ext4 crypto: separate kernel and userspace structure for the key
[deliverable/linux.git] / fs / ext4 / crypto.c
CommitLineData
b30ab0e0
MH
1/*
2 * linux/fs/ext4/crypto.c
3 *
4 * Copyright (C) 2015, Google, Inc.
5 *
6 * This contains encryption functions for ext4
7 *
8 * Written by Michael Halcrow, 2014.
9 *
10 * Filename encryption additions
11 * Uday Savagaonkar, 2014
12 * Encryption policy handling additions
13 * Ildar Muslukhov, 2014
14 *
15 * This has not yet undergone a rigorous security audit.
16 *
17 * The usage of AES-XTS should conform to recommendations in NIST
18 * Special Publication 800-38E and IEEE P1619/D16.
19 */
20
21#include <crypto/hash.h>
22#include <crypto/sha.h>
23#include <keys/user-type.h>
24#include <keys/encrypted-type.h>
25#include <linux/crypto.h>
26#include <linux/ecryptfs.h>
27#include <linux/gfp.h>
28#include <linux/kernel.h>
29#include <linux/key.h>
30#include <linux/list.h>
31#include <linux/mempool.h>
32#include <linux/module.h>
33#include <linux/mutex.h>
34#include <linux/random.h>
35#include <linux/scatterlist.h>
36#include <linux/spinlock_types.h>
37
38#include "ext4_extents.h"
39#include "xattr.h"
40
41/* Encryption added and removed here! (L: */
42
43static unsigned int num_prealloc_crypto_pages = 32;
44static unsigned int num_prealloc_crypto_ctxs = 128;
45
46module_param(num_prealloc_crypto_pages, uint, 0444);
47MODULE_PARM_DESC(num_prealloc_crypto_pages,
48 "Number of crypto pages to preallocate");
49module_param(num_prealloc_crypto_ctxs, uint, 0444);
50MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
51 "Number of crypto contexts to preallocate");
52
53static mempool_t *ext4_bounce_page_pool;
54
55static LIST_HEAD(ext4_free_crypto_ctxs);
56static DEFINE_SPINLOCK(ext4_crypto_ctx_lock);
57
58/**
59 * ext4_release_crypto_ctx() - Releases an encryption context
60 * @ctx: The encryption context to release.
61 *
62 * If the encryption context was allocated from the pre-allocated pool, returns
63 * it to that pool. Else, frees it.
64 *
65 * If there's a bounce page in the context, this frees that.
66 */
67void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx)
68{
69 unsigned long flags;
70
71 if (ctx->bounce_page) {
72 if (ctx->flags & EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL)
73 __free_page(ctx->bounce_page);
74 else
75 mempool_free(ctx->bounce_page, ext4_bounce_page_pool);
76 ctx->bounce_page = NULL;
77 }
78 ctx->control_page = NULL;
79 if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) {
80 if (ctx->tfm)
81 crypto_free_tfm(ctx->tfm);
82 kfree(ctx);
83 } else {
84 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
85 list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
86 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
87 }
88}
89
90/**
91 * ext4_alloc_and_init_crypto_ctx() - Allocates and inits an encryption context
92 * @mask: The allocation mask.
93 *
94 * Return: An allocated and initialized encryption context on success. An error
95 * value or NULL otherwise.
96 */
97static struct ext4_crypto_ctx *ext4_alloc_and_init_crypto_ctx(gfp_t mask)
98{
99 struct ext4_crypto_ctx *ctx = kzalloc(sizeof(struct ext4_crypto_ctx),
100 mask);
101
102 if (!ctx)
103 return ERR_PTR(-ENOMEM);
104 return ctx;
105}
106
107/**
108 * ext4_get_crypto_ctx() - Gets an encryption context
109 * @inode: The inode for which we are doing the crypto
110 *
111 * Allocates and initializes an encryption context.
112 *
113 * Return: An allocated and initialized encryption context on success; error
114 * value or NULL otherwise.
115 */
116struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode)
117{
118 struct ext4_crypto_ctx *ctx = NULL;
119 int res = 0;
120 unsigned long flags;
e2881b1b 121 struct ext4_crypt_info *ci = &EXT4_I(inode)->i_crypt_info;
b30ab0e0
MH
122
123 if (!ext4_read_workqueue)
124 ext4_init_crypto();
125
126 /*
127 * We first try getting the ctx from a free list because in
128 * the common case the ctx will have an allocated and
129 * initialized crypto tfm, so it's probably a worthwhile
130 * optimization. For the bounce page, we first try getting it
131 * from the kernel allocator because that's just about as fast
132 * as getting it from a list and because a cache of free pages
133 * should generally be a "last resort" option for a filesystem
134 * to be able to do its job.
