eCryptfs: Use entire helper page during page crypto operations
[deliverable/linux.git] / fs / ecryptfs / crypto.c
CommitLineData
237fead6
MH
1/**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
dd2a3b7a 6 * Copyright (C) 2004-2007 International Business Machines Corp.
237fead6
MH
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/mount.h>
28#include <linux/pagemap.h>
29#include <linux/random.h>
30#include <linux/compiler.h>
31#include <linux/key.h>
32#include <linux/namei.h>
33#include <linux/crypto.h>
34#include <linux/file.h>
35#include <linux/scatterlist.h>
5a0e3ad6 36#include <linux/slab.h>
29335c6a 37#include <asm/unaligned.h>
237fead6
MH
38#include "ecryptfs_kernel.h"
39
40static int
41ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
42 struct page *dst_page, int dst_offset,
43 struct page *src_page, int src_offset, int size,
44 unsigned char *iv);
45static int
46ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
47 struct page *dst_page, int dst_offset,
48 struct page *src_page, int src_offset, int size,
49 unsigned char *iv);
50
51/**
52 * ecryptfs_to_hex
53 * @dst: Buffer to take hex character representation of contents of
54 * src; must be at least of size (src_size * 2)
55 * @src: Buffer to be converted to a hex string respresentation
56 * @src_size: number of bytes to convert
57 */
58void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
59{
60 int x;
61
62 for (x = 0; x < src_size; x++)
63 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
64}
65
66/**
67 * ecryptfs_from_hex
68 * @dst: Buffer to take the bytes from src hex; must be at least of
69 * size (src_size / 2)
70 * @src: Buffer to be converted from a hex string respresentation to raw value
71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
72 */
73void ecryptfs_from_hex(char *dst, char *src, int dst_size)
74{
75 int x;
76 char tmp[3] = { 0, };
77
78 for (x = 0; x < dst_size; x++) {
79 tmp[0] = src[x * 2];
80 tmp[1] = src[x * 2 + 1];
81 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
82 }
83}
84
85/**
86 * ecryptfs_calculate_md5 - calculates the md5 of @src
87 * @dst: Pointer to 16 bytes of allocated memory
88 * @crypt_stat: Pointer to crypt_stat struct for the current inode
89 * @src: Data to be md5'd
90 * @len: Length of @src
91 *
92 * Uses the allocated crypto context that crypt_stat references to
93 * generate the MD5 sum of the contents of src.
94 */
95static int ecryptfs_calculate_md5(char *dst,
96 struct ecryptfs_crypt_stat *crypt_stat,
97 char *src, int len)
98{
237fead6 99 struct scatterlist sg;
565d9724
MH
100 struct hash_desc desc = {
101 .tfm = crypt_stat->hash_tfm,
102 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
103 };
104 int rc = 0;
237fead6 105
565d9724 106 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
237fead6 107 sg_init_one(&sg, (u8 *)src, len);
565d9724
MH
108 if (!desc.tfm) {
109 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
110 CRYPTO_ALG_ASYNC);
111 if (IS_ERR(desc.tfm)) {
112 rc = PTR_ERR(desc.tfm);
237fead6 113 ecryptfs_printk(KERN_ERR, "Error attempting to "
565d9724
MH
114 "allocate crypto context; rc = [%d]\n",
115 rc);
237fead6
MH
116 goto out;
117 }
565d9724 118 crypt_stat->hash_tfm = desc.tfm;
237fead6 119 }
8a29f2b0
MH
120 rc = crypto_hash_init(&desc);
121 if (rc) {
122 printk(KERN_ERR
123 "%s: Error initializing crypto hash; rc = [%d]\n",
18d1dbf1 124 __func__, rc);
8a29f2b0
MH
125 goto out;
126 }
127 rc = crypto_hash_update(&desc, &sg, len);
128 if (rc) {
129 printk(KERN_ERR
130 "%s: Error updating crypto hash; rc = [%d]\n",
18d1dbf1 131 __func__, rc);
8a29f2b0
MH
132 goto out;
133 }
134 rc = crypto_hash_final(&desc, dst);
135 if (rc) {
136 printk(KERN_ERR
137 "%s: Error finalizing crypto hash; rc = [%d]\n",
18d1dbf1 138 __func__, rc);
8a29f2b0
MH
139 goto out;
140 }
237fead6 141out:
8a29f2b0 142 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
237fead6
MH
143 return rc;
144}
145
cd9d67df
MH
146static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
147 char *cipher_name,
148 char *chaining_modifier)
8bba066f
MH
149{
150 int cipher_name_len = strlen(cipher_name);
151 int chaining_modifier_len = strlen(chaining_modifier);
152 int algified_name_len;
153 int rc;
154
155 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
156 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
7bd473fc 157 if (!(*algified_name)) {
8bba066f
MH
158 rc = -ENOMEM;
159 goto out;
160 }
161 snprintf((*algified_name), algified_name_len, "%s(%s)",
162 chaining_modifier, cipher_name);
163 rc = 0;
164out:
165 return rc;
166}
167
237fead6
MH
168/**
169 * ecryptfs_derive_iv
170 * @iv: destination for the derived iv vale
171 * @crypt_stat: Pointer to crypt_stat struct for the current inode
d6a13c17 172 * @offset: Offset of the extent whose IV we are to derive
237fead6
MH
173 *
174 * Generate the initialization vector from the given root IV and page
175 * offset.
176 *
177 * Returns zero on success; non-zero on error.
178 */
a34f60f7
MH
179int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
180 loff_t offset)
237fead6
MH
181{
182 int rc = 0;
183 char dst[MD5_DIGEST_SIZE];
184 char src[ECRYPTFS_MAX_IV_BYTES + 16];
185
186 if (unlikely(ecryptfs_verbosity > 0)) {
187 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
188 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
189 }
190 /* TODO: It is probably secure to just cast the least
191 * significant bits of the root IV into an unsigned long and
192 * add the offset to that rather than go through all this
193 * hashing business. -Halcrow */
194 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
195 memset((src + crypt_stat->iv_bytes), 0, 16);
d6a13c17 196 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
237fead6
MH
197 if (unlikely(ecryptfs_verbosity > 0)) {
198 ecryptfs_printk(KERN_DEBUG, "source:\n");
199 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
200 }
201 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
202 (crypt_stat->iv_bytes + 16));
203 if (rc) {
204 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
205 "MD5 while generating IV for a page\n");
206 goto out;
207 }
208 memcpy(iv, dst, crypt_stat->iv_bytes);
209 if (unlikely(ecryptfs_verbosity > 0)) {
210 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
211 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
212 }
213out:
214 return rc;
215}
216
217/**
218 * ecryptfs_init_crypt_stat
219 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
220 *
221 * Initialize the crypt_stat structure.
222 */
223void
224ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
225{
226 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
f4aad16a
MH
227 INIT_LIST_HEAD(&crypt_stat->keysig_list);
228 mutex_init(&crypt_stat->keysig_list_mutex);
237fead6
MH
229 mutex_init(&crypt_stat->cs_mutex);
230 mutex_init(&crypt_stat->cs_tfm_mutex);
565d9724 231 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
e2bd99ec 232 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
237fead6
MH
233}
234
235/**
fcd12835 236 * ecryptfs_destroy_crypt_stat
237fead6
MH
237 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
238 *
239 * Releases all memory associated with a crypt_stat struct.
240 */
fcd12835 241void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
237fead6 242{
f4aad16a
MH
243 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
244
237fead6 245 if (crypt_stat->tfm)
4dfea4f0 246 crypto_free_ablkcipher(crypt_stat->tfm);
565d9724
MH
247 if (crypt_stat->hash_tfm)
248 crypto_free_hash(crypt_stat->hash_tfm);
f4aad16a
MH
249 list_for_each_entry_safe(key_sig, key_sig_tmp,
250 &crypt_stat->keysig_list, crypt_stat_list) {
251 list_del(&key_sig->crypt_stat_list);
252 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253 }
237fead6
MH
254 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
255}
256
fcd12835 257void ecryptfs_destroy_mount_crypt_stat(
237fead6
MH
258 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
259{
f4aad16a
MH
260 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
261
262 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
263 return;
264 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
265 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
266 &mount_crypt_stat->global_auth_tok_list,
267 mount_crypt_stat_list) {
268 list_del(&auth_tok->mount_crypt_stat_list);
f4aad16a
MH
269 if (auth_tok->global_auth_tok_key
270 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
271 key_put(auth_tok->global_auth_tok_key);
272 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
273 }
274 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
237fead6
MH
275 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
276}
277
278/**
279 * virt_to_scatterlist
280 * @addr: Virtual address
281 * @size: Size of data; should be an even multiple of the block size
282 * @sg: Pointer to scatterlist array; set to NULL to obtain only
283 * the number of scatterlist structs required in array
284 * @sg_size: Max array size
285 *
286 * Fills in a scatterlist array with page references for a passed
287 * virtual address.
