERR_PTR(-ENOMEM);
9403540c
BN
1940 goto err_out;
1941 }
b6520c81 1942
9403540c
BN
1943 found = d_splice_alias(inode, new);
1944 if (found) {
1945 dput(new);
1946 return found;
1947 }
1948 return new;
1949 }
b6520c81
CH
1950
1951 /*
1952 * If a matching dentry exists, and it's not negative use it.
1953 *
1954 * Decrement the reference count to balance the iget() done
1955 * earlier on.
1956 */
9403540c
BN
1957 if (found->d_inode) {
1958 if (unlikely(found->d_inode != inode)) {
1959 /* This can't happen because bad inodes are unhashed. */
1960 BUG_ON(!is_bad_inode(inode));
1961 BUG_ON(!is_bad_inode(found->d_inode));
1962 }
9403540c
BN
1963 iput(inode);
1964 return found;
1965 }
b6520c81 1966
9403540c 1967 /*
9403540c 1968 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1969 * already has a dentry.
9403540c 1970 */
4513d899
AV
1971 new = d_splice_alias(inode, found);
1972 if (new) {
1973 dput(found);
1974 found = new;
9403540c 1975 }
4513d899 1976 return found;
9403540c
BN
1977
1978err_out:
1979 iput(inode);
4f522a24 1980 return found;
9403540c 1981}
ec4f8605 1982EXPORT_SYMBOL(d_add_ci);
1da177e4 1983
12f8ad4b
LT
1984/*
1985 * Do the slow-case of the dentry name compare.
1986 *
1987 * Unlike the dentry_cmp() function, we need to atomically
da53be12 1988 * load the name and length information, so that the
12f8ad4b
LT
1989 * filesystem can rely on them, and can use the 'name' and
1990 * 'len' information without worrying about walking off the
1991 * end of memory etc.
1992 *
1993 * Thus the read_seqcount_retry() and the "duplicate" info
1994 * in arguments (the low-level filesystem should not look
1995 * at the dentry inode or name contents directly, since
1996 * rename can change them while we're in RCU mode).
1997 */
1998enum slow_d_compare {
1999 D_COMP_OK,
2000 D_COMP_NOMATCH,
2001 D_COMP_SEQRETRY,
2002};
2003
2004static noinline enum slow_d_compare slow_dentry_cmp(
2005 const struct dentry *parent,
12f8ad4b
LT
2006 struct dentry *dentry,
2007 unsigned int seq,
2008 const struct qstr *name)
2009{
2010 int tlen = dentry->d_name.len;
2011 const char *tname = dentry->d_name.name;
12f8ad4b
LT
2012
2013 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2014 cpu_relax();
2015 return D_COMP_SEQRETRY;
2016 }
da53be12 2017 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
2018 return D_COMP_NOMATCH;
2019 return D_COMP_OK;
2020}
2021
31e6b01f
NP
2022/**
2023 * __d_lookup_rcu - search for a dentry (racy, store-free)
2024 * @parent: parent dentry
2025 * @name: qstr of name we wish to find
1f1e6e52 2026 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2027 * Returns: dentry, or NULL
2028 *
2029 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2030 * resolution (store-free path walking) design described in
2031 * Documentation/filesystems/path-lookup.txt.
2032 *
2033 * This is not to be used outside core vfs.
2034 *
2035 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2036 * held, and rcu_read_lock held. The returned dentry must not be stored into
2037 * without taking d_lock and checking d_seq sequence count against @seq
2038 * returned here.
2039 *
15570086 2040 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2041 * function.
2042 *
2043 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2044 * the returned dentry, so long as its parent's seqlock is checked after the
2045 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2046 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2047 *
2048 * NOTE! The caller *has* to check the resulting dentry against the sequence
2049 * number we've returned before using any of the resulting dentry state!
31e6b01f 2050 */
8966be90
LT
2051struct dentry *__d_lookup_rcu(const struct dentry *parent,
2052 const struct qstr *name,
da53be12 2053 unsigned *seqp)
31e6b01f 2054{
26fe5750 2055 u64 hashlen = name->hash_len;
31e6b01f 2056 const unsigned char *str = name->name;
26fe5750 2057 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 2058 struct hlist_bl_node *node;
31e6b01f
NP
2059 struct dentry *dentry;
2060
2061 /*
2062 * Note: There is significant duplication with __d_lookup_rcu which is
2063 * required to prevent single threaded performance regressions
2064 * especially on architectures where smp_rmb (in seqcounts) are costly.
2065 * Keep the two functions in sync.
2066 */
2067
2068 /*
2069 * The hash list is protected using RCU.
2070 *
2071 * Carefully use d_seq when comparing a candidate dentry, to avoid
2072 * races with d_move().
2073 *
2074 * It is possible that concurrent renames can mess up our list
2075 * walk here and result in missing our dentry, resulting in the
2076 * false-negative result. d_lookup() protects against concurrent
2077 * renames using rename_lock seqlock.
2078 *
b0a4bb83 2079 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2080 */
b07ad996 2081 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2082 unsigned seq;
31e6b01f 2083
31e6b01f 2084seqretry:
12f8ad4b
LT
2085 /*
2086 * The dentry sequence count protects us from concurrent
da53be12 2087 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2088 *
2089 * The caller must perform a seqcount check in order
da53be12 2090 * to do anything useful with the returned dentry.
12f8ad4b
LT
2091 *
2092 * NOTE! We do a "raw" seqcount_begin here. That means that
2093 * we don't wait for the sequence count to stabilize if it
2094 * is in the middle of a sequence change. If we do the slow
2095 * dentry compare, we will do seqretries until it is stable,
2096 * and if we end up with a successful lookup, we actually
2097 * want to exit RCU lookup anyway.