135 */
136 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
137 ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs,
138 struct ext4_crypto_ctx, free_list);
139 if (ctx)
140 list_del(&ctx->free_list);
141 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
142 if (!ctx) {
143 ctx = ext4_alloc_and_init_crypto_ctx(GFP_NOFS);
144 if (IS_ERR(ctx)) {
145 res = PTR_ERR(ctx);
146 goto out;
147 }
148 ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
149 } else {
150 ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
151 }
152
153 /* Allocate a new Crypto API context if we don't already have
154 * one or if it isn't the right mode. */
e2881b1b
TT
155 BUG_ON(ci->ci_mode == EXT4_ENCRYPTION_MODE_INVALID);
156 if (ctx->tfm && (ctx->mode != ci->ci_mode)) {
b30ab0e0
MH
157 crypto_free_tfm(ctx->tfm);
158 ctx->tfm = NULL;
159 ctx->mode = EXT4_ENCRYPTION_MODE_INVALID;
160 }
161 if (!ctx->tfm) {
e2881b1b 162 switch (ci->ci_mode) {
b30ab0e0
MH
163 case EXT4_ENCRYPTION_MODE_AES_256_XTS:
164 ctx->tfm = crypto_ablkcipher_tfm(
165 crypto_alloc_ablkcipher("xts(aes)", 0, 0));
166 break;
167 case EXT4_ENCRYPTION_MODE_AES_256_GCM:
168 /* TODO(mhalcrow): AEAD w/ gcm(aes);
169 * crypto_aead_setauthsize() */
170 ctx->tfm = ERR_PTR(-ENOTSUPP);
171 break;
172 default:
173 BUG();
174 }
175 if (IS_ERR_OR_NULL(ctx->tfm)) {
176 res = PTR_ERR(ctx->tfm);
177 ctx->tfm = NULL;
178 goto out;
179 }
e2881b1b 180 ctx->mode = ci->ci_mode;
b30ab0e0 181 }
e2881b1b 182 BUG_ON(ci->ci_size != ext4_encryption_key_size(ci->ci_mode));
b30ab0e0
MH
183
184 /* There shouldn't be a bounce page attached to the crypto
185 * context at this point. */
186 BUG_ON(ctx->bounce_page);
187
188out:
189 if (res) {
190 if (!IS_ERR_OR_NULL(ctx))
191 ext4_release_crypto_ctx(ctx);
192 ctx = ERR_PTR(res);
193 }
194 return ctx;
195}
196
197struct workqueue_struct *ext4_read_workqueue;
198static DEFINE_MUTEX(crypto_init);
199
200/**
201 * ext4_exit_crypto() - Shutdown the ext4 encryption system
202 */
203void ext4_exit_crypto(void)
204{
205 struct ext4_crypto_ctx *pos, *n;
206
207 list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list) {
208 if (pos->bounce_page) {
209 if (pos->flags &
210 EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL) {
211 __free_page(pos->bounce_page);
212 } else {
213 mempool_free(pos->bounce_page,
214 ext4_bounce_page_pool);
215 }
216 }
217 if (pos->tfm)
218 crypto_free_tfm(pos->tfm);
219 kfree(pos);
220 }
221 INIT_LIST_HEAD(&ext4_free_crypto_ctxs);
222 if (ext4_bounce_page_pool)
223 mempool_destroy(ext4_bounce_page_pool);
224 ext4_bounce_page_pool = NULL;
225 if (ext4_read_workqueue)
226 destroy_workqueue(ext4_read_workqueue);
227 ext4_read_workqueue = NULL;
228}
229
230/**
231 * ext4_init_crypto() - Set up for ext4 encryption.
232 *
233 * We only call this when we start accessing encrypted files, since it
234 * results in memory getting allocated that wouldn't otherwise be used.
235 *
236 * Return: Zero on success, non-zero otherwise.