288 *
289 * Returns the number of scatterlist structs in array used
290 */
291int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
292 int sg_size)
293{
294 int i = 0;
295 struct page *pg;
296 int offset;
297 int remainder_of_page;
298
68e3f5dd
HX
299 sg_init_table(sg, sg_size);
300
237fead6
MH
301 while (size > 0 && i < sg_size) {
302 pg = virt_to_page(addr);
303 offset = offset_in_page(addr);
a07c48ad 304 sg_set_page(&sg[i], pg, 0, offset);
237fead6
MH
305 remainder_of_page = PAGE_CACHE_SIZE - offset;
306 if (size >= remainder_of_page) {
a07c48ad 307 sg[i].length = remainder_of_page;
237fead6
MH
308 addr += remainder_of_page;
309 size -= remainder_of_page;
310 } else {
a07c48ad 311 sg[i].length = size;
237fead6
MH
312 addr += size;
313 size = 0;
314 }
315 i++;
316 }
317 if (size > 0)
318 return -ENOMEM;
319 return i;
320}
321
4dfea4f0
TH
322struct extent_crypt_result {
323 struct completion completion;
324 int rc;
325};
326
327static void extent_crypt_complete(struct crypto_async_request *req, int rc)
328{
329 struct extent_crypt_result *ecr = req->data;
330
331 if (rc == -EINPROGRESS)
332 return;
333
334 ecr->rc = rc;
335 complete(&ecr->completion);
336}
337
237fead6
MH
338/**
339 * encrypt_scatterlist
340 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
341 * @dest_sg: Destination of encrypted data
342 * @src_sg: Data to be encrypted
343 * @size: Length of data to be encrypted
344 * @iv: iv to use during encryption
345 *
346 * Returns the number of bytes encrypted; negative value on error
347 */
348static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
349 struct scatterlist *dest_sg,
350 struct scatterlist *src_sg, int size,
351 unsigned char *iv)
352{
4dfea4f0
TH
353 struct ablkcipher_request *req = NULL;
354 struct extent_crypt_result ecr;
237fead6
MH
355 int rc = 0;
356
357 BUG_ON(!crypt_stat || !crypt_stat->tfm
e2bd99ec 358 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
237fead6 359 if (unlikely(ecryptfs_verbosity > 0)) {
f24b3887 360 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
237fead6
MH
361 crypt_stat->key_size);
362 ecryptfs_dump_hex(crypt_stat->key,
363 crypt_stat->key_size);
364 }
4dfea4f0
TH
365
366 init_completion(&ecr.completion);
367
237fead6 368 mutex_lock(&crypt_stat->cs_tfm_mutex);
4dfea4f0
TH
369 req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
370 if (!req) {
237fead6 371 mutex_unlock(&crypt_stat->cs_tfm_mutex);
4dfea4f0 372 rc = -ENOMEM;
237fead6
MH
373 goto out;
374 }
4dfea4f0
TH
375
376 ablkcipher_request_set_callback(req,
377 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
378 extent_crypt_complete, &ecr);
379 /* Consider doing this once, when the file is opened */
380 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
381 rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
382 crypt_stat->key_size);
383 if (rc) {
384 ecryptfs_printk(KERN_ERR,
385 "Error setting key; rc = [%d]\n",
386 rc);
387 mutex_unlock(&crypt_stat->cs_tfm_mutex);
388 rc = -EINVAL;
389 goto out;
390 }
391 crypt_stat->flags |= ECRYPTFS_KEY_SET;
392 }
237fead6 393 mutex_unlock(&crypt_stat->cs_tfm_mutex);
4dfea4f0
TH
394 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
395 ablkcipher_request_set_crypt(req, src_sg, dest_sg, size, iv);
396 rc = crypto_ablkcipher_encrypt(req);
397 if (rc == -EINPROGRESS || rc == -EBUSY) {
398 struct extent_crypt_result *ecr = req->base.data;
399
400 wait_for_completion(&ecr->completion);
401 rc = ecr->rc;
402 INIT_COMPLETION(ecr->completion);
403 }
237fead6 404out:
4dfea4f0 405 ablkcipher_request_free(req);
237fead6
MH
406 return rc;
407}
408
0216f7f7
MH
409/**
410 * ecryptfs_lower_offset_for_extent
411 *
412 * Convert an eCryptfs page index into a lower byte offset
413 */
7896b631
AB
414static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
415 struct ecryptfs_crypt_stat *crypt_stat)
0216f7f7 416{
157f1071
TH
417 (*offset) = ecryptfs_lower_header_size(crypt_stat)
418 + (crypt_stat->extent_size * extent_num);
0216f7f7
MH
419}
420
421/**
422 * ecryptfs_encrypt_extent
423 * @enc_extent_page: Allocated page into which to encrypt the data in
424 * @page
425 * @crypt_stat: crypt_stat containing cryptographic context for the
426 * encryption operation
427 * @page: Page containing plaintext data extent to encrypt
428 * @extent_offset: Page extent offset for use in generating IV
429 *
430 * Encrypts one extent of data.
431 *
432 * Return zero on success; non-zero otherwise
433 */
434static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
435 struct ecryptfs_crypt_stat *crypt_stat,
436 struct page *page,
437 unsigned long extent_offset)
438{
d6a13c17 439 loff_t extent_base;
0216f7f7
MH
440 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
441 int rc;
442
d6a13c17 443 extent_base = (((loff_t)page->index)
0216f7f7
MH
444 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
445 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
446 (extent_base + extent_offset));
447 if (rc) {
888d57bb
JP
448 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
449 "extent [0x%.16llx]; rc = [%d]\n",
450 (unsigned long long)(extent_base + extent_offset), rc);
0216f7f7
MH
451 goto out;
452 }
12003e5b
TH
453 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page,
454 extent_offset * crypt_stat->extent_size,
455 page,
456 extent_offset * crypt_stat->extent_size,
457 crypt_stat->extent_size, extent_iv);
0216f7f7
MH
458 if (rc < 0) {
459 printk(KERN_ERR "%s: Error attempting to encrypt page with "
460 "page->index = [%ld], extent_offset = [%ld]; "
18d1dbf1 461 "rc = [%d]\n", __func__, page->index, extent_offset,
0216f7f7
MH
462 rc);
463 goto out;
464 }
465 rc = 0;
0216f7f7
MH
466out:
467 return rc;
468}
469
237fead6
MH
470/**
471 * ecryptfs_encrypt_page
0216f7f7
MH
472 * @page: Page mapped from the eCryptfs inode for the file; contains
473 * decrypted content that needs to be encrypted (to a temporary
474 * page; not in place) and written out to the lower file
237fead6
MH
475 *
476 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
477 * that eCryptfs pages may straddle the lower pages -- for instance,
478 * if the file was created on a machine with an 8K page size
479 * (resulting in an 8K header), and then the file is copied onto a
480 * host with a 32K page size, then when reading page 0 of the eCryptfs
481 * file, 24K of page 0 of the lower file will be read and decrypted,
482 * and then 8K of page 1 of the lower file will be read and decrypted.
483 *
237fead6
MH
484 * Returns zero on success; negative on error
485 */
0216f7f7 486int ecryptfs_encrypt_page(struct page *page)
237fead6 487{
0216f7f7 488 struct inode *ecryptfs_inode;
237fead6 489 struct ecryptfs_crypt_stat *crypt_stat;
7fcba054
ES
490 char *enc_extent_virt;
491 struct page *enc_extent_page = NULL;
0216f7f7 492 loff_t extent_offset;
237fead6 493 int rc = 0;
0216f7f7
MH
494
495 ecryptfs_inode = page->mapping->host;
496 crypt_stat =
497 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
13a791b4 498 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
7fcba054
ES
499 enc_extent_page = alloc_page(GFP_USER);
500 if (!enc_extent_page) {
0216f7f7
MH
501 rc = -ENOMEM;
502 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
503 "encrypted extent\n");
504 goto out;
505 }
7fcba054 506 enc_extent_virt = kmap(enc_extent_page);
0216f7f7
MH
507 for (extent_offset = 0;
508 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
509 extent_offset++) {
510 loff_t offset;
511
512 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
513 extent_offset);
237fead6 514 if (rc) {
0216f7f7 515 printk(KERN_ERR "%s: Error encrypting extent; "
18d1dbf1 516 "rc = [%d]\n", __func__, rc);
237fead6
MH
517 goto out;
518 }
0216f7f7 519 ecryptfs_lower_offset_for_extent(
d6a13c17
MH
520 &offset, ((((loff_t)page->index)
521 * (PAGE_CACHE_SIZE
522 / crypt_stat->extent_size))
0216f7f7 523 + extent_offset), crypt_stat);
12003e5b
TH
524 rc = ecryptfs_write_lower(ecryptfs_inode, (enc_extent_virt +
525 extent_offset * crypt_stat->extent_size),
526 offset, crypt_stat->extent_size);
96a7b9c2 527 if (rc < 0) {
0216f7f7
MH
528 ecryptfs_printk(KERN_ERR, "Error attempting "
529 "to write lower page; rc = [%d]"
530 "\n", rc);
531 goto out;
237fead6 532 }
237fead6 533 }
96a7b9c2 534 rc = 0;
0216f7f7 535out:
7fcba054
ES
536 if (enc_extent_page) {
537 kunmap(enc_extent_page);
538 __free_page(enc_extent_page);
539 }
0216f7f7
MH
540 return rc;
541}
542
543static int ecryptfs_decrypt_extent(struct page *page,
544 struct ecryptfs_crypt_stat *crypt_stat,
545 struct page *enc_extent_page,
546 unsigned long extent_offset)
547{
d6a13c17 548 loff_t extent_base;
0216f7f7
MH
549 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
550 int rc;
551
d6a13c17 552 extent_base = (((loff_t)page->index)
0216f7f7
MH
553 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
554 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
555 (extent_base + extent_offset));
237fead6 556 if (rc) {
888d57bb
JP
557 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
558 "extent [0x%.16llx]; rc = [%d]\n",
559 (unsigned long long)(extent_base + extent_offset), rc);
0216f7f7
MH
560 goto out;
561 }
0216f7f7 562 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
12003e5b
TH
563 extent_offset * crypt_stat->extent_size,
564 enc_extent_page,
565 extent_offset * crypt_stat->extent_size,
566 crypt_stat->extent_size, extent_iv);
0216f7f7
MH
567 if (rc < 0) {
568 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
569 "page->index = [%ld], extent_offset = [%ld]; "
18d1dbf1 570 "rc = [%d]\n", __func__, page->index, extent_offset,
0216f7f7
MH
571 rc);
572 goto out;
573 }
574 rc = 0;
237fead6
MH
575out:
576 return rc;
577}
578
579/**
580 * ecryptfs_decrypt_page
0216f7f7
MH
581 * @page: Page mapped from the eCryptfs inode for the file; data read
582 * and decrypted from the lower file will be written into this
583 * page
237fead6
MH
584 *
585 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
586 * that eCryptfs pages may straddle the lower pages -- for instance,
587 * if the file was created on a machine with an 8K page size
588 * (resulting in an 8K header), and then the file is copied onto a
589 * host with a 32K page size, then when reading page 0 of the eCryptfs
590 * file, 24K of page 0 of the lower file will be read and decrypted,
591 * and then 8K of page 1 of the lower file will be read and decrypted.
