ecryptfs: Improve metadata read failure logging
[deliverable/linux.git] / fs / ecryptfs / crypto.c
CommitLineData
237fead6
MH
1/**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
dd2a3b7a 6 * Copyright (C) 2004-2007 International Business Machines Corp.
237fead6
MH
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/mount.h>
28#include <linux/pagemap.h>
29#include <linux/random.h>
30#include <linux/compiler.h>
31#include <linux/key.h>
32#include <linux/namei.h>
33#include <linux/crypto.h>
34#include <linux/file.h>
35#include <linux/scatterlist.h>
5a0e3ad6 36#include <linux/slab.h>
29335c6a 37#include <asm/unaligned.h>
237fead6
MH
38#include "ecryptfs_kernel.h"
39
40static int
41ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
42 struct page *dst_page, int dst_offset,
43 struct page *src_page, int src_offset, int size,
44 unsigned char *iv);
45static int
46ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
47 struct page *dst_page, int dst_offset,
48 struct page *src_page, int src_offset, int size,
49 unsigned char *iv);
50
51/**
52 * ecryptfs_to_hex
53 * @dst: Buffer to take hex character representation of contents of
54 * src; must be at least of size (src_size * 2)
55 * @src: Buffer to be converted to a hex string respresentation
56 * @src_size: number of bytes to convert
57 */
58void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
59{
60 int x;
61
62 for (x = 0; x < src_size; x++)
63 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
64}
65
66/**
67 * ecryptfs_from_hex
68 * @dst: Buffer to take the bytes from src hex; must be at least of
69 * size (src_size / 2)
70 * @src: Buffer to be converted from a hex string respresentation to raw value
71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
72 */
73void ecryptfs_from_hex(char *dst, char *src, int dst_size)
74{
75 int x;
76 char tmp[3] = { 0, };
77
78 for (x = 0; x < dst_size; x++) {
79 tmp[0] = src[x * 2];
80 tmp[1] = src[x * 2 + 1];
81 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
82 }
83}
84
85/**
86 * ecryptfs_calculate_md5 - calculates the md5 of @src
87 * @dst: Pointer to 16 bytes of allocated memory
88 * @crypt_stat: Pointer to crypt_stat struct for the current inode
89 * @src: Data to be md5'd
90 * @len: Length of @src
91 *
92 * Uses the allocated crypto context that crypt_stat references to
93 * generate the MD5 sum of the contents of src.
94 */
95static int ecryptfs_calculate_md5(char *dst,
96 struct ecryptfs_crypt_stat *crypt_stat,
97 char *src, int len)
98{
237fead6 99 struct scatterlist sg;
565d9724
MH
100 struct hash_desc desc = {
101 .tfm = crypt_stat->hash_tfm,
102 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
103 };
104 int rc = 0;
237fead6 105
565d9724 106 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
237fead6 107 sg_init_one(&sg, (u8 *)src, len);
565d9724
MH
108 if (!desc.tfm) {
109 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
110 CRYPTO_ALG_ASYNC);
111 if (IS_ERR(desc.tfm)) {
112 rc = PTR_ERR(desc.tfm);
237fead6 113 ecryptfs_printk(KERN_ERR, "Error attempting to "
565d9724
MH
114 "allocate crypto context; rc = [%d]\n",
115 rc);
237fead6
MH
116 goto out;
117 }
565d9724 118 crypt_stat->hash_tfm = desc.tfm;
237fead6 119 }
8a29f2b0
MH
120 rc = crypto_hash_init(&desc);
121 if (rc) {
122 printk(KERN_ERR
123 "%s: Error initializing crypto hash; rc = [%d]\n",
18d1dbf1 124 __func__, rc);
8a29f2b0
MH
125 goto out;
126 }
127 rc = crypto_hash_update(&desc, &sg, len);
128 if (rc) {
129 printk(KERN_ERR
130 "%s: Error updating crypto hash; rc = [%d]\n",
18d1dbf1 131 __func__, rc);
8a29f2b0
MH
132 goto out;
133 }
134 rc = crypto_hash_final(&desc, dst);
135 if (rc) {
136 printk(KERN_ERR
137 "%s: Error finalizing crypto hash; rc = [%d]\n",
18d1dbf1 138 __func__, rc);
8a29f2b0
MH
139 goto out;
140 }
237fead6 141out:
8a29f2b0 142 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
237fead6
MH
143 return rc;
144}
145
cd9d67df
MH
146static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
147 char *cipher_name,
148 char *chaining_modifier)
8bba066f
MH
149{
150 int cipher_name_len = strlen(cipher_name);
151 int chaining_modifier_len = strlen(chaining_modifier);
152 int algified_name_len;
153 int rc;
154
155 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
156 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
7bd473fc 157 if (!(*algified_name)) {
8bba066f
MH
158 rc = -ENOMEM;
159 goto out;
160 }
161 snprintf((*algified_name), algified_name_len, "%s(%s)",
162 chaining_modifier, cipher_name);
163 rc = 0;
164out:
165 return rc;
166}
167
237fead6
MH
168/**
169 * ecryptfs_derive_iv
170 * @iv: destination for the derived iv vale
171 * @crypt_stat: Pointer to crypt_stat struct for the current inode
d6a13c17 172 * @offset: Offset of the extent whose IV we are to derive
237fead6
MH
173 *
174 * Generate the initialization vector from the given root IV and page
175 * offset.
176 *
177 * Returns zero on success; non-zero on error.
178 */
a34f60f7
MH
179int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
180 loff_t offset)
237fead6
MH
181{
182 int rc = 0;
183 char dst[MD5_DIGEST_SIZE];
184 char src[ECRYPTFS_MAX_IV_BYTES + 16];
185
186 if (unlikely(ecryptfs_verbosity > 0)) {
187 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
188 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
189 }
190 /* TODO: It is probably secure to just cast the least
191 * significant bits of the root IV into an unsigned long and
192 * add the offset to that rather than go through all this
193 * hashing business. -Halcrow */
194 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
195 memset((src + crypt_stat->iv_bytes), 0, 16);
d6a13c17 196 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
237fead6
MH
197 if (unlikely(ecryptfs_verbosity > 0)) {
198 ecryptfs_printk(KERN_DEBUG, "source:\n");
199 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
200 }
201 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
202 (crypt_stat->iv_bytes + 16));
203 if (rc) {
204 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
205 "MD5 while generating IV for a page\n");
206 goto out;
207 }
208 memcpy(iv, dst, crypt_stat->iv_bytes);
209 if (unlikely(ecryptfs_verbosity > 0)) {
210 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
211 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
212 }
213out:
214 return rc;
215}
216
217/**
218 * ecryptfs_init_crypt_stat
219 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
220 *
221 * Initialize the crypt_stat structure.
222 */
223void
224ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
225{
226 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
f4aad16a
MH
227 INIT_LIST_HEAD(&crypt_stat->keysig_list);
228 mutex_init(&crypt_stat->keysig_list_mutex);
237fead6
MH
229 mutex_init(&crypt_stat->cs_mutex);
230 mutex_init(&crypt_stat->cs_tfm_mutex);
565d9724 231 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
e2bd99ec 232 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
237fead6
MH
233}
234
235/**
fcd12835 236 * ecryptfs_destroy_crypt_stat
237fead6
MH
237 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
238 *
239 * Releases all memory associated with a crypt_stat struct.
240 */
fcd12835 241void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
237fead6 242{
f4aad16a
MH
243 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
244
237fead6 245 if (crypt_stat->tfm)
8bba066f 246 crypto_free_blkcipher(crypt_stat->tfm);
565d9724
MH
247 if (crypt_stat->hash_tfm)
248 crypto_free_hash(crypt_stat->hash_tfm);
f4aad16a
MH
249 list_for_each_entry_safe(key_sig, key_sig_tmp,
250 &crypt_stat->keysig_list, crypt_stat_list) {
251 list_del(&key_sig->crypt_stat_list);
252 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253 }
237fead6
MH
254 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
255}
256
fcd12835 257void ecryptfs_destroy_mount_crypt_stat(
237fead6
MH
258 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
259{
f4aad16a
MH
260 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
261
262 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
263 return;
264 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
265 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
266 &mount_crypt_stat->global_auth_tok_list,
267 mount_crypt_stat_list) {
268 list_del(&auth_tok->mount_crypt_stat_list);
f4aad16a
MH
269 if (auth_tok->global_auth_tok_key
270 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
271 key_put(auth_tok->global_auth_tok_key);
272 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
273 }
274 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
237fead6
MH
275 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
276}
277
278/**
279 * virt_to_scatterlist
280 * @addr: Virtual address
281 * @size: Size of data; should be an even multiple of the block size
282 * @sg: Pointer to scatterlist array; set to NULL to obtain only
283 * the number of scatterlist structs required in array
284 * @sg_size: Max array size
285 *
286 * Fills in a scatterlist array with page references for a passed
287 * virtual address.
