ARM: shmobile: r8a73a4 dtsi: Use "arm,gic-400" for GIC
[deliverable/linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
ac27a0ec
DK
23#include <linux/highuid.h>
24#include <linux/pagemap.h>
25#include <linux/quotaops.h>
26#include <linux/string.h>
27#include <linux/buffer_head.h>
28#include <linux/writeback.h>
64769240 29#include <linux/pagevec.h>
ac27a0ec 30#include <linux/mpage.h>
e83c1397 31#include <linux/namei.h>
ac27a0ec
DK
32#include <linux/uio.h>
33#include <linux/bio.h>
4c0425ff 34#include <linux/workqueue.h>
744692dc 35#include <linux/kernel.h>
6db26ffc 36#include <linux/printk.h>
5a0e3ad6 37#include <linux/slab.h>
00a1a053 38#include <linux/bitops.h>
9bffad1e 39
3dcf5451 40#include "ext4_jbd2.h"
ac27a0ec
DK
41#include "xattr.h"
42#include "acl.h"
9f125d64 43#include "truncate.h"
ac27a0ec 44
9bffad1e
TT
45#include <trace/events/ext4.h>
46
a1d6cc56
AK
47#define MPAGE_DA_EXTENT_TAIL 0x01
48
814525f4
DW
49static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
50 struct ext4_inode_info *ei)
51{
52 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
53 __u16 csum_lo;
54 __u16 csum_hi = 0;
55 __u32 csum;
56
171a7f21 57 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
58 raw->i_checksum_lo = 0;
59 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
60 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 61 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
62 raw->i_checksum_hi = 0;
63 }
64
65 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
66 EXT4_INODE_SIZE(inode->i_sb));
67
171a7f21 68 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
69 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
70 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 71 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
72
73 return csum;
74}
75
76static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
77 struct ext4_inode_info *ei)
78{
79 __u32 provided, calculated;
80
81 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
82 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 83 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
84 return 1;
85
86 provided = le16_to_cpu(raw->i_checksum_lo);
87 calculated = ext4_inode_csum(inode, raw, ei);
88 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
89 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
90 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
91 else
92 calculated &= 0xFFFF;
93
94 return provided == calculated;
95}
96
97static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
98 struct ext4_inode_info *ei)
99{
100 __u32 csum;
101
102 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
103 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 104 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
105 return;
106
107 csum = ext4_inode_csum(inode, raw, ei);
108 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
109 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
110 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
111 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
112}
113
678aaf48
JK
114static inline int ext4_begin_ordered_truncate(struct inode *inode,
115 loff_t new_size)
116{
7ff9c073 117 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
118 /*
119 * If jinode is zero, then we never opened the file for
120 * writing, so there's no need to call
121 * jbd2_journal_begin_ordered_truncate() since there's no
122 * outstanding writes we need to flush.
123 */
124 if (!EXT4_I(inode)->jinode)
125 return 0;
126 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
127 EXT4_I(inode)->jinode,
128 new_size);
678aaf48
JK
129}
130
d47992f8
LC
131static void ext4_invalidatepage(struct page *page, unsigned int offset,
132 unsigned int length);
cb20d518
TT
133static int __ext4_journalled_writepage(struct page *page, unsigned int len);
134static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
135static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
136 int pextents);
64769240 137
ac27a0ec
DK
138/*
139 * Test whether an inode is a fast symlink.
140 */
f348c252 141int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 142{
65eddb56
YY
143 int ea_blocks = EXT4_I(inode)->i_file_acl ?
144 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec 145
bd9db175
ZL
146 if (ext4_has_inline_data(inode))
147 return 0;
148
ac27a0ec
DK
149 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150}
151
ac27a0ec
DK
152/*
153 * Restart the transaction associated with *handle. This does a commit,
154 * so before we call here everything must be consistently dirtied against
155 * this transaction.
156 */
fa5d1113 157int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 158 int nblocks)
ac27a0ec 159{
487caeef
JK
160 int ret;
161
162 /*
e35fd660 163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
164 * moment, get_block can be called only for blocks inside i_size since
165 * page cache has been already dropped and writes are blocked by
166 * i_mutex. So we can safely drop the i_data_sem here.
167 */
0390131b 168 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 169 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 170 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 171 ret = ext4_journal_restart(handle, nblocks);
487caeef 172 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 173 ext4_discard_preallocations(inode);
487caeef
JK
174
175 return ret;
ac27a0ec
DK
176}
177
178/*
179 * Called at the last iput() if i_nlink is zero.
180 */
0930fcc1 181void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
182{
183 handle_t *handle;
bc965ab3 184 int err;
ac27a0ec 185
7ff9c073 186 trace_ext4_evict_inode(inode);
2581fdc8 187
0930fcc1 188 if (inode->i_nlink) {
2d859db3
JK
189 /*
190 * When journalling data dirty buffers are tracked only in the
191 * journal. So although mm thinks everything is clean and
192 * ready for reaping the inode might still have some pages to
193 * write in the running transaction or waiting to be
194 * checkpointed. Thus calling jbd2_journal_invalidatepage()
195 * (via truncate_inode_pages()) to discard these buffers can
196 * cause data loss. Also even if we did not discard these
197 * buffers, we would have no way to find them after the inode
198 * is reaped and thus user could see stale data if he tries to
199 * read them before the transaction is checkpointed. So be
200 * careful and force everything to disk here... We use
201 * ei->i_datasync_tid to store the newest transaction
202 * containing inode's data.
203 *
204 * Note that directories do not have this problem because they
205 * don't use page cache.
206 */
207 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
208 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
210 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212
d76a3a77 213 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
214 filemap_write_and_wait(&inode->i_data);
215 }
91b0abe3 216 truncate_inode_pages_final(&inode->i_data);
5dc23bdd
JK
217
218 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
219 goto no_delete;
220 }
221
e2bfb088
TT
222 if (is_bad_inode(inode))
223 goto no_delete;
224 dquot_initialize(inode);
907f4554 225
678aaf48
JK
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 228 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 229
5dc23bdd 230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec 231
8e8ad8a5
JK
232 /*
233 * Protect us against freezing - iput() caller didn't have to have any
234 * protection against it
235 */
236 sb_start_intwrite(inode->i_sb);
9924a92a
TT
237 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 239 if (IS_ERR(handle)) {
bc965ab3 240 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
241 /*
242 * If we're going to skip the normal cleanup, we still need to
243 * make sure that the in-core orphan linked list is properly
244 * cleaned up.
245 */
617ba13b 246 ext4_orphan_del(NULL, inode);
8e8ad8a5 247 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
248 goto no_delete;
249 }
250
251 if (IS_SYNC(inode))
0390131b 252 ext4_handle_sync(handle);
ac27a0ec 253 inode->i_size = 0;
bc965ab3
TT
254 err = ext4_mark_inode_dirty(handle, inode);
255 if (err) {
12062ddd 256 ext4_warning(inode->i_sb,
bc965ab3
TT
257 "couldn't mark inode dirty (err %d)", err);
258 goto stop_handle;
259 }
ac27a0ec 260 if (inode->i_blocks)
617ba13b 261 ext4_truncate(inode);
bc965ab3
TT
262
263 /*
264 * ext4_ext_truncate() doesn't reserve any slop when it
265 * restarts journal transactions; therefore there may not be
266 * enough credits left in the handle to remove the inode from
267 * the orphan list and set the dtime field.
268 */
0390131b 269 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
270 err = ext4_journal_extend(handle, 3);
271 if (err > 0)
272 err = ext4_journal_restart(handle, 3);
273 if (err != 0) {
12062ddd 274 ext4_warning(inode->i_sb,
bc965ab3
TT
275 "couldn't extend journal (err %d)", err);
276 stop_handle:
277 ext4_journal_stop(handle);
45388219 278 ext4_orphan_del(NULL, inode);
8e8ad8a5 279 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
280 goto no_delete;
281 }
282 }
283
ac27a0ec 284 /*
617ba13b 285 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 286 * AKPM: I think this can be inside the above `if'.
617ba13b 287 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 288 * deletion of a non-existent orphan - this is because we don't
617ba13b 289 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
290 * (Well, we could do this if we need to, but heck - it works)
291 */
617ba13b
MC
292 ext4_orphan_del(handle, inode);
293 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
294
295 /*
296 * One subtle ordering requirement: if anything has gone wrong
297 * (transaction abort, IO errors, whatever), then we can still
298 * do these next steps (the fs will already have been marked as
299 * having errors), but we can't free the inode if the mark_dirty
300 * fails.
301 */
617ba13b 302 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 303 /* If that failed, just do the required in-core inode clear. */
0930fcc1 304 ext4_clear_inode(inode);
ac27a0ec 305 else
617ba13b
MC
306 ext4_free_inode(handle, inode);
307 ext4_journal_stop(handle);
8e8ad8a5 308 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
309 return;
310no_delete:
0930fcc1 311 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
312}
313
a9e7f447
DM
314#ifdef CONFIG_QUOTA
315qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 316{
a9e7f447 317 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 318}
a9e7f447 319#endif
9d0be502 320
0637c6f4
TT
321/*
322 * Called with i_data_sem down, which is important since we can call
323 * ext4_discard_preallocations() from here.
