i387: fix sense of sanity check
[deliverable/linux.git] / fs / ecryptfs / crypto.c
CommitLineData
237fead6
MH
1/**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
dd2a3b7a 6 * Copyright (C) 2004-2007 International Business Machines Corp.
237fead6
MH
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/mount.h>
28#include <linux/pagemap.h>
29#include <linux/random.h>
30#include <linux/compiler.h>
31#include <linux/key.h>
32#include <linux/namei.h>
33#include <linux/crypto.h>
34#include <linux/file.h>
35#include <linux/scatterlist.h>
5a0e3ad6 36#include <linux/slab.h>
29335c6a 37#include <asm/unaligned.h>
237fead6
MH
38#include "ecryptfs_kernel.h"
39
40static int
41ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
42 struct page *dst_page, int dst_offset,
43 struct page *src_page, int src_offset, int size,
44 unsigned char *iv);
45static int
46ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
47 struct page *dst_page, int dst_offset,
48 struct page *src_page, int src_offset, int size,
49 unsigned char *iv);
50
51/**
52 * ecryptfs_to_hex
53 * @dst: Buffer to take hex character representation of contents of
54 * src; must be at least of size (src_size * 2)
55 * @src: Buffer to be converted to a hex string respresentation
56 * @src_size: number of bytes to convert
57 */
58void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
59{
60 int x;
61
62 for (x = 0; x < src_size; x++)
63 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
64}
65
66/**
67 * ecryptfs_from_hex
68 * @dst: Buffer to take the bytes from src hex; must be at least of
69 * size (src_size / 2)
70 * @src: Buffer to be converted from a hex string respresentation to raw value
71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
72 */
73void ecryptfs_from_hex(char *dst, char *src, int dst_size)
74{
75 int x;
76 char tmp[3] = { 0, };
77
78 for (x = 0; x < dst_size; x++) {
79 tmp[0] = src[x * 2];
80 tmp[1] = src[x * 2 + 1];
81 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
82 }
83}
84
85/**
86 * ecryptfs_calculate_md5 - calculates the md5 of @src
87 * @dst: Pointer to 16 bytes of allocated memory
88 * @crypt_stat: Pointer to crypt_stat struct for the current inode
89 * @src: Data to be md5'd
90 * @len: Length of @src
91 *
92 * Uses the allocated crypto context that crypt_stat references to
93 * generate the MD5 sum of the contents of src.
94 */
95static int ecryptfs_calculate_md5(char *dst,
96 struct ecryptfs_crypt_stat *crypt_stat,
97 char *src, int len)
98{
237fead6 99 struct scatterlist sg;
565d9724
MH
100 struct hash_desc desc = {
101 .tfm = crypt_stat->hash_tfm,
102 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
103 };
104 int rc = 0;
237fead6 105
565d9724 106 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
237fead6 107 sg_init_one(&sg, (u8 *)src, len);
565d9724
MH
108 if (!desc.tfm) {
109 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
110 CRYPTO_ALG_ASYNC);
111 if (IS_ERR(desc.tfm)) {
112 rc = PTR_ERR(desc.tfm);
237fead6 113 ecryptfs_printk(KERN_ERR, "Error attempting to "
565d9724
MH
114 "allocate crypto context; rc = [%d]\n",
115 rc);
237fead6
MH
116 goto out;
117 }
565d9724 118 crypt_stat->hash_tfm = desc.tfm;
237fead6 119 }
8a29f2b0
MH
120 rc = crypto_hash_init(&desc);
121 if (rc) {
122 printk(KERN_ERR
123 "%s: Error initializing crypto hash; rc = [%d]\n",
18d1dbf1 124 __func__, rc);
8a29f2b0
MH
125 goto out;
126 }
127 rc = crypto_hash_update(&desc, &sg, len);
128 if (rc) {
129 printk(KERN_ERR
130 "%s: Error updating crypto hash; rc = [%d]\n",
18d1dbf1 131 __func__, rc);
8a29f2b0
MH
132 goto out;
133 }
134 rc = crypto_hash_final(&desc, dst);
135 if (rc) {
136 printk(KERN_ERR
137 "%s: Error finalizing crypto hash; rc = [%d]\n",
18d1dbf1 138 __func__, rc);
8a29f2b0
MH
139 goto out;
140 }
237fead6 141out:
8a29f2b0 142 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
237fead6
MH
143 return rc;
144}
145
cd9d67df
MH
146static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
147 char *cipher_name,
148 char *chaining_modifier)
8bba066f
MH
149{
150 int cipher_name_len = strlen(cipher_name);
151 int chaining_modifier_len = strlen(chaining_modifier);
152 int algified_name_len;
153 int rc;
154
155 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
156 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
7bd473fc 157 if (!(*algified_name)) {
8bba066f
MH
158 rc = -ENOMEM;
159 goto out;
160 }
161 snprintf((*algified_name), algified_name_len, "%s(%s)",
162 chaining_modifier, cipher_name);
163 rc = 0;
164out:
165 return rc;
166}
167
237fead6
MH
168/**
169 * ecryptfs_derive_iv
170 * @iv: destination for the derived iv vale
171 * @crypt_stat: Pointer to crypt_stat struct for the current inode
d6a13c17 172 * @offset: Offset of the extent whose IV we are to derive
237fead6
MH
173 *
174 * Generate the initialization vector from the given root IV and page
175 * offset.
176 *
177 * Returns zero on success; non-zero on error.
178 */
a34f60f7
MH
179int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
180 loff_t offset)
237fead6
MH
181{
182 int rc = 0;
183 char dst[MD5_DIGEST_SIZE];
184 char src[ECRYPTFS_MAX_IV_BYTES + 16];
185
186 if (unlikely(ecryptfs_verbosity > 0)) {
187 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
188 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
189 }
190 /* TODO: It is probably secure to just cast the least
191 * significant bits of the root IV into an unsigned long and
192 * add the offset to that rather than go through all this
193 * hashing business. -Halcrow */
194 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
195 memset((src + crypt_stat->iv_bytes), 0, 16);
d6a13c17 196 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
237fead6
MH
197 if (unlikely(ecryptfs_verbosity > 0)) {
198 ecryptfs_printk(KERN_DEBUG, "source:\n");
199 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
200 }
201 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
202 (crypt_stat->iv_bytes + 16));
203 if (rc) {
204 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
205 "MD5 while generating IV for a page\n");
206 goto out;
207 }
208 memcpy(iv, dst, crypt_stat->iv_bytes);
209 if (unlikely(ecryptfs_verbosity > 0)) {
210 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
211 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
212 }
213out:
214 return rc;
215}
216
217/**
218 * ecryptfs_init_crypt_stat
219 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
220 *
221 * Initialize the crypt_stat structure.
222 */
223void
224ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
225{
226 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
f4aad16a
MH
227 INIT_LIST_HEAD(&crypt_stat->keysig_list);
228 mutex_init(&crypt_stat->keysig_list_mutex);
237fead6
MH
229 mutex_init(&crypt_stat->cs_mutex);
230 mutex_init(&crypt_stat->cs_tfm_mutex);
565d9724 231 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
e2bd99ec 232 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
237fead6
MH
233}
234
235/**
fcd12835 236 * ecryptfs_destroy_crypt_stat
237fead6
MH
237 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
238 *
239 * Releases all memory associated with a crypt_stat struct.
240 */
fcd12835 241void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
237fead6 242{
f4aad16a
MH
243 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
244
237fead6 245 if (crypt_stat->tfm)
8bba066f 246 crypto_free_blkcipher(crypt_stat->tfm);
565d9724
MH
247 if (crypt_stat->hash_tfm)
248 crypto_free_hash(crypt_stat->hash_tfm);
f4aad16a
MH
249 list_for_each_entry_safe(key_sig, key_sig_tmp,
250 &crypt_stat->keysig_list, crypt_stat_list) {
251 list_del(&key_sig->crypt_stat_list);
252 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253 }
237fead6
MH
254 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
255}
256
fcd12835 257void ecryptfs_destroy_mount_crypt_stat(
237fead6
MH
258 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
259{
f4aad16a
MH
260 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
261
262 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
263 return;
264 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
265 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
266 &mount_crypt_stat->global_auth_tok_list,
267 mount_crypt_stat_list) {
268 list_del(&auth_tok->mount_crypt_stat_list);
f4aad16a
MH
269 if (auth_tok->global_auth_tok_key
270 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
271 key_put(auth_tok->global_auth_tok_key);
272 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
273 }
274 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
237fead6
MH
275 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
276}
277
278/**
279 * virt_to_scatterlist
280 * @addr: Virtual address
281 * @size: Size of data; should be an even multiple of the block size
282 * @sg: Pointer to scatterlist array; set to NULL to obtain only
283 * the number of scatterlist structs required in array
284 * @sg_size: Max array size
285 *
286 * Fills in a scatterlist array with page references for a passed
287 * virtual address.