288 *
289 * Returns the number of scatterlist structs in array used
290 */
291int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
292 int sg_size)
293{
294 int i = 0;
295 struct page *pg;
296 int offset;
297 int remainder_of_page;
298
68e3f5dd
HX
299 sg_init_table(sg, sg_size);
300
237fead6
MH
301 while (size > 0 && i < sg_size) {
302 pg = virt_to_page(addr);
303 offset = offset_in_page(addr);
642f1490
JA
304 if (sg)
305 sg_set_page(&sg[i], pg, 0, offset);
237fead6
MH
306 remainder_of_page = PAGE_CACHE_SIZE - offset;
307 if (size >= remainder_of_page) {
308 if (sg)
309 sg[i].length = remainder_of_page;
310 addr += remainder_of_page;
311 size -= remainder_of_page;
312 } else {
313 if (sg)
314 sg[i].length = size;
315 addr += size;
316 size = 0;
317 }
318 i++;
319 }
320 if (size > 0)
321 return -ENOMEM;
322 return i;
323}
324
325/**
326 * encrypt_scatterlist
327 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
328 * @dest_sg: Destination of encrypted data
329 * @src_sg: Data to be encrypted
330 * @size: Length of data to be encrypted
331 * @iv: iv to use during encryption
332 *
333 * Returns the number of bytes encrypted; negative value on error
334 */
335static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
336 struct scatterlist *dest_sg,
337 struct scatterlist *src_sg, int size,
338 unsigned char *iv)
339{
8bba066f
MH
340 struct blkcipher_desc desc = {
341 .tfm = crypt_stat->tfm,
342 .info = iv,
343 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
344 };
237fead6
MH
345 int rc = 0;
346
347 BUG_ON(!crypt_stat || !crypt_stat->tfm
e2bd99ec 348 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
237fead6 349 if (unlikely(ecryptfs_verbosity > 0)) {
f24b3887 350 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
237fead6
MH
351 crypt_stat->key_size);
352 ecryptfs_dump_hex(crypt_stat->key,
353 crypt_stat->key_size);
354 }
355 /* Consider doing this once, when the file is opened */
356 mutex_lock(&crypt_stat->cs_tfm_mutex);
8e3a6f16
TH
357 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
358 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
359 crypt_stat->key_size);
360 crypt_stat->flags |= ECRYPTFS_KEY_SET;
361 }
237fead6
MH
362 if (rc) {
363 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
364 rc);
365 mutex_unlock(&crypt_stat->cs_tfm_mutex);
366 rc = -EINVAL;
367 goto out;
368 }
369 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
8bba066f 370 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
237fead6
MH
371 mutex_unlock(&crypt_stat->cs_tfm_mutex);
372out:
373 return rc;
374}
375
0216f7f7
MH
376/**
377 * ecryptfs_lower_offset_for_extent
378 *
379 * Convert an eCryptfs page index into a lower byte offset
380 */
7896b631
AB
381static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
382 struct ecryptfs_crypt_stat *crypt_stat)
0216f7f7 383{
157f1071
TH
384 (*offset) = ecryptfs_lower_header_size(crypt_stat)
385 + (crypt_stat->extent_size * extent_num);
0216f7f7
MH
386}
387
388/**
389 * ecryptfs_encrypt_extent
390 * @enc_extent_page: Allocated page into which to encrypt the data in
391 * @page
392 * @crypt_stat: crypt_stat containing cryptographic context for the
393 * encryption operation
394 * @page: Page containing plaintext data extent to encrypt
395 * @extent_offset: Page extent offset for use in generating IV
396 *
397 * Encrypts one extent of data.
398 *
399 * Return zero on success; non-zero otherwise
400 */
401static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
402 struct ecryptfs_crypt_stat *crypt_stat,
403 struct page *page,
404 unsigned long extent_offset)
405{
d6a13c17 406 loff_t extent_base;
0216f7f7
MH
407 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
408 int rc;
409
d6a13c17 410 extent_base = (((loff_t)page->index)
0216f7f7
MH
411 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
412 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
413 (extent_base + extent_offset));
414 if (rc) {
888d57bb
JP
415 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
416 "extent [0x%.16llx]; rc = [%d]\n",
417 (unsigned long long)(extent_base + extent_offset), rc);
0216f7f7
MH
418 goto out;
419 }
420 if (unlikely(ecryptfs_verbosity > 0)) {
421 ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
422 "with iv:\n");
423 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
424 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
425 "encryption:\n");
426 ecryptfs_dump_hex((char *)
427 (page_address(page)
428 + (extent_offset * crypt_stat->extent_size)),
429 8);
430 }
431 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
432 page, (extent_offset
433 * crypt_stat->extent_size),
434 crypt_stat->extent_size, extent_iv);
435 if (rc < 0) {
436 printk(KERN_ERR "%s: Error attempting to encrypt page with "
437 "page->index = [%ld], extent_offset = [%ld]; "
18d1dbf1 438 "rc = [%d]\n", __func__, page->index, extent_offset,
0216f7f7
MH
439 rc);
440 goto out;
441 }
442 rc = 0;
443 if (unlikely(ecryptfs_verbosity > 0)) {
888d57bb
JP
444 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16llx]; "
445 "rc = [%d]\n",
446 (unsigned long long)(extent_base + extent_offset), rc);
0216f7f7
MH
447 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
448 "encryption:\n");
449 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
450 }
451out:
452 return rc;
453}
454
237fead6
MH
455/**
456 * ecryptfs_encrypt_page
0216f7f7
MH
457 * @page: Page mapped from the eCryptfs inode for the file; contains
458 * decrypted content that needs to be encrypted (to a temporary
459 * page; not in place) and written out to the lower file
237fead6
MH
460 *
461 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
462 * that eCryptfs pages may straddle the lower pages -- for instance,
463 * if the file was created on a machine with an 8K page size
464 * (resulting in an 8K header), and then the file is copied onto a
465 * host with a 32K page size, then when reading page 0 of the eCryptfs
466 * file, 24K of page 0 of the lower file will be read and decrypted,
467 * and then 8K of page 1 of the lower file will be read and decrypted.
468 *
237fead6
MH
469 * Returns zero on success; negative on error
470 */
0216f7f7 471int ecryptfs_encrypt_page(struct page *page)
237fead6 472{
0216f7f7 473 struct inode *ecryptfs_inode;
237fead6 474 struct ecryptfs_crypt_stat *crypt_stat;
7fcba054
ES
475 char *enc_extent_virt;
476 struct page *enc_extent_page = NULL;
0216f7f7 477 loff_t extent_offset;
237fead6 478 int rc = 0;
0216f7f7
MH
479
480 ecryptfs_inode = page->mapping->host;
481 crypt_stat =
482 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
13a791b4 483 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
7fcba054
ES
484 enc_extent_page = alloc_page(GFP_USER);
485 if (!enc_extent_page) {
0216f7f7
MH
486 rc = -ENOMEM;
487 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
488 "encrypted extent\n");
489 goto out;
490 }
7fcba054 491 enc_extent_virt = kmap(enc_extent_page);
0216f7f7
MH
492 for (extent_offset = 0;
493 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
494 extent_offset++) {
495 loff_t offset;
496
497 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
498 extent_offset);
237fead6 499 if (rc) {
0216f7f7 500 printk(KERN_ERR "%s: Error encrypting extent; "
18d1dbf1 501 "rc = [%d]\n", __func__, rc);
237fead6
MH
502 goto out;
503 }
0216f7f7 504 ecryptfs_lower_offset_for_extent(
d6a13c17
MH
505 &offset, ((((loff_t)page->index)
506 * (PAGE_CACHE_SIZE
507 / crypt_stat->extent_size))
0216f7f7
MH
508 + extent_offset), crypt_stat);
509 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
510 offset, crypt_stat->extent_size);
96a7b9c2 511 if (rc < 0) {
0216f7f7
MH
512 ecryptfs_printk(KERN_ERR, "Error attempting "
513 "to write lower page; rc = [%d]"
514 "\n", rc);
515 goto out;
237fead6 516 }
237fead6 517 }
96a7b9c2 518 rc = 0;
0216f7f7 519out:
7fcba054
ES
520 if (enc_extent_page) {
521 kunmap(enc_extent_page);
522 __free_page(enc_extent_page);
523 }
0216f7f7
MH
524 return rc;
525}
526
527static int ecryptfs_decrypt_extent(struct page *page,
528 struct ecryptfs_crypt_stat *crypt_stat,
529 struct page *enc_extent_page,
530 unsigned long extent_offset)
531{
d6a13c17 532 loff_t extent_base;
0216f7f7
MH
533 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
534 int rc;
535
d6a13c17 536 extent_base = (((loff_t)page->index)
0216f7f7
MH
537 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
538 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
539 (extent_base + extent_offset));
237fead6 540 if (rc) {
888d57bb
JP
541 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
542 "extent [0x%.16llx]; rc = [%d]\n",
543 (unsigned long long)(extent_base + extent_offset), rc);
0216f7f7
MH
544 goto out;
545 }
546 if (unlikely(ecryptfs_verbosity > 0)) {
547 ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
548 "with iv:\n");
549 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
550 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
551 "decryption:\n");
552 ecryptfs_dump_hex((char *)
553 (page_address(enc_extent_page)
554 + (extent_offset * crypt_stat->extent_size)),
555 8);
556 }
557 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
558 (extent_offset
559 * crypt_stat->extent_size),
560 enc_extent_page, 0,
561 crypt_stat->extent_size, extent_iv);
562 if (rc < 0) {
563 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
564 "page->index = [%ld], extent_offset = [%ld]; "
18d1dbf1 565 "rc = [%d]\n", __func__, page->index, extent_offset,
0216f7f7
MH
566 rc);
567 goto out;
568 }
569 rc = 0;
570 if (unlikely(ecryptfs_verbosity > 0)) {
888d57bb
JP
571 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16llx]; "
572 "rc = [%d]\n",
573 (unsigned long long)(extent_base + extent_offset), rc);
0216f7f7
MH
574 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
575 "decryption:\n");
576 ecryptfs_dump_hex((char *)(page_address(page)
577 + (extent_offset
578 * crypt_stat->extent_size)), 8);
237fead6
MH
579 }
580out:
581 return rc;
582}
583
584/**
585 * ecryptfs_decrypt_page
0216f7f7
MH
586 * @page: Page mapped from the eCryptfs inode for the file; data read
587 * and decrypted from the lower file will be written into this
588 * page
237fead6
MH
589 *
590 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
591 * that eCryptfs pages may straddle the lower pages -- for instance,
592 * if the file was created on a machine with an 8K page size
593 * (resulting in an 8K header), and then the file is copied onto a
594 * host with a 32K page size, then when reading page 0 of the eCryptfs
595 * file, 24K of page 0 of the lower file will be read and decrypted,
596 * and then 8K of page 1 of the lower file will be read and decrypted.
