eCryptfs: Read/write entire page during page IO
[deliverable/linux.git] / fs / ecryptfs / crypto.c
CommitLineData
237fead6
MH
1/**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
dd2a3b7a 6 * Copyright (C) 2004-2007 International Business Machines Corp.
237fead6
MH
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/mount.h>
28#include <linux/pagemap.h>
29#include <linux/random.h>
30#include <linux/compiler.h>
31#include <linux/key.h>
32#include <linux/namei.h>
33#include <linux/crypto.h>
34#include <linux/file.h>
35#include <linux/scatterlist.h>
5a0e3ad6 36#include <linux/slab.h>
29335c6a 37#include <asm/unaligned.h>
237fead6
MH
38#include "ecryptfs_kernel.h"
39
40static int
41ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
42 struct page *dst_page, int dst_offset,
43 struct page *src_page, int src_offset, int size,
44 unsigned char *iv);
45static int
46ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
47 struct page *dst_page, int dst_offset,
48 struct page *src_page, int src_offset, int size,
49 unsigned char *iv);
50
51/**
52 * ecryptfs_to_hex
53 * @dst: Buffer to take hex character representation of contents of
54 * src; must be at least of size (src_size * 2)
55 * @src: Buffer to be converted to a hex string respresentation
56 * @src_size: number of bytes to convert
57 */
58void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
59{
60 int x;
61
62 for (x = 0; x < src_size; x++)
63 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
64}
65
66/**
67 * ecryptfs_from_hex
68 * @dst: Buffer to take the bytes from src hex; must be at least of
69 * size (src_size / 2)
70 * @src: Buffer to be converted from a hex string respresentation to raw value
71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
72 */
73void ecryptfs_from_hex(char *dst, char *src, int dst_size)
74{
75 int x;
76 char tmp[3] = { 0, };
77
78 for (x = 0; x < dst_size; x++) {
79 tmp[0] = src[x * 2];
80 tmp[1] = src[x * 2 + 1];
81 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
82 }
83}
84
85/**
86 * ecryptfs_calculate_md5 - calculates the md5 of @src
87 * @dst: Pointer to 16 bytes of allocated memory
88 * @crypt_stat: Pointer to crypt_stat struct for the current inode
89 * @src: Data to be md5'd
90 * @len: Length of @src
91 *
92 * Uses the allocated crypto context that crypt_stat references to
93 * generate the MD5 sum of the contents of src.
94 */
95static int ecryptfs_calculate_md5(char *dst,
96 struct ecryptfs_crypt_stat *crypt_stat,
97 char *src, int len)
98{
237fead6 99 struct scatterlist sg;
565d9724
MH
100 struct hash_desc desc = {
101 .tfm = crypt_stat->hash_tfm,
102 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
103 };
104 int rc = 0;
237fead6 105
565d9724 106 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
237fead6 107 sg_init_one(&sg, (u8 *)src, len);
565d9724
MH
108 if (!desc.tfm) {
109 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
110 CRYPTO_ALG_ASYNC);
111 if (IS_ERR(desc.tfm)) {
112 rc = PTR_ERR(desc.tfm);
237fead6 113 ecryptfs_printk(KERN_ERR, "Error attempting to "
565d9724
MH
114 "allocate crypto context; rc = [%d]\n",
115 rc);
237fead6
MH
116 goto out;
117 }
565d9724 118 crypt_stat->hash_tfm = desc.tfm;
237fead6 119 }
8a29f2b0
MH
120 rc = crypto_hash_init(&desc);
121 if (rc) {
122 printk(KERN_ERR
123 "%s: Error initializing crypto hash; rc = [%d]\n",
18d1dbf1 124 __func__, rc);
8a29f2b0
MH
125 goto out;
126 }
127 rc = crypto_hash_update(&desc, &sg, len);
128 if (rc) {
129 printk(KERN_ERR
130 "%s: Error updating crypto hash; rc = [%d]\n",
18d1dbf1 131 __func__, rc);
8a29f2b0
MH
132 goto out;
133 }
134 rc = crypto_hash_final(&desc, dst);
135 if (rc) {
136 printk(KERN_ERR
137 "%s: Error finalizing crypto hash; rc = [%d]\n",
18d1dbf1 138 __func__, rc);
8a29f2b0
MH
139 goto out;
140 }
237fead6 141out:
8a29f2b0 142 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
237fead6
MH
143 return rc;
144}
145
cd9d67df
MH
146static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
147 char *cipher_name,
148 char *chaining_modifier)
8bba066f
MH
149{
150 int cipher_name_len = strlen(cipher_name);
151 int chaining_modifier_len = strlen(chaining_modifier);
152 int algified_name_len;
153 int rc;
154
155 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
156 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
7bd473fc 157 if (!(*algified_name)) {
8bba066f
MH
158 rc = -ENOMEM;
159 goto out;
160 }
161 snprintf((*algified_name), algified_name_len, "%s(%s)",
162 chaining_modifier, cipher_name);
163 rc = 0;
164out:
165 return rc;
166}
167
237fead6
MH
168/**
169 * ecryptfs_derive_iv
170 * @iv: destination for the derived iv vale
171 * @crypt_stat: Pointer to crypt_stat struct for the current inode
d6a13c17 172 * @offset: Offset of the extent whose IV we are to derive
237fead6
MH
173 *
174 * Generate the initialization vector from the given root IV and page
175 * offset.
176 *
177 * Returns zero on success; non-zero on error.
178 */
a34f60f7
MH
179int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
180 loff_t offset)
237fead6
MH
181{
182 int rc = 0;
183 char dst[MD5_DIGEST_SIZE];
184 char src[ECRYPTFS_MAX_IV_BYTES + 16];
185
186 if (unlikely(ecryptfs_verbosity > 0)) {
187 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
188 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
189 }
190 /* TODO: It is probably secure to just cast the least
191 * significant bits of the root IV into an unsigned long and
192 * add the offset to that rather than go through all this
193 * hashing business. -Halcrow */
194 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
195 memset((src + crypt_stat->iv_bytes), 0, 16);
d6a13c17 196 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
237fead6
MH
197 if (unlikely(ecryptfs_verbosity > 0)) {
198 ecryptfs_printk(KERN_DEBUG, "source:\n");
199 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
200 }
201 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
202 (crypt_stat->iv_bytes + 16));
203 if (rc) {
204 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
205 "MD5 while generating IV for a page\n");
206 goto out;
207 }
208 memcpy(iv, dst, crypt_stat->iv_bytes);
209 if (unlikely(ecryptfs_verbosity > 0)) {
210 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
211 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
212 }
213out:
214 return rc;
215}
216
217/**
218 * ecryptfs_init_crypt_stat
219 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
220 *
221 * Initialize the crypt_stat structure.
222 */
223void
224ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
225{
226 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
f4aad16a
MH
227 INIT_LIST_HEAD(&crypt_stat->keysig_list);
228 mutex_init(&crypt_stat->keysig_list_mutex);
237fead6
MH
229 mutex_init(&crypt_stat->cs_mutex);
230 mutex_init(&crypt_stat->cs_tfm_mutex);
565d9724 231 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
e2bd99ec 232 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
237fead6
MH
233}
234
235/**
fcd12835 236 * ecryptfs_destroy_crypt_stat
237fead6
MH
237 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
238 *
239 * Releases all memory associated with a crypt_stat struct.
240 */
fcd12835 241void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
237fead6 242{
f4aad16a
MH
243 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
244
237fead6 245 if (crypt_stat->tfm)
4dfea4f0 246 crypto_free_ablkcipher(crypt_stat->tfm);
565d9724
MH
247 if (crypt_stat->hash_tfm)
248 crypto_free_hash(crypt_stat->hash_tfm);
f4aad16a
MH
249 list_for_each_entry_safe(key_sig, key_sig_tmp,
250 &crypt_stat->keysig_list, crypt_stat_list) {
251 list_del(&key_sig->crypt_stat_list);
252 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253 }
237fead6
MH
254 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
255}
256
fcd12835 257void ecryptfs_destroy_mount_crypt_stat(
237fead6
MH
258 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
259{
f4aad16a
MH
260 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
261
262 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
263 return;
264 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
265 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
266 &mount_crypt_stat->global_auth_tok_list,
267 mount_crypt_stat_list) {
268 list_del(&auth_tok->mount_crypt_stat_list);
f4aad16a
MH
269 if (auth_tok->global_auth_tok_key
270 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
271 key_put(auth_tok->global_auth_tok_key);
272 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
273 }
274 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
237fead6
MH
275 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
276}
277
278/**
279 * virt_to_scatterlist
280 * @addr: Virtual address
281 * @size: Size of data; should be an even multiple of the block size
282 * @sg: Pointer to scatterlist array; set to NULL to obtain only
283 * the number of scatterlist structs required in array
284 * @sg_size: Max array size
285 *
286 * Fills in a scatterlist array with page references for a passed
287 * virtual address.
