ecryptfs: Remove unneeded locking that triggers lockdep false positives
[deliverable/linux.git] / fs / ecryptfs / crypto.c
CommitLineData
237fead6
MH
1/**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
dd2a3b7a 6 * Copyright (C) 2004-2007 International Business Machines Corp.
237fead6
MH
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/mount.h>
28#include <linux/pagemap.h>
29#include <linux/random.h>
30#include <linux/compiler.h>
31#include <linux/key.h>
32#include <linux/namei.h>
33#include <linux/crypto.h>
34#include <linux/file.h>
35#include <linux/scatterlist.h>
29335c6a 36#include <asm/unaligned.h>
237fead6
MH
37#include "ecryptfs_kernel.h"
38
39static int
40ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
41 struct page *dst_page, int dst_offset,
42 struct page *src_page, int src_offset, int size,
43 unsigned char *iv);
44static int
45ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
46 struct page *dst_page, int dst_offset,
47 struct page *src_page, int src_offset, int size,
48 unsigned char *iv);
49
50/**
51 * ecryptfs_to_hex
52 * @dst: Buffer to take hex character representation of contents of
53 * src; must be at least of size (src_size * 2)
54 * @src: Buffer to be converted to a hex string respresentation
55 * @src_size: number of bytes to convert
56 */
57void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
58{
59 int x;
60
61 for (x = 0; x < src_size; x++)
62 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
63}
64
65/**
66 * ecryptfs_from_hex
67 * @dst: Buffer to take the bytes from src hex; must be at least of
68 * size (src_size / 2)
69 * @src: Buffer to be converted from a hex string respresentation to raw value
70 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
71 */
72void ecryptfs_from_hex(char *dst, char *src, int dst_size)
73{
74 int x;
75 char tmp[3] = { 0, };
76
77 for (x = 0; x < dst_size; x++) {
78 tmp[0] = src[x * 2];
79 tmp[1] = src[x * 2 + 1];
80 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
81 }
82}
83
84/**
85 * ecryptfs_calculate_md5 - calculates the md5 of @src
86 * @dst: Pointer to 16 bytes of allocated memory
87 * @crypt_stat: Pointer to crypt_stat struct for the current inode
88 * @src: Data to be md5'd
89 * @len: Length of @src
90 *
91 * Uses the allocated crypto context that crypt_stat references to
92 * generate the MD5 sum of the contents of src.
93 */
94static int ecryptfs_calculate_md5(char *dst,
95 struct ecryptfs_crypt_stat *crypt_stat,
96 char *src, int len)
97{
237fead6 98 struct scatterlist sg;
565d9724
MH
99 struct hash_desc desc = {
100 .tfm = crypt_stat->hash_tfm,
101 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
102 };
103 int rc = 0;
237fead6 104
565d9724 105 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
237fead6 106 sg_init_one(&sg, (u8 *)src, len);
565d9724
MH
107 if (!desc.tfm) {
108 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
109 CRYPTO_ALG_ASYNC);
110 if (IS_ERR(desc.tfm)) {
111 rc = PTR_ERR(desc.tfm);
237fead6 112 ecryptfs_printk(KERN_ERR, "Error attempting to "
565d9724
MH
113 "allocate crypto context; rc = [%d]\n",
114 rc);
237fead6
MH
115 goto out;
116 }
565d9724 117 crypt_stat->hash_tfm = desc.tfm;
237fead6 118 }
8a29f2b0
MH
119 rc = crypto_hash_init(&desc);
120 if (rc) {
121 printk(KERN_ERR
122 "%s: Error initializing crypto hash; rc = [%d]\n",
18d1dbf1 123 __func__, rc);
8a29f2b0
MH
124 goto out;
125 }
126 rc = crypto_hash_update(&desc, &sg, len);
127 if (rc) {
128 printk(KERN_ERR
129 "%s: Error updating crypto hash; rc = [%d]\n",
18d1dbf1 130 __func__, rc);
8a29f2b0
MH
131 goto out;
132 }
133 rc = crypto_hash_final(&desc, dst);
134 if (rc) {
135 printk(KERN_ERR
136 "%s: Error finalizing crypto hash; rc = [%d]\n",
18d1dbf1 137 __func__, rc);
8a29f2b0
MH
138 goto out;
139 }
237fead6 140out:
8a29f2b0 141 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
237fead6
MH
142 return rc;
143}
144
cd9d67df
MH
145static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
146 char *cipher_name,
147 char *chaining_modifier)
8bba066f
MH
148{
149 int cipher_name_len = strlen(cipher_name);
150 int chaining_modifier_len = strlen(chaining_modifier);
151 int algified_name_len;
152 int rc;
153
154 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
155 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
7bd473fc 156 if (!(*algified_name)) {
8bba066f
MH
157 rc = -ENOMEM;
158 goto out;
159 }
160 snprintf((*algified_name), algified_name_len, "%s(%s)",
161 chaining_modifier, cipher_name);
162 rc = 0;
163out:
164 return rc;
165}
166
237fead6
MH
167/**
168 * ecryptfs_derive_iv
169 * @iv: destination for the derived iv vale
170 * @crypt_stat: Pointer to crypt_stat struct for the current inode
d6a13c17 171 * @offset: Offset of the extent whose IV we are to derive
237fead6
MH
172 *
173 * Generate the initialization vector from the given root IV and page
174 * offset.
175 *
176 * Returns zero on success; non-zero on error.
177 */
a34f60f7
MH
178int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
179 loff_t offset)
237fead6
MH
180{
181 int rc = 0;
182 char dst[MD5_DIGEST_SIZE];
183 char src[ECRYPTFS_MAX_IV_BYTES + 16];
184
185 if (unlikely(ecryptfs_verbosity > 0)) {
186 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
187 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
188 }
189 /* TODO: It is probably secure to just cast the least
190 * significant bits of the root IV into an unsigned long and
191 * add the offset to that rather than go through all this
192 * hashing business. -Halcrow */
193 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
194 memset((src + crypt_stat->iv_bytes), 0, 16);
d6a13c17 195 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
237fead6
MH
196 if (unlikely(ecryptfs_verbosity > 0)) {
197 ecryptfs_printk(KERN_DEBUG, "source:\n");
198 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
199 }
200 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
201 (crypt_stat->iv_bytes + 16));
202 if (rc) {
203 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
204 "MD5 while generating IV for a page\n");
205 goto out;
206 }
207 memcpy(iv, dst, crypt_stat->iv_bytes);
208 if (unlikely(ecryptfs_verbosity > 0)) {
209 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
210 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
211 }
212out:
213 return rc;
214}
215
216/**
217 * ecryptfs_init_crypt_stat
218 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
219 *
220 * Initialize the crypt_stat structure.
221 */
222void
223ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
224{
225 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
f4aad16a
MH
226 INIT_LIST_HEAD(&crypt_stat->keysig_list);
227 mutex_init(&crypt_stat->keysig_list_mutex);
237fead6
MH
228 mutex_init(&crypt_stat->cs_mutex);
229 mutex_init(&crypt_stat->cs_tfm_mutex);
565d9724 230 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
e2bd99ec 231 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
237fead6
MH
232}
233
234/**
fcd12835 235 * ecryptfs_destroy_crypt_stat
237fead6
MH
236 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
237 *
238 * Releases all memory associated with a crypt_stat struct.
239 */
fcd12835 240void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
237fead6 241{
f4aad16a
MH
242 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
243
237fead6 244 if (crypt_stat->tfm)
8bba066f 245 crypto_free_blkcipher(crypt_stat->tfm);
565d9724
MH
246 if (crypt_stat->hash_tfm)
247 crypto_free_hash(crypt_stat->hash_tfm);
f4aad16a
MH
248 list_for_each_entry_safe(key_sig, key_sig_tmp,
249 &crypt_stat->keysig_list, crypt_stat_list) {
250 list_del(&key_sig->crypt_stat_list);
251 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
252 }
237fead6
MH
253 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
254}
255
fcd12835 256void ecryptfs_destroy_mount_crypt_stat(
237fead6
MH
257 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
258{
f4aad16a
MH
259 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
260
261 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
262 return;
263 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
264 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
265 &mount_crypt_stat->global_auth_tok_list,
266 mount_crypt_stat_list) {
267 list_del(&auth_tok->mount_crypt_stat_list);
268 mount_crypt_stat->num_global_auth_toks--;
269 if (auth_tok->global_auth_tok_key
270 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
271 key_put(auth_tok->global_auth_tok_key);
272 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
273 }
274 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
237fead6
MH
275 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
276}
277
278/**
279 * virt_to_scatterlist
280 * @addr: Virtual address
281 * @size: Size of data; should be an even multiple of the block size
282 * @sg: Pointer to scatterlist array; set to NULL to obtain only
283 * the number of scatterlist structs required in array
284 * @sg_size: Max array size
285 *
286 * Fills in a scatterlist array with page references for a passed
287 * virtual address.