597 *
598 * Returns zero on success; negative on error
599 */
0216f7f7 600int ecryptfs_decrypt_page(struct page *page)
237fead6 601{
0216f7f7 602 struct inode *ecryptfs_inode;
237fead6 603 struct ecryptfs_crypt_stat *crypt_stat;
7fcba054
ES
604 char *enc_extent_virt;
605 struct page *enc_extent_page = NULL;
0216f7f7 606 unsigned long extent_offset;
237fead6 607 int rc = 0;
237fead6 608
0216f7f7
MH
609 ecryptfs_inode = page->mapping->host;
610 crypt_stat =
611 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
13a791b4 612 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
7fcba054
ES
613 enc_extent_page = alloc_page(GFP_USER);
614 if (!enc_extent_page) {
237fead6 615 rc = -ENOMEM;
0216f7f7
MH
616 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
617 "encrypted extent\n");
16a72c45 618 goto out;
237fead6 619 }
7fcba054 620 enc_extent_virt = kmap(enc_extent_page);
0216f7f7
MH
621 for (extent_offset = 0;
622 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
623 extent_offset++) {
624 loff_t offset;
625
626 ecryptfs_lower_offset_for_extent(
627 &offset, ((page->index * (PAGE_CACHE_SIZE
628 / crypt_stat->extent_size))
629 + extent_offset), crypt_stat);
630 rc = ecryptfs_read_lower(enc_extent_virt, offset,
631 crypt_stat->extent_size,
632 ecryptfs_inode);
96a7b9c2 633 if (rc < 0) {
0216f7f7
MH
634 ecryptfs_printk(KERN_ERR, "Error attempting "
635 "to read lower page; rc = [%d]"
636 "\n", rc);
16a72c45 637 goto out;
237fead6 638 }
0216f7f7
MH
639 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
640 extent_offset);
641 if (rc) {
642 printk(KERN_ERR "%s: Error encrypting extent; "
18d1dbf1 643 "rc = [%d]\n", __func__, rc);
16a72c45 644 goto out;
237fead6 645 }
237fead6
MH
646 }
647out:
7fcba054
ES
648 if (enc_extent_page) {
649 kunmap(enc_extent_page);
650 __free_page(enc_extent_page);
651 }
237fead6
MH
652 return rc;
653}
654
655/**
656 * decrypt_scatterlist
22e78faf
MH
657 * @crypt_stat: Cryptographic context
658 * @dest_sg: The destination scatterlist to decrypt into
659 * @src_sg: The source scatterlist to decrypt from
660 * @size: The number of bytes to decrypt
661 * @iv: The initialization vector to use for the decryption
237fead6
MH
662 *
663 * Returns the number of bytes decrypted; negative value on error
664 */
665static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
666 struct scatterlist *dest_sg,
667 struct scatterlist *src_sg, int size,
668 unsigned char *iv)
669{
8bba066f
MH
670 struct blkcipher_desc desc = {
671 .tfm = crypt_stat->tfm,
672 .info = iv,
673 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
674 };
237fead6
MH
675 int rc = 0;
676
677 /* Consider doing this once, when the file is opened */
678 mutex_lock(&crypt_stat->cs_tfm_mutex);
8bba066f
MH
679 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
680 crypt_stat->key_size);
237fead6
MH
681 if (rc) {
682 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
683 rc);
684 mutex_unlock(&crypt_stat->cs_tfm_mutex);
685 rc = -EINVAL;
686 goto out;
687 }
688 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
8bba066f 689 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
237fead6
MH
690 mutex_unlock(&crypt_stat->cs_tfm_mutex);
691 if (rc) {
692 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
693 rc);
694 goto out;
695 }
696 rc = size;
697out:
698 return rc;
699}
700
701/**
702 * ecryptfs_encrypt_page_offset
22e78faf
MH
703 * @crypt_stat: The cryptographic context
704 * @dst_page: The page to encrypt into
705 * @dst_offset: The offset in the page to encrypt into
706 * @src_page: The page to encrypt from
707 * @src_offset: The offset in the page to encrypt from
708 * @size: The number of bytes to encrypt
709 * @iv: The initialization vector to use for the encryption
237fead6
MH
710 *
711 * Returns the number of bytes encrypted
712 */
713static int
714ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
715 struct page *dst_page, int dst_offset,
716 struct page *src_page, int src_offset, int size,
717 unsigned char *iv)
718{
719 struct scatterlist src_sg, dst_sg;
720
60c74f81
JA
721 sg_init_table(&src_sg, 1);
722 sg_init_table(&dst_sg, 1);
723
642f1490
JA
724 sg_set_page(&src_sg, src_page, size, src_offset);
725 sg_set_page(&dst_sg, dst_page, size, dst_offset);
237fead6
MH
726 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
727}
728
729/**
730 * ecryptfs_decrypt_page_offset
22e78faf
MH
731 * @crypt_stat: The cryptographic context
732 * @dst_page: The page to decrypt into
733 * @dst_offset: The offset in the page to decrypt into
734 * @src_page: The page to decrypt from
735 * @src_offset: The offset in the page to decrypt from
736 * @size: The number of bytes to decrypt
737 * @iv: The initialization vector to use for the decryption
237fead6
MH
738 *
739 * Returns the number of bytes decrypted
740 */
741static int
742ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
743 struct page *dst_page, int dst_offset,
744 struct page *src_page, int src_offset, int size,
745 unsigned char *iv)
746{
747 struct scatterlist src_sg, dst_sg;
748
60c74f81 749 sg_init_table(&src_sg, 1);
642f1490
JA
750 sg_set_page(&src_sg, src_page, size, src_offset);
751
60c74f81 752 sg_init_table(&dst_sg, 1);
642f1490 753 sg_set_page(&dst_sg, dst_page, size, dst_offset);
60c74f81 754
237fead6
MH
755 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
756}
757
758#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
759
760/**
761 * ecryptfs_init_crypt_ctx
421f91d2 762 * @crypt_stat: Uninitialized crypt stats structure
237fead6
MH
763 *
764 * Initialize the crypto context.
765 *
766 * TODO: Performance: Keep a cache of initialized cipher contexts;
767 * only init if needed
768 */
769int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
770{
8bba066f 771 char *full_alg_name;
237fead6
MH
772 int rc = -EINVAL;
773
774 if (!crypt_stat->cipher) {
775 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
776 goto out;
777 }
778 ecryptfs_printk(KERN_DEBUG,
779 "Initializing cipher [%s]; strlen = [%d]; "
f24b3887 780 "key_size_bits = [%zd]\n",
237fead6
MH
781 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
782 crypt_stat->key_size << 3);
783 if (crypt_stat->tfm) {
784 rc = 0;
785 goto out;
786 }
787 mutex_lock(&crypt_stat->cs_tfm_mutex);
8bba066f
MH
788 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
789 crypt_stat->cipher, "cbc");
790 if (rc)
c8161f64 791 goto out_unlock;
8bba066f
MH
792 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
793 CRYPTO_ALG_ASYNC);
794 kfree(full_alg_name);
de88777e
AM
795 if (IS_ERR(crypt_stat->tfm)) {
796 rc = PTR_ERR(crypt_stat->tfm);
b0105eae 797 crypt_stat->tfm = NULL;
237fead6
MH
798 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
799 "Error initializing cipher [%s]\n",
800 crypt_stat->cipher);
c8161f64 801 goto out_unlock;
237fead6 802 }
f1ddcaf3 803 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
237fead6 804 rc = 0;
c8161f64
ES
805out_unlock:
806 mutex_unlock(&crypt_stat->cs_tfm_mutex);
237fead6
MH
807out:
808 return rc;
809}
810
811static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
812{
813 int extent_size_tmp;
814
815 crypt_stat->extent_mask = 0xFFFFFFFF;
816 crypt_stat->extent_shift = 0;
817 if (crypt_stat->extent_size == 0)
818 return;
819 extent_size_tmp = crypt_stat->extent_size;
820 while ((extent_size_tmp & 0x01) == 0) {
821 extent_size_tmp >>= 1;
822 crypt_stat->extent_mask <<= 1;
823 crypt_stat->extent_shift++;
824 }
825}
826
827void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
828{
829 /* Default values; may be overwritten as we are parsing the
830 * packets. */
831 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
832 set_extent_mask_and_shift(crypt_stat);
833 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
dd2a3b7a 834 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
fa3ef1cb 835 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
45eaab79
MH
836 else {
837 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
fa3ef1cb 838 crypt_stat->metadata_size =
cc11beff 839 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
45eaab79 840 else
fa3ef1cb 841 crypt_stat->metadata_size = PAGE_CACHE_SIZE;
45eaab79 842 }
237fead6
MH
843}
844
845/**
846 * ecryptfs_compute_root_iv
847 * @crypt_stats
848 *
849 * On error, sets the root IV to all 0's.
