more graceful recovery in umount_collect()
[deliverable/linux.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
07f3f05c 41#include "internal.h"
b2dba1af 42#include "mount.h"
1da177e4 43
789680d1
NP
44/*
45 * Usage:
873feea0
NP
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
19156840 52 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
b7ab39f6 58 * - d_count
da502956 59 * - d_unhashed()
2fd6b7f5
NP
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
b23fb0a6 62 * - d_alias, d_inode
789680d1
NP
63 *
64 * Ordering:
873feea0 65 * dentry->d_inode->i_lock
b5c84bf6 66 * dentry->d_lock
19156840 67 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
68 * dcache_hash_bucket lock
69 * s_anon lock
789680d1 70 *
da502956
NP
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
789680d1
NP
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
fa3536cc 82int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
83EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
1da177e4 99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
8966be90 105static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 106 unsigned int hash)
ceb5bdc2 107{
6d7d1a0d 108 hash += (unsigned long) parent / L1_CACHE_BYTES;
482db906
AV
109 hash = hash + (hash >> d_hash_shift);
110 return dentry_hashtable + (hash & d_hash_mask);
ceb5bdc2
NP
111}
112
1da177e4
LT
113/* Statistics gathering. */
114struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
116};
117
3942c07c 118static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 119static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
120
121#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
122
123/*
124 * Here we resort to our own counters instead of using generic per-cpu counters
125 * for consistency with what the vfs inode code does. We are expected to harvest
126 * better code and performance by having our own specialized counters.
127 *
128 * Please note that the loop is done over all possible CPUs, not over all online
129 * CPUs. The reason for this is that we don't want to play games with CPUs going
130 * on and off. If one of them goes off, we will just keep their counters.
131 *
132 * glommer: See cffbc8a for details, and if you ever intend to change this,
133 * please update all vfs counters to match.
134 */
3942c07c 135static long get_nr_dentry(void)
3e880fb5
NP
136{
137 int i;
3942c07c 138 long sum = 0;
3e880fb5
NP
139 for_each_possible_cpu(i)
140 sum += per_cpu(nr_dentry, i);
141 return sum < 0 ? 0 : sum;
142}
143
62d36c77
DC
144static long get_nr_dentry_unused(void)
145{
146 int i;
147 long sum = 0;
148 for_each_possible_cpu(i)
149 sum += per_cpu(nr_dentry_unused, i);
150 return sum < 0 ? 0 : sum;
151}
152
312d3ca8
CH
153int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
154 size_t *lenp, loff_t *ppos)
155{
3e880fb5 156 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 157 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 158 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
159}
160#endif
161
5483f18e
LT
162/*
163 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
164 * The strings are both count bytes long, and count is non-zero.
165 */
e419b4cc
LT
166#ifdef CONFIG_DCACHE_WORD_ACCESS
167
168#include <asm/word-at-a-time.h>
169/*
170 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
171 * aligned allocation for this particular component. We don't
172 * strictly need the load_unaligned_zeropad() safety, but it
173 * doesn't hurt either.
174 *
175 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
176 * need the careful unaligned handling.
177 */
94753db5 178static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 179{
bfcfaa77 180 unsigned long a,b,mask;
bfcfaa77
LT
181
182 for (;;) {
12f8ad4b 183 a = *(unsigned long *)cs;
e419b4cc 184 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
185 if (tcount < sizeof(unsigned long))
186 break;
187 if (unlikely(a != b))
188 return 1;
189 cs += sizeof(unsigned long);
190 ct += sizeof(unsigned long);
191 tcount -= sizeof(unsigned long);
192 if (!tcount)
193 return 0;
194 }
a5c21dce 195 mask = bytemask_from_count(tcount);
bfcfaa77 196 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
197}
198
bfcfaa77 199#else
e419b4cc 200
94753db5 201static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 202{
5483f18e
LT
203 do {
204 if (*cs != *ct)
205 return 1;
206 cs++;
207 ct++;
208 tcount--;
209 } while (tcount);
210 return 0;
211}
212
e419b4cc
LT
213#endif
214
94753db5
LT
215static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
216{
6326c71f 217 const unsigned char *cs;
94753db5
LT
218 /*
219 * Be careful about RCU walk racing with rename:
220 * use ACCESS_ONCE to fetch the name pointer.
221 *
222 * NOTE! Even if a rename will mean that the length
223 * was not loaded atomically, we don't care. The
224 * RCU walk will check the sequence count eventually,
225 * and catch it. And we won't overrun the buffer,
226 * because we're reading the name pointer atomically,
227 * and a dentry name is guaranteed to be properly
228 * terminated with a NUL byte.
229 *
230 * End result: even if 'len' is wrong, we'll exit
231 * early because the data cannot match (there can
232 * be no NUL in the ct/tcount data)
233 */
6326c71f
LT
234 cs = ACCESS_ONCE(dentry->d_name.name);
235 smp_read_barrier_depends();
236 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
237}
238
9c82ab9c 239static void __d_free(struct rcu_head *head)
1da177e4 240{
9c82ab9c
CH
241 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
242
b3d9b7a3 243 WARN_ON(!hlist_unhashed(&dentry->d_alias));
1da177e4
LT
244 if (dname_external(dentry))
245 kfree(dentry->d_name.name);
246 kmem_cache_free(dentry_cache, dentry);
247}
248
b4f0354e
AV
249static void dentry_free(struct dentry *dentry)
250{
251 /* if dentry was never visible to RCU, immediate free is OK */
252 if (!(dentry->d_flags & DCACHE_RCUACCESS))
253 __d_free(&dentry->d_u.d_rcu);
254 else
255 call_rcu(&dentry->d_u.d_rcu, __d_free);
256}
257
31e6b01f
NP
258/**
259 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 260 * @dentry: the target dentry
31e6b01f
NP
261 * After this call, in-progress rcu-walk path lookup will fail. This
262 * should be called after unhashing, and after changing d_inode (if
263 * the dentry has not already been unhashed).
264 */
265static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
266{
267 assert_spin_locked(&dentry->d_lock);
268 /* Go through a barrier */
269 write_seqcount_barrier(&dentry->d_seq);
270}
271
1da177e4
LT
272/*
273 * Release the dentry's inode, using the filesystem
31e6b01f
NP
274 * d_iput() operation if defined. Dentry has no refcount
275 * and is unhashed.
1da177e4 276 */
858119e1 277static void dentry_iput(struct dentry * dentry)
31f3e0b3 278 __releases(dentry->d_lock)
873feea0 279 __releases(dentry->d_inode->i_lock)
1da177e4
LT
280{
281 struct inode *inode = dentry->d_inode;
282 if (inode) {
283 dentry->d_inode = NULL;
b3d9b7a3 284 hlist_del_init(&dentry->d_alias);
1da177e4 285 spin_unlock(&dentry->d_lock);
873feea0 286 spin_unlock(&inode->i_lock);
f805fbda
LT
287 if (!inode->i_nlink)
288 fsnotify_inoderemove(inode);
1da177e4
LT
289 if (dentry->d_op && dentry->d_op->d_iput)
290 dentry->d_op->d_iput(dentry, inode);
291 else
292 iput(inode);
293 } else {
294 spin_unlock(&dentry->d_lock);
1da177e4
LT
295 }
296}
297
31e6b01f
NP
298/*
299 * Release the dentry's inode, using the filesystem
300 * d_iput() operation if defined. dentry remains in-use.
301 */
302static void dentry_unlink_inode(struct dentry * dentry)
303 __releases(dentry->d_lock)
873feea0 304 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
305{
306 struct inode *inode = dentry->d_inode;
b18825a7 307 __d_clear_type(dentry);
31e6b01f 308 dentry->d_inode = NULL;
b3d9b7a3 309 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
310 dentry_rcuwalk_barrier(dentry);
311 spin_unlock(&dentry->d_lock);
873feea0 312 spin_unlock(&inode->i_lock);
31e6b01f
NP
313 if (!inode->i_nlink)
314 fsnotify_inoderemove(inode);
315 if (dentry->d_op && dentry->d_op->d_iput)
316 dentry->d_op->d_iput(dentry, inode);
317 else
318 iput(inode);
319}
320
89dc77bc
LT
321/*
322 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
323 * is in use - which includes both the "real" per-superblock
324 * LRU list _and_ the DCACHE_SHRINK_LIST use.
325 *
326 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
327 * on the shrink list (ie not on the superblock LRU list).
328 *
329 * The per-cpu "nr_dentry_unused" counters are updated with
330 * the DCACHE_LRU_LIST bit.
331 *
332 * These helper functions make sure we always follow the
333 * rules. d_lock must be held by the caller.
334 */
335#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
336static void d_lru_add(struct dentry *dentry)
337{
338 D_FLAG_VERIFY(dentry, 0);
339 dentry->d_flags |= DCACHE_LRU_LIST;
340 this_cpu_inc(nr_dentry_unused);
341 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
342}
343
344static void d_lru_del(struct dentry *dentry)
345{
346 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
347 dentry->d_flags &= ~DCACHE_LRU_LIST;
348 this_cpu_dec(nr_dentry_unused);
349 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
350}
351
352static void d_shrink_del(struct dentry *dentry)
353{
354 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
355 list_del_init(&dentry->d_lru);
356 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
357 this_cpu_dec(nr_dentry_unused);
358}
359
360static void d_shrink_add(struct dentry *dentry, struct list_head *list)
361{
362 D_FLAG_VERIFY(dentry, 0);
363 list_add(&dentry->d_lru, list);
364 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
365 this_cpu_inc(nr_dentry_unused);
366}
367
368/*
369 * These can only be called under the global LRU lock, ie during the
370 * callback for freeing the LRU list. "isolate" removes it from the
371 * LRU lists entirely, while shrink_move moves it to the indicated
372 * private list.
373 */
374static void d_lru_isolate(struct dentry *dentry)
375{
376 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
377 dentry->d_flags &= ~DCACHE_LRU_LIST;
378 this_cpu_dec(nr_dentry_unused);
379 list_del_init(&dentry->d_lru);
380}
381
382static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
383{
384 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
385 dentry->d_flags |= DCACHE_SHRINK_LIST;
386 list_move_tail(&dentry->d_lru, list);
387}
388
da3bbdd4 389/*
f6041567 390 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
391 */
392static void dentry_lru_add(struct dentry *dentry)
393{
89dc77bc
LT
394 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
395 d_lru_add(dentry);
da3bbdd4
KM
396}
397
789680d1
NP
398/**
399 * d_drop - drop a dentry
400 * @dentry: dentry to drop
401 *
402 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
403 * be found through a VFS lookup any more. Note that this is different from
404 * deleting the dentry - d_delete will try to mark the dentry negative if
405 * possible, giving a successful _negative_ lookup, while d_drop will
406 * just make the cache lookup fail.
407 *
408 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
409 * reason (NFS timeouts or autofs deletes).
410 *
411 * __d_drop requires dentry->d_lock.
412 */
413void __d_drop(struct dentry *dentry)
414{
dea3667b 415 if (!d_unhashed(dentry)) {
b61625d2 416 struct hlist_bl_head *b;
7632e465
BF
417 /*
418 * Hashed dentries are normally on the dentry hashtable,
419 * with the exception of those newly allocated by
420 * d_obtain_alias, which are always IS_ROOT:
421 */
422 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
423 b = &dentry->d_sb->s_anon;
424 else
425 b = d_hash(dentry->d_parent, dentry->d_name.hash);
426
427 hlist_bl_lock(b);
428 __hlist_bl_del(&dentry->d_hash);
429 dentry->d_hash.pprev = NULL;
430 hlist_bl_unlock(b);
dea3667b 431 dentry_rcuwalk_barrier(dentry);
789680d1
NP
432 }
433}
434EXPORT_SYMBOL(__d_drop);
435
436void d_drop(struct dentry *dentry)
437{
789680d1
NP
438 spin_lock(&dentry->d_lock);
439 __d_drop(dentry);
440 spin_unlock(&dentry->d_lock);
789680d1
NP
441}
442EXPORT_SYMBOL(d_drop);
443
77812a1e
NP
444/*
445 * Finish off a dentry we've decided to kill.
446 * dentry->d_lock must be held, returns with it unlocked.
447 * If ref is non-zero, then decrement the refcount too.
448 * Returns dentry requiring refcount drop, or NULL if we're done.
449 */
358eec18 450static struct dentry *
dd1f6b2e 451dentry_kill(struct dentry *dentry, int unlock_on_failure)
77812a1e
NP
452 __releases(dentry->d_lock)
453{
873feea0 454 struct inode *inode;
41edf278
AV
455 struct dentry *parent = NULL;
456 bool can_free = true;
457
458 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
459 can_free = dentry->d_flags & DCACHE_MAY_FREE;
460 spin_unlock(&dentry->d_lock);
461 goto out;
462 }
77812a1e 463
873feea0
NP
464 inode = dentry->d_inode;
465 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e 466relock:
dd1f6b2e
DC
467 if (unlock_on_failure) {
468 spin_unlock(&dentry->d_lock);
469 cpu_relax();
470 }
77812a1e
NP
471 return dentry; /* try again with same dentry */
472 }
41edf278 473 if (!IS_ROOT(dentry))
77812a1e
NP
474 parent = dentry->d_parent;
475 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
476 if (inode)
477 spin_unlock(&inode->i_lock);
77812a1e
NP
478 goto relock;
479 }
31e6b01f 480
0d98439e
LT
481 /*
482 * The dentry is now unrecoverably dead to the world.
483 */
484 lockref_mark_dead(&dentry->d_lockref);
485
f0023bc6 486 /*
f0023bc6
SW
487 * inform the fs via d_prune that this dentry is about to be
488 * unhashed and destroyed.