288 *
289 * Returns the number of scatterlist structs in array used
290 */
291int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
292 int sg_size)
293{
294 int i = 0;
295 struct page *pg;
296 int offset;
297 int remainder_of_page;
298
68e3f5dd
HX
299 sg_init_table(sg, sg_size);
300
237fead6
MH
301 while (size > 0 && i < sg_size) {
302 pg = virt_to_page(addr);
303 offset = offset_in_page(addr);
642f1490
JA
304 if (sg)
305 sg_set_page(&sg[i], pg, 0, offset);
237fead6
MH
306 remainder_of_page = PAGE_CACHE_SIZE - offset;
307 if (size >= remainder_of_page) {
308 if (sg)
309 sg[i].length = remainder_of_page;
310 addr += remainder_of_page;
311 size -= remainder_of_page;
312 } else {
313 if (sg)
314 sg[i].length = size;
315 addr += size;
316 size = 0;
317 }
318 i++;
319 }
320 if (size > 0)
321 return -ENOMEM;
322 return i;
323}
324
325/**
326 * encrypt_scatterlist
327 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
328 * @dest_sg: Destination of encrypted data
329 * @src_sg: Data to be encrypted
330 * @size: Length of data to be encrypted
331 * @iv: iv to use during encryption
332 *
333 * Returns the number of bytes encrypted; negative value on error
334 */
335static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
336 struct scatterlist *dest_sg,
337 struct scatterlist *src_sg, int size,
338 unsigned char *iv)
339{
8bba066f
MH
340 struct blkcipher_desc desc = {
341 .tfm = crypt_stat->tfm,
342 .info = iv,
343 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
344 };
237fead6
MH
345 int rc = 0;
346
347 BUG_ON(!crypt_stat || !crypt_stat->tfm
e2bd99ec 348 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
237fead6 349 if (unlikely(ecryptfs_verbosity > 0)) {
f24b3887 350 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
237fead6
MH
351 crypt_stat->key_size);
352 ecryptfs_dump_hex(crypt_stat->key,
353 crypt_stat->key_size);
354 }
355 /* Consider doing this once, when the file is opened */
356 mutex_lock(&crypt_stat->cs_tfm_mutex);
8e3a6f16
TH
357 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
358 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
359 crypt_stat->key_size);
360 crypt_stat->flags |= ECRYPTFS_KEY_SET;
361 }
237fead6
MH
362 if (rc) {
363 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
364 rc);
365 mutex_unlock(&crypt_stat->cs_tfm_mutex);
366 rc = -EINVAL;
367 goto out;
368 }
369 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
8bba066f 370 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
237fead6
MH
371 mutex_unlock(&crypt_stat->cs_tfm_mutex);
372out:
373 return rc;
374}
375
0216f7f7
MH
376/**
377 * ecryptfs_lower_offset_for_extent
378 *
379 * Convert an eCryptfs page index into a lower byte offset
380 */
7896b631
AB
381static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
382 struct ecryptfs_crypt_stat *crypt_stat)
0216f7f7 383{
157f1071
TH
384 (*offset) = ecryptfs_lower_header_size(crypt_stat)
385 + (crypt_stat->extent_size * extent_num);
0216f7f7
MH
386}
387
388/**
389 * ecryptfs_encrypt_extent
390 * @enc_extent_page: Allocated page into which to encrypt the data in
391 * @page
392 * @crypt_stat: crypt_stat containing cryptographic context for the
393 * encryption operation
394 * @page: Page containing plaintext data extent to encrypt
395 * @extent_offset: Page extent offset for use in generating IV
396 *
397 * Encrypts one extent of data.
398 *
399 * Return zero on success; non-zero otherwise
400 */
401static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
402 struct ecryptfs_crypt_stat *crypt_stat,
403 struct page *page,
404 unsigned long extent_offset)
405{
d6a13c17 406 loff_t extent_base;
0216f7f7
MH
407 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
408 int rc;
409
d6a13c17 410 extent_base = (((loff_t)page->index)
0216f7f7
MH
411 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
412 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
413 (extent_base + extent_offset));
414 if (rc) {
888d57bb
JP
415 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
416 "extent [0x%.16llx]; rc = [%d]\n",
417 (unsigned long long)(extent_base + extent_offset), rc);
0216f7f7
MH
418 goto out;
419 }
0216f7f7
MH
420 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
421 page, (extent_offset
422 * crypt_stat->extent_size),
423 crypt_stat->extent_size, extent_iv);
424 if (rc < 0) {
425 printk(KERN_ERR "%s: Error attempting to encrypt page with "
426 "page->index = [%ld], extent_offset = [%ld]; "
18d1dbf1 427 "rc = [%d]\n", __func__, page->index, extent_offset,
0216f7f7
MH
428 rc);
429 goto out;
430 }
431 rc = 0;
0216f7f7
MH
432out:
433 return rc;
434}
435
237fead6
MH
436/**
437 * ecryptfs_encrypt_page
0216f7f7
MH
438 * @page: Page mapped from the eCryptfs inode for the file; contains
439 * decrypted content that needs to be encrypted (to a temporary
440 * page; not in place) and written out to the lower file
237fead6
MH
441 *
442 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
443 * that eCryptfs pages may straddle the lower pages -- for instance,
444 * if the file was created on a machine with an 8K page size
445 * (resulting in an 8K header), and then the file is copied onto a
446 * host with a 32K page size, then when reading page 0 of the eCryptfs
447 * file, 24K of page 0 of the lower file will be read and decrypted,
448 * and then 8K of page 1 of the lower file will be read and decrypted.
449 *
237fead6
MH
450 * Returns zero on success; negative on error
451 */
0216f7f7 452int ecryptfs_encrypt_page(struct page *page)
237fead6 453{
0216f7f7 454 struct inode *ecryptfs_inode;
237fead6 455 struct ecryptfs_crypt_stat *crypt_stat;
7fcba054
ES
456 char *enc_extent_virt;
457 struct page *enc_extent_page = NULL;
0216f7f7 458 loff_t extent_offset;
237fead6 459 int rc = 0;
0216f7f7
MH
460
461 ecryptfs_inode = page->mapping->host;
462 crypt_stat =
463 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
13a791b4 464 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
7fcba054
ES
465 enc_extent_page = alloc_page(GFP_USER);
466 if (!enc_extent_page) {
0216f7f7
MH
467 rc = -ENOMEM;
468 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
469 "encrypted extent\n");
470 goto out;
471 }
7fcba054 472 enc_extent_virt = kmap(enc_extent_page);
0216f7f7
MH
473 for (extent_offset = 0;
474 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
475 extent_offset++) {
476 loff_t offset;
477
478 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
479 extent_offset);
237fead6 480 if (rc) {
0216f7f7 481 printk(KERN_ERR "%s: Error encrypting extent; "
18d1dbf1 482 "rc = [%d]\n", __func__, rc);
237fead6
MH
483 goto out;
484 }
0216f7f7 485 ecryptfs_lower_offset_for_extent(
d6a13c17
MH
486 &offset, ((((loff_t)page->index)
487 * (PAGE_CACHE_SIZE
488 / crypt_stat->extent_size))
0216f7f7
MH
489 + extent_offset), crypt_stat);
490 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
491 offset, crypt_stat->extent_size);
96a7b9c2 492 if (rc < 0) {
0216f7f7
MH
493 ecryptfs_printk(KERN_ERR, "Error attempting "
494 "to write lower page; rc = [%d]"
495 "\n", rc);
496 goto out;
237fead6 497 }
237fead6 498 }
96a7b9c2 499 rc = 0;
0216f7f7 500out:
7fcba054
ES
501 if (enc_extent_page) {
502 kunmap(enc_extent_page);
503 __free_page(enc_extent_page);
504 }
0216f7f7
MH
505 return rc;
506}
507
508static int ecryptfs_decrypt_extent(struct page *page,
509 struct ecryptfs_crypt_stat *crypt_stat,
510 struct page *enc_extent_page,
511 unsigned long extent_offset)
512{
d6a13c17 513 loff_t extent_base;
0216f7f7
MH
514 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
515 int rc;
516
d6a13c17 517 extent_base = (((loff_t)page->index)
0216f7f7
MH
518 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
519 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
520 (extent_base + extent_offset));
237fead6 521 if (rc) {
888d57bb
JP
522 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
523 "extent [0x%.16llx]; rc = [%d]\n",
524 (unsigned long long)(extent_base + extent_offset), rc);
0216f7f7
MH
525 goto out;
526 }
0216f7f7
MH
527 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
528 (extent_offset
529 * crypt_stat->extent_size),
530 enc_extent_page, 0,
531 crypt_stat->extent_size, extent_iv);
532 if (rc < 0) {
533 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
534 "page->index = [%ld], extent_offset = [%ld]; "
18d1dbf1 535 "rc = [%d]\n", __func__, page->index, extent_offset,
0216f7f7
MH
536 rc);
537 goto out;
538 }
539 rc = 0;
237fead6
MH
540out:
541 return rc;
542}
543
544/**
545 * ecryptfs_decrypt_page
0216f7f7
MH
546 * @page: Page mapped from the eCryptfs inode for the file; data read
547 * and decrypted from the lower file will be written into this
548 * page
237fead6
MH
549 *
550 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
551 * that eCryptfs pages may straddle the lower pages -- for instance,
552 * if the file was created on a machine with an 8K page size
553 * (resulting in an 8K header), and then the file is copied onto a
554 * host with a 32K page size, then when reading page 0 of the eCryptfs
555 * file, 24K of page 0 of the lower file will be read and decrypted,
556 * and then 8K of page 1 of the lower file will be read and decrypted.