850 */
851int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
852{
853 int rc = 0;
854 char dst[MD5_DIGEST_SIZE];
855
856 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
857 BUG_ON(crypt_stat->iv_bytes <= 0);
e2bd99ec 858 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
237fead6
MH
859 rc = -EINVAL;
860 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
861 "cannot generate root IV\n");
862 goto out;
863 }
864 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
865 crypt_stat->key_size);
866 if (rc) {
867 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
868 "MD5 while generating root IV\n");
869 goto out;
870 }
871 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
872out:
873 if (rc) {
874 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
e2bd99ec 875 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
237fead6
MH
876 }
877 return rc;
878}
879
880static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
881{
882 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
e2bd99ec 883 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
237fead6
MH
884 ecryptfs_compute_root_iv(crypt_stat);
885 if (unlikely(ecryptfs_verbosity > 0)) {
886 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
887 ecryptfs_dump_hex(crypt_stat->key,
888 crypt_stat->key_size);
889 }
890}
891
17398957
MH
892/**
893 * ecryptfs_copy_mount_wide_flags_to_inode_flags
22e78faf
MH
894 * @crypt_stat: The inode's cryptographic context
895 * @mount_crypt_stat: The mount point's cryptographic context
17398957
MH
896 *
897 * This function propagates the mount-wide flags to individual inode
898 * flags.
899 */
900static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
901 struct ecryptfs_crypt_stat *crypt_stat,
902 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
903{
904 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
905 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
906 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
907 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
addd65ad
MH
908 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
909 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
910 if (mount_crypt_stat->flags
911 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
912 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
913 else if (mount_crypt_stat->flags
914 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
915 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
916 }
17398957
MH
917}
918
f4aad16a
MH
919static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
920 struct ecryptfs_crypt_stat *crypt_stat,
921 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
922{
923 struct ecryptfs_global_auth_tok *global_auth_tok;
924 int rc = 0;
925
aa06117f 926 mutex_lock(&crypt_stat->keysig_list_mutex);
f4aad16a 927 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
aa06117f 928
f4aad16a
MH
929 list_for_each_entry(global_auth_tok,
930 &mount_crypt_stat->global_auth_tok_list,
931 mount_crypt_stat_list) {
84814d64
TH
932 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
933 continue;
f4aad16a
MH
934 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
935 if (rc) {
936 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
f4aad16a
MH
937 goto out;
938 }
939 }
aa06117f 940
f4aad16a 941out:
aa06117f
RD
942 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
943 mutex_unlock(&crypt_stat->keysig_list_mutex);
f4aad16a
MH
944 return rc;
945}
946
237fead6
MH
947/**
948 * ecryptfs_set_default_crypt_stat_vals
22e78faf
MH
949 * @crypt_stat: The inode's cryptographic context
950 * @mount_crypt_stat: The mount point's cryptographic context
237fead6
MH
951 *
952 * Default values in the event that policy does not override them.
953 */
954static void ecryptfs_set_default_crypt_stat_vals(
955 struct ecryptfs_crypt_stat *crypt_stat,
956 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
957{
17398957
MH
958 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
959 mount_crypt_stat);
237fead6
MH
960 ecryptfs_set_default_sizes(crypt_stat);
961 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
962 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
e2bd99ec 963 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
237fead6
MH
964 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
965 crypt_stat->mount_crypt_stat = mount_crypt_stat;
966}
967
968/**
969 * ecryptfs_new_file_context
b59db43a 970 * @ecryptfs_inode: The eCryptfs inode
237fead6
MH
971 *
972 * If the crypto context for the file has not yet been established,
973 * this is where we do that. Establishing a new crypto context
974 * involves the following decisions:
975 * - What cipher to use?
976 * - What set of authentication tokens to use?
977 * Here we just worry about getting enough information into the
978 * authentication tokens so that we know that they are available.
979 * We associate the available authentication tokens with the new file
980 * via the set of signatures in the crypt_stat struct. Later, when
981 * the headers are actually written out, we may again defer to
982 * userspace to perform the encryption of the session key; for the
983 * foreseeable future, this will be the case with public key packets.
984 *
985 * Returns zero on success; non-zero otherwise
986 */
b59db43a 987int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
237fead6 988{
237fead6 989 struct ecryptfs_crypt_stat *crypt_stat =
b59db43a 990 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
237fead6
MH
991 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
992 &ecryptfs_superblock_to_private(
b59db43a 993 ecryptfs_inode->i_sb)->mount_crypt_stat;
237fead6 994 int cipher_name_len;
f4aad16a 995 int rc = 0;
237fead6
MH
996
997 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
af655dc6 998 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
f4aad16a
MH
999 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1000 mount_crypt_stat);
1001 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1002 mount_crypt_stat);
1003 if (rc) {
1004 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1005 "to the inode key sigs; rc = [%d]\n", rc);
1006 goto out;
1007 }
1008 cipher_name_len =
1009 strlen(mount_crypt_stat->global_default_cipher_name);
1010 memcpy(crypt_stat->cipher,
1011 mount_crypt_stat->global_default_cipher_name,
1012 cipher_name_len);
1013 crypt_stat->cipher[cipher_name_len] = '\0';
1014 crypt_stat->key_size =
1015 mount_crypt_stat->global_default_cipher_key_size;
1016 ecryptfs_generate_new_key(crypt_stat);
237fead6
MH
1017 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1018 if (rc)
1019 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1020 "context for cipher [%s]: rc = [%d]\n",
1021 crypt_stat->cipher, rc);
f4aad16a 1022out:
237fead6
MH
1023 return rc;
1024}
1025
1026/**
7a86617e 1027 * ecryptfs_validate_marker - check for the ecryptfs marker
237fead6
MH
1028 * @data: The data block in which to check
1029 *
7a86617e 1030 * Returns zero if marker found; -EINVAL if not found
237fead6 1031 */
7a86617e 1032static int ecryptfs_validate_marker(char *data)
237fead6
MH
1033{
1034 u32 m_1, m_2;
1035
29335c6a
HH
1036 m_1 = get_unaligned_be32(data);
1037 m_2 = get_unaligned_be32(data + 4);
237fead6 1038 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
7a86617e 1039 return 0;
237fead6
MH
1040 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1041 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1042 MAGIC_ECRYPTFS_MARKER);
1043 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1044 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
7a86617e 1045 return -EINVAL;
237fead6
MH
1046}
1047
1048struct ecryptfs_flag_map_elem {
1049 u32 file_flag;
1050 u32 local_flag;
1051};
1052
1053/* Add support for additional flags by adding elements here. */
1054static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1055 {0x00000001, ECRYPTFS_ENABLE_HMAC},
dd2a3b7a 1056 {0x00000002, ECRYPTFS_ENCRYPTED},
addd65ad
MH
1057 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1058 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
237fead6
MH
1059};
1060
1061/**
1062 * ecryptfs_process_flags
22e78faf 1063 * @crypt_stat: The cryptographic context
237fead6
MH
1064 * @page_virt: Source data to be parsed
1065 * @bytes_read: Updated with the number of bytes read
1066 *
1067 * Returns zero on success; non-zero if the flag set is invalid
1068 */
1069static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1070 char *page_virt, int *bytes_read)
1071{
1072 int rc = 0;
1073 int i;
1074 u32 flags;
1075
29335c6a 1076 flags = get_unaligned_be32(page_virt);
237fead6
MH
1077 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1078 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1079 if (flags & ecryptfs_flag_map[i].file_flag) {
e2bd99ec 1080 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
237fead6 1081 } else
e2bd99ec 1082 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
237fead6
MH
1083 /* Version is in top 8 bits of the 32-bit flag vector */
1084 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1085 (*bytes_read) = 4;
1086 return rc;
1087}
1088
1089/**
1090 * write_ecryptfs_marker
1091 * @page_virt: The pointer to in a page to begin writing the marker
1092 * @written: Number of bytes written
1093 *
1094 * Marker = 0x3c81b7f5
1095 */
1096static void write_ecryptfs_marker(char *page_virt, size_t *written)
1097{
1098 u32 m_1, m_2;
1099
1100 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1101 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
29335c6a
HH
1102 put_unaligned_be32(m_1, page_virt);
1103 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1104 put_unaligned_be32(m_2, page_virt);
237fead6
MH
1105 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1106}
1107
f4e60e6b
TH
1108void ecryptfs_write_crypt_stat_flags(char *page_virt,
1109 struct ecryptfs_crypt_stat *crypt_stat,
1110 size_t *written)
237fead6
MH
1111{
1112 u32 flags = 0;
1113 int i;
1114
1115 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1116 / sizeof(struct ecryptfs_flag_map_elem))); i++)
e2bd99ec 1117 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
237fead6
MH
1118 flags |= ecryptfs_flag_map[i].file_flag;
1119 /* Version is in top 8 bits of the 32-bit flag vector */
1120 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
29335c6a 1121 put_unaligned_be32(flags, page_virt);
237fead6
MH
1122 (*written) = 4;
1123}
1124
1125struct ecryptfs_cipher_code_str_map_elem {
1126 char cipher_str[16];
19e66a67 1127 u8 cipher_code;
237fead6
MH
1128};
1129
1130/* Add support for additional ciphers by adding elements here. The