237 */
238int ext4_init_crypto(void)
239{
240 int i, res;
241
242 mutex_lock(&crypto_init);
243 if (ext4_read_workqueue)
244 goto already_initialized;
245 ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0);
246 if (!ext4_read_workqueue) {
247 res = -ENOMEM;
248 goto fail;
249 }
250
251 for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
252 struct ext4_crypto_ctx *ctx;
253
254 ctx = ext4_alloc_and_init_crypto_ctx(GFP_KERNEL);
255 if (IS_ERR(ctx)) {
256 res = PTR_ERR(ctx);
257 goto fail;
258 }
259 list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
260 }
261
262 ext4_bounce_page_pool =
263 mempool_create_page_pool(num_prealloc_crypto_pages, 0);
264 if (!ext4_bounce_page_pool) {
265 res = -ENOMEM;
266 goto fail;
267 }
268already_initialized:
269 mutex_unlock(&crypto_init);
270 return 0;
271fail:
272 ext4_exit_crypto();
273 mutex_unlock(&crypto_init);
274 return res;
275}
276
277void ext4_restore_control_page(struct page *data_page)
278{
279 struct ext4_crypto_ctx *ctx =
280 (struct ext4_crypto_ctx *)page_private(data_page);
281
282 set_page_private(data_page, (unsigned long)NULL);
283 ClearPagePrivate(data_page);
284 unlock_page(data_page);
285 ext4_release_crypto_ctx(ctx);
286}
287
288/**
289 * ext4_crypt_complete() - The completion callback for page encryption
290 * @req: The asynchronous encryption request context
291 * @res: The result of the encryption operation
292 */
293static void ext4_crypt_complete(struct crypto_async_request *req, int res)
294{
295 struct ext4_completion_result *ecr = req->data;
296
297 if (res == -EINPROGRESS)
298 return;
299 ecr->res = res;
300 complete(&ecr->completion);
301}
302
303typedef enum {
304 EXT4_DECRYPT = 0,
305 EXT4_ENCRYPT,
306} ext4_direction_t;
307
308static int ext4_page_crypto(struct ext4_crypto_ctx *ctx,
309 struct inode *inode,
310 ext4_direction_t rw,
311 pgoff_t index,
312 struct page *src_page,
313 struct page *dest_page)
314
315{
316 u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
317 struct ablkcipher_request *req = NULL;
318 DECLARE_EXT4_COMPLETION_RESULT(ecr);
319 struct scatterlist dst, src;
320 struct ext4_inode_info *ei = EXT4_I(inode);
321 struct crypto_ablkcipher *atfm = __crypto_ablkcipher_cast(ctx->tfm);
322 int res = 0;
323
324 BUG_ON(!ctx->tfm);
e2881b1b 325 BUG_ON(ctx->mode != ei->i_crypt_info.ci_mode);
b30ab0e0
MH
326
327 if (ctx->mode != EXT4_ENCRYPTION_MODE_AES_256_XTS) {
328 printk_ratelimited(KERN_ERR
329 "%s: unsupported crypto algorithm: %d\n",
330 __func__, ctx->mode);
331 return -ENOTSUPP;
332 }
333
334 crypto_ablkcipher_clear_flags(atfm, ~0);
335 crypto_tfm_set_flags(ctx->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
336
e2881b1b
TT
337 res = crypto_ablkcipher_setkey(atfm, ei->i_crypt_info.ci_raw,
338 ei->i_crypt_info.ci_size);
b30ab0e0
MH
339 if (res) {
340 printk_ratelimited(KERN_ERR
341 "%s: crypto_ablkcipher_setkey() failed\n",
342 __func__);
343 return res;
344 }
345 req = ablkcipher_request_alloc(atfm, GFP_NOFS);
346 if (!req) {
347 printk_ratelimited(KERN_ERR
348 "%s: crypto_request_alloc() failed\n",
349 __func__);
350 return -ENOMEM;
351 }
352 ablkcipher_request_set_callback(
353 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
354 ext4_crypt_complete, &ecr);
355
356 BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index));
357 memcpy(xts_tweak, &index, sizeof(index));
358 memset(&xts_tweak[sizeof(index)], 0,
359 EXT4_XTS_TWEAK_SIZE - sizeof(index));
360
361 sg_init_table(&dst, 1);
362 sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0);
363 sg_init_table(&src, 1);
364 sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0);
365 ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE,
366 xts_tweak);
367 if (rw == EXT4_DECRYPT)
368 res = crypto_ablkcipher_decrypt(req);
369 else
370 res = crypto_ablkcipher_encrypt(req);
371 if (res == -EINPROGRESS || res == -EBUSY) {
372 BUG_ON(req->base.data != &ecr);
373 wait_for_completion(&ecr.completion);
374 res = ecr.res;
375 }
376 ablkcipher_request_free(req);
377 if (res) {
378 printk_ratelimited(
379 KERN_ERR
380 "%s: crypto_ablkcipher_encrypt() returned %d\n",
381 __func__, res);
382 return res;
383 }
384 return 0;
385}
386
387/**
388 * ext4_encrypt() - Encrypts a page
389 * @inode: The inode for which the encryption should take place
390 * @plaintext_page: The page to encrypt. Must be locked.
391 *
392 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
393 * encryption context.
394 *
395 * Called on the page write path. The caller must call
396 * ext4_restore_control_page() on the returned ciphertext page to
397 * release the bounce buffer and the encryption context.
398 *
399 * Return: An allocated page with the encrypted content on success. Else, an
400 * error value or NULL.