288 *
289 * Returns the number of scatterlist structs in array used
290 */
291int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
292 int sg_size)
293{
294 int i = 0;
295 struct page *pg;
296 int offset;
297 int remainder_of_page;
298
68e3f5dd
HX
299 sg_init_table(sg, sg_size);
300
237fead6
MH
301 while (size > 0 && i < sg_size) {
302 pg = virt_to_page(addr);
303 offset = offset_in_page(addr);
a07c48ad 304 sg_set_page(&sg[i], pg, 0, offset);
237fead6
MH
305 remainder_of_page = PAGE_CACHE_SIZE - offset;
306 if (size >= remainder_of_page) {
a07c48ad 307 sg[i].length = remainder_of_page;
237fead6
MH
308 addr += remainder_of_page;
309 size -= remainder_of_page;
310 } else {
a07c48ad 311 sg[i].length = size;
237fead6
MH
312 addr += size;
313 size = 0;
314 }
315 i++;
316 }
317 if (size > 0)
318 return -ENOMEM;
319 return i;
320}
321
4dfea4f0
TH
322struct extent_crypt_result {
323 struct completion completion;
324 int rc;
325};
326
327static void extent_crypt_complete(struct crypto_async_request *req, int rc)
328{
329 struct extent_crypt_result *ecr = req->data;
330
331 if (rc == -EINPROGRESS)
332 return;
333
334 ecr->rc = rc;
335 complete(&ecr->completion);
336}
337
237fead6
MH
338/**
339 * encrypt_scatterlist
340 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
341 * @dest_sg: Destination of encrypted data
342 * @src_sg: Data to be encrypted
343 * @size: Length of data to be encrypted
344 * @iv: iv to use during encryption
345 *
346 * Returns the number of bytes encrypted; negative value on error
347 */
348static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
349 struct scatterlist *dest_sg,
350 struct scatterlist *src_sg, int size,
351 unsigned char *iv)
352{
4dfea4f0
TH
353 struct ablkcipher_request *req = NULL;
354 struct extent_crypt_result ecr;
237fead6
MH
355 int rc = 0;
356
357 BUG_ON(!crypt_stat || !crypt_stat->tfm
e2bd99ec 358 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
237fead6 359 if (unlikely(ecryptfs_verbosity > 0)) {
f24b3887 360 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
237fead6
MH
361 crypt_stat->key_size);
362 ecryptfs_dump_hex(crypt_stat->key,
363 crypt_stat->key_size);
364 }
4dfea4f0
TH
365
366 init_completion(&ecr.completion);
367
237fead6 368 mutex_lock(&crypt_stat->cs_tfm_mutex);
4dfea4f0
TH
369 req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
370 if (!req) {
237fead6 371 mutex_unlock(&crypt_stat->cs_tfm_mutex);
4dfea4f0 372 rc = -ENOMEM;
237fead6
MH
373 goto out;
374 }
4dfea4f0
TH
375
376 ablkcipher_request_set_callback(req,
377 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
378 extent_crypt_complete, &ecr);
379 /* Consider doing this once, when the file is opened */
380 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
381 rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
382 crypt_stat->key_size);
383 if (rc) {
384 ecryptfs_printk(KERN_ERR,
385 "Error setting key; rc = [%d]\n",
386 rc);
387 mutex_unlock(&crypt_stat->cs_tfm_mutex);
388 rc = -EINVAL;
389 goto out;
390 }
391 crypt_stat->flags |= ECRYPTFS_KEY_SET;
392 }
237fead6 393 mutex_unlock(&crypt_stat->cs_tfm_mutex);
4dfea4f0
TH
394 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
395 ablkcipher_request_set_crypt(req, src_sg, dest_sg, size, iv);
396 rc = crypto_ablkcipher_encrypt(req);
397 if (rc == -EINPROGRESS || rc == -EBUSY) {
398 struct extent_crypt_result *ecr = req->base.data;
399
400 wait_for_completion(&ecr->completion);
401 rc = ecr->rc;
402 INIT_COMPLETION(ecr->completion);
403 }
237fead6 404out:
4dfea4f0 405 ablkcipher_request_free(req);
237fead6
MH
406 return rc;
407}
408
0216f7f7
MH
409/**
410 * ecryptfs_lower_offset_for_extent
411 *
412 * Convert an eCryptfs page index into a lower byte offset
413 */
7896b631
AB
414static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
415 struct ecryptfs_crypt_stat *crypt_stat)
0216f7f7 416{
157f1071
TH
417 (*offset) = ecryptfs_lower_header_size(crypt_stat)
418 + (crypt_stat->extent_size * extent_num);
0216f7f7
MH
419}
420
421/**
422 * ecryptfs_encrypt_extent
423 * @enc_extent_page: Allocated page into which to encrypt the data in
424 * @page
425 * @crypt_stat: crypt_stat containing cryptographic context for the
426 * encryption operation
427 * @page: Page containing plaintext data extent to encrypt
428 * @extent_offset: Page extent offset for use in generating IV
429 *
430 * Encrypts one extent of data.
431 *
432 * Return zero on success; non-zero otherwise
433 */
434static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
435 struct ecryptfs_crypt_stat *crypt_stat,
436 struct page *page,
437 unsigned long extent_offset)
438{
d6a13c17 439 loff_t extent_base;
0216f7f7
MH
440 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
441 int rc;
442
d6a13c17 443 extent_base = (((loff_t)page->index)
0216f7f7
MH
444 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
445 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
446 (extent_base + extent_offset));
447 if (rc) {
888d57bb
JP
448 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
449 "extent [0x%.16llx]; rc = [%d]\n",
450 (unsigned long long)(extent_base + extent_offset), rc);
0216f7f7
MH
451 goto out;
452 }
12003e5b
TH
453 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page,
454 extent_offset * crypt_stat->extent_size,
455 page,
456 extent_offset * crypt_stat->extent_size,
457 crypt_stat->extent_size, extent_iv);
0216f7f7
MH
458 if (rc < 0) {
459 printk(KERN_ERR "%s: Error attempting to encrypt page with "
460 "page->index = [%ld], extent_offset = [%ld]; "
18d1dbf1 461 "rc = [%d]\n", __func__, page->index, extent_offset,
0216f7f7
MH
462 rc);
463 goto out;
464 }
465 rc = 0;
0216f7f7
MH
466out:
467 return rc;
468}
469
237fead6
MH
470/**
471 * ecryptfs_encrypt_page
0216f7f7
MH
472 * @page: Page mapped from the eCryptfs inode for the file; contains
473 * decrypted content that needs to be encrypted (to a temporary
474 * page; not in place) and written out to the lower file
237fead6
MH
475 *
476 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
477 * that eCryptfs pages may straddle the lower pages -- for instance,
478 * if the file was created on a machine with an 8K page size
479 * (resulting in an 8K header), and then the file is copied onto a
480 * host with a 32K page size, then when reading page 0 of the eCryptfs
481 * file, 24K of page 0 of the lower file will be read and decrypted,
482 * and then 8K of page 1 of the lower file will be read and decrypted.
483 *
237fead6
MH
484 * Returns zero on success; negative on error
485 */
0216f7f7 486int ecryptfs_encrypt_page(struct page *page)
237fead6 487{
0216f7f7 488 struct inode *ecryptfs_inode;
237fead6 489 struct ecryptfs_crypt_stat *crypt_stat;
7fcba054
ES
490 char *enc_extent_virt;
491 struct page *enc_extent_page = NULL;
0216f7f7 492 loff_t extent_offset;
0f896176 493 loff_t lower_offset;
237fead6 494 int rc = 0;
0216f7f7
MH
495
496 ecryptfs_inode = page->mapping->host;
497 crypt_stat =
498 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
13a791b4 499 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
7fcba054
ES
500 enc_extent_page = alloc_page(GFP_USER);
501 if (!enc_extent_page) {
0216f7f7
MH
502 rc = -ENOMEM;
503 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
504 "encrypted extent\n");
505 goto out;
506 }
0f896176 507
0216f7f7
MH
508 for (extent_offset = 0;
509 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
510 extent_offset++) {
0216f7f7
MH
511 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
512 extent_offset);
237fead6 513 if (rc) {
0216f7f7 514 printk(KERN_ERR "%s: Error encrypting extent; "
18d1dbf1 515 "rc = [%d]\n", __func__, rc);
237fead6
MH
516 goto out;
517 }
0f896176
TH
518 }
519
520 ecryptfs_lower_offset_for_extent(&lower_offset,
521 page->index * (PAGE_CACHE_SIZE / crypt_stat->extent_size),
522 crypt_stat);
523 enc_extent_virt = kmap(enc_extent_page);
524 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
525 PAGE_CACHE_SIZE);
526 kunmap(enc_extent_page);
527 if (rc < 0) {
528 ecryptfs_printk(KERN_ERR,
529 "Error attempting to write lower page; rc = [%d]\n",
530 rc);
531 goto out;
237fead6 532 }
96a7b9c2 533 rc = 0;
0216f7f7 534out:
7fcba054 535 if (enc_extent_page) {
7fcba054
ES
536 __free_page(enc_extent_page);
537 }
0216f7f7
MH
538 return rc;
539}
540
541static int ecryptfs_decrypt_extent(struct page *page,
542 struct ecryptfs_crypt_stat *crypt_stat,
543 struct page *enc_extent_page,
544 unsigned long extent_offset)
545{
d6a13c17 546 loff_t extent_base;
0216f7f7
MH
547 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
548 int rc;
549
d6a13c17 550 extent_base = (((loff_t)page->index)
0216f7f7
MH
551 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
552 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
553 (extent_base + extent_offset));
237fead6 554 if (rc) {
888d57bb
JP
555 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
556 "extent [0x%.16llx]; rc = [%d]\n",
557 (unsigned long long)(extent_base + extent_offset), rc);
0216f7f7
MH
558 goto out;
559 }
0216f7f7 560 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
12003e5b
TH
561 extent_offset * crypt_stat->extent_size,
562 enc_extent_page,
563 extent_offset * crypt_stat->extent_size,
564 crypt_stat->extent_size, extent_iv);
0216f7f7
MH
565 if (rc < 0) {
566 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
567 "page->index = [%ld], extent_offset = [%ld]; "
18d1dbf1 568 "rc = [%d]\n", __func__, page->index, extent_offset,
0216f7f7
MH
569 rc);
570 goto out;
571 }
572 rc = 0;
237fead6
MH
573out:
574 return rc;
575}
576
577/**
578 * ecryptfs_decrypt_page
0216f7f7
MH
579 * @page: Page mapped from the eCryptfs inode for the file; data read
580 * and decrypted from the lower file will be written into this
581 * page
237fead6
MH
582 *
583 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
584 * that eCryptfs pages may straddle the lower pages -- for instance,
585 * if the file was created on a machine with an 8K page size
586 * (resulting in an 8K header), and then the file is copied onto a
587 * host with a 32K page size, then when reading page 0 of the eCryptfs
588 * file, 24K of page 0 of the lower file will be read and decrypted,
589 * and then 8K of page 1 of the lower file will be read and decrypted.