1131 * cipher_code is whatever OpenPGP applicatoins use to identify the
1132 * ciphers. List in order of probability. */
1133static struct ecryptfs_cipher_code_str_map_elem
1134ecryptfs_cipher_code_str_map[] = {
1135 {"aes",RFC2440_CIPHER_AES_128 },
1136 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1137 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1138 {"cast5", RFC2440_CIPHER_CAST_5},
1139 {"twofish", RFC2440_CIPHER_TWOFISH},
1140 {"cast6", RFC2440_CIPHER_CAST_6},
1141 {"aes", RFC2440_CIPHER_AES_192},
1142 {"aes", RFC2440_CIPHER_AES_256}
1143};
1144
1145/**
1146 * ecryptfs_code_for_cipher_string
9c79f34f
MH
1147 * @cipher_name: The string alias for the cipher
1148 * @key_bytes: Length of key in bytes; used for AES code selection
237fead6
MH
1149 *
1150 * Returns zero on no match, or the cipher code on match
1151 */
9c79f34f 1152u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
237fead6
MH
1153{
1154 int i;
19e66a67 1155 u8 code = 0;
237fead6
MH
1156 struct ecryptfs_cipher_code_str_map_elem *map =
1157 ecryptfs_cipher_code_str_map;
1158
9c79f34f
MH
1159 if (strcmp(cipher_name, "aes") == 0) {
1160 switch (key_bytes) {
237fead6
MH
1161 case 16:
1162 code = RFC2440_CIPHER_AES_128;
1163 break;
1164 case 24:
1165 code = RFC2440_CIPHER_AES_192;
1166 break;
1167 case 32:
1168 code = RFC2440_CIPHER_AES_256;
1169 }
1170 } else {
1171 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
9c79f34f 1172 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
237fead6
MH
1173 code = map[i].cipher_code;
1174 break;
1175 }
1176 }
1177 return code;
1178}
1179
1180/**
1181 * ecryptfs_cipher_code_to_string
1182 * @str: Destination to write out the cipher name
1183 * @cipher_code: The code to convert to cipher name string
1184 *
1185 * Returns zero on success
1186 */
19e66a67 1187int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
237fead6
MH
1188{
1189 int rc = 0;
1190 int i;
1191
1192 str[0] = '\0';
1193 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1194 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1195 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1196 if (str[0] == '\0') {
1197 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1198 "[%d]\n", cipher_code);
1199 rc = -EINVAL;
1200 }
1201 return rc;
1202}
1203
778aeb42 1204int ecryptfs_read_and_validate_header_region(struct inode *inode)
dd2a3b7a 1205{
778aeb42
TH
1206 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1207 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
dd2a3b7a
MH
1208 int rc;
1209
778aeb42
TH
1210 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1211 inode);
1212 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1213 return rc >= 0 ? -EINVAL : rc;
1214 rc = ecryptfs_validate_marker(marker);
1215 if (!rc)
1216 ecryptfs_i_size_init(file_size, inode);
dd2a3b7a
MH
1217 return rc;
1218}
1219
e77a56dd
MH
1220void
1221ecryptfs_write_header_metadata(char *virt,
1222 struct ecryptfs_crypt_stat *crypt_stat,
1223 size_t *written)
237fead6
MH
1224{
1225 u32 header_extent_size;
1226 u16 num_header_extents_at_front;
1227
45eaab79 1228 header_extent_size = (u32)crypt_stat->extent_size;
237fead6 1229 num_header_extents_at_front =
fa3ef1cb 1230 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
29335c6a 1231 put_unaligned_be32(header_extent_size, virt);
237fead6 1232 virt += 4;
29335c6a 1233 put_unaligned_be16(num_header_extents_at_front, virt);
237fead6
MH
1234 (*written) = 6;
1235}
1236
30632870 1237struct kmem_cache *ecryptfs_header_cache;
237fead6
MH
1238
1239/**
1240 * ecryptfs_write_headers_virt
22e78faf 1241 * @page_virt: The virtual address to write the headers to
87b811c3 1242 * @max: The size of memory allocated at page_virt
22e78faf
MH
1243 * @size: Set to the number of bytes written by this function
1244 * @crypt_stat: The cryptographic context
1245 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
1246 *
1247 * Format version: 1
1248 *
1249 * Header Extent:
1250 * Octets 0-7: Unencrypted file size (big-endian)
1251 * Octets 8-15: eCryptfs special marker
1252 * Octets 16-19: Flags
1253 * Octet 16: File format version number (between 0 and 255)
1254 * Octets 17-18: Reserved
1255 * Octet 19: Bit 1 (lsb): Reserved
1256 * Bit 2: Encrypted?
1257 * Bits 3-8: Reserved
1258 * Octets 20-23: Header extent size (big-endian)
1259 * Octets 24-25: Number of header extents at front of file
1260 * (big-endian)
1261 * Octet 26: Begin RFC 2440 authentication token packet set
1262 * Data Extent 0:
1263 * Lower data (CBC encrypted)
1264 * Data Extent 1:
1265 * Lower data (CBC encrypted)
1266 * ...
1267 *
1268 * Returns zero on success
1269 */
87b811c3
ES
1270static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1271 size_t *size,
dd2a3b7a
MH
1272 struct ecryptfs_crypt_stat *crypt_stat,
1273 struct dentry *ecryptfs_dentry)
237fead6
MH
1274{
1275 int rc;
1276 size_t written;
1277 size_t offset;
1278
1279 offset = ECRYPTFS_FILE_SIZE_BYTES;
1280 write_ecryptfs_marker((page_virt + offset), &written);
1281 offset += written;
f4e60e6b
TH
1282 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1283 &written);
237fead6 1284 offset += written;
e77a56dd
MH
1285 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1286 &written);
237fead6
MH
1287 offset += written;
1288 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1289 ecryptfs_dentry, &written,
87b811c3 1290 max - offset);
237fead6
MH
1291 if (rc)
1292 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1293 "set; rc = [%d]\n", rc);
dd2a3b7a
MH
1294 if (size) {
1295 offset += written;
1296 *size = offset;
1297 }
1298 return rc;
1299}
1300
22e78faf 1301static int
b59db43a 1302ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
8faece5f 1303 char *virt, size_t virt_len)
dd2a3b7a 1304{
d7cdc5fe 1305 int rc;
dd2a3b7a 1306
b59db43a 1307 rc = ecryptfs_write_lower(ecryptfs_inode, virt,
8faece5f 1308 0, virt_len);
96a7b9c2 1309 if (rc < 0)
d7cdc5fe 1310 printk(KERN_ERR "%s: Error attempting to write header "
96a7b9c2
TH
1311 "information to lower file; rc = [%d]\n", __func__, rc);
1312 else
1313 rc = 0;
70456600 1314 return rc;
dd2a3b7a
MH
1315}
1316
22e78faf
MH
1317static int
1318ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
22e78faf 1319 char *page_virt, size_t size)
dd2a3b7a
MH
1320{
1321 int rc;
1322
1323 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1324 size, 0);
237fead6
MH
1325 return rc;
1326}
1327
8faece5f
TH
1328static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1329 unsigned int order)
1330{
1331 struct page *page;
1332
1333 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1334 if (page)
1335 return (unsigned long) page_address(page);
1336 return 0;
1337}
1338
237fead6 1339/**
dd2a3b7a 1340 * ecryptfs_write_metadata
b59db43a
TH
1341 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1342 * @ecryptfs_inode: The newly created eCryptfs inode
237fead6
MH
1343 *
1344 * Write the file headers out. This will likely involve a userspace
1345 * callout, in which the session key is encrypted with one or more
1346 * public keys and/or the passphrase necessary to do the encryption is
1347 * retrieved via a prompt. Exactly what happens at this point should
1348 * be policy-dependent.
1349 *
1350 * Returns zero on success; non-zero on error
1351 */
b59db43a
TH
1352int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1353 struct inode *ecryptfs_inode)
237fead6 1354{
d7cdc5fe 1355 struct ecryptfs_crypt_stat *crypt_stat =
b59db43a 1356 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
8faece5f 1357 unsigned int order;
cc11beff 1358 char *virt;
8faece5f 1359 size_t virt_len;
d7cdc5fe 1360 size_t size = 0;
237fead6
MH
1361 int rc = 0;
1362
e2bd99ec
MH
1363 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1364 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
d7cdc5fe 1365 printk(KERN_ERR "Key is invalid; bailing out\n");
237fead6
MH
1366 rc = -EINVAL;
1367 goto out;
1368 }
1369 } else {
cc11beff 1370 printk(KERN_WARNING "%s: Encrypted flag not set\n",
18d1dbf1 1371 __func__);
237fead6 1372 rc = -EINVAL;
237fead6
MH
1373 goto out;
1374 }
fa3ef1cb 1375 virt_len = crypt_stat->metadata_size;
8faece5f 1376 order = get_order(virt_len);
237fead6 1377 /* Released in this function */
8faece5f 1378 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
cc11beff 1379 if (!virt) {
18d1dbf1 1380 printk(KERN_ERR "%s: Out of memory\n", __func__);
237fead6
MH
1381 rc = -ENOMEM;
1382 goto out;
1383 }
bd4f0fe8 1384 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
8faece5f
TH
1385 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1386 ecryptfs_dentry);
237fead6 1387 if (unlikely(rc)) {
cc11beff 1388 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
18d1dbf1 1389 __func__, rc);
237fead6
MH
1390 goto out_free;
1391 }
dd2a3b7a 1392 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
8faece5f
TH
1393 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1394 size);
dd2a3b7a 1395 else
b59db43a 1396 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
8faece5f 1397 virt_len);
dd2a3b7a 1398 if (rc) {
cc11beff 1399 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
18d1dbf1 1400 "rc = [%d]\n", __func__, rc);
dd2a3b7a 1401 goto out_free;
237fead6 1402 }
237fead6 1403out_free:
8faece5f 1404 free_pages((unsigned long)virt, order);
237fead6
MH
1405out:
1406 return rc;
1407}
1408
dd2a3b7a
MH
1409#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1410#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
237fead6 1411static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1412 char *virt, int *bytes_read,
1413 int validate_header_size)
237fead6
MH
1414{
1415 int rc = 0;
1416 u32 header_extent_size;
1417 u16 num_header_extents_at_front;
1418
29335c6a
HH
1419 header_extent_size = get_unaligned_be32(virt);
1420 virt += sizeof(__be32);
1421 num_header_extents_at_front = get_unaligned_be16(virt);
fa3ef1cb
TH
1422 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1423 * (size_t)header_extent_size));
29335c6a 1424 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
dd2a3b7a 1425 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
fa3ef1cb 1426 && (crypt_stat->metadata_size
dd2a3b7a 1427 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
237fead6 1428 rc = -EINVAL;
cc11beff 1429 printk(KERN_WARNING "Invalid header size: [%zd]\n",
fa3ef1cb 1430 crypt_stat->metadata_size);
237fead6
MH
1431 }
1432 return rc;
1433}
1434
1435/**
1436 * set_default_header_data
22e78faf 1437 * @crypt_stat: The cryptographic context
237fead6
MH
1438 *
1439 * For version 0 file format; this function is only for backwards
1440 * compatibility for files created with the prior versions of
1441 * eCryptfs.
