eCryptfs: remove header_extent_size
[deliverable/linux.git] / fs / ecryptfs / crypto.c
CommitLineData
237fead6
MH
1/**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
dd2a3b7a 6 * Copyright (C) 2004-2007 International Business Machines Corp.
237fead6
MH
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/mount.h>
28#include <linux/pagemap.h>
29#include <linux/random.h>
30#include <linux/compiler.h>
31#include <linux/key.h>
32#include <linux/namei.h>
33#include <linux/crypto.h>
34#include <linux/file.h>
35#include <linux/scatterlist.h>
36#include "ecryptfs_kernel.h"
37
38static int
39ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
40 struct page *dst_page, int dst_offset,
41 struct page *src_page, int src_offset, int size,
42 unsigned char *iv);
43static int
44ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
45 struct page *dst_page, int dst_offset,
46 struct page *src_page, int src_offset, int size,
47 unsigned char *iv);
48
49/**
50 * ecryptfs_to_hex
51 * @dst: Buffer to take hex character representation of contents of
52 * src; must be at least of size (src_size * 2)
53 * @src: Buffer to be converted to a hex string respresentation
54 * @src_size: number of bytes to convert
55 */
56void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
57{
58 int x;
59
60 for (x = 0; x < src_size; x++)
61 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
62}
63
64/**
65 * ecryptfs_from_hex
66 * @dst: Buffer to take the bytes from src hex; must be at least of
67 * size (src_size / 2)
68 * @src: Buffer to be converted from a hex string respresentation to raw value
69 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
70 */
71void ecryptfs_from_hex(char *dst, char *src, int dst_size)
72{
73 int x;
74 char tmp[3] = { 0, };
75
76 for (x = 0; x < dst_size; x++) {
77 tmp[0] = src[x * 2];
78 tmp[1] = src[x * 2 + 1];
79 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
80 }
81}
82
83/**
84 * ecryptfs_calculate_md5 - calculates the md5 of @src
85 * @dst: Pointer to 16 bytes of allocated memory
86 * @crypt_stat: Pointer to crypt_stat struct for the current inode
87 * @src: Data to be md5'd
88 * @len: Length of @src
89 *
90 * Uses the allocated crypto context that crypt_stat references to
91 * generate the MD5 sum of the contents of src.
92 */
93static int ecryptfs_calculate_md5(char *dst,
94 struct ecryptfs_crypt_stat *crypt_stat,
95 char *src, int len)
96{
237fead6 97 struct scatterlist sg;
565d9724
MH
98 struct hash_desc desc = {
99 .tfm = crypt_stat->hash_tfm,
100 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
101 };
102 int rc = 0;
237fead6 103
565d9724 104 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
237fead6 105 sg_init_one(&sg, (u8 *)src, len);
565d9724
MH
106 if (!desc.tfm) {
107 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
108 CRYPTO_ALG_ASYNC);
109 if (IS_ERR(desc.tfm)) {
110 rc = PTR_ERR(desc.tfm);
237fead6 111 ecryptfs_printk(KERN_ERR, "Error attempting to "
565d9724
MH
112 "allocate crypto context; rc = [%d]\n",
113 rc);
237fead6
MH
114 goto out;
115 }
565d9724 116 crypt_stat->hash_tfm = desc.tfm;
237fead6 117 }
565d9724
MH
118 crypto_hash_init(&desc);
119 crypto_hash_update(&desc, &sg, len);
120 crypto_hash_final(&desc, dst);
121 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
237fead6
MH
122out:
123 return rc;
124}
125
cd9d67df
MH
126static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
127 char *cipher_name,
128 char *chaining_modifier)
8bba066f
MH
129{
130 int cipher_name_len = strlen(cipher_name);
131 int chaining_modifier_len = strlen(chaining_modifier);
132 int algified_name_len;
133 int rc;
134
135 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
136 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
7bd473fc 137 if (!(*algified_name)) {
8bba066f
MH
138 rc = -ENOMEM;
139 goto out;
140 }
141 snprintf((*algified_name), algified_name_len, "%s(%s)",
142 chaining_modifier, cipher_name);
143 rc = 0;
144out:
145 return rc;
146}
147
237fead6
MH
148/**
149 * ecryptfs_derive_iv
150 * @iv: destination for the derived iv vale
151 * @crypt_stat: Pointer to crypt_stat struct for the current inode
152 * @offset: Offset of the page whose's iv we are to derive
153 *
154 * Generate the initialization vector from the given root IV and page
155 * offset.
156 *
157 * Returns zero on success; non-zero on error.
158 */
159static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
160 pgoff_t offset)
161{
162 int rc = 0;
163 char dst[MD5_DIGEST_SIZE];
164 char src[ECRYPTFS_MAX_IV_BYTES + 16];
165
166 if (unlikely(ecryptfs_verbosity > 0)) {
167 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
168 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
169 }
170 /* TODO: It is probably secure to just cast the least
171 * significant bits of the root IV into an unsigned long and
172 * add the offset to that rather than go through all this
173 * hashing business. -Halcrow */
174 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
175 memset((src + crypt_stat->iv_bytes), 0, 16);
176 snprintf((src + crypt_stat->iv_bytes), 16, "%ld", offset);
177 if (unlikely(ecryptfs_verbosity > 0)) {
178 ecryptfs_printk(KERN_DEBUG, "source:\n");
179 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
180 }
181 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
182 (crypt_stat->iv_bytes + 16));
183 if (rc) {
184 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
185 "MD5 while generating IV for a page\n");
186 goto out;
187 }
188 memcpy(iv, dst, crypt_stat->iv_bytes);
189 if (unlikely(ecryptfs_verbosity > 0)) {
190 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
191 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
192 }
193out:
194 return rc;
195}
196
197/**
198 * ecryptfs_init_crypt_stat
199 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
200 *
201 * Initialize the crypt_stat structure.
202 */
203void
204ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
205{
206 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
f4aad16a
MH
207 INIT_LIST_HEAD(&crypt_stat->keysig_list);
208 mutex_init(&crypt_stat->keysig_list_mutex);
237fead6
MH
209 mutex_init(&crypt_stat->cs_mutex);
210 mutex_init(&crypt_stat->cs_tfm_mutex);
565d9724 211 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
e2bd99ec 212 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
237fead6
MH
213}
214
215/**
fcd12835 216 * ecryptfs_destroy_crypt_stat
237fead6
MH
217 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
218 *
219 * Releases all memory associated with a crypt_stat struct.
220 */
fcd12835 221void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
237fead6 222{
f4aad16a
MH
223 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
224
237fead6 225 if (crypt_stat->tfm)
8bba066f 226 crypto_free_blkcipher(crypt_stat->tfm);
565d9724
MH
227 if (crypt_stat->hash_tfm)
228 crypto_free_hash(crypt_stat->hash_tfm);
f4aad16a
MH
229 mutex_lock(&crypt_stat->keysig_list_mutex);
230 list_for_each_entry_safe(key_sig, key_sig_tmp,
231 &crypt_stat->keysig_list, crypt_stat_list) {
232 list_del(&key_sig->crypt_stat_list);
233 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
234 }
235 mutex_unlock(&crypt_stat->keysig_list_mutex);
237fead6
MH
236 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
237}
238
fcd12835 239void ecryptfs_destroy_mount_crypt_stat(
237fead6
MH
240 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
241{
f4aad16a
MH
242 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
243
244 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
245 return;
246 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
247 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
248 &mount_crypt_stat->global_auth_tok_list,
249 mount_crypt_stat_list) {
250 list_del(&auth_tok->mount_crypt_stat_list);
251 mount_crypt_stat->num_global_auth_toks--;
252 if (auth_tok->global_auth_tok_key
253 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
254 key_put(auth_tok->global_auth_tok_key);
255 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
256 }
257 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
237fead6
MH
258 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
259}
260
261/**
262 * virt_to_scatterlist
263 * @addr: Virtual address
264 * @size: Size of data; should be an even multiple of the block size
265 * @sg: Pointer to scatterlist array; set to NULL to obtain only
266 * the number of scatterlist structs required in array
267 * @sg_size: Max array size
268 *
269 * Fills in a scatterlist array with page references for a passed
270 * virtual address.