2098 */
2099 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2100 if (dentry->d_parent != parent)
2101 continue;
2e321806
LT
2102 if (d_unhashed(dentry))
2103 continue;
12f8ad4b 2104
830c0f0e 2105 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2106 if (dentry->d_name.hash != hashlen_hash(hashlen))
2107 continue;
da53be12
LT
2108 *seqp = seq;
2109 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2110 case D_COMP_OK:
2111 return dentry;
2112 case D_COMP_NOMATCH:
31e6b01f 2113 continue;
12f8ad4b
LT
2114 default:
2115 goto seqretry;
2116 }
31e6b01f 2117 }
12f8ad4b 2118
26fe5750 2119 if (dentry->d_name.hash_len != hashlen)
ee983e89 2120 continue;
da53be12 2121 *seqp = seq;
26fe5750 2122 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2123 return dentry;
31e6b01f
NP
2124 }
2125 return NULL;
2126}
2127
1da177e4
LT
2128/**
2129 * d_lookup - search for a dentry
2130 * @parent: parent dentry
2131 * @name: qstr of name we wish to find
b04f784e 2132 * Returns: dentry, or NULL
1da177e4 2133 *
b04f784e
NP
2134 * d_lookup searches the children of the parent dentry for the name in
2135 * question. If the dentry is found its reference count is incremented and the
2136 * dentry is returned. The caller must use dput to free the entry when it has
2137 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2138 */
da2d8455 2139struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2140{
31e6b01f 2141 struct dentry *dentry;
949854d0 2142 unsigned seq;
1da177e4
LT
2143
2144 do {
2145 seq = read_seqbegin(&rename_lock);
2146 dentry = __d_lookup(parent, name);
2147 if (dentry)
2148 break;
2149 } while (read_seqretry(&rename_lock, seq));
2150 return dentry;
2151}
ec4f8605 2152EXPORT_SYMBOL(d_lookup);
1da177e4 2153
31e6b01f 2154/**
b04f784e
NP
2155 * __d_lookup - search for a dentry (racy)
2156 * @parent: parent dentry
2157 * @name: qstr of name we wish to find
2158 * Returns: dentry, or NULL
2159 *
2160 * __d_lookup is like d_lookup, however it may (rarely) return a
2161 * false-negative result due to unrelated rename activity.
2162 *
2163 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2164 * however it must be used carefully, eg. with a following d_lookup in
2165 * the case of failure.
2166 *
2167 * __d_lookup callers must be commented.
2168 */
a713ca2a 2169struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2170{
2171 unsigned int len = name->len;
2172 unsigned int hash = name->hash;
2173 const unsigned char *str = name->name;
b07ad996 2174 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2175 struct hlist_bl_node *node;
31e6b01f 2176 struct dentry *found = NULL;
665a7583 2177 struct dentry *dentry;
1da177e4 2178
31e6b01f
NP
2179 /*
2180 * Note: There is significant duplication with __d_lookup_rcu which is
2181 * required to prevent single threaded performance regressions
2182 * especially on architectures where smp_rmb (in seqcounts) are costly.
2183 * Keep the two functions in sync.
2184 */
2185
b04f784e
NP
2186 /*
2187 * The hash list is protected using RCU.
2188 *
2189 * Take d_lock when comparing a candidate dentry, to avoid races
2190 * with d_move().
2191 *
2192 * It is possible that concurrent renames can mess up our list
2193 * walk here and result in missing our dentry, resulting in the
2194 * false-negative result. d_lookup() protects against concurrent
2195 * renames using rename_lock seqlock.
2196 *
b0a4bb83 2197 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2198 */
1da177e4
LT
2199 rcu_read_lock();
2200
b07ad996 2201 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2202
1da177e4
LT
2203 if (dentry->d_name.hash != hash)
2204 continue;
1da177e4
LT
2205
2206 spin_lock(&dentry->d_lock);
1da177e4
LT
2207 if (dentry->d_parent != parent)
2208 goto next;
d0185c08
LT
2209 if (d_unhashed(dentry))
2210 goto next;
2211
1da177e4
LT
2212 /*
2213 * It is safe to compare names since d_move() cannot
2214 * change the qstr (protected by d_lock).
2215 */
fb045adb 2216 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2217 int tlen = dentry->d_name.len;
2218 const char *tname = dentry->d_name.name;
da53be12 2219 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2220 goto next;
2221 } else {
ee983e89
LT
2222 if (dentry->d_name.len != len)
2223 goto next;
12f8ad4b 2224 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2225 goto next;
2226 }
2227
98474236 2228 dentry->d_lockref.count++;
d0185c08 2229 found = dentry;
1da177e4
LT
2230 spin_unlock(&dentry->d_lock);
2231 break;
2232next:
2233 spin_unlock(&dentry->d_lock);
2234 }
2235 rcu_read_unlock();
2236
2237 return found;
2238}
2239
3e7e241f
EB
2240/**
2241 * d_hash_and_lookup - hash the qstr then search for a dentry
2242 * @dir: Directory to search in
2243 * @name: qstr of name we wish to find
2244 *
4f522a24 2245 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2246 */
2247struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2248{
3e7e241f
EB
2249 /*
2250 * Check for a fs-specific hash function. Note that we must
2251 * calculate the standard hash first, as the d_op->d_hash()
2252 * routine may choose to leave the hash value unchanged.
2253 */
2254 name->hash = full_name_hash(name->name, name->len);
fb045adb 2255 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2256 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2257 if (unlikely(err < 0))
2258 return ERR_PTR(err);
3e7e241f 2259 }
4f522a24 2260 return d_lookup(dir, name);
3e7e241f 2261}
4f522a24 2262EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2263
1da177e4 2264/**
786a5e15 2265 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2266 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2267 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2268 *
2269 * An insecure source has sent us a dentry, here we verify it and dget() it.
2270 * This is used by ncpfs in its readdir implementation.
2271 * Zero is returned in the dentry is invalid.
786a5e15
NP
2272 *
2273 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2274 */
d3a23e16 2275int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2276{
786a5e15 2277 struct dentry *child;
d3a23e16 2278
2fd6b7f5 2279 spin_lock(&dparent->d_lock);
786a5e15
NP
2280 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2281 if (dentry == child) {
2fd6b7f5 2282 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2283 __dget_dlock(dentry);
2fd6b7f5
NP
2284 spin_unlock(&dentry->d_lock);
2285 spin_unlock(&dparent->d_lock);
1da177e4
LT
2286 return 1;
2287 }
2288 }
2fd6b7f5 2289 spin_unlock(&dparent->d_lock);
786a5e15 2290
1da177e4
LT
2291 return 0;
2292}
ec4f8605 2293EXPORT_SYMBOL(d_validate);
1da177e4
LT
2294
2295/*
2296 * When a file is deleted, we have two options:
2297 * - turn this dentry into a negative dentry
2298 * - unhash this dentry and free it.
2299 *
2300 * Usually, we want to just turn this into
2301 * a negative dentry, but if anybody else is
2302 * currently using the dentry or the inode
2303 * we can't do that and we fall back on removing
2304 * it from the hash queues and waiting for
2305 * it to be deleted later when it has no users
2306 */
2307
2308/**
2309 * d_delete - delete a dentry
2310 * @dentry: The dentry to delete
2311 *
2312 * Turn the dentry into a negative dentry if possible, otherwise
2313 * remove it from the hash queues so it can be deleted later
2314 */
2315
2316void d_delete(struct dentry * dentry)
2317{
873feea0 2318 struct inode *inode;
7a91bf7f 2319 int isdir = 0;
1da177e4
LT
2320 /*
2321 * Are we the only user?