557 *
558 * Returns zero on success; negative on error
559 */
0216f7f7 560int ecryptfs_decrypt_page(struct page *page)
237fead6 561{
0216f7f7 562 struct inode *ecryptfs_inode;
237fead6 563 struct ecryptfs_crypt_stat *crypt_stat;
7fcba054
ES
564 char *enc_extent_virt;
565 struct page *enc_extent_page = NULL;
0216f7f7 566 unsigned long extent_offset;
237fead6 567 int rc = 0;
237fead6 568
0216f7f7
MH
569 ecryptfs_inode = page->mapping->host;
570 crypt_stat =
571 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
13a791b4 572 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
7fcba054
ES
573 enc_extent_page = alloc_page(GFP_USER);
574 if (!enc_extent_page) {
237fead6 575 rc = -ENOMEM;
0216f7f7
MH
576 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
577 "encrypted extent\n");
16a72c45 578 goto out;
237fead6 579 }
7fcba054 580 enc_extent_virt = kmap(enc_extent_page);
0216f7f7
MH
581 for (extent_offset = 0;
582 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
583 extent_offset++) {
584 loff_t offset;
585
586 ecryptfs_lower_offset_for_extent(
587 &offset, ((page->index * (PAGE_CACHE_SIZE
588 / crypt_stat->extent_size))
589 + extent_offset), crypt_stat);
590 rc = ecryptfs_read_lower(enc_extent_virt, offset,
591 crypt_stat->extent_size,
592 ecryptfs_inode);
96a7b9c2 593 if (rc < 0) {
0216f7f7
MH
594 ecryptfs_printk(KERN_ERR, "Error attempting "
595 "to read lower page; rc = [%d]"
596 "\n", rc);
16a72c45 597 goto out;
237fead6 598 }
0216f7f7
MH
599 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
600 extent_offset);
601 if (rc) {
602 printk(KERN_ERR "%s: Error encrypting extent; "
18d1dbf1 603 "rc = [%d]\n", __func__, rc);
16a72c45 604 goto out;
237fead6 605 }
237fead6
MH
606 }
607out:
7fcba054
ES
608 if (enc_extent_page) {
609 kunmap(enc_extent_page);
610 __free_page(enc_extent_page);
611 }
237fead6
MH
612 return rc;
613}
614
615/**
616 * decrypt_scatterlist
22e78faf
MH
617 * @crypt_stat: Cryptographic context
618 * @dest_sg: The destination scatterlist to decrypt into
619 * @src_sg: The source scatterlist to decrypt from
620 * @size: The number of bytes to decrypt
621 * @iv: The initialization vector to use for the decryption
237fead6
MH
622 *
623 * Returns the number of bytes decrypted; negative value on error
624 */
625static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
626 struct scatterlist *dest_sg,
627 struct scatterlist *src_sg, int size,
628 unsigned char *iv)
629{
8bba066f
MH
630 struct blkcipher_desc desc = {
631 .tfm = crypt_stat->tfm,
632 .info = iv,
633 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
634 };
237fead6
MH
635 int rc = 0;
636
637 /* Consider doing this once, when the file is opened */
638 mutex_lock(&crypt_stat->cs_tfm_mutex);
8bba066f
MH
639 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
640 crypt_stat->key_size);
237fead6
MH
641 if (rc) {
642 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
643 rc);
644 mutex_unlock(&crypt_stat->cs_tfm_mutex);
645 rc = -EINVAL;
646 goto out;
647 }
648 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
8bba066f 649 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
237fead6
MH
650 mutex_unlock(&crypt_stat->cs_tfm_mutex);
651 if (rc) {
652 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
653 rc);
654 goto out;
655 }
656 rc = size;
657out:
658 return rc;
659}
660
661/**
662 * ecryptfs_encrypt_page_offset
22e78faf
MH
663 * @crypt_stat: The cryptographic context
664 * @dst_page: The page to encrypt into
665 * @dst_offset: The offset in the page to encrypt into
666 * @src_page: The page to encrypt from
667 * @src_offset: The offset in the page to encrypt from
668 * @size: The number of bytes to encrypt
669 * @iv: The initialization vector to use for the encryption
237fead6
MH
670 *
671 * Returns the number of bytes encrypted
672 */
673static int
674ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
675 struct page *dst_page, int dst_offset,
676 struct page *src_page, int src_offset, int size,
677 unsigned char *iv)
678{
679 struct scatterlist src_sg, dst_sg;
680
60c74f81
JA
681 sg_init_table(&src_sg, 1);
682 sg_init_table(&dst_sg, 1);
683
642f1490
JA
684 sg_set_page(&src_sg, src_page, size, src_offset);
685 sg_set_page(&dst_sg, dst_page, size, dst_offset);
237fead6
MH
686 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
687}
688
689/**
690 * ecryptfs_decrypt_page_offset
22e78faf
MH
691 * @crypt_stat: The cryptographic context
692 * @dst_page: The page to decrypt into
693 * @dst_offset: The offset in the page to decrypt into
694 * @src_page: The page to decrypt from
695 * @src_offset: The offset in the page to decrypt from
696 * @size: The number of bytes to decrypt
697 * @iv: The initialization vector to use for the decryption
237fead6
MH
698 *
699 * Returns the number of bytes decrypted
700 */
701static int
702ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
703 struct page *dst_page, int dst_offset,
704 struct page *src_page, int src_offset, int size,
705 unsigned char *iv)
706{
707 struct scatterlist src_sg, dst_sg;
708
60c74f81 709 sg_init_table(&src_sg, 1);
642f1490
JA
710 sg_set_page(&src_sg, src_page, size, src_offset);
711
60c74f81 712 sg_init_table(&dst_sg, 1);
642f1490 713 sg_set_page(&dst_sg, dst_page, size, dst_offset);
60c74f81 714
237fead6
MH
715 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
716}
717
718#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
719
720/**
721 * ecryptfs_init_crypt_ctx
421f91d2 722 * @crypt_stat: Uninitialized crypt stats structure
237fead6
MH
723 *
724 * Initialize the crypto context.
725 *
726 * TODO: Performance: Keep a cache of initialized cipher contexts;
727 * only init if needed
728 */
729int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
730{
8bba066f 731 char *full_alg_name;
237fead6
MH
732 int rc = -EINVAL;
733
734 if (!crypt_stat->cipher) {
735 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
736 goto out;
737 }
738 ecryptfs_printk(KERN_DEBUG,
739 "Initializing cipher [%s]; strlen = [%d]; "
f24b3887 740 "key_size_bits = [%zd]\n",
237fead6
MH
741 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
742 crypt_stat->key_size << 3);
743 if (crypt_stat->tfm) {
744 rc = 0;
745 goto out;
746 }
747 mutex_lock(&crypt_stat->cs_tfm_mutex);
8bba066f
MH
748 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
749 crypt_stat->cipher, "cbc");
750 if (rc)
c8161f64 751 goto out_unlock;
8bba066f
MH
752 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
753 CRYPTO_ALG_ASYNC);
754 kfree(full_alg_name);
de88777e
AM
755 if (IS_ERR(crypt_stat->tfm)) {
756 rc = PTR_ERR(crypt_stat->tfm);
b0105eae 757 crypt_stat->tfm = NULL;
237fead6
MH
758 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
759 "Error initializing cipher [%s]\n",
760 crypt_stat->cipher);
c8161f64 761 goto out_unlock;
237fead6 762 }
f1ddcaf3 763 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
237fead6 764 rc = 0;
c8161f64
ES
765out_unlock:
766 mutex_unlock(&crypt_stat->cs_tfm_mutex);
237fead6
MH
767out:
768 return rc;
769}
770
771static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
772{
773 int extent_size_tmp;
774
775 crypt_stat->extent_mask = 0xFFFFFFFF;
776 crypt_stat->extent_shift = 0;
777 if (crypt_stat->extent_size == 0)
778 return;
779 extent_size_tmp = crypt_stat->extent_size;
780 while ((extent_size_tmp & 0x01) == 0) {
781 extent_size_tmp >>= 1;
782 crypt_stat->extent_mask <<= 1;
783 crypt_stat->extent_shift++;
784 }
785}
786
787void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
788{
789 /* Default values; may be overwritten as we are parsing the
790 * packets. */
791 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
792 set_extent_mask_and_shift(crypt_stat);
793 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
dd2a3b7a 794 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
fa3ef1cb 795 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
45eaab79
MH
796 else {
797 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
fa3ef1cb 798 crypt_stat->metadata_size =
cc11beff 799 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
45eaab79 800 else
fa3ef1cb 801 crypt_stat->metadata_size = PAGE_CACHE_SIZE;
45eaab79 802 }
237fead6
MH
803}
804
805/**
806 * ecryptfs_compute_root_iv
807 * @crypt_stats
808 *
809 * On error, sets the root IV to all 0's.
810 */
811int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
812{
813 int rc = 0;
814 char dst[MD5_DIGEST_SIZE];
815
816 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
817 BUG_ON(crypt_stat->iv_bytes <= 0);
e2bd99ec 818 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
237fead6
MH
819 rc = -EINVAL;
820 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
821 "cannot generate root IV\n");
822 goto out;
823 }
824 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
825 crypt_stat->key_size);
826 if (rc) {
827 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
828 "MD5 while generating root IV\n");
829 goto out;
830 }
831 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
832out:
833 if (rc) {
834 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
e2bd99ec 835 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
237fead6
MH
836 }
837 return rc;
838}
839
840static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
841{
842 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
e2bd99ec 843 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
237fead6
MH
844 ecryptfs_compute_root_iv(crypt_stat);
845 if (unlikely(ecryptfs_verbosity > 0)) {
846 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
847 ecryptfs_dump_hex(crypt_stat->key,
848 crypt_stat->key_size);
849 }
850}
851
17398957
MH
852/**
853 * ecryptfs_copy_mount_wide_flags_to_inode_flags
22e78faf
MH
854 * @crypt_stat: The inode's cryptographic context
855 * @mount_crypt_stat: The mount point's cryptographic context
17398957
MH
856 *
857 * This function propagates the mount-wide flags to individual inode
858 * flags.