271 *
272 * Returns the number of scatterlist structs in array used
273 */
274int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
275 int sg_size)
276{
277 int i = 0;
278 struct page *pg;
279 int offset;
280 int remainder_of_page;
281
282 while (size > 0 && i < sg_size) {
283 pg = virt_to_page(addr);
284 offset = offset_in_page(addr);
285 if (sg) {
286 sg[i].page = pg;
287 sg[i].offset = offset;
288 }
289 remainder_of_page = PAGE_CACHE_SIZE - offset;
290 if (size >= remainder_of_page) {
291 if (sg)
292 sg[i].length = remainder_of_page;
293 addr += remainder_of_page;
294 size -= remainder_of_page;
295 } else {
296 if (sg)
297 sg[i].length = size;
298 addr += size;
299 size = 0;
300 }
301 i++;
302 }
303 if (size > 0)
304 return -ENOMEM;
305 return i;
306}
307
308/**
309 * encrypt_scatterlist
310 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
311 * @dest_sg: Destination of encrypted data
312 * @src_sg: Data to be encrypted
313 * @size: Length of data to be encrypted
314 * @iv: iv to use during encryption
315 *
316 * Returns the number of bytes encrypted; negative value on error
317 */
318static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
319 struct scatterlist *dest_sg,
320 struct scatterlist *src_sg, int size,
321 unsigned char *iv)
322{
8bba066f
MH
323 struct blkcipher_desc desc = {
324 .tfm = crypt_stat->tfm,
325 .info = iv,
326 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
327 };
237fead6
MH
328 int rc = 0;
329
330 BUG_ON(!crypt_stat || !crypt_stat->tfm
e2bd99ec 331 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
237fead6
MH
332 if (unlikely(ecryptfs_verbosity > 0)) {
333 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
334 crypt_stat->key_size);
335 ecryptfs_dump_hex(crypt_stat->key,
336 crypt_stat->key_size);
337 }
338 /* Consider doing this once, when the file is opened */
339 mutex_lock(&crypt_stat->cs_tfm_mutex);
8bba066f
MH
340 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
341 crypt_stat->key_size);
237fead6
MH
342 if (rc) {
343 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
344 rc);
345 mutex_unlock(&crypt_stat->cs_tfm_mutex);
346 rc = -EINVAL;
347 goto out;
348 }
349 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
8bba066f 350 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
237fead6
MH
351 mutex_unlock(&crypt_stat->cs_tfm_mutex);
352out:
353 return rc;
354}
355
356static void
357ecryptfs_extent_to_lwr_pg_idx_and_offset(unsigned long *lower_page_idx,
358 int *byte_offset,
359 struct ecryptfs_crypt_stat *crypt_stat,
360 unsigned long extent_num)
361{
362 unsigned long lower_extent_num;
363 int extents_occupied_by_headers_at_front;
364 int bytes_occupied_by_headers_at_front;
365 int extent_offset;
366 int extents_per_page;
367
368 bytes_occupied_by_headers_at_front =
45eaab79
MH
369 (crypt_stat->extent_size
370 * crypt_stat->num_header_extents_at_front);
237fead6
MH
371 extents_occupied_by_headers_at_front =
372 ( bytes_occupied_by_headers_at_front
373 / crypt_stat->extent_size );
374 lower_extent_num = extents_occupied_by_headers_at_front + extent_num;
375 extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
376 (*lower_page_idx) = lower_extent_num / extents_per_page;
377 extent_offset = lower_extent_num % extents_per_page;
378 (*byte_offset) = extent_offset * crypt_stat->extent_size;
45eaab79
MH
379 ecryptfs_printk(KERN_DEBUG, " * crypt_stat->extent_size = "
380 "[%d]\n", crypt_stat->extent_size);
237fead6
MH
381 ecryptfs_printk(KERN_DEBUG, " * crypt_stat->"
382 "num_header_extents_at_front = [%d]\n",
383 crypt_stat->num_header_extents_at_front);
384 ecryptfs_printk(KERN_DEBUG, " * extents_occupied_by_headers_at_"
385 "front = [%d]\n", extents_occupied_by_headers_at_front);
386 ecryptfs_printk(KERN_DEBUG, " * lower_extent_num = [0x%.16x]\n",
387 lower_extent_num);
388 ecryptfs_printk(KERN_DEBUG, " * extents_per_page = [%d]\n",
389 extents_per_page);
390 ecryptfs_printk(KERN_DEBUG, " * (*lower_page_idx) = [0x%.16x]\n",
391 (*lower_page_idx));
392 ecryptfs_printk(KERN_DEBUG, " * extent_offset = [%d]\n",
393 extent_offset);
394 ecryptfs_printk(KERN_DEBUG, " * (*byte_offset) = [%d]\n",
395 (*byte_offset));
396}
397
398static int ecryptfs_write_out_page(struct ecryptfs_page_crypt_context *ctx,
399 struct page *lower_page,
400 struct inode *lower_inode,
401 int byte_offset_in_page, int bytes_to_write)
402{
403 int rc = 0;
404
405 if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
406 rc = ecryptfs_commit_lower_page(lower_page, lower_inode,
407 ctx->param.lower_file,
408 byte_offset_in_page,
409 bytes_to_write);
410 if (rc) {
411 ecryptfs_printk(KERN_ERR, "Error calling lower "
412 "commit; rc = [%d]\n", rc);
413 goto out;
414 }
415 } else {
416 rc = ecryptfs_writepage_and_release_lower_page(lower_page,
417 lower_inode,
418 ctx->param.wbc);
419 if (rc) {
420 ecryptfs_printk(KERN_ERR, "Error calling lower "
421 "writepage(); rc = [%d]\n", rc);
422 goto out;
423 }
424 }
425out:
426 return rc;
427}
428
429static int ecryptfs_read_in_page(struct ecryptfs_page_crypt_context *ctx,
430 struct page **lower_page,
431 struct inode *lower_inode,
432 unsigned long lower_page_idx,
433 int byte_offset_in_page)
434{
435 int rc = 0;
436
437 if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
438 /* TODO: Limit this to only the data extents that are
439 * needed */
440 rc = ecryptfs_get_lower_page(lower_page, lower_inode,
441 ctx->param.lower_file,
442 lower_page_idx,
443 byte_offset_in_page,
444 (PAGE_CACHE_SIZE
445 - byte_offset_in_page));
446 if (rc) {
447 ecryptfs_printk(
448 KERN_ERR, "Error attempting to grab, map, "
449 "and prepare_write lower page with index "
450 "[0x%.16x]; rc = [%d]\n", lower_page_idx, rc);
451 goto out;
452 }
453 } else {
9d8b8ce5
MH
454 *lower_page = grab_cache_page(lower_inode->i_mapping,
455 lower_page_idx);
456 if (!(*lower_page)) {
457 rc = -EINVAL;
237fead6
MH
458 ecryptfs_printk(
459 KERN_ERR, "Error attempting to grab and map "
460 "lower page with index [0x%.16x]; rc = [%d]\n",
461 lower_page_idx, rc);
462 goto out;
463 }
464 }
465out:
466 return rc;
467}
468
469/**
470 * ecryptfs_encrypt_page
471 * @ctx: The context of the page
472 *
473 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
474 * that eCryptfs pages may straddle the lower pages -- for instance,
475 * if the file was created on a machine with an 8K page size
476 * (resulting in an 8K header), and then the file is copied onto a
477 * host with a 32K page size, then when reading page 0 of the eCryptfs
478 * file, 24K of page 0 of the lower file will be read and decrypted,
479 * and then 8K of page 1 of the lower file will be read and decrypted.
480 *
481 * The actual operations performed on each page depends on the
482 * contents of the ecryptfs_page_crypt_context struct.