324 */
5f634d06
AK
325void ext4_da_update_reserve_space(struct inode *inode,
326 int used, int quota_claim)
12219aea
AK
327{
328 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 329 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
330
331 spin_lock(&ei->i_block_reservation_lock);
d8990240 332 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 333 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 334 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 335 "with only %d reserved data blocks",
0637c6f4
TT
336 __func__, inode->i_ino, used,
337 ei->i_reserved_data_blocks);
338 WARN_ON(1);
339 used = ei->i_reserved_data_blocks;
340 }
12219aea 341
0637c6f4
TT
342 /* Update per-inode reservations */
343 ei->i_reserved_data_blocks -= used;
71d4f7d0 344 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 345
12219aea 346 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 347
72b8ab9d
ES
348 /* Update quota subsystem for data blocks */
349 if (quota_claim)
7b415bf6 350 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 351 else {
5f634d06
AK
352 /*
353 * We did fallocate with an offset that is already delayed
354 * allocated. So on delayed allocated writeback we should
72b8ab9d 355 * not re-claim the quota for fallocated blocks.
5f634d06 356 */
7b415bf6 357 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 358 }
d6014301
AK
359
360 /*
361 * If we have done all the pending block allocations and if
362 * there aren't any writers on the inode, we can discard the
363 * inode's preallocations.
364 */
0637c6f4
TT
365 if ((ei->i_reserved_data_blocks == 0) &&
366 (atomic_read(&inode->i_writecount) == 0))
d6014301 367 ext4_discard_preallocations(inode);
12219aea
AK
368}
369
e29136f8 370static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
371 unsigned int line,
372 struct ext4_map_blocks *map)
6fd058f7 373{
24676da4
TT
374 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
375 map->m_len)) {
c398eda0
TT
376 ext4_error_inode(inode, func, line, map->m_pblk,
377 "lblock %lu mapped to illegal pblock "
378 "(length %d)", (unsigned long) map->m_lblk,
379 map->m_len);
6fd058f7
TT
380 return -EIO;
381 }
382 return 0;
383}
384
e29136f8 385#define check_block_validity(inode, map) \
c398eda0 386 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 387
921f266b
DM
388#ifdef ES_AGGRESSIVE_TEST
389static void ext4_map_blocks_es_recheck(handle_t *handle,
390 struct inode *inode,
391 struct ext4_map_blocks *es_map,
392 struct ext4_map_blocks *map,
393 int flags)
394{
395 int retval;
396
397 map->m_flags = 0;
398 /*
399 * There is a race window that the result is not the same.
400 * e.g. xfstests #223 when dioread_nolock enables. The reason
401 * is that we lookup a block mapping in extent status tree with
402 * out taking i_data_sem. So at the time the unwritten extent
403 * could be converted.
404 */
405 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 406 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
407 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
408 retval = ext4_ext_map_blocks(handle, inode, map, flags &
409 EXT4_GET_BLOCKS_KEEP_SIZE);
410 } else {
411 retval = ext4_ind_map_blocks(handle, inode, map, flags &
412 EXT4_GET_BLOCKS_KEEP_SIZE);
413 }
414 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
415 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
416
417 /*
418 * We don't check m_len because extent will be collpased in status
419 * tree. So the m_len might not equal.
420 */
421 if (es_map->m_lblk != map->m_lblk ||
422 es_map->m_flags != map->m_flags ||
423 es_map->m_pblk != map->m_pblk) {
bdafe42a 424 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
425 "es_cached ex [%d/%d/%llu/%x] != "
426 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
427 inode->i_ino, es_map->m_lblk, es_map->m_len,
428 es_map->m_pblk, es_map->m_flags, map->m_lblk,
429 map->m_len, map->m_pblk, map->m_flags,
430 retval, flags);
431 }
432}
433#endif /* ES_AGGRESSIVE_TEST */
434
f5ab0d1f 435/*
e35fd660 436 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 437 * and returns if the blocks are already mapped.
f5ab0d1f 438 *
f5ab0d1f
MC
439 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
440 * and store the allocated blocks in the result buffer head and mark it
441 * mapped.
442 *
e35fd660
TT
443 * If file type is extents based, it will call ext4_ext_map_blocks(),
444 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
445 * based files
446 *
556615dc
LC
447 * On success, it returns the number of blocks being mapped or allocated.
448 * if create==0 and the blocks are pre-allocated and unwritten block,
f5ab0d1f
MC
449 * the result buffer head is unmapped. If the create ==1, it will make sure
450 * the buffer head is mapped.
451 *
452 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 453 * that case, buffer head is unmapped
f5ab0d1f
MC
454 *
455 * It returns the error in case of allocation failure.
456 */
e35fd660
TT
457int ext4_map_blocks(handle_t *handle, struct inode *inode,
458 struct ext4_map_blocks *map, int flags)
0e855ac8 459{
d100eef2 460 struct extent_status es;
0e855ac8 461 int retval;
b8a86845 462 int ret = 0;
921f266b
DM
463#ifdef ES_AGGRESSIVE_TEST
464 struct ext4_map_blocks orig_map;
465
466 memcpy(&orig_map, map, sizeof(*map));
467#endif
f5ab0d1f 468
e35fd660
TT
469 map->m_flags = 0;
470 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
471 "logical block %lu\n", inode->i_ino, flags, map->m_len,
472 (unsigned long) map->m_lblk);
d100eef2 473
e861b5e9
TT
474 /*
475 * ext4_map_blocks returns an int, and m_len is an unsigned int
476 */
477 if (unlikely(map->m_len > INT_MAX))
478 map->m_len = INT_MAX;
479
4adb6ab3
KM
480 /* We can handle the block number less than EXT_MAX_BLOCKS */
481 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
482 return -EIO;
483
d100eef2
ZL
484 /* Lookup extent status tree firstly */
485 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
486 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
487 map->m_pblk = ext4_es_pblock(&es) +
488 map->m_lblk - es.es_lblk;
489 map->m_flags |= ext4_es_is_written(&es) ?
490 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
491 retval = es.es_len - (map->m_lblk - es.es_lblk);
492 if (retval > map->m_len)
493 retval = map->m_len;
494 map->m_len = retval;
495 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
496 retval = 0;
497 } else {
498 BUG_ON(1);
499 }
921f266b
DM
500#ifdef ES_AGGRESSIVE_TEST
501 ext4_map_blocks_es_recheck(handle, inode, map,
502 &orig_map, flags);
503#endif
d100eef2
ZL
504 goto found;
505 }
506
4df3d265 507 /*
b920c755
TT
508 * Try to see if we can get the block without requesting a new
509 * file system block.
4df3d265 510 */
729f52c6 511 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 512 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 513 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
514 retval = ext4_ext_map_blocks(handle, inode, map, flags &
515 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 516 } else {
a4e5d88b
DM
517 retval = ext4_ind_map_blocks(handle, inode, map, flags &
518 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 519 }
f7fec032 520 if (retval > 0) {
3be78c73 521 unsigned int status;
f7fec032 522
44fb851d
ZL
523 if (unlikely(retval != map->m_len)) {
524 ext4_warning(inode->i_sb,
525 "ES len assertion failed for inode "
526 "%lu: retval %d != map->m_len %d",
527 inode->i_ino, retval, map->m_len);
528 WARN_ON(1);
921f266b 529 }
921f266b 530
f7fec032
ZL
531 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
532 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
533 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 534 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
535 ext4_find_delalloc_range(inode, map->m_lblk,
536 map->m_lblk + map->m_len - 1))
537 status |= EXTENT_STATUS_DELAYED;
538 ret = ext4_es_insert_extent(inode, map->m_lblk,
539 map->m_len, map->m_pblk, status);
540 if (ret < 0)
541 retval = ret;
542 }
729f52c6
ZL
543 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
544 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 545
d100eef2 546found:
e35fd660 547 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 548 ret = check_block_validity(inode, map);
6fd058f7
TT
549 if (ret != 0)
550 return ret;
551 }
552
f5ab0d1f 553 /* If it is only a block(s) look up */
c2177057 554 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
555 return retval;
556
557 /*
558 * Returns if the blocks have already allocated
559 *
560 * Note that if blocks have been preallocated
df3ab170 561 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
562 * with buffer head unmapped.
563 */
e35fd660 564 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
565 /*
566 * If we need to convert extent to unwritten
567 * we continue and do the actual work in
568 * ext4_ext_map_blocks()
569 */
570 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
571 return retval;
4df3d265 572
2a8964d6 573 /*
a25a4e1a
ZL
574 * Here we clear m_flags because after allocating an new extent,
575 * it will be set again.
2a8964d6 576 */
a25a4e1a 577 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 578
4df3d265 579 /*
556615dc 580 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 581 * will possibly result in updating i_data, so we take
d91bd2c1 582 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 583 * with create == 1 flag.
4df3d265 584 */
c8b459f4 585 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 586
4df3d265
AK
587 /*
588 * We need to check for EXT4 here because migrate
589 * could have changed the inode type in between
590 */
12e9b892 591 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 592 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 593 } else {
e35fd660 594 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 595
e35fd660 596 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
597 /*
598 * We allocated new blocks which will result in
599 * i_data's format changing. Force the migrate
600 * to fail by clearing migrate flags
601 */
19f5fb7a 602 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 603 }
d2a17637 604
5f634d06
AK
605 /*
606 * Update reserved blocks/metadata blocks after successful
607 * block allocation which had been deferred till now. We don't
608 * support fallocate for non extent files. So we can update
609 * reserve space here.