590 *
591 * Returns zero on success; negative on error
592 */
0216f7f7 593int ecryptfs_decrypt_page(struct page *page)
237fead6 594{
0216f7f7 595 struct inode *ecryptfs_inode;
237fead6 596 struct ecryptfs_crypt_stat *crypt_stat;
7fcba054
ES
597 char *enc_extent_virt;
598 struct page *enc_extent_page = NULL;
0216f7f7 599 unsigned long extent_offset;
0f896176 600 loff_t lower_offset;
237fead6 601 int rc = 0;
237fead6 602
0216f7f7
MH
603 ecryptfs_inode = page->mapping->host;
604 crypt_stat =
605 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
13a791b4 606 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
7fcba054
ES
607 enc_extent_page = alloc_page(GFP_USER);
608 if (!enc_extent_page) {
237fead6 609 rc = -ENOMEM;
0216f7f7
MH
610 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
611 "encrypted extent\n");
16a72c45 612 goto out;
237fead6 613 }
0f896176
TH
614
615 ecryptfs_lower_offset_for_extent(&lower_offset,
616 page->index * (PAGE_CACHE_SIZE / crypt_stat->extent_size),
617 crypt_stat);
7fcba054 618 enc_extent_virt = kmap(enc_extent_page);
0f896176
TH
619 rc = ecryptfs_read_lower(enc_extent_virt, lower_offset, PAGE_CACHE_SIZE,
620 ecryptfs_inode);
621 kunmap(enc_extent_page);
622 if (rc < 0) {
623 ecryptfs_printk(KERN_ERR,
624 "Error attempting to read lower page; rc = [%d]\n",
625 rc);
626 goto out;
627 }
628
0216f7f7
MH
629 for (extent_offset = 0;
630 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
631 extent_offset++) {
0216f7f7
MH
632 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
633 extent_offset);
634 if (rc) {
635 printk(KERN_ERR "%s: Error encrypting extent; "
18d1dbf1 636 "rc = [%d]\n", __func__, rc);
16a72c45 637 goto out;
237fead6 638 }
237fead6
MH
639 }
640out:
7fcba054 641 if (enc_extent_page) {
7fcba054
ES
642 __free_page(enc_extent_page);
643 }
237fead6
MH
644 return rc;
645}
646
647/**
648 * decrypt_scatterlist
22e78faf
MH
649 * @crypt_stat: Cryptographic context
650 * @dest_sg: The destination scatterlist to decrypt into
651 * @src_sg: The source scatterlist to decrypt from
652 * @size: The number of bytes to decrypt
653 * @iv: The initialization vector to use for the decryption
237fead6
MH
654 *
655 * Returns the number of bytes decrypted; negative value on error
656 */
657static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
658 struct scatterlist *dest_sg,
659 struct scatterlist *src_sg, int size,
660 unsigned char *iv)
661{
4dfea4f0
TH
662 struct ablkcipher_request *req = NULL;
663 struct extent_crypt_result ecr;
237fead6
MH
664 int rc = 0;
665
4dfea4f0
TH
666 BUG_ON(!crypt_stat || !crypt_stat->tfm
667 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
668 if (unlikely(ecryptfs_verbosity > 0)) {
669 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
670 crypt_stat->key_size);
671 ecryptfs_dump_hex(crypt_stat->key,
672 crypt_stat->key_size);
673 }
674
675 init_completion(&ecr.completion);
676
237fead6 677 mutex_lock(&crypt_stat->cs_tfm_mutex);
4dfea4f0
TH
678 req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
679 if (!req) {
237fead6 680 mutex_unlock(&crypt_stat->cs_tfm_mutex);
4dfea4f0 681 rc = -ENOMEM;
237fead6
MH
682 goto out;
683 }
4dfea4f0
TH
684
685 ablkcipher_request_set_callback(req,
686 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
687 extent_crypt_complete, &ecr);
688 /* Consider doing this once, when the file is opened */
689 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
690 rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
691 crypt_stat->key_size);
692 if (rc) {
693 ecryptfs_printk(KERN_ERR,
694 "Error setting key; rc = [%d]\n",
695 rc);
696 mutex_unlock(&crypt_stat->cs_tfm_mutex);
697 rc = -EINVAL;
698 goto out;
699 }
700 crypt_stat->flags |= ECRYPTFS_KEY_SET;
701 }
237fead6 702 mutex_unlock(&crypt_stat->cs_tfm_mutex);
4dfea4f0
TH
703 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
704 ablkcipher_request_set_crypt(req, src_sg, dest_sg, size, iv);
705 rc = crypto_ablkcipher_decrypt(req);
706 if (rc == -EINPROGRESS || rc == -EBUSY) {
707 struct extent_crypt_result *ecr = req->base.data;
708
709 wait_for_completion(&ecr->completion);
710 rc = ecr->rc;
711 INIT_COMPLETION(ecr->completion);
237fead6 712 }
237fead6 713out:
4dfea4f0 714 ablkcipher_request_free(req);
237fead6 715 return rc;
4dfea4f0 716
237fead6
MH
717}
718
719/**
720 * ecryptfs_encrypt_page_offset
22e78faf
MH
721 * @crypt_stat: The cryptographic context
722 * @dst_page: The page to encrypt into
723 * @dst_offset: The offset in the page to encrypt into
724 * @src_page: The page to encrypt from
725 * @src_offset: The offset in the page to encrypt from
726 * @size: The number of bytes to encrypt
727 * @iv: The initialization vector to use for the encryption
237fead6
MH
728 *
729 * Returns the number of bytes encrypted
730 */
731static int
732ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
733 struct page *dst_page, int dst_offset,
734 struct page *src_page, int src_offset, int size,
735 unsigned char *iv)
736{
737 struct scatterlist src_sg, dst_sg;
738
60c74f81
JA
739 sg_init_table(&src_sg, 1);
740 sg_init_table(&dst_sg, 1);
741
642f1490
JA
742 sg_set_page(&src_sg, src_page, size, src_offset);
743 sg_set_page(&dst_sg, dst_page, size, dst_offset);
237fead6
MH
744 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
745}
746
747/**
748 * ecryptfs_decrypt_page_offset
22e78faf
MH
749 * @crypt_stat: The cryptographic context
750 * @dst_page: The page to decrypt into
751 * @dst_offset: The offset in the page to decrypt into
752 * @src_page: The page to decrypt from
753 * @src_offset: The offset in the page to decrypt from
754 * @size: The number of bytes to decrypt
755 * @iv: The initialization vector to use for the decryption
237fead6
MH
756 *
757 * Returns the number of bytes decrypted
758 */
759static int
760ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
761 struct page *dst_page, int dst_offset,
762 struct page *src_page, int src_offset, int size,
763 unsigned char *iv)
764{
765 struct scatterlist src_sg, dst_sg;
766
60c74f81 767 sg_init_table(&src_sg, 1);
642f1490
JA
768 sg_set_page(&src_sg, src_page, size, src_offset);
769
60c74f81 770 sg_init_table(&dst_sg, 1);
642f1490 771 sg_set_page(&dst_sg, dst_page, size, dst_offset);
60c74f81 772
237fead6
MH
773 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
774}
775
776#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
777
778/**
779 * ecryptfs_init_crypt_ctx
421f91d2 780 * @crypt_stat: Uninitialized crypt stats structure
237fead6
MH
781 *
782 * Initialize the crypto context.
783 *
784 * TODO: Performance: Keep a cache of initialized cipher contexts;
785 * only init if needed
786 */
787int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
788{
8bba066f 789 char *full_alg_name;
237fead6
MH
790 int rc = -EINVAL;
791
792 if (!crypt_stat->cipher) {
793 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
794 goto out;
795 }
796 ecryptfs_printk(KERN_DEBUG,
797 "Initializing cipher [%s]; strlen = [%d]; "
f24b3887 798 "key_size_bits = [%zd]\n",
237fead6
MH
799 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
800 crypt_stat->key_size << 3);
801 if (crypt_stat->tfm) {
802 rc = 0;
803 goto out;
804 }
805 mutex_lock(&crypt_stat->cs_tfm_mutex);
8bba066f
MH
806 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
807 crypt_stat->cipher, "cbc");
808 if (rc)
c8161f64 809 goto out_unlock;
4dfea4f0 810 crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0);
8bba066f 811 kfree(full_alg_name);
de88777e
AM
812 if (IS_ERR(crypt_stat->tfm)) {
813 rc = PTR_ERR(crypt_stat->tfm);
b0105eae 814 crypt_stat->tfm = NULL;
237fead6
MH
815 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
816 "Error initializing cipher [%s]\n",
817 crypt_stat->cipher);
c8161f64 818 goto out_unlock;
237fead6 819 }
4dfea4f0 820 crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
237fead6 821 rc = 0;
c8161f64
ES
822out_unlock:
823 mutex_unlock(&crypt_stat->cs_tfm_mutex);
237fead6
MH
824out:
825 return rc;
826}
827
828static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
829{
830 int extent_size_tmp;
831
832 crypt_stat->extent_mask = 0xFFFFFFFF;
833 crypt_stat->extent_shift = 0;
834 if (crypt_stat->extent_size == 0)
835 return;
836 extent_size_tmp = crypt_stat->extent_size;
837 while ((extent_size_tmp & 0x01) == 0) {
838 extent_size_tmp >>= 1;
839 crypt_stat->extent_mask <<= 1;
840 crypt_stat->extent_shift++;
841 }
842}
843
844void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
845{
846 /* Default values; may be overwritten as we are parsing the
847 * packets. */
848 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
849 set_extent_mask_and_shift(crypt_stat);
850 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
dd2a3b7a 851 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
fa3ef1cb 852 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
45eaab79
MH
853 else {
854 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
fa3ef1cb 855 crypt_stat->metadata_size =
cc11beff 856 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
45eaab79 857 else
fa3ef1cb 858 crypt_stat->metadata_size = PAGE_CACHE_SIZE;
45eaab79 859 }
237fead6
MH
860}
861
862/**
863 * ecryptfs_compute_root_iv
864 * @crypt_stats
865 *
866 * On error, sets the root IV to all 0's.