1442 */
1443static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1444{
fa3ef1cb 1445 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
237fead6
MH
1446}
1447
3aeb86ea
TH
1448void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1449{
1450 struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1451 struct ecryptfs_crypt_stat *crypt_stat;
1452 u64 file_size;
1453
1454 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1455 mount_crypt_stat =
1456 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1457 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1458 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1459 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1460 file_size += crypt_stat->metadata_size;
1461 } else
1462 file_size = get_unaligned_be64(page_virt);
1463 i_size_write(inode, (loff_t)file_size);
1464 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1465}
1466
237fead6
MH
1467/**
1468 * ecryptfs_read_headers_virt
22e78faf
MH
1469 * @page_virt: The virtual address into which to read the headers
1470 * @crypt_stat: The cryptographic context
1471 * @ecryptfs_dentry: The eCryptfs dentry
1472 * @validate_header_size: Whether to validate the header size while reading
237fead6
MH
1473 *
1474 * Read/parse the header data. The header format is detailed in the
1475 * comment block for the ecryptfs_write_headers_virt() function.
1476 *
1477 * Returns zero on success
1478 */
1479static int ecryptfs_read_headers_virt(char *page_virt,
1480 struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1481 struct dentry *ecryptfs_dentry,
1482 int validate_header_size)
237fead6
MH
1483{
1484 int rc = 0;
1485 int offset;
1486 int bytes_read;
1487
1488 ecryptfs_set_default_sizes(crypt_stat);
1489 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1490 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1491 offset = ECRYPTFS_FILE_SIZE_BYTES;
7a86617e
TH
1492 rc = ecryptfs_validate_marker(page_virt + offset);
1493 if (rc)
237fead6 1494 goto out;
3aeb86ea
TH
1495 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1496 ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
237fead6
MH
1497 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1498 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1499 &bytes_read);
1500 if (rc) {
1501 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1502 goto out;
1503 }
1504 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1505 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1506 "file version [%d] is supported by this "
1507 "version of eCryptfs\n",
1508 crypt_stat->file_version,
1509 ECRYPTFS_SUPPORTED_FILE_VERSION);
1510 rc = -EINVAL;
1511 goto out;
1512 }
1513 offset += bytes_read;
1514 if (crypt_stat->file_version >= 1) {
1515 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
dd2a3b7a 1516 &bytes_read, validate_header_size);
237fead6
MH
1517 if (rc) {
1518 ecryptfs_printk(KERN_WARNING, "Error reading header "
1519 "metadata; rc = [%d]\n", rc);
1520 }
1521 offset += bytes_read;
1522 } else
1523 set_default_header_data(crypt_stat);
1524 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1525 ecryptfs_dentry);
1526out:
1527 return rc;
1528}
1529
1530/**
dd2a3b7a 1531 * ecryptfs_read_xattr_region
22e78faf 1532 * @page_virt: The vitual address into which to read the xattr data
2ed92554 1533 * @ecryptfs_inode: The eCryptfs inode
dd2a3b7a
MH
1534 *
1535 * Attempts to read the crypto metadata from the extended attribute
1536 * region of the lower file.
22e78faf
MH
1537 *
1538 * Returns zero on success; non-zero on error
dd2a3b7a 1539 */
d7cdc5fe 1540int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
dd2a3b7a 1541{
d7cdc5fe
MH
1542 struct dentry *lower_dentry =
1543 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
dd2a3b7a
MH
1544 ssize_t size;
1545 int rc = 0;
1546
d7cdc5fe
MH
1547 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1548 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
dd2a3b7a 1549 if (size < 0) {
25bd8174
MH
1550 if (unlikely(ecryptfs_verbosity > 0))
1551 printk(KERN_INFO "Error attempting to read the [%s] "
1552 "xattr from the lower file; return value = "
1553 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
dd2a3b7a
MH
1554 rc = -EINVAL;
1555 goto out;
1556 }
1557out:
1558 return rc;
1559}
1560
778aeb42 1561int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
3b06b3eb 1562 struct inode *inode)
dd2a3b7a 1563{
778aeb42
TH
1564 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1565 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
dd2a3b7a
MH
1566 int rc;
1567
778aeb42
TH
1568 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1569 ECRYPTFS_XATTR_NAME, file_size,
1570 ECRYPTFS_SIZE_AND_MARKER_BYTES);
1571 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1572 return rc >= 0 ? -EINVAL : rc;
1573 rc = ecryptfs_validate_marker(marker);
1574 if (!rc)
1575 ecryptfs_i_size_init(file_size, inode);
dd2a3b7a
MH
1576 return rc;
1577}
1578
1579/**
1580 * ecryptfs_read_metadata
1581 *
1582 * Common entry point for reading file metadata. From here, we could
1583 * retrieve the header information from the header region of the file,
1584 * the xattr region of the file, or some other repostory that is
1585 * stored separately from the file itself. The current implementation
1586 * supports retrieving the metadata information from the file contents
1587 * and from the xattr region.
237fead6
MH
1588 *
1589 * Returns zero if valid headers found and parsed; non-zero otherwise
1590 */
d7cdc5fe 1591int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
237fead6
MH
1592{
1593 int rc = 0;
1594 char *page_virt = NULL;
d7cdc5fe 1595 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
237fead6 1596 struct ecryptfs_crypt_stat *crypt_stat =
d7cdc5fe 1597 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
e77a56dd
MH
1598 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1599 &ecryptfs_superblock_to_private(
1600 ecryptfs_dentry->d_sb)->mount_crypt_stat;
237fead6 1601
e77a56dd
MH
1602 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1603 mount_crypt_stat);
237fead6 1604 /* Read the first page from the underlying file */
30632870 1605 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
237fead6
MH
1606 if (!page_virt) {
1607 rc = -ENOMEM;
d7cdc5fe 1608 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
18d1dbf1 1609 __func__);
237fead6
MH
1610 goto out;
1611 }
d7cdc5fe
MH
1612 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1613 ecryptfs_inode);
96a7b9c2 1614 if (rc >= 0)
d7cdc5fe
MH
1615 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1616 ecryptfs_dentry,
1617 ECRYPTFS_VALIDATE_HEADER_SIZE);
237fead6 1618 if (rc) {
1984c23f 1619 memset(page_virt, 0, PAGE_CACHE_SIZE);
d7cdc5fe 1620 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
dd2a3b7a
MH
1621 if (rc) {
1622 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
30373dc0
TG
1623 "file header region or xattr region, inode %lu\n",
1624 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1625 rc = -EINVAL;
1626 goto out;
1627 }
1628 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1629 ecryptfs_dentry,
1630 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1631 if (rc) {
1632 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
30373dc0
TG
1633 "file xattr region either, inode %lu\n",
1634 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1635 rc = -EINVAL;
1636 }
1637 if (crypt_stat->mount_crypt_stat->flags
1638 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1639 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1640 } else {
1641 printk(KERN_WARNING "Attempt to access file with "
1642 "crypto metadata only in the extended attribute "
1643 "region, but eCryptfs was mounted without "
1644 "xattr support enabled. eCryptfs will not treat "
30373dc0
TG
1645 "this like an encrypted file, inode %lu\n",
1646 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1647 rc = -EINVAL;
1648 }
237fead6
MH
1649 }
1650out:
1651 if (page_virt) {
1652 memset(page_virt, 0, PAGE_CACHE_SIZE);
30632870 1653 kmem_cache_free(ecryptfs_header_cache, page_virt);
237fead6
MH
1654 }
1655 return rc;
1656}
1657
51ca58dc
MH
1658/**
1659 * ecryptfs_encrypt_filename - encrypt filename
1660 *
1661 * CBC-encrypts the filename. We do not want to encrypt the same
1662 * filename with the same key and IV, which may happen with hard
1663 * links, so we prepend random bits to each filename.