483 *
484 * Returns zero on success; negative on error
485 */
486int ecryptfs_encrypt_page(struct ecryptfs_page_crypt_context *ctx)
487{
488 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
489 unsigned long base_extent;
490 unsigned long extent_offset = 0;
491 unsigned long lower_page_idx = 0;
492 unsigned long prior_lower_page_idx = 0;
493 struct page *lower_page;
494 struct inode *lower_inode;
495 struct ecryptfs_inode_info *inode_info;
496 struct ecryptfs_crypt_stat *crypt_stat;
497 int rc = 0;
498 int lower_byte_offset = 0;
499 int orig_byte_offset = 0;
500 int num_extents_per_page;
501#define ECRYPTFS_PAGE_STATE_UNREAD 0
502#define ECRYPTFS_PAGE_STATE_READ 1
503#define ECRYPTFS_PAGE_STATE_MODIFIED 2
504#define ECRYPTFS_PAGE_STATE_WRITTEN 3
505 int page_state;
506
507 lower_inode = ecryptfs_inode_to_lower(ctx->page->mapping->host);
508 inode_info = ecryptfs_inode_to_private(ctx->page->mapping->host);
509 crypt_stat = &inode_info->crypt_stat;
e2bd99ec 510 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
237fead6
MH
511 rc = ecryptfs_copy_page_to_lower(ctx->page, lower_inode,
512 ctx->param.lower_file);
513 if (rc)
514 ecryptfs_printk(KERN_ERR, "Error attempting to copy "
515 "page at index [0x%.16x]\n",
516 ctx->page->index);
517 goto out;
518 }
519 num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
520 base_extent = (ctx->page->index * num_extents_per_page);
521 page_state = ECRYPTFS_PAGE_STATE_UNREAD;
522 while (extent_offset < num_extents_per_page) {
523 ecryptfs_extent_to_lwr_pg_idx_and_offset(
524 &lower_page_idx, &lower_byte_offset, crypt_stat,
525 (base_extent + extent_offset));
526 if (prior_lower_page_idx != lower_page_idx
527 && page_state == ECRYPTFS_PAGE_STATE_MODIFIED) {
528 rc = ecryptfs_write_out_page(ctx, lower_page,
529 lower_inode,
530 orig_byte_offset,
531 (PAGE_CACHE_SIZE
532 - orig_byte_offset));
533 if (rc) {
534 ecryptfs_printk(KERN_ERR, "Error attempting "
535 "to write out page; rc = [%d]"
536 "\n", rc);
537 goto out;
538 }
539 page_state = ECRYPTFS_PAGE_STATE_WRITTEN;
540 }
541 if (page_state == ECRYPTFS_PAGE_STATE_UNREAD
542 || page_state == ECRYPTFS_PAGE_STATE_WRITTEN) {
543 rc = ecryptfs_read_in_page(ctx, &lower_page,
544 lower_inode, lower_page_idx,
545 lower_byte_offset);
546 if (rc) {
547 ecryptfs_printk(KERN_ERR, "Error attempting "
548 "to read in lower page with "
549 "index [0x%.16x]; rc = [%d]\n",
550 lower_page_idx, rc);
551 goto out;
552 }
553 orig_byte_offset = lower_byte_offset;
554 prior_lower_page_idx = lower_page_idx;
555 page_state = ECRYPTFS_PAGE_STATE_READ;
556 }
557 BUG_ON(!(page_state == ECRYPTFS_PAGE_STATE_MODIFIED
558 || page_state == ECRYPTFS_PAGE_STATE_READ));
559 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
560 (base_extent + extent_offset));
561 if (rc) {
562 ecryptfs_printk(KERN_ERR, "Error attempting to "
563 "derive IV for extent [0x%.16x]; "
564 "rc = [%d]\n",
565 (base_extent + extent_offset), rc);
566 goto out;
567 }
568 if (unlikely(ecryptfs_verbosity > 0)) {
569 ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
570 "with iv:\n");
571 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
572 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
573 "encryption:\n");
574 ecryptfs_dump_hex((char *)
575 (page_address(ctx->page)
576 + (extent_offset
577 * crypt_stat->extent_size)), 8);
578 }
579 rc = ecryptfs_encrypt_page_offset(
580 crypt_stat, lower_page, lower_byte_offset, ctx->page,
581 (extent_offset * crypt_stat->extent_size),
582 crypt_stat->extent_size, extent_iv);
583 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
584 "rc = [%d]\n",
585 (base_extent + extent_offset), rc);
586 if (unlikely(ecryptfs_verbosity > 0)) {
587 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
588 "encryption:\n");
589 ecryptfs_dump_hex((char *)(page_address(lower_page)
590 + lower_byte_offset), 8);
591 }
592 page_state = ECRYPTFS_PAGE_STATE_MODIFIED;
593 extent_offset++;
594 }
595 BUG_ON(orig_byte_offset != 0);
596 rc = ecryptfs_write_out_page(ctx, lower_page, lower_inode, 0,
597 (lower_byte_offset
598 + crypt_stat->extent_size));
599 if (rc) {
600 ecryptfs_printk(KERN_ERR, "Error attempting to write out "
601 "page; rc = [%d]\n", rc);
602 goto out;
603 }
604out:
605 return rc;
606}
607
608/**
609 * ecryptfs_decrypt_page
610 * @file: The ecryptfs file
611 * @page: The page in ecryptfs to decrypt
612 *
613 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
614 * that eCryptfs pages may straddle the lower pages -- for instance,
615 * if the file was created on a machine with an 8K page size
616 * (resulting in an 8K header), and then the file is copied onto a
617 * host with a 32K page size, then when reading page 0 of the eCryptfs
618 * file, 24K of page 0 of the lower file will be read and decrypted,
619 * and then 8K of page 1 of the lower file will be read and decrypted.
620 *
621 * Returns zero on success; negative on error
622 */
623int ecryptfs_decrypt_page(struct file *file, struct page *page)
624{
625 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
626 unsigned long base_extent;
627 unsigned long extent_offset = 0;
628 unsigned long lower_page_idx = 0;
629 unsigned long prior_lower_page_idx = 0;
630 struct page *lower_page;
631 char *lower_page_virt = NULL;
632 struct inode *lower_inode;
633 struct ecryptfs_crypt_stat *crypt_stat;
634 int rc = 0;
635 int byte_offset;
636 int num_extents_per_page;
637 int page_state;
638
639 crypt_stat = &(ecryptfs_inode_to_private(
640 page->mapping->host)->crypt_stat);
641 lower_inode = ecryptfs_inode_to_lower(page->mapping->host);
e2bd99ec 642 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
237fead6
MH
643 rc = ecryptfs_do_readpage(file, page, page->index);
644 if (rc)
645 ecryptfs_printk(KERN_ERR, "Error attempting to copy "
646 "page at index [0x%.16x]\n",
647 page->index);
648 goto out;
649 }
650 num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
651 base_extent = (page->index * num_extents_per_page);
652 lower_page_virt = kmem_cache_alloc(ecryptfs_lower_page_cache,
e94b1766 653 GFP_KERNEL);
237fead6
MH
654 if (!lower_page_virt) {
655 rc = -ENOMEM;
656 ecryptfs_printk(KERN_ERR, "Error getting page for encrypted "
657 "lower page(s)\n");
658 goto out;
659 }
660 lower_page = virt_to_page(lower_page_virt);
661 page_state = ECRYPTFS_PAGE_STATE_UNREAD;
662 while (extent_offset < num_extents_per_page) {
663 ecryptfs_extent_to_lwr_pg_idx_and_offset(
664 &lower_page_idx, &byte_offset, crypt_stat,
665 (base_extent + extent_offset));
666 if (prior_lower_page_idx != lower_page_idx
667 || page_state == ECRYPTFS_PAGE_STATE_UNREAD) {
668 rc = ecryptfs_do_readpage(file, lower_page,
669 lower_page_idx);
670 if (rc) {
671 ecryptfs_printk(KERN_ERR, "Error reading "
672 "lower encrypted page; rc = "
673 "[%d]\n", rc);
674 goto out;
675 }
676 prior_lower_page_idx = lower_page_idx;
677 page_state = ECRYPTFS_PAGE_STATE_READ;
678 }
679 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
680 (base_extent + extent_offset));
681 if (rc) {
682 ecryptfs_printk(KERN_ERR, "Error attempting to "
683 "derive IV for extent [0x%.16x]; rc = "
684 "[%d]\n",
685 (base_extent + extent_offset), rc);
686 goto out;
687 }
688 if (unlikely(ecryptfs_verbosity > 0)) {
689 ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
690 "with iv:\n");
691 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
692 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
693 "decryption:\n");
694 ecryptfs_dump_hex((lower_page_virt + byte_offset), 8);
695 }
696 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
697 (extent_offset
698 * crypt_stat->extent_size),
699 lower_page, byte_offset,
700 crypt_stat->extent_size,
701 extent_iv);
702 if (rc != crypt_stat->extent_size) {
703 ecryptfs_printk(KERN_ERR, "Error attempting to "
704 "decrypt extent [0x%.16x]\n",
705 (base_extent + extent_offset));
706 goto out;
707 }
708 rc = 0;
709 if (unlikely(ecryptfs_verbosity > 0)) {
710 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
711 "decryption:\n");
712 ecryptfs_dump_hex((char *)(page_address(page)
713 + byte_offset), 8);
714 }
715 extent_offset++;
716 }
717out:
718 if (lower_page_virt)
719 kmem_cache_free(ecryptfs_lower_page_cache, lower_page_virt);
720 return rc;
721}
722
723/**
724 * decrypt_scatterlist
22e78faf
MH
725 * @crypt_stat: Cryptographic context
726 * @dest_sg: The destination scatterlist to decrypt into
727 * @src_sg: The source scatterlist to decrypt from
728 * @size: The number of bytes to decrypt
729 * @iv: The initialization vector to use for the decryption
237fead6
MH
730 *
731 * Returns the number of bytes decrypted; negative value on error
732 */
733static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
734 struct scatterlist *dest_sg,
735 struct scatterlist *src_sg, int size,
736 unsigned char *iv)
737{
8bba066f
MH
738 struct blkcipher_desc desc = {
739 .tfm = crypt_stat->tfm,
740 .info = iv,
741 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
742 };
237fead6
MH
743 int rc = 0;
744
745 /* Consider doing this once, when the file is opened */
746 mutex_lock(&crypt_stat->cs_tfm_mutex);
8bba066f
MH
747 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
748 crypt_stat->key_size);
237fead6
MH
749 if (rc) {
750 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