489 */
590fb51f 490 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
61572bb1
YZ
491 dentry->d_op->d_prune(dentry);
492
01b60351
AV
493 if (dentry->d_flags & DCACHE_LRU_LIST) {
494 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
495 d_lru_del(dentry);
01b60351 496 }
77812a1e
NP
497 /* if it was on the hash then remove it */
498 __d_drop(dentry);
03b3b889
AV
499 list_del(&dentry->d_u.d_child);
500 /*
501 * Inform d_walk() that we are no longer attached to the
502 * dentry tree
503 */
504 dentry->d_flags |= DCACHE_DENTRY_KILLED;
505 if (parent)
506 spin_unlock(&parent->d_lock);
507 dentry_iput(dentry);
508 /*
509 * dentry_iput drops the locks, at which point nobody (except
510 * transient RCU lookups) can reach this dentry.
511 */
512 BUG_ON((int)dentry->d_lockref.count > 0);
513 this_cpu_dec(nr_dentry);
514 if (dentry->d_op && dentry->d_op->d_release)
515 dentry->d_op->d_release(dentry);
516
41edf278
AV
517 spin_lock(&dentry->d_lock);
518 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
519 dentry->d_flags |= DCACHE_MAY_FREE;
520 can_free = false;
521 }
522 spin_unlock(&dentry->d_lock);
523out:
524 if (likely(can_free))
525 dentry_free(dentry);
03b3b889 526 return parent;
77812a1e
NP
527}
528
1da177e4
LT
529/*
530 * This is dput
531 *
532 * This is complicated by the fact that we do not want to put
533 * dentries that are no longer on any hash chain on the unused
534 * list: we'd much rather just get rid of them immediately.
535 *
536 * However, that implies that we have to traverse the dentry
537 * tree upwards to the parents which might _also_ now be
538 * scheduled for deletion (it may have been only waiting for
539 * its last child to go away).
540 *
541 * This tail recursion is done by hand as we don't want to depend
542 * on the compiler to always get this right (gcc generally doesn't).
543 * Real recursion would eat up our stack space.
544 */
545
546/*
547 * dput - release a dentry
548 * @dentry: dentry to release
549 *
550 * Release a dentry. This will drop the usage count and if appropriate
551 * call the dentry unlink method as well as removing it from the queues and
552 * releasing its resources. If the parent dentries were scheduled for release
553 * they too may now get deleted.
1da177e4 554 */
1da177e4
LT
555void dput(struct dentry *dentry)
556{
8aab6a27 557 if (unlikely(!dentry))
1da177e4
LT
558 return;
559
560repeat:
98474236 561 if (lockref_put_or_lock(&dentry->d_lockref))
1da177e4 562 return;
1da177e4 563
8aab6a27
LT
564 /* Unreachable? Get rid of it */
565 if (unlikely(d_unhashed(dentry)))
566 goto kill_it;
567
568 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 569 if (dentry->d_op->d_delete(dentry))
61f3dee4 570 goto kill_it;
1da177e4 571 }
265ac902 572
358eec18
LT
573 if (!(dentry->d_flags & DCACHE_REFERENCED))
574 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 575 dentry_lru_add(dentry);
265ac902 576
98474236 577 dentry->d_lockref.count--;
61f3dee4 578 spin_unlock(&dentry->d_lock);
1da177e4
LT
579 return;
580
d52b9086 581kill_it:
dd1f6b2e 582 dentry = dentry_kill(dentry, 1);
d52b9086
MS
583 if (dentry)
584 goto repeat;
1da177e4 585}
ec4f8605 586EXPORT_SYMBOL(dput);
1da177e4
LT
587
588/**
589 * d_invalidate - invalidate a dentry
590 * @dentry: dentry to invalidate
591 *
592 * Try to invalidate the dentry if it turns out to be
593 * possible. If there are other dentries that can be
594 * reached through this one we can't delete it and we
595 * return -EBUSY. On success we return 0.
596 *
597 * no dcache lock.
598 */
599
600int d_invalidate(struct dentry * dentry)
601{
602 /*
603 * If it's already been dropped, return OK.
604 */
da502956 605 spin_lock(&dentry->d_lock);
1da177e4 606 if (d_unhashed(dentry)) {
da502956 607 spin_unlock(&dentry->d_lock);
1da177e4
LT
608 return 0;
609 }
610 /*
611 * Check whether to do a partial shrink_dcache
612 * to get rid of unused child entries.
613 */
614 if (!list_empty(&dentry->d_subdirs)) {
da502956 615 spin_unlock(&dentry->d_lock);
1da177e4 616 shrink_dcache_parent(dentry);
da502956 617 spin_lock(&dentry->d_lock);
1da177e4
LT
618 }
619
620 /*
621 * Somebody else still using it?
622 *
623 * If it's a directory, we can't drop it
624 * for fear of somebody re-populating it
625 * with children (even though dropping it
626 * would make it unreachable from the root,
627 * we might still populate it if it was a
628 * working directory or similar).
50e69630
AV
629 * We also need to leave mountpoints alone,
630 * directory or not.
1da177e4 631 */
98474236 632 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
50e69630 633 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 634 spin_unlock(&dentry->d_lock);
1da177e4
LT
635 return -EBUSY;
636 }
637 }
638
639 __d_drop(dentry);
640 spin_unlock(&dentry->d_lock);
1da177e4
LT
641 return 0;
642}
ec4f8605 643EXPORT_SYMBOL(d_invalidate);
1da177e4 644
b5c84bf6 645/* This must be called with d_lock held */
dc0474be 646static inline void __dget_dlock(struct dentry *dentry)
23044507 647{
98474236 648 dentry->d_lockref.count++;
23044507
NP
649}
650
dc0474be 651static inline void __dget(struct dentry *dentry)
1da177e4 652{
98474236 653 lockref_get(&dentry->d_lockref);
1da177e4
LT
654}
655
b7ab39f6
NP
656struct dentry *dget_parent(struct dentry *dentry)
657{
df3d0bbc 658 int gotref;
b7ab39f6
NP
659 struct dentry *ret;
660
df3d0bbc
WL
661 /*
662 * Do optimistic parent lookup without any
663 * locking.
664 */
665 rcu_read_lock();
666 ret = ACCESS_ONCE(dentry->d_parent);
667 gotref = lockref_get_not_zero(&ret->d_lockref);
668 rcu_read_unlock();
669 if (likely(gotref)) {
670 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
671 return ret;
672 dput(ret);
673 }
674
b7ab39f6 675repeat:
a734eb45
NP
676 /*
677 * Don't need rcu_dereference because we re-check it was correct under
678 * the lock.
679 */
680 rcu_read_lock();
b7ab39f6 681 ret = dentry->d_parent;
a734eb45
NP
682 spin_lock(&ret->d_lock);
683 if (unlikely(ret != dentry->d_parent)) {
684 spin_unlock(&ret->d_lock);
685 rcu_read_unlock();
b7ab39f6
NP
686 goto repeat;
687 }
a734eb45 688 rcu_read_unlock();
98474236
WL
689 BUG_ON(!ret->d_lockref.count);
690 ret->d_lockref.count++;
b7ab39f6 691 spin_unlock(&ret->d_lock);
b7ab39f6
NP
692 return ret;
693}
694EXPORT_SYMBOL(dget_parent);
695
1da177e4
LT
696/**
697 * d_find_alias - grab a hashed alias of inode
698 * @inode: inode in question
32ba9c3f
LT
699 * @want_discon: flag, used by d_splice_alias, to request
700 * that only a DISCONNECTED alias be returned.
1da177e4
LT
701 *
702 * If inode has a hashed alias, or is a directory and has any alias,
703 * acquire the reference to alias and return it. Otherwise return NULL.
704 * Notice that if inode is a directory there can be only one alias and
705 * it can be unhashed only if it has no children, or if it is the root
706 * of a filesystem.
707 *
21c0d8fd 708 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
32ba9c3f
LT
709 * any other hashed alias over that one unless @want_discon is set,
710 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 711 */
32ba9c3f 712static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 713{
da502956 714 struct dentry *alias, *discon_alias;
1da177e4 715
da502956
NP
716again:
717 discon_alias = NULL;
b67bfe0d 718 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
da502956 719 spin_lock(&alias->d_lock);
1da177e4 720 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 721 if (IS_ROOT(alias) &&
da502956 722 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 723 discon_alias = alias;
32ba9c3f 724 } else if (!want_discon) {
dc0474be 725 __dget_dlock(alias);
da502956
NP
726 spin_unlock(&alias->d_lock);
727 return alias;
728 }
729 }
730 spin_unlock(&alias->d_lock);
731 }
732 if (discon_alias) {
733 alias = discon_alias;
734 spin_lock(&alias->d_lock);
735 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
736 if (IS_ROOT(alias) &&
737 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 738 __dget_dlock(alias);
da502956 739 spin_unlock(&alias->d_lock);
1da177e4
LT
740 return alias;
741 }
742 }
da502956
NP
743 spin_unlock(&alias->d_lock);
744 goto again;
1da177e4 745 }
da502956 746 return NULL;
1da177e4
LT
747}
748
da502956 749struct dentry *d_find_alias(struct inode *inode)
1da177e4 750{
214fda1f
DH
751 struct dentry *de = NULL;
752
b3d9b7a3 753 if (!hlist_empty(&inode->i_dentry)) {
873feea0 754 spin_lock(&inode->i_lock);
32ba9c3f 755 de = __d_find_alias(inode, 0);
873feea0 756 spin_unlock(&inode->i_lock);
214fda1f 757 }
1da177e4
LT
758 return de;
759}
ec4f8605 760EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
761
762/*
763 * Try to kill dentries associated with this inode.
764 * WARNING: you must own a reference to inode.
765 */
766void d_prune_aliases(struct inode *inode)
767{
0cdca3f9 768 struct dentry *dentry;
1da177e4 769restart:
873feea0 770 spin_lock(&inode->i_lock);
b67bfe0d 771 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 772 spin_lock(&dentry->d_lock);
98474236 773 if (!dentry->d_lockref.count) {
590fb51f
YZ
774 /*
775 * inform the fs via d_prune that this dentry
776 * is about to be unhashed and destroyed.
777 */
778 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
779 !d_unhashed(dentry))
780 dentry->d_op->d_prune(dentry);
781
dc0474be 782 __dget_dlock(dentry);
1da177e4
LT
783 __d_drop(dentry);
784 spin_unlock(&dentry->d_lock);
873feea0 785 spin_unlock(&inode->i_lock);
1da177e4
LT
786 dput(dentry);
787 goto restart;
788 }
789 spin_unlock(&dentry->d_lock);
790 }
873feea0 791 spin_unlock(&inode->i_lock);
1da177e4 792}
ec4f8605 793EXPORT_SYMBOL(d_prune_aliases);
1da177e4 794
3049cfe2 795static void shrink_dentry_list(struct list_head *list)
1da177e4 796{
5c47e6d0 797 struct dentry *dentry, *parent;
da3bbdd4 798
ec33679d
NP
799 rcu_read_lock();
800 for (;;) {
ec33679d
NP
801 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
802 if (&dentry->d_lru == list)
803 break; /* empty */
89dc77bc
LT
804
805 /*
806 * Get the dentry lock, and re-verify that the dentry is
807 * this on the shrinking list. If it is, we know that
808 * DCACHE_SHRINK_LIST and DCACHE_LRU_LIST are set.
809 */
ec33679d
NP
810 spin_lock(&dentry->d_lock);
811 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
812 spin_unlock(&dentry->d_lock);
23044507
NP
813 continue;
814 }
815
dd1f6b2e
DC
816 /*
817 * The dispose list is isolated and dentries are not accounted
818 * to the LRU here, so we can simply remove it from the list
819 * here regardless of whether it is referenced or not.
820 */
89dc77bc 821 d_shrink_del(dentry);
dd1f6b2e 822
1da177e4
LT
823 /*
824 * We found an inuse dentry which was not removed from
dd1f6b2e 825 * the LRU because of laziness during lookup. Do not free it.
1da177e4 826 */
41edf278 827 if ((int)dentry->d_lockref.count > 0) {
da3bbdd4 828 spin_unlock(&dentry->d_lock);
1da177e4
LT
829 continue;
830 }
ec33679d 831 rcu_read_unlock();
77812a1e 832
5c47e6d0 833 parent = dentry_kill(dentry, 0);
89dc77bc 834 /*
5c47e6d0 835 * If dentry_kill returns NULL, we have nothing more to do.
89dc77bc 836 */
5c47e6d0
AV
837 if (!parent) {
838 rcu_read_lock();
839 continue;
840 }
841 if (unlikely(parent == dentry)) {
842 /*
843 * trylocks have failed and d_lock has been held the
844 * whole time, so it could not have been added to any
845 * other lists. Just add it back to the shrink list.
846 */
847 rcu_read_lock();
89dc77bc 848 d_shrink_add(dentry, list);
dd1f6b2e 849 spin_unlock(&dentry->d_lock);
5c47e6d0 850 continue;
dd1f6b2e 851 }
5c47e6d0
AV
852 /*
853 * We need to prune ancestors too. This is necessary to prevent
854 * quadratic behavior of shrink_dcache_parent(), but is also
855 * expected to be beneficial in reducing dentry cache
856 * fragmentation.
857 */
858 dentry = parent;
859 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
860 dentry = dentry_kill(dentry, 1);
861 rcu_read_lock();
da3bbdd4 862 }
ec33679d 863 rcu_read_unlock();
3049cfe2
CH
864}
865
f6041567
DC
866static enum lru_status
867dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
868{
869 struct list_head *freeable = arg;
870 struct dentry *dentry = container_of(item, struct dentry, d_lru);
871
872
873 /*
874 * we are inverting the lru lock/dentry->d_lock here,
875 * so use a trylock. If we fail to get the lock, just skip
876 * it
877 */
878 if (!spin_trylock(&dentry->d_lock))
879 return LRU_SKIP;
880
881 /*
882 * Referenced dentries are still in use. If they have active
883 * counts, just remove them from the LRU. Otherwise give them
884 * another pass through the LRU.
885 */
886 if (dentry->d_lockref.count) {
89dc77bc 887 d_lru_isolate(dentry);
f6041567
DC
888 spin_unlock(&dentry->d_lock);
889 return LRU_REMOVED;
890 }
891
892 if (dentry->d_flags & DCACHE_REFERENCED) {
893 dentry->d_flags &= ~DCACHE_REFERENCED;
894 spin_unlock(&dentry->d_lock);
895
896 /*
897 * The list move itself will be made by the common LRU code. At
898 * this point, we've dropped the dentry->d_lock but keep the
899 * lru lock. This is safe to do, since every list movement is
900 * protected by the lru lock even if both locks are held.