610 */
611 if ((retval > 0) &&
1296cc85 612 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
613 ext4_da_update_reserve_space(inode, retval, 1);
614 }
2ac3b6e0 615
f7fec032 616 if (retval > 0) {
3be78c73 617 unsigned int status;
f7fec032 618
44fb851d
ZL
619 if (unlikely(retval != map->m_len)) {
620 ext4_warning(inode->i_sb,
621 "ES len assertion failed for inode "
622 "%lu: retval %d != map->m_len %d",
623 inode->i_ino, retval, map->m_len);
624 WARN_ON(1);
921f266b 625 }
921f266b 626
adb23551
ZL
627 /*
628 * If the extent has been zeroed out, we don't need to update
629 * extent status tree.
630 */
631 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
632 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
633 if (ext4_es_is_written(&es))
634 goto has_zeroout;
635 }
f7fec032
ZL
636 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
637 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
638 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 639 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
640 ext4_find_delalloc_range(inode, map->m_lblk,
641 map->m_lblk + map->m_len - 1))
642 status |= EXTENT_STATUS_DELAYED;
643 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
644 map->m_pblk, status);
645 if (ret < 0)
646 retval = ret;
5356f261
AK
647 }
648
adb23551 649has_zeroout:
4df3d265 650 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 651 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 652 ret = check_block_validity(inode, map);
6fd058f7
TT
653 if (ret != 0)
654 return ret;
655 }
0e855ac8
AK
656 return retval;
657}
658
f3bd1f3f
MC
659/* Maximum number of blocks we map for direct IO at once. */
660#define DIO_MAX_BLOCKS 4096
661
2ed88685
TT
662static int _ext4_get_block(struct inode *inode, sector_t iblock,
663 struct buffer_head *bh, int flags)
ac27a0ec 664{
3e4fdaf8 665 handle_t *handle = ext4_journal_current_handle();
2ed88685 666 struct ext4_map_blocks map;
7fb5409d 667 int ret = 0, started = 0;
f3bd1f3f 668 int dio_credits;
ac27a0ec 669
46c7f254
TM
670 if (ext4_has_inline_data(inode))
671 return -ERANGE;
672
2ed88685
TT
673 map.m_lblk = iblock;
674 map.m_len = bh->b_size >> inode->i_blkbits;
675
8b0f165f 676 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 677 /* Direct IO write... */
2ed88685
TT
678 if (map.m_len > DIO_MAX_BLOCKS)
679 map.m_len = DIO_MAX_BLOCKS;
680 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
681 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
682 dio_credits);
7fb5409d 683 if (IS_ERR(handle)) {
ac27a0ec 684 ret = PTR_ERR(handle);
2ed88685 685 return ret;
ac27a0ec 686 }
7fb5409d 687 started = 1;
ac27a0ec
DK
688 }
689
2ed88685 690 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 691 if (ret > 0) {
7b7a8665
CH
692 ext4_io_end_t *io_end = ext4_inode_aio(inode);
693
2ed88685
TT
694 map_bh(bh, inode->i_sb, map.m_pblk);
695 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
e842f290
DC
696 if (IS_DAX(inode) && buffer_unwritten(bh)) {
697 /*
698 * dgc: I suspect unwritten conversion on ext4+DAX is
699 * fundamentally broken here when there are concurrent
700 * read/write in progress on this inode.
701 */
702 WARN_ON_ONCE(io_end);
923ae0ff
RZ
703 bh->b_assoc_map = inode->i_mapping;
704 bh->b_private = (void *)(unsigned long)iblock;
923ae0ff 705 }
7b7a8665
CH
706 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
707 set_buffer_defer_completion(bh);
2ed88685 708 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 709 ret = 0;
ac27a0ec 710 }
7fb5409d
JK
711 if (started)
712 ext4_journal_stop(handle);
ac27a0ec
DK
713 return ret;
714}
715
2ed88685
TT
716int ext4_get_block(struct inode *inode, sector_t iblock,
717 struct buffer_head *bh, int create)
718{
719 return _ext4_get_block(inode, iblock, bh,
720 create ? EXT4_GET_BLOCKS_CREATE : 0);
721}
722
ac27a0ec
DK
723/*
724 * `handle' can be NULL if create is zero
725 */
617ba13b 726struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 727 ext4_lblk_t block, int map_flags)
ac27a0ec 728{
2ed88685
TT
729 struct ext4_map_blocks map;
730 struct buffer_head *bh;
c5e298ae 731 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 732 int err;
ac27a0ec
DK
733
734 J_ASSERT(handle != NULL || create == 0);
735
2ed88685
TT
736 map.m_lblk = block;
737 map.m_len = 1;
c5e298ae 738 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 739
10560082
TT
740 if (err == 0)
741 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 742 if (err < 0)
10560082 743 return ERR_PTR(err);
2ed88685
TT
744
745 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
746 if (unlikely(!bh))
747 return ERR_PTR(-ENOMEM);
2ed88685
TT
748 if (map.m_flags & EXT4_MAP_NEW) {
749 J_ASSERT(create != 0);
750 J_ASSERT(handle != NULL);
ac27a0ec 751
2ed88685
TT
752 /*
753 * Now that we do not always journal data, we should
754 * keep in mind whether this should always journal the
755 * new buffer as metadata. For now, regular file
756 * writes use ext4_get_block instead, so it's not a
757 * problem.
758 */
759 lock_buffer(bh);
760 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
761 err = ext4_journal_get_create_access(handle, bh);
762 if (unlikely(err)) {
763 unlock_buffer(bh);
764 goto errout;
765 }
766 if (!buffer_uptodate(bh)) {
2ed88685
TT
767 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
768 set_buffer_uptodate(bh);
ac27a0ec 769 }
2ed88685
TT
770 unlock_buffer(bh);
771 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
772 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
773 if (unlikely(err))
774 goto errout;
775 } else
2ed88685 776 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 777 return bh;
10560082
TT
778errout:
779 brelse(bh);
780 return ERR_PTR(err);
ac27a0ec
DK
781}
782
617ba13b 783struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 784 ext4_lblk_t block, int map_flags)
ac27a0ec 785{
af5bc92d 786 struct buffer_head *bh;
ac27a0ec 787
c5e298ae 788 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 789 if (IS_ERR(bh))
ac27a0ec 790 return bh;
1c215028 791 if (!bh || buffer_uptodate(bh))
ac27a0ec 792 return bh;
65299a3b 793 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
794 wait_on_buffer(bh);
795 if (buffer_uptodate(bh))
796 return bh;
797 put_bh(bh);
1c215028 798 return ERR_PTR(-EIO);
ac27a0ec
DK
799}
800
f19d5870
TM
801int ext4_walk_page_buffers(handle_t *handle,
802 struct buffer_head *head,
803 unsigned from,
804 unsigned to,
805 int *partial,
806 int (*fn)(handle_t *handle,
807 struct buffer_head *bh))
ac27a0ec
DK
808{
809 struct buffer_head *bh;
810 unsigned block_start, block_end;
811 unsigned blocksize = head->b_size;
812 int err, ret = 0;
813 struct buffer_head *next;
814
af5bc92d
TT
815 for (bh = head, block_start = 0;
816 ret == 0 && (bh != head || !block_start);
de9a55b8 817 block_start = block_end, bh = next) {
ac27a0ec
DK
818 next = bh->b_this_page;
819 block_end = block_start + blocksize;
820 if (block_end <= from || block_start >= to) {
821 if (partial && !buffer_uptodate(bh))
822 *partial = 1;
823 continue;
824 }
825 err = (*fn)(handle, bh);
826 if (!ret)
827 ret = err;
828 }
829 return ret;
830}
831
832/*
833 * To preserve ordering, it is essential that the hole instantiation and
834 * the data write be encapsulated in a single transaction. We cannot
617ba13b 835 * close off a transaction and start a new one between the ext4_get_block()
dab291af 836 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
837 * prepare_write() is the right place.
838 *
36ade451
JK
839 * Also, this function can nest inside ext4_writepage(). In that case, we
840 * *know* that ext4_writepage() has generated enough buffer credits to do the
841 * whole page. So we won't block on the journal in that case, which is good,
842 * because the caller may be PF_MEMALLOC.
ac27a0ec 843 *
617ba13b 844 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
845 * quota file writes. If we were to commit the transaction while thus
846 * reentered, there can be a deadlock - we would be holding a quota
847 * lock, and the commit would never complete if another thread had a
848 * transaction open and was blocking on the quota lock - a ranking
849 * violation.
850 *
dab291af 851 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
852 * will _not_ run commit under these circumstances because handle->h_ref
853 * is elevated. We'll still have enough credits for the tiny quotafile
854 * write.
855 */
f19d5870
TM
856int do_journal_get_write_access(handle_t *handle,
857 struct buffer_head *bh)
ac27a0ec 858{
56d35a4c
JK
859 int dirty = buffer_dirty(bh);
860 int ret;
861
ac27a0ec
DK
862 if (!buffer_mapped(bh) || buffer_freed(bh))
863 return 0;
56d35a4c 864 /*
ebdec241 865 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
866 * the dirty bit as jbd2_journal_get_write_access() could complain
867 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 868 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
869 * the bit before releasing a page lock and thus writeback cannot
870 * ever write the buffer.