592 *
593 * Returns zero on success; negative on error
594 */
0216f7f7 595int ecryptfs_decrypt_page(struct page *page)
237fead6 596{
0216f7f7 597 struct inode *ecryptfs_inode;
237fead6 598 struct ecryptfs_crypt_stat *crypt_stat;
7fcba054
ES
599 char *enc_extent_virt;
600 struct page *enc_extent_page = NULL;
0216f7f7 601 unsigned long extent_offset;
237fead6 602 int rc = 0;
237fead6 603
0216f7f7
MH
604 ecryptfs_inode = page->mapping->host;
605 crypt_stat =
606 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
13a791b4 607 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
7fcba054
ES
608 enc_extent_page = alloc_page(GFP_USER);
609 if (!enc_extent_page) {
237fead6 610 rc = -ENOMEM;
0216f7f7
MH
611 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
612 "encrypted extent\n");
16a72c45 613 goto out;
237fead6 614 }
7fcba054 615 enc_extent_virt = kmap(enc_extent_page);
0216f7f7
MH
616 for (extent_offset = 0;
617 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
618 extent_offset++) {
619 loff_t offset;
620
621 ecryptfs_lower_offset_for_extent(
622 &offset, ((page->index * (PAGE_CACHE_SIZE
623 / crypt_stat->extent_size))
624 + extent_offset), crypt_stat);
12003e5b
TH
625 rc = ecryptfs_read_lower((enc_extent_virt +
626 extent_offset * crypt_stat->extent_size),
627 offset, crypt_stat->extent_size,
628 ecryptfs_inode);
96a7b9c2 629 if (rc < 0) {
0216f7f7
MH
630 ecryptfs_printk(KERN_ERR, "Error attempting "
631 "to read lower page; rc = [%d]"
632 "\n", rc);
16a72c45 633 goto out;
237fead6 634 }
0216f7f7
MH
635 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
636 extent_offset);
637 if (rc) {
638 printk(KERN_ERR "%s: Error encrypting extent; "
18d1dbf1 639 "rc = [%d]\n", __func__, rc);
16a72c45 640 goto out;
237fead6 641 }
237fead6
MH
642 }
643out:
7fcba054
ES
644 if (enc_extent_page) {
645 kunmap(enc_extent_page);
646 __free_page(enc_extent_page);
647 }
237fead6
MH
648 return rc;
649}
650
651/**
652 * decrypt_scatterlist
22e78faf
MH
653 * @crypt_stat: Cryptographic context
654 * @dest_sg: The destination scatterlist to decrypt into
655 * @src_sg: The source scatterlist to decrypt from
656 * @size: The number of bytes to decrypt
657 * @iv: The initialization vector to use for the decryption
237fead6
MH
658 *
659 * Returns the number of bytes decrypted; negative value on error
660 */
661static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
662 struct scatterlist *dest_sg,
663 struct scatterlist *src_sg, int size,
664 unsigned char *iv)
665{
4dfea4f0
TH
666 struct ablkcipher_request *req = NULL;
667 struct extent_crypt_result ecr;
237fead6
MH
668 int rc = 0;
669
4dfea4f0
TH
670 BUG_ON(!crypt_stat || !crypt_stat->tfm
671 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
672 if (unlikely(ecryptfs_verbosity > 0)) {
673 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
674 crypt_stat->key_size);
675 ecryptfs_dump_hex(crypt_stat->key,
676 crypt_stat->key_size);
677 }
678
679 init_completion(&ecr.completion);
680
237fead6 681 mutex_lock(&crypt_stat->cs_tfm_mutex);
4dfea4f0
TH
682 req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
683 if (!req) {
237fead6 684 mutex_unlock(&crypt_stat->cs_tfm_mutex);
4dfea4f0 685 rc = -ENOMEM;
237fead6
MH
686 goto out;
687 }
4dfea4f0
TH
688
689 ablkcipher_request_set_callback(req,
690 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
691 extent_crypt_complete, &ecr);
692 /* Consider doing this once, when the file is opened */
693 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
694 rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
695 crypt_stat->key_size);
696 if (rc) {
697 ecryptfs_printk(KERN_ERR,
698 "Error setting key; rc = [%d]\n",
699 rc);
700 mutex_unlock(&crypt_stat->cs_tfm_mutex);
701 rc = -EINVAL;
702 goto out;
703 }
704 crypt_stat->flags |= ECRYPTFS_KEY_SET;
705 }
237fead6 706 mutex_unlock(&crypt_stat->cs_tfm_mutex);
4dfea4f0
TH
707 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
708 ablkcipher_request_set_crypt(req, src_sg, dest_sg, size, iv);
709 rc = crypto_ablkcipher_decrypt(req);
710 if (rc == -EINPROGRESS || rc == -EBUSY) {
711 struct extent_crypt_result *ecr = req->base.data;
712
713 wait_for_completion(&ecr->completion);
714 rc = ecr->rc;
715 INIT_COMPLETION(ecr->completion);
237fead6 716 }
237fead6 717out:
4dfea4f0 718 ablkcipher_request_free(req);
237fead6 719 return rc;
4dfea4f0 720
237fead6
MH
721}
722
723/**
724 * ecryptfs_encrypt_page_offset
22e78faf
MH
725 * @crypt_stat: The cryptographic context
726 * @dst_page: The page to encrypt into
727 * @dst_offset: The offset in the page to encrypt into
728 * @src_page: The page to encrypt from
729 * @src_offset: The offset in the page to encrypt from
730 * @size: The number of bytes to encrypt
731 * @iv: The initialization vector to use for the encryption
237fead6
MH
732 *
733 * Returns the number of bytes encrypted
734 */
735static int
736ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
737 struct page *dst_page, int dst_offset,
738 struct page *src_page, int src_offset, int size,
739 unsigned char *iv)
740{
741 struct scatterlist src_sg, dst_sg;
742
60c74f81
JA
743 sg_init_table(&src_sg, 1);
744 sg_init_table(&dst_sg, 1);
745
642f1490
JA
746 sg_set_page(&src_sg, src_page, size, src_offset);
747 sg_set_page(&dst_sg, dst_page, size, dst_offset);
237fead6
MH
748 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
749}
750
751/**
752 * ecryptfs_decrypt_page_offset
22e78faf
MH
753 * @crypt_stat: The cryptographic context
754 * @dst_page: The page to decrypt into
755 * @dst_offset: The offset in the page to decrypt into
756 * @src_page: The page to decrypt from
757 * @src_offset: The offset in the page to decrypt from
758 * @size: The number of bytes to decrypt
759 * @iv: The initialization vector to use for the decryption
237fead6
MH
760 *
761 * Returns the number of bytes decrypted
762 */
763static int
764ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
765 struct page *dst_page, int dst_offset,
766 struct page *src_page, int src_offset, int size,
767 unsigned char *iv)
768{
769 struct scatterlist src_sg, dst_sg;
770
60c74f81 771 sg_init_table(&src_sg, 1);
642f1490
JA
772 sg_set_page(&src_sg, src_page, size, src_offset);
773
60c74f81 774 sg_init_table(&dst_sg, 1);
642f1490 775 sg_set_page(&dst_sg, dst_page, size, dst_offset);
60c74f81 776
237fead6
MH
777 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
778}
779
780#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
781
782/**
783 * ecryptfs_init_crypt_ctx
421f91d2 784 * @crypt_stat: Uninitialized crypt stats structure
237fead6
MH
785 *
786 * Initialize the crypto context.
787 *
788 * TODO: Performance: Keep a cache of initialized cipher contexts;
789 * only init if needed
790 */
791int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
792{
8bba066f 793 char *full_alg_name;
237fead6
MH
794 int rc = -EINVAL;
795
796 if (!crypt_stat->cipher) {
797 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
798 goto out;
799 }
800 ecryptfs_printk(KERN_DEBUG,
801 "Initializing cipher [%s]; strlen = [%d]; "
f24b3887 802 "key_size_bits = [%zd]\n",
237fead6
MH
803 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
804 crypt_stat->key_size << 3);
805 if (crypt_stat->tfm) {
806 rc = 0;
807 goto out;
808 }
809 mutex_lock(&crypt_stat->cs_tfm_mutex);
8bba066f
MH
810 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
811 crypt_stat->cipher, "cbc");
812 if (rc)
c8161f64 813 goto out_unlock;
4dfea4f0 814 crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0);
8bba066f 815 kfree(full_alg_name);
de88777e
AM
816 if (IS_ERR(crypt_stat->tfm)) {
817 rc = PTR_ERR(crypt_stat->tfm);
b0105eae 818 crypt_stat->tfm = NULL;
237fead6
MH
819 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
820 "Error initializing cipher [%s]\n",
821 crypt_stat->cipher);
c8161f64 822 goto out_unlock;
237fead6 823 }
4dfea4f0 824 crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
237fead6 825 rc = 0;
c8161f64
ES
826out_unlock:
827 mutex_unlock(&crypt_stat->cs_tfm_mutex);
237fead6
MH
828out:
829 return rc;
830}
831
832static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
833{
834 int extent_size_tmp;
835
836 crypt_stat->extent_mask = 0xFFFFFFFF;
837 crypt_stat->extent_shift = 0;
838 if (crypt_stat->extent_size == 0)
839 return;
840 extent_size_tmp = crypt_stat->extent_size;
841 while ((extent_size_tmp & 0x01) == 0) {
842 extent_size_tmp >>= 1;
843 crypt_stat->extent_mask <<= 1;
844 crypt_stat->extent_shift++;
845 }
846}
847
848void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
849{
850 /* Default values; may be overwritten as we are parsing the
851 * packets. */
852 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
853 set_extent_mask_and_shift(crypt_stat);
854 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
dd2a3b7a 855 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
fa3ef1cb 856 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
45eaab79
MH
857 else {
858 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
fa3ef1cb 859 crypt_stat->metadata_size =
cc11beff 860 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
45eaab79 861 else
fa3ef1cb 862 crypt_stat->metadata_size = PAGE_CACHE_SIZE;
45eaab79 863 }
237fead6
MH
864}
865
866/**
867 * ecryptfs_compute_root_iv
868 * @crypt_stats
869 *
870 * On error, sets the root IV to all 0's.