901 *
902 * This is guaranteed by the fact that all LRU management
903 * functions are intermediated by the LRU API calls like
904 * list_lru_add and list_lru_del. List movement in this file
905 * only ever occur through this functions or through callbacks
906 * like this one, that are called from the LRU API.
907 *
908 * The only exceptions to this are functions like
909 * shrink_dentry_list, and code that first checks for the
910 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
911 * operating only with stack provided lists after they are
912 * properly isolated from the main list. It is thus, always a
913 * local access.
914 */
915 return LRU_ROTATE;
916 }
917
89dc77bc 918 d_lru_shrink_move(dentry, freeable);
f6041567
DC
919 spin_unlock(&dentry->d_lock);
920
921 return LRU_REMOVED;
922}
923
3049cfe2 924/**
b48f03b3
DC
925 * prune_dcache_sb - shrink the dcache
926 * @sb: superblock
f6041567 927 * @nr_to_scan : number of entries to try to free
9b17c623 928 * @nid: which node to scan for freeable entities
b48f03b3 929 *
f6041567 930 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
b48f03b3
DC
931 * done when we need more memory an called from the superblock shrinker
932 * function.
3049cfe2 933 *
b48f03b3
DC
934 * This function may fail to free any resources if all the dentries are in
935 * use.
3049cfe2 936 */
9b17c623
DC
937long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
938 int nid)
3049cfe2 939{
f6041567
DC
940 LIST_HEAD(dispose);
941 long freed;
3049cfe2 942
9b17c623
DC
943 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
944 &dispose, &nr_to_scan);
f6041567 945 shrink_dentry_list(&dispose);
0a234c6d 946 return freed;
da3bbdd4 947}
23044507 948
4e717f5c
GC
949static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
950 spinlock_t *lru_lock, void *arg)
dd1f6b2e 951{
4e717f5c
GC
952 struct list_head *freeable = arg;
953 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 954
4e717f5c
GC
955 /*
956 * we are inverting the lru lock/dentry->d_lock here,
957 * so use a trylock. If we fail to get the lock, just skip
958 * it
959 */
960 if (!spin_trylock(&dentry->d_lock))
961 return LRU_SKIP;
962
89dc77bc 963 d_lru_shrink_move(dentry, freeable);
4e717f5c 964 spin_unlock(&dentry->d_lock);
ec33679d 965
4e717f5c 966 return LRU_REMOVED;
da3bbdd4
KM
967}
968
4e717f5c 969
1da177e4
LT
970/**
971 * shrink_dcache_sb - shrink dcache for a superblock
972 * @sb: superblock
973 *
3049cfe2
CH
974 * Shrink the dcache for the specified super block. This is used to free
975 * the dcache before unmounting a file system.
1da177e4 976 */
3049cfe2 977void shrink_dcache_sb(struct super_block *sb)
1da177e4 978{
4e717f5c
GC
979 long freed;
980
981 do {
982 LIST_HEAD(dispose);
983
984 freed = list_lru_walk(&sb->s_dentry_lru,
985 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
3049cfe2 986
4e717f5c
GC
987 this_cpu_sub(nr_dentry_unused, freed);
988 shrink_dentry_list(&dispose);
989 } while (freed > 0);
1da177e4 990}
ec4f8605 991EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 992
db14fc3a
MS
993/**
994 * enum d_walk_ret - action to talke during tree walk
995 * @D_WALK_CONTINUE: contrinue walk
996 * @D_WALK_QUIT: quit walk
997 * @D_WALK_NORETRY: quit when retry is needed
998 * @D_WALK_SKIP: skip this dentry and its children
999 */
1000enum d_walk_ret {
1001 D_WALK_CONTINUE,
1002 D_WALK_QUIT,
1003 D_WALK_NORETRY,
1004 D_WALK_SKIP,
1005};
c826cb7d 1006
1da177e4 1007/**
db14fc3a
MS
1008 * d_walk - walk the dentry tree
1009 * @parent: start of walk
1010 * @data: data passed to @enter() and @finish()
1011 * @enter: callback when first entering the dentry
1012 * @finish: callback when successfully finished the walk
1da177e4 1013 *
db14fc3a 1014 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1015 */
db14fc3a
MS
1016static void d_walk(struct dentry *parent, void *data,
1017 enum d_walk_ret (*enter)(void *, struct dentry *),
1018 void (*finish)(void *))
1da177e4 1019{
949854d0 1020 struct dentry *this_parent;
1da177e4 1021 struct list_head *next;
48f5ec21 1022 unsigned seq = 0;
db14fc3a
MS
1023 enum d_walk_ret ret;
1024 bool retry = true;
949854d0 1025
58db63d0 1026again:
48f5ec21 1027 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1028 this_parent = parent;
2fd6b7f5 1029 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1030
1031 ret = enter(data, this_parent);
1032 switch (ret) {
1033 case D_WALK_CONTINUE:
1034 break;
1035 case D_WALK_QUIT:
1036 case D_WALK_SKIP:
1037 goto out_unlock;
1038 case D_WALK_NORETRY:
1039 retry = false;
1040 break;
1041 }
1da177e4
LT
1042repeat:
1043 next = this_parent->d_subdirs.next;
1044resume:
1045 while (next != &this_parent->d_subdirs) {
1046 struct list_head *tmp = next;
5160ee6f 1047 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1048 next = tmp->next;
2fd6b7f5
NP
1049
1050 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1051
1052 ret = enter(data, dentry);
1053 switch (ret) {
1054 case D_WALK_CONTINUE:
1055 break;
1056 case D_WALK_QUIT:
2fd6b7f5 1057 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1058 goto out_unlock;
1059 case D_WALK_NORETRY:
1060 retry = false;
1061 break;
1062 case D_WALK_SKIP:
1063 spin_unlock(&dentry->d_lock);
1064 continue;
2fd6b7f5 1065 }
db14fc3a 1066
1da177e4 1067 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1068 spin_unlock(&this_parent->d_lock);
1069 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1070 this_parent = dentry;
2fd6b7f5 1071 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1072 goto repeat;
1073 }
2fd6b7f5 1074 spin_unlock(&dentry->d_lock);
1da177e4
LT
1075 }
1076 /*
1077 * All done at this level ... ascend and resume the search.
1078 */
1079 if (this_parent != parent) {
c826cb7d 1080 struct dentry *child = this_parent;
31dec132
AV
1081 this_parent = child->d_parent;
1082
1083 rcu_read_lock();
1084 spin_unlock(&child->d_lock);
1085 spin_lock(&this_parent->d_lock);
1086
1087 /*
1088 * might go back up the wrong parent if we have had a rename
1089 * or deletion
1090 */
1091 if (this_parent != child->d_parent ||
1092 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1093 need_seqretry(&rename_lock, seq)) {
1094 spin_unlock(&this_parent->d_lock);
1095 rcu_read_unlock();
949854d0 1096 goto rename_retry;
31dec132
AV
1097 }
1098 rcu_read_unlock();
949854d0 1099 next = child->d_u.d_child.next;
1da177e4
LT
1100 goto resume;
1101 }
48f5ec21 1102 if (need_seqretry(&rename_lock, seq)) {
db14fc3a 1103 spin_unlock(&this_parent->d_lock);
949854d0 1104 goto rename_retry;
db14fc3a
MS
1105 }
1106 if (finish)
1107 finish(data);
1108
1109out_unlock:
1110 spin_unlock(&this_parent->d_lock);
48f5ec21 1111 done_seqretry(&rename_lock, seq);
db14fc3a 1112 return;
58db63d0
NP
1113
1114rename_retry:
db14fc3a
MS
1115 if (!retry)
1116 return;
48f5ec21 1117 seq = 1;
58db63d0 1118 goto again;
1da177e4 1119}
db14fc3a
MS
1120
1121/*
1122 * Search for at least 1 mount point in the dentry's subdirs.
1123 * We descend to the next level whenever the d_subdirs
1124 * list is non-empty and continue searching.
1125 */
1126
db14fc3a
MS
1127static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1128{
1129 int *ret = data;
1130 if (d_mountpoint(dentry)) {
1131 *ret = 1;
1132 return D_WALK_QUIT;
1133 }
1134 return D_WALK_CONTINUE;
1135}
1136
69c88dc7
RD
1137/**
1138 * have_submounts - check for mounts over a dentry
1139 * @parent: dentry to check.
1140 *
1141 * Return true if the parent or its subdirectories contain
1142 * a mount point
1143 */
db14fc3a
MS
1144int have_submounts(struct dentry *parent)
1145{
1146 int ret = 0;
1147
1148 d_walk(parent, &ret, check_mount, NULL);
1149
1150 return ret;
1151}
ec4f8605 1152EXPORT_SYMBOL(have_submounts);
1da177e4 1153
eed81007
MS
1154/*
1155 * Called by mount code to set a mountpoint and check if the mountpoint is
1156 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1157 * subtree can become unreachable).
1158 *
1159 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1160 * this reason take rename_lock and d_lock on dentry and ancestors.
1161 */
1162int d_set_mounted(struct dentry *dentry)
1163{
1164 struct dentry *p;
1165 int ret = -ENOENT;
1166 write_seqlock(&rename_lock);
1167 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1168 /* Need exclusion wrt. check_submounts_and_drop() */
1169 spin_lock(&p->d_lock);
1170 if (unlikely(d_unhashed(p))) {
1171 spin_unlock(&p->d_lock);
1172 goto out;
1173 }
1174 spin_unlock(&p->d_lock);
1175 }
1176 spin_lock(&dentry->d_lock);
1177 if (!d_unlinked(dentry)) {
1178 dentry->d_flags |= DCACHE_MOUNTED;
1179 ret = 0;
1180 }
1181 spin_unlock(&dentry->d_lock);
1182out:
1183 write_sequnlock(&rename_lock);
1184 return ret;
1185}
1186
1da177e4 1187/*
fd517909 1188 * Search the dentry child list of the specified parent,
1da177e4
LT
1189 * and move any unused dentries to the end of the unused
1190 * list for prune_dcache(). We descend to the next level
1191 * whenever the d_subdirs list is non-empty and continue
1192 * searching.
1193 *
1194 * It returns zero iff there are no unused children,
1195 * otherwise it returns the number of children moved to
1196 * the end of the unused list. This may not be the total
1197 * number of unused children, because select_parent can
1198 * drop the lock and return early due to latency
1199 * constraints.
1200 */
1da177e4 1201
db14fc3a
MS
1202struct select_data {
1203 struct dentry *start;
1204 struct list_head dispose;
1205 int found;
1206};
23044507 1207
db14fc3a
MS
1208static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1209{
1210 struct select_data *data = _data;
1211 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1212
db14fc3a
MS
1213 if (data->start == dentry)
1214 goto out;
2fd6b7f5 1215
fe91522a 1216 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1217 data->found++;
fe91522a
AV
1218 } else {
1219 if (dentry->d_flags & DCACHE_LRU_LIST)
1220 d_lru_del(dentry);
1221 if (!dentry->d_lockref.count) {
1222 d_shrink_add(dentry, &data->dispose);
1223 data->found++;
1224 }
1da177e4 1225 }
db14fc3a
MS
1226 /*
1227 * We can return to the caller if we have found some (this
1228 * ensures forward progress). We'll be coming back to find
1229 * the rest.
1230 */
fe91522a
AV
1231 if (!list_empty(&data->dispose))
1232 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1233out:
db14fc3a 1234 return ret;
1da177e4
LT
1235}
1236
1237/**
1238 * shrink_dcache_parent - prune dcache
1239 * @parent: parent of entries to prune
1240 *
1241 * Prune the dcache to remove unused children of the parent dentry.
1242 */
db14fc3a 1243void shrink_dcache_parent(struct dentry *parent)
1da177e4 1244{
db14fc3a
MS
1245 for (;;) {
1246 struct select_data data;
1da177e4 1247
db14fc3a
MS
1248 INIT_LIST_HEAD(&data.dispose);
1249 data.start = parent;
1250 data.found = 0;
1251
1252 d_walk(parent, &data, select_collect, NULL);
1253 if (!data.found)
1254 break;
1255
1256 shrink_dentry_list(&data.dispose);
421348f1
GT
1257 cond_resched();
1258 }
1da177e4 1259}
ec4f8605 1260EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1261
9c8c10e2 1262static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1263{
9c8c10e2
AV
1264 /* it has busy descendents; complain about those instead */
1265 if (!list_empty(&dentry->d_subdirs))
1266 return D_WALK_CONTINUE;
42c32608 1267
9c8c10e2
AV
1268 /* root with refcount 1 is fine */
1269 if (dentry == _data && dentry->d_lockref.count == 1)
1270 return D_WALK_CONTINUE;
1271
1272 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1273 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1274 dentry,
1275 dentry->d_inode ?
1276 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1277 dentry,
42c32608
AV
1278 dentry->d_lockref.count,
1279 dentry->d_sb->s_type->name,
1280 dentry->d_sb->s_id);
9c8c10e2
AV
1281 WARN_ON(1);
1282 return D_WALK_CONTINUE;
1283}
1284
1285static void do_one_tree(struct dentry *dentry)
1286{
1287 shrink_dcache_parent(dentry);
1288 d_walk(dentry, dentry, umount_check, NULL);
1289 d_drop(dentry);
1290 dput(dentry);
42c32608
AV
1291}
1292
1293/*
1294 * destroy the dentries attached to a superblock on unmounting
1295 */
1296void shrink_dcache_for_umount(struct super_block *sb)
1297{
1298 struct dentry *dentry;
1299
9c8c10e2 1300 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1301
1302 dentry = sb->s_root;
1303 sb->s_root = NULL;
9c8c10e2 1304 do_one_tree(dentry);
42c32608
AV
1305
1306 while (!hlist_bl_empty(&sb->s_anon)) {
9c8c10e2
AV
1307 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1308 do_one_tree(dentry);
42c32608
AV
1309 }
1310}
1311
848ac114
MS
1312static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1313{
1314 struct select_data *data = _data;
1315
1316 if (d_mountpoint(dentry)) {
1317 data->found = -EBUSY;
1318 return D_WALK_QUIT;
1319 }
1320
1321 return select_collect(_data, dentry);
1322}
1323
1324static void check_and_drop(void *_data)
1325{
1326 struct select_data *data = _data;
1327
1328 if (d_mountpoint(data->start))
1329 data->found = -EBUSY;
1330 if (!data->found)
1331 __d_drop(data->start);
1332}
1333
1334/**
1335 * check_submounts_and_drop - prune dcache, check for submounts and drop
1336 *
1337 * All done as a single atomic operation relative to has_unlinked_ancestor().