1664 *
1665 * Returns zero on success; non-zero otherwise
1666 */
1667static int
1668ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1669 struct ecryptfs_crypt_stat *crypt_stat,
1670 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1671{
1672 int rc = 0;
1673
1674 filename->encrypted_filename = NULL;
1675 filename->encrypted_filename_size = 0;
1676 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1677 || (mount_crypt_stat && (mount_crypt_stat->flags
1678 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1679 size_t packet_size;
1680 size_t remaining_bytes;
1681
1682 rc = ecryptfs_write_tag_70_packet(
1683 NULL, NULL,
1684 &filename->encrypted_filename_size,
1685 mount_crypt_stat, NULL,
1686 filename->filename_size);
1687 if (rc) {
1688 printk(KERN_ERR "%s: Error attempting to get packet "
1689 "size for tag 72; rc = [%d]\n", __func__,
1690 rc);
1691 filename->encrypted_filename_size = 0;
1692 goto out;
1693 }
1694 filename->encrypted_filename =
1695 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1696 if (!filename->encrypted_filename) {
1697 printk(KERN_ERR "%s: Out of memory whilst attempting "
df261c52 1698 "to kmalloc [%zd] bytes\n", __func__,
51ca58dc
MH
1699 filename->encrypted_filename_size);
1700 rc = -ENOMEM;
1701 goto out;
1702 }
1703 remaining_bytes = filename->encrypted_filename_size;
1704 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1705 &remaining_bytes,
1706 &packet_size,
1707 mount_crypt_stat,
1708 filename->filename,
1709 filename->filename_size);
1710 if (rc) {
1711 printk(KERN_ERR "%s: Error attempting to generate "
1712 "tag 70 packet; rc = [%d]\n", __func__,
1713 rc);
1714 kfree(filename->encrypted_filename);
1715 filename->encrypted_filename = NULL;
1716 filename->encrypted_filename_size = 0;
1717 goto out;
1718 }
1719 filename->encrypted_filename_size = packet_size;
1720 } else {
1721 printk(KERN_ERR "%s: No support for requested filename "
1722 "encryption method in this release\n", __func__);
df6ad33b 1723 rc = -EOPNOTSUPP;
51ca58dc
MH
1724 goto out;
1725 }
1726out:
1727 return rc;
1728}
1729
1730static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1731 const char *name, size_t name_size)
1732{
1733 int rc = 0;
1734
fd9fc842 1735 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
51ca58dc
MH
1736 if (!(*copied_name)) {
1737 rc = -ENOMEM;
1738 goto out;
1739 }
1740 memcpy((void *)(*copied_name), (void *)name, name_size);
1741 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1742 * in printing out the
1743 * string in debug
1744 * messages */
fd9fc842 1745 (*copied_name_size) = name_size;
51ca58dc
MH
1746out:
1747 return rc;
1748}
1749
237fead6 1750/**
f4aad16a 1751 * ecryptfs_process_key_cipher - Perform key cipher initialization.
237fead6 1752 * @key_tfm: Crypto context for key material, set by this function
e5d9cbde
MH
1753 * @cipher_name: Name of the cipher
1754 * @key_size: Size of the key in bytes
237fead6
MH
1755 *
1756 * Returns zero on success. Any crypto_tfm structs allocated here
1757 * should be released by other functions, such as on a superblock put
1758 * event, regardless of whether this function succeeds for fails.
1759 */
cd9d67df 1760static int
f4aad16a
MH
1761ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1762 char *cipher_name, size_t *key_size)
237fead6
MH
1763{
1764 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
ece550f5 1765 char *full_alg_name = NULL;
237fead6
MH
1766 int rc;
1767
e5d9cbde
MH
1768 *key_tfm = NULL;
1769 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
237fead6 1770 rc = -EINVAL;
df261c52 1771 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
e5d9cbde 1772 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
237fead6
MH
1773 goto out;
1774 }
8bba066f
MH
1775 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1776 "ecb");
1777 if (rc)
1778 goto out;
1779 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
8bba066f
MH
1780 if (IS_ERR(*key_tfm)) {
1781 rc = PTR_ERR(*key_tfm);
237fead6 1782 printk(KERN_ERR "Unable to allocate crypto cipher with name "
38268498 1783 "[%s]; rc = [%d]\n", full_alg_name, rc);
237fead6
MH
1784 goto out;
1785 }
8bba066f
MH
1786 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1787 if (*key_size == 0) {
1788 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1789
1790 *key_size = alg->max_keysize;
1791 }
e5d9cbde 1792 get_random_bytes(dummy_key, *key_size);
8bba066f 1793 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
237fead6 1794 if (rc) {
df261c52 1795 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
38268498
DH
1796 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1797 rc);
237fead6
MH
1798 rc = -EINVAL;
1799 goto out;
1800 }
1801out:
ece550f5 1802 kfree(full_alg_name);
237fead6
MH
1803 return rc;
1804}
f4aad16a
MH
1805
1806struct kmem_cache *ecryptfs_key_tfm_cache;
7896b631 1807static struct list_head key_tfm_list;
af440f52 1808struct mutex key_tfm_list_mutex;
f4aad16a 1809
7371a382 1810int __init ecryptfs_init_crypto(void)
f4aad16a
MH
1811{
1812 mutex_init(&key_tfm_list_mutex);
1813 INIT_LIST_HEAD(&key_tfm_list);
1814 return 0;
1815}
1816
af440f52
ES
1817/**
1818 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1819 *
1820 * Called only at module unload time
1821 */
fcd12835 1822int ecryptfs_destroy_crypto(void)
f4aad16a
MH
1823{
1824 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1825
1826 mutex_lock(&key_tfm_list_mutex);
1827 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1828 key_tfm_list) {
1829 list_del(&key_tfm->key_tfm_list);
1830 if (key_tfm->key_tfm)
1831 crypto_free_blkcipher(key_tfm->key_tfm);
1832 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1833 }
1834 mutex_unlock(&key_tfm_list_mutex);
1835 return 0;
1836}
1837
1838int
1839ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1840 size_t key_size)
1841{
1842 struct ecryptfs_key_tfm *tmp_tfm;
1843 int rc = 0;
1844
af440f52
ES
1845 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1846
f4aad16a
MH
1847 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1848 if (key_tfm != NULL)
1849 (*key_tfm) = tmp_tfm;
1850 if (!tmp_tfm) {
1851 rc = -ENOMEM;
1852 printk(KERN_ERR "Error attempting to allocate from "
1853 "ecryptfs_key_tfm_cache\n");
1854 goto out;
1855 }
1856 mutex_init(&tmp_tfm->key_tfm_mutex);
1857 strncpy(tmp_tfm->cipher_name, cipher_name,
1858 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
b8862906 1859 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
f4aad16a 1860 tmp_tfm->key_size = key_size;
5dda6992
MH
1861 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1862 tmp_tfm->cipher_name,
1863 &tmp_tfm->key_size);
1864 if (rc) {
f4aad16a
MH
1865 printk(KERN_ERR "Error attempting to initialize key TFM "
1866 "cipher with name = [%s]; rc = [%d]\n",
1867 tmp_tfm->cipher_name, rc);
1868 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1869 if (key_tfm != NULL)
1870 (*key_tfm) = NULL;
1871 goto out;
1872 }
f4aad16a 1873 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
f4aad16a
MH
1874out:
1875 return rc;
1876}
1877
af440f52
ES
1878/**
1879 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1880 * @cipher_name: the name of the cipher to search for
1881 * @key_tfm: set to corresponding tfm if found
1882 *
1883 * Searches for cached key_tfm matching @cipher_name
1884 * Must be called with &key_tfm_list_mutex held
1885 * Returns 1 if found, with @key_tfm set
1886 * Returns 0 if not found, with @key_tfm set to NULL
1887 */
1888int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1889{
1890 struct ecryptfs_key_tfm *tmp_key_tfm;
1891
1892 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1893
1894 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1895 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1896 if (key_tfm)
1897 (*key_tfm) = tmp_key_tfm;
1898 return 1;
1899 }
1900 }
1901 if (key_tfm)
1902 (*key_tfm) = NULL;
1903 return 0;
1904}
1905
1906/**
1907 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1908 *
1909 * @tfm: set to cached tfm found, or new tfm created
1910 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1911 * @cipher_name: the name of the cipher to search for and/or add
1912 *
1913 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1914 * Searches for cached item first, and creates new if not found.
1915 * Returns 0 on success, non-zero if adding new cipher failed
1916 */
f4aad16a
MH
1917int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1918 struct mutex **tfm_mutex,
1919 char *cipher_name)
1920{
1921 struct ecryptfs_key_tfm *key_tfm;
1922 int rc = 0;
1923
1924 (*tfm) = NULL;
1925 (*tfm_mutex) = NULL;
af440f52 1926
f4aad16a 1927 mutex_lock(&key_tfm_list_mutex);
af440f52
ES
1928 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1929 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1930 if (rc) {
1931 printk(KERN_ERR "Error adding new key_tfm to list; "
1932 "rc = [%d]\n", rc);
f4aad16a
MH
1933 goto out;
1934 }
1935 }
f4aad16a
MH
1936 (*tfm) = key_tfm->key_tfm;
1937 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1938out:
71fd5179 1939 mutex_unlock(&key_tfm_list_mutex);
f4aad16a
MH
1940 return rc;
1941}
51ca58dc
MH
1942
1943/* 64 characters forming a 6-bit target field */
1944static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1945 "EFGHIJKLMNOPQRST"
1946 "UVWXYZabcdefghij"
1947 "klmnopqrstuvwxyz");
1948
1949/* We could either offset on every reverse map or just pad some 0x00's
1950 * at the front here */
0f751e64 1951static const unsigned char filename_rev_map[256] = {
51ca58dc
MH
1952 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1953 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1954 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1955 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1956 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1957 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1958 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1959 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1960 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1961 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1962 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1963 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1964 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1965 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1966 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
0f751e64 1967 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
51ca58dc
MH
1968};
1969
1970/**
1971 * ecryptfs_encode_for_filename
1972 * @dst: Destination location for encoded filename
1973 * @dst_size: Size of the encoded filename in bytes
1974 * @src: Source location for the filename to encode
1975 * @src_size: Size of the source in bytes
1976 */
1977void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1978 unsigned char *src, size_t src_size)
1979{
1980 size_t num_blocks;
1981 size_t block_num = 0;
1982 size_t dst_offset = 0;
1983 unsigned char last_block[3];
1984
1985 if (src_size == 0) {
1986 (*dst_size) = 0;
1987 goto out;
1988 }
1989 num_blocks = (src_size / 3);
1990 if ((src_size % 3) == 0) {
1991 memcpy(last_block, (&src[src_size - 3]), 3);
1992 } else {
1993 num_blocks++;
1994 last_block[2] = 0x00;
1995 switch (src_size % 3) {
1996 case 1:
1997 last_block[0] = src[src_size - 1];
1998 last_block[1] = 0x00;
1999 break;
2000 case 2:
2001 last_block[0] = src[src_size - 2];
2002 last_block[1] = src[src_size - 1];
2003 }
2004 }
2005 (*dst_size) = (num_blocks * 4);
2006 if (!dst)
2007 goto out;
2008 while (block_num < num_blocks) {
2009 unsigned char *src_block;
2010 unsigned char dst_block[4];
2011
2012 if (block_num == (num_blocks - 1))
2013 src_block = last_block;
2014 else
2015 src_block = &src[block_num * 3];
2016 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
2017 dst_block[1] = (((src_block[0] << 4) & 0x30)
2018 | ((src_block[1] >> 4) & 0x0F));
2019 dst_block[2] = (((src_block[1] << 2) & 0x3C)
2020 | ((src_block[2] >> 6) & 0x03));
2021 dst_block[3] = (src_block[2] & 0x3F);
2022 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2023 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2024 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2025 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2026 block_num++;
2027 }
2028out:
2029 return;
2030}
2031
71c11c37
MH
2032/**
2033 * ecryptfs_decode_from_filename
2034 * @dst: If NULL, this function only sets @dst_size and returns. If
2035 * non-NULL, this function decodes the encoded octets in @src
2036 * into the memory that @dst points to.