2322 */
357f8e65 2323again:
1da177e4 2324 spin_lock(&dentry->d_lock);
873feea0
NP
2325 inode = dentry->d_inode;
2326 isdir = S_ISDIR(inode->i_mode);
98474236 2327 if (dentry->d_lockref.count == 1) {
1fe0c023 2328 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2329 spin_unlock(&dentry->d_lock);
2330 cpu_relax();
2331 goto again;
2332 }
13e3c5e5 2333 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2334 dentry_unlink_inode(dentry);
7a91bf7f 2335 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2336 return;
2337 }
2338
2339 if (!d_unhashed(dentry))
2340 __d_drop(dentry);
2341
2342 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2343
2344 fsnotify_nameremove(dentry, isdir);
1da177e4 2345}
ec4f8605 2346EXPORT_SYMBOL(d_delete);
1da177e4 2347
b07ad996 2348static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2349{
ceb5bdc2 2350 BUG_ON(!d_unhashed(entry));
1879fd6a 2351 hlist_bl_lock(b);
dea3667b 2352 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2353 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2354 hlist_bl_unlock(b);
1da177e4
LT
2355}
2356
770bfad8
DH
2357static void _d_rehash(struct dentry * entry)
2358{
2359 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2360}
2361
1da177e4
LT
2362/**
2363 * d_rehash - add an entry back to the hash
2364 * @entry: dentry to add to the hash
2365 *
2366 * Adds a dentry to the hash according to its name.
2367 */
2368
2369void d_rehash(struct dentry * entry)
2370{
1da177e4 2371 spin_lock(&entry->d_lock);
770bfad8 2372 _d_rehash(entry);
1da177e4 2373 spin_unlock(&entry->d_lock);
1da177e4 2374}
ec4f8605 2375EXPORT_SYMBOL(d_rehash);
1da177e4 2376
fb2d5b86
NP
2377/**
2378 * dentry_update_name_case - update case insensitive dentry with a new name
2379 * @dentry: dentry to be updated
2380 * @name: new name
2381 *
2382 * Update a case insensitive dentry with new case of name.
2383 *
2384 * dentry must have been returned by d_lookup with name @name. Old and new
2385 * name lengths must match (ie. no d_compare which allows mismatched name
2386 * lengths).
2387 *
2388 * Parent inode i_mutex must be held over d_lookup and into this call (to
2389 * keep renames and concurrent inserts, and readdir(2) away).
2390 */
2391void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2392{
7ebfa57f 2393 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2394 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2395
fb2d5b86 2396 spin_lock(&dentry->d_lock);
31e6b01f 2397 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2398 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2399 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2400 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2401}
2402EXPORT_SYMBOL(dentry_update_name_case);
2403
8d85b484 2404static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2405{
8d85b484
AV
2406 if (unlikely(dname_external(target))) {
2407 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2408 /*
2409 * Both external: swap the pointers
2410 */
9a8d5bb4 2411 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2412 } else {
2413 /*
2414 * dentry:internal, target:external. Steal target's
2415 * storage and make target internal.
2416 */
321bcf92
BF
2417 memcpy(target->d_iname, dentry->d_name.name,
2418 dentry->d_name.len + 1);
1da177e4
LT
2419 dentry->d_name.name = target->d_name.name;
2420 target->d_name.name = target->d_iname;
2421 }
2422 } else {
8d85b484 2423 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2424 /*
2425 * dentry:external, target:internal. Give dentry's
2426 * storage to target and make dentry internal
2427 */
2428 memcpy(dentry->d_iname, target->d_name.name,
2429 target->d_name.len + 1);
2430 target->d_name.name = dentry->d_name.name;
2431 dentry->d_name.name = dentry->d_iname;
2432 } else {
2433 /*
da1ce067 2434 * Both are internal.
1da177e4 2435 */
da1ce067
MS
2436 unsigned int i;
2437 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2438 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2439 swap(((long *) &dentry->d_iname)[i],
2440 ((long *) &target->d_iname)[i]);
2441 }
1da177e4
LT
2442 }
2443 }
a28ddb87 2444 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2445}
2446
8d85b484
AV
2447static void copy_name(struct dentry *dentry, struct dentry *target)
2448{
2449 struct external_name *old_name = NULL;
2450 if (unlikely(dname_external(dentry)))
2451 old_name = external_name(dentry);
2452 if (unlikely(dname_external(target))) {
2453 atomic_inc(&external_name(target)->u.count);
2454 dentry->d_name = target->d_name;
2455 } else {
2456 memcpy(dentry->d_iname, target->d_name.name,
2457 target->d_name.len + 1);
2458 dentry->d_name.name = dentry->d_iname;
2459 dentry->d_name.hash_len = target->d_name.hash_len;
2460 }
2461 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2462 kfree_rcu(old_name, u.head);
2463}
2464
2fd6b7f5
NP
2465static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2466{
2467 /*
2468 * XXXX: do we really need to take target->d_lock?
2469 */
2470 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2471 spin_lock(&target->d_parent->d_lock);
2472 else {
2473 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2474 spin_lock(&dentry->d_parent->d_lock);
2475 spin_lock_nested(&target->d_parent->d_lock,
2476 DENTRY_D_LOCK_NESTED);
2477 } else {
2478 spin_lock(&target->d_parent->d_lock);
2479 spin_lock_nested(&dentry->d_parent->d_lock,
2480 DENTRY_D_LOCK_NESTED);
2481 }
2482 }
2483 if (target < dentry) {
2484 spin_lock_nested(&target->d_lock, 2);
2485 spin_lock_nested(&dentry->d_lock, 3);
2486 } else {
2487 spin_lock_nested(&dentry->d_lock, 2);
2488 spin_lock_nested(&target->d_lock, 3);
2489 }
2490}
2491
986c0194 2492static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2fd6b7f5
NP
2493{
2494 if (target->d_parent != dentry->d_parent)
2495 spin_unlock(&dentry->d_parent->d_lock);
2496 if (target->d_parent != target)
2497 spin_unlock(&target->d_parent->d_lock);
986c0194
AV
2498 spin_unlock(&target->d_lock);
2499 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
2500}
2501
1da177e4 2502/*
2fd6b7f5
NP
2503 * When switching names, the actual string doesn't strictly have to
2504 * be preserved in the target - because we're dropping the target
2505 * anyway. As such, we can just do a simple memcpy() to copy over
d2fa4a84
ME
2506 * the new name before we switch, unless we are going to rehash
2507 * it. Note that if we *do* unhash the target, we are not allowed
2508 * to rehash it without giving it a new name/hash key - whether
2509 * we swap or overwrite the names here, resulting name won't match
2510 * the reality in filesystem; it's only there for d_path() purposes.
2511 * Note that all of this is happening under rename_lock, so the
2512 * any hash lookup seeing it in the middle of manipulations will
2513 * be discarded anyway. So we do not care what happens to the hash
2514 * key in that case.