1338 * Returns 0 if successfully unhashed @parent. If there were submounts then
1339 * return -EBUSY.
1340 *
1341 * @dentry: dentry to prune and drop
1342 */
1343int check_submounts_and_drop(struct dentry *dentry)
1344{
1345 int ret = 0;
1346
1347 /* Negative dentries can be dropped without further checks */
1348 if (!dentry->d_inode) {
1349 d_drop(dentry);
1350 goto out;
1351 }
1352
1353 for (;;) {
1354 struct select_data data;
1355
1356 INIT_LIST_HEAD(&data.dispose);
1357 data.start = dentry;
1358 data.found = 0;
1359
1360 d_walk(dentry, &data, check_and_collect, check_and_drop);
1361 ret = data.found;
1362
1363 if (!list_empty(&data.dispose))
1364 shrink_dentry_list(&data.dispose);
1365
1366 if (ret <= 0)
1367 break;
1368
1369 cond_resched();
1370 }
1371
1372out:
1373 return ret;
1374}
1375EXPORT_SYMBOL(check_submounts_and_drop);
1376
1da177e4 1377/**
a4464dbc
AV
1378 * __d_alloc - allocate a dcache entry
1379 * @sb: filesystem it will belong to
1da177e4
LT
1380 * @name: qstr of the name
1381 *
1382 * Allocates a dentry. It returns %NULL if there is insufficient memory
1383 * available. On a success the dentry is returned. The name passed in is
1384 * copied and the copy passed in may be reused after this call.
1385 */
1386
a4464dbc 1387struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1388{
1389 struct dentry *dentry;
1390 char *dname;
1391
e12ba74d 1392 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1393 if (!dentry)
1394 return NULL;
1395
6326c71f
LT
1396 /*
1397 * We guarantee that the inline name is always NUL-terminated.
1398 * This way the memcpy() done by the name switching in rename
1399 * will still always have a NUL at the end, even if we might
1400 * be overwriting an internal NUL character
1401 */
1402 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4
LT
1403 if (name->len > DNAME_INLINE_LEN-1) {
1404 dname = kmalloc(name->len + 1, GFP_KERNEL);
1405 if (!dname) {
1406 kmem_cache_free(dentry_cache, dentry);
1407 return NULL;
1408 }
1409 } else {
1410 dname = dentry->d_iname;
1411 }
1da177e4
LT
1412
1413 dentry->d_name.len = name->len;
1414 dentry->d_name.hash = name->hash;
1415 memcpy(dname, name->name, name->len);
1416 dname[name->len] = 0;
1417
6326c71f
LT
1418 /* Make sure we always see the terminating NUL character */
1419 smp_wmb();
1420 dentry->d_name.name = dname;
1421
98474236 1422 dentry->d_lockref.count = 1;
dea3667b 1423 dentry->d_flags = 0;
1da177e4 1424 spin_lock_init(&dentry->d_lock);
31e6b01f 1425 seqcount_init(&dentry->d_seq);
1da177e4 1426 dentry->d_inode = NULL;
a4464dbc
AV
1427 dentry->d_parent = dentry;
1428 dentry->d_sb = sb;
1da177e4
LT
1429 dentry->d_op = NULL;
1430 dentry->d_fsdata = NULL;
ceb5bdc2 1431 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1432 INIT_LIST_HEAD(&dentry->d_lru);
1433 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1434 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1435 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1436 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1437
3e880fb5 1438 this_cpu_inc(nr_dentry);
312d3ca8 1439
1da177e4
LT
1440 return dentry;
1441}
a4464dbc
AV
1442
1443/**
1444 * d_alloc - allocate a dcache entry
1445 * @parent: parent of entry to allocate
1446 * @name: qstr of the name
1447 *
1448 * Allocates a dentry. It returns %NULL if there is insufficient memory
1449 * available. On a success the dentry is returned. The name passed in is
1450 * copied and the copy passed in may be reused after this call.
1451 */
1452struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1453{
1454 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1455 if (!dentry)
1456 return NULL;
1457
1458 spin_lock(&parent->d_lock);
1459 /*
1460 * don't need child lock because it is not subject
1461 * to concurrency here
1462 */
1463 __dget_dlock(parent);
1464 dentry->d_parent = parent;
1465 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1466 spin_unlock(&parent->d_lock);
1467
1468 return dentry;
1469}
ec4f8605 1470EXPORT_SYMBOL(d_alloc);
1da177e4 1471
e1a24bb0
BF
1472/**
1473 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1474 * @sb: the superblock
1475 * @name: qstr of the name
1476 *
1477 * For a filesystem that just pins its dentries in memory and never
1478 * performs lookups at all, return an unhashed IS_ROOT dentry.
1479 */
4b936885
NP
1480struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1481{
e1a24bb0 1482 return __d_alloc(sb, name);
4b936885
NP
1483}
1484EXPORT_SYMBOL(d_alloc_pseudo);
1485
1da177e4
LT
1486struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1487{
1488 struct qstr q;
1489
1490 q.name = name;
1491 q.len = strlen(name);
1492 q.hash = full_name_hash(q.name, q.len);
1493 return d_alloc(parent, &q);
1494}
ef26ca97 1495EXPORT_SYMBOL(d_alloc_name);
1da177e4 1496
fb045adb
NP
1497void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1498{
6f7f7caa
LT
1499 WARN_ON_ONCE(dentry->d_op);
1500 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1501 DCACHE_OP_COMPARE |
1502 DCACHE_OP_REVALIDATE |
ecf3d1f1 1503 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1504 DCACHE_OP_DELETE ));
1505 dentry->d_op = op;
1506 if (!op)
1507 return;
1508 if (op->d_hash)
1509 dentry->d_flags |= DCACHE_OP_HASH;
1510 if (op->d_compare)
1511 dentry->d_flags |= DCACHE_OP_COMPARE;
1512 if (op->d_revalidate)
1513 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1514 if (op->d_weak_revalidate)
1515 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1516 if (op->d_delete)
1517 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1518 if (op->d_prune)
1519 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1520
1521}
1522EXPORT_SYMBOL(d_set_d_op);
1523
b18825a7
DH
1524static unsigned d_flags_for_inode(struct inode *inode)
1525{
1526 unsigned add_flags = DCACHE_FILE_TYPE;
1527
1528 if (!inode)
1529 return DCACHE_MISS_TYPE;
1530
1531 if (S_ISDIR(inode->i_mode)) {
1532 add_flags = DCACHE_DIRECTORY_TYPE;
1533 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1534 if (unlikely(!inode->i_op->lookup))
1535 add_flags = DCACHE_AUTODIR_TYPE;
1536 else
1537 inode->i_opflags |= IOP_LOOKUP;
1538 }
1539 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1540 if (unlikely(inode->i_op->follow_link))
1541 add_flags = DCACHE_SYMLINK_TYPE;
1542 else
1543 inode->i_opflags |= IOP_NOFOLLOW;
1544 }
1545
1546 if (unlikely(IS_AUTOMOUNT(inode)))
1547 add_flags |= DCACHE_NEED_AUTOMOUNT;
1548 return add_flags;
1549}
1550
360da900
OH
1551static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1552{
b18825a7
DH
1553 unsigned add_flags = d_flags_for_inode(inode);
1554
b23fb0a6 1555 spin_lock(&dentry->d_lock);
22213318 1556 __d_set_type(dentry, add_flags);
b18825a7 1557 if (inode)
b3d9b7a3 1558 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
360da900 1559 dentry->d_inode = inode;
31e6b01f 1560 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1561 spin_unlock(&dentry->d_lock);
360da900
OH
1562 fsnotify_d_instantiate(dentry, inode);
1563}
1564
1da177e4
LT
1565/**
1566 * d_instantiate - fill in inode information for a dentry
1567 * @entry: dentry to complete
1568 * @inode: inode to attach to this dentry
1569 *
1570 * Fill in inode information in the entry.
1571 *
1572 * This turns negative dentries into productive full members
1573 * of society.
1574 *
1575 * NOTE! This assumes that the inode count has been incremented
1576 * (or otherwise set) by the caller to indicate that it is now
1577 * in use by the dcache.
1578 */
1579
1580void d_instantiate(struct dentry *entry, struct inode * inode)
1581{
b3d9b7a3 1582 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1583 if (inode)
1584 spin_lock(&inode->i_lock);
360da900 1585 __d_instantiate(entry, inode);
873feea0
NP
1586 if (inode)
1587 spin_unlock(&inode->i_lock);
1da177e4
LT
1588 security_d_instantiate(entry, inode);
1589}
ec4f8605 1590EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1591
1592/**
1593 * d_instantiate_unique - instantiate a non-aliased dentry
1594 * @entry: dentry to instantiate
1595 * @inode: inode to attach to this dentry
1596 *
1597 * Fill in inode information in the entry. On success, it returns NULL.
1598 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1599 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1600 *
1601 * Note that in order to avoid conflicts with rename() etc, the caller
1602 * had better be holding the parent directory semaphore.
e866cfa9
OD
1603 *
1604 * This also assumes that the inode count has been incremented
1605 * (or otherwise set) by the caller to indicate that it is now
1606 * in use by the dcache.
1da177e4 1607 */
770bfad8
DH
1608static struct dentry *__d_instantiate_unique(struct dentry *entry,
1609 struct inode *inode)
1da177e4
LT
1610{
1611 struct dentry *alias;
1612 int len = entry->d_name.len;
1613 const char *name = entry->d_name.name;
1614 unsigned int hash = entry->d_name.hash;
1615
770bfad8 1616 if (!inode) {
360da900 1617 __d_instantiate(entry, NULL);
770bfad8
DH
1618 return NULL;
1619 }
1620
b67bfe0d 1621 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1622 /*
1623 * Don't need alias->d_lock here, because aliases with
1624 * d_parent == entry->d_parent are not subject to name or
1625 * parent changes, because the parent inode i_mutex is held.
1626 */
12f8ad4b 1627 if (alias->d_name.hash != hash)
1da177e4
LT
1628 continue;
1629 if (alias->d_parent != entry->d_parent)
1630 continue;
ee983e89
LT
1631 if (alias->d_name.len != len)
1632 continue;
12f8ad4b 1633 if (dentry_cmp(alias, name, len))
1da177e4 1634 continue;
dc0474be 1635 __dget(alias);
1da177e4
LT
1636 return alias;
1637 }
770bfad8 1638
360da900 1639 __d_instantiate(entry, inode);
1da177e4
LT
1640 return NULL;
1641}
770bfad8
DH
1642
1643struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1644{
1645 struct dentry *result;
1646
b3d9b7a3 1647 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1648
873feea0
NP
1649 if (inode)
1650 spin_lock(&inode->i_lock);
770bfad8 1651 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1652 if (inode)
1653 spin_unlock(&inode->i_lock);
770bfad8
DH
1654
1655 if (!result) {
1656 security_d_instantiate(entry, inode);
1657 return NULL;
1658 }
1659
1660 BUG_ON(!d_unhashed(result));
1661 iput(inode);
1662 return result;
1663}
1664
1da177e4
LT
1665EXPORT_SYMBOL(d_instantiate_unique);
1666
b70a80e7
MS
1667/**
1668 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1669 * @entry: dentry to complete
1670 * @inode: inode to attach to this dentry
1671 *
1672 * Fill in inode information in the entry. If a directory alias is found, then
1673 * return an error (and drop inode). Together with d_materialise_unique() this
1674 * guarantees that a directory inode may never have more than one alias.
1675 */
1676int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1677{
1678 BUG_ON(!hlist_unhashed(&entry->d_alias));
1679
1680 spin_lock(&inode->i_lock);
1681 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1682 spin_unlock(&inode->i_lock);
1683 iput(inode);
1684 return -EBUSY;
1685 }
1686 __d_instantiate(entry, inode);
1687 spin_unlock(&inode->i_lock);
1688 security_d_instantiate(entry, inode);
1689
1690 return 0;
1691}
1692EXPORT_SYMBOL(d_instantiate_no_diralias);
1693
adc0e91a
AV
1694struct dentry *d_make_root(struct inode *root_inode)
1695{
1696 struct dentry *res = NULL;
1697
1698 if (root_inode) {
26fe5750 1699 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1700
1701 res = __d_alloc(root_inode->i_sb, &name);
1702 if (res)
1703 d_instantiate(res, root_inode);
1704 else
1705 iput(root_inode);
1706 }
1707 return res;
1708}
1709EXPORT_SYMBOL(d_make_root);
1710
d891eedb
BF
1711static struct dentry * __d_find_any_alias(struct inode *inode)
1712{
1713 struct dentry *alias;
1714
b3d9b7a3 1715 if (hlist_empty(&inode->i_dentry))
d891eedb 1716 return NULL;
b3d9b7a3 1717 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1718 __dget(alias);
1719 return alias;
1720}
1721
46f72b34
SW
1722/**
1723 * d_find_any_alias - find any alias for a given inode
1724 * @inode: inode to find an alias for
1725 *
1726 * If any aliases exist for the given inode, take and return a
1727 * reference for one of them. If no aliases exist, return %NULL.
1728 */
1729struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1730{
1731 struct dentry *de;
1732
1733 spin_lock(&inode->i_lock);
1734 de = __d_find_any_alias(inode);
1735 spin_unlock(&inode->i_lock);
1736 return de;
1737}
46f72b34 1738EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1739
4ea3ada2
CH
1740/**
1741 * d_obtain_alias - find or allocate a dentry for a given inode
1742 * @inode: inode to allocate the dentry for
1743 *
1744 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1745 * similar open by handle operations. The returned dentry may be anonymous,
1746 * or may have a full name (if the inode was already in the cache).