2037 * @dst_size: Set to the size of the decoded string.
2038 * @src: The encoded set of octets to decode.
2039 * @src_size: The size of the encoded set of octets to decode.
2040 */
2041static void
2042ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2043 const unsigned char *src, size_t src_size)
51ca58dc
MH
2044{
2045 u8 current_bit_offset = 0;
2046 size_t src_byte_offset = 0;
2047 size_t dst_byte_offset = 0;
51ca58dc
MH
2048
2049 if (dst == NULL) {
71c11c37
MH
2050 /* Not exact; conservatively long. Every block of 4
2051 * encoded characters decodes into a block of 3
2052 * decoded characters. This segment of code provides
2053 * the caller with the maximum amount of allocated
2054 * space that @dst will need to point to in a
2055 * subsequent call. */
51ca58dc
MH
2056 (*dst_size) = (((src_size + 1) * 3) / 4);
2057 goto out;
2058 }
2059 while (src_byte_offset < src_size) {
2060 unsigned char src_byte =
2061 filename_rev_map[(int)src[src_byte_offset]];
2062
2063 switch (current_bit_offset) {
2064 case 0:
2065 dst[dst_byte_offset] = (src_byte << 2);
2066 current_bit_offset = 6;
2067 break;
2068 case 6:
2069 dst[dst_byte_offset++] |= (src_byte >> 4);
2070 dst[dst_byte_offset] = ((src_byte & 0xF)
2071 << 4);
2072 current_bit_offset = 4;
2073 break;
2074 case 4:
2075 dst[dst_byte_offset++] |= (src_byte >> 2);
2076 dst[dst_byte_offset] = (src_byte << 6);
2077 current_bit_offset = 2;
2078 break;
2079 case 2:
2080 dst[dst_byte_offset++] |= (src_byte);
2081 dst[dst_byte_offset] = 0;
2082 current_bit_offset = 0;
2083 break;
2084 }
2085 src_byte_offset++;
2086 }
2087 (*dst_size) = dst_byte_offset;
2088out:
71c11c37 2089 return;
51ca58dc
MH
2090}
2091
2092/**
2093 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2094 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2095 * @name: The plaintext name
2096 * @length: The length of the plaintext
2097 * @encoded_name: The encypted name
2098 *
2099 * Encrypts and encodes a filename into something that constitutes a
2100 * valid filename for a filesystem, with printable characters.
2101 *
2102 * We assume that we have a properly initialized crypto context,
2103 * pointed to by crypt_stat->tfm.
2104 *
2105 * Returns zero on success; non-zero on otherwise
2106 */
2107int ecryptfs_encrypt_and_encode_filename(
2108 char **encoded_name,
2109 size_t *encoded_name_size,
2110 struct ecryptfs_crypt_stat *crypt_stat,
2111 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2112 const char *name, size_t name_size)
2113{
2114 size_t encoded_name_no_prefix_size;
2115 int rc = 0;
2116
2117 (*encoded_name) = NULL;
2118 (*encoded_name_size) = 0;
2119 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2120 || (mount_crypt_stat && (mount_crypt_stat->flags
2121 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2122 struct ecryptfs_filename *filename;
2123
2124 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2125 if (!filename) {
2126 printk(KERN_ERR "%s: Out of memory whilst attempting "
a8f12864 2127 "to kzalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2128 sizeof(*filename));
2129 rc = -ENOMEM;
2130 goto out;
2131 }
2132 filename->filename = (char *)name;
2133 filename->filename_size = name_size;
2134 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2135 mount_crypt_stat);
2136 if (rc) {
2137 printk(KERN_ERR "%s: Error attempting to encrypt "
2138 "filename; rc = [%d]\n", __func__, rc);
2139 kfree(filename);
2140 goto out;
2141 }
2142 ecryptfs_encode_for_filename(
2143 NULL, &encoded_name_no_prefix_size,
2144 filename->encrypted_filename,
2145 filename->encrypted_filename_size);
2146 if ((crypt_stat && (crypt_stat->flags
2147 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2148 || (mount_crypt_stat
2149 && (mount_crypt_stat->flags
2150 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2151 (*encoded_name_size) =
2152 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2153 + encoded_name_no_prefix_size);
2154 else
2155 (*encoded_name_size) =
2156 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2157 + encoded_name_no_prefix_size);
2158 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2159 if (!(*encoded_name)) {
2160 printk(KERN_ERR "%s: Out of memory whilst attempting "
a8f12864 2161 "to kzalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2162 (*encoded_name_size));
2163 rc = -ENOMEM;
2164 kfree(filename->encrypted_filename);
2165 kfree(filename);
2166 goto out;
2167 }
2168 if ((crypt_stat && (crypt_stat->flags
2169 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2170 || (mount_crypt_stat
2171 && (mount_crypt_stat->flags
2172 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2173 memcpy((*encoded_name),
2174 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2175 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2176 ecryptfs_encode_for_filename(
2177 ((*encoded_name)
2178 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2179 &encoded_name_no_prefix_size,
2180 filename->encrypted_filename,
2181 filename->encrypted_filename_size);
2182 (*encoded_name_size) =
2183 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2184 + encoded_name_no_prefix_size);
2185 (*encoded_name)[(*encoded_name_size)] = '\0';
51ca58dc 2186 } else {
df6ad33b 2187 rc = -EOPNOTSUPP;
51ca58dc
MH
2188 }
2189 if (rc) {
2190 printk(KERN_ERR "%s: Error attempting to encode "
2191 "encrypted filename; rc = [%d]\n", __func__,
2192 rc);
2193 kfree((*encoded_name));
2194 (*encoded_name) = NULL;
2195 (*encoded_name_size) = 0;
2196 }
2197 kfree(filename->encrypted_filename);
2198 kfree(filename);
2199 } else {
2200 rc = ecryptfs_copy_filename(encoded_name,
2201 encoded_name_size,
2202 name, name_size);
2203 }
2204out:
2205 return rc;
2206}
2207
2208/**
2209 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2210 * @plaintext_name: The plaintext name
2211 * @plaintext_name_size: The plaintext name size
2212 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2213 * @name: The filename in cipher text
2214 * @name_size: The cipher text name size
2215 *
2216 * Decrypts and decodes the filename.
2217 *
2218 * Returns zero on error; non-zero otherwise
2219 */
2220int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2221 size_t *plaintext_name_size,
2222 struct dentry *ecryptfs_dir_dentry,
2223 const char *name, size_t name_size)
2224{
2aac0cf8
TH
2225 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2226 &ecryptfs_superblock_to_private(
2227 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
51ca58dc
MH
2228 char *decoded_name;
2229 size_t decoded_name_size;
2230 size_t packet_size;
2231 int rc = 0;
2232
2aac0cf8
TH
2233 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2234 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2235 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
51ca58dc
MH
2236 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2237 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
51ca58dc
MH
2238 const char *orig_name = name;
2239 size_t orig_name_size = name_size;
2240
2241 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2242 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
71c11c37
MH
2243 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2244 name, name_size);
51ca58dc
MH
2245 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2246 if (!decoded_name) {
2247 printk(KERN_ERR "%s: Out of memory whilst attempting "
df261c52 2248 "to kmalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2249 decoded_name_size);
2250 rc = -ENOMEM;
2251 goto out;
2252 }
71c11c37
MH
2253 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2254 name, name_size);
51ca58dc
MH
2255 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2256 plaintext_name_size,
2257 &packet_size,
2258 mount_crypt_stat,
2259 decoded_name,
2260 decoded_name_size);
2261 if (rc) {
2262 printk(KERN_INFO "%s: Could not parse tag 70 packet "
2263 "from filename; copying through filename "
2264 "as-is\n", __func__);
2265 rc = ecryptfs_copy_filename(plaintext_name,
2266 plaintext_name_size,
2267 orig_name, orig_name_size);
2268 goto out_free;
2269 }
2270 } else {
2271 rc = ecryptfs_copy_filename(plaintext_name,
2272 plaintext_name_size,
2273 name, name_size);
2274 goto out;
2275 }
2276out_free:
2277 kfree(decoded_name);
2278out:
2279 return rc;
2280}
This page took 0.545338 seconds and 5 git commands to generate.