1da177e4 2515 */
9eaef27b 2516/*
18367501 2517 * __d_move - move a dentry
1da177e4
LT
2518 * @dentry: entry to move
2519 * @target: new dentry
da1ce067 2520 * @exchange: exchange the two dentries
1da177e4
LT
2521 *
2522 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2523 * dcache entries should not be moved in this way. Caller must hold
2524 * rename_lock, the i_mutex of the source and target directories,
2525 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2526 */
da1ce067
MS
2527static void __d_move(struct dentry *dentry, struct dentry *target,
2528 bool exchange)
1da177e4 2529{
1da177e4
LT
2530 if (!dentry->d_inode)
2531 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2532
2fd6b7f5
NP
2533 BUG_ON(d_ancestor(dentry, target));
2534 BUG_ON(d_ancestor(target, dentry));
2535
2fd6b7f5 2536 dentry_lock_for_move(dentry, target);
1da177e4 2537
31e6b01f 2538 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2539 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2540
ceb5bdc2
NP
2541 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2542
2543 /*
2544 * Move the dentry to the target hash queue. Don't bother checking
2545 * for the same hash queue because of how unlikely it is.
2546 */
2547 __d_drop(dentry);
789680d1 2548 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4 2549
da1ce067
MS
2550 /*
2551 * Unhash the target (d_delete() is not usable here). If exchanging
2552 * the two dentries, then rehash onto the other's hash queue.
2553 */
1da177e4 2554 __d_drop(target);
da1ce067
MS
2555 if (exchange) {
2556 __d_rehash(target,
2557 d_hash(dentry->d_parent, dentry->d_name.hash));
2558 }
1da177e4 2559
1da177e4 2560 /* Switch the names.. */
8d85b484
AV
2561 if (exchange)
2562 swap_names(dentry, target);
2563 else
2564 copy_name(dentry, target);
1da177e4 2565
63cf427a 2566 /* ... and switch them in the tree */
1da177e4 2567 if (IS_ROOT(dentry)) {
63cf427a 2568 /* splicing a tree */
1da177e4
LT
2569 dentry->d_parent = target->d_parent;
2570 target->d_parent = target;
9d8cd306 2571 list_del_init(&target->d_u.d_child);
63cf427a 2572 list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1da177e4 2573 } else {
63cf427a 2574 /* swapping two dentries */
9a8d5bb4 2575 swap(dentry->d_parent, target->d_parent);
9d8cd306 2576 list_move(&target->d_u.d_child, &target->d_parent->d_subdirs);
63cf427a
AV
2577 list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2578 if (exchange)
2579 fsnotify_d_move(target);
2580 fsnotify_d_move(dentry);
1da177e4
LT
2581 }
2582
31e6b01f
NP
2583 write_seqcount_end(&target->d_seq);
2584 write_seqcount_end(&dentry->d_seq);
2585
986c0194 2586 dentry_unlock_for_move(dentry, target);
18367501
AV
2587}
2588
2589/*
2590 * d_move - move a dentry
2591 * @dentry: entry to move
2592 * @target: new dentry
2593 *
2594 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2595 * dcache entries should not be moved in this way. See the locking
2596 * requirements for __d_move.
18367501
AV
2597 */
2598void d_move(struct dentry *dentry, struct dentry *target)
2599{
2600 write_seqlock(&rename_lock);
da1ce067 2601 __d_move(dentry, target, false);
1da177e4 2602 write_sequnlock(&rename_lock);
9eaef27b 2603}
ec4f8605 2604EXPORT_SYMBOL(d_move);
1da177e4 2605
da1ce067
MS
2606/*
2607 * d_exchange - exchange two dentries
2608 * @dentry1: first dentry
2609 * @dentry2: second dentry
2610 */
2611void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2612{
2613 write_seqlock(&rename_lock);
2614
2615 WARN_ON(!dentry1->d_inode);
2616 WARN_ON(!dentry2->d_inode);
2617 WARN_ON(IS_ROOT(dentry1));
2618 WARN_ON(IS_ROOT(dentry2));
2619
2620 __d_move(dentry1, dentry2, true);
2621
2622 write_sequnlock(&rename_lock);
2623}
2624
e2761a11
OH
2625/**
2626 * d_ancestor - search for an ancestor
2627 * @p1: ancestor dentry
2628 * @p2: child dentry
2629 *
2630 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2631 * an ancestor of p2, else NULL.
9eaef27b 2632 */
e2761a11 2633struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2634{
2635 struct dentry *p;
2636
871c0067 2637 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2638 if (p->d_parent == p1)
e2761a11 2639 return p;
9eaef27b 2640 }
e2761a11 2641 return NULL;
9eaef27b
TM
2642}
2643
2644/*
2645 * This helper attempts to cope with remotely renamed directories
2646 *
2647 * It assumes that the caller is already holding
18367501 2648 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2649 *
2650 * Note: If ever the locking in lock_rename() changes, then please
2651 * remember to update this too...
9eaef27b 2652 */
873feea0
NP
2653static struct dentry *__d_unalias(struct inode *inode,
2654 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2655{
2656 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2657 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2658
2659 /* If alias and dentry share a parent, then no extra locks required */
2660 if (alias->d_parent == dentry->d_parent)
2661 goto out_unalias;
2662
9eaef27b 2663 /* See lock_rename() */
9eaef27b
TM
2664 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2665 goto out_err;
2666 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2667 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2668 goto out_err;
2669 m2 = &alias->d_parent->d_inode->i_mutex;
2670out_unalias:
ee3efa91 2671 if (likely(!d_mountpoint(alias))) {
da1ce067 2672 __d_move(alias, dentry, false);
ee3efa91
AV
2673 ret = alias;
2674 }
9eaef27b 2675out_err:
873feea0 2676 spin_unlock(&inode->i_lock);
9eaef27b
TM
2677 if (m2)
2678 mutex_unlock(m2);
2679 if (m1)
2680 mutex_unlock(m1);
2681 return ret;
2682}
2683
3f70bd51
BF
2684/**
2685 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2686 * @inode: the inode which may have a disconnected dentry
2687 * @dentry: a negative dentry which we want to point to the inode.
2688 *
da093a9b
BF
2689 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2690 * place of the given dentry and return it, else simply d_add the inode
2691 * to the dentry and return NULL.
3f70bd51 2692 *
908790fa
BF
2693 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2694 * we should error out: directories can't have multiple aliases.
2695 *
3f70bd51
BF
2696 * This is needed in the lookup routine of any filesystem that is exportable
2697 * (via knfsd) so that we can build dcache paths to directories effectively.