1747 *
1748 * When called on a directory inode, we must ensure that the inode only ever
1749 * has one dentry. If a dentry is found, that is returned instead of
1750 * allocating a new one.
1751 *
1752 * On successful return, the reference to the inode has been transferred
44003728
CH
1753 * to the dentry. In case of an error the reference on the inode is released.
1754 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1755 * be passed in and will be the error will be propagate to the return value,
1756 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1757 */
1758struct dentry *d_obtain_alias(struct inode *inode)
1759{
b911a6bd 1760 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1761 struct dentry *tmp;
1762 struct dentry *res;
b18825a7 1763 unsigned add_flags;
4ea3ada2
CH
1764
1765 if (!inode)
44003728 1766 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1767 if (IS_ERR(inode))
1768 return ERR_CAST(inode);
1769
d891eedb 1770 res = d_find_any_alias(inode);
9308a612
CH
1771 if (res)
1772 goto out_iput;
1773
a4464dbc 1774 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1775 if (!tmp) {
1776 res = ERR_PTR(-ENOMEM);
1777 goto out_iput;
4ea3ada2 1778 }
b5c84bf6 1779
873feea0 1780 spin_lock(&inode->i_lock);
d891eedb 1781 res = __d_find_any_alias(inode);
9308a612 1782 if (res) {
873feea0 1783 spin_unlock(&inode->i_lock);
9308a612
CH
1784 dput(tmp);
1785 goto out_iput;
1786 }
1787
1788 /* attach a disconnected dentry */
b18825a7
DH
1789 add_flags = d_flags_for_inode(inode) | DCACHE_DISCONNECTED;
1790
9308a612 1791 spin_lock(&tmp->d_lock);
9308a612 1792 tmp->d_inode = inode;
b18825a7 1793 tmp->d_flags |= add_flags;
b3d9b7a3 1794 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1795 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1796 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1797 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1798 spin_unlock(&tmp->d_lock);
873feea0 1799 spin_unlock(&inode->i_lock);
24ff6663 1800 security_d_instantiate(tmp, inode);
9308a612 1801
9308a612
CH
1802 return tmp;
1803
1804 out_iput:
24ff6663
JB
1805 if (res && !IS_ERR(res))
1806 security_d_instantiate(res, inode);
9308a612
CH
1807 iput(inode);
1808 return res;
4ea3ada2 1809}
adc48720 1810EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1811
1812/**
1813 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1814 * @inode: the inode which may have a disconnected dentry
1815 * @dentry: a negative dentry which we want to point to the inode.
1816 *
1817 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1818 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1819 * and return it, else simply d_add the inode to the dentry and return NULL.
1820 *
1821 * This is needed in the lookup routine of any filesystem that is exportable
1822 * (via knfsd) so that we can build dcache paths to directories effectively.
1823 *
1824 * If a dentry was found and moved, then it is returned. Otherwise NULL
1825 * is returned. This matches the expected return value of ->lookup.
1826 *
6d4ade98
SW
1827 * Cluster filesystems may call this function with a negative, hashed dentry.
1828 * In that case, we know that the inode will be a regular file, and also this
1829 * will only occur during atomic_open. So we need to check for the dentry
1830 * being already hashed only in the final case.
1da177e4
LT
1831 */
1832struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1833{
1834 struct dentry *new = NULL;
1835
a9049376
AV
1836 if (IS_ERR(inode))
1837 return ERR_CAST(inode);
1838
21c0d8fd 1839 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1840 spin_lock(&inode->i_lock);
32ba9c3f 1841 new = __d_find_alias(inode, 1);
1da177e4 1842 if (new) {
32ba9c3f 1843 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1844 spin_unlock(&inode->i_lock);
1da177e4 1845 security_d_instantiate(new, inode);
1da177e4
LT
1846 d_move(new, dentry);
1847 iput(inode);
1848 } else {
873feea0 1849 /* already taking inode->i_lock, so d_add() by hand */
360da900 1850 __d_instantiate(dentry, inode);
873feea0 1851 spin_unlock(&inode->i_lock);
1da177e4
LT
1852 security_d_instantiate(dentry, inode);
1853 d_rehash(dentry);
1854 }
6d4ade98
SW
1855 } else {
1856 d_instantiate(dentry, inode);
1857 if (d_unhashed(dentry))
1858 d_rehash(dentry);
1859 }
1da177e4
LT
1860 return new;
1861}
ec4f8605 1862EXPORT_SYMBOL(d_splice_alias);
1da177e4 1863
9403540c
BN
1864/**
1865 * d_add_ci - lookup or allocate new dentry with case-exact name
1866 * @inode: the inode case-insensitive lookup has found
1867 * @dentry: the negative dentry that was passed to the parent's lookup func
1868 * @name: the case-exact name to be associated with the returned dentry
1869 *
1870 * This is to avoid filling the dcache with case-insensitive names to the
1871 * same inode, only the actual correct case is stored in the dcache for
1872 * case-insensitive filesystems.
1873 *
1874 * For a case-insensitive lookup match and if the the case-exact dentry
1875 * already exists in in the dcache, use it and return it.
1876 *
1877 * If no entry exists with the exact case name, allocate new dentry with
1878 * the exact case, and return the spliced entry.
1879 */
e45b590b 1880struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1881 struct qstr *name)
1882{
9403540c
BN
1883 struct dentry *found;
1884 struct dentry *new;
1885
b6520c81
CH
1886 /*
1887 * First check if a dentry matching the name already exists,
1888 * if not go ahead and create it now.
1889 */
9403540c 1890 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
1891 if (unlikely(IS_ERR(found)))
1892 goto err_out;
9403540c
BN
1893 if (!found) {
1894 new = d_alloc(dentry->d_parent, name);
1895 if (!new) {
4f522a24 1896 found = ERR_PTR(-ENOMEM);
9403540c
BN
1897 goto err_out;
1898 }
b6520c81 1899
9403540c
BN
1900 found = d_splice_alias(inode, new);
1901 if (found) {
1902 dput(new);
1903 return found;
1904 }
1905 return new;
1906 }
b6520c81
CH
1907
1908 /*
1909 * If a matching dentry exists, and it's not negative use it.
1910 *
1911 * Decrement the reference count to balance the iget() done
1912 * earlier on.
1913 */
9403540c
BN
1914 if (found->d_inode) {
1915 if (unlikely(found->d_inode != inode)) {
1916 /* This can't happen because bad inodes are unhashed. */
1917 BUG_ON(!is_bad_inode(inode));
1918 BUG_ON(!is_bad_inode(found->d_inode));
1919 }
9403540c
BN
1920 iput(inode);
1921 return found;
1922 }
b6520c81 1923
9403540c 1924 /*
9403540c 1925 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1926 * already has a dentry.
9403540c 1927 */
4513d899
AV
1928 new = d_splice_alias(inode, found);
1929 if (new) {
1930 dput(found);
1931 found = new;
9403540c 1932 }
4513d899 1933 return found;
9403540c
BN
1934
1935err_out:
1936 iput(inode);
4f522a24 1937 return found;
9403540c 1938}
ec4f8605 1939EXPORT_SYMBOL(d_add_ci);
1da177e4 1940
12f8ad4b
LT
1941/*
1942 * Do the slow-case of the dentry name compare.
1943 *
1944 * Unlike the dentry_cmp() function, we need to atomically
da53be12 1945 * load the name and length information, so that the
12f8ad4b
LT
1946 * filesystem can rely on them, and can use the 'name' and
1947 * 'len' information without worrying about walking off the
1948 * end of memory etc.
1949 *
1950 * Thus the read_seqcount_retry() and the "duplicate" info
1951 * in arguments (the low-level filesystem should not look
1952 * at the dentry inode or name contents directly, since
1953 * rename can change them while we're in RCU mode).
1954 */
1955enum slow_d_compare {
1956 D_COMP_OK,
1957 D_COMP_NOMATCH,
1958 D_COMP_SEQRETRY,
1959};
1960
1961static noinline enum slow_d_compare slow_dentry_cmp(
1962 const struct dentry *parent,
12f8ad4b
LT
1963 struct dentry *dentry,
1964 unsigned int seq,
1965 const struct qstr *name)
1966{
1967 int tlen = dentry->d_name.len;
1968 const char *tname = dentry->d_name.name;
12f8ad4b
LT
1969
1970 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1971 cpu_relax();
1972 return D_COMP_SEQRETRY;
1973 }
da53be12 1974 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
1975 return D_COMP_NOMATCH;
1976 return D_COMP_OK;
1977}
1978
31e6b01f
NP
1979/**
1980 * __d_lookup_rcu - search for a dentry (racy, store-free)
1981 * @parent: parent dentry
1982 * @name: qstr of name we wish to find
1f1e6e52 1983 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
1984 * Returns: dentry, or NULL
1985 *
1986 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1987 * resolution (store-free path walking) design described in
1988 * Documentation/filesystems/path-lookup.txt.
1989 *
1990 * This is not to be used outside core vfs.
1991 *
1992 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1993 * held, and rcu_read_lock held. The returned dentry must not be stored into
1994 * without taking d_lock and checking d_seq sequence count against @seq
1995 * returned here.
1996 *
15570086 1997 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
1998 * function.
1999 *
2000 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2001 * the returned dentry, so long as its parent's seqlock is checked after the
2002 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2003 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2004 *
2005 * NOTE! The caller *has* to check the resulting dentry against the sequence
2006 * number we've returned before using any of the resulting dentry state!
31e6b01f 2007 */
8966be90
LT
2008struct dentry *__d_lookup_rcu(const struct dentry *parent,
2009 const struct qstr *name,
da53be12 2010 unsigned *seqp)
31e6b01f 2011{
26fe5750 2012 u64 hashlen = name->hash_len;
31e6b01f 2013 const unsigned char *str = name->name;
26fe5750 2014 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 2015 struct hlist_bl_node *node;
31e6b01f
NP
2016 struct dentry *dentry;
2017
2018 /*
2019 * Note: There is significant duplication with __d_lookup_rcu which is
2020 * required to prevent single threaded performance regressions
2021 * especially on architectures where smp_rmb (in seqcounts) are costly.
2022 * Keep the two functions in sync.
2023 */
2024
2025 /*
2026 * The hash list is protected using RCU.
2027 *
2028 * Carefully use d_seq when comparing a candidate dentry, to avoid
2029 * races with d_move().
2030 *
2031 * It is possible that concurrent renames can mess up our list
2032 * walk here and result in missing our dentry, resulting in the
2033 * false-negative result. d_lookup() protects against concurrent
2034 * renames using rename_lock seqlock.
2035 *
b0a4bb83 2036 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2037 */
b07ad996 2038 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2039 unsigned seq;
31e6b01f 2040
31e6b01f 2041seqretry:
12f8ad4b
LT
2042 /*
2043 * The dentry sequence count protects us from concurrent
da53be12 2044 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2045 *
2046 * The caller must perform a seqcount check in order
da53be12 2047 * to do anything useful with the returned dentry.
12f8ad4b
LT
2048 *
2049 * NOTE! We do a "raw" seqcount_begin here. That means that
2050 * we don't wait for the sequence count to stabilize if it
2051 * is in the middle of a sequence change. If we do the slow
2052 * dentry compare, we will do seqretries until it is stable,
2053 * and if we end up with a successful lookup, we actually
2054 * want to exit RCU lookup anyway.
2055 */
2056 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2057 if (dentry->d_parent != parent)
2058 continue;
2e321806
LT
2059 if (d_unhashed(dentry))
2060 continue;
12f8ad4b 2061
830c0f0e 2062 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2063 if (dentry->d_name.hash != hashlen_hash(hashlen))
2064 continue;
da53be12
LT
2065 *seqp = seq;
2066 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2067 case D_COMP_OK:
2068 return dentry;
2069 case D_COMP_NOMATCH:
31e6b01f 2070 continue;
12f8ad4b
LT
2071 default:
2072 goto seqretry;
2073 }
31e6b01f 2074 }
12f8ad4b 2075
26fe5750 2076 if (dentry->d_name.hash_len != hashlen)
ee983e89 2077 continue;
da53be12 2078 *seqp = seq;
26fe5750 2079 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2080 return dentry;
31e6b01f
NP
2081 }
2082 return NULL;
2083}
2084
1da177e4
LT
2085/**
2086 * d_lookup - search for a dentry
2087 * @parent: parent dentry
2088 * @name: qstr of name we wish to find
b04f784e 2089 * Returns: dentry, or NULL
1da177e4 2090 *
b04f784e
NP
2091 * d_lookup searches the children of the parent dentry for the name in
2092 * question. If the dentry is found its reference count is incremented and the
2093 * dentry is returned. The caller must use dput to free the entry when it has
2094 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2095 */
da2d8455 2096struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2097{
31e6b01f 2098 struct dentry *dentry;
949854d0 2099 unsigned seq;
1da177e4
LT
2100
2101 do {
2102 seq = read_seqbegin(&rename_lock);
2103 dentry = __d_lookup(parent, name);
2104 if (dentry)
2105 break;
2106 } while (read_seqretry(&rename_lock, seq));
2107 return dentry;
2108}
ec4f8605 2109EXPORT_SYMBOL(d_lookup);
1da177e4 2110
31e6b01f 2111/**
b04f784e
NP
2112 * __d_lookup - search for a dentry (racy)
2113 * @parent: parent dentry
2114 * @name: qstr of name we wish to find
2115 * Returns: dentry, or NULL
2116 *
2117 * __d_lookup is like d_lookup, however it may (rarely) return a
2118 * false-negative result due to unrelated rename activity.
2119 *
2120 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2121 * however it must be used carefully, eg. with a following d_lookup in
2122 * the case of failure.
2123 *
2124 * __d_lookup callers must be commented.