751 rc);
752 mutex_unlock(&crypt_stat->cs_tfm_mutex);
753 rc = -EINVAL;
754 goto out;
755 }
756 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
8bba066f 757 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
237fead6
MH
758 mutex_unlock(&crypt_stat->cs_tfm_mutex);
759 if (rc) {
760 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
761 rc);
762 goto out;
763 }
764 rc = size;
765out:
766 return rc;
767}
768
769/**
770 * ecryptfs_encrypt_page_offset
22e78faf
MH
771 * @crypt_stat: The cryptographic context
772 * @dst_page: The page to encrypt into
773 * @dst_offset: The offset in the page to encrypt into
774 * @src_page: The page to encrypt from
775 * @src_offset: The offset in the page to encrypt from
776 * @size: The number of bytes to encrypt
777 * @iv: The initialization vector to use for the encryption
237fead6
MH
778 *
779 * Returns the number of bytes encrypted
780 */
781static int
782ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
783 struct page *dst_page, int dst_offset,
784 struct page *src_page, int src_offset, int size,
785 unsigned char *iv)
786{
787 struct scatterlist src_sg, dst_sg;
788
789 src_sg.page = src_page;
790 src_sg.offset = src_offset;
791 src_sg.length = size;
792 dst_sg.page = dst_page;
793 dst_sg.offset = dst_offset;
794 dst_sg.length = size;
795 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
796}
797
798/**
799 * ecryptfs_decrypt_page_offset
22e78faf
MH
800 * @crypt_stat: The cryptographic context
801 * @dst_page: The page to decrypt into
802 * @dst_offset: The offset in the page to decrypt into
803 * @src_page: The page to decrypt from
804 * @src_offset: The offset in the page to decrypt from
805 * @size: The number of bytes to decrypt
806 * @iv: The initialization vector to use for the decryption
237fead6
MH
807 *
808 * Returns the number of bytes decrypted
809 */
810static int
811ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
812 struct page *dst_page, int dst_offset,
813 struct page *src_page, int src_offset, int size,
814 unsigned char *iv)
815{
816 struct scatterlist src_sg, dst_sg;
817
818 src_sg.page = src_page;
819 src_sg.offset = src_offset;
820 src_sg.length = size;
821 dst_sg.page = dst_page;
822 dst_sg.offset = dst_offset;
823 dst_sg.length = size;
824 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
825}
826
827#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
828
829/**
830 * ecryptfs_init_crypt_ctx
831 * @crypt_stat: Uninitilized crypt stats structure
832 *
833 * Initialize the crypto context.
834 *
835 * TODO: Performance: Keep a cache of initialized cipher contexts;
836 * only init if needed
837 */
838int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
839{
8bba066f 840 char *full_alg_name;
237fead6
MH
841 int rc = -EINVAL;
842
843 if (!crypt_stat->cipher) {
844 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
845 goto out;
846 }
847 ecryptfs_printk(KERN_DEBUG,
848 "Initializing cipher [%s]; strlen = [%d]; "
849 "key_size_bits = [%d]\n",
850 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
851 crypt_stat->key_size << 3);
852 if (crypt_stat->tfm) {
853 rc = 0;
854 goto out;
855 }
856 mutex_lock(&crypt_stat->cs_tfm_mutex);
8bba066f
MH
857 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
858 crypt_stat->cipher, "cbc");
859 if (rc)
860 goto out;
861 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
862 CRYPTO_ALG_ASYNC);
863 kfree(full_alg_name);
de88777e
AM
864 if (IS_ERR(crypt_stat->tfm)) {
865 rc = PTR_ERR(crypt_stat->tfm);
237fead6
MH
866 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
867 "Error initializing cipher [%s]\n",
868 crypt_stat->cipher);
8bba066f 869 mutex_unlock(&crypt_stat->cs_tfm_mutex);
237fead6
MH
870 goto out;
871 }
f1ddcaf3 872 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
8bba066f 873 mutex_unlock(&crypt_stat->cs_tfm_mutex);
237fead6
MH
874 rc = 0;
875out:
876 return rc;
877}
878
879static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
880{
881 int extent_size_tmp;
882
883 crypt_stat->extent_mask = 0xFFFFFFFF;
884 crypt_stat->extent_shift = 0;
885 if (crypt_stat->extent_size == 0)
886 return;
887 extent_size_tmp = crypt_stat->extent_size;
888 while ((extent_size_tmp & 0x01) == 0) {
889 extent_size_tmp >>= 1;
890 crypt_stat->extent_mask <<= 1;
891 crypt_stat->extent_shift++;
892 }
893}
894
895void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
896{
897 /* Default values; may be overwritten as we are parsing the
898 * packets. */
899 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
900 set_extent_mask_and_shift(crypt_stat);
901 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
dd2a3b7a
MH
902 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
903 crypt_stat->num_header_extents_at_front = 0;
45eaab79
MH
904 else {
905 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
906 crypt_stat->num_header_extents_at_front =
907 (ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
908 / crypt_stat->extent_size);
909 else
910 crypt_stat->num_header_extents_at_front =
911 (PAGE_CACHE_SIZE / crypt_stat->extent_size);
912 }
237fead6
MH
913}
914
915/**
916 * ecryptfs_compute_root_iv
917 * @crypt_stats
918 *
919 * On error, sets the root IV to all 0's.
920 */
921int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
922{
923 int rc = 0;
924 char dst[MD5_DIGEST_SIZE];
925
926 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
927 BUG_ON(crypt_stat->iv_bytes <= 0);
e2bd99ec 928 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
237fead6
MH
929 rc = -EINVAL;
930 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
931 "cannot generate root IV\n");
932 goto out;
933 }
934 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
935 crypt_stat->key_size);
936 if (rc) {
937 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
938 "MD5 while generating root IV\n");
939 goto out;
940 }
941 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
942out:
943 if (rc) {
944 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
e2bd99ec 945 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
237fead6
MH
946 }
947 return rc;
948}
949
950static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
951{
952 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
e2bd99ec 953 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
237fead6
MH
954 ecryptfs_compute_root_iv(crypt_stat);
955 if (unlikely(ecryptfs_verbosity > 0)) {
956 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
957 ecryptfs_dump_hex(crypt_stat->key,
958 crypt_stat->key_size);
959 }
960}
961
17398957
MH
962/**
963 * ecryptfs_copy_mount_wide_flags_to_inode_flags
22e78faf
MH
964 * @crypt_stat: The inode's cryptographic context
965 * @mount_crypt_stat: The mount point's cryptographic context
17398957
MH
966 *
967 * This function propagates the mount-wide flags to individual inode
968 * flags.
969 */
970static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
971 struct ecryptfs_crypt_stat *crypt_stat,
972 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
973{
974 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
975 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
976 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
977 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
978}
979
f4aad16a
MH
980static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
981 struct ecryptfs_crypt_stat *crypt_stat,
982 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
983{
984 struct ecryptfs_global_auth_tok *global_auth_tok;
985 int rc = 0;
986
987 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
988 list_for_each_entry(global_auth_tok,
989 &mount_crypt_stat->global_auth_tok_list,
990 mount_crypt_stat_list) {
991 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
992 if (rc) {
993 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
994 mutex_unlock(
995 &mount_crypt_stat->global_auth_tok_list_mutex);
996 goto out;
997 }
998 }
999 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
1000out:
1001 return rc;
1002}
1003
237fead6
MH
1004/**
1005 * ecryptfs_set_default_crypt_stat_vals
22e78faf
MH
1006 * @crypt_stat: The inode's cryptographic context
1007 * @mount_crypt_stat: The mount point's cryptographic context
237fead6
MH
1008 *
1009 * Default values in the event that policy does not override them.
1010 */
1011static void ecryptfs_set_default_crypt_stat_vals(
1012 struct ecryptfs_crypt_stat *crypt_stat,
1013 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1014{
17398957
MH
1015 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1016 mount_crypt_stat);
237fead6
MH
1017 ecryptfs_set_default_sizes(crypt_stat);
1018 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
1019 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
e2bd99ec 1020 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
237fead6
MH
1021 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
1022 crypt_stat->mount_crypt_stat = mount_crypt_stat;
1023}
1024
1025/**
1026 * ecryptfs_new_file_context
22e78faf 1027 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
1028 *
1029 * If the crypto context for the file has not yet been established,
1030 * this is where we do that. Establishing a new crypto context
1031 * involves the following decisions:
1032 * - What cipher to use?