2698 *
2699 * If a dentry was found and moved, then it is returned. Otherwise NULL
2700 * is returned. This matches the expected return value of ->lookup.
2701 *
2702 * Cluster filesystems may call this function with a negative, hashed dentry.
2703 * In that case, we know that the inode will be a regular file, and also this
2704 * will only occur during atomic_open. So we need to check for the dentry
2705 * being already hashed only in the final case.
2706 */
2707struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2708{
2709 struct dentry *new = NULL;
2710
2711 if (IS_ERR(inode))
2712 return ERR_CAST(inode);
2713
2714 if (inode && S_ISDIR(inode->i_mode)) {
2715 spin_lock(&inode->i_lock);
908790fa 2716 new = __d_find_any_alias(inode);
3f70bd51 2717 if (new) {
da093a9b 2718 if (!IS_ROOT(new)) {
908790fa
BF
2719 spin_unlock(&inode->i_lock);
2720 dput(new);
2721 return ERR_PTR(-EIO);
2722 }
95ad5c29
BF
2723 if (d_ancestor(new, dentry)) {
2724 spin_unlock(&inode->i_lock);
2725 dput(new);
2726 return ERR_PTR(-EIO);
2727 }
75a2352d 2728 write_seqlock(&rename_lock);
63cf427a 2729 __d_move(new, dentry, false);
75a2352d 2730 write_sequnlock(&rename_lock);
3f70bd51
BF
2731 spin_unlock(&inode->i_lock);
2732 security_d_instantiate(new, inode);
3f70bd51
BF
2733 iput(inode);
2734 } else {
2735 /* already taking inode->i_lock, so d_add() by hand */
2736 __d_instantiate(dentry, inode);
2737 spin_unlock(&inode->i_lock);
2738 security_d_instantiate(dentry, inode);
2739 d_rehash(dentry);
2740 }
2741 } else {
2742 d_instantiate(dentry, inode);
2743 if (d_unhashed(dentry))
2744 d_rehash(dentry);
2745 }
2746 return new;
2747}
2748EXPORT_SYMBOL(d_splice_alias);
2749
770bfad8
DH
2750/**
2751 * d_materialise_unique - introduce an inode into the tree
2752 * @dentry: candidate dentry
2753 * @inode: inode to bind to the dentry, to which aliases may be attached
2754 *
2755 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2756 * root directory alias in its place if there is one. Caller must hold the
2757 * i_mutex of the parent directory.
770bfad8
DH
2758 */
2759struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2760{
9eaef27b 2761 struct dentry *actual;
770bfad8
DH
2762
2763 BUG_ON(!d_unhashed(dentry));
2764
770bfad8
DH
2765 if (!inode) {
2766 actual = dentry;
360da900 2767 __d_instantiate(dentry, NULL);
357f8e65
NP
2768 d_rehash(actual);
2769 goto out_nolock;
770bfad8
DH
2770 }
2771
873feea0 2772 spin_lock(&inode->i_lock);
357f8e65 2773
9eaef27b
TM
2774 if (S_ISDIR(inode->i_mode)) {
2775 struct dentry *alias;
2776
2777 /* Does an aliased dentry already exist? */
52ed46f0 2778 alias = __d_find_alias(inode);
9eaef27b
TM
2779 if (alias) {
2780 actual = alias;
18367501
AV
2781 write_seqlock(&rename_lock);
2782
2783 if (d_ancestor(alias, dentry)) {
2784 /* Check for loops */
2785 actual = ERR_PTR(-ELOOP);
b18dafc8 2786 spin_unlock(&inode->i_lock);
18367501
AV
2787 } else if (IS_ROOT(alias)) {
2788 /* Is this an anonymous mountpoint that we
2789 * could splice into our tree? */
63cf427a 2790 __d_move(alias, dentry, false);
18367501 2791 write_sequnlock(&rename_lock);
9eaef27b 2792 goto found;
18367501
AV
2793 } else {
2794 /* Nope, but we must(!) avoid directory
b18dafc8 2795 * aliasing. This drops inode->i_lock */
18367501 2796 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2797 }
18367501 2798 write_sequnlock(&rename_lock);
dd179946
DH
2799 if (IS_ERR(actual)) {
2800 if (PTR_ERR(actual) == -ELOOP)
2801 pr_warn_ratelimited(
2802 "VFS: Lookup of '%s' in %s %s"
2803 " would have caused loop\n",
2804 dentry->d_name.name,
2805 inode->i_sb->s_type->name,
2806 inode->i_sb->s_id);
9eaef27b 2807 dput(alias);
dd179946 2808 }
9eaef27b
TM
2809 goto out_nolock;
2810 }
770bfad8
DH
2811 }
2812
2813 /* Add a unique reference */
2814 actual = __d_instantiate_unique(dentry, inode);
2815 if (!actual)
2816 actual = dentry;
770bfad8 2817
8527dd71 2818 d_rehash(actual);
5cc3821b 2819found:
873feea0 2820 spin_unlock(&inode->i_lock);
9eaef27b 2821out_nolock:
770bfad8
DH
2822 if (actual == dentry) {
2823 security_d_instantiate(dentry, inode);
2824 return NULL;
2825 }
2826
2827 iput(inode);
2828 return actual;
770bfad8 2829}
ec4f8605 2830EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2831
cdd16d02 2832static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2833{
2834 *buflen -= namelen;
2835 if (*buflen < 0)
2836 return -ENAMETOOLONG;
2837 *buffer -= namelen;
2838 memcpy(*buffer, str, namelen);
2839 return 0;
2840}
2841
232d2d60
WL
2842/**
2843 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
2844 * @buffer: buffer pointer
2845 * @buflen: allocated length of the buffer
2846 * @name: name string and length qstr structure
232d2d60
WL
2847 *
2848 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2849 * make sure that either the old or the new name pointer and length are
2850 * fetched. However, there may be mismatch between length and pointer.
2851 * The length cannot be trusted, we need to copy it byte-by-byte until
2852 * the length is reached or a null byte is found. It also prepends "/" at
2853 * the beginning of the name. The sequence number check at the caller will
2854 * retry it again when a d_move() does happen. So any garbage in the buffer
2855 * due to mismatched pointer and length will be discarded.
6d13f694
AV
2856 *
2857 * Data dependency barrier is needed to make sure that we see that terminating
2858 * NUL. Alpha strikes again, film at 11...