2125 */
a713ca2a 2126struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2127{
2128 unsigned int len = name->len;
2129 unsigned int hash = name->hash;
2130 const unsigned char *str = name->name;
b07ad996 2131 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2132 struct hlist_bl_node *node;
31e6b01f 2133 struct dentry *found = NULL;
665a7583 2134 struct dentry *dentry;
1da177e4 2135
31e6b01f
NP
2136 /*
2137 * Note: There is significant duplication with __d_lookup_rcu which is
2138 * required to prevent single threaded performance regressions
2139 * especially on architectures where smp_rmb (in seqcounts) are costly.
2140 * Keep the two functions in sync.
2141 */
2142
b04f784e
NP
2143 /*
2144 * The hash list is protected using RCU.
2145 *
2146 * Take d_lock when comparing a candidate dentry, to avoid races
2147 * with d_move().
2148 *
2149 * It is possible that concurrent renames can mess up our list
2150 * walk here and result in missing our dentry, resulting in the
2151 * false-negative result. d_lookup() protects against concurrent
2152 * renames using rename_lock seqlock.
2153 *
b0a4bb83 2154 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2155 */
1da177e4
LT
2156 rcu_read_lock();
2157
b07ad996 2158 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2159
1da177e4
LT
2160 if (dentry->d_name.hash != hash)
2161 continue;
1da177e4
LT
2162
2163 spin_lock(&dentry->d_lock);
1da177e4
LT
2164 if (dentry->d_parent != parent)
2165 goto next;
d0185c08
LT
2166 if (d_unhashed(dentry))
2167 goto next;
2168
1da177e4
LT
2169 /*
2170 * It is safe to compare names since d_move() cannot
2171 * change the qstr (protected by d_lock).
2172 */
fb045adb 2173 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2174 int tlen = dentry->d_name.len;
2175 const char *tname = dentry->d_name.name;
da53be12 2176 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2177 goto next;
2178 } else {
ee983e89
LT
2179 if (dentry->d_name.len != len)
2180 goto next;
12f8ad4b 2181 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2182 goto next;
2183 }
2184
98474236 2185 dentry->d_lockref.count++;
d0185c08 2186 found = dentry;
1da177e4
LT
2187 spin_unlock(&dentry->d_lock);
2188 break;
2189next:
2190 spin_unlock(&dentry->d_lock);
2191 }
2192 rcu_read_unlock();
2193
2194 return found;
2195}
2196
3e7e241f
EB
2197/**
2198 * d_hash_and_lookup - hash the qstr then search for a dentry
2199 * @dir: Directory to search in
2200 * @name: qstr of name we wish to find
2201 *
4f522a24 2202 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2203 */
2204struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2205{
3e7e241f
EB
2206 /*
2207 * Check for a fs-specific hash function. Note that we must
2208 * calculate the standard hash first, as the d_op->d_hash()
2209 * routine may choose to leave the hash value unchanged.
2210 */
2211 name->hash = full_name_hash(name->name, name->len);
fb045adb 2212 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2213 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2214 if (unlikely(err < 0))
2215 return ERR_PTR(err);
3e7e241f 2216 }
4f522a24 2217 return d_lookup(dir, name);
3e7e241f 2218}
4f522a24 2219EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2220
1da177e4 2221/**
786a5e15 2222 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2223 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2224 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2225 *
2226 * An insecure source has sent us a dentry, here we verify it and dget() it.
2227 * This is used by ncpfs in its readdir implementation.
2228 * Zero is returned in the dentry is invalid.
786a5e15
NP
2229 *
2230 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2231 */
d3a23e16 2232int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2233{
786a5e15 2234 struct dentry *child;
d3a23e16 2235
2fd6b7f5 2236 spin_lock(&dparent->d_lock);
786a5e15
NP
2237 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2238 if (dentry == child) {
2fd6b7f5 2239 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2240 __dget_dlock(dentry);
2fd6b7f5
NP
2241 spin_unlock(&dentry->d_lock);
2242 spin_unlock(&dparent->d_lock);
1da177e4
LT
2243 return 1;
2244 }
2245 }
2fd6b7f5 2246 spin_unlock(&dparent->d_lock);
786a5e15 2247
1da177e4
LT
2248 return 0;
2249}
ec4f8605 2250EXPORT_SYMBOL(d_validate);
1da177e4
LT
2251
2252/*
2253 * When a file is deleted, we have two options:
2254 * - turn this dentry into a negative dentry
2255 * - unhash this dentry and free it.
2256 *
2257 * Usually, we want to just turn this into
2258 * a negative dentry, but if anybody else is
2259 * currently using the dentry or the inode
2260 * we can't do that and we fall back on removing
2261 * it from the hash queues and waiting for
2262 * it to be deleted later when it has no users
2263 */
2264
2265/**
2266 * d_delete - delete a dentry
2267 * @dentry: The dentry to delete
2268 *
2269 * Turn the dentry into a negative dentry if possible, otherwise
2270 * remove it from the hash queues so it can be deleted later
2271 */
2272
2273void d_delete(struct dentry * dentry)
2274{
873feea0 2275 struct inode *inode;
7a91bf7f 2276 int isdir = 0;
1da177e4
LT
2277 /*
2278 * Are we the only user?
2279 */
357f8e65 2280again:
1da177e4 2281 spin_lock(&dentry->d_lock);
873feea0
NP
2282 inode = dentry->d_inode;
2283 isdir = S_ISDIR(inode->i_mode);
98474236 2284 if (dentry->d_lockref.count == 1) {
1fe0c023 2285 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2286 spin_unlock(&dentry->d_lock);
2287 cpu_relax();
2288 goto again;
2289 }
13e3c5e5 2290 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2291 dentry_unlink_inode(dentry);
7a91bf7f 2292 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2293 return;
2294 }
2295
2296 if (!d_unhashed(dentry))
2297 __d_drop(dentry);
2298
2299 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2300
2301 fsnotify_nameremove(dentry, isdir);
1da177e4 2302}
ec4f8605 2303EXPORT_SYMBOL(d_delete);
1da177e4 2304
b07ad996 2305static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2306{
ceb5bdc2 2307 BUG_ON(!d_unhashed(entry));
1879fd6a 2308 hlist_bl_lock(b);
dea3667b 2309 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2310 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2311 hlist_bl_unlock(b);
1da177e4
LT
2312}
2313
770bfad8
DH
2314static void _d_rehash(struct dentry * entry)
2315{
2316 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2317}
2318
1da177e4
LT
2319/**
2320 * d_rehash - add an entry back to the hash
2321 * @entry: dentry to add to the hash
2322 *
2323 * Adds a dentry to the hash according to its name.
2324 */
2325
2326void d_rehash(struct dentry * entry)
2327{
1da177e4 2328 spin_lock(&entry->d_lock);
770bfad8 2329 _d_rehash(entry);
1da177e4 2330 spin_unlock(&entry->d_lock);
1da177e4 2331}
ec4f8605 2332EXPORT_SYMBOL(d_rehash);
1da177e4 2333
fb2d5b86
NP
2334/**
2335 * dentry_update_name_case - update case insensitive dentry with a new name
2336 * @dentry: dentry to be updated
2337 * @name: new name
2338 *
2339 * Update a case insensitive dentry with new case of name.
2340 *
2341 * dentry must have been returned by d_lookup with name @name. Old and new
2342 * name lengths must match (ie. no d_compare which allows mismatched name
2343 * lengths).
2344 *
2345 * Parent inode i_mutex must be held over d_lookup and into this call (to
2346 * keep renames and concurrent inserts, and readdir(2) away).
2347 */
2348void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2349{
7ebfa57f 2350 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2351 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2352
fb2d5b86 2353 spin_lock(&dentry->d_lock);
31e6b01f 2354 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2355 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2356 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2357 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2358}
2359EXPORT_SYMBOL(dentry_update_name_case);
2360
1da177e4
LT
2361static void switch_names(struct dentry *dentry, struct dentry *target)
2362{
2363 if (dname_external(target)) {
2364 if (dname_external(dentry)) {
2365 /*
2366 * Both external: swap the pointers
2367 */
9a8d5bb4 2368 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2369 } else {
2370 /*
2371 * dentry:internal, target:external. Steal target's
2372 * storage and make target internal.
2373 */
321bcf92
BF
2374 memcpy(target->d_iname, dentry->d_name.name,
2375 dentry->d_name.len + 1);
1da177e4
LT
2376 dentry->d_name.name = target->d_name.name;
2377 target->d_name.name = target->d_iname;
2378 }
2379 } else {
2380 if (dname_external(dentry)) {
2381 /*
2382 * dentry:external, target:internal. Give dentry's
2383 * storage to target and make dentry internal
2384 */
2385 memcpy(dentry->d_iname, target->d_name.name,
2386 target->d_name.len + 1);
2387 target->d_name.name = dentry->d_name.name;
2388 dentry->d_name.name = dentry->d_iname;
2389 } else {
2390 /*
da1ce067 2391 * Both are internal.
1da177e4 2392 */
da1ce067
MS
2393 unsigned int i;
2394 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2395 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2396 swap(((long *) &dentry->d_iname)[i],
2397 ((long *) &target->d_iname)[i]);
2398 }
1da177e4
LT
2399 }
2400 }
9a8d5bb4 2401 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2402}
2403
2fd6b7f5
NP
2404static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2405{
2406 /*
2407 * XXXX: do we really need to take target->d_lock?
2408 */
2409 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2410 spin_lock(&target->d_parent->d_lock);
2411 else {
2412 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2413 spin_lock(&dentry->d_parent->d_lock);
2414 spin_lock_nested(&target->d_parent->d_lock,
2415 DENTRY_D_LOCK_NESTED);
2416 } else {
2417 spin_lock(&target->d_parent->d_lock);
2418 spin_lock_nested(&dentry->d_parent->d_lock,
2419 DENTRY_D_LOCK_NESTED);
2420 }
2421 }
2422 if (target < dentry) {
2423 spin_lock_nested(&target->d_lock, 2);
2424 spin_lock_nested(&dentry->d_lock, 3);
2425 } else {
2426 spin_lock_nested(&dentry->d_lock, 2);
2427 spin_lock_nested(&target->d_lock, 3);
2428 }
2429}
2430
2431static void dentry_unlock_parents_for_move(struct dentry *dentry,
2432 struct dentry *target)
2433{
2434 if (target->d_parent != dentry->d_parent)
2435 spin_unlock(&dentry->d_parent->d_lock);
2436 if (target->d_parent != target)
2437 spin_unlock(&target->d_parent->d_lock);
2438}
2439
1da177e4 2440/*
2fd6b7f5
NP
2441 * When switching names, the actual string doesn't strictly have to
2442 * be preserved in the target - because we're dropping the target
2443 * anyway. As such, we can just do a simple memcpy() to copy over
2444 * the new name before we switch.
2445 *
2446 * Note that we have to be a lot more careful about getting the hash
2447 * switched - we have to switch the hash value properly even if it
2448 * then no longer matches the actual (corrupted) string of the target.
2449 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2450 */
9eaef27b 2451/*
18367501 2452 * __d_move - move a dentry
1da177e4
LT
2453 * @dentry: entry to move
2454 * @target: new dentry
da1ce067 2455 * @exchange: exchange the two dentries
1da177e4
LT
2456 *
2457 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2458 * dcache entries should not be moved in this way. Caller must hold
2459 * rename_lock, the i_mutex of the source and target directories,
2460 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2461 */
da1ce067
MS
2462static void __d_move(struct dentry *dentry, struct dentry *target,
2463 bool exchange)
1da177e4 2464{
1da177e4
LT
2465 if (!dentry->d_inode)
2466 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2467
2fd6b7f5
NP
2468 BUG_ON(d_ancestor(dentry, target));
2469 BUG_ON(d_ancestor(target, dentry));
2470
2fd6b7f5 2471 dentry_lock_for_move(dentry, target);
1da177e4 2472
31e6b01f 2473 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2474 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2475
ceb5bdc2
NP
2476 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2477
2478 /*
2479 * Move the dentry to the target hash queue. Don't bother checking
2480 * for the same hash queue because of how unlikely it is.
2481 */
2482 __d_drop(dentry);
789680d1 2483 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4 2484
da1ce067
MS
2485 /*
2486 * Unhash the target (d_delete() is not usable here). If exchanging
2487 * the two dentries, then rehash onto the other's hash queue.
2488 */
1da177e4 2489 __d_drop(target);
da1ce067
MS
2490 if (exchange) {
2491 __d_rehash(target,
2492 d_hash(dentry->d_parent, dentry->d_name.hash));
2493 }
1da177e4 2494
5160ee6f
ED
2495 list_del(&dentry->d_u.d_child);
2496 list_del(&target->d_u.d_child);
1da177e4
LT
2497
2498 /* Switch the names.. */
2499 switch_names(dentry, target);
9a8d5bb4 2500 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2501
2502 /* ... and switch the parents */
2503 if (IS_ROOT(dentry)) {
2504 dentry->d_parent = target->d_parent;
2505 target->d_parent = target;
5160ee6f 2506 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2507 } else {
9a8d5bb4 2508 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2509
2510 /* And add them back to the (new) parent lists */
5160ee6f 2511 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2512 }
2513
5160ee6f 2514 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2515
31e6b01f
NP
2516 write_seqcount_end(&target->d_seq);
2517 write_seqcount_end(&dentry->d_seq);
2518
2fd6b7f5 2519 dentry_unlock_parents_for_move(dentry, target);
da1ce067
MS
2520 if (exchange)
2521 fsnotify_d_move(target);
1da177e4 2522 spin_unlock(&target->d_lock);
c32ccd87 2523 fsnotify_d_move(dentry);
1da177e4 2524 spin_unlock(&dentry->d_lock);
18367501
AV
2525}
2526
2527/*
2528 * d_move - move a dentry
2529 * @dentry: entry to move
2530 * @target: new dentry
2531 *
2532 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2533 * dcache entries should not be moved in this way. See the locking
2534 * requirements for __d_move.