867 */
868int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
869{
870 int rc = 0;
871 char dst[MD5_DIGEST_SIZE];
872
873 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
874 BUG_ON(crypt_stat->iv_bytes <= 0);
e2bd99ec 875 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
237fead6
MH
876 rc = -EINVAL;
877 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
878 "cannot generate root IV\n");
879 goto out;
880 }
881 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
882 crypt_stat->key_size);
883 if (rc) {
884 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
885 "MD5 while generating root IV\n");
886 goto out;
887 }
888 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
889out:
890 if (rc) {
891 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
e2bd99ec 892 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
237fead6
MH
893 }
894 return rc;
895}
896
897static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
898{
899 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
e2bd99ec 900 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
237fead6
MH
901 ecryptfs_compute_root_iv(crypt_stat);
902 if (unlikely(ecryptfs_verbosity > 0)) {
903 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
904 ecryptfs_dump_hex(crypt_stat->key,
905 crypt_stat->key_size);
906 }
907}
908
17398957
MH
909/**
910 * ecryptfs_copy_mount_wide_flags_to_inode_flags
22e78faf
MH
911 * @crypt_stat: The inode's cryptographic context
912 * @mount_crypt_stat: The mount point's cryptographic context
17398957
MH
913 *
914 * This function propagates the mount-wide flags to individual inode
915 * flags.
916 */
917static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
918 struct ecryptfs_crypt_stat *crypt_stat,
919 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
920{
921 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
922 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
923 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
924 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
addd65ad
MH
925 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
926 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
927 if (mount_crypt_stat->flags
928 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
929 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
930 else if (mount_crypt_stat->flags
931 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
932 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
933 }
17398957
MH
934}
935
f4aad16a
MH
936static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
937 struct ecryptfs_crypt_stat *crypt_stat,
938 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
939{
940 struct ecryptfs_global_auth_tok *global_auth_tok;
941 int rc = 0;
942
aa06117f 943 mutex_lock(&crypt_stat->keysig_list_mutex);
f4aad16a 944 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
aa06117f 945
f4aad16a
MH
946 list_for_each_entry(global_auth_tok,
947 &mount_crypt_stat->global_auth_tok_list,
948 mount_crypt_stat_list) {
84814d64
TH
949 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
950 continue;
f4aad16a
MH
951 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
952 if (rc) {
953 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
f4aad16a
MH
954 goto out;
955 }
956 }
aa06117f 957
f4aad16a 958out:
aa06117f
RD
959 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
960 mutex_unlock(&crypt_stat->keysig_list_mutex);
f4aad16a
MH
961 return rc;
962}
963
237fead6
MH
964/**
965 * ecryptfs_set_default_crypt_stat_vals
22e78faf
MH
966 * @crypt_stat: The inode's cryptographic context
967 * @mount_crypt_stat: The mount point's cryptographic context
237fead6
MH
968 *
969 * Default values in the event that policy does not override them.
970 */
971static void ecryptfs_set_default_crypt_stat_vals(
972 struct ecryptfs_crypt_stat *crypt_stat,
973 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
974{
17398957
MH
975 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
976 mount_crypt_stat);
237fead6
MH
977 ecryptfs_set_default_sizes(crypt_stat);
978 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
979 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
e2bd99ec 980 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
237fead6
MH
981 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
982 crypt_stat->mount_crypt_stat = mount_crypt_stat;
983}
984
985/**
986 * ecryptfs_new_file_context
b59db43a 987 * @ecryptfs_inode: The eCryptfs inode
237fead6
MH
988 *
989 * If the crypto context for the file has not yet been established,
990 * this is where we do that. Establishing a new crypto context
991 * involves the following decisions:
992 * - What cipher to use?
993 * - What set of authentication tokens to use?
994 * Here we just worry about getting enough information into the
995 * authentication tokens so that we know that they are available.
996 * We associate the available authentication tokens with the new file
997 * via the set of signatures in the crypt_stat struct. Later, when
998 * the headers are actually written out, we may again defer to
999 * userspace to perform the encryption of the session key; for the
1000 * foreseeable future, this will be the case with public key packets.
1001 *
1002 * Returns zero on success; non-zero otherwise
1003 */
b59db43a 1004int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
237fead6 1005{
237fead6 1006 struct ecryptfs_crypt_stat *crypt_stat =
b59db43a 1007 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
237fead6
MH
1008 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1009 &ecryptfs_superblock_to_private(
b59db43a 1010 ecryptfs_inode->i_sb)->mount_crypt_stat;
237fead6 1011 int cipher_name_len;
f4aad16a 1012 int rc = 0;
237fead6
MH
1013
1014 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
af655dc6 1015 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
f4aad16a
MH
1016 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1017 mount_crypt_stat);
1018 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1019 mount_crypt_stat);
1020 if (rc) {
1021 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1022 "to the inode key sigs; rc = [%d]\n", rc);
1023 goto out;
1024 }
1025 cipher_name_len =
1026 strlen(mount_crypt_stat->global_default_cipher_name);
1027 memcpy(crypt_stat->cipher,
1028 mount_crypt_stat->global_default_cipher_name,
1029 cipher_name_len);
1030 crypt_stat->cipher[cipher_name_len] = '\0';
1031 crypt_stat->key_size =
1032 mount_crypt_stat->global_default_cipher_key_size;
1033 ecryptfs_generate_new_key(crypt_stat);
237fead6
MH
1034 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1035 if (rc)
1036 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1037 "context for cipher [%s]: rc = [%d]\n",
1038 crypt_stat->cipher, rc);
f4aad16a 1039out:
237fead6
MH
1040 return rc;
1041}
1042
1043/**
7a86617e 1044 * ecryptfs_validate_marker - check for the ecryptfs marker
237fead6
MH
1045 * @data: The data block in which to check
1046 *
7a86617e 1047 * Returns zero if marker found; -EINVAL if not found
237fead6 1048 */
7a86617e 1049static int ecryptfs_validate_marker(char *data)
237fead6
MH
1050{
1051 u32 m_1, m_2;
1052
29335c6a
HH
1053 m_1 = get_unaligned_be32(data);
1054 m_2 = get_unaligned_be32(data + 4);
237fead6 1055 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
7a86617e 1056 return 0;
237fead6
MH
1057 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1058 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1059 MAGIC_ECRYPTFS_MARKER);
1060 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1061 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
7a86617e 1062 return -EINVAL;
237fead6
MH
1063}
1064
1065struct ecryptfs_flag_map_elem {
1066 u32 file_flag;
1067 u32 local_flag;
1068};
1069
1070/* Add support for additional flags by adding elements here. */
1071static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1072 {0x00000001, ECRYPTFS_ENABLE_HMAC},
dd2a3b7a 1073 {0x00000002, ECRYPTFS_ENCRYPTED},
addd65ad
MH
1074 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1075 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
237fead6
MH
1076};
1077
1078/**
1079 * ecryptfs_process_flags
22e78faf 1080 * @crypt_stat: The cryptographic context
237fead6
MH
1081 * @page_virt: Source data to be parsed
1082 * @bytes_read: Updated with the number of bytes read
1083 *
1084 * Returns zero on success; non-zero if the flag set is invalid
1085 */
1086static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1087 char *page_virt, int *bytes_read)
1088{
1089 int rc = 0;
1090 int i;
1091 u32 flags;
1092
29335c6a 1093 flags = get_unaligned_be32(page_virt);
237fead6
MH
1094 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1095 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1096 if (flags & ecryptfs_flag_map[i].file_flag) {
e2bd99ec 1097 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
237fead6 1098 } else
e2bd99ec 1099 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
237fead6
MH
1100 /* Version is in top 8 bits of the 32-bit flag vector */
1101 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1102 (*bytes_read) = 4;
1103 return rc;
1104}
1105
1106/**
1107 * write_ecryptfs_marker
1108 * @page_virt: The pointer to in a page to begin writing the marker
1109 * @written: Number of bytes written
1110 *
1111 * Marker = 0x3c81b7f5
1112 */
1113static void write_ecryptfs_marker(char *page_virt, size_t *written)
1114{
1115 u32 m_1, m_2;
1116
1117 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1118 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
29335c6a
HH
1119 put_unaligned_be32(m_1, page_virt);
1120 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1121 put_unaligned_be32(m_2, page_virt);
237fead6
MH
1122 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1123}
1124
f4e60e6b
TH
1125void ecryptfs_write_crypt_stat_flags(char *page_virt,
1126 struct ecryptfs_crypt_stat *crypt_stat,
1127 size_t *written)
237fead6
MH
1128{
1129 u32 flags = 0;
1130 int i;
1131
1132 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1133 / sizeof(struct ecryptfs_flag_map_elem))); i++)
e2bd99ec 1134 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
237fead6
MH
1135 flags |= ecryptfs_flag_map[i].file_flag;
1136 /* Version is in top 8 bits of the 32-bit flag vector */
1137 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
29335c6a 1138 put_unaligned_be32(flags, page_virt);
237fead6
MH
1139 (*written) = 4;
1140}
1141
1142struct ecryptfs_cipher_code_str_map_elem {
1143 char cipher_str[16];
19e66a67 1144 u8 cipher_code;
237fead6
MH
1145};
1146
1147/* Add support for additional ciphers by adding elements here. The