232d2d60 2859 */
cdd16d02
MS
2860static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2861{
232d2d60
WL
2862 const char *dname = ACCESS_ONCE(name->name);
2863 u32 dlen = ACCESS_ONCE(name->len);
2864 char *p;
2865
6d13f694
AV
2866 smp_read_barrier_depends();
2867
232d2d60 2868 *buflen -= dlen + 1;
e825196d
AV
2869 if (*buflen < 0)
2870 return -ENAMETOOLONG;
232d2d60
WL
2871 p = *buffer -= dlen + 1;
2872 *p++ = '/';
2873 while (dlen--) {
2874 char c = *dname++;
2875 if (!c)
2876 break;
2877 *p++ = c;
2878 }
2879 return 0;
cdd16d02
MS
2880}
2881
1da177e4 2882/**
208898c1 2883 * prepend_path - Prepend path string to a buffer
9d1bc601 2884 * @path: the dentry/vfsmount to report
02125a82 2885 * @root: root vfsmnt/dentry
f2eb6575
MS
2886 * @buffer: pointer to the end of the buffer
2887 * @buflen: pointer to buffer length
552ce544 2888 *
18129977
WL
2889 * The function will first try to write out the pathname without taking any
2890 * lock other than the RCU read lock to make sure that dentries won't go away.
2891 * It only checks the sequence number of the global rename_lock as any change
2892 * in the dentry's d_seq will be preceded by changes in the rename_lock
2893 * sequence number. If the sequence number had been changed, it will restart
2894 * the whole pathname back-tracing sequence again by taking the rename_lock.
2895 * In this case, there is no need to take the RCU read lock as the recursive
2896 * parent pointer references will keep the dentry chain alive as long as no
2897 * rename operation is performed.
1da177e4 2898 */
02125a82
AV
2899static int prepend_path(const struct path *path,
2900 const struct path *root,
f2eb6575 2901 char **buffer, int *buflen)
1da177e4 2902{
ede4cebc
AV
2903 struct dentry *dentry;
2904 struct vfsmount *vfsmnt;
2905 struct mount *mnt;
f2eb6575 2906 int error = 0;
48a066e7 2907 unsigned seq, m_seq = 0;
232d2d60
WL
2908 char *bptr;
2909 int blen;
6092d048 2910
48f5ec21 2911 rcu_read_lock();
48a066e7
AV
2912restart_mnt:
2913 read_seqbegin_or_lock(&mount_lock, &m_seq);
2914 seq = 0;
4ec6c2ae 2915 rcu_read_lock();
232d2d60
WL
2916restart:
2917 bptr = *buffer;
2918 blen = *buflen;
48a066e7 2919 error = 0;
ede4cebc
AV
2920 dentry = path->dentry;
2921 vfsmnt = path->mnt;
2922 mnt = real_mount(vfsmnt);
232d2d60 2923 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 2924 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2925 struct dentry * parent;
2926
1da177e4 2927 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 2928 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
552ce544 2929 /* Global root? */
48a066e7
AV
2930 if (mnt != parent) {
2931 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2932 mnt = parent;
232d2d60
WL
2933 vfsmnt = &mnt->mnt;
2934 continue;
2935 }
2936 /*
2937 * Filesystems needing to implement special "root names"
2938 * should do so with ->d_dname()
2939 */
2940 if (IS_ROOT(dentry) &&
2941 (dentry->d_name.len != 1 ||
2942 dentry->d_name.name[0] != '/')) {
2943 WARN(1, "Root dentry has weird name <%.*s>\n",
2944 (int) dentry->d_name.len,
2945 dentry->d_name.name);
2946 }
2947 if (!error)
2948 error = is_mounted(vfsmnt) ? 1 : 2;
2949 break;
1da177e4
LT
2950 }
2951 parent = dentry->d_parent;
2952 prefetch(parent);
232d2d60 2953 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
2954 if (error)
2955 break;
2956
1da177e4
LT
2957 dentry = parent;
2958 }
48f5ec21
AV
2959 if (!(seq & 1))
2960 rcu_read_unlock();
2961 if (need_seqretry(&rename_lock, seq)) {
2962 seq = 1;
232d2d60 2963 goto restart;
48f5ec21
AV
2964 }
2965 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
2966
2967 if (!(m_seq & 1))
2968 rcu_read_unlock();
48a066e7
AV
2969 if (need_seqretry(&mount_lock, m_seq)) {
2970 m_seq = 1;
2971 goto restart_mnt;
2972 }
2973 done_seqretry(&mount_lock, m_seq);
1da177e4 2974
232d2d60
WL
2975 if (error >= 0 && bptr == *buffer) {
2976 if (--blen < 0)
2977 error = -ENAMETOOLONG;
2978 else
2979 *--bptr = '/';
2980 }
2981 *buffer = bptr;
2982 *buflen = blen;
7ea600b5 2983 return error;
f2eb6575 2984}
be285c71 2985
f2eb6575
MS
2986/**
2987 * __d_path - return the path of a dentry
2988 * @path: the dentry/vfsmount to report
02125a82 2989 * @root: root vfsmnt/dentry
cd956a1c 2990 * @buf: buffer to return value in
f2eb6575
MS
2991 * @buflen: buffer length
2992 *
ffd1f4ed 2993 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2994 *
2995 * Returns a pointer into the buffer or an error code if the
2996 * path was too long.
2997 *
be148247 2998 * "buflen" should be positive.
f2eb6575 2999 *
02125a82 3000 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 3001 */
02125a82
AV
3002char *__d_path(const struct path *path,
3003 const struct path *root,
f2eb6575
MS
3004 char *buf, int buflen)
3005{
3006 char *res = buf + buflen;
3007 int error;
3008
3009 prepend(&res, &buflen, "\0", 1);
f2eb6575 3010 error = prepend_path(path, root, &res, &buflen);
be148247 3011
02125a82
AV
3012 if (error < 0)
3013 return ERR_PTR(error);
3014 if (error > 0)
3015 return NULL;
3016 return res;
3017}
3018
3019char *d_absolute_path(const struct path *path,
3020 char *buf, int buflen)
3021{
3022 struct path root = {};
3023 char *res = buf + buflen;
3024 int error;
3025
3026 prepend(&res, &buflen, "\0", 1);
02125a82 3027 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
3028
3029 if (error > 1)
3030 error = -EINVAL;
3031 if (error < 0)
f2eb6575 3032 return ERR_PTR(error);
f2eb6575 3033 return res;
1da177e4
LT
3034}
3035
ffd1f4ed
MS
3036/*
3037 * same as __d_path but appends "(deleted)" for unlinked files.