288 *
289 * Returns the number of scatterlist structs in array used
290 */
291int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
292 int sg_size)
293{
294 int i = 0;
295 struct page *pg;
296 int offset;
297 int remainder_of_page;
298
68e3f5dd
HX
299 sg_init_table(sg, sg_size);
300
237fead6
MH
301 while (size > 0 && i < sg_size) {
302 pg = virt_to_page(addr);
303 offset = offset_in_page(addr);
642f1490
JA
304 if (sg)
305 sg_set_page(&sg[i], pg, 0, offset);
237fead6
MH
306 remainder_of_page = PAGE_CACHE_SIZE - offset;
307 if (size >= remainder_of_page) {
308 if (sg)
309 sg[i].length = remainder_of_page;
310 addr += remainder_of_page;
311 size -= remainder_of_page;
312 } else {
313 if (sg)
314 sg[i].length = size;
315 addr += size;
316 size = 0;
317 }
318 i++;
319 }
320 if (size > 0)
321 return -ENOMEM;
322 return i;
323}
324
325/**
326 * encrypt_scatterlist
327 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
328 * @dest_sg: Destination of encrypted data
329 * @src_sg: Data to be encrypted
330 * @size: Length of data to be encrypted
331 * @iv: iv to use during encryption
332 *
333 * Returns the number of bytes encrypted; negative value on error
334 */
335static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
336 struct scatterlist *dest_sg,
337 struct scatterlist *src_sg, int size,
338 unsigned char *iv)
339{
8bba066f
MH
340 struct blkcipher_desc desc = {
341 .tfm = crypt_stat->tfm,
342 .info = iv,
343 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
344 };
237fead6
MH
345 int rc = 0;
346
347 BUG_ON(!crypt_stat || !crypt_stat->tfm
e2bd99ec 348 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
237fead6
MH
349 if (unlikely(ecryptfs_verbosity > 0)) {
350 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
351 crypt_stat->key_size);
352 ecryptfs_dump_hex(crypt_stat->key,
353 crypt_stat->key_size);
354 }
355 /* Consider doing this once, when the file is opened */
356 mutex_lock(&crypt_stat->cs_tfm_mutex);
8e3a6f16
TH
357 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
358 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
359 crypt_stat->key_size);
360 crypt_stat->flags |= ECRYPTFS_KEY_SET;
361 }
237fead6
MH
362 if (rc) {
363 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
364 rc);
365 mutex_unlock(&crypt_stat->cs_tfm_mutex);
366 rc = -EINVAL;
367 goto out;
368 }
369 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
8bba066f 370 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
237fead6
MH
371 mutex_unlock(&crypt_stat->cs_tfm_mutex);
372out:
373 return rc;
374}
375
0216f7f7
MH
376/**
377 * ecryptfs_lower_offset_for_extent
378 *
379 * Convert an eCryptfs page index into a lower byte offset
380 */
7896b631
AB
381static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
382 struct ecryptfs_crypt_stat *crypt_stat)
0216f7f7 383{
cc11beff 384 (*offset) = (crypt_stat->num_header_bytes_at_front
0216f7f7
MH
385 + (crypt_stat->extent_size * extent_num));
386}
387
388/**
389 * ecryptfs_encrypt_extent
390 * @enc_extent_page: Allocated page into which to encrypt the data in
391 * @page
392 * @crypt_stat: crypt_stat containing cryptographic context for the
393 * encryption operation
394 * @page: Page containing plaintext data extent to encrypt
395 * @extent_offset: Page extent offset for use in generating IV
396 *
397 * Encrypts one extent of data.
398 *
399 * Return zero on success; non-zero otherwise
400 */
401static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
402 struct ecryptfs_crypt_stat *crypt_stat,
403 struct page *page,
404 unsigned long extent_offset)
405{
d6a13c17 406 loff_t extent_base;
0216f7f7
MH
407 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
408 int rc;
409
d6a13c17 410 extent_base = (((loff_t)page->index)
0216f7f7
MH
411 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
412 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
413 (extent_base + extent_offset));
414 if (rc) {
415 ecryptfs_printk(KERN_ERR, "Error attempting to "
416 "derive IV for extent [0x%.16x]; "
417 "rc = [%d]\n", (extent_base + extent_offset),
418 rc);
419 goto out;
420 }
421 if (unlikely(ecryptfs_verbosity > 0)) {
422 ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
423 "with iv:\n");
424 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
425 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
426 "encryption:\n");
427 ecryptfs_dump_hex((char *)
428 (page_address(page)
429 + (extent_offset * crypt_stat->extent_size)),
430 8);
431 }
432 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
433 page, (extent_offset
434 * crypt_stat->extent_size),
435 crypt_stat->extent_size, extent_iv);
436 if (rc < 0) {
437 printk(KERN_ERR "%s: Error attempting to encrypt page with "
438 "page->index = [%ld], extent_offset = [%ld]; "
18d1dbf1 439 "rc = [%d]\n", __func__, page->index, extent_offset,
0216f7f7
MH
440 rc);
441 goto out;
442 }
443 rc = 0;
444 if (unlikely(ecryptfs_verbosity > 0)) {
445 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
446 "rc = [%d]\n", (extent_base + extent_offset),
447 rc);
448 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
449 "encryption:\n");
450 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
451 }
452out:
453 return rc;
454}
455
237fead6
MH
456/**
457 * ecryptfs_encrypt_page
0216f7f7
MH
458 * @page: Page mapped from the eCryptfs inode for the file; contains
459 * decrypted content that needs to be encrypted (to a temporary
460 * page; not in place) and written out to the lower file
237fead6
MH
461 *
462 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
463 * that eCryptfs pages may straddle the lower pages -- for instance,
464 * if the file was created on a machine with an 8K page size
465 * (resulting in an 8K header), and then the file is copied onto a
466 * host with a 32K page size, then when reading page 0 of the eCryptfs
467 * file, 24K of page 0 of the lower file will be read and decrypted,
468 * and then 8K of page 1 of the lower file will be read and decrypted.
469 *
237fead6
MH
470 * Returns zero on success; negative on error
471 */
0216f7f7 472int ecryptfs_encrypt_page(struct page *page)
237fead6 473{
0216f7f7 474 struct inode *ecryptfs_inode;
237fead6 475 struct ecryptfs_crypt_stat *crypt_stat;
7fcba054
ES
476 char *enc_extent_virt;
477 struct page *enc_extent_page = NULL;
0216f7f7 478 loff_t extent_offset;
237fead6 479 int rc = 0;
0216f7f7
MH
480
481 ecryptfs_inode = page->mapping->host;
482 crypt_stat =
483 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
13a791b4 484 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
7fcba054
ES
485 enc_extent_page = alloc_page(GFP_USER);
486 if (!enc_extent_page) {
0216f7f7
MH
487 rc = -ENOMEM;
488 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
489 "encrypted extent\n");
490 goto out;
491 }
7fcba054 492 enc_extent_virt = kmap(enc_extent_page);
0216f7f7
MH
493 for (extent_offset = 0;
494 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
495 extent_offset++) {
496 loff_t offset;
497
498 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
499 extent_offset);
237fead6 500 if (rc) {
0216f7f7 501 printk(KERN_ERR "%s: Error encrypting extent; "
18d1dbf1 502 "rc = [%d]\n", __func__, rc);
237fead6
MH
503 goto out;
504 }
0216f7f7 505 ecryptfs_lower_offset_for_extent(
d6a13c17
MH
506 &offset, ((((loff_t)page->index)
507 * (PAGE_CACHE_SIZE
508 / crypt_stat->extent_size))
0216f7f7
MH
509 + extent_offset), crypt_stat);
510 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
511 offset, crypt_stat->extent_size);
512 if (rc) {
513 ecryptfs_printk(KERN_ERR, "Error attempting "
514 "to write lower page; rc = [%d]"
515 "\n", rc);
516 goto out;
237fead6 517 }
237fead6 518 }
0216f7f7 519out:
7fcba054
ES
520 if (enc_extent_page) {
521 kunmap(enc_extent_page);
522 __free_page(enc_extent_page);
523 }
0216f7f7
MH
524 return rc;
525}
526
527static int ecryptfs_decrypt_extent(struct page *page,
528 struct ecryptfs_crypt_stat *crypt_stat,
529 struct page *enc_extent_page,
530 unsigned long extent_offset)
531{
d6a13c17 532 loff_t extent_base;
0216f7f7
MH
533 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
534 int rc;
535
d6a13c17 536 extent_base = (((loff_t)page->index)
0216f7f7
MH
537 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
538 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
539 (extent_base + extent_offset));
237fead6 540 if (rc) {
0216f7f7
MH
541 ecryptfs_printk(KERN_ERR, "Error attempting to "
542 "derive IV for extent [0x%.16x]; "
543 "rc = [%d]\n", (extent_base + extent_offset),
544 rc);
545 goto out;
546 }
547 if (unlikely(ecryptfs_verbosity > 0)) {
548 ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
549 "with iv:\n");
550 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
551 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
552 "decryption:\n");
553 ecryptfs_dump_hex((char *)
554 (page_address(enc_extent_page)
555 + (extent_offset * crypt_stat->extent_size)),
556 8);
557 }
558 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
559 (extent_offset
560 * crypt_stat->extent_size),
561 enc_extent_page, 0,
562 crypt_stat->extent_size, extent_iv);
563 if (rc < 0) {
564 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
565 "page->index = [%ld], extent_offset = [%ld]; "
18d1dbf1 566 "rc = [%d]\n", __func__, page->index, extent_offset,
0216f7f7
MH
567 rc);
568 goto out;
569 }
570 rc = 0;
571 if (unlikely(ecryptfs_verbosity > 0)) {
572 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
573 "rc = [%d]\n", (extent_base + extent_offset),
574 rc);
575 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
576 "decryption:\n");
577 ecryptfs_dump_hex((char *)(page_address(page)
578 + (extent_offset
579 * crypt_stat->extent_size)), 8);
237fead6
MH
580 }
581out:
582 return rc;
583}
584
585/**
586 * ecryptfs_decrypt_page
0216f7f7
MH
587 * @page: Page mapped from the eCryptfs inode for the file; data read
588 * and decrypted from the lower file will be written into this
589 * page
237fead6
MH
590 *
591 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
592 * that eCryptfs pages may straddle the lower pages -- for instance,
593 * if the file was created on a machine with an 8K page size
594 * (resulting in an 8K header), and then the file is copied onto a
595 * host with a 32K page size, then when reading page 0 of the eCryptfs
596 * file, 24K of page 0 of the lower file will be read and decrypted,
597 * and then 8K of page 1 of the lower file will be read and decrypted.