871 */
872 if (dirty)
873 clear_buffer_dirty(bh);
5d601255 874 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
875 ret = ext4_journal_get_write_access(handle, bh);
876 if (!ret && dirty)
877 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
878 return ret;
ac27a0ec
DK
879}
880
8b0f165f
AP
881static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
882 struct buffer_head *bh_result, int create);
2058f83a
MH
883
884#ifdef CONFIG_EXT4_FS_ENCRYPTION
885static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
886 get_block_t *get_block)
887{
888 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
889 unsigned to = from + len;
890 struct inode *inode = page->mapping->host;
891 unsigned block_start, block_end;
892 sector_t block;
893 int err = 0;
894 unsigned blocksize = inode->i_sb->s_blocksize;
895 unsigned bbits;
896 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
897 bool decrypt = false;
898
899 BUG_ON(!PageLocked(page));
900 BUG_ON(from > PAGE_CACHE_SIZE);
901 BUG_ON(to > PAGE_CACHE_SIZE);
902 BUG_ON(from > to);
903
904 if (!page_has_buffers(page))
905 create_empty_buffers(page, blocksize, 0);
906 head = page_buffers(page);
907 bbits = ilog2(blocksize);
908 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
909
910 for (bh = head, block_start = 0; bh != head || !block_start;
911 block++, block_start = block_end, bh = bh->b_this_page) {
912 block_end = block_start + blocksize;
913 if (block_end <= from || block_start >= to) {
914 if (PageUptodate(page)) {
915 if (!buffer_uptodate(bh))
916 set_buffer_uptodate(bh);
917 }
918 continue;
919 }
920 if (buffer_new(bh))
921 clear_buffer_new(bh);
922 if (!buffer_mapped(bh)) {
923 WARN_ON(bh->b_size != blocksize);
924 err = get_block(inode, block, bh, 1);
925 if (err)
926 break;
927 if (buffer_new(bh)) {
928 unmap_underlying_metadata(bh->b_bdev,
929 bh->b_blocknr);
930 if (PageUptodate(page)) {
931 clear_buffer_new(bh);
932 set_buffer_uptodate(bh);
933 mark_buffer_dirty(bh);
934 continue;
935 }
936 if (block_end > to || block_start < from)
937 zero_user_segments(page, to, block_end,
938 block_start, from);
939 continue;
940 }
941 }
942 if (PageUptodate(page)) {
943 if (!buffer_uptodate(bh))
944 set_buffer_uptodate(bh);
945 continue;
946 }
947 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
948 !buffer_unwritten(bh) &&
949 (block_start < from || block_end > to)) {
950 ll_rw_block(READ, 1, &bh);
951 *wait_bh++ = bh;
952 decrypt = ext4_encrypted_inode(inode) &&
953 S_ISREG(inode->i_mode);
954 }
955 }
956 /*
957 * If we issued read requests, let them complete.
958 */
959 while (wait_bh > wait) {
960 wait_on_buffer(*--wait_bh);
961 if (!buffer_uptodate(*wait_bh))
962 err = -EIO;
963 }
964 if (unlikely(err))
965 page_zero_new_buffers(page, from, to);
966 else if (decrypt)
967 err = ext4_decrypt_one(inode, page);
968 return err;
969}
970#endif
971
bfc1af65 972static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
973 loff_t pos, unsigned len, unsigned flags,
974 struct page **pagep, void **fsdata)
ac27a0ec 975{
af5bc92d 976 struct inode *inode = mapping->host;
1938a150 977 int ret, needed_blocks;
ac27a0ec
DK
978 handle_t *handle;
979 int retries = 0;
af5bc92d 980 struct page *page;
de9a55b8 981 pgoff_t index;
af5bc92d 982 unsigned from, to;
bfc1af65 983
9bffad1e 984 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
985 /*
986 * Reserve one block more for addition to orphan list in case
987 * we allocate blocks but write fails for some reason
988 */
989 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 990 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
991 from = pos & (PAGE_CACHE_SIZE - 1);
992 to = from + len;
ac27a0ec 993
f19d5870
TM
994 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
995 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
996 flags, pagep);
997 if (ret < 0)
47564bfb
TT
998 return ret;
999 if (ret == 1)
1000 return 0;
f19d5870
TM
1001 }
1002
47564bfb
TT
1003 /*
1004 * grab_cache_page_write_begin() can take a long time if the
1005 * system is thrashing due to memory pressure, or if the page
1006 * is being written back. So grab it first before we start
1007 * the transaction handle. This also allows us to allocate
1008 * the page (if needed) without using GFP_NOFS.
1009 */
1010retry_grab:
1011 page = grab_cache_page_write_begin(mapping, index, flags);
1012 if (!page)
1013 return -ENOMEM;
1014 unlock_page(page);
1015
1016retry_journal:
9924a92a 1017 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1018 if (IS_ERR(handle)) {
47564bfb
TT
1019 page_cache_release(page);
1020 return PTR_ERR(handle);
7479d2b9 1021 }
ac27a0ec 1022
47564bfb
TT
1023 lock_page(page);
1024 if (page->mapping != mapping) {
1025 /* The page got truncated from under us */
1026 unlock_page(page);
1027 page_cache_release(page);
cf108bca 1028 ext4_journal_stop(handle);
47564bfb 1029 goto retry_grab;
cf108bca 1030 }
7afe5aa5
DM
1031 /* In case writeback began while the page was unlocked */
1032 wait_for_stable_page(page);
cf108bca 1033
2058f83a
MH
1034#ifdef CONFIG_EXT4_FS_ENCRYPTION
1035 if (ext4_should_dioread_nolock(inode))
1036 ret = ext4_block_write_begin(page, pos, len,
1037 ext4_get_block_write);
1038 else
1039 ret = ext4_block_write_begin(page, pos, len,
1040 ext4_get_block);
1041#else
744692dc 1042 if (ext4_should_dioread_nolock(inode))
6e1db88d 1043 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 1044 else
6e1db88d 1045 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1046#endif
bfc1af65 1047 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1048 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1049 from, to, NULL,
1050 do_journal_get_write_access);
ac27a0ec 1051 }
bfc1af65
NP
1052
1053 if (ret) {
af5bc92d 1054 unlock_page(page);
ae4d5372 1055 /*
6e1db88d 1056 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1057 * outside i_size. Trim these off again. Don't need
1058 * i_size_read because we hold i_mutex.
1938a150
AK
1059 *
1060 * Add inode to orphan list in case we crash before
1061 * truncate finishes
ae4d5372 1062 */
ffacfa7a 1063 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1064 ext4_orphan_add(handle, inode);
1065
1066 ext4_journal_stop(handle);
1067 if (pos + len > inode->i_size) {
b9a4207d 1068 ext4_truncate_failed_write(inode);
de9a55b8 1069 /*
ffacfa7a 1070 * If truncate failed early the inode might
1938a150
AK
1071 * still be on the orphan list; we need to
1072 * make sure the inode is removed from the
1073 * orphan list in that case.
1074 */
1075 if (inode->i_nlink)
1076 ext4_orphan_del(NULL, inode);
1077 }
bfc1af65 1078
47564bfb
TT
1079 if (ret == -ENOSPC &&
1080 ext4_should_retry_alloc(inode->i_sb, &retries))
1081 goto retry_journal;
1082 page_cache_release(page);
1083 return ret;
1084 }
1085 *pagep = page;
ac27a0ec
DK
1086 return ret;
1087}
1088
bfc1af65
NP
1089/* For write_end() in data=journal mode */
1090static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1091{
13fca323 1092 int ret;
ac27a0ec
DK
1093 if (!buffer_mapped(bh) || buffer_freed(bh))
1094 return 0;
1095 set_buffer_uptodate(bh);
13fca323
TT
1096 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1097 clear_buffer_meta(bh);
1098 clear_buffer_prio(bh);
1099 return ret;
ac27a0ec
DK
1100}
1101
eed4333f
ZL
1102/*
1103 * We need to pick up the new inode size which generic_commit_write gave us
1104 * `file' can be NULL - eg, when called from page_symlink().
1105 *
1106 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1107 * buffers are managed internally.
1108 */
1109static int ext4_write_end(struct file *file,
1110 struct address_space *mapping,
1111 loff_t pos, unsigned len, unsigned copied,
1112 struct page *page, void *fsdata)
f8514083 1113{
f8514083 1114 handle_t *handle = ext4_journal_current_handle();
eed4333f 1115 struct inode *inode = mapping->host;
0572639f 1116 loff_t old_size = inode->i_size;
eed4333f
ZL
1117 int ret = 0, ret2;
1118 int i_size_changed = 0;
1119
1120 trace_ext4_write_end(inode, pos, len, copied);
1121 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1122 ret = ext4_jbd2_file_inode(handle, inode);
1123 if (ret) {
1124 unlock_page(page);
1125 page_cache_release(page);
1126 goto errout;
1127 }
1128 }
f8514083 1129
42c832de
TT
1130 if (ext4_has_inline_data(inode)) {
1131 ret = ext4_write_inline_data_end(inode, pos, len,
1132 copied, page);
1133 if (ret < 0)
1134 goto errout;
1135 copied = ret;
1136 } else
f19d5870
TM
1137 copied = block_write_end(file, mapping, pos,
1138 len, copied, page, fsdata);
f8514083 1139 /*
4631dbf6 1140 * it's important to update i_size while still holding page lock:
f8514083
AK
1141 * page writeout could otherwise come in and zero beyond i_size.
1142 */
4631dbf6 1143 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083
AK
1144 unlock_page(page);
1145 page_cache_release(page);
1146
0572639f
XW
1147 if (old_size < pos)
1148 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1149 /*
1150 * Don't mark the inode dirty under page lock. First, it unnecessarily
1151 * makes the holding time of page lock longer. Second, it forces lock
1152 * ordering of page lock and transaction start for journaling
1153 * filesystems.