18367501
AV
2535 */
2536void d_move(struct dentry *dentry, struct dentry *target)
2537{
2538 write_seqlock(&rename_lock);
da1ce067 2539 __d_move(dentry, target, false);
1da177e4 2540 write_sequnlock(&rename_lock);
9eaef27b 2541}
ec4f8605 2542EXPORT_SYMBOL(d_move);
1da177e4 2543
da1ce067
MS
2544/*
2545 * d_exchange - exchange two dentries
2546 * @dentry1: first dentry
2547 * @dentry2: second dentry
2548 */
2549void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2550{
2551 write_seqlock(&rename_lock);
2552
2553 WARN_ON(!dentry1->d_inode);
2554 WARN_ON(!dentry2->d_inode);
2555 WARN_ON(IS_ROOT(dentry1));
2556 WARN_ON(IS_ROOT(dentry2));
2557
2558 __d_move(dentry1, dentry2, true);
2559
2560 write_sequnlock(&rename_lock);
2561}
2562
e2761a11
OH
2563/**
2564 * d_ancestor - search for an ancestor
2565 * @p1: ancestor dentry
2566 * @p2: child dentry
2567 *
2568 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2569 * an ancestor of p2, else NULL.
9eaef27b 2570 */
e2761a11 2571struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2572{
2573 struct dentry *p;
2574
871c0067 2575 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2576 if (p->d_parent == p1)
e2761a11 2577 return p;
9eaef27b 2578 }
e2761a11 2579 return NULL;
9eaef27b
TM
2580}
2581
2582/*
2583 * This helper attempts to cope with remotely renamed directories
2584 *
2585 * It assumes that the caller is already holding
18367501 2586 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2587 *
2588 * Note: If ever the locking in lock_rename() changes, then please
2589 * remember to update this too...
9eaef27b 2590 */
873feea0
NP
2591static struct dentry *__d_unalias(struct inode *inode,
2592 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2593{
2594 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2595 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2596
2597 /* If alias and dentry share a parent, then no extra locks required */
2598 if (alias->d_parent == dentry->d_parent)
2599 goto out_unalias;
2600
9eaef27b 2601 /* See lock_rename() */
9eaef27b
TM
2602 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2603 goto out_err;
2604 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2605 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2606 goto out_err;
2607 m2 = &alias->d_parent->d_inode->i_mutex;
2608out_unalias:
ee3efa91 2609 if (likely(!d_mountpoint(alias))) {
da1ce067 2610 __d_move(alias, dentry, false);
ee3efa91
AV
2611 ret = alias;
2612 }
9eaef27b 2613out_err:
873feea0 2614 spin_unlock(&inode->i_lock);
9eaef27b
TM
2615 if (m2)
2616 mutex_unlock(m2);
2617 if (m1)
2618 mutex_unlock(m1);
2619 return ret;
2620}
2621
770bfad8
DH
2622/*
2623 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2624 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2625 * returns with anon->d_lock held!
770bfad8
DH
2626 */
2627static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2628{
740da42e 2629 struct dentry *dparent;
770bfad8 2630
2fd6b7f5 2631 dentry_lock_for_move(anon, dentry);
770bfad8 2632
31e6b01f 2633 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2634 write_seqcount_begin_nested(&anon->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2635
770bfad8 2636 dparent = dentry->d_parent;
770bfad8 2637
2fd6b7f5
NP
2638 switch_names(dentry, anon);
2639 swap(dentry->d_name.hash, anon->d_name.hash);
2640
740da42e
AV
2641 dentry->d_parent = dentry;
2642 list_del_init(&dentry->d_u.d_child);
2643 anon->d_parent = dparent;
9ed53b12 2644 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
770bfad8 2645
31e6b01f
NP
2646 write_seqcount_end(&dentry->d_seq);
2647 write_seqcount_end(&anon->d_seq);
2648
2fd6b7f5
NP
2649 dentry_unlock_parents_for_move(anon, dentry);
2650 spin_unlock(&dentry->d_lock);
2651
2652 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2653}
2654
2655/**
2656 * d_materialise_unique - introduce an inode into the tree
2657 * @dentry: candidate dentry
2658 * @inode: inode to bind to the dentry, to which aliases may be attached
2659 *
2660 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2661 * root directory alias in its place if there is one. Caller must hold the
2662 * i_mutex of the parent directory.
770bfad8
DH
2663 */
2664struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2665{
9eaef27b 2666 struct dentry *actual;
770bfad8
DH
2667
2668 BUG_ON(!d_unhashed(dentry));
2669
770bfad8
DH
2670 if (!inode) {
2671 actual = dentry;
360da900 2672 __d_instantiate(dentry, NULL);
357f8e65
NP
2673 d_rehash(actual);
2674 goto out_nolock;
770bfad8
DH
2675 }
2676
873feea0 2677 spin_lock(&inode->i_lock);
357f8e65 2678
9eaef27b
TM
2679 if (S_ISDIR(inode->i_mode)) {
2680 struct dentry *alias;
2681
2682 /* Does an aliased dentry already exist? */
32ba9c3f 2683 alias = __d_find_alias(inode, 0);
9eaef27b
TM
2684 if (alias) {
2685 actual = alias;
18367501
AV
2686 write_seqlock(&rename_lock);
2687
2688 if (d_ancestor(alias, dentry)) {
2689 /* Check for loops */
2690 actual = ERR_PTR(-ELOOP);
b18dafc8 2691 spin_unlock(&inode->i_lock);
18367501
AV
2692 } else if (IS_ROOT(alias)) {
2693 /* Is this an anonymous mountpoint that we
2694 * could splice into our tree? */
9eaef27b 2695 __d_materialise_dentry(dentry, alias);
18367501 2696 write_sequnlock(&rename_lock);
9eaef27b
TM
2697 __d_drop(alias);
2698 goto found;
18367501
AV
2699 } else {
2700 /* Nope, but we must(!) avoid directory
b18dafc8 2701 * aliasing. This drops inode->i_lock */
18367501 2702 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2703 }
18367501 2704 write_sequnlock(&rename_lock);
dd179946
DH
2705 if (IS_ERR(actual)) {
2706 if (PTR_ERR(actual) == -ELOOP)
2707 pr_warn_ratelimited(
2708 "VFS: Lookup of '%s' in %s %s"
2709 " would have caused loop\n",
2710 dentry->d_name.name,
2711 inode->i_sb->s_type->name,
2712 inode->i_sb->s_id);
9eaef27b 2713 dput(alias);
dd179946 2714 }
9eaef27b
TM
2715 goto out_nolock;
2716 }
770bfad8
DH
2717 }
2718
2719 /* Add a unique reference */
2720 actual = __d_instantiate_unique(dentry, inode);
2721 if (!actual)
2722 actual = dentry;
357f8e65
NP
2723 else
2724 BUG_ON(!d_unhashed(actual));
770bfad8 2725
770bfad8
DH
2726 spin_lock(&actual->d_lock);
2727found:
2728 _d_rehash(actual);
2729 spin_unlock(&actual->d_lock);
873feea0 2730 spin_unlock(&inode->i_lock);
9eaef27b 2731out_nolock:
770bfad8
DH
2732 if (actual == dentry) {
2733 security_d_instantiate(dentry, inode);
2734 return NULL;
2735 }
2736
2737 iput(inode);
2738 return actual;
770bfad8 2739}
ec4f8605 2740EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2741
cdd16d02 2742static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2743{
2744 *buflen -= namelen;
2745 if (*buflen < 0)
2746 return -ENAMETOOLONG;
2747 *buffer -= namelen;
2748 memcpy(*buffer, str, namelen);
2749 return 0;
2750}
2751
232d2d60
WL
2752/**
2753 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
2754 * @buffer: buffer pointer
2755 * @buflen: allocated length of the buffer
2756 * @name: name string and length qstr structure
232d2d60
WL
2757 *
2758 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2759 * make sure that either the old or the new name pointer and length are
2760 * fetched. However, there may be mismatch between length and pointer.
2761 * The length cannot be trusted, we need to copy it byte-by-byte until
2762 * the length is reached or a null byte is found. It also prepends "/" at
2763 * the beginning of the name. The sequence number check at the caller will
2764 * retry it again when a d_move() does happen. So any garbage in the buffer
2765 * due to mismatched pointer and length will be discarded.
2766 */
cdd16d02
MS
2767static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2768{
232d2d60
WL
2769 const char *dname = ACCESS_ONCE(name->name);
2770 u32 dlen = ACCESS_ONCE(name->len);
2771 char *p;
2772
232d2d60 2773 *buflen -= dlen + 1;
e825196d
AV
2774 if (*buflen < 0)
2775 return -ENAMETOOLONG;
232d2d60
WL
2776 p = *buffer -= dlen + 1;
2777 *p++ = '/';
2778 while (dlen--) {
2779 char c = *dname++;
2780 if (!c)
2781 break;
2782 *p++ = c;
2783 }
2784 return 0;
cdd16d02
MS
2785}
2786
1da177e4 2787/**
208898c1 2788 * prepend_path - Prepend path string to a buffer
9d1bc601 2789 * @path: the dentry/vfsmount to report
02125a82 2790 * @root: root vfsmnt/dentry
f2eb6575
MS
2791 * @buffer: pointer to the end of the buffer
2792 * @buflen: pointer to buffer length
552ce544 2793 *
18129977
WL
2794 * The function will first try to write out the pathname without taking any
2795 * lock other than the RCU read lock to make sure that dentries won't go away.
2796 * It only checks the sequence number of the global rename_lock as any change
2797 * in the dentry's d_seq will be preceded by changes in the rename_lock
2798 * sequence number. If the sequence number had been changed, it will restart
2799 * the whole pathname back-tracing sequence again by taking the rename_lock.
2800 * In this case, there is no need to take the RCU read lock as the recursive
2801 * parent pointer references will keep the dentry chain alive as long as no
2802 * rename operation is performed.
1da177e4 2803 */
02125a82
AV
2804static int prepend_path(const struct path *path,
2805 const struct path *root,
f2eb6575 2806 char **buffer, int *buflen)
1da177e4 2807{
ede4cebc
AV
2808 struct dentry *dentry;
2809 struct vfsmount *vfsmnt;
2810 struct mount *mnt;
f2eb6575 2811 int error = 0;
48a066e7 2812 unsigned seq, m_seq = 0;
232d2d60
WL
2813 char *bptr;
2814 int blen;
6092d048 2815
48f5ec21 2816 rcu_read_lock();
48a066e7
AV
2817restart_mnt:
2818 read_seqbegin_or_lock(&mount_lock, &m_seq);
2819 seq = 0;
4ec6c2ae 2820 rcu_read_lock();
232d2d60
WL
2821restart:
2822 bptr = *buffer;
2823 blen = *buflen;
48a066e7 2824 error = 0;
ede4cebc
AV
2825 dentry = path->dentry;
2826 vfsmnt = path->mnt;
2827 mnt = real_mount(vfsmnt);
232d2d60 2828 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 2829 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2830 struct dentry * parent;
2831
1da177e4 2832 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 2833 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
552ce544 2834 /* Global root? */
48a066e7
AV
2835 if (mnt != parent) {
2836 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2837 mnt = parent;
232d2d60
WL
2838 vfsmnt = &mnt->mnt;
2839 continue;
2840 }
2841 /*
2842 * Filesystems needing to implement special "root names"
2843 * should do so with ->d_dname()
2844 */
2845 if (IS_ROOT(dentry) &&
2846 (dentry->d_name.len != 1 ||
2847 dentry->d_name.name[0] != '/')) {
2848 WARN(1, "Root dentry has weird name <%.*s>\n",
2849 (int) dentry->d_name.len,
2850 dentry->d_name.name);
2851 }
2852 if (!error)
2853 error = is_mounted(vfsmnt) ? 1 : 2;
2854 break;
1da177e4
LT
2855 }
2856 parent = dentry->d_parent;
2857 prefetch(parent);
232d2d60 2858 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
2859 if (error)
2860 break;
2861
1da177e4
LT
2862 dentry = parent;
2863 }
48f5ec21
AV
2864 if (!(seq & 1))
2865 rcu_read_unlock();
2866 if (need_seqretry(&rename_lock, seq)) {
2867 seq = 1;
232d2d60 2868 goto restart;
48f5ec21
AV
2869 }
2870 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
2871
2872 if (!(m_seq & 1))
2873 rcu_read_unlock();
48a066e7
AV
2874 if (need_seqretry(&mount_lock, m_seq)) {
2875 m_seq = 1;
2876 goto restart_mnt;
2877 }
2878 done_seqretry(&mount_lock, m_seq);
1da177e4 2879
232d2d60
WL
2880 if (error >= 0 && bptr == *buffer) {
2881 if (--blen < 0)
2882 error = -ENAMETOOLONG;
2883 else
2884 *--bptr = '/';
2885 }
2886 *buffer = bptr;
2887 *buflen = blen;
7ea600b5 2888 return error;
f2eb6575 2889}
be285c71 2890
f2eb6575
MS
2891/**
2892 * __d_path - return the path of a dentry
2893 * @path: the dentry/vfsmount to report
02125a82 2894 * @root: root vfsmnt/dentry
cd956a1c 2895 * @buf: buffer to return value in
f2eb6575
MS
2896 * @buflen: buffer length
2897 *
ffd1f4ed 2898 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2899 *
2900 * Returns a pointer into the buffer or an error code if the
2901 * path was too long.
2902 *
be148247 2903 * "buflen" should be positive.
f2eb6575 2904 *
02125a82 2905 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2906 */
02125a82
AV
2907char *__d_path(const struct path *path,
2908 const struct path *root,
f2eb6575
MS
2909 char *buf, int buflen)
2910{
2911 char *res = buf + buflen;
2912 int error;
2913
2914 prepend(&res, &buflen, "\0", 1);
f2eb6575 2915 error = prepend_path(path, root, &res, &buflen);
be148247 2916
02125a82
AV
2917 if (error < 0)
2918 return ERR_PTR(error);
2919 if (error > 0)
2920 return NULL;
2921 return res;
2922}
2923
2924char *d_absolute_path(const struct path *path,
2925 char *buf, int buflen)
2926{
2927 struct path root = {};
2928 char *res = buf + buflen;
2929 int error;
2930
2931 prepend(&res, &buflen, "\0", 1);
02125a82 2932 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
2933
2934 if (error > 1)
2935 error = -EINVAL;
2936 if (error < 0)
f2eb6575 2937 return ERR_PTR(error);
f2eb6575 2938 return res;
1da177e4
LT
2939}
2940
ffd1f4ed
MS
2941/*
2942 * same as __d_path but appends "(deleted)" for unlinked files.