598 *
599 * Returns zero on success; negative on error
600 */
0216f7f7 601int ecryptfs_decrypt_page(struct page *page)
237fead6 602{
0216f7f7 603 struct inode *ecryptfs_inode;
237fead6 604 struct ecryptfs_crypt_stat *crypt_stat;
7fcba054
ES
605 char *enc_extent_virt;
606 struct page *enc_extent_page = NULL;
0216f7f7 607 unsigned long extent_offset;
237fead6 608 int rc = 0;
237fead6 609
0216f7f7
MH
610 ecryptfs_inode = page->mapping->host;
611 crypt_stat =
612 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
13a791b4 613 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
7fcba054
ES
614 enc_extent_page = alloc_page(GFP_USER);
615 if (!enc_extent_page) {
237fead6 616 rc = -ENOMEM;
0216f7f7
MH
617 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
618 "encrypted extent\n");
16a72c45 619 goto out;
237fead6 620 }
7fcba054 621 enc_extent_virt = kmap(enc_extent_page);
0216f7f7
MH
622 for (extent_offset = 0;
623 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
624 extent_offset++) {
625 loff_t offset;
626
627 ecryptfs_lower_offset_for_extent(
628 &offset, ((page->index * (PAGE_CACHE_SIZE
629 / crypt_stat->extent_size))
630 + extent_offset), crypt_stat);
631 rc = ecryptfs_read_lower(enc_extent_virt, offset,
632 crypt_stat->extent_size,
633 ecryptfs_inode);
237fead6 634 if (rc) {
0216f7f7
MH
635 ecryptfs_printk(KERN_ERR, "Error attempting "
636 "to read lower page; rc = [%d]"
637 "\n", rc);
16a72c45 638 goto out;
237fead6 639 }
0216f7f7
MH
640 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
641 extent_offset);
642 if (rc) {
643 printk(KERN_ERR "%s: Error encrypting extent; "
18d1dbf1 644 "rc = [%d]\n", __func__, rc);
16a72c45 645 goto out;
237fead6 646 }
237fead6
MH
647 }
648out:
7fcba054
ES
649 if (enc_extent_page) {
650 kunmap(enc_extent_page);
651 __free_page(enc_extent_page);
652 }
237fead6
MH
653 return rc;
654}
655
656/**
657 * decrypt_scatterlist
22e78faf
MH
658 * @crypt_stat: Cryptographic context
659 * @dest_sg: The destination scatterlist to decrypt into
660 * @src_sg: The source scatterlist to decrypt from
661 * @size: The number of bytes to decrypt
662 * @iv: The initialization vector to use for the decryption
237fead6
MH
663 *
664 * Returns the number of bytes decrypted; negative value on error
665 */
666static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
667 struct scatterlist *dest_sg,
668 struct scatterlist *src_sg, int size,
669 unsigned char *iv)
670{
8bba066f
MH
671 struct blkcipher_desc desc = {
672 .tfm = crypt_stat->tfm,
673 .info = iv,
674 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
675 };
237fead6
MH
676 int rc = 0;
677
678 /* Consider doing this once, when the file is opened */
679 mutex_lock(&crypt_stat->cs_tfm_mutex);
8bba066f
MH
680 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
681 crypt_stat->key_size);
237fead6
MH
682 if (rc) {
683 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
684 rc);
685 mutex_unlock(&crypt_stat->cs_tfm_mutex);
686 rc = -EINVAL;
687 goto out;
688 }
689 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
8bba066f 690 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
237fead6
MH
691 mutex_unlock(&crypt_stat->cs_tfm_mutex);
692 if (rc) {
693 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
694 rc);
695 goto out;
696 }
697 rc = size;
698out:
699 return rc;
700}
701
702/**
703 * ecryptfs_encrypt_page_offset
22e78faf
MH
704 * @crypt_stat: The cryptographic context
705 * @dst_page: The page to encrypt into
706 * @dst_offset: The offset in the page to encrypt into
707 * @src_page: The page to encrypt from
708 * @src_offset: The offset in the page to encrypt from
709 * @size: The number of bytes to encrypt
710 * @iv: The initialization vector to use for the encryption
237fead6
MH
711 *
712 * Returns the number of bytes encrypted
713 */
714static int
715ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
716 struct page *dst_page, int dst_offset,
717 struct page *src_page, int src_offset, int size,
718 unsigned char *iv)
719{
720 struct scatterlist src_sg, dst_sg;
721
60c74f81
JA
722 sg_init_table(&src_sg, 1);
723 sg_init_table(&dst_sg, 1);
724
642f1490
JA
725 sg_set_page(&src_sg, src_page, size, src_offset);
726 sg_set_page(&dst_sg, dst_page, size, dst_offset);
237fead6
MH
727 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
728}
729
730/**
731 * ecryptfs_decrypt_page_offset
22e78faf
MH
732 * @crypt_stat: The cryptographic context
733 * @dst_page: The page to decrypt into
734 * @dst_offset: The offset in the page to decrypt into
735 * @src_page: The page to decrypt from
736 * @src_offset: The offset in the page to decrypt from
737 * @size: The number of bytes to decrypt
738 * @iv: The initialization vector to use for the decryption
237fead6
MH
739 *
740 * Returns the number of bytes decrypted
741 */
742static int
743ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
744 struct page *dst_page, int dst_offset,
745 struct page *src_page, int src_offset, int size,
746 unsigned char *iv)
747{
748 struct scatterlist src_sg, dst_sg;
749
60c74f81 750 sg_init_table(&src_sg, 1);
642f1490
JA
751 sg_set_page(&src_sg, src_page, size, src_offset);
752
60c74f81 753 sg_init_table(&dst_sg, 1);
642f1490 754 sg_set_page(&dst_sg, dst_page, size, dst_offset);
60c74f81 755
237fead6
MH
756 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
757}
758
759#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
760
761/**
762 * ecryptfs_init_crypt_ctx
763 * @crypt_stat: Uninitilized crypt stats structure
764 *
765 * Initialize the crypto context.
766 *
767 * TODO: Performance: Keep a cache of initialized cipher contexts;
768 * only init if needed
769 */
770int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
771{
8bba066f 772 char *full_alg_name;
237fead6
MH
773 int rc = -EINVAL;
774
775 if (!crypt_stat->cipher) {
776 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
777 goto out;
778 }
779 ecryptfs_printk(KERN_DEBUG,
780 "Initializing cipher [%s]; strlen = [%d]; "
781 "key_size_bits = [%d]\n",
782 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
783 crypt_stat->key_size << 3);
784 if (crypt_stat->tfm) {
785 rc = 0;
786 goto out;
787 }
788 mutex_lock(&crypt_stat->cs_tfm_mutex);
8bba066f
MH
789 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
790 crypt_stat->cipher, "cbc");
791 if (rc)
c8161f64 792 goto out_unlock;
8bba066f
MH
793 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
794 CRYPTO_ALG_ASYNC);
795 kfree(full_alg_name);
de88777e
AM
796 if (IS_ERR(crypt_stat->tfm)) {
797 rc = PTR_ERR(crypt_stat->tfm);
237fead6
MH
798 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
799 "Error initializing cipher [%s]\n",
800 crypt_stat->cipher);
c8161f64 801 goto out_unlock;
237fead6 802 }
f1ddcaf3 803 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
237fead6 804 rc = 0;
c8161f64
ES
805out_unlock:
806 mutex_unlock(&crypt_stat->cs_tfm_mutex);
237fead6
MH
807out:
808 return rc;
809}
810
811static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
812{
813 int extent_size_tmp;
814
815 crypt_stat->extent_mask = 0xFFFFFFFF;
816 crypt_stat->extent_shift = 0;
817 if (crypt_stat->extent_size == 0)
818 return;
819 extent_size_tmp = crypt_stat->extent_size;
820 while ((extent_size_tmp & 0x01) == 0) {
821 extent_size_tmp >>= 1;
822 crypt_stat->extent_mask <<= 1;
823 crypt_stat->extent_shift++;
824 }
825}
826
827void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
828{
829 /* Default values; may be overwritten as we are parsing the
830 * packets. */
831 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
832 set_extent_mask_and_shift(crypt_stat);
833 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
dd2a3b7a 834 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
cc11beff 835 crypt_stat->num_header_bytes_at_front = 0;
45eaab79
MH
836 else {
837 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
cc11beff
MH
838 crypt_stat->num_header_bytes_at_front =
839 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
45eaab79 840 else
cc11beff 841 crypt_stat->num_header_bytes_at_front = PAGE_CACHE_SIZE;
45eaab79 842 }
237fead6
MH
843}
844
845/**
846 * ecryptfs_compute_root_iv
847 * @crypt_stats
848 *
849 * On error, sets the root IV to all 0's.