871 */
872int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
873{
874 int rc = 0;
875 char dst[MD5_DIGEST_SIZE];
876
877 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
878 BUG_ON(crypt_stat->iv_bytes <= 0);
e2bd99ec 879 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
237fead6
MH
880 rc = -EINVAL;
881 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
882 "cannot generate root IV\n");
883 goto out;
884 }
885 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
886 crypt_stat->key_size);
887 if (rc) {
888 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
889 "MD5 while generating root IV\n");
890 goto out;
891 }
892 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
893out:
894 if (rc) {
895 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
e2bd99ec 896 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
237fead6
MH
897 }
898 return rc;
899}
900
901static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
902{
903 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
e2bd99ec 904 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
237fead6
MH
905 ecryptfs_compute_root_iv(crypt_stat);
906 if (unlikely(ecryptfs_verbosity > 0)) {
907 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
908 ecryptfs_dump_hex(crypt_stat->key,
909 crypt_stat->key_size);
910 }
911}
912
17398957
MH
913/**
914 * ecryptfs_copy_mount_wide_flags_to_inode_flags
22e78faf
MH
915 * @crypt_stat: The inode's cryptographic context
916 * @mount_crypt_stat: The mount point's cryptographic context
17398957
MH
917 *
918 * This function propagates the mount-wide flags to individual inode
919 * flags.
920 */
921static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
922 struct ecryptfs_crypt_stat *crypt_stat,
923 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
924{
925 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
926 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
927 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
928 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
addd65ad
MH
929 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
930 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
931 if (mount_crypt_stat->flags
932 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
933 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
934 else if (mount_crypt_stat->flags
935 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
936 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
937 }
17398957
MH
938}
939
f4aad16a
MH
940static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
941 struct ecryptfs_crypt_stat *crypt_stat,
942 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
943{
944 struct ecryptfs_global_auth_tok *global_auth_tok;
945 int rc = 0;
946
aa06117f 947 mutex_lock(&crypt_stat->keysig_list_mutex);
f4aad16a 948 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
aa06117f 949
f4aad16a
MH
950 list_for_each_entry(global_auth_tok,
951 &mount_crypt_stat->global_auth_tok_list,
952 mount_crypt_stat_list) {
84814d64
TH
953 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
954 continue;
f4aad16a
MH
955 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
956 if (rc) {
957 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
f4aad16a
MH
958 goto out;
959 }
960 }
aa06117f 961
f4aad16a 962out:
aa06117f
RD
963 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
964 mutex_unlock(&crypt_stat->keysig_list_mutex);
f4aad16a
MH
965 return rc;
966}
967
237fead6
MH
968/**
969 * ecryptfs_set_default_crypt_stat_vals
22e78faf
MH
970 * @crypt_stat: The inode's cryptographic context
971 * @mount_crypt_stat: The mount point's cryptographic context
237fead6
MH
972 *
973 * Default values in the event that policy does not override them.
974 */
975static void ecryptfs_set_default_crypt_stat_vals(
976 struct ecryptfs_crypt_stat *crypt_stat,
977 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
978{
17398957
MH
979 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
980 mount_crypt_stat);
237fead6
MH
981 ecryptfs_set_default_sizes(crypt_stat);
982 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
983 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
e2bd99ec 984 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
237fead6
MH
985 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
986 crypt_stat->mount_crypt_stat = mount_crypt_stat;
987}
988
989/**
990 * ecryptfs_new_file_context
b59db43a 991 * @ecryptfs_inode: The eCryptfs inode
237fead6
MH
992 *
993 * If the crypto context for the file has not yet been established,
994 * this is where we do that. Establishing a new crypto context
995 * involves the following decisions:
996 * - What cipher to use?
997 * - What set of authentication tokens to use?
998 * Here we just worry about getting enough information into the
999 * authentication tokens so that we know that they are available.
1000 * We associate the available authentication tokens with the new file
1001 * via the set of signatures in the crypt_stat struct. Later, when
1002 * the headers are actually written out, we may again defer to
1003 * userspace to perform the encryption of the session key; for the
1004 * foreseeable future, this will be the case with public key packets.
1005 *
1006 * Returns zero on success; non-zero otherwise
1007 */
b59db43a 1008int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
237fead6 1009{
237fead6 1010 struct ecryptfs_crypt_stat *crypt_stat =
b59db43a 1011 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
237fead6
MH
1012 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1013 &ecryptfs_superblock_to_private(
b59db43a 1014 ecryptfs_inode->i_sb)->mount_crypt_stat;
237fead6 1015 int cipher_name_len;
f4aad16a 1016 int rc = 0;
237fead6
MH
1017
1018 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
af655dc6 1019 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
f4aad16a
MH
1020 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1021 mount_crypt_stat);
1022 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1023 mount_crypt_stat);
1024 if (rc) {
1025 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1026 "to the inode key sigs; rc = [%d]\n", rc);
1027 goto out;
1028 }
1029 cipher_name_len =
1030 strlen(mount_crypt_stat->global_default_cipher_name);
1031 memcpy(crypt_stat->cipher,
1032 mount_crypt_stat->global_default_cipher_name,
1033 cipher_name_len);
1034 crypt_stat->cipher[cipher_name_len] = '\0';
1035 crypt_stat->key_size =
1036 mount_crypt_stat->global_default_cipher_key_size;
1037 ecryptfs_generate_new_key(crypt_stat);
237fead6
MH
1038 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1039 if (rc)
1040 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1041 "context for cipher [%s]: rc = [%d]\n",
1042 crypt_stat->cipher, rc);
f4aad16a 1043out:
237fead6
MH
1044 return rc;
1045}
1046
1047/**
7a86617e 1048 * ecryptfs_validate_marker - check for the ecryptfs marker
237fead6
MH
1049 * @data: The data block in which to check
1050 *
7a86617e 1051 * Returns zero if marker found; -EINVAL if not found
237fead6 1052 */
7a86617e 1053static int ecryptfs_validate_marker(char *data)
237fead6
MH
1054{
1055 u32 m_1, m_2;
1056
29335c6a
HH
1057 m_1 = get_unaligned_be32(data);
1058 m_2 = get_unaligned_be32(data + 4);
237fead6 1059 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
7a86617e 1060 return 0;
237fead6
MH
1061 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1062 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1063 MAGIC_ECRYPTFS_MARKER);
1064 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1065 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
7a86617e 1066 return -EINVAL;
237fead6
MH
1067}
1068
1069struct ecryptfs_flag_map_elem {
1070 u32 file_flag;
1071 u32 local_flag;
1072};
1073
1074/* Add support for additional flags by adding elements here. */
1075static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1076 {0x00000001, ECRYPTFS_ENABLE_HMAC},
dd2a3b7a 1077 {0x00000002, ECRYPTFS_ENCRYPTED},
addd65ad
MH
1078 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1079 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
237fead6
MH
1080};
1081
1082/**
1083 * ecryptfs_process_flags
22e78faf 1084 * @crypt_stat: The cryptographic context
237fead6
MH
1085 * @page_virt: Source data to be parsed
1086 * @bytes_read: Updated with the number of bytes read
1087 *
1088 * Returns zero on success; non-zero if the flag set is invalid
1089 */
1090static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1091 char *page_virt, int *bytes_read)
1092{
1093 int rc = 0;
1094 int i;
1095 u32 flags;
1096
29335c6a 1097 flags = get_unaligned_be32(page_virt);
237fead6
MH
1098 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1099 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1100 if (flags & ecryptfs_flag_map[i].file_flag) {
e2bd99ec 1101 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
237fead6 1102 } else
e2bd99ec 1103 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
237fead6
MH
1104 /* Version is in top 8 bits of the 32-bit flag vector */
1105 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1106 (*bytes_read) = 4;
1107 return rc;
1108}
1109
1110/**
1111 * write_ecryptfs_marker
1112 * @page_virt: The pointer to in a page to begin writing the marker
1113 * @written: Number of bytes written
1114 *
1115 * Marker = 0x3c81b7f5
1116 */
1117static void write_ecryptfs_marker(char *page_virt, size_t *written)
1118{
1119 u32 m_1, m_2;
1120
1121 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1122 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
29335c6a
HH
1123 put_unaligned_be32(m_1, page_virt);
1124 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1125 put_unaligned_be32(m_2, page_virt);
237fead6
MH
1126 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1127}
1128
f4e60e6b
TH
1129void ecryptfs_write_crypt_stat_flags(char *page_virt,
1130 struct ecryptfs_crypt_stat *crypt_stat,
1131 size_t *written)
237fead6
MH
1132{
1133 u32 flags = 0;
1134 int i;
1135
1136 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1137 / sizeof(struct ecryptfs_flag_map_elem))); i++)
e2bd99ec 1138 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
237fead6
MH
1139 flags |= ecryptfs_flag_map[i].file_flag;
1140 /* Version is in top 8 bits of the 32-bit flag vector */
1141 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
29335c6a 1142 put_unaligned_be32(flags, page_virt);
237fead6
MH
1143 (*written) = 4;
1144}
1145
1146struct ecryptfs_cipher_code_str_map_elem {
1147 char cipher_str[16];
19e66a67 1148 u8 cipher_code;
237fead6
MH
1149};
1150
1151/* Add support for additional ciphers by adding elements here. The