1154 */
1155 if (i_size_changed)
1156 ext4_mark_inode_dirty(handle, inode);
1157
ffacfa7a 1158 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1159 /* if we have allocated more blocks and copied
1160 * less. We will have blocks allocated outside
1161 * inode->i_size. So truncate them
1162 */
1163 ext4_orphan_add(handle, inode);
74d553aa 1164errout:
617ba13b 1165 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1166 if (!ret)
1167 ret = ret2;
bfc1af65 1168
f8514083 1169 if (pos + len > inode->i_size) {
b9a4207d 1170 ext4_truncate_failed_write(inode);
de9a55b8 1171 /*
ffacfa7a 1172 * If truncate failed early the inode might still be
f8514083
AK
1173 * on the orphan list; we need to make sure the inode
1174 * is removed from the orphan list in that case.
1175 */
1176 if (inode->i_nlink)
1177 ext4_orphan_del(NULL, inode);
1178 }
1179
bfc1af65 1180 return ret ? ret : copied;
ac27a0ec
DK
1181}
1182
bfc1af65 1183static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1184 struct address_space *mapping,
1185 loff_t pos, unsigned len, unsigned copied,
1186 struct page *page, void *fsdata)
ac27a0ec 1187{
617ba13b 1188 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1189 struct inode *inode = mapping->host;
0572639f 1190 loff_t old_size = inode->i_size;
ac27a0ec
DK
1191 int ret = 0, ret2;
1192 int partial = 0;
bfc1af65 1193 unsigned from, to;
4631dbf6 1194 int size_changed = 0;
ac27a0ec 1195
9bffad1e 1196 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1197 from = pos & (PAGE_CACHE_SIZE - 1);
1198 to = from + len;
1199
441c8508
CW
1200 BUG_ON(!ext4_handle_valid(handle));
1201
3fdcfb66
TM
1202 if (ext4_has_inline_data(inode))
1203 copied = ext4_write_inline_data_end(inode, pos, len,
1204 copied, page);
1205 else {
1206 if (copied < len) {
1207 if (!PageUptodate(page))
1208 copied = 0;
1209 page_zero_new_buffers(page, from+copied, to);
1210 }
ac27a0ec 1211
3fdcfb66
TM
1212 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1213 to, &partial, write_end_fn);
1214 if (!partial)
1215 SetPageUptodate(page);
1216 }
4631dbf6 1217 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1218 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1219 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6
DM
1220 unlock_page(page);
1221 page_cache_release(page);
1222
0572639f
XW
1223 if (old_size < pos)
1224 pagecache_isize_extended(inode, old_size, pos);
1225
4631dbf6 1226 if (size_changed) {
617ba13b 1227 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1228 if (!ret)
1229 ret = ret2;
1230 }
bfc1af65 1231
ffacfa7a 1232 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1233 /* if we have allocated more blocks and copied
1234 * less. We will have blocks allocated outside
1235 * inode->i_size. So truncate them
1236 */
1237 ext4_orphan_add(handle, inode);
1238
617ba13b 1239 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1240 if (!ret)
1241 ret = ret2;
f8514083 1242 if (pos + len > inode->i_size) {
b9a4207d 1243 ext4_truncate_failed_write(inode);
de9a55b8 1244 /*
ffacfa7a 1245 * If truncate failed early the inode might still be
f8514083
AK
1246 * on the orphan list; we need to make sure the inode
1247 * is removed from the orphan list in that case.
1248 */
1249 if (inode->i_nlink)
1250 ext4_orphan_del(NULL, inode);
1251 }
bfc1af65
NP
1252
1253 return ret ? ret : copied;
ac27a0ec 1254}
d2a17637 1255
9d0be502 1256/*
c27e43a1 1257 * Reserve space for a single cluster
9d0be502 1258 */
c27e43a1 1259static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1260{
60e58e0f 1261 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1262 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1263 int ret;
03179fe9
TT
1264
1265 /*
1266 * We will charge metadata quota at writeout time; this saves
1267 * us from metadata over-estimation, though we may go over by
1268 * a small amount in the end. Here we just reserve for data.
1269 */
1270 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1271 if (ret)
1272 return ret;
d2a17637 1273
0637c6f4 1274 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1275 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1276 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1277 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1278 return -ENOSPC;
1279 }
9d0be502 1280 ei->i_reserved_data_blocks++;
c27e43a1 1281 trace_ext4_da_reserve_space(inode);
0637c6f4 1282 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1283
d2a17637
MC
1284 return 0; /* success */
1285}
1286
12219aea 1287static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1288{
1289 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1290 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1291
cd213226
MC
1292 if (!to_free)
1293 return; /* Nothing to release, exit */
1294
d2a17637 1295 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1296
5a58ec87 1297 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1298 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1299 /*
0637c6f4
TT
1300 * if there aren't enough reserved blocks, then the
1301 * counter is messed up somewhere. Since this
1302 * function is called from invalidate page, it's
1303 * harmless to return without any action.
cd213226 1304 */
8de5c325 1305 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1306 "ino %lu, to_free %d with only %d reserved "
1084f252 1307 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1308 ei->i_reserved_data_blocks);
1309 WARN_ON(1);
1310 to_free = ei->i_reserved_data_blocks;
cd213226 1311 }
0637c6f4 1312 ei->i_reserved_data_blocks -= to_free;
cd213226 1313
72b8ab9d 1314 /* update fs dirty data blocks counter */
57042651 1315 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1316
d2a17637 1317 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1318
7b415bf6 1319 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1320}
1321
1322static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1323 unsigned int offset,
1324 unsigned int length)
d2a17637
MC
1325{
1326 int to_release = 0;
1327 struct buffer_head *head, *bh;
1328 unsigned int curr_off = 0;
7b415bf6
AK
1329 struct inode *inode = page->mapping->host;
1330 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1331 unsigned int stop = offset + length;
7b415bf6 1332 int num_clusters;
51865fda 1333 ext4_fsblk_t lblk;
d2a17637 1334
ca99fdd2
LC
1335 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1336
d2a17637
MC
1337 head = page_buffers(page);
1338 bh = head;
1339 do {
1340 unsigned int next_off = curr_off + bh->b_size;
1341
ca99fdd2
LC
1342 if (next_off > stop)
1343 break;
1344
d2a17637
MC
1345 if ((offset <= curr_off) && (buffer_delay(bh))) {
1346 to_release++;
1347 clear_buffer_delay(bh);
1348 }
1349 curr_off = next_off;
1350 } while ((bh = bh->b_this_page) != head);
7b415bf6 1351
51865fda
ZL
1352 if (to_release) {
1353 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1354 ext4_es_remove_extent(inode, lblk, to_release);
1355 }
1356
7b415bf6
AK
1357 /* If we have released all the blocks belonging to a cluster, then we
1358 * need to release the reserved space for that cluster. */
1359 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1360 while (num_clusters > 0) {
7b415bf6
AK
1361 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1362 ((num_clusters - 1) << sbi->s_cluster_bits);
1363 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1364 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1365 ext4_da_release_space(inode, 1);
1366
1367 num_clusters--;
1368 }
d2a17637 1369}
ac27a0ec 1370
64769240
AT
1371/*
1372 * Delayed allocation stuff
1373 */
1374
4e7ea81d
JK
1375struct mpage_da_data {
1376 struct inode *inode;
1377 struct writeback_control *wbc;
6b523df4 1378
4e7ea81d
JK
1379 pgoff_t first_page; /* The first page to write */
1380 pgoff_t next_page; /* Current page to examine */
1381 pgoff_t last_page; /* Last page to examine */
791b7f08 1382 /*
4e7ea81d
JK
1383 * Extent to map - this can be after first_page because that can be
1384 * fully mapped. We somewhat abuse m_flags to store whether the extent
1385 * is delalloc or unwritten.
791b7f08 1386 */
4e7ea81d
JK
1387 struct ext4_map_blocks map;
1388 struct ext4_io_submit io_submit; /* IO submission data */
1389};
64769240 1390
4e7ea81d
JK
1391static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1392 bool invalidate)
c4a0c46e
AK
1393{
1394 int nr_pages, i;
1395 pgoff_t index, end;
1396 struct pagevec pvec;
1397 struct inode *inode = mpd->inode;
1398 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1399
1400 /* This is necessary when next_page == 0. */
1401 if (mpd->first_page >= mpd->next_page)
1402 return;
c4a0c46e 1403
c7f5938a
CW
1404 index = mpd->first_page;
1405 end = mpd->next_page - 1;
4e7ea81d
JK
1406 if (invalidate) {
1407 ext4_lblk_t start, last;
1408 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1409 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1410 ext4_es_remove_extent(inode, start, last - start + 1);
1411 }
51865fda 1412
66bea92c 1413 pagevec_init(&pvec, 0);
c4a0c46e
AK
1414 while (index <= end) {
1415 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1416 if (nr_pages == 0)
1417 break;
1418 for (i = 0; i < nr_pages; i++) {
1419 struct page *page = pvec.pages[i];
9b1d0998 1420 if (page->index > end)
c4a0c46e 1421 break;
c4a0c46e
AK
1422 BUG_ON(!PageLocked(page));
1423 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1424 if (invalidate) {
1425 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1426 ClearPageUptodate(page);
1427 }
c4a0c46e
AK
1428 unlock_page(page);
1429 }
9b1d0998
JK
1430 index = pvec.pages[nr_pages - 1]->index + 1;
1431 pagevec_release(&pvec);
c4a0c46e 1432 }
c4a0c46e
AK
1433}
1434
df22291f
AK
1435static void ext4_print_free_blocks(struct inode *inode)
1436{
1437 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1438 struct super_block *sb = inode->i_sb;
f78ee70d 1439 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1440
1441 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1442 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1443 ext4_count_free_clusters(sb)));
92b97816
TT
1444 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1445 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1446 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1447 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1448 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1449 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1450 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1451 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1452 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1453 ei->i_reserved_data_blocks);
df22291f
AK
1454 return;
1455}
1456
c364b22c 1457static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1458{
c364b22c 1459 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1460}
1461
5356f261
AK
1462/*
1463 * This function is grabs code from the very beginning of
1464 * ext4_map_blocks, but assumes that the caller is from delayed write
1465 * time. This function looks up the requested blocks and sets the
1466 * buffer delay bit under the protection of i_data_sem.