1148 * cipher_code is whatever OpenPGP applicatoins use to identify the
1149 * ciphers. List in order of probability. */
1150static struct ecryptfs_cipher_code_str_map_elem
1151ecryptfs_cipher_code_str_map[] = {
1152 {"aes",RFC2440_CIPHER_AES_128 },
1153 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1154 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1155 {"cast5", RFC2440_CIPHER_CAST_5},
1156 {"twofish", RFC2440_CIPHER_TWOFISH},
1157 {"cast6", RFC2440_CIPHER_CAST_6},
1158 {"aes", RFC2440_CIPHER_AES_192},
1159 {"aes", RFC2440_CIPHER_AES_256}
1160};
1161
1162/**
1163 * ecryptfs_code_for_cipher_string
9c79f34f
MH
1164 * @cipher_name: The string alias for the cipher
1165 * @key_bytes: Length of key in bytes; used for AES code selection
237fead6
MH
1166 *
1167 * Returns zero on no match, or the cipher code on match
1168 */
9c79f34f 1169u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
237fead6
MH
1170{
1171 int i;
19e66a67 1172 u8 code = 0;
237fead6
MH
1173 struct ecryptfs_cipher_code_str_map_elem *map =
1174 ecryptfs_cipher_code_str_map;
1175
9c79f34f
MH
1176 if (strcmp(cipher_name, "aes") == 0) {
1177 switch (key_bytes) {
237fead6
MH
1178 case 16:
1179 code = RFC2440_CIPHER_AES_128;
1180 break;
1181 case 24:
1182 code = RFC2440_CIPHER_AES_192;
1183 break;
1184 case 32:
1185 code = RFC2440_CIPHER_AES_256;
1186 }
1187 } else {
1188 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
9c79f34f 1189 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
237fead6
MH
1190 code = map[i].cipher_code;
1191 break;
1192 }
1193 }
1194 return code;
1195}
1196
1197/**
1198 * ecryptfs_cipher_code_to_string
1199 * @str: Destination to write out the cipher name
1200 * @cipher_code: The code to convert to cipher name string
1201 *
1202 * Returns zero on success
1203 */
19e66a67 1204int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
237fead6
MH
1205{
1206 int rc = 0;
1207 int i;
1208
1209 str[0] = '\0';
1210 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1211 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1212 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1213 if (str[0] == '\0') {
1214 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1215 "[%d]\n", cipher_code);
1216 rc = -EINVAL;
1217 }
1218 return rc;
1219}
1220
778aeb42 1221int ecryptfs_read_and_validate_header_region(struct inode *inode)
dd2a3b7a 1222{
778aeb42
TH
1223 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1224 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
dd2a3b7a
MH
1225 int rc;
1226
778aeb42
TH
1227 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1228 inode);
1229 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1230 return rc >= 0 ? -EINVAL : rc;
1231 rc = ecryptfs_validate_marker(marker);
1232 if (!rc)
1233 ecryptfs_i_size_init(file_size, inode);
dd2a3b7a
MH
1234 return rc;
1235}
1236
e77a56dd
MH
1237void
1238ecryptfs_write_header_metadata(char *virt,
1239 struct ecryptfs_crypt_stat *crypt_stat,
1240 size_t *written)
237fead6
MH
1241{
1242 u32 header_extent_size;
1243 u16 num_header_extents_at_front;
1244
45eaab79 1245 header_extent_size = (u32)crypt_stat->extent_size;
237fead6 1246 num_header_extents_at_front =
fa3ef1cb 1247 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
29335c6a 1248 put_unaligned_be32(header_extent_size, virt);
237fead6 1249 virt += 4;
29335c6a 1250 put_unaligned_be16(num_header_extents_at_front, virt);
237fead6
MH
1251 (*written) = 6;
1252}
1253
30632870 1254struct kmem_cache *ecryptfs_header_cache;
237fead6
MH
1255
1256/**
1257 * ecryptfs_write_headers_virt
22e78faf 1258 * @page_virt: The virtual address to write the headers to
87b811c3 1259 * @max: The size of memory allocated at page_virt
22e78faf
MH
1260 * @size: Set to the number of bytes written by this function
1261 * @crypt_stat: The cryptographic context
1262 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
1263 *
1264 * Format version: 1
1265 *
1266 * Header Extent:
1267 * Octets 0-7: Unencrypted file size (big-endian)
1268 * Octets 8-15: eCryptfs special marker
1269 * Octets 16-19: Flags
1270 * Octet 16: File format version number (between 0 and 255)
1271 * Octets 17-18: Reserved
1272 * Octet 19: Bit 1 (lsb): Reserved
1273 * Bit 2: Encrypted?
1274 * Bits 3-8: Reserved
1275 * Octets 20-23: Header extent size (big-endian)
1276 * Octets 24-25: Number of header extents at front of file
1277 * (big-endian)
1278 * Octet 26: Begin RFC 2440 authentication token packet set
1279 * Data Extent 0:
1280 * Lower data (CBC encrypted)
1281 * Data Extent 1:
1282 * Lower data (CBC encrypted)
1283 * ...
1284 *
1285 * Returns zero on success
1286 */
87b811c3
ES
1287static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1288 size_t *size,
dd2a3b7a
MH
1289 struct ecryptfs_crypt_stat *crypt_stat,
1290 struct dentry *ecryptfs_dentry)
237fead6
MH
1291{
1292 int rc;
1293 size_t written;
1294 size_t offset;
1295
1296 offset = ECRYPTFS_FILE_SIZE_BYTES;
1297 write_ecryptfs_marker((page_virt + offset), &written);
1298 offset += written;
f4e60e6b
TH
1299 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1300 &written);
237fead6 1301 offset += written;
e77a56dd
MH
1302 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1303 &written);
237fead6
MH
1304 offset += written;
1305 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1306 ecryptfs_dentry, &written,
87b811c3 1307 max - offset);
237fead6
MH
1308 if (rc)
1309 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1310 "set; rc = [%d]\n", rc);
dd2a3b7a
MH
1311 if (size) {
1312 offset += written;
1313 *size = offset;
1314 }
1315 return rc;
1316}
1317
22e78faf 1318static int
b59db43a 1319ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
8faece5f 1320 char *virt, size_t virt_len)
dd2a3b7a 1321{
d7cdc5fe 1322 int rc;
dd2a3b7a 1323
b59db43a 1324 rc = ecryptfs_write_lower(ecryptfs_inode, virt,
8faece5f 1325 0, virt_len);
96a7b9c2 1326 if (rc < 0)
d7cdc5fe 1327 printk(KERN_ERR "%s: Error attempting to write header "
96a7b9c2
TH
1328 "information to lower file; rc = [%d]\n", __func__, rc);
1329 else
1330 rc = 0;
70456600 1331 return rc;
dd2a3b7a
MH
1332}
1333
22e78faf
MH
1334static int
1335ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
22e78faf 1336 char *page_virt, size_t size)
dd2a3b7a
MH
1337{
1338 int rc;
1339
1340 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1341 size, 0);
237fead6
MH
1342 return rc;
1343}
1344
8faece5f
TH
1345static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1346 unsigned int order)
1347{
1348 struct page *page;
1349
1350 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1351 if (page)
1352 return (unsigned long) page_address(page);
1353 return 0;
1354}
1355
237fead6 1356/**
dd2a3b7a 1357 * ecryptfs_write_metadata
b59db43a
TH
1358 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1359 * @ecryptfs_inode: The newly created eCryptfs inode
237fead6
MH
1360 *
1361 * Write the file headers out. This will likely involve a userspace
1362 * callout, in which the session key is encrypted with one or more
1363 * public keys and/or the passphrase necessary to do the encryption is
1364 * retrieved via a prompt. Exactly what happens at this point should
1365 * be policy-dependent.
1366 *
1367 * Returns zero on success; non-zero on error
1368 */
b59db43a
TH
1369int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1370 struct inode *ecryptfs_inode)
237fead6 1371{
d7cdc5fe 1372 struct ecryptfs_crypt_stat *crypt_stat =
b59db43a 1373 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
8faece5f 1374 unsigned int order;
cc11beff 1375 char *virt;
8faece5f 1376 size_t virt_len;
d7cdc5fe 1377 size_t size = 0;
237fead6
MH
1378 int rc = 0;
1379
e2bd99ec
MH
1380 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1381 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
d7cdc5fe 1382 printk(KERN_ERR "Key is invalid; bailing out\n");
237fead6
MH
1383 rc = -EINVAL;
1384 goto out;
1385 }
1386 } else {
cc11beff 1387 printk(KERN_WARNING "%s: Encrypted flag not set\n",
18d1dbf1 1388 __func__);
237fead6 1389 rc = -EINVAL;
237fead6
MH
1390 goto out;
1391 }
fa3ef1cb 1392 virt_len = crypt_stat->metadata_size;
8faece5f 1393 order = get_order(virt_len);
237fead6 1394 /* Released in this function */
8faece5f 1395 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
cc11beff 1396 if (!virt) {
18d1dbf1 1397 printk(KERN_ERR "%s: Out of memory\n", __func__);
237fead6
MH
1398 rc = -ENOMEM;
1399 goto out;
1400 }
bd4f0fe8 1401 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
8faece5f
TH
1402 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1403 ecryptfs_dentry);
237fead6 1404 if (unlikely(rc)) {
cc11beff 1405 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
18d1dbf1 1406 __func__, rc);
237fead6
MH
1407 goto out_free;
1408 }
dd2a3b7a 1409 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
8faece5f
TH
1410 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1411 size);
dd2a3b7a 1412 else
b59db43a 1413 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
8faece5f 1414 virt_len);
dd2a3b7a 1415 if (rc) {
cc11beff 1416 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
18d1dbf1 1417 "rc = [%d]\n", __func__, rc);
dd2a3b7a 1418 goto out_free;
237fead6 1419 }
237fead6 1420out_free:
8faece5f 1421 free_pages((unsigned long)virt, order);
237fead6
MH
1422out:
1423 return rc;
1424}
1425
dd2a3b7a
MH
1426#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1427#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
237fead6 1428static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1429 char *virt, int *bytes_read,
1430 int validate_header_size)
237fead6
MH
1431{
1432 int rc = 0;
1433 u32 header_extent_size;
1434 u16 num_header_extents_at_front;
1435
29335c6a
HH
1436 header_extent_size = get_unaligned_be32(virt);
1437 virt += sizeof(__be32);
1438 num_header_extents_at_front = get_unaligned_be16(virt);
fa3ef1cb
TH
1439 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1440 * (size_t)header_extent_size));
29335c6a 1441 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
dd2a3b7a 1442 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
fa3ef1cb 1443 && (crypt_stat->metadata_size
dd2a3b7a 1444 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
237fead6 1445 rc = -EINVAL;
cc11beff 1446 printk(KERN_WARNING "Invalid header size: [%zd]\n",
fa3ef1cb 1447 crypt_stat->metadata_size);
237fead6
MH
1448 }
1449 return rc;
1450}
1451
1452/**
1453 * set_default_header_data
22e78faf 1454 * @crypt_stat: The cryptographic context
237fead6
MH
1455 *
1456 * For version 0 file format; this function is only for backwards
1457 * compatibility for files created with the prior versions of
1458 * eCryptfs.