1033 * - What set of authentication tokens to use?
1034 * Here we just worry about getting enough information into the
1035 * authentication tokens so that we know that they are available.
1036 * We associate the available authentication tokens with the new file
1037 * via the set of signatures in the crypt_stat struct. Later, when
1038 * the headers are actually written out, we may again defer to
1039 * userspace to perform the encryption of the session key; for the
1040 * foreseeable future, this will be the case with public key packets.
1041 *
1042 * Returns zero on success; non-zero otherwise
1043 */
237fead6
MH
1044int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
1045{
237fead6
MH
1046 struct ecryptfs_crypt_stat *crypt_stat =
1047 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1048 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1049 &ecryptfs_superblock_to_private(
1050 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1051 int cipher_name_len;
f4aad16a 1052 int rc = 0;
237fead6
MH
1053
1054 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
af655dc6 1055 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
f4aad16a
MH
1056 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1057 mount_crypt_stat);
1058 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1059 mount_crypt_stat);
1060 if (rc) {
1061 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1062 "to the inode key sigs; rc = [%d]\n", rc);
1063 goto out;
1064 }
1065 cipher_name_len =
1066 strlen(mount_crypt_stat->global_default_cipher_name);
1067 memcpy(crypt_stat->cipher,
1068 mount_crypt_stat->global_default_cipher_name,
1069 cipher_name_len);
1070 crypt_stat->cipher[cipher_name_len] = '\0';
1071 crypt_stat->key_size =
1072 mount_crypt_stat->global_default_cipher_key_size;
1073 ecryptfs_generate_new_key(crypt_stat);
237fead6
MH
1074 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1075 if (rc)
1076 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1077 "context for cipher [%s]: rc = [%d]\n",
1078 crypt_stat->cipher, rc);
f4aad16a 1079out:
237fead6
MH
1080 return rc;
1081}
1082
1083/**
1084 * contains_ecryptfs_marker - check for the ecryptfs marker
1085 * @data: The data block in which to check
1086 *
1087 * Returns one if marker found; zero if not found
1088 */
dd2a3b7a 1089static int contains_ecryptfs_marker(char *data)
237fead6
MH
1090{
1091 u32 m_1, m_2;
1092
1093 memcpy(&m_1, data, 4);
1094 m_1 = be32_to_cpu(m_1);
1095 memcpy(&m_2, (data + 4), 4);
1096 m_2 = be32_to_cpu(m_2);
1097 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1098 return 1;
1099 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1100 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1101 MAGIC_ECRYPTFS_MARKER);
1102 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1103 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1104 return 0;
1105}
1106
1107struct ecryptfs_flag_map_elem {
1108 u32 file_flag;
1109 u32 local_flag;
1110};
1111
1112/* Add support for additional flags by adding elements here. */
1113static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1114 {0x00000001, ECRYPTFS_ENABLE_HMAC},
dd2a3b7a
MH
1115 {0x00000002, ECRYPTFS_ENCRYPTED},
1116 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}
237fead6
MH
1117};
1118
1119/**
1120 * ecryptfs_process_flags
22e78faf 1121 * @crypt_stat: The cryptographic context
237fead6
MH
1122 * @page_virt: Source data to be parsed
1123 * @bytes_read: Updated with the number of bytes read
1124 *
1125 * Returns zero on success; non-zero if the flag set is invalid
1126 */
1127static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1128 char *page_virt, int *bytes_read)
1129{
1130 int rc = 0;
1131 int i;
1132 u32 flags;
1133
1134 memcpy(&flags, page_virt, 4);
1135 flags = be32_to_cpu(flags);
1136 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1137 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1138 if (flags & ecryptfs_flag_map[i].file_flag) {
e2bd99ec 1139 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
237fead6 1140 } else
e2bd99ec 1141 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
237fead6
MH
1142 /* Version is in top 8 bits of the 32-bit flag vector */
1143 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1144 (*bytes_read) = 4;
1145 return rc;
1146}
1147
1148/**
1149 * write_ecryptfs_marker
1150 * @page_virt: The pointer to in a page to begin writing the marker
1151 * @written: Number of bytes written
1152 *
1153 * Marker = 0x3c81b7f5
1154 */
1155static void write_ecryptfs_marker(char *page_virt, size_t *written)
1156{
1157 u32 m_1, m_2;
1158
1159 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1160 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1161 m_1 = cpu_to_be32(m_1);
1162 memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1163 m_2 = cpu_to_be32(m_2);
1164 memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2,
1165 (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1166 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1167}
1168
1169static void
1170write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1171 size_t *written)
1172{
1173 u32 flags = 0;
1174 int i;
1175
1176 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1177 / sizeof(struct ecryptfs_flag_map_elem))); i++)
e2bd99ec 1178 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
237fead6
MH
1179 flags |= ecryptfs_flag_map[i].file_flag;
1180 /* Version is in top 8 bits of the 32-bit flag vector */
1181 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1182 flags = cpu_to_be32(flags);
1183 memcpy(page_virt, &flags, 4);
1184 (*written) = 4;
1185}
1186
1187struct ecryptfs_cipher_code_str_map_elem {
1188 char cipher_str[16];
1189 u16 cipher_code;
1190};
1191
1192/* Add support for additional ciphers by adding elements here. The
1193 * cipher_code is whatever OpenPGP applicatoins use to identify the
1194 * ciphers. List in order of probability. */
1195static struct ecryptfs_cipher_code_str_map_elem
1196ecryptfs_cipher_code_str_map[] = {
1197 {"aes",RFC2440_CIPHER_AES_128 },
1198 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1199 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1200 {"cast5", RFC2440_CIPHER_CAST_5},
1201 {"twofish", RFC2440_CIPHER_TWOFISH},
1202 {"cast6", RFC2440_CIPHER_CAST_6},
1203 {"aes", RFC2440_CIPHER_AES_192},
1204 {"aes", RFC2440_CIPHER_AES_256}
1205};
1206
1207/**
1208 * ecryptfs_code_for_cipher_string
22e78faf 1209 * @crypt_stat: The cryptographic context
237fead6
MH
1210 *
1211 * Returns zero on no match, or the cipher code on match
1212 */
1213u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
1214{
1215 int i;
1216 u16 code = 0;
1217 struct ecryptfs_cipher_code_str_map_elem *map =
1218 ecryptfs_cipher_code_str_map;
1219
1220 if (strcmp(crypt_stat->cipher, "aes") == 0) {
1221 switch (crypt_stat->key_size) {
1222 case 16:
1223 code = RFC2440_CIPHER_AES_128;
1224 break;
1225 case 24:
1226 code = RFC2440_CIPHER_AES_192;
1227 break;
1228 case 32:
1229 code = RFC2440_CIPHER_AES_256;
1230 }
1231 } else {
1232 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1233 if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
1234 code = map[i].cipher_code;
1235 break;
1236 }
1237 }
1238 return code;
1239}
1240
1241/**
1242 * ecryptfs_cipher_code_to_string
1243 * @str: Destination to write out the cipher name
1244 * @cipher_code: The code to convert to cipher name string
1245 *
1246 * Returns zero on success
1247 */
1248int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code)
1249{
1250 int rc = 0;
1251 int i;
1252
1253 str[0] = '\0';
1254 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1255 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1256 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1257 if (str[0] == '\0') {
1258 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1259 "[%d]\n", cipher_code);
1260 rc = -EINVAL;
1261 }
1262 return rc;
1263}
1264
1265/**
1266 * ecryptfs_read_header_region
22e78faf
MH
1267 * @data: The virtual address to write header region data into
1268 * @dentry: The lower dentry
1269 * @mnt: The lower VFS mount
237fead6
MH
1270 *
1271 * Returns zero on success; non-zero otherwise
1272 */
dd2a3b7a
MH
1273static int ecryptfs_read_header_region(char *data, struct dentry *dentry,
1274 struct vfsmount *mnt)
237fead6 1275{
7ff1d74f 1276 struct file *lower_file;
237fead6
MH
1277 mm_segment_t oldfs;
1278 int rc;
1279
7ff1d74f
MH
1280 if ((rc = ecryptfs_open_lower_file(&lower_file, dentry, mnt,
1281 O_RDONLY))) {
1282 printk(KERN_ERR
1283 "Error opening lower_file to read header region\n");
237fead6
MH
1284 goto out;
1285 }
7ff1d74f 1286 lower_file->f_pos = 0;
237fead6
MH
1287 oldfs = get_fs();
1288 set_fs(get_ds());
7ff1d74f
MH
1289 rc = lower_file->f_op->read(lower_file, (char __user *)data,
1290 ECRYPTFS_DEFAULT_EXTENT_SIZE, &lower_file->f_pos);