1152 * cipher_code is whatever OpenPGP applicatoins use to identify the
1153 * ciphers. List in order of probability. */
1154static struct ecryptfs_cipher_code_str_map_elem
1155ecryptfs_cipher_code_str_map[] = {
1156 {"aes",RFC2440_CIPHER_AES_128 },
1157 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1158 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1159 {"cast5", RFC2440_CIPHER_CAST_5},
1160 {"twofish", RFC2440_CIPHER_TWOFISH},
1161 {"cast6", RFC2440_CIPHER_CAST_6},
1162 {"aes", RFC2440_CIPHER_AES_192},
1163 {"aes", RFC2440_CIPHER_AES_256}
1164};
1165
1166/**
1167 * ecryptfs_code_for_cipher_string
9c79f34f
MH
1168 * @cipher_name: The string alias for the cipher
1169 * @key_bytes: Length of key in bytes; used for AES code selection
237fead6
MH
1170 *
1171 * Returns zero on no match, or the cipher code on match
1172 */
9c79f34f 1173u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
237fead6
MH
1174{
1175 int i;
19e66a67 1176 u8 code = 0;
237fead6
MH
1177 struct ecryptfs_cipher_code_str_map_elem *map =
1178 ecryptfs_cipher_code_str_map;
1179
9c79f34f
MH
1180 if (strcmp(cipher_name, "aes") == 0) {
1181 switch (key_bytes) {
237fead6
MH
1182 case 16:
1183 code = RFC2440_CIPHER_AES_128;
1184 break;
1185 case 24:
1186 code = RFC2440_CIPHER_AES_192;
1187 break;
1188 case 32:
1189 code = RFC2440_CIPHER_AES_256;
1190 }
1191 } else {
1192 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
9c79f34f 1193 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
237fead6
MH
1194 code = map[i].cipher_code;
1195 break;
1196 }
1197 }
1198 return code;
1199}
1200
1201/**
1202 * ecryptfs_cipher_code_to_string
1203 * @str: Destination to write out the cipher name
1204 * @cipher_code: The code to convert to cipher name string
1205 *
1206 * Returns zero on success
1207 */
19e66a67 1208int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
237fead6
MH
1209{
1210 int rc = 0;
1211 int i;
1212
1213 str[0] = '\0';
1214 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1215 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1216 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1217 if (str[0] == '\0') {
1218 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1219 "[%d]\n", cipher_code);
1220 rc = -EINVAL;
1221 }
1222 return rc;
1223}
1224
778aeb42 1225int ecryptfs_read_and_validate_header_region(struct inode *inode)
dd2a3b7a 1226{
778aeb42
TH
1227 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1228 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
dd2a3b7a
MH
1229 int rc;
1230
778aeb42
TH
1231 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1232 inode);
1233 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1234 return rc >= 0 ? -EINVAL : rc;
1235 rc = ecryptfs_validate_marker(marker);
1236 if (!rc)
1237 ecryptfs_i_size_init(file_size, inode);
dd2a3b7a
MH
1238 return rc;
1239}
1240
e77a56dd
MH
1241void
1242ecryptfs_write_header_metadata(char *virt,
1243 struct ecryptfs_crypt_stat *crypt_stat,
1244 size_t *written)
237fead6
MH
1245{
1246 u32 header_extent_size;
1247 u16 num_header_extents_at_front;
1248
45eaab79 1249 header_extent_size = (u32)crypt_stat->extent_size;
237fead6 1250 num_header_extents_at_front =
fa3ef1cb 1251 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
29335c6a 1252 put_unaligned_be32(header_extent_size, virt);
237fead6 1253 virt += 4;
29335c6a 1254 put_unaligned_be16(num_header_extents_at_front, virt);
237fead6
MH
1255 (*written) = 6;
1256}
1257
30632870 1258struct kmem_cache *ecryptfs_header_cache;
237fead6
MH
1259
1260/**
1261 * ecryptfs_write_headers_virt
22e78faf 1262 * @page_virt: The virtual address to write the headers to
87b811c3 1263 * @max: The size of memory allocated at page_virt
22e78faf
MH
1264 * @size: Set to the number of bytes written by this function
1265 * @crypt_stat: The cryptographic context
1266 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
1267 *
1268 * Format version: 1
1269 *
1270 * Header Extent:
1271 * Octets 0-7: Unencrypted file size (big-endian)
1272 * Octets 8-15: eCryptfs special marker
1273 * Octets 16-19: Flags
1274 * Octet 16: File format version number (between 0 and 255)
1275 * Octets 17-18: Reserved
1276 * Octet 19: Bit 1 (lsb): Reserved
1277 * Bit 2: Encrypted?
1278 * Bits 3-8: Reserved
1279 * Octets 20-23: Header extent size (big-endian)
1280 * Octets 24-25: Number of header extents at front of file
1281 * (big-endian)
1282 * Octet 26: Begin RFC 2440 authentication token packet set
1283 * Data Extent 0:
1284 * Lower data (CBC encrypted)
1285 * Data Extent 1:
1286 * Lower data (CBC encrypted)
1287 * ...
1288 *
1289 * Returns zero on success
1290 */
87b811c3
ES
1291static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1292 size_t *size,
dd2a3b7a
MH
1293 struct ecryptfs_crypt_stat *crypt_stat,
1294 struct dentry *ecryptfs_dentry)
237fead6
MH
1295{
1296 int rc;
1297 size_t written;
1298 size_t offset;
1299
1300 offset = ECRYPTFS_FILE_SIZE_BYTES;
1301 write_ecryptfs_marker((page_virt + offset), &written);
1302 offset += written;
f4e60e6b
TH
1303 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1304 &written);
237fead6 1305 offset += written;
e77a56dd
MH
1306 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1307 &written);
237fead6
MH
1308 offset += written;
1309 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1310 ecryptfs_dentry, &written,
87b811c3 1311 max - offset);
237fead6
MH
1312 if (rc)
1313 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1314 "set; rc = [%d]\n", rc);
dd2a3b7a
MH
1315 if (size) {
1316 offset += written;
1317 *size = offset;
1318 }
1319 return rc;
1320}
1321
22e78faf 1322static int
b59db43a 1323ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
8faece5f 1324 char *virt, size_t virt_len)
dd2a3b7a 1325{
d7cdc5fe 1326 int rc;
dd2a3b7a 1327
b59db43a 1328 rc = ecryptfs_write_lower(ecryptfs_inode, virt,
8faece5f 1329 0, virt_len);
96a7b9c2 1330 if (rc < 0)
d7cdc5fe 1331 printk(KERN_ERR "%s: Error attempting to write header "
96a7b9c2
TH
1332 "information to lower file; rc = [%d]\n", __func__, rc);
1333 else
1334 rc = 0;
70456600 1335 return rc;
dd2a3b7a
MH
1336}
1337
22e78faf
MH
1338static int
1339ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
22e78faf 1340 char *page_virt, size_t size)
dd2a3b7a
MH
1341{
1342 int rc;
1343
1344 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1345 size, 0);
237fead6
MH
1346 return rc;
1347}
1348
8faece5f
TH
1349static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1350 unsigned int order)
1351{
1352 struct page *page;
1353
1354 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1355 if (page)
1356 return (unsigned long) page_address(page);
1357 return 0;
1358}
1359
237fead6 1360/**
dd2a3b7a 1361 * ecryptfs_write_metadata
b59db43a
TH
1362 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1363 * @ecryptfs_inode: The newly created eCryptfs inode
237fead6
MH
1364 *
1365 * Write the file headers out. This will likely involve a userspace
1366 * callout, in which the session key is encrypted with one or more
1367 * public keys and/or the passphrase necessary to do the encryption is
1368 * retrieved via a prompt. Exactly what happens at this point should
1369 * be policy-dependent.
1370 *
1371 * Returns zero on success; non-zero on error
1372 */
b59db43a
TH
1373int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1374 struct inode *ecryptfs_inode)
237fead6 1375{
d7cdc5fe 1376 struct ecryptfs_crypt_stat *crypt_stat =
b59db43a 1377 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
8faece5f 1378 unsigned int order;
cc11beff 1379 char *virt;
8faece5f 1380 size_t virt_len;
d7cdc5fe 1381 size_t size = 0;
237fead6
MH
1382 int rc = 0;
1383
e2bd99ec
MH
1384 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1385 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
d7cdc5fe 1386 printk(KERN_ERR "Key is invalid; bailing out\n");
237fead6
MH
1387 rc = -EINVAL;
1388 goto out;
1389 }
1390 } else {
cc11beff 1391 printk(KERN_WARNING "%s: Encrypted flag not set\n",
18d1dbf1 1392 __func__);
237fead6 1393 rc = -EINVAL;
237fead6
MH
1394 goto out;
1395 }
fa3ef1cb 1396 virt_len = crypt_stat->metadata_size;
8faece5f 1397 order = get_order(virt_len);
237fead6 1398 /* Released in this function */
8faece5f 1399 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
cc11beff 1400 if (!virt) {
18d1dbf1 1401 printk(KERN_ERR "%s: Out of memory\n", __func__);
237fead6
MH
1402 rc = -ENOMEM;
1403 goto out;
1404 }
bd4f0fe8 1405 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
8faece5f
TH
1406 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1407 ecryptfs_dentry);
237fead6 1408 if (unlikely(rc)) {
cc11beff 1409 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
18d1dbf1 1410 __func__, rc);
237fead6
MH
1411 goto out_free;
1412 }
dd2a3b7a 1413 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
8faece5f
TH
1414 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1415 size);
dd2a3b7a 1416 else
b59db43a 1417 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
8faece5f 1418 virt_len);
dd2a3b7a 1419 if (rc) {
cc11beff 1420 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
18d1dbf1 1421 "rc = [%d]\n", __func__, rc);
dd2a3b7a 1422 goto out_free;
237fead6 1423 }
237fead6 1424out_free:
8faece5f 1425 free_pages((unsigned long)virt, order);
237fead6
MH
1426out:
1427 return rc;
1428}
1429
dd2a3b7a
MH
1430#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1431#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
237fead6 1432static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1433 char *virt, int *bytes_read,
1434 int validate_header_size)
237fead6
MH
1435{
1436 int rc = 0;
1437 u32 header_extent_size;
1438 u16 num_header_extents_at_front;
1439
29335c6a
HH
1440 header_extent_size = get_unaligned_be32(virt);
1441 virt += sizeof(__be32);
1442 num_header_extents_at_front = get_unaligned_be16(virt);
fa3ef1cb
TH
1443 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1444 * (size_t)header_extent_size));
29335c6a 1445 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
dd2a3b7a 1446 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
fa3ef1cb 1447 && (crypt_stat->metadata_size
dd2a3b7a 1448 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
237fead6 1449 rc = -EINVAL;
cc11beff 1450 printk(KERN_WARNING "Invalid header size: [%zd]\n",
fa3ef1cb 1451 crypt_stat->metadata_size);
237fead6
MH
1452 }
1453 return rc;
1454}
1455
1456/**
1457 * set_default_header_data
22e78faf 1458 * @crypt_stat: The cryptographic context
237fead6
MH
1459 *
1460 * For version 0 file format; this function is only for backwards
1461 * compatibility for files created with the prior versions of
1462 * eCryptfs.