850 */
851int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
852{
853 int rc = 0;
854 char dst[MD5_DIGEST_SIZE];
855
856 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
857 BUG_ON(crypt_stat->iv_bytes <= 0);
e2bd99ec 858 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
237fead6
MH
859 rc = -EINVAL;
860 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
861 "cannot generate root IV\n");
862 goto out;
863 }
864 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
865 crypt_stat->key_size);
866 if (rc) {
867 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
868 "MD5 while generating root IV\n");
869 goto out;
870 }
871 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
872out:
873 if (rc) {
874 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
e2bd99ec 875 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
237fead6
MH
876 }
877 return rc;
878}
879
880static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
881{
882 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
e2bd99ec 883 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
237fead6
MH
884 ecryptfs_compute_root_iv(crypt_stat);
885 if (unlikely(ecryptfs_verbosity > 0)) {
886 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
887 ecryptfs_dump_hex(crypt_stat->key,
888 crypt_stat->key_size);
889 }
890}
891
17398957
MH
892/**
893 * ecryptfs_copy_mount_wide_flags_to_inode_flags
22e78faf
MH
894 * @crypt_stat: The inode's cryptographic context
895 * @mount_crypt_stat: The mount point's cryptographic context
17398957
MH
896 *
897 * This function propagates the mount-wide flags to individual inode
898 * flags.
899 */
900static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
901 struct ecryptfs_crypt_stat *crypt_stat,
902 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
903{
904 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
905 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
906 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
907 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
addd65ad
MH
908 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
909 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
910 if (mount_crypt_stat->flags
911 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
912 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
913 else if (mount_crypt_stat->flags
914 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
915 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
916 }
17398957
MH
917}
918
f4aad16a
MH
919static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
920 struct ecryptfs_crypt_stat *crypt_stat,
921 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
922{
923 struct ecryptfs_global_auth_tok *global_auth_tok;
924 int rc = 0;
925
926 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
927 list_for_each_entry(global_auth_tok,
928 &mount_crypt_stat->global_auth_tok_list,
929 mount_crypt_stat_list) {
84814d64
TH
930 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
931 continue;
f4aad16a
MH
932 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
933 if (rc) {
934 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
935 mutex_unlock(
936 &mount_crypt_stat->global_auth_tok_list_mutex);
937 goto out;
938 }
939 }
940 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
941out:
942 return rc;
943}
944
237fead6
MH
945/**
946 * ecryptfs_set_default_crypt_stat_vals
22e78faf
MH
947 * @crypt_stat: The inode's cryptographic context
948 * @mount_crypt_stat: The mount point's cryptographic context
237fead6
MH
949 *
950 * Default values in the event that policy does not override them.
951 */
952static void ecryptfs_set_default_crypt_stat_vals(
953 struct ecryptfs_crypt_stat *crypt_stat,
954 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
955{
17398957
MH
956 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
957 mount_crypt_stat);
237fead6
MH
958 ecryptfs_set_default_sizes(crypt_stat);
959 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
960 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
e2bd99ec 961 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
237fead6
MH
962 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
963 crypt_stat->mount_crypt_stat = mount_crypt_stat;
964}
965
966/**
967 * ecryptfs_new_file_context
22e78faf 968 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
969 *
970 * If the crypto context for the file has not yet been established,
971 * this is where we do that. Establishing a new crypto context
972 * involves the following decisions:
973 * - What cipher to use?
974 * - What set of authentication tokens to use?
975 * Here we just worry about getting enough information into the
976 * authentication tokens so that we know that they are available.
977 * We associate the available authentication tokens with the new file
978 * via the set of signatures in the crypt_stat struct. Later, when
979 * the headers are actually written out, we may again defer to
980 * userspace to perform the encryption of the session key; for the
981 * foreseeable future, this will be the case with public key packets.
982 *
983 * Returns zero on success; non-zero otherwise
984 */
237fead6
MH
985int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
986{
237fead6
MH
987 struct ecryptfs_crypt_stat *crypt_stat =
988 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
989 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
990 &ecryptfs_superblock_to_private(
991 ecryptfs_dentry->d_sb)->mount_crypt_stat;
992 int cipher_name_len;
f4aad16a 993 int rc = 0;
237fead6
MH
994
995 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
af655dc6 996 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
f4aad16a
MH
997 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
998 mount_crypt_stat);
999 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1000 mount_crypt_stat);
1001 if (rc) {
1002 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1003 "to the inode key sigs; rc = [%d]\n", rc);
1004 goto out;
1005 }
1006 cipher_name_len =
1007 strlen(mount_crypt_stat->global_default_cipher_name);
1008 memcpy(crypt_stat->cipher,
1009 mount_crypt_stat->global_default_cipher_name,
1010 cipher_name_len);
1011 crypt_stat->cipher[cipher_name_len] = '\0';
1012 crypt_stat->key_size =
1013 mount_crypt_stat->global_default_cipher_key_size;
1014 ecryptfs_generate_new_key(crypt_stat);
237fead6
MH
1015 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1016 if (rc)
1017 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1018 "context for cipher [%s]: rc = [%d]\n",
1019 crypt_stat->cipher, rc);
f4aad16a 1020out:
237fead6
MH
1021 return rc;
1022}
1023
1024/**
1025 * contains_ecryptfs_marker - check for the ecryptfs marker
1026 * @data: The data block in which to check
1027 *
1028 * Returns one if marker found; zero if not found
1029 */
dd2a3b7a 1030static int contains_ecryptfs_marker(char *data)
237fead6
MH
1031{
1032 u32 m_1, m_2;
1033
29335c6a
HH
1034 m_1 = get_unaligned_be32(data);
1035 m_2 = get_unaligned_be32(data + 4);
237fead6
MH
1036 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1037 return 1;
1038 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1039 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1040 MAGIC_ECRYPTFS_MARKER);
1041 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1042 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1043 return 0;
1044}
1045
1046struct ecryptfs_flag_map_elem {
1047 u32 file_flag;
1048 u32 local_flag;
1049};
1050
1051/* Add support for additional flags by adding elements here. */
1052static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1053 {0x00000001, ECRYPTFS_ENABLE_HMAC},
dd2a3b7a 1054 {0x00000002, ECRYPTFS_ENCRYPTED},
addd65ad
MH
1055 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1056 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
237fead6
MH
1057};
1058
1059/**
1060 * ecryptfs_process_flags
22e78faf 1061 * @crypt_stat: The cryptographic context
237fead6
MH
1062 * @page_virt: Source data to be parsed
1063 * @bytes_read: Updated with the number of bytes read
1064 *
1065 * Returns zero on success; non-zero if the flag set is invalid
1066 */
1067static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1068 char *page_virt, int *bytes_read)
1069{
1070 int rc = 0;
1071 int i;
1072 u32 flags;
1073
29335c6a 1074 flags = get_unaligned_be32(page_virt);
237fead6
MH
1075 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1076 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1077 if (flags & ecryptfs_flag_map[i].file_flag) {
e2bd99ec 1078 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
237fead6 1079 } else
e2bd99ec 1080 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
237fead6
MH
1081 /* Version is in top 8 bits of the 32-bit flag vector */
1082 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1083 (*bytes_read) = 4;
1084 return rc;
1085}
1086
1087/**
1088 * write_ecryptfs_marker
1089 * @page_virt: The pointer to in a page to begin writing the marker
1090 * @written: Number of bytes written
1091 *
1092 * Marker = 0x3c81b7f5
1093 */
1094static void write_ecryptfs_marker(char *page_virt, size_t *written)
1095{
1096 u32 m_1, m_2;
1097
1098 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1099 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
29335c6a
HH
1100 put_unaligned_be32(m_1, page_virt);
1101 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1102 put_unaligned_be32(m_2, page_virt);
237fead6
MH
1103 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1104}
1105
1106static void
1107write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1108 size_t *written)
1109{
1110 u32 flags = 0;
1111 int i;
1112
1113 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1114 / sizeof(struct ecryptfs_flag_map_elem))); i++)
e2bd99ec 1115 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
237fead6
MH
1116 flags |= ecryptfs_flag_map[i].file_flag;
1117 /* Version is in top 8 bits of the 32-bit flag vector */
1118 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
29335c6a 1119 put_unaligned_be32(flags, page_virt);
237fead6
MH
1120 (*written) = 4;
1121}
1122
1123struct ecryptfs_cipher_code_str_map_elem {
1124 char cipher_str[16];
19e66a67 1125 u8 cipher_code;
237fead6
MH
1126};
1127
1128/* Add support for additional ciphers by adding elements here. The
1129 * cipher_code is whatever OpenPGP applicatoins use to identify the
1130 * ciphers. List in order of probability. */
1131static struct ecryptfs_cipher_code_str_map_elem
1132ecryptfs_cipher_code_str_map[] = {