1459 */
1460static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1461{
fa3ef1cb 1462 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
237fead6
MH
1463}
1464
3aeb86ea
TH
1465void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1466{
1467 struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1468 struct ecryptfs_crypt_stat *crypt_stat;
1469 u64 file_size;
1470
1471 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1472 mount_crypt_stat =
1473 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1474 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1475 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1476 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1477 file_size += crypt_stat->metadata_size;
1478 } else
1479 file_size = get_unaligned_be64(page_virt);
1480 i_size_write(inode, (loff_t)file_size);
1481 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1482}
1483
237fead6
MH
1484/**
1485 * ecryptfs_read_headers_virt
22e78faf
MH
1486 * @page_virt: The virtual address into which to read the headers
1487 * @crypt_stat: The cryptographic context
1488 * @ecryptfs_dentry: The eCryptfs dentry
1489 * @validate_header_size: Whether to validate the header size while reading
237fead6
MH
1490 *
1491 * Read/parse the header data. The header format is detailed in the
1492 * comment block for the ecryptfs_write_headers_virt() function.
1493 *
1494 * Returns zero on success
1495 */
1496static int ecryptfs_read_headers_virt(char *page_virt,
1497 struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1498 struct dentry *ecryptfs_dentry,
1499 int validate_header_size)
237fead6
MH
1500{
1501 int rc = 0;
1502 int offset;
1503 int bytes_read;
1504
1505 ecryptfs_set_default_sizes(crypt_stat);
1506 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1507 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1508 offset = ECRYPTFS_FILE_SIZE_BYTES;
7a86617e
TH
1509 rc = ecryptfs_validate_marker(page_virt + offset);
1510 if (rc)
237fead6 1511 goto out;
3aeb86ea
TH
1512 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1513 ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
237fead6
MH
1514 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1515 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1516 &bytes_read);
1517 if (rc) {
1518 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1519 goto out;
1520 }
1521 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1522 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1523 "file version [%d] is supported by this "
1524 "version of eCryptfs\n",
1525 crypt_stat->file_version,
1526 ECRYPTFS_SUPPORTED_FILE_VERSION);
1527 rc = -EINVAL;
1528 goto out;
1529 }
1530 offset += bytes_read;
1531 if (crypt_stat->file_version >= 1) {
1532 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
dd2a3b7a 1533 &bytes_read, validate_header_size);
237fead6
MH
1534 if (rc) {
1535 ecryptfs_printk(KERN_WARNING, "Error reading header "
1536 "metadata; rc = [%d]\n", rc);
1537 }
1538 offset += bytes_read;
1539 } else
1540 set_default_header_data(crypt_stat);
1541 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1542 ecryptfs_dentry);
1543out:
1544 return rc;
1545}
1546
1547/**
dd2a3b7a 1548 * ecryptfs_read_xattr_region
22e78faf 1549 * @page_virt: The vitual address into which to read the xattr data
2ed92554 1550 * @ecryptfs_inode: The eCryptfs inode
dd2a3b7a
MH
1551 *
1552 * Attempts to read the crypto metadata from the extended attribute
1553 * region of the lower file.
22e78faf
MH
1554 *
1555 * Returns zero on success; non-zero on error
dd2a3b7a 1556 */
d7cdc5fe 1557int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
dd2a3b7a 1558{
d7cdc5fe
MH
1559 struct dentry *lower_dentry =
1560 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
dd2a3b7a
MH
1561 ssize_t size;
1562 int rc = 0;
1563
d7cdc5fe
MH
1564 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1565 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
dd2a3b7a 1566 if (size < 0) {
25bd8174
MH
1567 if (unlikely(ecryptfs_verbosity > 0))
1568 printk(KERN_INFO "Error attempting to read the [%s] "
1569 "xattr from the lower file; return value = "
1570 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
dd2a3b7a
MH
1571 rc = -EINVAL;
1572 goto out;
1573 }
1574out:
1575 return rc;
1576}
1577
778aeb42 1578int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
3b06b3eb 1579 struct inode *inode)
dd2a3b7a 1580{
778aeb42
TH
1581 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1582 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
dd2a3b7a
MH
1583 int rc;
1584
778aeb42
TH
1585 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1586 ECRYPTFS_XATTR_NAME, file_size,
1587 ECRYPTFS_SIZE_AND_MARKER_BYTES);
1588 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1589 return rc >= 0 ? -EINVAL : rc;
1590 rc = ecryptfs_validate_marker(marker);
1591 if (!rc)
1592 ecryptfs_i_size_init(file_size, inode);
dd2a3b7a
MH
1593 return rc;
1594}
1595
1596/**
1597 * ecryptfs_read_metadata
1598 *
1599 * Common entry point for reading file metadata. From here, we could
1600 * retrieve the header information from the header region of the file,
1601 * the xattr region of the file, or some other repostory that is
1602 * stored separately from the file itself. The current implementation
1603 * supports retrieving the metadata information from the file contents
1604 * and from the xattr region.
237fead6
MH
1605 *
1606 * Returns zero if valid headers found and parsed; non-zero otherwise
1607 */
d7cdc5fe 1608int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
237fead6 1609{
bb450361
TG
1610 int rc;
1611 char *page_virt;
d7cdc5fe 1612 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
237fead6 1613 struct ecryptfs_crypt_stat *crypt_stat =
d7cdc5fe 1614 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
e77a56dd
MH
1615 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1616 &ecryptfs_superblock_to_private(
1617 ecryptfs_dentry->d_sb)->mount_crypt_stat;
237fead6 1618
e77a56dd
MH
1619 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1620 mount_crypt_stat);
237fead6 1621 /* Read the first page from the underlying file */
30632870 1622 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
237fead6
MH
1623 if (!page_virt) {
1624 rc = -ENOMEM;
d7cdc5fe 1625 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
18d1dbf1 1626 __func__);
237fead6
MH
1627 goto out;
1628 }
d7cdc5fe
MH
1629 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1630 ecryptfs_inode);
96a7b9c2 1631 if (rc >= 0)
d7cdc5fe
MH
1632 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1633 ecryptfs_dentry,
1634 ECRYPTFS_VALIDATE_HEADER_SIZE);
237fead6 1635 if (rc) {
bb450361 1636 /* metadata is not in the file header, so try xattrs */
1984c23f 1637 memset(page_virt, 0, PAGE_CACHE_SIZE);
d7cdc5fe 1638 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
dd2a3b7a
MH
1639 if (rc) {
1640 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
30373dc0
TG
1641 "file header region or xattr region, inode %lu\n",
1642 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1643 rc = -EINVAL;
1644 goto out;
1645 }
1646 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1647 ecryptfs_dentry,
1648 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1649 if (rc) {
1650 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
30373dc0
TG
1651 "file xattr region either, inode %lu\n",
1652 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1653 rc = -EINVAL;
1654 }
1655 if (crypt_stat->mount_crypt_stat->flags
1656 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1657 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1658 } else {
1659 printk(KERN_WARNING "Attempt to access file with "
1660 "crypto metadata only in the extended attribute "
1661 "region, but eCryptfs was mounted without "
1662 "xattr support enabled. eCryptfs will not treat "
30373dc0
TG
1663 "this like an encrypted file, inode %lu\n",
1664 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1665 rc = -EINVAL;
1666 }
237fead6
MH
1667 }
1668out:
1669 if (page_virt) {
1670 memset(page_virt, 0, PAGE_CACHE_SIZE);
30632870 1671 kmem_cache_free(ecryptfs_header_cache, page_virt);
237fead6
MH
1672 }
1673 return rc;
1674}
1675
51ca58dc
MH
1676/**
1677 * ecryptfs_encrypt_filename - encrypt filename
1678 *
1679 * CBC-encrypts the filename. We do not want to encrypt the same
1680 * filename with the same key and IV, which may happen with hard
1681 * links, so we prepend random bits to each filename.
1682 *
1683 * Returns zero on success; non-zero otherwise
1684 */
1685static int
1686ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1687 struct ecryptfs_crypt_stat *crypt_stat,
1688 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1689{
1690 int rc = 0;
1691
1692 filename->encrypted_filename = NULL;
1693 filename->encrypted_filename_size = 0;
1694 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1695 || (mount_crypt_stat && (mount_crypt_stat->flags
1696 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1697 size_t packet_size;
1698 size_t remaining_bytes;
1699
1700 rc = ecryptfs_write_tag_70_packet(
1701 NULL, NULL,
1702 &filename->encrypted_filename_size,
1703 mount_crypt_stat, NULL,
1704 filename->filename_size);
1705 if (rc) {
1706 printk(KERN_ERR "%s: Error attempting to get packet "
1707 "size for tag 72; rc = [%d]\n", __func__,
1708 rc);
1709 filename->encrypted_filename_size = 0;
1710 goto out;
1711 }
1712 filename->encrypted_filename =
1713 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1714 if (!filename->encrypted_filename) {
1715 printk(KERN_ERR "%s: Out of memory whilst attempting "
df261c52 1716 "to kmalloc [%zd] bytes\n", __func__,
51ca58dc
MH
1717 filename->encrypted_filename_size);
1718 rc = -ENOMEM;
1719 goto out;
1720 }
1721 remaining_bytes = filename->encrypted_filename_size;
1722 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1723 &remaining_bytes,
1724 &packet_size,
1725 mount_crypt_stat,
1726 filename->filename,
1727 filename->filename_size);
1728 if (rc) {
1729 printk(KERN_ERR "%s: Error attempting to generate "
1730 "tag 70 packet; rc = [%d]\n", __func__,
1731 rc);
1732 kfree(filename->encrypted_filename);
1733 filename->encrypted_filename = NULL;
1734 filename->encrypted_filename_size = 0;
1735 goto out;
1736 }
1737 filename->encrypted_filename_size = packet_size;
1738 } else {
1739 printk(KERN_ERR "%s: No support for requested filename "
1740 "encryption method in this release\n", __func__);
df6ad33b 1741 rc = -EOPNOTSUPP;
51ca58dc
MH
1742 goto out;
1743 }
1744out:
1745 return rc;
1746}
1747
1748static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1749 const char *name, size_t name_size)
1750{
1751 int rc = 0;
1752
fd9fc842 1753 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
51ca58dc
MH
1754 if (!(*copied_name)) {
1755 rc = -ENOMEM;
1756 goto out;
1757 }
1758 memcpy((void *)(*copied_name), (void *)name, name_size);
1759 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1760 * in printing out the
1761 * string in debug
1762 * messages */
fd9fc842 1763 (*copied_name_size) = name_size;
51ca58dc
MH
1764out:
1765 return rc;
1766}
1767
237fead6 1768/**
f4aad16a 1769 * ecryptfs_process_key_cipher - Perform key cipher initialization.