859 */
860static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
861 struct ecryptfs_crypt_stat *crypt_stat,
862 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
863{
864 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
865 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
866 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
867 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
addd65ad
MH
868 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
869 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
870 if (mount_crypt_stat->flags
871 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
872 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
873 else if (mount_crypt_stat->flags
874 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
875 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
876 }
17398957
MH
877}
878
f4aad16a
MH
879static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
880 struct ecryptfs_crypt_stat *crypt_stat,
881 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
882{
883 struct ecryptfs_global_auth_tok *global_auth_tok;
884 int rc = 0;
885
aa06117f 886 mutex_lock(&crypt_stat->keysig_list_mutex);
f4aad16a 887 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
aa06117f 888
f4aad16a
MH
889 list_for_each_entry(global_auth_tok,
890 &mount_crypt_stat->global_auth_tok_list,
891 mount_crypt_stat_list) {
84814d64
TH
892 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
893 continue;
f4aad16a
MH
894 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
895 if (rc) {
896 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
f4aad16a
MH
897 goto out;
898 }
899 }
aa06117f 900
f4aad16a 901out:
aa06117f
RD
902 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
903 mutex_unlock(&crypt_stat->keysig_list_mutex);
f4aad16a
MH
904 return rc;
905}
906
237fead6
MH
907/**
908 * ecryptfs_set_default_crypt_stat_vals
22e78faf
MH
909 * @crypt_stat: The inode's cryptographic context
910 * @mount_crypt_stat: The mount point's cryptographic context
237fead6
MH
911 *
912 * Default values in the event that policy does not override them.
913 */
914static void ecryptfs_set_default_crypt_stat_vals(
915 struct ecryptfs_crypt_stat *crypt_stat,
916 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
917{
17398957
MH
918 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
919 mount_crypt_stat);
237fead6
MH
920 ecryptfs_set_default_sizes(crypt_stat);
921 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
922 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
e2bd99ec 923 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
237fead6
MH
924 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
925 crypt_stat->mount_crypt_stat = mount_crypt_stat;
926}
927
928/**
929 * ecryptfs_new_file_context
b59db43a 930 * @ecryptfs_inode: The eCryptfs inode
237fead6
MH
931 *
932 * If the crypto context for the file has not yet been established,
933 * this is where we do that. Establishing a new crypto context
934 * involves the following decisions:
935 * - What cipher to use?
936 * - What set of authentication tokens to use?
937 * Here we just worry about getting enough information into the
938 * authentication tokens so that we know that they are available.
939 * We associate the available authentication tokens with the new file
940 * via the set of signatures in the crypt_stat struct. Later, when
941 * the headers are actually written out, we may again defer to
942 * userspace to perform the encryption of the session key; for the
943 * foreseeable future, this will be the case with public key packets.
944 *
945 * Returns zero on success; non-zero otherwise
946 */
b59db43a 947int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
237fead6 948{
237fead6 949 struct ecryptfs_crypt_stat *crypt_stat =
b59db43a 950 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
237fead6
MH
951 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
952 &ecryptfs_superblock_to_private(
b59db43a 953 ecryptfs_inode->i_sb)->mount_crypt_stat;
237fead6 954 int cipher_name_len;
f4aad16a 955 int rc = 0;
237fead6
MH
956
957 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
af655dc6 958 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
f4aad16a
MH
959 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
960 mount_crypt_stat);
961 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
962 mount_crypt_stat);
963 if (rc) {
964 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
965 "to the inode key sigs; rc = [%d]\n", rc);
966 goto out;
967 }
968 cipher_name_len =
969 strlen(mount_crypt_stat->global_default_cipher_name);
970 memcpy(crypt_stat->cipher,
971 mount_crypt_stat->global_default_cipher_name,
972 cipher_name_len);
973 crypt_stat->cipher[cipher_name_len] = '\0';
974 crypt_stat->key_size =
975 mount_crypt_stat->global_default_cipher_key_size;
976 ecryptfs_generate_new_key(crypt_stat);
237fead6
MH
977 rc = ecryptfs_init_crypt_ctx(crypt_stat);
978 if (rc)
979 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
980 "context for cipher [%s]: rc = [%d]\n",
981 crypt_stat->cipher, rc);
f4aad16a 982out:
237fead6
MH
983 return rc;
984}
985
986/**
7a86617e 987 * ecryptfs_validate_marker - check for the ecryptfs marker
237fead6
MH
988 * @data: The data block in which to check
989 *
7a86617e 990 * Returns zero if marker found; -EINVAL if not found
237fead6 991 */
7a86617e 992static int ecryptfs_validate_marker(char *data)
237fead6
MH
993{
994 u32 m_1, m_2;
995
29335c6a
HH
996 m_1 = get_unaligned_be32(data);
997 m_2 = get_unaligned_be32(data + 4);
237fead6 998 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
7a86617e 999 return 0;
237fead6
MH
1000 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1001 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1002 MAGIC_ECRYPTFS_MARKER);
1003 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1004 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
7a86617e 1005 return -EINVAL;
237fead6
MH
1006}
1007
1008struct ecryptfs_flag_map_elem {
1009 u32 file_flag;
1010 u32 local_flag;
1011};
1012
1013/* Add support for additional flags by adding elements here. */
1014static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1015 {0x00000001, ECRYPTFS_ENABLE_HMAC},
dd2a3b7a 1016 {0x00000002, ECRYPTFS_ENCRYPTED},
addd65ad
MH
1017 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1018 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
237fead6
MH
1019};
1020
1021/**
1022 * ecryptfs_process_flags
22e78faf 1023 * @crypt_stat: The cryptographic context
237fead6
MH
1024 * @page_virt: Source data to be parsed
1025 * @bytes_read: Updated with the number of bytes read
1026 *
1027 * Returns zero on success; non-zero if the flag set is invalid
1028 */
1029static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1030 char *page_virt, int *bytes_read)
1031{
1032 int rc = 0;
1033 int i;
1034 u32 flags;
1035
29335c6a 1036 flags = get_unaligned_be32(page_virt);
237fead6
MH
1037 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1038 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1039 if (flags & ecryptfs_flag_map[i].file_flag) {
e2bd99ec 1040 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
237fead6 1041 } else
e2bd99ec 1042 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
237fead6
MH
1043 /* Version is in top 8 bits of the 32-bit flag vector */
1044 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1045 (*bytes_read) = 4;
1046 return rc;
1047}
1048
1049/**
1050 * write_ecryptfs_marker
1051 * @page_virt: The pointer to in a page to begin writing the marker
1052 * @written: Number of bytes written
1053 *
1054 * Marker = 0x3c81b7f5
1055 */
1056static void write_ecryptfs_marker(char *page_virt, size_t *written)
1057{
1058 u32 m_1, m_2;
1059
1060 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1061 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
29335c6a
HH
1062 put_unaligned_be32(m_1, page_virt);
1063 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1064 put_unaligned_be32(m_2, page_virt);
237fead6
MH
1065 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1066}
1067
f4e60e6b
TH
1068void ecryptfs_write_crypt_stat_flags(char *page_virt,
1069 struct ecryptfs_crypt_stat *crypt_stat,
1070 size_t *written)
237fead6
MH
1071{
1072 u32 flags = 0;
1073 int i;
1074
1075 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1076 / sizeof(struct ecryptfs_flag_map_elem))); i++)
e2bd99ec 1077 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
237fead6
MH
1078 flags |= ecryptfs_flag_map[i].file_flag;
1079 /* Version is in top 8 bits of the 32-bit flag vector */
1080 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
29335c6a 1081 put_unaligned_be32(flags, page_virt);
237fead6
MH
1082 (*written) = 4;
1083}
1084
1085struct ecryptfs_cipher_code_str_map_elem {
1086 char cipher_str[16];
19e66a67 1087 u8 cipher_code;
237fead6
MH
1088};
1089
1090/* Add support for additional ciphers by adding elements here. The
1091 * cipher_code is whatever OpenPGP applicatoins use to identify the
1092 * ciphers. List in order of probability. */
1093static struct ecryptfs_cipher_code_str_map_elem
1094ecryptfs_cipher_code_str_map[] = {
1095 {"aes",RFC2440_CIPHER_AES_128 },
1096 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1097 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1098 {"cast5", RFC2440_CIPHER_CAST_5},
1099 {"twofish", RFC2440_CIPHER_TWOFISH},
1100 {"cast6", RFC2440_CIPHER_CAST_6},
1101 {"aes", RFC2440_CIPHER_AES_192},
1102 {"aes", RFC2440_CIPHER_AES_256}
1103};
1104
1105/**
1106 * ecryptfs_code_for_cipher_string
9c79f34f
MH
1107 * @cipher_name: The string alias for the cipher
1108 * @key_bytes: Length of key in bytes; used for AES code selection
237fead6
MH
1109 *
1110 * Returns zero on no match, or the cipher code on match
1111 */