1133 {"aes",RFC2440_CIPHER_AES_128 },
1134 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1135 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1136 {"cast5", RFC2440_CIPHER_CAST_5},
1137 {"twofish", RFC2440_CIPHER_TWOFISH},
1138 {"cast6", RFC2440_CIPHER_CAST_6},
1139 {"aes", RFC2440_CIPHER_AES_192},
1140 {"aes", RFC2440_CIPHER_AES_256}
1141};
1142
1143/**
1144 * ecryptfs_code_for_cipher_string
9c79f34f
MH
1145 * @cipher_name: The string alias for the cipher
1146 * @key_bytes: Length of key in bytes; used for AES code selection
237fead6
MH
1147 *
1148 * Returns zero on no match, or the cipher code on match
1149 */
9c79f34f 1150u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
237fead6
MH
1151{
1152 int i;
19e66a67 1153 u8 code = 0;
237fead6
MH
1154 struct ecryptfs_cipher_code_str_map_elem *map =
1155 ecryptfs_cipher_code_str_map;
1156
9c79f34f
MH
1157 if (strcmp(cipher_name, "aes") == 0) {
1158 switch (key_bytes) {
237fead6
MH
1159 case 16:
1160 code = RFC2440_CIPHER_AES_128;
1161 break;
1162 case 24:
1163 code = RFC2440_CIPHER_AES_192;
1164 break;
1165 case 32:
1166 code = RFC2440_CIPHER_AES_256;
1167 }
1168 } else {
1169 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
9c79f34f 1170 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
237fead6
MH
1171 code = map[i].cipher_code;
1172 break;
1173 }
1174 }
1175 return code;
1176}
1177
1178/**
1179 * ecryptfs_cipher_code_to_string
1180 * @str: Destination to write out the cipher name
1181 * @cipher_code: The code to convert to cipher name string
1182 *
1183 * Returns zero on success
1184 */
19e66a67 1185int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
237fead6
MH
1186{
1187 int rc = 0;
1188 int i;
1189
1190 str[0] = '\0';
1191 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1192 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1193 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1194 if (str[0] == '\0') {
1195 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1196 "[%d]\n", cipher_code);
1197 rc = -EINVAL;
1198 }
1199 return rc;
1200}
1201
d7cdc5fe
MH
1202int ecryptfs_read_and_validate_header_region(char *data,
1203 struct inode *ecryptfs_inode)
dd2a3b7a 1204{
d7cdc5fe
MH
1205 struct ecryptfs_crypt_stat *crypt_stat =
1206 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
dd2a3b7a
MH
1207 int rc;
1208
addd65ad
MH
1209 if (crypt_stat->extent_size == 0)
1210 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
d7cdc5fe
MH
1211 rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
1212 ecryptfs_inode);
1213 if (rc) {
1214 printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
18d1dbf1 1215 __func__, rc);
dd2a3b7a 1216 goto out;
d7cdc5fe
MH
1217 }
1218 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
dd2a3b7a 1219 rc = -EINVAL;
d7cdc5fe 1220 }
dd2a3b7a
MH
1221out:
1222 return rc;
1223}
1224
e77a56dd
MH
1225void
1226ecryptfs_write_header_metadata(char *virt,
1227 struct ecryptfs_crypt_stat *crypt_stat,
1228 size_t *written)
237fead6
MH
1229{
1230 u32 header_extent_size;
1231 u16 num_header_extents_at_front;
1232
45eaab79 1233 header_extent_size = (u32)crypt_stat->extent_size;
237fead6 1234 num_header_extents_at_front =
cc11beff
MH
1235 (u16)(crypt_stat->num_header_bytes_at_front
1236 / crypt_stat->extent_size);
29335c6a 1237 put_unaligned_be32(header_extent_size, virt);
237fead6 1238 virt += 4;
29335c6a 1239 put_unaligned_be16(num_header_extents_at_front, virt);
237fead6
MH
1240 (*written) = 6;
1241}
1242
237fead6
MH
1243struct kmem_cache *ecryptfs_header_cache_1;
1244struct kmem_cache *ecryptfs_header_cache_2;
1245
1246/**
1247 * ecryptfs_write_headers_virt
22e78faf 1248 * @page_virt: The virtual address to write the headers to
87b811c3 1249 * @max: The size of memory allocated at page_virt
22e78faf
MH
1250 * @size: Set to the number of bytes written by this function
1251 * @crypt_stat: The cryptographic context
1252 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
1253 *
1254 * Format version: 1
1255 *
1256 * Header Extent:
1257 * Octets 0-7: Unencrypted file size (big-endian)
1258 * Octets 8-15: eCryptfs special marker
1259 * Octets 16-19: Flags
1260 * Octet 16: File format version number (between 0 and 255)
1261 * Octets 17-18: Reserved
1262 * Octet 19: Bit 1 (lsb): Reserved
1263 * Bit 2: Encrypted?
1264 * Bits 3-8: Reserved
1265 * Octets 20-23: Header extent size (big-endian)
1266 * Octets 24-25: Number of header extents at front of file
1267 * (big-endian)
1268 * Octet 26: Begin RFC 2440 authentication token packet set
1269 * Data Extent 0:
1270 * Lower data (CBC encrypted)
1271 * Data Extent 1:
1272 * Lower data (CBC encrypted)
1273 * ...
1274 *
1275 * Returns zero on success
1276 */
87b811c3
ES
1277static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1278 size_t *size,
dd2a3b7a
MH
1279 struct ecryptfs_crypt_stat *crypt_stat,
1280 struct dentry *ecryptfs_dentry)
237fead6
MH
1281{
1282 int rc;
1283 size_t written;
1284 size_t offset;
1285
1286 offset = ECRYPTFS_FILE_SIZE_BYTES;
1287 write_ecryptfs_marker((page_virt + offset), &written);
1288 offset += written;
1289 write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1290 offset += written;
e77a56dd
MH
1291 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1292 &written);
237fead6
MH
1293 offset += written;
1294 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1295 ecryptfs_dentry, &written,
87b811c3 1296 max - offset);
237fead6
MH
1297 if (rc)
1298 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1299 "set; rc = [%d]\n", rc);
dd2a3b7a
MH
1300 if (size) {
1301 offset += written;
1302 *size = offset;
1303 }
1304 return rc;
1305}
1306
22e78faf 1307static int
8faece5f
TH
1308ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry,
1309 char *virt, size_t virt_len)
dd2a3b7a 1310{
d7cdc5fe 1311 int rc;
dd2a3b7a 1312
cc11beff 1313 rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
8faece5f 1314 0, virt_len);
cc11beff 1315 if (rc)
d7cdc5fe 1316 printk(KERN_ERR "%s: Error attempting to write header "
18d1dbf1 1317 "information to lower file; rc = [%d]\n", __func__,
d7cdc5fe 1318 rc);
70456600 1319 return rc;
dd2a3b7a
MH
1320}
1321
22e78faf
MH
1322static int
1323ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
22e78faf 1324 char *page_virt, size_t size)
dd2a3b7a
MH
1325{
1326 int rc;
1327
1328 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1329 size, 0);
237fead6
MH
1330 return rc;
1331}
1332
8faece5f
TH
1333static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1334 unsigned int order)
1335{
1336 struct page *page;
1337
1338 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1339 if (page)
1340 return (unsigned long) page_address(page);
1341 return 0;
1342}
1343
237fead6 1344/**
dd2a3b7a 1345 * ecryptfs_write_metadata
22e78faf 1346 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
1347 *
1348 * Write the file headers out. This will likely involve a userspace
1349 * callout, in which the session key is encrypted with one or more
1350 * public keys and/or the passphrase necessary to do the encryption is
1351 * retrieved via a prompt. Exactly what happens at this point should
1352 * be policy-dependent.
1353 *
1354 * Returns zero on success; non-zero on error
1355 */
d7cdc5fe 1356int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
237fead6 1357{
d7cdc5fe
MH
1358 struct ecryptfs_crypt_stat *crypt_stat =
1359 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
8faece5f 1360 unsigned int order;
cc11beff 1361 char *virt;
8faece5f 1362 size_t virt_len;
d7cdc5fe 1363 size_t size = 0;
237fead6
MH
1364 int rc = 0;
1365
e2bd99ec
MH
1366 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1367 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
d7cdc5fe 1368 printk(KERN_ERR "Key is invalid; bailing out\n");
237fead6
MH
1369 rc = -EINVAL;
1370 goto out;
1371 }
1372 } else {
cc11beff 1373 printk(KERN_WARNING "%s: Encrypted flag not set\n",
18d1dbf1 1374 __func__);
237fead6 1375 rc = -EINVAL;
237fead6
MH
1376 goto out;
1377 }
8faece5f
TH
1378 virt_len = crypt_stat->num_header_bytes_at_front;
1379 order = get_order(virt_len);
237fead6 1380 /* Released in this function */
8faece5f 1381 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
cc11beff 1382 if (!virt) {
18d1dbf1 1383 printk(KERN_ERR "%s: Out of memory\n", __func__);
237fead6
MH
1384 rc = -ENOMEM;
1385 goto out;
1386 }
8faece5f
TH
1387 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1388 ecryptfs_dentry);
237fead6 1389 if (unlikely(rc)) {
cc11beff 1390 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
18d1dbf1 1391 __func__, rc);
237fead6
MH
1392 goto out_free;
1393 }
dd2a3b7a 1394 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
8faece5f
TH
1395 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1396 size);
dd2a3b7a 1397 else
8faece5f
TH
1398 rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt,
1399 virt_len);
dd2a3b7a 1400 if (rc) {
cc11beff 1401 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
18d1dbf1 1402 "rc = [%d]\n", __func__, rc);
dd2a3b7a 1403 goto out_free;
237fead6 1404 }
237fead6 1405out_free:
8faece5f 1406 free_pages((unsigned long)virt, order);
237fead6
MH
1407out:
1408 return rc;
1409}
1410
dd2a3b7a
MH
1411#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1412#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
237fead6 1413static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1414 char *virt, int *bytes_read,
1415 int validate_header_size)
237fead6
MH
1416{
1417 int rc = 0;
1418 u32 header_extent_size;
1419 u16 num_header_extents_at_front;
1420
29335c6a
HH
1421 header_extent_size = get_unaligned_be32(virt);
1422 virt += sizeof(__be32);
1423 num_header_extents_at_front = get_unaligned_be16(virt);
cc11beff
MH
1424 crypt_stat->num_header_bytes_at_front =
1425 (((size_t)num_header_extents_at_front
1426 * (size_t)header_extent_size));
29335c6a 1427 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
dd2a3b7a 1428 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
cc11beff 1429 && (crypt_stat->num_header_bytes_at_front
dd2a3b7a 1430 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
237fead6 1431 rc = -EINVAL;
cc11beff
MH
1432 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1433 crypt_stat->num_header_bytes_at_front);
237fead6
MH
1434 }
1435 return rc;
1436}
1437
1438/**
1439 * set_default_header_data
22e78faf 1440 * @crypt_stat: The cryptographic context
237fead6
MH
1441 *
1442 * For version 0 file format; this function is only for backwards
1443 * compatibility for files created with the prior versions of
1444 * eCryptfs.