237fead6 1770 * @key_tfm: Crypto context for key material, set by this function
e5d9cbde
MH
1771 * @cipher_name: Name of the cipher
1772 * @key_size: Size of the key in bytes
237fead6
MH
1773 *
1774 * Returns zero on success. Any crypto_tfm structs allocated here
1775 * should be released by other functions, such as on a superblock put
1776 * event, regardless of whether this function succeeds for fails.
1777 */
cd9d67df 1778static int
f4aad16a
MH
1779ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1780 char *cipher_name, size_t *key_size)
237fead6
MH
1781{
1782 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
ece550f5 1783 char *full_alg_name = NULL;
237fead6
MH
1784 int rc;
1785
e5d9cbde
MH
1786 *key_tfm = NULL;
1787 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
237fead6 1788 rc = -EINVAL;
df261c52 1789 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
e5d9cbde 1790 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
237fead6
MH
1791 goto out;
1792 }
8bba066f
MH
1793 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1794 "ecb");
1795 if (rc)
1796 goto out;
1797 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
8bba066f
MH
1798 if (IS_ERR(*key_tfm)) {
1799 rc = PTR_ERR(*key_tfm);
237fead6 1800 printk(KERN_ERR "Unable to allocate crypto cipher with name "
38268498 1801 "[%s]; rc = [%d]\n", full_alg_name, rc);
237fead6
MH
1802 goto out;
1803 }
8bba066f
MH
1804 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1805 if (*key_size == 0) {
1806 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1807
1808 *key_size = alg->max_keysize;
1809 }
e5d9cbde 1810 get_random_bytes(dummy_key, *key_size);
8bba066f 1811 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
237fead6 1812 if (rc) {
df261c52 1813 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
38268498
DH
1814 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1815 rc);
237fead6
MH
1816 rc = -EINVAL;
1817 goto out;
1818 }
1819out:
ece550f5 1820 kfree(full_alg_name);
237fead6
MH
1821 return rc;
1822}
f4aad16a
MH
1823
1824struct kmem_cache *ecryptfs_key_tfm_cache;
7896b631 1825static struct list_head key_tfm_list;
af440f52 1826struct mutex key_tfm_list_mutex;
f4aad16a 1827
7371a382 1828int __init ecryptfs_init_crypto(void)
f4aad16a
MH
1829{
1830 mutex_init(&key_tfm_list_mutex);
1831 INIT_LIST_HEAD(&key_tfm_list);
1832 return 0;
1833}
1834
af440f52
ES
1835/**
1836 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1837 *
1838 * Called only at module unload time
1839 */
fcd12835 1840int ecryptfs_destroy_crypto(void)
f4aad16a
MH
1841{
1842 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1843
1844 mutex_lock(&key_tfm_list_mutex);
1845 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1846 key_tfm_list) {
1847 list_del(&key_tfm->key_tfm_list);
1848 if (key_tfm->key_tfm)
1849 crypto_free_blkcipher(key_tfm->key_tfm);
1850 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1851 }
1852 mutex_unlock(&key_tfm_list_mutex);
1853 return 0;
1854}
1855
1856int
1857ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1858 size_t key_size)
1859{
1860 struct ecryptfs_key_tfm *tmp_tfm;
1861 int rc = 0;
1862
af440f52
ES
1863 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1864
f4aad16a
MH
1865 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1866 if (key_tfm != NULL)
1867 (*key_tfm) = tmp_tfm;
1868 if (!tmp_tfm) {
1869 rc = -ENOMEM;
1870 printk(KERN_ERR "Error attempting to allocate from "
1871 "ecryptfs_key_tfm_cache\n");
1872 goto out;
1873 }
1874 mutex_init(&tmp_tfm->key_tfm_mutex);
1875 strncpy(tmp_tfm->cipher_name, cipher_name,
1876 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
b8862906 1877 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
f4aad16a 1878 tmp_tfm->key_size = key_size;
5dda6992
MH
1879 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1880 tmp_tfm->cipher_name,
1881 &tmp_tfm->key_size);
1882 if (rc) {
f4aad16a
MH
1883 printk(KERN_ERR "Error attempting to initialize key TFM "
1884 "cipher with name = [%s]; rc = [%d]\n",
1885 tmp_tfm->cipher_name, rc);
1886 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1887 if (key_tfm != NULL)
1888 (*key_tfm) = NULL;
1889 goto out;
1890 }
f4aad16a 1891 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
f4aad16a
MH
1892out:
1893 return rc;
1894}
1895
af440f52
ES
1896/**
1897 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1898 * @cipher_name: the name of the cipher to search for
1899 * @key_tfm: set to corresponding tfm if found
1900 *
1901 * Searches for cached key_tfm matching @cipher_name
1902 * Must be called with &key_tfm_list_mutex held
1903 * Returns 1 if found, with @key_tfm set
1904 * Returns 0 if not found, with @key_tfm set to NULL
1905 */
1906int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1907{
1908 struct ecryptfs_key_tfm *tmp_key_tfm;
1909
1910 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1911
1912 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1913 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1914 if (key_tfm)
1915 (*key_tfm) = tmp_key_tfm;
1916 return 1;
1917 }
1918 }
1919 if (key_tfm)
1920 (*key_tfm) = NULL;
1921 return 0;
1922}
1923
1924/**
1925 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1926 *
1927 * @tfm: set to cached tfm found, or new tfm created
1928 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1929 * @cipher_name: the name of the cipher to search for and/or add
1930 *
1931 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1932 * Searches for cached item first, and creates new if not found.
1933 * Returns 0 on success, non-zero if adding new cipher failed
1934 */
f4aad16a
MH
1935int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1936 struct mutex **tfm_mutex,
1937 char *cipher_name)
1938{
1939 struct ecryptfs_key_tfm *key_tfm;
1940 int rc = 0;
1941
1942 (*tfm) = NULL;
1943 (*tfm_mutex) = NULL;
af440f52 1944
f4aad16a 1945 mutex_lock(&key_tfm_list_mutex);
af440f52
ES
1946 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1947 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1948 if (rc) {
1949 printk(KERN_ERR "Error adding new key_tfm to list; "
1950 "rc = [%d]\n", rc);
f4aad16a
MH
1951 goto out;
1952 }
1953 }
f4aad16a
MH
1954 (*tfm) = key_tfm->key_tfm;
1955 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1956out:
71fd5179 1957 mutex_unlock(&key_tfm_list_mutex);
f4aad16a
MH
1958 return rc;
1959}
51ca58dc
MH
1960
1961/* 64 characters forming a 6-bit target field */
1962static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1963 "EFGHIJKLMNOPQRST"
1964 "UVWXYZabcdefghij"
1965 "klmnopqrstuvwxyz");
1966
1967/* We could either offset on every reverse map or just pad some 0x00's
1968 * at the front here */
0f751e64 1969static const unsigned char filename_rev_map[256] = {
51ca58dc
MH
1970 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1971 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1972 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1973 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1974 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1975 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1976 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1977 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1978 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1979 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1980 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1981 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1982 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1983 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1984 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
0f751e64 1985 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
51ca58dc
MH
1986};
1987
1988/**
1989 * ecryptfs_encode_for_filename
1990 * @dst: Destination location for encoded filename
1991 * @dst_size: Size of the encoded filename in bytes
1992 * @src: Source location for the filename to encode
1993 * @src_size: Size of the source in bytes
1994 */
37028758 1995static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
51ca58dc
MH
1996 unsigned char *src, size_t src_size)
1997{
1998 size_t num_blocks;
1999 size_t block_num = 0;
2000 size_t dst_offset = 0;
2001 unsigned char last_block[3];
2002
2003 if (src_size == 0) {
2004 (*dst_size) = 0;
2005 goto out;
2006 }
2007 num_blocks = (src_size / 3);
2008 if ((src_size % 3) == 0) {
2009 memcpy(last_block, (&src[src_size - 3]), 3);
2010 } else {
2011 num_blocks++;
2012 last_block[2] = 0x00;
2013 switch (src_size % 3) {
2014 case 1:
2015 last_block[0] = src[src_size - 1];
2016 last_block[1] = 0x00;
2017 break;
2018 case 2:
2019 last_block[0] = src[src_size - 2];
2020 last_block[1] = src[src_size - 1];
2021 }
2022 }
2023 (*dst_size) = (num_blocks * 4);
2024 if (!dst)
2025 goto out;
2026 while (block_num < num_blocks) {
2027 unsigned char *src_block;
2028 unsigned char dst_block[4];
2029
2030 if (block_num == (num_blocks - 1))
2031 src_block = last_block;
2032 else
2033 src_block = &src[block_num * 3];
2034 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
2035 dst_block[1] = (((src_block[0] << 4) & 0x30)
2036 | ((src_block[1] >> 4) & 0x0F));
2037 dst_block[2] = (((src_block[1] << 2) & 0x3C)
2038 | ((src_block[2] >> 6) & 0x03));
2039 dst_block[3] = (src_block[2] & 0x3F);
2040 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2041 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2042 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2043 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2044 block_num++;
2045 }
2046out:
2047 return;
2048}
2049
4a26620d
TH
2050static size_t ecryptfs_max_decoded_size(size_t encoded_size)
2051{
2052 /* Not exact; conservatively long. Every block of 4
2053 * encoded characters decodes into a block of 3
2054 * decoded characters. This segment of code provides
2055 * the caller with the maximum amount of allocated
2056 * space that @dst will need to point to in a
2057 * subsequent call. */
2058 return ((encoded_size + 1) * 3) / 4;
2059}
2060
71c11c37
MH
2061/**
2062 * ecryptfs_decode_from_filename
2063 * @dst: If NULL, this function only sets @dst_size and returns. If
2064 * non-NULL, this function decodes the encoded octets in @src
2065 * into the memory that @dst points to.