9c79f34f 1112u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
237fead6
MH
1113{
1114 int i;
19e66a67 1115 u8 code = 0;
237fead6
MH
1116 struct ecryptfs_cipher_code_str_map_elem *map =
1117 ecryptfs_cipher_code_str_map;
1118
9c79f34f
MH
1119 if (strcmp(cipher_name, "aes") == 0) {
1120 switch (key_bytes) {
237fead6
MH
1121 case 16:
1122 code = RFC2440_CIPHER_AES_128;
1123 break;
1124 case 24:
1125 code = RFC2440_CIPHER_AES_192;
1126 break;
1127 case 32:
1128 code = RFC2440_CIPHER_AES_256;
1129 }
1130 } else {
1131 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
9c79f34f 1132 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
237fead6
MH
1133 code = map[i].cipher_code;
1134 break;
1135 }
1136 }
1137 return code;
1138}
1139
1140/**
1141 * ecryptfs_cipher_code_to_string
1142 * @str: Destination to write out the cipher name
1143 * @cipher_code: The code to convert to cipher name string
1144 *
1145 * Returns zero on success
1146 */
19e66a67 1147int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
237fead6
MH
1148{
1149 int rc = 0;
1150 int i;
1151
1152 str[0] = '\0';
1153 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1154 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1155 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1156 if (str[0] == '\0') {
1157 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1158 "[%d]\n", cipher_code);
1159 rc = -EINVAL;
1160 }
1161 return rc;
1162}
1163
778aeb42 1164int ecryptfs_read_and_validate_header_region(struct inode *inode)
dd2a3b7a 1165{
778aeb42
TH
1166 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1167 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
dd2a3b7a
MH
1168 int rc;
1169
778aeb42
TH
1170 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1171 inode);
1172 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1173 return rc >= 0 ? -EINVAL : rc;
1174 rc = ecryptfs_validate_marker(marker);
1175 if (!rc)
1176 ecryptfs_i_size_init(file_size, inode);
dd2a3b7a
MH
1177 return rc;
1178}
1179
e77a56dd
MH
1180void
1181ecryptfs_write_header_metadata(char *virt,
1182 struct ecryptfs_crypt_stat *crypt_stat,
1183 size_t *written)
237fead6
MH
1184{
1185 u32 header_extent_size;
1186 u16 num_header_extents_at_front;
1187
45eaab79 1188 header_extent_size = (u32)crypt_stat->extent_size;
237fead6 1189 num_header_extents_at_front =
fa3ef1cb 1190 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
29335c6a 1191 put_unaligned_be32(header_extent_size, virt);
237fead6 1192 virt += 4;
29335c6a 1193 put_unaligned_be16(num_header_extents_at_front, virt);
237fead6
MH
1194 (*written) = 6;
1195}
1196
30632870 1197struct kmem_cache *ecryptfs_header_cache;
237fead6
MH
1198
1199/**
1200 * ecryptfs_write_headers_virt
22e78faf 1201 * @page_virt: The virtual address to write the headers to
87b811c3 1202 * @max: The size of memory allocated at page_virt
22e78faf
MH
1203 * @size: Set to the number of bytes written by this function
1204 * @crypt_stat: The cryptographic context
1205 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
1206 *
1207 * Format version: 1
1208 *
1209 * Header Extent:
1210 * Octets 0-7: Unencrypted file size (big-endian)
1211 * Octets 8-15: eCryptfs special marker
1212 * Octets 16-19: Flags
1213 * Octet 16: File format version number (between 0 and 255)
1214 * Octets 17-18: Reserved
1215 * Octet 19: Bit 1 (lsb): Reserved
1216 * Bit 2: Encrypted?
1217 * Bits 3-8: Reserved
1218 * Octets 20-23: Header extent size (big-endian)
1219 * Octets 24-25: Number of header extents at front of file
1220 * (big-endian)
1221 * Octet 26: Begin RFC 2440 authentication token packet set
1222 * Data Extent 0:
1223 * Lower data (CBC encrypted)
1224 * Data Extent 1:
1225 * Lower data (CBC encrypted)
1226 * ...
1227 *
1228 * Returns zero on success
1229 */
87b811c3
ES
1230static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1231 size_t *size,
dd2a3b7a
MH
1232 struct ecryptfs_crypt_stat *crypt_stat,
1233 struct dentry *ecryptfs_dentry)
237fead6
MH
1234{
1235 int rc;
1236 size_t written;
1237 size_t offset;
1238
1239 offset = ECRYPTFS_FILE_SIZE_BYTES;
1240 write_ecryptfs_marker((page_virt + offset), &written);
1241 offset += written;
f4e60e6b
TH
1242 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1243 &written);
237fead6 1244 offset += written;
e77a56dd
MH
1245 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1246 &written);
237fead6
MH
1247 offset += written;
1248 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1249 ecryptfs_dentry, &written,
87b811c3 1250 max - offset);
237fead6
MH
1251 if (rc)
1252 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1253 "set; rc = [%d]\n", rc);
dd2a3b7a
MH
1254 if (size) {
1255 offset += written;
1256 *size = offset;
1257 }
1258 return rc;
1259}
1260
22e78faf 1261static int
b59db43a 1262ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
8faece5f 1263 char *virt, size_t virt_len)
dd2a3b7a 1264{
d7cdc5fe 1265 int rc;
dd2a3b7a 1266
b59db43a 1267 rc = ecryptfs_write_lower(ecryptfs_inode, virt,
8faece5f 1268 0, virt_len);
96a7b9c2 1269 if (rc < 0)
d7cdc5fe 1270 printk(KERN_ERR "%s: Error attempting to write header "
96a7b9c2
TH
1271 "information to lower file; rc = [%d]\n", __func__, rc);
1272 else
1273 rc = 0;
70456600 1274 return rc;
dd2a3b7a
MH
1275}
1276
22e78faf
MH
1277static int
1278ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
22e78faf 1279 char *page_virt, size_t size)
dd2a3b7a
MH
1280{
1281 int rc;
1282
1283 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1284 size, 0);
237fead6
MH
1285 return rc;
1286}
1287
8faece5f
TH
1288static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1289 unsigned int order)
1290{
1291 struct page *page;
1292
1293 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1294 if (page)
1295 return (unsigned long) page_address(page);
1296 return 0;
1297}
1298
237fead6 1299/**
dd2a3b7a 1300 * ecryptfs_write_metadata
b59db43a
TH
1301 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1302 * @ecryptfs_inode: The newly created eCryptfs inode
237fead6
MH
1303 *
1304 * Write the file headers out. This will likely involve a userspace
1305 * callout, in which the session key is encrypted with one or more
1306 * public keys and/or the passphrase necessary to do the encryption is
1307 * retrieved via a prompt. Exactly what happens at this point should
1308 * be policy-dependent.
1309 *
1310 * Returns zero on success; non-zero on error
1311 */
b59db43a
TH
1312int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1313 struct inode *ecryptfs_inode)
237fead6 1314{
d7cdc5fe 1315 struct ecryptfs_crypt_stat *crypt_stat =
b59db43a 1316 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
8faece5f 1317 unsigned int order;
cc11beff 1318 char *virt;
8faece5f 1319 size_t virt_len;
d7cdc5fe 1320 size_t size = 0;
237fead6
MH
1321 int rc = 0;
1322
e2bd99ec
MH
1323 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1324 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
d7cdc5fe 1325 printk(KERN_ERR "Key is invalid; bailing out\n");
237fead6
MH
1326 rc = -EINVAL;
1327 goto out;
1328 }
1329 } else {
cc11beff 1330 printk(KERN_WARNING "%s: Encrypted flag not set\n",
18d1dbf1 1331 __func__);
237fead6 1332 rc = -EINVAL;
237fead6
MH
1333 goto out;
1334 }
fa3ef1cb 1335 virt_len = crypt_stat->metadata_size;
8faece5f 1336 order = get_order(virt_len);
237fead6 1337 /* Released in this function */
8faece5f 1338 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
cc11beff 1339 if (!virt) {
18d1dbf1 1340 printk(KERN_ERR "%s: Out of memory\n", __func__);
237fead6
MH
1341 rc = -ENOMEM;
1342 goto out;
1343 }
bd4f0fe8 1344 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
8faece5f
TH
1345 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1346 ecryptfs_dentry);
237fead6 1347 if (unlikely(rc)) {
cc11beff 1348 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
18d1dbf1 1349 __func__, rc);
237fead6
MH
1350 goto out_free;
1351 }
dd2a3b7a 1352 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
8faece5f
TH
1353 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1354 size);
dd2a3b7a 1355 else
b59db43a 1356 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
8faece5f 1357 virt_len);
dd2a3b7a 1358 if (rc) {
cc11beff 1359 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
18d1dbf1 1360 "rc = [%d]\n", __func__, rc);
dd2a3b7a 1361 goto out_free;
237fead6 1362 }
237fead6 1363out_free:
8faece5f 1364 free_pages((unsigned long)virt, order);
237fead6
MH
1365out:
1366 return rc;
1367}
1368
dd2a3b7a
MH
1369#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1370#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
237fead6 1371static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1372 char *virt, int *bytes_read,
1373 int validate_header_size)
237fead6
MH
1374{
1375 int rc = 0;
1376 u32 header_extent_size;
1377 u16 num_header_extents_at_front;
1378
29335c6a
HH
1379 header_extent_size = get_unaligned_be32(virt);
1380 virt += sizeof(__be32);
1381 num_header_extents_at_front = get_unaligned_be16(virt);
fa3ef1cb
TH
1382 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1383 * (size_t)header_extent_size));
29335c6a 1384 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
dd2a3b7a 1385 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
fa3ef1cb 1386 && (crypt_stat->metadata_size
dd2a3b7a 1387 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
237fead6 1388 rc = -EINVAL;
cc11beff 1389 printk(KERN_WARNING "Invalid header size: [%zd]\n",
fa3ef1cb 1390 crypt_stat->metadata_size);
237fead6
MH
1391 }
1392 return rc;
1393}
1394
1395/**
1396 * set_default_header_data
22e78faf 1397 * @crypt_stat: The cryptographic context
237fead6
MH
1398 *
1399 * For version 0 file format; this function is only for backwards
1400 * compatibility for files created with the prior versions of
1401 * eCryptfs.