237fead6 1291 set_fs(oldfs);
7ff1d74f
MH
1292 if ((rc = ecryptfs_close_lower_file(lower_file))) {
1293 printk(KERN_ERR "Error closing lower_file\n");
1294 goto out;
1295 }
237fead6
MH
1296 rc = 0;
1297out:
1298 return rc;
1299}
1300
dd2a3b7a
MH
1301int ecryptfs_read_and_validate_header_region(char *data, struct dentry *dentry,
1302 struct vfsmount *mnt)
1303{
1304 int rc;
1305
1306 rc = ecryptfs_read_header_region(data, dentry, mnt);
1307 if (rc)
1308 goto out;
1309 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES))
1310 rc = -EINVAL;
1311out:
1312 return rc;
1313}
1314
1315
e77a56dd
MH
1316void
1317ecryptfs_write_header_metadata(char *virt,
1318 struct ecryptfs_crypt_stat *crypt_stat,
1319 size_t *written)
237fead6
MH
1320{
1321 u32 header_extent_size;
1322 u16 num_header_extents_at_front;
1323
45eaab79 1324 header_extent_size = (u32)crypt_stat->extent_size;
237fead6
MH
1325 num_header_extents_at_front =
1326 (u16)crypt_stat->num_header_extents_at_front;
1327 header_extent_size = cpu_to_be32(header_extent_size);
1328 memcpy(virt, &header_extent_size, 4);
1329 virt += 4;
1330 num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front);
1331 memcpy(virt, &num_header_extents_at_front, 2);
1332 (*written) = 6;
1333}
1334
1335struct kmem_cache *ecryptfs_header_cache_0;
1336struct kmem_cache *ecryptfs_header_cache_1;
1337struct kmem_cache *ecryptfs_header_cache_2;
1338
1339/**
1340 * ecryptfs_write_headers_virt
22e78faf
MH
1341 * @page_virt: The virtual address to write the headers to
1342 * @size: Set to the number of bytes written by this function
1343 * @crypt_stat: The cryptographic context
1344 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
1345 *
1346 * Format version: 1
1347 *
1348 * Header Extent:
1349 * Octets 0-7: Unencrypted file size (big-endian)
1350 * Octets 8-15: eCryptfs special marker
1351 * Octets 16-19: Flags
1352 * Octet 16: File format version number (between 0 and 255)
1353 * Octets 17-18: Reserved
1354 * Octet 19: Bit 1 (lsb): Reserved
1355 * Bit 2: Encrypted?
1356 * Bits 3-8: Reserved
1357 * Octets 20-23: Header extent size (big-endian)
1358 * Octets 24-25: Number of header extents at front of file
1359 * (big-endian)
1360 * Octet 26: Begin RFC 2440 authentication token packet set
1361 * Data Extent 0:
1362 * Lower data (CBC encrypted)
1363 * Data Extent 1:
1364 * Lower data (CBC encrypted)
1365 * ...
1366 *
1367 * Returns zero on success
1368 */
dd2a3b7a
MH
1369static int ecryptfs_write_headers_virt(char *page_virt, size_t *size,
1370 struct ecryptfs_crypt_stat *crypt_stat,
1371 struct dentry *ecryptfs_dentry)
237fead6
MH
1372{
1373 int rc;
1374 size_t written;
1375 size_t offset;
1376
1377 offset = ECRYPTFS_FILE_SIZE_BYTES;
1378 write_ecryptfs_marker((page_virt + offset), &written);
1379 offset += written;
1380 write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1381 offset += written;
e77a56dd
MH
1382 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1383 &written);
237fead6
MH
1384 offset += written;
1385 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1386 ecryptfs_dentry, &written,
1387 PAGE_CACHE_SIZE - offset);
1388 if (rc)
1389 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1390 "set; rc = [%d]\n", rc);
dd2a3b7a
MH
1391 if (size) {
1392 offset += written;
1393 *size = offset;
1394 }
1395 return rc;
1396}
1397
22e78faf
MH
1398static int
1399ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat,
1400 struct file *lower_file, char *page_virt)
dd2a3b7a
MH
1401{
1402 mm_segment_t oldfs;
1403 int current_header_page;
1404 int header_pages;
70456600
MH
1405 ssize_t size;
1406 int rc = 0;
dd2a3b7a
MH
1407
1408 lower_file->f_pos = 0;
1409 oldfs = get_fs();
1410 set_fs(get_ds());
70456600
MH
1411 size = vfs_write(lower_file, (char __user *)page_virt, PAGE_CACHE_SIZE,
1412 &lower_file->f_pos);
1413 if (size < 0) {
1414 rc = (int)size;
1415 printk(KERN_ERR "Error attempting to write lower page; "
1416 "rc = [%d]\n", rc);
1417 set_fs(oldfs);
1418 goto out;
1419 }
45eaab79 1420 header_pages = ((crypt_stat->extent_size
dd2a3b7a
MH
1421 * crypt_stat->num_header_extents_at_front)
1422 / PAGE_CACHE_SIZE);
1423 memset(page_virt, 0, PAGE_CACHE_SIZE);
1424 current_header_page = 1;
1425 while (current_header_page < header_pages) {
70456600
MH
1426 size = vfs_write(lower_file, (char __user *)page_virt,
1427 PAGE_CACHE_SIZE, &lower_file->f_pos);
1428 if (size < 0) {
1429 rc = (int)size;
1430 printk(KERN_ERR "Error attempting to write lower page; "
1431 "rc = [%d]\n", rc);
1432 set_fs(oldfs);
1433 goto out;
1434 }
dd2a3b7a
MH
1435 current_header_page++;
1436 }
1437 set_fs(oldfs);
70456600
MH
1438out:
1439 return rc;
dd2a3b7a
MH
1440}
1441
22e78faf
MH
1442static int
1443ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1444 struct ecryptfs_crypt_stat *crypt_stat,
1445 char *page_virt, size_t size)
dd2a3b7a
MH
1446{
1447 int rc;
1448
1449 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1450 size, 0);
237fead6
MH
1451 return rc;
1452}
1453
1454/**
dd2a3b7a 1455 * ecryptfs_write_metadata
22e78faf 1456 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
1457 * @lower_file: The lower file struct, which was returned from dentry_open
1458 *
1459 * Write the file headers out. This will likely involve a userspace
1460 * callout, in which the session key is encrypted with one or more
1461 * public keys and/or the passphrase necessary to do the encryption is
1462 * retrieved via a prompt. Exactly what happens at this point should
1463 * be policy-dependent.
1464 *
1465 * Returns zero on success; non-zero on error
1466 */
dd2a3b7a
MH
1467int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1468 struct file *lower_file)
237fead6 1469{
237fead6
MH
1470 struct ecryptfs_crypt_stat *crypt_stat;
1471 char *page_virt;
dd2a3b7a 1472 size_t size;
237fead6
MH
1473 int rc = 0;
1474
1475 crypt_stat = &ecryptfs_inode_to_private(
1476 ecryptfs_dentry->d_inode)->crypt_stat;
e2bd99ec
MH
1477 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1478 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
237fead6
MH
1479 ecryptfs_printk(KERN_DEBUG, "Key is "
1480 "invalid; bailing out\n");
1481 rc = -EINVAL;
1482 goto out;
1483 }
1484 } else {
1485 rc = -EINVAL;
1486 ecryptfs_printk(KERN_WARNING,
1487 "Called with crypt_stat->encrypted == 0\n");
1488 goto out;
1489 }
1490 /* Released in this function */
c3762229 1491 page_virt = kmem_cache_zalloc(ecryptfs_header_cache_0, GFP_USER);
237fead6
MH
1492 if (!page_virt) {
1493 ecryptfs_printk(KERN_ERR, "Out of memory\n");
1494 rc = -ENOMEM;
1495 goto out;
1496 }
dd2a3b7a
MH
1497 rc = ecryptfs_write_headers_virt(page_virt, &size, crypt_stat,
1498 ecryptfs_dentry);
237fead6
MH
1499 if (unlikely(rc)) {
1500 ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n");
1501 memset(page_virt, 0, PAGE_CACHE_SIZE);
1502 goto out_free;
1503 }
dd2a3b7a
MH
1504 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1505 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry,
1506 crypt_stat, page_virt,
1507 size);
1508 else
1509 rc = ecryptfs_write_metadata_to_contents(crypt_stat, lower_file,
1510 page_virt);
1511 if (rc) {
1512 printk(KERN_ERR "Error writing metadata out to lower file; "
1513 "rc = [%d]\n", rc);
1514 goto out_free;
237fead6 1515 }
237fead6
MH
1516out_free:
1517 kmem_cache_free(ecryptfs_header_cache_0, page_virt);
1518out:
1519 return rc;
1520}
1521
dd2a3b7a
MH
1522#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1523#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
237fead6 1524static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1525 char *virt, int *bytes_read,
1526 int validate_header_size)
237fead6
MH
1527{
1528 int rc = 0;
1529 u32 header_extent_size;
1530 u16 num_header_extents_at_front;
1531
1532 memcpy(&header_extent_size, virt, 4);
1533 header_extent_size = be32_to_cpu(header_extent_size);
1534 virt += 4;
1535 memcpy(&num_header_extents_at_front, virt, 2);
1536 num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front);
237fead6
MH
1537 crypt_stat->num_header_extents_at_front =
1538 (int)num_header_extents_at_front;
45eaab79 1539 (*bytes_read) = (sizeof(u32) + sizeof(u16));
dd2a3b7a 1540 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
45eaab79 1541 && ((crypt_stat->extent_size
dd2a3b7a
MH
1542 * crypt_stat->num_header_extents_at_front)
1543 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
237fead6 1544 rc = -EINVAL;
45eaab79
MH
1545 printk(KERN_WARNING "Invalid number of header extents: [%zd]\n",
1546 crypt_stat->num_header_extents_at_front);
237fead6
MH
1547 }
1548 return rc;
1549}
1550
1551/**
1552 * set_default_header_data
22e78faf 1553 * @crypt_stat: The cryptographic context
237fead6
MH
1554 *
1555 * For version 0 file format; this function is only for backwards
1556 * compatibility for files created with the prior versions of
1557 * eCryptfs.