3038 */
02125a82
AV
3039static int path_with_deleted(const struct path *path,
3040 const struct path *root,
3041 char **buf, int *buflen)
ffd1f4ed
MS
3042{
3043 prepend(buf, buflen, "\0", 1);
3044 if (d_unlinked(path->dentry)) {
3045 int error = prepend(buf, buflen, " (deleted)", 10);
3046 if (error)
3047 return error;
3048 }
3049
3050 return prepend_path(path, root, buf, buflen);
3051}
3052
8df9d1a4
MS
3053static int prepend_unreachable(char **buffer, int *buflen)
3054{
3055 return prepend(buffer, buflen, "(unreachable)", 13);
3056}
3057
68f0d9d9
LT
3058static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3059{
3060 unsigned seq;
3061
3062 do {
3063 seq = read_seqcount_begin(&fs->seq);
3064 *root = fs->root;
3065 } while (read_seqcount_retry(&fs->seq, seq));
3066}
3067
a03a8a70
JB
3068/**
3069 * d_path - return the path of a dentry
cf28b486 3070 * @path: path to report
a03a8a70
JB
3071 * @buf: buffer to return value in
3072 * @buflen: buffer length
3073 *
3074 * Convert a dentry into an ASCII path name. If the entry has been deleted
3075 * the string " (deleted)" is appended. Note that this is ambiguous.
3076 *
52afeefb
AV
3077 * Returns a pointer into the buffer or an error code if the path was
3078 * too long. Note: Callers should use the returned pointer, not the passed
3079 * in buffer, to use the name! The implementation often starts at an offset
3080 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3081 *
31f3e0b3 3082 * "buflen" should be positive.
a03a8a70 3083 */
20d4fdc1 3084char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3085{
ffd1f4ed 3086 char *res = buf + buflen;
6ac08c39 3087 struct path root;
ffd1f4ed 3088 int error;
1da177e4 3089
c23fbb6b
ED
3090 /*
3091 * We have various synthetic filesystems that never get mounted. On
3092 * these filesystems dentries are never used for lookup purposes, and
3093 * thus don't need to be hashed. They also don't need a name until a
3094 * user wants to identify the object in /proc/pid/fd/. The little hack
3095 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3096 *
3097 * Some pseudo inodes are mountable. When they are mounted
3098 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3099 * and instead have d_path return the mounted path.
c23fbb6b 3100 */
f48cfddc
EB
3101 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3102 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3103 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3104
68f0d9d9
LT
3105 rcu_read_lock();
3106 get_fs_root_rcu(current->fs, &root);
02125a82 3107 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3108 rcu_read_unlock();
3109
02125a82 3110 if (error < 0)
ffd1f4ed 3111 res = ERR_PTR(error);
1da177e4
LT
3112 return res;
3113}
ec4f8605 3114EXPORT_SYMBOL(d_path);
1da177e4 3115
c23fbb6b
ED
3116/*
3117 * Helper function for dentry_operations.d_dname() members
3118 */
3119char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3120 const char *fmt, ...)
3121{
3122 va_list args;
3123 char temp[64];
3124 int sz;
3125
3126 va_start(args, fmt);
3127 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3128 va_end(args);
3129
3130 if (sz > sizeof(temp) || sz > buflen)
3131 return ERR_PTR(-ENAMETOOLONG);
3132
3133 buffer += buflen - sz;
3134 return memcpy(buffer, temp, sz);
3135}
3136
118b2302
AV
3137char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3138{
3139 char *end = buffer + buflen;
3140 /* these dentries are never renamed, so d_lock is not needed */
3141 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3142 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3143 prepend(&end, &buflen, "/", 1))
3144 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3145 return end;
118b2302 3146}
31bbe16f 3147EXPORT_SYMBOL(simple_dname);
118b2302 3148
6092d048
RP
3149/*
3150 * Write full pathname from the root of the filesystem into the buffer.
3151 */
f6500801 3152static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3153{
f6500801 3154 struct dentry *dentry;
232d2d60
WL
3155 char *end, *retval;
3156 int len, seq = 0;
3157 int error = 0;
6092d048 3158
f6500801
AV
3159 if (buflen < 2)
3160 goto Elong;
3161
48f5ec21 3162 rcu_read_lock();
232d2d60 3163restart:
f6500801 3164 dentry = d;
232d2d60
WL
3165 end = buf + buflen;
3166 len = buflen;
3167 prepend(&end, &len, "\0", 1);
6092d048
RP
3168 /* Get '/' right */
3169 retval = end-1;
3170 *retval = '/';
232d2d60 3171 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3172 while (!IS_ROOT(dentry)) {
3173 struct dentry *parent = dentry->d_parent;
6092d048 3174
6092d048 3175 prefetch(parent);
232d2d60
WL
3176 error = prepend_name(&end, &len, &dentry->d_name);
3177 if (error)
3178 break;
6092d048
RP
3179
3180 retval = end;
3181 dentry = parent;
3182 }
48f5ec21
AV
3183 if (!(seq & 1))
3184 rcu_read_unlock();
3185 if (need_seqretry(&rename_lock, seq)) {
3186 seq = 1;
232d2d60 3187 goto restart;
48f5ec21
AV
3188 }
3189 done_seqretry(&rename_lock, seq);
232d2d60
WL
3190 if (error)
3191 goto Elong;
c103135c
AV
3192 return retval;
3193Elong:
3194 return ERR_PTR(-ENAMETOOLONG);
3195}
ec2447c2
NP
3196
3197char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3198{
232d2d60 3199 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3200}
3201EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3202
3203char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3204{
3205 char *p = NULL;
3206 char *retval;
3207
c103135c
AV
3208 if (d_unlinked(dentry)) {
3209 p = buf + buflen;
3210 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3211 goto Elong;
3212 buflen++;
3213 }
3214 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3215 if (!IS_ERR(retval) && p)
3216 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3217 return retval;
3218Elong:
6092d048
RP
3219 return ERR_PTR(-ENAMETOOLONG);
3220}
3221
8b19e341
LT
3222static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3223 struct path *pwd)
5762482f 3224{
8b19e341
LT
3225 unsigned seq;
3226
3227 do {
3228 seq = read_seqcount_begin(&fs->seq);
3229 *root = fs->root;
3230 *pwd = fs->pwd;
3231 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3232}
3233
1da177e4
LT
3234/*
3235 * NOTE! The user-level library version returns a
3236 * character pointer. The kernel system call just
3237 * returns the length of the buffer filled (which
3238 * includes the ending '\0' character), or a negative
3239 * error value. So libc would do something like
3240 *
3241 * char *getcwd(char * buf, size_t size)
3242 * {
3243 * int retval;
3244 *
3245 * retval = sys_getcwd(buf, size);
3246 * if (retval >= 0)
3247 * return buf;
3248 * errno = -retval;
3249 * return NULL;
3250 * }
3251 */
3cdad428 3252SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3253{
552ce544 3254 int error;
6ac08c39 3255 struct path pwd, root;
3272c544 3256 char *page = __getname();
1da177e4
LT
3257
3258 if (!page)
3259 return -ENOMEM;
3260
8b19e341
LT
3261 rcu_read_lock();
3262 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3263
552ce544 3264 error = -ENOENT;
f3da392e 3265 if (!d_unlinked(pwd.dentry)) {
552ce544 3266 unsigned long len;
3272c544
LT
3267 char *cwd = page + PATH_MAX;
3268 int buflen = PATH_MAX;
1da177e4 3269
8df9d1a4 3270 prepend(&cwd, &buflen, "\0", 1);
02125a82 3271 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3272 rcu_read_unlock();
552ce544 3273
02125a82 3274 if (error < 0)
552ce544
LT
3275 goto out;
3276
8df9d1a4 3277 /* Unreachable from current root */
02125a82 3278 if (error > 0) {
8df9d1a4
MS
3279 error = prepend_unreachable(&cwd, &buflen);
3280 if (error)
3281 goto out;
3282 }
3283
552ce544 3284 error = -ERANGE;
3272c544 3285 len = PATH_MAX + page - cwd;
552ce544
LT
3286 if (len <= size) {
3287 error = len;
3288 if (copy_to_user(buf, cwd, len))
3289 error = -EFAULT;
3290 }
949854d0 3291 } else {
ff812d72 3292 rcu_read_unlock();
949854d0 3293 }
1da177e4
LT
3294
3295out:
3272c544 3296 __putname(page);
1da177e4
LT
3297 return error;
3298}
3299
3300/*
3301 * Test whether new_dentry is a subdirectory of old_dentry.