1463 */
1464static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1465{
fa3ef1cb 1466 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
237fead6
MH
1467}
1468
3aeb86ea
TH
1469void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1470{
1471 struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1472 struct ecryptfs_crypt_stat *crypt_stat;
1473 u64 file_size;
1474
1475 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1476 mount_crypt_stat =
1477 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1478 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1479 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1480 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1481 file_size += crypt_stat->metadata_size;
1482 } else
1483 file_size = get_unaligned_be64(page_virt);
1484 i_size_write(inode, (loff_t)file_size);
1485 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1486}
1487
237fead6
MH
1488/**
1489 * ecryptfs_read_headers_virt
22e78faf
MH
1490 * @page_virt: The virtual address into which to read the headers
1491 * @crypt_stat: The cryptographic context
1492 * @ecryptfs_dentry: The eCryptfs dentry
1493 * @validate_header_size: Whether to validate the header size while reading
237fead6
MH
1494 *
1495 * Read/parse the header data. The header format is detailed in the
1496 * comment block for the ecryptfs_write_headers_virt() function.
1497 *
1498 * Returns zero on success
1499 */
1500static int ecryptfs_read_headers_virt(char *page_virt,
1501 struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1502 struct dentry *ecryptfs_dentry,
1503 int validate_header_size)
237fead6
MH
1504{
1505 int rc = 0;
1506 int offset;
1507 int bytes_read;
1508
1509 ecryptfs_set_default_sizes(crypt_stat);
1510 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1511 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1512 offset = ECRYPTFS_FILE_SIZE_BYTES;
7a86617e
TH
1513 rc = ecryptfs_validate_marker(page_virt + offset);
1514 if (rc)
237fead6 1515 goto out;
3aeb86ea
TH
1516 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1517 ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
237fead6
MH
1518 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1519 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1520 &bytes_read);
1521 if (rc) {
1522 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1523 goto out;
1524 }
1525 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1526 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1527 "file version [%d] is supported by this "
1528 "version of eCryptfs\n",
1529 crypt_stat->file_version,
1530 ECRYPTFS_SUPPORTED_FILE_VERSION);
1531 rc = -EINVAL;
1532 goto out;
1533 }
1534 offset += bytes_read;
1535 if (crypt_stat->file_version >= 1) {
1536 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
dd2a3b7a 1537 &bytes_read, validate_header_size);
237fead6
MH
1538 if (rc) {
1539 ecryptfs_printk(KERN_WARNING, "Error reading header "
1540 "metadata; rc = [%d]\n", rc);
1541 }
1542 offset += bytes_read;
1543 } else
1544 set_default_header_data(crypt_stat);
1545 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1546 ecryptfs_dentry);
1547out:
1548 return rc;
1549}
1550
1551/**
dd2a3b7a 1552 * ecryptfs_read_xattr_region
22e78faf 1553 * @page_virt: The vitual address into which to read the xattr data
2ed92554 1554 * @ecryptfs_inode: The eCryptfs inode
dd2a3b7a
MH
1555 *
1556 * Attempts to read the crypto metadata from the extended attribute
1557 * region of the lower file.
22e78faf
MH
1558 *
1559 * Returns zero on success; non-zero on error
dd2a3b7a 1560 */
d7cdc5fe 1561int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
dd2a3b7a 1562{
d7cdc5fe
MH
1563 struct dentry *lower_dentry =
1564 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
dd2a3b7a
MH
1565 ssize_t size;
1566 int rc = 0;
1567
d7cdc5fe
MH
1568 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1569 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
dd2a3b7a 1570 if (size < 0) {
25bd8174
MH
1571 if (unlikely(ecryptfs_verbosity > 0))
1572 printk(KERN_INFO "Error attempting to read the [%s] "
1573 "xattr from the lower file; return value = "
1574 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
dd2a3b7a
MH
1575 rc = -EINVAL;
1576 goto out;
1577 }
1578out:
1579 return rc;
1580}
1581
778aeb42 1582int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
3b06b3eb 1583 struct inode *inode)
dd2a3b7a 1584{
778aeb42
TH
1585 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1586 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
dd2a3b7a
MH
1587 int rc;
1588
778aeb42
TH
1589 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1590 ECRYPTFS_XATTR_NAME, file_size,
1591 ECRYPTFS_SIZE_AND_MARKER_BYTES);
1592 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1593 return rc >= 0 ? -EINVAL : rc;
1594 rc = ecryptfs_validate_marker(marker);
1595 if (!rc)
1596 ecryptfs_i_size_init(file_size, inode);
dd2a3b7a
MH
1597 return rc;
1598}
1599
1600/**
1601 * ecryptfs_read_metadata
1602 *
1603 * Common entry point for reading file metadata. From here, we could
1604 * retrieve the header information from the header region of the file,
1605 * the xattr region of the file, or some other repostory that is
1606 * stored separately from the file itself. The current implementation
1607 * supports retrieving the metadata information from the file contents
1608 * and from the xattr region.
237fead6
MH
1609 *
1610 * Returns zero if valid headers found and parsed; non-zero otherwise
1611 */
d7cdc5fe 1612int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
237fead6 1613{
bb450361
TG
1614 int rc;
1615 char *page_virt;
d7cdc5fe 1616 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
237fead6 1617 struct ecryptfs_crypt_stat *crypt_stat =
d7cdc5fe 1618 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
e77a56dd
MH
1619 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1620 &ecryptfs_superblock_to_private(
1621 ecryptfs_dentry->d_sb)->mount_crypt_stat;
237fead6 1622
e77a56dd
MH
1623 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1624 mount_crypt_stat);
237fead6 1625 /* Read the first page from the underlying file */
30632870 1626 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
237fead6
MH
1627 if (!page_virt) {
1628 rc = -ENOMEM;
d7cdc5fe 1629 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
18d1dbf1 1630 __func__);
237fead6
MH
1631 goto out;
1632 }
d7cdc5fe
MH
1633 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1634 ecryptfs_inode);
96a7b9c2 1635 if (rc >= 0)
d7cdc5fe
MH
1636 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1637 ecryptfs_dentry,
1638 ECRYPTFS_VALIDATE_HEADER_SIZE);
237fead6 1639 if (rc) {
bb450361 1640 /* metadata is not in the file header, so try xattrs */
1984c23f 1641 memset(page_virt, 0, PAGE_CACHE_SIZE);
d7cdc5fe 1642 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
dd2a3b7a
MH
1643 if (rc) {
1644 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
30373dc0
TG
1645 "file header region or xattr region, inode %lu\n",
1646 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1647 rc = -EINVAL;
1648 goto out;
1649 }
1650 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1651 ecryptfs_dentry,
1652 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1653 if (rc) {
1654 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
30373dc0
TG
1655 "file xattr region either, inode %lu\n",
1656 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1657 rc = -EINVAL;
1658 }
1659 if (crypt_stat->mount_crypt_stat->flags
1660 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1661 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1662 } else {
1663 printk(KERN_WARNING "Attempt to access file with "
1664 "crypto metadata only in the extended attribute "
1665 "region, but eCryptfs was mounted without "
1666 "xattr support enabled. eCryptfs will not treat "
30373dc0
TG
1667 "this like an encrypted file, inode %lu\n",
1668 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1669 rc = -EINVAL;
1670 }
237fead6
MH
1671 }
1672out:
1673 if (page_virt) {
1674 memset(page_virt, 0, PAGE_CACHE_SIZE);
30632870 1675 kmem_cache_free(ecryptfs_header_cache, page_virt);
237fead6
MH
1676 }
1677 return rc;
1678}
1679
51ca58dc
MH
1680/**
1681 * ecryptfs_encrypt_filename - encrypt filename
1682 *
1683 * CBC-encrypts the filename. We do not want to encrypt the same
1684 * filename with the same key and IV, which may happen with hard
1685 * links, so we prepend random bits to each filename.
1686 *
1687 * Returns zero on success; non-zero otherwise
1688 */
1689static int
1690ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1691 struct ecryptfs_crypt_stat *crypt_stat,
1692 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1693{
1694 int rc = 0;
1695
1696 filename->encrypted_filename = NULL;
1697 filename->encrypted_filename_size = 0;
1698 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1699 || (mount_crypt_stat && (mount_crypt_stat->flags
1700 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1701 size_t packet_size;
1702 size_t remaining_bytes;
1703
1704 rc = ecryptfs_write_tag_70_packet(
1705 NULL, NULL,
1706 &filename->encrypted_filename_size,
1707 mount_crypt_stat, NULL,
1708 filename->filename_size);
1709 if (rc) {
1710 printk(KERN_ERR "%s: Error attempting to get packet "
1711 "size for tag 72; rc = [%d]\n", __func__,
1712 rc);
1713 filename->encrypted_filename_size = 0;
1714 goto out;
1715 }
1716 filename->encrypted_filename =
1717 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1718 if (!filename->encrypted_filename) {
1719 printk(KERN_ERR "%s: Out of memory whilst attempting "
df261c52 1720 "to kmalloc [%zd] bytes\n", __func__,
51ca58dc
MH
1721 filename->encrypted_filename_size);
1722 rc = -ENOMEM;
1723 goto out;
1724 }
1725 remaining_bytes = filename->encrypted_filename_size;
1726 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1727 &remaining_bytes,
1728 &packet_size,
1729 mount_crypt_stat,
1730 filename->filename,
1731 filename->filename_size);
1732 if (rc) {
1733 printk(KERN_ERR "%s: Error attempting to generate "
1734 "tag 70 packet; rc = [%d]\n", __func__,
1735 rc);
1736 kfree(filename->encrypted_filename);
1737 filename->encrypted_filename = NULL;
1738 filename->encrypted_filename_size = 0;
1739 goto out;
1740 }
1741 filename->encrypted_filename_size = packet_size;
1742 } else {
1743 printk(KERN_ERR "%s: No support for requested filename "
1744 "encryption method in this release\n", __func__);
df6ad33b 1745 rc = -EOPNOTSUPP;
51ca58dc
MH
1746 goto out;
1747 }
1748out:
1749 return rc;
1750}
1751
1752static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1753 const char *name, size_t name_size)
1754{
1755 int rc = 0;
1756
fd9fc842 1757 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
51ca58dc
MH
1758 if (!(*copied_name)) {
1759 rc = -ENOMEM;
1760 goto out;
1761 }
1762 memcpy((void *)(*copied_name), (void *)name, name_size);
1763 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1764 * in printing out the
1765 * string in debug
1766 * messages */
fd9fc842 1767 (*copied_name_size) = name_size;
51ca58dc
MH
1768out:
1769 return rc;
1770}
1771
237fead6 1772/**
f4aad16a 1773 * ecryptfs_process_key_cipher - Perform key cipher initialization.