1445 */
1446static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1447{
cc11beff
MH
1448 crypt_stat->num_header_bytes_at_front =
1449 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
237fead6
MH
1450}
1451
1452/**
1453 * ecryptfs_read_headers_virt
22e78faf
MH
1454 * @page_virt: The virtual address into which to read the headers
1455 * @crypt_stat: The cryptographic context
1456 * @ecryptfs_dentry: The eCryptfs dentry
1457 * @validate_header_size: Whether to validate the header size while reading
237fead6
MH
1458 *
1459 * Read/parse the header data. The header format is detailed in the
1460 * comment block for the ecryptfs_write_headers_virt() function.
1461 *
1462 * Returns zero on success
1463 */
1464static int ecryptfs_read_headers_virt(char *page_virt,
1465 struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1466 struct dentry *ecryptfs_dentry,
1467 int validate_header_size)
237fead6
MH
1468{
1469 int rc = 0;
1470 int offset;
1471 int bytes_read;
1472
1473 ecryptfs_set_default_sizes(crypt_stat);
1474 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1475 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1476 offset = ECRYPTFS_FILE_SIZE_BYTES;
1477 rc = contains_ecryptfs_marker(page_virt + offset);
1478 if (rc == 0) {
1479 rc = -EINVAL;
1480 goto out;
1481 }
1482 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1483 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1484 &bytes_read);
1485 if (rc) {
1486 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1487 goto out;
1488 }
1489 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1490 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1491 "file version [%d] is supported by this "
1492 "version of eCryptfs\n",
1493 crypt_stat->file_version,
1494 ECRYPTFS_SUPPORTED_FILE_VERSION);
1495 rc = -EINVAL;
1496 goto out;
1497 }
1498 offset += bytes_read;
1499 if (crypt_stat->file_version >= 1) {
1500 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
dd2a3b7a 1501 &bytes_read, validate_header_size);
237fead6
MH
1502 if (rc) {
1503 ecryptfs_printk(KERN_WARNING, "Error reading header "
1504 "metadata; rc = [%d]\n", rc);
1505 }
1506 offset += bytes_read;
1507 } else
1508 set_default_header_data(crypt_stat);
1509 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1510 ecryptfs_dentry);
1511out:
1512 return rc;
1513}
1514
1515/**
dd2a3b7a 1516 * ecryptfs_read_xattr_region
22e78faf 1517 * @page_virt: The vitual address into which to read the xattr data
2ed92554 1518 * @ecryptfs_inode: The eCryptfs inode
dd2a3b7a
MH
1519 *
1520 * Attempts to read the crypto metadata from the extended attribute
1521 * region of the lower file.
22e78faf
MH
1522 *
1523 * Returns zero on success; non-zero on error
dd2a3b7a 1524 */
d7cdc5fe 1525int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
dd2a3b7a 1526{
d7cdc5fe
MH
1527 struct dentry *lower_dentry =
1528 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
dd2a3b7a
MH
1529 ssize_t size;
1530 int rc = 0;
1531
d7cdc5fe
MH
1532 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1533 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
dd2a3b7a 1534 if (size < 0) {
25bd8174
MH
1535 if (unlikely(ecryptfs_verbosity > 0))
1536 printk(KERN_INFO "Error attempting to read the [%s] "
1537 "xattr from the lower file; return value = "
1538 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
dd2a3b7a
MH
1539 rc = -EINVAL;
1540 goto out;
1541 }
1542out:
1543 return rc;
1544}
1545
1546int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1547 struct dentry *ecryptfs_dentry)
1548{
1549 int rc;
1550
d7cdc5fe 1551 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
dd2a3b7a
MH
1552 if (rc)
1553 goto out;
1554 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) {
1555 printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1556 "the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1557 rc = -EINVAL;
1558 }
1559out:
1560 return rc;
1561}
1562
1563/**
1564 * ecryptfs_read_metadata
1565 *
1566 * Common entry point for reading file metadata. From here, we could
1567 * retrieve the header information from the header region of the file,
1568 * the xattr region of the file, or some other repostory that is
1569 * stored separately from the file itself. The current implementation
1570 * supports retrieving the metadata information from the file contents
1571 * and from the xattr region.
237fead6
MH
1572 *
1573 * Returns zero if valid headers found and parsed; non-zero otherwise
1574 */
d7cdc5fe 1575int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
237fead6
MH
1576{
1577 int rc = 0;
1578 char *page_virt = NULL;
d7cdc5fe 1579 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
237fead6 1580 struct ecryptfs_crypt_stat *crypt_stat =
d7cdc5fe 1581 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
e77a56dd
MH
1582 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1583 &ecryptfs_superblock_to_private(
1584 ecryptfs_dentry->d_sb)->mount_crypt_stat;
237fead6 1585
e77a56dd
MH
1586 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1587 mount_crypt_stat);
237fead6 1588 /* Read the first page from the underlying file */
f7267c0c 1589 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
237fead6
MH
1590 if (!page_virt) {
1591 rc = -ENOMEM;
d7cdc5fe 1592 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
18d1dbf1 1593 __func__);
237fead6
MH
1594 goto out;
1595 }
d7cdc5fe
MH
1596 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1597 ecryptfs_inode);
1598 if (!rc)
1599 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1600 ecryptfs_dentry,
1601 ECRYPTFS_VALIDATE_HEADER_SIZE);
237fead6 1602 if (rc) {
d7cdc5fe 1603 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
dd2a3b7a
MH
1604 if (rc) {
1605 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1606 "file header region or xattr region\n");
1607 rc = -EINVAL;
1608 goto out;
1609 }
1610 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1611 ecryptfs_dentry,
1612 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1613 if (rc) {
1614 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1615 "file xattr region either\n");
1616 rc = -EINVAL;
1617 }
1618 if (crypt_stat->mount_crypt_stat->flags
1619 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1620 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1621 } else {
1622 printk(KERN_WARNING "Attempt to access file with "
1623 "crypto metadata only in the extended attribute "
1624 "region, but eCryptfs was mounted without "
1625 "xattr support enabled. eCryptfs will not treat "
1626 "this like an encrypted file.\n");
1627 rc = -EINVAL;
1628 }
237fead6
MH
1629 }
1630out:
1631 if (page_virt) {
1632 memset(page_virt, 0, PAGE_CACHE_SIZE);
1633 kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1634 }
1635 return rc;
1636}
1637
51ca58dc
MH
1638/**
1639 * ecryptfs_encrypt_filename - encrypt filename
1640 *
1641 * CBC-encrypts the filename. We do not want to encrypt the same
1642 * filename with the same key and IV, which may happen with hard
1643 * links, so we prepend random bits to each filename.