1467 */
1468static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1469 struct ext4_map_blocks *map,
1470 struct buffer_head *bh)
1471{
d100eef2 1472 struct extent_status es;
5356f261
AK
1473 int retval;
1474 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1475#ifdef ES_AGGRESSIVE_TEST
1476 struct ext4_map_blocks orig_map;
1477
1478 memcpy(&orig_map, map, sizeof(*map));
1479#endif
5356f261
AK
1480
1481 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1482 invalid_block = ~0;
1483
1484 map->m_flags = 0;
1485 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1486 "logical block %lu\n", inode->i_ino, map->m_len,
1487 (unsigned long) map->m_lblk);
d100eef2
ZL
1488
1489 /* Lookup extent status tree firstly */
1490 if (ext4_es_lookup_extent(inode, iblock, &es)) {
d100eef2
ZL
1491 if (ext4_es_is_hole(&es)) {
1492 retval = 0;
c8b459f4 1493 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1494 goto add_delayed;
1495 }
1496
1497 /*
1498 * Delayed extent could be allocated by fallocate.
1499 * So we need to check it.
1500 */
1501 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1502 map_bh(bh, inode->i_sb, invalid_block);
1503 set_buffer_new(bh);
1504 set_buffer_delay(bh);
1505 return 0;
1506 }
1507
1508 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1509 retval = es.es_len - (iblock - es.es_lblk);
1510 if (retval > map->m_len)
1511 retval = map->m_len;
1512 map->m_len = retval;
1513 if (ext4_es_is_written(&es))
1514 map->m_flags |= EXT4_MAP_MAPPED;
1515 else if (ext4_es_is_unwritten(&es))
1516 map->m_flags |= EXT4_MAP_UNWRITTEN;
1517 else
1518 BUG_ON(1);
1519
921f266b
DM
1520#ifdef ES_AGGRESSIVE_TEST
1521 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1522#endif
d100eef2
ZL
1523 return retval;
1524 }
1525
5356f261
AK
1526 /*
1527 * Try to see if we can get the block without requesting a new
1528 * file system block.
1529 */
c8b459f4 1530 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1531 if (ext4_has_inline_data(inode))
9c3569b5 1532 retval = 0;
cbd7584e 1533 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1534 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1535 else
2f8e0a7c 1536 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1537
d100eef2 1538add_delayed:
5356f261 1539 if (retval == 0) {
f7fec032 1540 int ret;
5356f261
AK
1541 /*
1542 * XXX: __block_prepare_write() unmaps passed block,
1543 * is it OK?
1544 */
386ad67c
LC
1545 /*
1546 * If the block was allocated from previously allocated cluster,
1547 * then we don't need to reserve it again. However we still need
1548 * to reserve metadata for every block we're going to write.
1549 */
c27e43a1 1550 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
cbd7584e 1551 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
c27e43a1 1552 ret = ext4_da_reserve_space(inode);
f7fec032 1553 if (ret) {
5356f261 1554 /* not enough space to reserve */
f7fec032 1555 retval = ret;
5356f261 1556 goto out_unlock;
f7fec032 1557 }
5356f261
AK
1558 }
1559
f7fec032
ZL
1560 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1561 ~0, EXTENT_STATUS_DELAYED);
1562 if (ret) {
1563 retval = ret;
51865fda 1564 goto out_unlock;
f7fec032 1565 }
51865fda 1566
5356f261
AK
1567 map_bh(bh, inode->i_sb, invalid_block);
1568 set_buffer_new(bh);
1569 set_buffer_delay(bh);
f7fec032
ZL
1570 } else if (retval > 0) {
1571 int ret;
3be78c73 1572 unsigned int status;
f7fec032 1573
44fb851d
ZL
1574 if (unlikely(retval != map->m_len)) {
1575 ext4_warning(inode->i_sb,
1576 "ES len assertion failed for inode "
1577 "%lu: retval %d != map->m_len %d",
1578 inode->i_ino, retval, map->m_len);
1579 WARN_ON(1);
921f266b 1580 }
921f266b 1581
f7fec032
ZL
1582 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1583 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1584 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1585 map->m_pblk, status);
1586 if (ret != 0)
1587 retval = ret;
5356f261
AK
1588 }
1589
1590out_unlock:
1591 up_read((&EXT4_I(inode)->i_data_sem));
1592
1593 return retval;
1594}
1595
64769240 1596/*
d91bd2c1 1597 * This is a special get_block_t callback which is used by
b920c755
TT
1598 * ext4_da_write_begin(). It will either return mapped block or
1599 * reserve space for a single block.
29fa89d0
AK
1600 *
1601 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1602 * We also have b_blocknr = -1 and b_bdev initialized properly
1603 *
1604 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1605 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1606 * initialized properly.
64769240 1607 */
9c3569b5
TM
1608int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1609 struct buffer_head *bh, int create)
64769240 1610{
2ed88685 1611 struct ext4_map_blocks map;
64769240
AT
1612 int ret = 0;
1613
1614 BUG_ON(create == 0);
2ed88685
TT
1615 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1616
1617 map.m_lblk = iblock;
1618 map.m_len = 1;
64769240
AT
1619
1620 /*
1621 * first, we need to know whether the block is allocated already
1622 * preallocated blocks are unmapped but should treated
1623 * the same as allocated blocks.
1624 */
5356f261
AK
1625 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1626 if (ret <= 0)
2ed88685 1627 return ret;
64769240 1628
2ed88685
TT
1629 map_bh(bh, inode->i_sb, map.m_pblk);
1630 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1631
1632 if (buffer_unwritten(bh)) {
1633 /* A delayed write to unwritten bh should be marked
1634 * new and mapped. Mapped ensures that we don't do
1635 * get_block multiple times when we write to the same
1636 * offset and new ensures that we do proper zero out
1637 * for partial write.
1638 */
1639 set_buffer_new(bh);
c8205636 1640 set_buffer_mapped(bh);
2ed88685
TT
1641 }
1642 return 0;
64769240 1643}
61628a3f 1644
62e086be
AK
1645static int bget_one(handle_t *handle, struct buffer_head *bh)
1646{
1647 get_bh(bh);
1648 return 0;
1649}
1650
1651static int bput_one(handle_t *handle, struct buffer_head *bh)
1652{
1653 put_bh(bh);
1654 return 0;
1655}
1656
1657static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1658 unsigned int len)
1659{
1660 struct address_space *mapping = page->mapping;
1661 struct inode *inode = mapping->host;
3fdcfb66 1662 struct buffer_head *page_bufs = NULL;
62e086be 1663 handle_t *handle = NULL;
3fdcfb66
TM
1664 int ret = 0, err = 0;
1665 int inline_data = ext4_has_inline_data(inode);
1666 struct buffer_head *inode_bh = NULL;
62e086be 1667
cb20d518 1668 ClearPageChecked(page);
3fdcfb66
TM
1669
1670 if (inline_data) {
1671 BUG_ON(page->index != 0);
1672 BUG_ON(len > ext4_get_max_inline_size(inode));
1673 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1674 if (inode_bh == NULL)
1675 goto out;
1676 } else {
1677 page_bufs = page_buffers(page);
1678 if (!page_bufs) {
1679 BUG();
1680 goto out;
1681 }
1682 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1683 NULL, bget_one);
1684 }
bdf96838
TT
1685 /*
1686 * We need to release the page lock before we start the
1687 * journal, so grab a reference so the page won't disappear
1688 * out from under us.
1689 */
1690 get_page(page);
62e086be
AK
1691 unlock_page(page);
1692
9924a92a
TT
1693 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1694 ext4_writepage_trans_blocks(inode));
62e086be
AK
1695 if (IS_ERR(handle)) {
1696 ret = PTR_ERR(handle);
bdf96838
TT
1697 put_page(page);
1698 goto out_no_pagelock;
62e086be 1699 }
441c8508
CW
1700 BUG_ON(!ext4_handle_valid(handle));
1701
bdf96838
TT
1702 lock_page(page);
1703 put_page(page);
1704 if (page->mapping != mapping) {
1705 /* The page got truncated from under us */
1706 ext4_journal_stop(handle);
1707 ret = 0;
1708 goto out;
1709 }
1710
3fdcfb66 1711 if (inline_data) {
5d601255 1712 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 1713 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1714
3fdcfb66
TM
1715 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1716
1717 } else {
1718 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1719 do_journal_get_write_access);
1720
1721 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1722 write_end_fn);
1723 }
62e086be
AK
1724 if (ret == 0)
1725 ret = err;
2d859db3 1726 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1727 err = ext4_journal_stop(handle);
1728 if (!ret)
1729 ret = err;
1730
3fdcfb66 1731 if (!ext4_has_inline_data(inode))
8c9367fd 1732 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1733 NULL, bput_one);
19f5fb7a 1734 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1735out:
bdf96838
TT
1736 unlock_page(page);
1737out_no_pagelock:
3fdcfb66 1738 brelse(inode_bh);
62e086be
AK
1739 return ret;
1740}
1741
61628a3f 1742/*
43ce1d23
AK
1743 * Note that we don't need to start a transaction unless we're journaling data
1744 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1745 * need to file the inode to the transaction's list in ordered mode because if
1746 * we are writing back data added by write(), the inode is already there and if
25985edc 1747 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1748 * transaction the data will hit the disk. In case we are journaling data, we
1749 * cannot start transaction directly because transaction start ranks above page
1750 * lock so we have to do some magic.