237fead6 1774 * @key_tfm: Crypto context for key material, set by this function
e5d9cbde
MH
1775 * @cipher_name: Name of the cipher
1776 * @key_size: Size of the key in bytes
237fead6
MH
1777 *
1778 * Returns zero on success. Any crypto_tfm structs allocated here
1779 * should be released by other functions, such as on a superblock put
1780 * event, regardless of whether this function succeeds for fails.
1781 */
cd9d67df 1782static int
f4aad16a
MH
1783ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1784 char *cipher_name, size_t *key_size)
237fead6
MH
1785{
1786 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
ece550f5 1787 char *full_alg_name = NULL;
237fead6
MH
1788 int rc;
1789
e5d9cbde
MH
1790 *key_tfm = NULL;
1791 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
237fead6 1792 rc = -EINVAL;
df261c52 1793 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
e5d9cbde 1794 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
237fead6
MH
1795 goto out;
1796 }
8bba066f
MH
1797 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1798 "ecb");
1799 if (rc)
1800 goto out;
1801 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
8bba066f
MH
1802 if (IS_ERR(*key_tfm)) {
1803 rc = PTR_ERR(*key_tfm);
237fead6 1804 printk(KERN_ERR "Unable to allocate crypto cipher with name "
38268498 1805 "[%s]; rc = [%d]\n", full_alg_name, rc);
237fead6
MH
1806 goto out;
1807 }
8bba066f
MH
1808 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1809 if (*key_size == 0) {
1810 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1811
1812 *key_size = alg->max_keysize;
1813 }
e5d9cbde 1814 get_random_bytes(dummy_key, *key_size);
8bba066f 1815 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
237fead6 1816 if (rc) {
df261c52 1817 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
38268498
DH
1818 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1819 rc);
237fead6
MH
1820 rc = -EINVAL;
1821 goto out;
1822 }
1823out:
ece550f5 1824 kfree(full_alg_name);
237fead6
MH
1825 return rc;
1826}
f4aad16a
MH
1827
1828struct kmem_cache *ecryptfs_key_tfm_cache;
7896b631 1829static struct list_head key_tfm_list;
af440f52 1830struct mutex key_tfm_list_mutex;
f4aad16a 1831
7371a382 1832int __init ecryptfs_init_crypto(void)
f4aad16a
MH
1833{
1834 mutex_init(&key_tfm_list_mutex);
1835 INIT_LIST_HEAD(&key_tfm_list);
1836 return 0;
1837}
1838
af440f52
ES
1839/**
1840 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1841 *
1842 * Called only at module unload time
1843 */
fcd12835 1844int ecryptfs_destroy_crypto(void)
f4aad16a
MH
1845{
1846 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1847
1848 mutex_lock(&key_tfm_list_mutex);
1849 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1850 key_tfm_list) {
1851 list_del(&key_tfm->key_tfm_list);
1852 if (key_tfm->key_tfm)
1853 crypto_free_blkcipher(key_tfm->key_tfm);
1854 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1855 }
1856 mutex_unlock(&key_tfm_list_mutex);
1857 return 0;
1858}
1859
1860int
1861ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1862 size_t key_size)
1863{
1864 struct ecryptfs_key_tfm *tmp_tfm;
1865 int rc = 0;
1866
af440f52
ES
1867 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1868
f4aad16a
MH
1869 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1870 if (key_tfm != NULL)
1871 (*key_tfm) = tmp_tfm;
1872 if (!tmp_tfm) {
1873 rc = -ENOMEM;
1874 printk(KERN_ERR "Error attempting to allocate from "
1875 "ecryptfs_key_tfm_cache\n");
1876 goto out;
1877 }
1878 mutex_init(&tmp_tfm->key_tfm_mutex);
1879 strncpy(tmp_tfm->cipher_name, cipher_name,
1880 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
b8862906 1881 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
f4aad16a 1882 tmp_tfm->key_size = key_size;
5dda6992
MH
1883 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1884 tmp_tfm->cipher_name,
1885 &tmp_tfm->key_size);
1886 if (rc) {
f4aad16a
MH
1887 printk(KERN_ERR "Error attempting to initialize key TFM "
1888 "cipher with name = [%s]; rc = [%d]\n",
1889 tmp_tfm->cipher_name, rc);
1890 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1891 if (key_tfm != NULL)
1892 (*key_tfm) = NULL;
1893 goto out;
1894 }
f4aad16a 1895 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
f4aad16a
MH
1896out:
1897 return rc;
1898}
1899
af440f52
ES
1900/**
1901 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1902 * @cipher_name: the name of the cipher to search for
1903 * @key_tfm: set to corresponding tfm if found
1904 *
1905 * Searches for cached key_tfm matching @cipher_name
1906 * Must be called with &key_tfm_list_mutex held
1907 * Returns 1 if found, with @key_tfm set
1908 * Returns 0 if not found, with @key_tfm set to NULL
1909 */
1910int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1911{
1912 struct ecryptfs_key_tfm *tmp_key_tfm;
1913
1914 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1915
1916 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1917 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1918 if (key_tfm)
1919 (*key_tfm) = tmp_key_tfm;
1920 return 1;
1921 }
1922 }
1923 if (key_tfm)
1924 (*key_tfm) = NULL;
1925 return 0;
1926}
1927
1928/**
1929 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1930 *
1931 * @tfm: set to cached tfm found, or new tfm created
1932 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1933 * @cipher_name: the name of the cipher to search for and/or add
1934 *
1935 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1936 * Searches for cached item first, and creates new if not found.
1937 * Returns 0 on success, non-zero if adding new cipher failed
1938 */
f4aad16a
MH
1939int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1940 struct mutex **tfm_mutex,
1941 char *cipher_name)
1942{
1943 struct ecryptfs_key_tfm *key_tfm;
1944 int rc = 0;
1945
1946 (*tfm) = NULL;
1947 (*tfm_mutex) = NULL;
af440f52 1948
f4aad16a 1949 mutex_lock(&key_tfm_list_mutex);
af440f52
ES
1950 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1951 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1952 if (rc) {
1953 printk(KERN_ERR "Error adding new key_tfm to list; "
1954 "rc = [%d]\n", rc);
f4aad16a
MH
1955 goto out;
1956 }
1957 }
f4aad16a
MH
1958 (*tfm) = key_tfm->key_tfm;
1959 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1960out:
71fd5179 1961 mutex_unlock(&key_tfm_list_mutex);
f4aad16a
MH
1962 return rc;
1963}
51ca58dc
MH
1964
1965/* 64 characters forming a 6-bit target field */
1966static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1967 "EFGHIJKLMNOPQRST"
1968 "UVWXYZabcdefghij"
1969 "klmnopqrstuvwxyz");
1970
1971/* We could either offset on every reverse map or just pad some 0x00's
1972 * at the front here */
0f751e64 1973static const unsigned char filename_rev_map[256] = {
51ca58dc
MH
1974 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1975 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1976 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1977 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1978 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1979 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1980 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1981 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1982 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1983 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1984 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1985 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1986 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1987 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1988 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
0f751e64 1989 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
51ca58dc
MH
1990};
1991
1992/**
1993 * ecryptfs_encode_for_filename
1994 * @dst: Destination location for encoded filename
1995 * @dst_size: Size of the encoded filename in bytes
1996 * @src: Source location for the filename to encode
1997 * @src_size: Size of the source in bytes
1998 */
37028758 1999static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
51ca58dc
MH
2000 unsigned char *src, size_t src_size)
2001{
2002 size_t num_blocks;
2003 size_t block_num = 0;
2004 size_t dst_offset = 0;
2005 unsigned char last_block[3];
2006
2007 if (src_size == 0) {
2008 (*dst_size) = 0;
2009 goto out;
2010 }
2011 num_blocks = (src_size / 3);
2012 if ((src_size % 3) == 0) {
2013 memcpy(last_block, (&src[src_size - 3]), 3);
2014 } else {
2015 num_blocks++;
2016 last_block[2] = 0x00;
2017 switch (src_size % 3) {
2018 case 1:
2019 last_block[0] = src[src_size - 1];
2020 last_block[1] = 0x00;
2021 break;
2022 case 2:
2023 last_block[0] = src[src_size - 2];
2024 last_block[1] = src[src_size - 1];
2025 }
2026 }
2027 (*dst_size) = (num_blocks * 4);
2028 if (!dst)
2029 goto out;
2030 while (block_num < num_blocks) {
2031 unsigned char *src_block;
2032 unsigned char dst_block[4];
2033
2034 if (block_num == (num_blocks - 1))
2035 src_block = last_block;
2036 else
2037 src_block = &src[block_num * 3];
2038 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
2039 dst_block[1] = (((src_block[0] << 4) & 0x30)
2040 | ((src_block[1] >> 4) & 0x0F));
2041 dst_block[2] = (((src_block[1] << 2) & 0x3C)
2042 | ((src_block[2] >> 6) & 0x03));
2043 dst_block[3] = (src_block[2] & 0x3F);
2044 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2045 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2046 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2047 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2048 block_num++;
2049 }
2050out:
2051 return;
2052}
2053
4a26620d
TH
2054static size_t ecryptfs_max_decoded_size(size_t encoded_size)
2055{
2056 /* Not exact; conservatively long. Every block of 4
2057 * encoded characters decodes into a block of 3
2058 * decoded characters. This segment of code provides
2059 * the caller with the maximum amount of allocated
2060 * space that @dst will need to point to in a
2061 * subsequent call. */
2062 return ((encoded_size + 1) * 3) / 4;
2063}
2064
71c11c37
MH
2065/**
2066 * ecryptfs_decode_from_filename
2067 * @dst: If NULL, this function only sets @dst_size and returns. If
2068 * non-NULL, this function decodes the encoded octets in @src
2069 * into the memory that @dst points to.