1402 */
1403static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1404{
fa3ef1cb 1405 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
237fead6
MH
1406}
1407
3aeb86ea
TH
1408void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1409{
1410 struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1411 struct ecryptfs_crypt_stat *crypt_stat;
1412 u64 file_size;
1413
1414 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1415 mount_crypt_stat =
1416 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1417 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1418 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1419 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1420 file_size += crypt_stat->metadata_size;
1421 } else
1422 file_size = get_unaligned_be64(page_virt);
1423 i_size_write(inode, (loff_t)file_size);
1424 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1425}
1426
237fead6
MH
1427/**
1428 * ecryptfs_read_headers_virt
22e78faf
MH
1429 * @page_virt: The virtual address into which to read the headers
1430 * @crypt_stat: The cryptographic context
1431 * @ecryptfs_dentry: The eCryptfs dentry
1432 * @validate_header_size: Whether to validate the header size while reading
237fead6
MH
1433 *
1434 * Read/parse the header data. The header format is detailed in the
1435 * comment block for the ecryptfs_write_headers_virt() function.
1436 *
1437 * Returns zero on success
1438 */
1439static int ecryptfs_read_headers_virt(char *page_virt,
1440 struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1441 struct dentry *ecryptfs_dentry,
1442 int validate_header_size)
237fead6
MH
1443{
1444 int rc = 0;
1445 int offset;
1446 int bytes_read;
1447
1448 ecryptfs_set_default_sizes(crypt_stat);
1449 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1450 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1451 offset = ECRYPTFS_FILE_SIZE_BYTES;
7a86617e
TH
1452 rc = ecryptfs_validate_marker(page_virt + offset);
1453 if (rc)
237fead6 1454 goto out;
3aeb86ea
TH
1455 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1456 ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
237fead6
MH
1457 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1458 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1459 &bytes_read);
1460 if (rc) {
1461 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1462 goto out;
1463 }
1464 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1465 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1466 "file version [%d] is supported by this "
1467 "version of eCryptfs\n",
1468 crypt_stat->file_version,
1469 ECRYPTFS_SUPPORTED_FILE_VERSION);
1470 rc = -EINVAL;
1471 goto out;
1472 }
1473 offset += bytes_read;
1474 if (crypt_stat->file_version >= 1) {
1475 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
dd2a3b7a 1476 &bytes_read, validate_header_size);
237fead6
MH
1477 if (rc) {
1478 ecryptfs_printk(KERN_WARNING, "Error reading header "
1479 "metadata; rc = [%d]\n", rc);
1480 }
1481 offset += bytes_read;
1482 } else
1483 set_default_header_data(crypt_stat);
1484 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1485 ecryptfs_dentry);
1486out:
1487 return rc;
1488}
1489
1490/**
dd2a3b7a 1491 * ecryptfs_read_xattr_region
22e78faf 1492 * @page_virt: The vitual address into which to read the xattr data
2ed92554 1493 * @ecryptfs_inode: The eCryptfs inode
dd2a3b7a
MH
1494 *
1495 * Attempts to read the crypto metadata from the extended attribute
1496 * region of the lower file.
22e78faf
MH
1497 *
1498 * Returns zero on success; non-zero on error
dd2a3b7a 1499 */
d7cdc5fe 1500int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
dd2a3b7a 1501{
d7cdc5fe
MH
1502 struct dentry *lower_dentry =
1503 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
dd2a3b7a
MH
1504 ssize_t size;
1505 int rc = 0;
1506
d7cdc5fe
MH
1507 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1508 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
dd2a3b7a 1509 if (size < 0) {
25bd8174
MH
1510 if (unlikely(ecryptfs_verbosity > 0))
1511 printk(KERN_INFO "Error attempting to read the [%s] "
1512 "xattr from the lower file; return value = "
1513 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
dd2a3b7a
MH
1514 rc = -EINVAL;
1515 goto out;
1516 }
1517out:
1518 return rc;
1519}
1520
778aeb42 1521int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
3b06b3eb 1522 struct inode *inode)
dd2a3b7a 1523{
778aeb42
TH
1524 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1525 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
dd2a3b7a
MH
1526 int rc;
1527
778aeb42
TH
1528 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1529 ECRYPTFS_XATTR_NAME, file_size,
1530 ECRYPTFS_SIZE_AND_MARKER_BYTES);
1531 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1532 return rc >= 0 ? -EINVAL : rc;
1533 rc = ecryptfs_validate_marker(marker);
1534 if (!rc)
1535 ecryptfs_i_size_init(file_size, inode);
dd2a3b7a
MH
1536 return rc;
1537}
1538
1539/**
1540 * ecryptfs_read_metadata
1541 *
1542 * Common entry point for reading file metadata. From here, we could
1543 * retrieve the header information from the header region of the file,
1544 * the xattr region of the file, or some other repostory that is
1545 * stored separately from the file itself. The current implementation
1546 * supports retrieving the metadata information from the file contents
1547 * and from the xattr region.
237fead6
MH
1548 *
1549 * Returns zero if valid headers found and parsed; non-zero otherwise
1550 */
d7cdc5fe 1551int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
237fead6 1552{
bb450361
TG
1553 int rc;
1554 char *page_virt;
d7cdc5fe 1555 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
237fead6 1556 struct ecryptfs_crypt_stat *crypt_stat =
d7cdc5fe 1557 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
e77a56dd
MH
1558 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1559 &ecryptfs_superblock_to_private(
1560 ecryptfs_dentry->d_sb)->mount_crypt_stat;
237fead6 1561
e77a56dd
MH
1562 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1563 mount_crypt_stat);
237fead6 1564 /* Read the first page from the underlying file */
30632870 1565 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
237fead6
MH
1566 if (!page_virt) {
1567 rc = -ENOMEM;
d7cdc5fe 1568 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
18d1dbf1 1569 __func__);
237fead6
MH
1570 goto out;
1571 }
d7cdc5fe
MH
1572 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1573 ecryptfs_inode);
96a7b9c2 1574 if (rc >= 0)
d7cdc5fe
MH
1575 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1576 ecryptfs_dentry,
1577 ECRYPTFS_VALIDATE_HEADER_SIZE);
237fead6 1578 if (rc) {
bb450361 1579 /* metadata is not in the file header, so try xattrs */
1984c23f 1580 memset(page_virt, 0, PAGE_CACHE_SIZE);
d7cdc5fe 1581 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
dd2a3b7a
MH
1582 if (rc) {
1583 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
30373dc0
TG
1584 "file header region or xattr region, inode %lu\n",
1585 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1586 rc = -EINVAL;
1587 goto out;
1588 }
1589 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1590 ecryptfs_dentry,
1591 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1592 if (rc) {
1593 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
30373dc0
TG
1594 "file xattr region either, inode %lu\n",
1595 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1596 rc = -EINVAL;
1597 }
1598 if (crypt_stat->mount_crypt_stat->flags
1599 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1600 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1601 } else {
1602 printk(KERN_WARNING "Attempt to access file with "
1603 "crypto metadata only in the extended attribute "
1604 "region, but eCryptfs was mounted without "
1605 "xattr support enabled. eCryptfs will not treat "
30373dc0
TG
1606 "this like an encrypted file, inode %lu\n",
1607 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1608 rc = -EINVAL;
1609 }
237fead6
MH
1610 }
1611out:
1612 if (page_virt) {
1613 memset(page_virt, 0, PAGE_CACHE_SIZE);
30632870 1614 kmem_cache_free(ecryptfs_header_cache, page_virt);
237fead6
MH
1615 }
1616 return rc;
1617}
1618
51ca58dc
MH
1619/**
1620 * ecryptfs_encrypt_filename - encrypt filename
1621 *
1622 * CBC-encrypts the filename. We do not want to encrypt the same
1623 * filename with the same key and IV, which may happen with hard
1624 * links, so we prepend random bits to each filename.