3302 *
3303 * Trivially implemented using the dcache structure
3304 */
3305
3306/**
3307 * is_subdir - is new dentry a subdirectory of old_dentry
3308 * @new_dentry: new dentry
3309 * @old_dentry: old dentry
3310 *
3311 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3312 * Returns 0 otherwise.
3313 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3314 */
3315
e2761a11 3316int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
3317{
3318 int result;
949854d0 3319 unsigned seq;
1da177e4 3320
e2761a11
OH
3321 if (new_dentry == old_dentry)
3322 return 1;
3323
e2761a11 3324 do {
1da177e4 3325 /* for restarting inner loop in case of seq retry */
1da177e4 3326 seq = read_seqbegin(&rename_lock);
949854d0
NP
3327 /*
3328 * Need rcu_readlock to protect against the d_parent trashing
3329 * due to d_move
3330 */
3331 rcu_read_lock();
e2761a11 3332 if (d_ancestor(old_dentry, new_dentry))
1da177e4 3333 result = 1;
e2761a11
OH
3334 else
3335 result = 0;
949854d0 3336 rcu_read_unlock();
1da177e4 3337 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3338
3339 return result;
3340}
3341
db14fc3a 3342static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3343{
db14fc3a
MS
3344 struct dentry *root = data;
3345 if (dentry != root) {
3346 if (d_unhashed(dentry) || !dentry->d_inode)
3347 return D_WALK_SKIP;
1da177e4 3348
01ddc4ed
MS
3349 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3350 dentry->d_flags |= DCACHE_GENOCIDE;
3351 dentry->d_lockref.count--;
3352 }
1da177e4 3353 }
db14fc3a
MS
3354 return D_WALK_CONTINUE;
3355}
58db63d0 3356
db14fc3a
MS
3357void d_genocide(struct dentry *parent)
3358{
3359 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3360}
3361
60545d0d 3362void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3363{
60545d0d
AV
3364 inode_dec_link_count(inode);
3365 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3366 !hlist_unhashed(&dentry->d_alias) ||
3367 !d_unlinked(dentry));
3368 spin_lock(&dentry->d_parent->d_lock);
3369 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3370 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3371 (unsigned long long)inode->i_ino);
3372 spin_unlock(&dentry->d_lock);
3373 spin_unlock(&dentry->d_parent->d_lock);
3374 d_instantiate(dentry, inode);
1da177e4 3375}
60545d0d 3376EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3377
3378static __initdata unsigned long dhash_entries;
3379static int __init set_dhash_entries(char *str)
3380{
3381 if (!str)
3382 return 0;
3383 dhash_entries = simple_strtoul(str, &str, 0);
3384 return 1;
3385}
3386__setup("dhash_entries=", set_dhash_entries);
3387
3388static void __init dcache_init_early(void)
3389{
074b8517 3390 unsigned int loop;
1da177e4
LT
3391
3392 /* If hashes are distributed across NUMA nodes, defer
3393 * hash allocation until vmalloc space is available.
3394 */
3395 if (hashdist)
3396 return;
3397
3398 dentry_hashtable =
3399 alloc_large_system_hash("Dentry cache",
b07ad996 3400 sizeof(struct hlist_bl_head),
1da177e4
LT
3401 dhash_entries,
3402 13,
3403 HASH_EARLY,
3404 &d_hash_shift,
3405 &d_hash_mask,
31fe62b9 3406 0,
1da177e4
LT
3407 0);
3408
074b8517 3409 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3410 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3411}
3412
74bf17cf 3413static void __init dcache_init(void)
1da177e4 3414{
074b8517 3415 unsigned int loop;
1da177e4
LT
3416
3417 /*
3418 * A constructor could be added for stable state like the lists,
3419 * but it is probably not worth it because of the cache nature
3420 * of the dcache.
3421 */
0a31bd5f
CL
3422 dentry_cache = KMEM_CACHE(dentry,
3423 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3424
3425 /* Hash may have been set up in dcache_init_early */
3426 if (!hashdist)
3427 return;
3428
3429 dentry_hashtable =
3430 alloc_large_system_hash("Dentry cache",
b07ad996 3431 sizeof(struct hlist_bl_head),
1da177e4
LT
3432 dhash_entries,
3433 13,
3434 0,
3435 &d_hash_shift,
3436 &d_hash_mask,
31fe62b9 3437 0,
1da177e4
LT
3438 0);
3439
074b8517 3440 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3441 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3442}
3443
3444/* SLAB cache for __getname() consumers */
e18b890b 3445struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3446EXPORT_SYMBOL(names_cachep);
1da177e4 3447
1da177e4
LT
3448EXPORT_SYMBOL(d_genocide);
3449
1da177e4
LT
3450void __init vfs_caches_init_early(void)
3451{
3452 dcache_init_early();
3453 inode_init_early();
3454}
3455
3456void __init vfs_caches_init(unsigned long mempages)
3457{
3458 unsigned long reserve;
3459
3460 /* Base hash sizes on available memory, with a reserve equal to
3461 150% of current kernel size */
3462
3463 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3464 mempages -= reserve;
3465
3466 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3467 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3468
74bf17cf
DC
3469 dcache_init();
3470 inode_init();
1da177e4 3471 files_init(mempages);
74bf17cf 3472 mnt_init();
1da177e4
LT
3473 bdev_cache_init();
3474 chrdev_init();
3475}
This page took 1.111695 seconds and 5 git commands to generate.