2066 * @dst_size: Set to the size of the decoded string.
2067 * @src: The encoded set of octets to decode.
2068 * @src_size: The size of the encoded set of octets to decode.
2069 */
2070static void
2071ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2072 const unsigned char *src, size_t src_size)
51ca58dc
MH
2073{
2074 u8 current_bit_offset = 0;
2075 size_t src_byte_offset = 0;
2076 size_t dst_byte_offset = 0;
51ca58dc
MH
2077
2078 if (dst == NULL) {
4a26620d 2079 (*dst_size) = ecryptfs_max_decoded_size(src_size);
51ca58dc
MH
2080 goto out;
2081 }
2082 while (src_byte_offset < src_size) {
2083 unsigned char src_byte =
2084 filename_rev_map[(int)src[src_byte_offset]];
2085
2086 switch (current_bit_offset) {
2087 case 0:
2088 dst[dst_byte_offset] = (src_byte << 2);
2089 current_bit_offset = 6;
2090 break;
2091 case 6:
2092 dst[dst_byte_offset++] |= (src_byte >> 4);
2093 dst[dst_byte_offset] = ((src_byte & 0xF)
2094 << 4);
2095 current_bit_offset = 4;
2096 break;
2097 case 4:
2098 dst[dst_byte_offset++] |= (src_byte >> 2);
2099 dst[dst_byte_offset] = (src_byte << 6);
2100 current_bit_offset = 2;
2101 break;
2102 case 2:
2103 dst[dst_byte_offset++] |= (src_byte);
2104 dst[dst_byte_offset] = 0;
2105 current_bit_offset = 0;
2106 break;
2107 }
2108 src_byte_offset++;
2109 }
2110 (*dst_size) = dst_byte_offset;
2111out:
71c11c37 2112 return;
51ca58dc
MH
2113}
2114
2115/**
2116 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2117 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2118 * @name: The plaintext name
2119 * @length: The length of the plaintext
2120 * @encoded_name: The encypted name
2121 *
2122 * Encrypts and encodes a filename into something that constitutes a
2123 * valid filename for a filesystem, with printable characters.
2124 *
2125 * We assume that we have a properly initialized crypto context,
2126 * pointed to by crypt_stat->tfm.
2127 *
2128 * Returns zero on success; non-zero on otherwise
2129 */
2130int ecryptfs_encrypt_and_encode_filename(
2131 char **encoded_name,
2132 size_t *encoded_name_size,
2133 struct ecryptfs_crypt_stat *crypt_stat,
2134 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2135 const char *name, size_t name_size)
2136{
2137 size_t encoded_name_no_prefix_size;
2138 int rc = 0;
2139
2140 (*encoded_name) = NULL;
2141 (*encoded_name_size) = 0;
2142 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2143 || (mount_crypt_stat && (mount_crypt_stat->flags
2144 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2145 struct ecryptfs_filename *filename;
2146
2147 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2148 if (!filename) {
2149 printk(KERN_ERR "%s: Out of memory whilst attempting "
a8f12864 2150 "to kzalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2151 sizeof(*filename));
2152 rc = -ENOMEM;
2153 goto out;
2154 }
2155 filename->filename = (char *)name;
2156 filename->filename_size = name_size;
2157 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2158 mount_crypt_stat);
2159 if (rc) {
2160 printk(KERN_ERR "%s: Error attempting to encrypt "
2161 "filename; rc = [%d]\n", __func__, rc);
2162 kfree(filename);
2163 goto out;
2164 }
2165 ecryptfs_encode_for_filename(
2166 NULL, &encoded_name_no_prefix_size,
2167 filename->encrypted_filename,
2168 filename->encrypted_filename_size);
2169 if ((crypt_stat && (crypt_stat->flags
2170 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2171 || (mount_crypt_stat
2172 && (mount_crypt_stat->flags
2173 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2174 (*encoded_name_size) =
2175 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2176 + encoded_name_no_prefix_size);
2177 else
2178 (*encoded_name_size) =
2179 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2180 + encoded_name_no_prefix_size);
2181 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2182 if (!(*encoded_name)) {
2183 printk(KERN_ERR "%s: Out of memory whilst attempting "
a8f12864 2184 "to kzalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2185 (*encoded_name_size));
2186 rc = -ENOMEM;
2187 kfree(filename->encrypted_filename);
2188 kfree(filename);
2189 goto out;
2190 }
2191 if ((crypt_stat && (crypt_stat->flags
2192 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2193 || (mount_crypt_stat
2194 && (mount_crypt_stat->flags
2195 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2196 memcpy((*encoded_name),
2197 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2198 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2199 ecryptfs_encode_for_filename(
2200 ((*encoded_name)
2201 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2202 &encoded_name_no_prefix_size,
2203 filename->encrypted_filename,
2204 filename->encrypted_filename_size);
2205 (*encoded_name_size) =
2206 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2207 + encoded_name_no_prefix_size);
2208 (*encoded_name)[(*encoded_name_size)] = '\0';
51ca58dc 2209 } else {
df6ad33b 2210 rc = -EOPNOTSUPP;
51ca58dc
MH
2211 }
2212 if (rc) {
2213 printk(KERN_ERR "%s: Error attempting to encode "
2214 "encrypted filename; rc = [%d]\n", __func__,
2215 rc);
2216 kfree((*encoded_name));
2217 (*encoded_name) = NULL;
2218 (*encoded_name_size) = 0;
2219 }
2220 kfree(filename->encrypted_filename);
2221 kfree(filename);
2222 } else {
2223 rc = ecryptfs_copy_filename(encoded_name,
2224 encoded_name_size,
2225 name, name_size);
2226 }
2227out:
2228 return rc;
2229}
2230
2231/**
2232 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2233 * @plaintext_name: The plaintext name
2234 * @plaintext_name_size: The plaintext name size
2235 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2236 * @name: The filename in cipher text
2237 * @name_size: The cipher text name size
2238 *
2239 * Decrypts and decodes the filename.
2240 *
2241 * Returns zero on error; non-zero otherwise
2242 */
2243int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2244 size_t *plaintext_name_size,
2245 struct dentry *ecryptfs_dir_dentry,
2246 const char *name, size_t name_size)
2247{
2aac0cf8
TH
2248 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2249 &ecryptfs_superblock_to_private(
2250 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
51ca58dc
MH
2251 char *decoded_name;
2252 size_t decoded_name_size;
2253 size_t packet_size;
2254 int rc = 0;
2255
2aac0cf8
TH
2256 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2257 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2258 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
51ca58dc
MH
2259 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2260 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
51ca58dc
MH
2261 const char *orig_name = name;
2262 size_t orig_name_size = name_size;
2263
2264 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2265 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
71c11c37
MH
2266 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2267 name, name_size);
51ca58dc
MH
2268 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2269 if (!decoded_name) {
2270 printk(KERN_ERR "%s: Out of memory whilst attempting "
df261c52 2271 "to kmalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2272 decoded_name_size);
2273 rc = -ENOMEM;
2274 goto out;
2275 }
71c11c37
MH
2276 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2277 name, name_size);
51ca58dc
MH
2278 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2279 plaintext_name_size,
2280 &packet_size,
2281 mount_crypt_stat,
2282 decoded_name,
2283 decoded_name_size);
2284 if (rc) {
2285 printk(KERN_INFO "%s: Could not parse tag 70 packet "
2286 "from filename; copying through filename "
2287 "as-is\n", __func__);
2288 rc = ecryptfs_copy_filename(plaintext_name,
2289 plaintext_name_size,
2290 orig_name, orig_name_size);
2291 goto out_free;
2292 }
2293 } else {
2294 rc = ecryptfs_copy_filename(plaintext_name,
2295 plaintext_name_size,
2296 name, name_size);
2297 goto out;
2298 }
2299out_free:
2300 kfree(decoded_name);
2301out:
2302 return rc;
2303}
4a26620d
TH
2304
2305#define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2306
2307int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2308 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2309{
2310 struct blkcipher_desc desc;
2311 struct mutex *tfm_mutex;
2312 size_t cipher_blocksize;
2313 int rc;
2314
2315 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2316 (*namelen) = lower_namelen;
2317 return 0;
2318 }
2319
2320 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2321 mount_crypt_stat->global_default_fn_cipher_name);
2322 if (unlikely(rc)) {
2323 (*namelen) = 0;
2324 return rc;
2325 }
2326
2327 mutex_lock(tfm_mutex);
2328 cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2329 mutex_unlock(tfm_mutex);
2330
2331 /* Return an exact amount for the common cases */
2332 if (lower_namelen == NAME_MAX
2333 && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2334 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2335 return 0;
2336 }
2337
2338 /* Return a safe estimate for the uncommon cases */
2339 (*namelen) = lower_namelen;
2340 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2341 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2342 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2343 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2344 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2345 /* Worst case is that the filename is padded nearly a full block size */
2346 (*namelen) -= cipher_blocksize - 1;
2347
2348 if ((*namelen) < 0)
2349 (*namelen) = 0;
2350
2351 return 0;
2352}
This page took 0.649678 seconds and 5 git commands to generate.