1644 *
1645 * Returns zero on success; non-zero otherwise
1646 */
1647static int
1648ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1649 struct ecryptfs_crypt_stat *crypt_stat,
1650 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1651{
1652 int rc = 0;
1653
1654 filename->encrypted_filename = NULL;
1655 filename->encrypted_filename_size = 0;
1656 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1657 || (mount_crypt_stat && (mount_crypt_stat->flags
1658 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1659 size_t packet_size;
1660 size_t remaining_bytes;
1661
1662 rc = ecryptfs_write_tag_70_packet(
1663 NULL, NULL,
1664 &filename->encrypted_filename_size,
1665 mount_crypt_stat, NULL,
1666 filename->filename_size);
1667 if (rc) {
1668 printk(KERN_ERR "%s: Error attempting to get packet "
1669 "size for tag 72; rc = [%d]\n", __func__,
1670 rc);
1671 filename->encrypted_filename_size = 0;
1672 goto out;
1673 }
1674 filename->encrypted_filename =
1675 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1676 if (!filename->encrypted_filename) {
1677 printk(KERN_ERR "%s: Out of memory whilst attempting "
df261c52 1678 "to kmalloc [%zd] bytes\n", __func__,
51ca58dc
MH
1679 filename->encrypted_filename_size);
1680 rc = -ENOMEM;
1681 goto out;
1682 }
1683 remaining_bytes = filename->encrypted_filename_size;
1684 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1685 &remaining_bytes,
1686 &packet_size,
1687 mount_crypt_stat,
1688 filename->filename,
1689 filename->filename_size);
1690 if (rc) {
1691 printk(KERN_ERR "%s: Error attempting to generate "
1692 "tag 70 packet; rc = [%d]\n", __func__,
1693 rc);
1694 kfree(filename->encrypted_filename);
1695 filename->encrypted_filename = NULL;
1696 filename->encrypted_filename_size = 0;
1697 goto out;
1698 }
1699 filename->encrypted_filename_size = packet_size;
1700 } else {
1701 printk(KERN_ERR "%s: No support for requested filename "
1702 "encryption method in this release\n", __func__);
1703 rc = -ENOTSUPP;
1704 goto out;
1705 }
1706out:
1707 return rc;
1708}
1709
1710static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1711 const char *name, size_t name_size)
1712{
1713 int rc = 0;
1714
fd9fc842 1715 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
51ca58dc
MH
1716 if (!(*copied_name)) {
1717 rc = -ENOMEM;
1718 goto out;
1719 }
1720 memcpy((void *)(*copied_name), (void *)name, name_size);
1721 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1722 * in printing out the
1723 * string in debug
1724 * messages */
fd9fc842 1725 (*copied_name_size) = name_size;
51ca58dc
MH
1726out:
1727 return rc;
1728}
1729
237fead6 1730/**
f4aad16a 1731 * ecryptfs_process_key_cipher - Perform key cipher initialization.
237fead6 1732 * @key_tfm: Crypto context for key material, set by this function
e5d9cbde
MH
1733 * @cipher_name: Name of the cipher
1734 * @key_size: Size of the key in bytes
237fead6
MH
1735 *
1736 * Returns zero on success. Any crypto_tfm structs allocated here
1737 * should be released by other functions, such as on a superblock put
1738 * event, regardless of whether this function succeeds for fails.
1739 */
cd9d67df 1740static int
f4aad16a
MH
1741ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1742 char *cipher_name, size_t *key_size)
237fead6
MH
1743{
1744 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
8bba066f 1745 char *full_alg_name;
237fead6
MH
1746 int rc;
1747
e5d9cbde
MH
1748 *key_tfm = NULL;
1749 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
237fead6 1750 rc = -EINVAL;
df261c52 1751 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
e5d9cbde 1752 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
237fead6
MH
1753 goto out;
1754 }
8bba066f
MH
1755 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1756 "ecb");
1757 if (rc)
1758 goto out;
1759 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1760 kfree(full_alg_name);
1761 if (IS_ERR(*key_tfm)) {
1762 rc = PTR_ERR(*key_tfm);
237fead6 1763 printk(KERN_ERR "Unable to allocate crypto cipher with name "
8bba066f 1764 "[%s]; rc = [%d]\n", cipher_name, rc);
237fead6
MH
1765 goto out;
1766 }
8bba066f
MH
1767 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1768 if (*key_size == 0) {
1769 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1770
1771 *key_size = alg->max_keysize;
1772 }
e5d9cbde 1773 get_random_bytes(dummy_key, *key_size);
8bba066f 1774 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
237fead6 1775 if (rc) {
df261c52 1776 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
e5d9cbde 1777 "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
237fead6
MH
1778 rc = -EINVAL;
1779 goto out;
1780 }
1781out:
1782 return rc;
1783}
f4aad16a
MH
1784
1785struct kmem_cache *ecryptfs_key_tfm_cache;
7896b631 1786static struct list_head key_tfm_list;
af440f52 1787struct mutex key_tfm_list_mutex;
f4aad16a
MH
1788
1789int ecryptfs_init_crypto(void)
1790{
1791 mutex_init(&key_tfm_list_mutex);
1792 INIT_LIST_HEAD(&key_tfm_list);
1793 return 0;
1794}
1795
af440f52
ES
1796/**
1797 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1798 *
1799 * Called only at module unload time
1800 */
fcd12835 1801int ecryptfs_destroy_crypto(void)
f4aad16a
MH
1802{
1803 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1804
1805 mutex_lock(&key_tfm_list_mutex);
1806 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1807 key_tfm_list) {
1808 list_del(&key_tfm->key_tfm_list);
1809 if (key_tfm->key_tfm)
1810 crypto_free_blkcipher(key_tfm->key_tfm);
1811 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1812 }
1813 mutex_unlock(&key_tfm_list_mutex);
1814 return 0;
1815}
1816
1817int
1818ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1819 size_t key_size)
1820{
1821 struct ecryptfs_key_tfm *tmp_tfm;
1822 int rc = 0;
1823
af440f52
ES
1824 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1825
f4aad16a
MH
1826 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1827 if (key_tfm != NULL)
1828 (*key_tfm) = tmp_tfm;
1829 if (!tmp_tfm) {
1830 rc = -ENOMEM;
1831 printk(KERN_ERR "Error attempting to allocate from "
1832 "ecryptfs_key_tfm_cache\n");
1833 goto out;
1834 }
1835 mutex_init(&tmp_tfm->key_tfm_mutex);
1836 strncpy(tmp_tfm->cipher_name, cipher_name,
1837 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
b8862906 1838 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
f4aad16a 1839 tmp_tfm->key_size = key_size;
5dda6992
MH
1840 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1841 tmp_tfm->cipher_name,
1842 &tmp_tfm->key_size);
1843 if (rc) {
f4aad16a
MH
1844 printk(KERN_ERR "Error attempting to initialize key TFM "
1845 "cipher with name = [%s]; rc = [%d]\n",
1846 tmp_tfm->cipher_name, rc);
1847 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1848 if (key_tfm != NULL)
1849 (*key_tfm) = NULL;
1850 goto out;
1851 }
f4aad16a 1852 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
f4aad16a
MH
1853out:
1854 return rc;
1855}
1856
af440f52
ES
1857/**
1858 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1859 * @cipher_name: the name of the cipher to search for
1860 * @key_tfm: set to corresponding tfm if found
1861 *
1862 * Searches for cached key_tfm matching @cipher_name
1863 * Must be called with &key_tfm_list_mutex held
1864 * Returns 1 if found, with @key_tfm set
1865 * Returns 0 if not found, with @key_tfm set to NULL
1866 */
1867int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1868{
1869 struct ecryptfs_key_tfm *tmp_key_tfm;
1870
1871 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1872
1873 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1874 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1875 if (key_tfm)
1876 (*key_tfm) = tmp_key_tfm;
1877 return 1;
1878 }
1879 }
1880 if (key_tfm)
1881 (*key_tfm) = NULL;
1882 return 0;
1883}
1884
1885/**
1886 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1887 *
1888 * @tfm: set to cached tfm found, or new tfm created
1889 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1890 * @cipher_name: the name of the cipher to search for and/or add
1891 *
1892 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1893 * Searches for cached item first, and creates new if not found.
1894 * Returns 0 on success, non-zero if adding new cipher failed
1895 */
f4aad16a
MH
1896int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1897 struct mutex **tfm_mutex,
1898 char *cipher_name)
1899{
1900 struct ecryptfs_key_tfm *key_tfm;
1901 int rc = 0;
1902
1903 (*tfm) = NULL;
1904 (*tfm_mutex) = NULL;
af440f52 1905
f4aad16a 1906 mutex_lock(&key_tfm_list_mutex);
af440f52
ES
1907 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1908 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1909 if (rc) {
1910 printk(KERN_ERR "Error adding new key_tfm to list; "
1911 "rc = [%d]\n", rc);
f4aad16a
MH
1912 goto out;
1913 }
1914 }
f4aad16a
MH
1915 (*tfm) = key_tfm->key_tfm;
1916 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1917out:
71fd5179 1918 mutex_unlock(&key_tfm_list_mutex);
f4aad16a
MH
1919 return rc;
1920}
51ca58dc
MH
1921
1922/* 64 characters forming a 6-bit target field */
1923static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1924 "EFGHIJKLMNOPQRST"
1925 "UVWXYZabcdefghij"
1926 "klmnopqrstuvwxyz");
1927
1928/* We could either offset on every reverse map or just pad some 0x00's
1929 * at the front here */
71c11c37 1930static const unsigned char filename_rev_map[] = {
51ca58dc
MH
1931 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1932 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1933 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1934 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1935 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1936 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1937 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1938 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1939 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1940 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1941 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1942 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1943 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1944 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1945 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1946 0x3D, 0x3E, 0x3F
1947};
1948
1949/**
1950 * ecryptfs_encode_for_filename
1951 * @dst: Destination location for encoded filename
1952 * @dst_size: Size of the encoded filename in bytes
1953 * @src: Source location for the filename to encode
1954 * @src_size: Size of the source in bytes
1955 */
1956void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1957 unsigned char *src, size_t src_size)
1958{
1959 size_t num_blocks;
1960 size_t block_num = 0;
1961 size_t dst_offset = 0;
1962 unsigned char last_block[3];
1963
1964 if (src_size == 0) {
1965 (*dst_size) = 0;
1966 goto out;
1967 }
1968 num_blocks = (src_size / 3);
1969 if ((src_size % 3) == 0) {
1970 memcpy(last_block, (&src[src_size - 3]), 3);
1971 } else {
1972 num_blocks++;
1973 last_block[2] = 0x00;
1974 switch (src_size % 3) {
1975 case 1:
1976 last_block[0] = src[src_size - 1];
1977 last_block[1] = 0x00;
1978 break;
1979 case 2:
1980 last_block[0] = src[src_size - 2];
1981 last_block[1] = src[src_size - 1];
1982 }
1983 }
1984 (*dst_size) = (num_blocks * 4);
1985 if (!dst)
1986 goto out;
1987 while (block_num < num_blocks) {
1988 unsigned char *src_block;
1989 unsigned char dst_block[4];
1990
1991 if (block_num == (num_blocks - 1))
1992 src_block = last_block;
1993 else
1994 src_block = &src[block_num * 3];
1995 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1996 dst_block[1] = (((src_block[0] << 4) & 0x30)
1997 | ((src_block[1] >> 4) & 0x0F));
1998 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1999 | ((src_block[2] >> 6) & 0x03));
2000 dst_block[3] = (src_block[2] & 0x3F);
2001 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2002 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2003 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2004 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2005 block_num++;
2006 }
2007out:
2008 return;
2009}
2010
71c11c37
MH
2011/**
2012 * ecryptfs_decode_from_filename
2013 * @dst: If NULL, this function only sets @dst_size and returns. If
2014 * non-NULL, this function decodes the encoded octets in @src
2015 * into the memory that @dst points to.