1625 *
1626 * Returns zero on success; non-zero otherwise
1627 */
1628static int
1629ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1630 struct ecryptfs_crypt_stat *crypt_stat,
1631 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1632{
1633 int rc = 0;
1634
1635 filename->encrypted_filename = NULL;
1636 filename->encrypted_filename_size = 0;
1637 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1638 || (mount_crypt_stat && (mount_crypt_stat->flags
1639 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1640 size_t packet_size;
1641 size_t remaining_bytes;
1642
1643 rc = ecryptfs_write_tag_70_packet(
1644 NULL, NULL,
1645 &filename->encrypted_filename_size,
1646 mount_crypt_stat, NULL,
1647 filename->filename_size);
1648 if (rc) {
1649 printk(KERN_ERR "%s: Error attempting to get packet "
1650 "size for tag 72; rc = [%d]\n", __func__,
1651 rc);
1652 filename->encrypted_filename_size = 0;
1653 goto out;
1654 }
1655 filename->encrypted_filename =
1656 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1657 if (!filename->encrypted_filename) {
1658 printk(KERN_ERR "%s: Out of memory whilst attempting "
df261c52 1659 "to kmalloc [%zd] bytes\n", __func__,
51ca58dc
MH
1660 filename->encrypted_filename_size);
1661 rc = -ENOMEM;
1662 goto out;
1663 }
1664 remaining_bytes = filename->encrypted_filename_size;
1665 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1666 &remaining_bytes,
1667 &packet_size,
1668 mount_crypt_stat,
1669 filename->filename,
1670 filename->filename_size);
1671 if (rc) {
1672 printk(KERN_ERR "%s: Error attempting to generate "
1673 "tag 70 packet; rc = [%d]\n", __func__,
1674 rc);
1675 kfree(filename->encrypted_filename);
1676 filename->encrypted_filename = NULL;
1677 filename->encrypted_filename_size = 0;
1678 goto out;
1679 }
1680 filename->encrypted_filename_size = packet_size;
1681 } else {
1682 printk(KERN_ERR "%s: No support for requested filename "
1683 "encryption method in this release\n", __func__);
df6ad33b 1684 rc = -EOPNOTSUPP;
51ca58dc
MH
1685 goto out;
1686 }
1687out:
1688 return rc;
1689}
1690
1691static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1692 const char *name, size_t name_size)
1693{
1694 int rc = 0;
1695
fd9fc842 1696 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
51ca58dc
MH
1697 if (!(*copied_name)) {
1698 rc = -ENOMEM;
1699 goto out;
1700 }
1701 memcpy((void *)(*copied_name), (void *)name, name_size);
1702 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1703 * in printing out the
1704 * string in debug
1705 * messages */
fd9fc842 1706 (*copied_name_size) = name_size;
51ca58dc
MH
1707out:
1708 return rc;
1709}
1710
237fead6 1711/**
f4aad16a 1712 * ecryptfs_process_key_cipher - Perform key cipher initialization.
237fead6 1713 * @key_tfm: Crypto context for key material, set by this function
e5d9cbde
MH
1714 * @cipher_name: Name of the cipher
1715 * @key_size: Size of the key in bytes
237fead6
MH
1716 *
1717 * Returns zero on success. Any crypto_tfm structs allocated here
1718 * should be released by other functions, such as on a superblock put
1719 * event, regardless of whether this function succeeds for fails.
1720 */
cd9d67df 1721static int
f4aad16a
MH
1722ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1723 char *cipher_name, size_t *key_size)
237fead6
MH
1724{
1725 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
ece550f5 1726 char *full_alg_name = NULL;
237fead6
MH
1727 int rc;
1728
e5d9cbde
MH
1729 *key_tfm = NULL;
1730 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
237fead6 1731 rc = -EINVAL;
df261c52 1732 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
e5d9cbde 1733 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
237fead6
MH
1734 goto out;
1735 }
8bba066f
MH
1736 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1737 "ecb");
1738 if (rc)
1739 goto out;
1740 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
8bba066f
MH
1741 if (IS_ERR(*key_tfm)) {
1742 rc = PTR_ERR(*key_tfm);
237fead6 1743 printk(KERN_ERR "Unable to allocate crypto cipher with name "
38268498 1744 "[%s]; rc = [%d]\n", full_alg_name, rc);
237fead6
MH
1745 goto out;
1746 }
8bba066f
MH
1747 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1748 if (*key_size == 0) {
1749 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1750
1751 *key_size = alg->max_keysize;
1752 }
e5d9cbde 1753 get_random_bytes(dummy_key, *key_size);
8bba066f 1754 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
237fead6 1755 if (rc) {
df261c52 1756 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
38268498
DH
1757 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1758 rc);
237fead6
MH
1759 rc = -EINVAL;
1760 goto out;
1761 }
1762out:
ece550f5 1763 kfree(full_alg_name);
237fead6
MH
1764 return rc;
1765}
f4aad16a
MH
1766
1767struct kmem_cache *ecryptfs_key_tfm_cache;
7896b631 1768static struct list_head key_tfm_list;
af440f52 1769struct mutex key_tfm_list_mutex;
f4aad16a 1770
7371a382 1771int __init ecryptfs_init_crypto(void)
f4aad16a
MH
1772{
1773 mutex_init(&key_tfm_list_mutex);
1774 INIT_LIST_HEAD(&key_tfm_list);
1775 return 0;
1776}
1777
af440f52
ES
1778/**
1779 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1780 *
1781 * Called only at module unload time
1782 */
fcd12835 1783int ecryptfs_destroy_crypto(void)
f4aad16a
MH
1784{
1785 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1786
1787 mutex_lock(&key_tfm_list_mutex);
1788 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1789 key_tfm_list) {
1790 list_del(&key_tfm->key_tfm_list);
1791 if (key_tfm->key_tfm)
1792 crypto_free_blkcipher(key_tfm->key_tfm);
1793 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1794 }
1795 mutex_unlock(&key_tfm_list_mutex);
1796 return 0;
1797}
1798
1799int
1800ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1801 size_t key_size)
1802{
1803 struct ecryptfs_key_tfm *tmp_tfm;
1804 int rc = 0;
1805
af440f52
ES
1806 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1807
f4aad16a
MH
1808 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1809 if (key_tfm != NULL)
1810 (*key_tfm) = tmp_tfm;
1811 if (!tmp_tfm) {
1812 rc = -ENOMEM;
1813 printk(KERN_ERR "Error attempting to allocate from "
1814 "ecryptfs_key_tfm_cache\n");
1815 goto out;
1816 }
1817 mutex_init(&tmp_tfm->key_tfm_mutex);
1818 strncpy(tmp_tfm->cipher_name, cipher_name,
1819 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
b8862906 1820 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
f4aad16a 1821 tmp_tfm->key_size = key_size;
5dda6992
MH
1822 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1823 tmp_tfm->cipher_name,
1824 &tmp_tfm->key_size);
1825 if (rc) {
f4aad16a
MH
1826 printk(KERN_ERR "Error attempting to initialize key TFM "
1827 "cipher with name = [%s]; rc = [%d]\n",
1828 tmp_tfm->cipher_name, rc);
1829 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1830 if (key_tfm != NULL)
1831 (*key_tfm) = NULL;
1832 goto out;
1833 }
f4aad16a 1834 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
f4aad16a
MH
1835out:
1836 return rc;
1837}
1838
af440f52
ES
1839/**
1840 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1841 * @cipher_name: the name of the cipher to search for
1842 * @key_tfm: set to corresponding tfm if found
1843 *
1844 * Searches for cached key_tfm matching @cipher_name
1845 * Must be called with &key_tfm_list_mutex held
1846 * Returns 1 if found, with @key_tfm set
1847 * Returns 0 if not found, with @key_tfm set to NULL
1848 */
1849int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1850{
1851 struct ecryptfs_key_tfm *tmp_key_tfm;
1852
1853 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1854
1855 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1856 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1857 if (key_tfm)
1858 (*key_tfm) = tmp_key_tfm;
1859 return 1;
1860 }
1861 }
1862 if (key_tfm)
1863 (*key_tfm) = NULL;
1864 return 0;
1865}
1866
1867/**
1868 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1869 *
1870 * @tfm: set to cached tfm found, or new tfm created
1871 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1872 * @cipher_name: the name of the cipher to search for and/or add
1873 *
1874 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1875 * Searches for cached item first, and creates new if not found.
1876 * Returns 0 on success, non-zero if adding new cipher failed
1877 */
f4aad16a
MH
1878int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1879 struct mutex **tfm_mutex,
1880 char *cipher_name)
1881{
1882 struct ecryptfs_key_tfm *key_tfm;
1883 int rc = 0;
1884
1885 (*tfm) = NULL;
1886 (*tfm_mutex) = NULL;
af440f52 1887
f4aad16a 1888 mutex_lock(&key_tfm_list_mutex);
af440f52
ES
1889 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1890 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1891 if (rc) {
1892 printk(KERN_ERR "Error adding new key_tfm to list; "
1893 "rc = [%d]\n", rc);
f4aad16a
MH
1894 goto out;
1895 }
1896 }
f4aad16a
MH
1897 (*tfm) = key_tfm->key_tfm;
1898 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1899out:
71fd5179 1900 mutex_unlock(&key_tfm_list_mutex);
f4aad16a
MH
1901 return rc;
1902}
51ca58dc
MH
1903
1904/* 64 characters forming a 6-bit target field */
1905static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1906 "EFGHIJKLMNOPQRST"
1907 "UVWXYZabcdefghij"
1908 "klmnopqrstuvwxyz");
1909
1910/* We could either offset on every reverse map or just pad some 0x00's
1911 * at the front here */
0f751e64 1912static const unsigned char filename_rev_map[256] = {
51ca58dc
MH
1913 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1914 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1915 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1916 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1917 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1918 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1919 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1920 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1921 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1922 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1923 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1924 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1925 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1926 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1927 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
0f751e64 1928 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
51ca58dc
MH
1929};
1930
1931/**
1932 * ecryptfs_encode_for_filename
1933 * @dst: Destination location for encoded filename
1934 * @dst_size: Size of the encoded filename in bytes
1935 * @src: Source location for the filename to encode
1936 * @src_size: Size of the source in bytes
1937 */
1938void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1939 unsigned char *src, size_t src_size)
1940{
1941 size_t num_blocks;
1942 size_t block_num = 0;
1943 size_t dst_offset = 0;
1944 unsigned char last_block[3];
1945
1946 if (src_size == 0) {
1947 (*dst_size) = 0;
1948 goto out;
1949 }
1950 num_blocks = (src_size / 3);
1951 if ((src_size % 3) == 0) {
1952 memcpy(last_block, (&src[src_size - 3]), 3);
1953 } else {
1954 num_blocks++;
1955 last_block[2] = 0x00;
1956 switch (src_size % 3) {
1957 case 1:
1958 last_block[0] = src[src_size - 1];
1959 last_block[1] = 0x00;
1960 break;
1961 case 2:
1962 last_block[0] = src[src_size - 2];
1963 last_block[1] = src[src_size - 1];
1964 }
1965 }
1966 (*dst_size) = (num_blocks * 4);
1967 if (!dst)
1968 goto out;
1969 while (block_num < num_blocks) {
1970 unsigned char *src_block;
1971 unsigned char dst_block[4];
1972
1973 if (block_num == (num_blocks - 1))
1974 src_block = last_block;
1975 else
1976 src_block = &src[block_num * 3];
1977 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1978 dst_block[1] = (((src_block[0] << 4) & 0x30)
1979 | ((src_block[1] >> 4) & 0x0F));
1980 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1981 | ((src_block[2] >> 6) & 0x03));
1982 dst_block[3] = (src_block[2] & 0x3F);
1983 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1984 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1985 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1986 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1987 block_num++;
1988 }
1989out:
1990 return;
1991}
1992
71c11c37
MH
1993/**
1994 * ecryptfs_decode_from_filename
1995 * @dst: If NULL, this function only sets @dst_size and returns. If
1996 * non-NULL, this function decodes the encoded octets in @src
1997 * into the memory that @dst points to.