2943 */
02125a82
AV
2944static int path_with_deleted(const struct path *path,
2945 const struct path *root,
2946 char **buf, int *buflen)
ffd1f4ed
MS
2947{
2948 prepend(buf, buflen, "\0", 1);
2949 if (d_unlinked(path->dentry)) {
2950 int error = prepend(buf, buflen, " (deleted)", 10);
2951 if (error)
2952 return error;
2953 }
2954
2955 return prepend_path(path, root, buf, buflen);
2956}
2957
8df9d1a4
MS
2958static int prepend_unreachable(char **buffer, int *buflen)
2959{
2960 return prepend(buffer, buflen, "(unreachable)", 13);
2961}
2962
68f0d9d9
LT
2963static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
2964{
2965 unsigned seq;
2966
2967 do {
2968 seq = read_seqcount_begin(&fs->seq);
2969 *root = fs->root;
2970 } while (read_seqcount_retry(&fs->seq, seq));
2971}
2972
a03a8a70
JB
2973/**
2974 * d_path - return the path of a dentry
cf28b486 2975 * @path: path to report
a03a8a70
JB
2976 * @buf: buffer to return value in
2977 * @buflen: buffer length
2978 *
2979 * Convert a dentry into an ASCII path name. If the entry has been deleted
2980 * the string " (deleted)" is appended. Note that this is ambiguous.
2981 *
52afeefb
AV
2982 * Returns a pointer into the buffer or an error code if the path was
2983 * too long. Note: Callers should use the returned pointer, not the passed
2984 * in buffer, to use the name! The implementation often starts at an offset
2985 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2986 *
31f3e0b3 2987 * "buflen" should be positive.
a03a8a70 2988 */
20d4fdc1 2989char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2990{
ffd1f4ed 2991 char *res = buf + buflen;
6ac08c39 2992 struct path root;
ffd1f4ed 2993 int error;
1da177e4 2994
c23fbb6b
ED
2995 /*
2996 * We have various synthetic filesystems that never get mounted. On
2997 * these filesystems dentries are never used for lookup purposes, and
2998 * thus don't need to be hashed. They also don't need a name until a
2999 * user wants to identify the object in /proc/pid/fd/. The little hack
3000 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3001 *
3002 * Some pseudo inodes are mountable. When they are mounted
3003 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3004 * and instead have d_path return the mounted path.
c23fbb6b 3005 */
f48cfddc
EB
3006 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3007 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3008 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3009
68f0d9d9
LT
3010 rcu_read_lock();
3011 get_fs_root_rcu(current->fs, &root);
02125a82 3012 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3013 rcu_read_unlock();
3014
02125a82 3015 if (error < 0)
ffd1f4ed 3016 res = ERR_PTR(error);
1da177e4
LT
3017 return res;
3018}
ec4f8605 3019EXPORT_SYMBOL(d_path);
1da177e4 3020
c23fbb6b
ED
3021/*
3022 * Helper function for dentry_operations.d_dname() members
3023 */
3024char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3025 const char *fmt, ...)
3026{
3027 va_list args;
3028 char temp[64];
3029 int sz;
3030
3031 va_start(args, fmt);
3032 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3033 va_end(args);
3034
3035 if (sz > sizeof(temp) || sz > buflen)
3036 return ERR_PTR(-ENAMETOOLONG);
3037
3038 buffer += buflen - sz;
3039 return memcpy(buffer, temp, sz);
3040}
3041
118b2302
AV
3042char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3043{
3044 char *end = buffer + buflen;
3045 /* these dentries are never renamed, so d_lock is not needed */
3046 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3047 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3048 prepend(&end, &buflen, "/", 1))
3049 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3050 return end;
118b2302 3051}
31bbe16f 3052EXPORT_SYMBOL(simple_dname);
118b2302 3053
6092d048
RP
3054/*
3055 * Write full pathname from the root of the filesystem into the buffer.
3056 */
f6500801 3057static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3058{
f6500801 3059 struct dentry *dentry;
232d2d60
WL
3060 char *end, *retval;
3061 int len, seq = 0;
3062 int error = 0;
6092d048 3063
f6500801
AV
3064 if (buflen < 2)
3065 goto Elong;
3066
48f5ec21 3067 rcu_read_lock();
232d2d60 3068restart:
f6500801 3069 dentry = d;
232d2d60
WL
3070 end = buf + buflen;
3071 len = buflen;
3072 prepend(&end, &len, "\0", 1);
6092d048
RP
3073 /* Get '/' right */
3074 retval = end-1;
3075 *retval = '/';
232d2d60 3076 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3077 while (!IS_ROOT(dentry)) {
3078 struct dentry *parent = dentry->d_parent;
6092d048 3079
6092d048 3080 prefetch(parent);
232d2d60
WL
3081 error = prepend_name(&end, &len, &dentry->d_name);
3082 if (error)
3083 break;
6092d048
RP
3084
3085 retval = end;
3086 dentry = parent;
3087 }
48f5ec21
AV
3088 if (!(seq & 1))
3089 rcu_read_unlock();
3090 if (need_seqretry(&rename_lock, seq)) {
3091 seq = 1;
232d2d60 3092 goto restart;
48f5ec21
AV
3093 }
3094 done_seqretry(&rename_lock, seq);
232d2d60
WL
3095 if (error)
3096 goto Elong;
c103135c
AV
3097 return retval;
3098Elong:
3099 return ERR_PTR(-ENAMETOOLONG);
3100}
ec2447c2
NP
3101
3102char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3103{
232d2d60 3104 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3105}
3106EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3107
3108char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3109{
3110 char *p = NULL;
3111 char *retval;
3112
c103135c
AV
3113 if (d_unlinked(dentry)) {
3114 p = buf + buflen;
3115 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3116 goto Elong;
3117 buflen++;
3118 }
3119 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3120 if (!IS_ERR(retval) && p)
3121 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3122 return retval;
3123Elong:
6092d048
RP
3124 return ERR_PTR(-ENAMETOOLONG);
3125}
3126
8b19e341
LT
3127static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3128 struct path *pwd)
5762482f 3129{
8b19e341
LT
3130 unsigned seq;
3131
3132 do {
3133 seq = read_seqcount_begin(&fs->seq);
3134 *root = fs->root;
3135 *pwd = fs->pwd;
3136 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3137}
3138
1da177e4
LT
3139/*
3140 * NOTE! The user-level library version returns a
3141 * character pointer. The kernel system call just
3142 * returns the length of the buffer filled (which
3143 * includes the ending '\0' character), or a negative
3144 * error value. So libc would do something like
3145 *
3146 * char *getcwd(char * buf, size_t size)
3147 * {
3148 * int retval;
3149 *
3150 * retval = sys_getcwd(buf, size);
3151 * if (retval >= 0)
3152 * return buf;
3153 * errno = -retval;
3154 * return NULL;
3155 * }
3156 */
3cdad428 3157SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3158{
552ce544 3159 int error;
6ac08c39 3160 struct path pwd, root;
3272c544 3161 char *page = __getname();
1da177e4
LT
3162
3163 if (!page)
3164 return -ENOMEM;
3165
8b19e341
LT
3166 rcu_read_lock();
3167 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3168
552ce544 3169 error = -ENOENT;
f3da392e 3170 if (!d_unlinked(pwd.dentry)) {
552ce544 3171 unsigned long len;
3272c544
LT
3172 char *cwd = page + PATH_MAX;
3173 int buflen = PATH_MAX;
1da177e4 3174
8df9d1a4 3175 prepend(&cwd, &buflen, "\0", 1);
02125a82 3176 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3177 rcu_read_unlock();
552ce544 3178
02125a82 3179 if (error < 0)
552ce544
LT
3180 goto out;
3181
8df9d1a4 3182 /* Unreachable from current root */
02125a82 3183 if (error > 0) {
8df9d1a4
MS
3184 error = prepend_unreachable(&cwd, &buflen);
3185 if (error)
3186 goto out;
3187 }
3188
552ce544 3189 error = -ERANGE;
3272c544 3190 len = PATH_MAX + page - cwd;
552ce544
LT
3191 if (len <= size) {
3192 error = len;
3193 if (copy_to_user(buf, cwd, len))
3194 error = -EFAULT;
3195 }
949854d0 3196 } else {
ff812d72 3197 rcu_read_unlock();
949854d0 3198 }
1da177e4
LT
3199
3200out:
3272c544 3201 __putname(page);
1da177e4
LT
3202 return error;
3203}
3204
3205/*
3206 * Test whether new_dentry is a subdirectory of old_dentry.
3207 *
3208 * Trivially implemented using the dcache structure
3209 */
3210
3211/**
3212 * is_subdir - is new dentry a subdirectory of old_dentry
3213 * @new_dentry: new dentry
3214 * @old_dentry: old dentry
3215 *
3216 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3217 * Returns 0 otherwise.
3218 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3219 */
3220
e2761a11 3221int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
3222{
3223 int result;
949854d0 3224 unsigned seq;
1da177e4 3225
e2761a11
OH
3226 if (new_dentry == old_dentry)
3227 return 1;
3228
e2761a11 3229 do {
1da177e4 3230 /* for restarting inner loop in case of seq retry */
1da177e4 3231 seq = read_seqbegin(&rename_lock);
949854d0
NP
3232 /*
3233 * Need rcu_readlock to protect against the d_parent trashing
3234 * due to d_move
3235 */
3236 rcu_read_lock();
e2761a11 3237 if (d_ancestor(old_dentry, new_dentry))
1da177e4 3238 result = 1;
e2761a11
OH
3239 else
3240 result = 0;
949854d0 3241 rcu_read_unlock();
1da177e4 3242 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3243
3244 return result;
3245}
3246
db14fc3a 3247static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3248{
db14fc3a
MS
3249 struct dentry *root = data;
3250 if (dentry != root) {
3251 if (d_unhashed(dentry) || !dentry->d_inode)
3252 return D_WALK_SKIP;
1da177e4 3253
01ddc4ed
MS
3254 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3255 dentry->d_flags |= DCACHE_GENOCIDE;
3256 dentry->d_lockref.count--;
3257 }
1da177e4 3258 }
db14fc3a
MS
3259 return D_WALK_CONTINUE;
3260}
58db63d0 3261
db14fc3a
MS
3262void d_genocide(struct dentry *parent)
3263{
3264 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3265}
3266
60545d0d 3267void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3268{
60545d0d
AV
3269 inode_dec_link_count(inode);
3270 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3271 !hlist_unhashed(&dentry->d_alias) ||
3272 !d_unlinked(dentry));
3273 spin_lock(&dentry->d_parent->d_lock);
3274 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3275 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3276 (unsigned long long)inode->i_ino);
3277 spin_unlock(&dentry->d_lock);
3278 spin_unlock(&dentry->d_parent->d_lock);
3279 d_instantiate(dentry, inode);
1da177e4 3280}
60545d0d 3281EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3282
3283static __initdata unsigned long dhash_entries;
3284static int __init set_dhash_entries(char *str)
3285{
3286 if (!str)
3287 return 0;
3288 dhash_entries = simple_strtoul(str, &str, 0);
3289 return 1;
3290}
3291__setup("dhash_entries=", set_dhash_entries);
3292
3293static void __init dcache_init_early(void)
3294{
074b8517 3295 unsigned int loop;
1da177e4
LT
3296
3297 /* If hashes are distributed across NUMA nodes, defer
3298 * hash allocation until vmalloc space is available.
3299 */
3300 if (hashdist)
3301 return;
3302
3303 dentry_hashtable =
3304 alloc_large_system_hash("Dentry cache",
b07ad996 3305 sizeof(struct hlist_bl_head),
1da177e4
LT
3306 dhash_entries,
3307 13,
3308 HASH_EARLY,
3309 &d_hash_shift,
3310 &d_hash_mask,
31fe62b9 3311 0,
1da177e4
LT
3312 0);
3313
074b8517 3314 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3315 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3316}
3317
74bf17cf 3318static void __init dcache_init(void)
1da177e4 3319{
074b8517 3320 unsigned int loop;
1da177e4
LT
3321
3322 /*
3323 * A constructor could be added for stable state like the lists,
3324 * but it is probably not worth it because of the cache nature
3325 * of the dcache.
3326 */
0a31bd5f
CL
3327 dentry_cache = KMEM_CACHE(dentry,
3328 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3329
3330 /* Hash may have been set up in dcache_init_early */
3331 if (!hashdist)
3332 return;
3333
3334 dentry_hashtable =
3335 alloc_large_system_hash("Dentry cache",
b07ad996 3336 sizeof(struct hlist_bl_head),
1da177e4
LT
3337 dhash_entries,
3338 13,
3339 0,
3340 &d_hash_shift,
3341 &d_hash_mask,
31fe62b9 3342 0,
1da177e4
LT
3343 0);
3344
074b8517 3345 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3346 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3347}
3348
3349/* SLAB cache for __getname() consumers */
e18b890b 3350struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3351EXPORT_SYMBOL(names_cachep);
1da177e4 3352
1da177e4
LT
3353EXPORT_SYMBOL(d_genocide);
3354
1da177e4
LT
3355void __init vfs_caches_init_early(void)
3356{
3357 dcache_init_early();
3358 inode_init_early();
3359}
3360
3361void __init vfs_caches_init(unsigned long mempages)
3362{
3363 unsigned long reserve;
3364
3365 /* Base hash sizes on available memory, with a reserve equal to
3366 150% of current kernel size */
3367
3368 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3369 mempages -= reserve;
3370
3371 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3372 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3373
74bf17cf
DC
3374 dcache_init();
3375 inode_init();
1da177e4 3376 files_init(mempages);
74bf17cf 3377 mnt_init();
1da177e4
LT
3378 bdev_cache_init();
3379 chrdev_init();
3380}
This page took 1.023876 seconds and 5 git commands to generate.