401 */
402struct page *ext4_encrypt(struct inode *inode,
403 struct page *plaintext_page)
404{
405 struct ext4_crypto_ctx *ctx;
406 struct page *ciphertext_page = NULL;
407 int err;
408
409 BUG_ON(!PageLocked(plaintext_page));
410
411 ctx = ext4_get_crypto_ctx(inode);
412 if (IS_ERR(ctx))
413 return (struct page *) ctx;
414
415 /* The encryption operation will require a bounce page. */
416 ciphertext_page = alloc_page(GFP_NOFS);
417 if (!ciphertext_page) {
418 /* This is a potential bottleneck, but at least we'll have
419 * forward progress. */
420 ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
421 GFP_NOFS);
422 if (WARN_ON_ONCE(!ciphertext_page)) {
423 ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
424 GFP_NOFS | __GFP_WAIT);
425 }
426 ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
427 } else {
428 ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
429 }
430 ctx->bounce_page = ciphertext_page;
431 ctx->control_page = plaintext_page;
432 err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, plaintext_page->index,
433 plaintext_page, ciphertext_page);
434 if (err) {
435 ext4_release_crypto_ctx(ctx);
436 return ERR_PTR(err);
437 }
438 SetPagePrivate(ciphertext_page);
439 set_page_private(ciphertext_page, (unsigned long)ctx);
440 lock_page(ciphertext_page);
441 return ciphertext_page;
442}
443
444/**
445 * ext4_decrypt() - Decrypts a page in-place
446 * @ctx: The encryption context.
447 * @page: The page to decrypt. Must be locked.
448 *
449 * Decrypts page in-place using the ctx encryption context.
450 *
451 * Called from the read completion callback.
452 *
453 * Return: Zero on success, non-zero otherwise.
454 */
455int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page)
456{
457 BUG_ON(!PageLocked(page));
458
459 return ext4_page_crypto(ctx, page->mapping->host,
460 EXT4_DECRYPT, page->index, page, page);
461}
462
463/*
464 * Convenience function which takes care of allocating and
465 * deallocating the encryption context
466 */
467int ext4_decrypt_one(struct inode *inode, struct page *page)
468{
469 int ret;
470
471 struct ext4_crypto_ctx *ctx = ext4_get_crypto_ctx(inode);
472
473 if (!ctx)
474 return -ENOMEM;
475 ret = ext4_decrypt(ctx, page);
476 ext4_release_crypto_ctx(ctx);
477 return ret;
478}
479
480int ext4_encrypted_zeroout(struct inode *inode, struct ext4_extent *ex)
481{
482 struct ext4_crypto_ctx *ctx;
483 struct page *ciphertext_page = NULL;
484 struct bio *bio;
485 ext4_lblk_t lblk = ex->ee_block;
486 ext4_fsblk_t pblk = ext4_ext_pblock(ex);
487 unsigned int len = ext4_ext_get_actual_len(ex);
488 int err = 0;
489
490 BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE);
491
492 ctx = ext4_get_crypto_ctx(inode);
493 if (IS_ERR(ctx))
494 return PTR_ERR(ctx);
495
496 ciphertext_page = alloc_page(GFP_NOFS);
497 if (!ciphertext_page) {
498 /* This is a potential bottleneck, but at least we'll have
499 * forward progress. */
500 ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
501 GFP_NOFS);
502 if (WARN_ON_ONCE(!ciphertext_page)) {
503 ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
504 GFP_NOFS | __GFP_WAIT);
505 }
506 ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
507 } else {
508 ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
509 }
510 ctx->bounce_page = ciphertext_page;
511
512 while (len--) {
513 err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, lblk,
514 ZERO_PAGE(0), ciphertext_page);
515 if (err)
516 goto errout;
517
518 bio = bio_alloc(GFP_KERNEL, 1);
519 if (!bio) {
520 err = -ENOMEM;
521 goto errout;
522 }
523 bio->bi_bdev = inode->i_sb->s_bdev;
524 bio->bi_iter.bi_sector = pblk;
525 err = bio_add_page(bio, ciphertext_page,
526 inode->i_sb->s_blocksize, 0);
527 if (err) {
528 bio_put(bio);
529 goto errout;
530 }
531 err = submit_bio_wait(WRITE, bio);
532 if (err)
533 goto errout;
534 }
535 err = 0;
536errout:
537 ext4_release_crypto_ctx(ctx);
538 return err;
539}
540
541bool ext4_valid_contents_enc_mode(uint32_t mode)
542{
543 return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS);
544}
545
546/**
547 * ext4_validate_encryption_key_size() - Validate the encryption key size
548 * @mode: The key mode.
549 * @size: The key size to validate.
550 *
551 * Return: The validated key size for @mode. Zero if invalid.
552 */
553uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size)
554{
555 if (size == ext4_encryption_key_size(mode))
556 return size;
557 return 0;
558}
This page took 0.05099 seconds and 5 git commands to generate.