1998 * @dst_size: Set to the size of the decoded string.
1999 * @src: The encoded set of octets to decode.
2000 * @src_size: The size of the encoded set of octets to decode.
2001 */
2002static void
2003ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2004 const unsigned char *src, size_t src_size)
51ca58dc
MH
2005{
2006 u8 current_bit_offset = 0;
2007 size_t src_byte_offset = 0;
2008 size_t dst_byte_offset = 0;
51ca58dc
MH
2009
2010 if (dst == NULL) {
71c11c37
MH
2011 /* Not exact; conservatively long. Every block of 4
2012 * encoded characters decodes into a block of 3
2013 * decoded characters. This segment of code provides
2014 * the caller with the maximum amount of allocated
2015 * space that @dst will need to point to in a
2016 * subsequent call. */
51ca58dc
MH
2017 (*dst_size) = (((src_size + 1) * 3) / 4);
2018 goto out;
2019 }
2020 while (src_byte_offset < src_size) {
2021 unsigned char src_byte =
2022 filename_rev_map[(int)src[src_byte_offset]];
2023
2024 switch (current_bit_offset) {
2025 case 0:
2026 dst[dst_byte_offset] = (src_byte << 2);
2027 current_bit_offset = 6;
2028 break;
2029 case 6:
2030 dst[dst_byte_offset++] |= (src_byte >> 4);
2031 dst[dst_byte_offset] = ((src_byte & 0xF)
2032 << 4);
2033 current_bit_offset = 4;
2034 break;
2035 case 4:
2036 dst[dst_byte_offset++] |= (src_byte >> 2);
2037 dst[dst_byte_offset] = (src_byte << 6);
2038 current_bit_offset = 2;
2039 break;
2040 case 2:
2041 dst[dst_byte_offset++] |= (src_byte);
2042 dst[dst_byte_offset] = 0;
2043 current_bit_offset = 0;
2044 break;
2045 }
2046 src_byte_offset++;
2047 }
2048 (*dst_size) = dst_byte_offset;
2049out:
71c11c37 2050 return;
51ca58dc
MH
2051}
2052
2053/**
2054 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2055 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2056 * @name: The plaintext name
2057 * @length: The length of the plaintext
2058 * @encoded_name: The encypted name
2059 *
2060 * Encrypts and encodes a filename into something that constitutes a
2061 * valid filename for a filesystem, with printable characters.
2062 *
2063 * We assume that we have a properly initialized crypto context,
2064 * pointed to by crypt_stat->tfm.
2065 *
2066 * Returns zero on success; non-zero on otherwise
2067 */
2068int ecryptfs_encrypt_and_encode_filename(
2069 char **encoded_name,
2070 size_t *encoded_name_size,
2071 struct ecryptfs_crypt_stat *crypt_stat,
2072 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2073 const char *name, size_t name_size)
2074{
2075 size_t encoded_name_no_prefix_size;
2076 int rc = 0;
2077
2078 (*encoded_name) = NULL;
2079 (*encoded_name_size) = 0;
2080 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2081 || (mount_crypt_stat && (mount_crypt_stat->flags
2082 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2083 struct ecryptfs_filename *filename;
2084
2085 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2086 if (!filename) {
2087 printk(KERN_ERR "%s: Out of memory whilst attempting "
a8f12864 2088 "to kzalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2089 sizeof(*filename));
2090 rc = -ENOMEM;
2091 goto out;
2092 }
2093 filename->filename = (char *)name;
2094 filename->filename_size = name_size;
2095 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2096 mount_crypt_stat);
2097 if (rc) {
2098 printk(KERN_ERR "%s: Error attempting to encrypt "
2099 "filename; rc = [%d]\n", __func__, rc);
2100 kfree(filename);
2101 goto out;
2102 }
2103 ecryptfs_encode_for_filename(
2104 NULL, &encoded_name_no_prefix_size,
2105 filename->encrypted_filename,
2106 filename->encrypted_filename_size);
2107 if ((crypt_stat && (crypt_stat->flags
2108 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2109 || (mount_crypt_stat
2110 && (mount_crypt_stat->flags
2111 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2112 (*encoded_name_size) =
2113 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2114 + encoded_name_no_prefix_size);
2115 else
2116 (*encoded_name_size) =
2117 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2118 + encoded_name_no_prefix_size);
2119 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2120 if (!(*encoded_name)) {
2121 printk(KERN_ERR "%s: Out of memory whilst attempting "
a8f12864 2122 "to kzalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2123 (*encoded_name_size));
2124 rc = -ENOMEM;
2125 kfree(filename->encrypted_filename);
2126 kfree(filename);
2127 goto out;
2128 }
2129 if ((crypt_stat && (crypt_stat->flags
2130 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2131 || (mount_crypt_stat
2132 && (mount_crypt_stat->flags
2133 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2134 memcpy((*encoded_name),
2135 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2136 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2137 ecryptfs_encode_for_filename(
2138 ((*encoded_name)
2139 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2140 &encoded_name_no_prefix_size,
2141 filename->encrypted_filename,
2142 filename->encrypted_filename_size);
2143 (*encoded_name_size) =
2144 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2145 + encoded_name_no_prefix_size);
2146 (*encoded_name)[(*encoded_name_size)] = '\0';
51ca58dc 2147 } else {
df6ad33b 2148 rc = -EOPNOTSUPP;
51ca58dc
MH
2149 }
2150 if (rc) {
2151 printk(KERN_ERR "%s: Error attempting to encode "
2152 "encrypted filename; rc = [%d]\n", __func__,
2153 rc);
2154 kfree((*encoded_name));
2155 (*encoded_name) = NULL;
2156 (*encoded_name_size) = 0;
2157 }
2158 kfree(filename->encrypted_filename);
2159 kfree(filename);
2160 } else {
2161 rc = ecryptfs_copy_filename(encoded_name,
2162 encoded_name_size,
2163 name, name_size);
2164 }
2165out:
2166 return rc;
2167}
2168
2169/**
2170 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2171 * @plaintext_name: The plaintext name
2172 * @plaintext_name_size: The plaintext name size
2173 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2174 * @name: The filename in cipher text
2175 * @name_size: The cipher text name size
2176 *
2177 * Decrypts and decodes the filename.
2178 *
2179 * Returns zero on error; non-zero otherwise
2180 */
2181int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2182 size_t *plaintext_name_size,
2183 struct dentry *ecryptfs_dir_dentry,
2184 const char *name, size_t name_size)
2185{
2aac0cf8
TH
2186 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2187 &ecryptfs_superblock_to_private(
2188 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
51ca58dc
MH
2189 char *decoded_name;
2190 size_t decoded_name_size;
2191 size_t packet_size;
2192 int rc = 0;
2193
2aac0cf8
TH
2194 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2195 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2196 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
51ca58dc
MH
2197 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2198 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
51ca58dc
MH
2199 const char *orig_name = name;
2200 size_t orig_name_size = name_size;
2201
2202 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2203 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
71c11c37
MH
2204 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2205 name, name_size);
51ca58dc
MH
2206 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2207 if (!decoded_name) {
2208 printk(KERN_ERR "%s: Out of memory whilst attempting "
df261c52 2209 "to kmalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2210 decoded_name_size);
2211 rc = -ENOMEM;
2212 goto out;
2213 }
71c11c37
MH
2214 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2215 name, name_size);
51ca58dc
MH
2216 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2217 plaintext_name_size,
2218 &packet_size,
2219 mount_crypt_stat,
2220 decoded_name,
2221 decoded_name_size);
2222 if (rc) {
2223 printk(KERN_INFO "%s: Could not parse tag 70 packet "
2224 "from filename; copying through filename "
2225 "as-is\n", __func__);
2226 rc = ecryptfs_copy_filename(plaintext_name,
2227 plaintext_name_size,
2228 orig_name, orig_name_size);
2229 goto out_free;
2230 }
2231 } else {
2232 rc = ecryptfs_copy_filename(plaintext_name,
2233 plaintext_name_size,
2234 name, name_size);
2235 goto out;
2236 }
2237out_free:
2238 kfree(decoded_name);
2239out:
2240 return rc;
2241}
This page took 0.568038 seconds and 5 git commands to generate.