2070 * @dst_size: Set to the size of the decoded string.
2071 * @src: The encoded set of octets to decode.
2072 * @src_size: The size of the encoded set of octets to decode.
2073 */
2074static void
2075ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2076 const unsigned char *src, size_t src_size)
51ca58dc
MH
2077{
2078 u8 current_bit_offset = 0;
2079 size_t src_byte_offset = 0;
2080 size_t dst_byte_offset = 0;
51ca58dc
MH
2081
2082 if (dst == NULL) {
4a26620d 2083 (*dst_size) = ecryptfs_max_decoded_size(src_size);
51ca58dc
MH
2084 goto out;
2085 }
2086 while (src_byte_offset < src_size) {
2087 unsigned char src_byte =
2088 filename_rev_map[(int)src[src_byte_offset]];
2089
2090 switch (current_bit_offset) {
2091 case 0:
2092 dst[dst_byte_offset] = (src_byte << 2);
2093 current_bit_offset = 6;
2094 break;
2095 case 6:
2096 dst[dst_byte_offset++] |= (src_byte >> 4);
2097 dst[dst_byte_offset] = ((src_byte & 0xF)
2098 << 4);
2099 current_bit_offset = 4;
2100 break;
2101 case 4:
2102 dst[dst_byte_offset++] |= (src_byte >> 2);
2103 dst[dst_byte_offset] = (src_byte << 6);
2104 current_bit_offset = 2;
2105 break;
2106 case 2:
2107 dst[dst_byte_offset++] |= (src_byte);
2108 dst[dst_byte_offset] = 0;
2109 current_bit_offset = 0;
2110 break;
2111 }
2112 src_byte_offset++;
2113 }
2114 (*dst_size) = dst_byte_offset;
2115out:
71c11c37 2116 return;
51ca58dc
MH
2117}
2118
2119/**
2120 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2121 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2122 * @name: The plaintext name
2123 * @length: The length of the plaintext
2124 * @encoded_name: The encypted name
2125 *
2126 * Encrypts and encodes a filename into something that constitutes a
2127 * valid filename for a filesystem, with printable characters.
2128 *
2129 * We assume that we have a properly initialized crypto context,
2130 * pointed to by crypt_stat->tfm.
2131 *
2132 * Returns zero on success; non-zero on otherwise
2133 */
2134int ecryptfs_encrypt_and_encode_filename(
2135 char **encoded_name,
2136 size_t *encoded_name_size,
2137 struct ecryptfs_crypt_stat *crypt_stat,
2138 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2139 const char *name, size_t name_size)
2140{
2141 size_t encoded_name_no_prefix_size;
2142 int rc = 0;
2143
2144 (*encoded_name) = NULL;
2145 (*encoded_name_size) = 0;
2146 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2147 || (mount_crypt_stat && (mount_crypt_stat->flags
2148 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2149 struct ecryptfs_filename *filename;
2150
2151 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2152 if (!filename) {
2153 printk(KERN_ERR "%s: Out of memory whilst attempting "
a8f12864 2154 "to kzalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2155 sizeof(*filename));
2156 rc = -ENOMEM;
2157 goto out;
2158 }
2159 filename->filename = (char *)name;
2160 filename->filename_size = name_size;
2161 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2162 mount_crypt_stat);
2163 if (rc) {
2164 printk(KERN_ERR "%s: Error attempting to encrypt "
2165 "filename; rc = [%d]\n", __func__, rc);
2166 kfree(filename);
2167 goto out;
2168 }
2169 ecryptfs_encode_for_filename(
2170 NULL, &encoded_name_no_prefix_size,
2171 filename->encrypted_filename,
2172 filename->encrypted_filename_size);
2173 if ((crypt_stat && (crypt_stat->flags
2174 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2175 || (mount_crypt_stat
2176 && (mount_crypt_stat->flags
2177 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2178 (*encoded_name_size) =
2179 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2180 + encoded_name_no_prefix_size);
2181 else
2182 (*encoded_name_size) =
2183 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2184 + encoded_name_no_prefix_size);
2185 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2186 if (!(*encoded_name)) {
2187 printk(KERN_ERR "%s: Out of memory whilst attempting "
a8f12864 2188 "to kzalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2189 (*encoded_name_size));
2190 rc = -ENOMEM;
2191 kfree(filename->encrypted_filename);
2192 kfree(filename);
2193 goto out;
2194 }
2195 if ((crypt_stat && (crypt_stat->flags
2196 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2197 || (mount_crypt_stat
2198 && (mount_crypt_stat->flags
2199 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2200 memcpy((*encoded_name),
2201 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2202 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2203 ecryptfs_encode_for_filename(
2204 ((*encoded_name)
2205 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2206 &encoded_name_no_prefix_size,
2207 filename->encrypted_filename,
2208 filename->encrypted_filename_size);
2209 (*encoded_name_size) =
2210 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2211 + encoded_name_no_prefix_size);
2212 (*encoded_name)[(*encoded_name_size)] = '\0';
51ca58dc 2213 } else {
df6ad33b 2214 rc = -EOPNOTSUPP;
51ca58dc
MH
2215 }
2216 if (rc) {
2217 printk(KERN_ERR "%s: Error attempting to encode "
2218 "encrypted filename; rc = [%d]\n", __func__,
2219 rc);
2220 kfree((*encoded_name));
2221 (*encoded_name) = NULL;
2222 (*encoded_name_size) = 0;
2223 }
2224 kfree(filename->encrypted_filename);
2225 kfree(filename);
2226 } else {
2227 rc = ecryptfs_copy_filename(encoded_name,
2228 encoded_name_size,
2229 name, name_size);
2230 }
2231out:
2232 return rc;
2233}
2234
2235/**
2236 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2237 * @plaintext_name: The plaintext name
2238 * @plaintext_name_size: The plaintext name size
2239 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2240 * @name: The filename in cipher text
2241 * @name_size: The cipher text name size
2242 *
2243 * Decrypts and decodes the filename.
2244 *
2245 * Returns zero on error; non-zero otherwise
2246 */
2247int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2248 size_t *plaintext_name_size,
2249 struct dentry *ecryptfs_dir_dentry,
2250 const char *name, size_t name_size)
2251{
2aac0cf8
TH
2252 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2253 &ecryptfs_superblock_to_private(
2254 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
51ca58dc
MH
2255 char *decoded_name;
2256 size_t decoded_name_size;
2257 size_t packet_size;
2258 int rc = 0;
2259
2aac0cf8
TH
2260 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2261 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2262 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
51ca58dc
MH
2263 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2264 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
51ca58dc
MH
2265 const char *orig_name = name;
2266 size_t orig_name_size = name_size;
2267
2268 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2269 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
71c11c37
MH
2270 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2271 name, name_size);
51ca58dc
MH
2272 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2273 if (!decoded_name) {
2274 printk(KERN_ERR "%s: Out of memory whilst attempting "
df261c52 2275 "to kmalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2276 decoded_name_size);
2277 rc = -ENOMEM;
2278 goto out;
2279 }
71c11c37
MH
2280 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2281 name, name_size);
51ca58dc
MH
2282 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2283 plaintext_name_size,
2284 &packet_size,
2285 mount_crypt_stat,
2286 decoded_name,
2287 decoded_name_size);
2288 if (rc) {
2289 printk(KERN_INFO "%s: Could not parse tag 70 packet "
2290 "from filename; copying through filename "
2291 "as-is\n", __func__);
2292 rc = ecryptfs_copy_filename(plaintext_name,
2293 plaintext_name_size,
2294 orig_name, orig_name_size);
2295 goto out_free;
2296 }
2297 } else {
2298 rc = ecryptfs_copy_filename(plaintext_name,
2299 plaintext_name_size,
2300 name, name_size);
2301 goto out;
2302 }
2303out_free:
2304 kfree(decoded_name);
2305out:
2306 return rc;
2307}
4a26620d
TH
2308
2309#define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2310
2311int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2312 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2313{
2314 struct blkcipher_desc desc;
2315 struct mutex *tfm_mutex;
2316 size_t cipher_blocksize;
2317 int rc;
2318
2319 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2320 (*namelen) = lower_namelen;
2321 return 0;
2322 }
2323
2324 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2325 mount_crypt_stat->global_default_fn_cipher_name);
2326 if (unlikely(rc)) {
2327 (*namelen) = 0;
2328 return rc;
2329 }
2330
2331 mutex_lock(tfm_mutex);
2332 cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2333 mutex_unlock(tfm_mutex);
2334
2335 /* Return an exact amount for the common cases */
2336 if (lower_namelen == NAME_MAX
2337 && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2338 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2339 return 0;
2340 }
2341
2342 /* Return a safe estimate for the uncommon cases */
2343 (*namelen) = lower_namelen;
2344 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2345 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2346 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2347 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2348 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2349 /* Worst case is that the filename is padded nearly a full block size */
2350 (*namelen) -= cipher_blocksize - 1;
2351
2352 if ((*namelen) < 0)
2353 (*namelen) = 0;
2354
2355 return 0;
2356}
This page took 0.747875 seconds and 5 git commands to generate.