1558 */
1559static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1560{
45eaab79 1561 crypt_stat->num_header_extents_at_front = 2;
237fead6
MH
1562}
1563
1564/**
1565 * ecryptfs_read_headers_virt
22e78faf
MH
1566 * @page_virt: The virtual address into which to read the headers
1567 * @crypt_stat: The cryptographic context
1568 * @ecryptfs_dentry: The eCryptfs dentry
1569 * @validate_header_size: Whether to validate the header size while reading
237fead6
MH
1570 *
1571 * Read/parse the header data. The header format is detailed in the
1572 * comment block for the ecryptfs_write_headers_virt() function.
1573 *
1574 * Returns zero on success
1575 */
1576static int ecryptfs_read_headers_virt(char *page_virt,
1577 struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1578 struct dentry *ecryptfs_dentry,
1579 int validate_header_size)
237fead6
MH
1580{
1581 int rc = 0;
1582 int offset;
1583 int bytes_read;
1584
1585 ecryptfs_set_default_sizes(crypt_stat);
1586 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1587 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1588 offset = ECRYPTFS_FILE_SIZE_BYTES;
1589 rc = contains_ecryptfs_marker(page_virt + offset);
1590 if (rc == 0) {
1591 rc = -EINVAL;
1592 goto out;
1593 }
1594 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1595 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1596 &bytes_read);
1597 if (rc) {
1598 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1599 goto out;
1600 }
1601 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1602 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1603 "file version [%d] is supported by this "
1604 "version of eCryptfs\n",
1605 crypt_stat->file_version,
1606 ECRYPTFS_SUPPORTED_FILE_VERSION);
1607 rc = -EINVAL;
1608 goto out;
1609 }
1610 offset += bytes_read;
1611 if (crypt_stat->file_version >= 1) {
1612 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
dd2a3b7a 1613 &bytes_read, validate_header_size);
237fead6
MH
1614 if (rc) {
1615 ecryptfs_printk(KERN_WARNING, "Error reading header "
1616 "metadata; rc = [%d]\n", rc);
1617 }
1618 offset += bytes_read;
1619 } else
1620 set_default_header_data(crypt_stat);
1621 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1622 ecryptfs_dentry);
1623out:
1624 return rc;
1625}
1626
1627/**
dd2a3b7a 1628 * ecryptfs_read_xattr_region
22e78faf
MH
1629 * @page_virt: The vitual address into which to read the xattr data
1630 * @ecryptfs_dentry: The eCryptfs dentry
dd2a3b7a
MH
1631 *
1632 * Attempts to read the crypto metadata from the extended attribute
1633 * region of the lower file.
22e78faf
MH
1634 *
1635 * Returns zero on success; non-zero on error
dd2a3b7a
MH
1636 */
1637int ecryptfs_read_xattr_region(char *page_virt, struct dentry *ecryptfs_dentry)
1638{
1639 ssize_t size;
1640 int rc = 0;
1641
1642 size = ecryptfs_getxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME,
1643 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1644 if (size < 0) {
1645 printk(KERN_DEBUG "Error attempting to read the [%s] "
1646 "xattr from the lower file; return value = [%zd]\n",
1647 ECRYPTFS_XATTR_NAME, size);
1648 rc = -EINVAL;
1649 goto out;
1650 }
1651out:
1652 return rc;
1653}
1654
1655int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1656 struct dentry *ecryptfs_dentry)
1657{
1658 int rc;
1659
1660 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry);
1661 if (rc)
1662 goto out;
1663 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) {
1664 printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1665 "the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1666 rc = -EINVAL;
1667 }
1668out:
1669 return rc;
1670}
1671
1672/**
1673 * ecryptfs_read_metadata
22e78faf
MH
1674 * @ecryptfs_dentry: The eCryptfs dentry
1675 * @lower_file: The lower file from which to read the metadata
dd2a3b7a
MH
1676 *
1677 * Common entry point for reading file metadata. From here, we could
1678 * retrieve the header information from the header region of the file,
1679 * the xattr region of the file, or some other repostory that is
1680 * stored separately from the file itself. The current implementation
1681 * supports retrieving the metadata information from the file contents
1682 * and from the xattr region.
237fead6
MH
1683 *
1684 * Returns zero if valid headers found and parsed; non-zero otherwise
1685 */
dd2a3b7a
MH
1686int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry,
1687 struct file *lower_file)
237fead6
MH
1688{
1689 int rc = 0;
1690 char *page_virt = NULL;
1691 mm_segment_t oldfs;
1692 ssize_t bytes_read;
1693 struct ecryptfs_crypt_stat *crypt_stat =
1694 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
e77a56dd
MH
1695 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1696 &ecryptfs_superblock_to_private(
1697 ecryptfs_dentry->d_sb)->mount_crypt_stat;
237fead6 1698
e77a56dd
MH
1699 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1700 mount_crypt_stat);
237fead6 1701 /* Read the first page from the underlying file */
f7267c0c 1702 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
237fead6
MH
1703 if (!page_virt) {
1704 rc = -ENOMEM;
1705 ecryptfs_printk(KERN_ERR, "Unable to allocate page_virt\n");
1706 goto out;
1707 }
1708 lower_file->f_pos = 0;
1709 oldfs = get_fs();
1710 set_fs(get_ds());
1711 bytes_read = lower_file->f_op->read(lower_file,
1712 (char __user *)page_virt,
1713 ECRYPTFS_DEFAULT_EXTENT_SIZE,
1714 &lower_file->f_pos);
1715 set_fs(oldfs);
1716 if (bytes_read != ECRYPTFS_DEFAULT_EXTENT_SIZE) {
1717 rc = -EINVAL;
1718 goto out;
1719 }
1720 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
dd2a3b7a
MH
1721 ecryptfs_dentry,
1722 ECRYPTFS_VALIDATE_HEADER_SIZE);
237fead6 1723 if (rc) {
dd2a3b7a
MH
1724 rc = ecryptfs_read_xattr_region(page_virt,
1725 ecryptfs_dentry);
1726 if (rc) {
1727 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1728 "file header region or xattr region\n");
1729 rc = -EINVAL;
1730 goto out;
1731 }
1732 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1733 ecryptfs_dentry,
1734 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1735 if (rc) {
1736 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1737 "file xattr region either\n");
1738 rc = -EINVAL;
1739 }
1740 if (crypt_stat->mount_crypt_stat->flags
1741 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1742 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1743 } else {
1744 printk(KERN_WARNING "Attempt to access file with "
1745 "crypto metadata only in the extended attribute "
1746 "region, but eCryptfs was mounted without "
1747 "xattr support enabled. eCryptfs will not treat "
1748 "this like an encrypted file.\n");
1749 rc = -EINVAL;
1750 }
237fead6
MH
1751 }
1752out:
1753 if (page_virt) {
1754 memset(page_virt, 0, PAGE_CACHE_SIZE);
1755 kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1756 }
1757 return rc;
1758}
1759
1760/**
1761 * ecryptfs_encode_filename - converts a plaintext file name to cipher text
1762 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1763 * @name: The plaintext name
1764 * @length: The length of the plaintext
1765 * @encoded_name: The encypted name
1766 *
1767 * Encrypts and encodes a filename into something that constitutes a
1768 * valid filename for a filesystem, with printable characters.