1751 *
b920c755 1752 * This function can get called via...
20970ba6 1753 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1754 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1755 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1756 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1757 *
1758 * We don't do any block allocation in this function. If we have page with
1759 * multiple blocks we need to write those buffer_heads that are mapped. This
1760 * is important for mmaped based write. So if we do with blocksize 1K
1761 * truncate(f, 1024);
1762 * a = mmap(f, 0, 4096);
1763 * a[0] = 'a';
1764 * truncate(f, 4096);
1765 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1766 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1767 * do_wp_page). So writepage should write the first block. If we modify
1768 * the mmap area beyond 1024 we will again get a page_fault and the
1769 * page_mkwrite callback will do the block allocation and mark the
1770 * buffer_heads mapped.
1771 *
1772 * We redirty the page if we have any buffer_heads that is either delay or
1773 * unwritten in the page.
1774 *
1775 * We can get recursively called as show below.
1776 *
1777 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1778 * ext4_writepage()
1779 *
1780 * But since we don't do any block allocation we should not deadlock.
1781 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1782 */
43ce1d23 1783static int ext4_writepage(struct page *page,
62e086be 1784 struct writeback_control *wbc)
64769240 1785{
f8bec370 1786 int ret = 0;
61628a3f 1787 loff_t size;
498e5f24 1788 unsigned int len;
744692dc 1789 struct buffer_head *page_bufs = NULL;
61628a3f 1790 struct inode *inode = page->mapping->host;
36ade451 1791 struct ext4_io_submit io_submit;
1c8349a1 1792 bool keep_towrite = false;
61628a3f 1793
a9c667f8 1794 trace_ext4_writepage(page);
f0e6c985
AK
1795 size = i_size_read(inode);
1796 if (page->index == size >> PAGE_CACHE_SHIFT)
1797 len = size & ~PAGE_CACHE_MASK;
1798 else
1799 len = PAGE_CACHE_SIZE;
64769240 1800
a42afc5f 1801 page_bufs = page_buffers(page);
a42afc5f 1802 /*
fe386132
JK
1803 * We cannot do block allocation or other extent handling in this
1804 * function. If there are buffers needing that, we have to redirty
1805 * the page. But we may reach here when we do a journal commit via
1806 * journal_submit_inode_data_buffers() and in that case we must write
1807 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 1808 */
f19d5870
TM
1809 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1810 ext4_bh_delay_or_unwritten)) {
f8bec370 1811 redirty_page_for_writepage(wbc, page);
fe386132
JK
1812 if (current->flags & PF_MEMALLOC) {
1813 /*
1814 * For memory cleaning there's no point in writing only
1815 * some buffers. So just bail out. Warn if we came here
1816 * from direct reclaim.
1817 */
1818 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1819 == PF_MEMALLOC);
f0e6c985
AK
1820 unlock_page(page);
1821 return 0;
1822 }
1c8349a1 1823 keep_towrite = true;
a42afc5f 1824 }
64769240 1825
cb20d518 1826 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1827 /*
1828 * It's mmapped pagecache. Add buffers and journal it. There
1829 * doesn't seem much point in redirtying the page here.
1830 */
3f0ca309 1831 return __ext4_journalled_writepage(page, len);
43ce1d23 1832
97a851ed
JK
1833 ext4_io_submit_init(&io_submit, wbc);
1834 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1835 if (!io_submit.io_end) {
1836 redirty_page_for_writepage(wbc, page);
1837 unlock_page(page);
1838 return -ENOMEM;
1839 }
1c8349a1 1840 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 1841 ext4_io_submit(&io_submit);
97a851ed
JK
1842 /* Drop io_end reference we got from init */
1843 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1844 return ret;
1845}
1846
5f1132b2
JK
1847static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1848{
1849 int len;
1850 loff_t size = i_size_read(mpd->inode);
1851 int err;
1852
1853 BUG_ON(page->index != mpd->first_page);
1854 if (page->index == size >> PAGE_CACHE_SHIFT)
1855 len = size & ~PAGE_CACHE_MASK;
1856 else
1857 len = PAGE_CACHE_SIZE;
1858 clear_page_dirty_for_io(page);
1c8349a1 1859 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
1860 if (!err)
1861 mpd->wbc->nr_to_write--;
1862 mpd->first_page++;
1863
1864 return err;
1865}
1866
4e7ea81d
JK
1867#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1868
61628a3f 1869/*
fffb2739
JK
1870 * mballoc gives us at most this number of blocks...
1871 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 1872 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 1873 */
fffb2739 1874#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1875
4e7ea81d
JK
1876/*
1877 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1878 *
1879 * @mpd - extent of blocks
1880 * @lblk - logical number of the block in the file
09930042 1881 * @bh - buffer head we want to add to the extent
4e7ea81d 1882 *
09930042
JK
1883 * The function is used to collect contig. blocks in the same state. If the
1884 * buffer doesn't require mapping for writeback and we haven't started the
1885 * extent of buffers to map yet, the function returns 'true' immediately - the
1886 * caller can write the buffer right away. Otherwise the function returns true
1887 * if the block has been added to the extent, false if the block couldn't be
1888 * added.
4e7ea81d 1889 */
09930042
JK
1890static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1891 struct buffer_head *bh)
4e7ea81d
JK
1892{
1893 struct ext4_map_blocks *map = &mpd->map;
1894
09930042
JK
1895 /* Buffer that doesn't need mapping for writeback? */
1896 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1897 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1898 /* So far no extent to map => we write the buffer right away */
1899 if (map->m_len == 0)
1900 return true;
1901 return false;
1902 }
4e7ea81d
JK
1903
1904 /* First block in the extent? */
1905 if (map->m_len == 0) {
1906 map->m_lblk = lblk;
1907 map->m_len = 1;
09930042
JK
1908 map->m_flags = bh->b_state & BH_FLAGS;
1909 return true;
4e7ea81d
JK
1910 }
1911
09930042
JK
1912 /* Don't go larger than mballoc is willing to allocate */
1913 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1914 return false;
1915
4e7ea81d
JK
1916 /* Can we merge the block to our big extent? */
1917 if (lblk == map->m_lblk + map->m_len &&
09930042 1918 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 1919 map->m_len++;
09930042 1920 return true;
4e7ea81d 1921 }
09930042 1922 return false;
4e7ea81d
JK
1923}
1924
5f1132b2
JK
1925/*
1926 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1927 *
1928 * @mpd - extent of blocks for mapping
1929 * @head - the first buffer in the page
1930 * @bh - buffer we should start processing from
1931 * @lblk - logical number of the block in the file corresponding to @bh
1932 *
1933 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1934 * the page for IO if all buffers in this page were mapped and there's no
1935 * accumulated extent of buffers to map or add buffers in the page to the
1936 * extent of buffers to map. The function returns 1 if the caller can continue
1937 * by processing the next page, 0 if it should stop adding buffers to the
1938 * extent to map because we cannot extend it anymore. It can also return value
1939 * < 0 in case of error during IO submission.
1940 */
1941static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1942 struct buffer_head *head,
1943 struct buffer_head *bh,
1944 ext4_lblk_t lblk)
4e7ea81d
JK
1945{
1946 struct inode *inode = mpd->inode;
5f1132b2 1947 int err;
4e7ea81d
JK
1948 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1949 >> inode->i_blkbits;
1950
1951 do {
1952 BUG_ON(buffer_locked(bh));
1953
09930042 1954 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
1955 /* Found extent to map? */
1956 if (mpd->map.m_len)
5f1132b2 1957 return 0;
09930042 1958 /* Everything mapped so far and we hit EOF */
5f1132b2 1959 break;
4e7ea81d 1960 }
4e7ea81d 1961 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
1962 /* So far everything mapped? Submit the page for IO. */
1963 if (mpd->map.m_len == 0) {
1964 err = mpage_submit_page(mpd, head->b_page);
1965 if (err < 0)
1966 return err;
1967 }
1968 return lblk < blocks;
4e7ea81d
JK
1969}
1970
1971/*
1972 * mpage_map_buffers - update buffers corresponding to changed extent and
1973 * submit fully mapped pages for IO
1974 *
1975 * @mpd - description of extent to map, on return next extent to map
1976 *
1977 * Scan buffers corresponding to changed extent (we expect corresponding pages
1978 * to be already locked) and update buffer state according to new extent state.
1979 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 1980 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
1981 * and do extent conversion after IO is finished. If the last page is not fully
1982 * mapped, we update @map to the next extent in the last page that needs
1983 * mapping. Otherwise we submit the page for IO.