2016 * @dst_size: Set to the size of the decoded string.
2017 * @src: The encoded set of octets to decode.
2018 * @src_size: The size of the encoded set of octets to decode.
2019 */
2020static void
2021ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2022 const unsigned char *src, size_t src_size)
51ca58dc
MH
2023{
2024 u8 current_bit_offset = 0;
2025 size_t src_byte_offset = 0;
2026 size_t dst_byte_offset = 0;
51ca58dc
MH
2027
2028 if (dst == NULL) {
71c11c37
MH
2029 /* Not exact; conservatively long. Every block of 4
2030 * encoded characters decodes into a block of 3
2031 * decoded characters. This segment of code provides
2032 * the caller with the maximum amount of allocated
2033 * space that @dst will need to point to in a
2034 * subsequent call. */
51ca58dc
MH
2035 (*dst_size) = (((src_size + 1) * 3) / 4);
2036 goto out;
2037 }
2038 while (src_byte_offset < src_size) {
2039 unsigned char src_byte =
2040 filename_rev_map[(int)src[src_byte_offset]];
2041
2042 switch (current_bit_offset) {
2043 case 0:
2044 dst[dst_byte_offset] = (src_byte << 2);
2045 current_bit_offset = 6;
2046 break;
2047 case 6:
2048 dst[dst_byte_offset++] |= (src_byte >> 4);
2049 dst[dst_byte_offset] = ((src_byte & 0xF)
2050 << 4);
2051 current_bit_offset = 4;
2052 break;
2053 case 4:
2054 dst[dst_byte_offset++] |= (src_byte >> 2);
2055 dst[dst_byte_offset] = (src_byte << 6);
2056 current_bit_offset = 2;
2057 break;
2058 case 2:
2059 dst[dst_byte_offset++] |= (src_byte);
2060 dst[dst_byte_offset] = 0;
2061 current_bit_offset = 0;
2062 break;
2063 }
2064 src_byte_offset++;
2065 }
2066 (*dst_size) = dst_byte_offset;
2067out:
71c11c37 2068 return;
51ca58dc
MH
2069}
2070
2071/**
2072 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2073 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2074 * @name: The plaintext name
2075 * @length: The length of the plaintext
2076 * @encoded_name: The encypted name
2077 *
2078 * Encrypts and encodes a filename into something that constitutes a
2079 * valid filename for a filesystem, with printable characters.
2080 *
2081 * We assume that we have a properly initialized crypto context,
2082 * pointed to by crypt_stat->tfm.
2083 *
2084 * Returns zero on success; non-zero on otherwise
2085 */
2086int ecryptfs_encrypt_and_encode_filename(
2087 char **encoded_name,
2088 size_t *encoded_name_size,
2089 struct ecryptfs_crypt_stat *crypt_stat,
2090 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2091 const char *name, size_t name_size)
2092{
2093 size_t encoded_name_no_prefix_size;
2094 int rc = 0;
2095
2096 (*encoded_name) = NULL;
2097 (*encoded_name_size) = 0;
2098 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2099 || (mount_crypt_stat && (mount_crypt_stat->flags
2100 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2101 struct ecryptfs_filename *filename;
2102
2103 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2104 if (!filename) {
2105 printk(KERN_ERR "%s: Out of memory whilst attempting "
a8f12864 2106 "to kzalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2107 sizeof(*filename));
2108 rc = -ENOMEM;
2109 goto out;
2110 }
2111 filename->filename = (char *)name;
2112 filename->filename_size = name_size;
2113 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2114 mount_crypt_stat);
2115 if (rc) {
2116 printk(KERN_ERR "%s: Error attempting to encrypt "
2117 "filename; rc = [%d]\n", __func__, rc);
2118 kfree(filename);
2119 goto out;
2120 }
2121 ecryptfs_encode_for_filename(
2122 NULL, &encoded_name_no_prefix_size,
2123 filename->encrypted_filename,
2124 filename->encrypted_filename_size);
2125 if ((crypt_stat && (crypt_stat->flags
2126 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2127 || (mount_crypt_stat
2128 && (mount_crypt_stat->flags
2129 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2130 (*encoded_name_size) =
2131 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2132 + encoded_name_no_prefix_size);
2133 else
2134 (*encoded_name_size) =
2135 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2136 + encoded_name_no_prefix_size);
2137 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2138 if (!(*encoded_name)) {
2139 printk(KERN_ERR "%s: Out of memory whilst attempting "
a8f12864 2140 "to kzalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2141 (*encoded_name_size));
2142 rc = -ENOMEM;
2143 kfree(filename->encrypted_filename);
2144 kfree(filename);
2145 goto out;
2146 }
2147 if ((crypt_stat && (crypt_stat->flags
2148 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2149 || (mount_crypt_stat
2150 && (mount_crypt_stat->flags
2151 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2152 memcpy((*encoded_name),
2153 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2154 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2155 ecryptfs_encode_for_filename(
2156 ((*encoded_name)
2157 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2158 &encoded_name_no_prefix_size,
2159 filename->encrypted_filename,
2160 filename->encrypted_filename_size);
2161 (*encoded_name_size) =
2162 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2163 + encoded_name_no_prefix_size);
2164 (*encoded_name)[(*encoded_name_size)] = '\0';
2165 (*encoded_name_size)++;
2166 } else {
2167 rc = -ENOTSUPP;
2168 }
2169 if (rc) {
2170 printk(KERN_ERR "%s: Error attempting to encode "
2171 "encrypted filename; rc = [%d]\n", __func__,
2172 rc);
2173 kfree((*encoded_name));
2174 (*encoded_name) = NULL;
2175 (*encoded_name_size) = 0;
2176 }
2177 kfree(filename->encrypted_filename);
2178 kfree(filename);
2179 } else {
2180 rc = ecryptfs_copy_filename(encoded_name,
2181 encoded_name_size,
2182 name, name_size);
2183 }
2184out:
2185 return rc;
2186}
2187
2188/**
2189 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2190 * @plaintext_name: The plaintext name
2191 * @plaintext_name_size: The plaintext name size
2192 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2193 * @name: The filename in cipher text
2194 * @name_size: The cipher text name size
2195 *
2196 * Decrypts and decodes the filename.
2197 *
2198 * Returns zero on error; non-zero otherwise
2199 */
2200int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2201 size_t *plaintext_name_size,
2202 struct dentry *ecryptfs_dir_dentry,
2203 const char *name, size_t name_size)
2204{
2aac0cf8
TH
2205 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2206 &ecryptfs_superblock_to_private(
2207 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
51ca58dc
MH
2208 char *decoded_name;
2209 size_t decoded_name_size;
2210 size_t packet_size;
2211 int rc = 0;
2212
2aac0cf8
TH
2213 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2214 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2215 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
51ca58dc
MH
2216 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2217 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
51ca58dc
MH
2218 const char *orig_name = name;
2219 size_t orig_name_size = name_size;
2220
2221 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2222 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
71c11c37
MH
2223 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2224 name, name_size);
51ca58dc
MH
2225 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2226 if (!decoded_name) {
2227 printk(KERN_ERR "%s: Out of memory whilst attempting "
df261c52 2228 "to kmalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2229 decoded_name_size);
2230 rc = -ENOMEM;
2231 goto out;
2232 }
71c11c37
MH
2233 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2234 name, name_size);
51ca58dc
MH
2235 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2236 plaintext_name_size,
2237 &packet_size,
2238 mount_crypt_stat,
2239 decoded_name,
2240 decoded_name_size);
2241 if (rc) {
2242 printk(KERN_INFO "%s: Could not parse tag 70 packet "
2243 "from filename; copying through filename "
2244 "as-is\n", __func__);
2245 rc = ecryptfs_copy_filename(plaintext_name,
2246 plaintext_name_size,
2247 orig_name, orig_name_size);
2248 goto out_free;
2249 }
2250 } else {
2251 rc = ecryptfs_copy_filename(plaintext_name,
2252 plaintext_name_size,
2253 name, name_size);
2254 goto out;
2255 }
2256out_free:
2257 kfree(decoded_name);
2258out:
2259 return rc;
2260}
This page took 0.624781 seconds and 5 git commands to generate.