1769 *
1770 * We assume that we have a properly initialized crypto context,
1771 * pointed to by crypt_stat->tfm.
1772 *
1773 * TODO: Implement filename decoding and decryption here, in place of
1774 * memcpy. We are keeping the framework around for now to (1)
1775 * facilitate testing of the components needed to implement filename
1776 * encryption and (2) to provide a code base from which other
1777 * developers in the community can easily implement this feature.
1778 *
1779 * Returns the length of encoded filename; negative if error
1780 */
1781int
1782ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1783 const char *name, int length, char **encoded_name)
1784{
1785 int error = 0;
1786
1787 (*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
1788 if (!(*encoded_name)) {
1789 error = -ENOMEM;
1790 goto out;
1791 }
1792 /* TODO: Filename encryption is a scheduled feature for a
1793 * future version of eCryptfs. This function is here only for
1794 * the purpose of providing a framework for other developers
1795 * to easily implement filename encryption. Hint: Replace this
1796 * memcpy() with a call to encrypt and encode the
1797 * filename, the set the length accordingly. */
1798 memcpy((void *)(*encoded_name), (void *)name, length);
1799 (*encoded_name)[length] = '\0';
1800 error = length + 1;
1801out:
1802 return error;
1803}
1804
1805/**
1806 * ecryptfs_decode_filename - converts the cipher text name to plaintext
1807 * @crypt_stat: The crypt_stat struct associated with the file
1808 * @name: The filename in cipher text
1809 * @length: The length of the cipher text name
1810 * @decrypted_name: The plaintext name
1811 *
1812 * Decodes and decrypts the filename.
1813 *
1814 * We assume that we have a properly initialized crypto context,
1815 * pointed to by crypt_stat->tfm.
1816 *
1817 * TODO: Implement filename decoding and decryption here, in place of
1818 * memcpy. We are keeping the framework around for now to (1)
1819 * facilitate testing of the components needed to implement filename
1820 * encryption and (2) to provide a code base from which other
1821 * developers in the community can easily implement this feature.
1822 *
1823 * Returns the length of decoded filename; negative if error
1824 */
1825int
1826ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1827 const char *name, int length, char **decrypted_name)
1828{
1829 int error = 0;
1830
1831 (*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
1832 if (!(*decrypted_name)) {
1833 error = -ENOMEM;
1834 goto out;
1835 }
1836 /* TODO: Filename encryption is a scheduled feature for a
1837 * future version of eCryptfs. This function is here only for
1838 * the purpose of providing a framework for other developers
1839 * to easily implement filename encryption. Hint: Replace this
1840 * memcpy() with a call to decode and decrypt the
1841 * filename, the set the length accordingly. */
1842 memcpy((void *)(*decrypted_name), (void *)name, length);
1843 (*decrypted_name)[length + 1] = '\0'; /* Only for convenience
1844 * in printing out the
1845 * string in debug
1846 * messages */
1847 error = length;
1848out:
1849 return error;
1850}
1851
1852/**
f4aad16a 1853 * ecryptfs_process_key_cipher - Perform key cipher initialization.
237fead6 1854 * @key_tfm: Crypto context for key material, set by this function
e5d9cbde
MH
1855 * @cipher_name: Name of the cipher
1856 * @key_size: Size of the key in bytes
237fead6
MH
1857 *
1858 * Returns zero on success. Any crypto_tfm structs allocated here
1859 * should be released by other functions, such as on a superblock put
1860 * event, regardless of whether this function succeeds for fails.
1861 */
cd9d67df 1862static int
f4aad16a
MH
1863ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1864 char *cipher_name, size_t *key_size)
237fead6
MH
1865{
1866 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
8bba066f 1867 char *full_alg_name;
237fead6
MH
1868 int rc;
1869
e5d9cbde
MH
1870 *key_tfm = NULL;
1871 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
237fead6
MH
1872 rc = -EINVAL;
1873 printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
e5d9cbde 1874 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
237fead6
MH
1875 goto out;
1876 }
8bba066f
MH
1877 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1878 "ecb");
1879 if (rc)
1880 goto out;
1881 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1882 kfree(full_alg_name);
1883 if (IS_ERR(*key_tfm)) {
1884 rc = PTR_ERR(*key_tfm);
237fead6 1885 printk(KERN_ERR "Unable to allocate crypto cipher with name "
8bba066f 1886 "[%s]; rc = [%d]\n", cipher_name, rc);
237fead6
MH
1887 goto out;
1888 }
8bba066f
MH
1889 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1890 if (*key_size == 0) {
1891 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1892
1893 *key_size = alg->max_keysize;
1894 }
e5d9cbde 1895 get_random_bytes(dummy_key, *key_size);
8bba066f 1896 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
237fead6
MH
1897 if (rc) {
1898 printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
e5d9cbde 1899 "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
237fead6
MH
1900 rc = -EINVAL;
1901 goto out;
1902 }
1903out:
1904 return rc;
1905}
f4aad16a
MH
1906
1907struct kmem_cache *ecryptfs_key_tfm_cache;
1908struct list_head key_tfm_list;
1909struct mutex key_tfm_list_mutex;
1910
1911int ecryptfs_init_crypto(void)
1912{
1913 mutex_init(&key_tfm_list_mutex);
1914 INIT_LIST_HEAD(&key_tfm_list);
1915 return 0;
1916}
1917
fcd12835 1918int ecryptfs_destroy_crypto(void)
f4aad16a
MH
1919{
1920 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1921
1922 mutex_lock(&key_tfm_list_mutex);
1923 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1924 key_tfm_list) {
1925 list_del(&key_tfm->key_tfm_list);
1926 if (key_tfm->key_tfm)
1927 crypto_free_blkcipher(key_tfm->key_tfm);
1928 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1929 }
1930 mutex_unlock(&key_tfm_list_mutex);
1931 return 0;
1932}
1933
1934int
1935ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1936 size_t key_size)
1937{
1938 struct ecryptfs_key_tfm *tmp_tfm;
1939 int rc = 0;
1940
1941 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1942 if (key_tfm != NULL)
1943 (*key_tfm) = tmp_tfm;
1944 if (!tmp_tfm) {
1945 rc = -ENOMEM;
1946 printk(KERN_ERR "Error attempting to allocate from "
1947 "ecryptfs_key_tfm_cache\n");
1948 goto out;
1949 }
1950 mutex_init(&tmp_tfm->key_tfm_mutex);
1951 strncpy(tmp_tfm->cipher_name, cipher_name,
1952 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1953 tmp_tfm->key_size = key_size;
1954 if ((rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1955 tmp_tfm->cipher_name,
1956 &tmp_tfm->key_size))) {
1957 printk(KERN_ERR "Error attempting to initialize key TFM "
1958 "cipher with name = [%s]; rc = [%d]\n",
1959 tmp_tfm->cipher_name, rc);
1960 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1961 if (key_tfm != NULL)
1962 (*key_tfm) = NULL;
1963 goto out;
1964 }
1965 mutex_lock(&key_tfm_list_mutex);
1966 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1967 mutex_unlock(&key_tfm_list_mutex);
1968out:
1969 return rc;
1970}
1971
1972int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1973 struct mutex **tfm_mutex,
1974 char *cipher_name)
1975{
1976 struct ecryptfs_key_tfm *key_tfm;
1977 int rc = 0;
1978
1979 (*tfm) = NULL;
1980 (*tfm_mutex) = NULL;
1981 mutex_lock(&key_tfm_list_mutex);
1982 list_for_each_entry(key_tfm, &key_tfm_list, key_tfm_list) {
1983 if (strcmp(key_tfm->cipher_name, cipher_name) == 0) {
1984 (*tfm) = key_tfm->key_tfm;
1985 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1986 mutex_unlock(&key_tfm_list_mutex);
1987 goto out;
1988 }
1989 }
1990 mutex_unlock(&key_tfm_list_mutex);
1991 if ((rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0))) {
1992 printk(KERN_ERR "Error adding new key_tfm to list; rc = [%d]\n",
1993 rc);
1994 goto out;
1995 }
1996 (*tfm) = key_tfm->key_tfm;
1997 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1998out:
1999 return rc;
2000}
This page took 0.219705 seconds and 5 git commands to generate.