1984 */
1985static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1986{
1987 struct pagevec pvec;
1988 int nr_pages, i;
1989 struct inode *inode = mpd->inode;
1990 struct buffer_head *head, *bh;
1991 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
1992 pgoff_t start, end;
1993 ext4_lblk_t lblk;
1994 sector_t pblock;
1995 int err;
1996
1997 start = mpd->map.m_lblk >> bpp_bits;
1998 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1999 lblk = start << bpp_bits;
2000 pblock = mpd->map.m_pblk;
2001
2002 pagevec_init(&pvec, 0);
2003 while (start <= end) {
2004 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2005 PAGEVEC_SIZE);
2006 if (nr_pages == 0)
2007 break;
2008 for (i = 0; i < nr_pages; i++) {
2009 struct page *page = pvec.pages[i];
2010
2011 if (page->index > end)
2012 break;
70261f56 2013 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
2014 BUG_ON(page->index != start);
2015 bh = head = page_buffers(page);
2016 do {
2017 if (lblk < mpd->map.m_lblk)
2018 continue;
2019 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2020 /*
2021 * Buffer after end of mapped extent.
2022 * Find next buffer in the page to map.
2023 */
2024 mpd->map.m_len = 0;
2025 mpd->map.m_flags = 0;
5f1132b2
JK
2026 /*
2027 * FIXME: If dioread_nolock supports
2028 * blocksize < pagesize, we need to make
2029 * sure we add size mapped so far to
2030 * io_end->size as the following call
2031 * can submit the page for IO.
2032 */
2033 err = mpage_process_page_bufs(mpd, head,
2034 bh, lblk);
4e7ea81d 2035 pagevec_release(&pvec);
5f1132b2
JK
2036 if (err > 0)
2037 err = 0;
2038 return err;
4e7ea81d
JK
2039 }
2040 if (buffer_delay(bh)) {
2041 clear_buffer_delay(bh);
2042 bh->b_blocknr = pblock++;
2043 }
4e7ea81d 2044 clear_buffer_unwritten(bh);
5f1132b2 2045 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2046
2047 /*
2048 * FIXME: This is going to break if dioread_nolock
2049 * supports blocksize < pagesize as we will try to
2050 * convert potentially unmapped parts of inode.
2051 */
2052 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2053 /* Page fully mapped - let IO run! */
2054 err = mpage_submit_page(mpd, page);
2055 if (err < 0) {
2056 pagevec_release(&pvec);
2057 return err;
2058 }
2059 start++;
2060 }
2061 pagevec_release(&pvec);
2062 }
2063 /* Extent fully mapped and matches with page boundary. We are done. */
2064 mpd->map.m_len = 0;
2065 mpd->map.m_flags = 0;
2066 return 0;
2067}
2068
2069static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2070{
2071 struct inode *inode = mpd->inode;
2072 struct ext4_map_blocks *map = &mpd->map;
2073 int get_blocks_flags;
090f32ee 2074 int err, dioread_nolock;
4e7ea81d
JK
2075
2076 trace_ext4_da_write_pages_extent(inode, map);
2077 /*
2078 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2079 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2080 * where we have written into one or more preallocated blocks). It is
2081 * possible that we're going to need more metadata blocks than
2082 * previously reserved. However we must not fail because we're in
2083 * writeback and there is nothing we can do about it so it might result
2084 * in data loss. So use reserved blocks to allocate metadata if
2085 * possible.
2086 *
754cfed6
TT
2087 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2088 * the blocks in question are delalloc blocks. This indicates
2089 * that the blocks and quotas has already been checked when
2090 * the data was copied into the page cache.
4e7ea81d
JK
2091 */
2092 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2093 EXT4_GET_BLOCKS_METADATA_NOFAIL;
090f32ee
LC
2094 dioread_nolock = ext4_should_dioread_nolock(inode);
2095 if (dioread_nolock)
4e7ea81d
JK
2096 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2097 if (map->m_flags & (1 << BH_Delay))
2098 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2099
2100 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2101 if (err < 0)
2102 return err;
090f32ee 2103 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2104 if (!mpd->io_submit.io_end->handle &&
2105 ext4_handle_valid(handle)) {
2106 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2107 handle->h_rsv_handle = NULL;
2108 }
3613d228 2109 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2110 }
4e7ea81d
JK
2111
2112 BUG_ON(map->m_len == 0);
2113 if (map->m_flags & EXT4_MAP_NEW) {
2114 struct block_device *bdev = inode->i_sb->s_bdev;
2115 int i;
2116
2117 for (i = 0; i < map->m_len; i++)
2118 unmap_underlying_metadata(bdev, map->m_pblk + i);
2119 }
2120 return 0;
2121}
2122
2123/*
2124 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2125 * mpd->len and submit pages underlying it for IO
2126 *
2127 * @handle - handle for journal operations
2128 * @mpd - extent to map
7534e854
JK
2129 * @give_up_on_write - we set this to true iff there is a fatal error and there
2130 * is no hope of writing the data. The caller should discard
2131 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2132 *
2133 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2134 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2135 * them to initialized or split the described range from larger unwritten
2136 * extent. Note that we need not map all the described range since allocation
2137 * can return less blocks or the range is covered by more unwritten extents. We
2138 * cannot map more because we are limited by reserved transaction credits. On
2139 * the other hand we always make sure that the last touched page is fully
2140 * mapped so that it can be written out (and thus forward progress is
2141 * guaranteed). After mapping we submit all mapped pages for IO.
2142 */
2143static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2144 struct mpage_da_data *mpd,
2145 bool *give_up_on_write)
4e7ea81d
JK
2146{
2147 struct inode *inode = mpd->inode;
2148 struct ext4_map_blocks *map = &mpd->map;
2149 int err;
2150 loff_t disksize;
6603120e 2151 int progress = 0;
4e7ea81d
JK
2152
2153 mpd->io_submit.io_end->offset =
2154 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2155 do {
4e7ea81d
JK
2156 err = mpage_map_one_extent(handle, mpd);
2157 if (err < 0) {
2158 struct super_block *sb = inode->i_sb;
2159
cb530541
TT
2160 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2161 goto invalidate_dirty_pages;
4e7ea81d 2162 /*
cb530541
TT
2163 * Let the uper layers retry transient errors.
2164 * In the case of ENOSPC, if ext4_count_free_blocks()
2165 * is non-zero, a commit should free up blocks.
4e7ea81d 2166 */
cb530541 2167 if ((err == -ENOMEM) ||
6603120e
DM
2168 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2169 if (progress)
2170 goto update_disksize;
cb530541 2171 return err;
6603120e 2172 }
cb530541
TT
2173 ext4_msg(sb, KERN_CRIT,
2174 "Delayed block allocation failed for "
2175 "inode %lu at logical offset %llu with"
2176 " max blocks %u with error %d",
2177 inode->i_ino,
2178 (unsigned long long)map->m_lblk,
2179 (unsigned)map->m_len, -err);
2180 ext4_msg(sb, KERN_CRIT,
2181 "This should not happen!! Data will "
2182 "be lost\n");
2183 if (err == -ENOSPC)
2184 ext4_print_free_blocks(inode);
2185 invalidate_dirty_pages:
2186 *give_up_on_write = true;
4e7ea81d
JK
2187 return err;
2188 }
6603120e 2189 progress = 1;
4e7ea81d
JK
2190 /*
2191 * Update buffer state, submit mapped pages, and get us new
2192 * extent to map
2193 */
2194 err = mpage_map_and_submit_buffers(mpd);
2195 if (err < 0)
6603120e 2196 goto update_disksize;
27d7c4ed 2197 } while (map->m_len);
4e7ea81d 2198
6603120e 2199update_disksize:
622cad13
TT
2200 /*
2201 * Update on-disk size after IO is submitted. Races with
2202 * truncate are avoided by checking i_size under i_data_sem.
2203 */
4e7ea81d 2204 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
4e7ea81d
JK
2205 if (disksize > EXT4_I(inode)->i_disksize) {
2206 int err2;
622cad13
TT
2207 loff_t i_size;
2208
2209 down_write(&EXT4_I(inode)->i_data_sem);
2210 i_size = i_size_read(inode);
2211 if (disksize > i_size)
2212 disksize = i_size;
2213 if (disksize > EXT4_I(inode)->i_disksize)
2214 EXT4_I(inode)->i_disksize = disksize;
4e7ea81d 2215 err2 = ext4_mark_inode_dirty(handle, inode);
622cad13 2216 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d
JK
2217 if (err2)
2218 ext4_error(inode->i_sb,
2219 "Failed to mark inode %lu dirty",
2220 inode->i_ino);
2221 if (!err)
2222 err = err2;
2223 }
2224 return err;
2225}
2226
fffb2739
JK
2227/*
2228 * Calculate the total number of credits to reserve for one writepages
20970ba6 2229 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2230 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2231 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2232 * bpp - 1 blocks in bpp different extents.
2233 */
525f4ed8
MC
2234static int ext4_da_writepages_trans_blocks(struct inode *inode)
2235{
fffb2739 2236 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2237
fffb2739
JK
2238 return ext4_meta_trans_blocks(inode,
2239 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2240}
61628a3f 2241
8e48dcfb 2242/*
4e7ea81d
JK
2243 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2244 * and underlying extent to map
2245 *
2246 * @mpd - where to look for pages
2247 *
2248 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2249 * IO immediately. When we find a page which isn't mapped we start accumulating
2250 * extent of buffers underlying these pages that needs mapping (formed by
2251 * either delayed or unwritten buffers). We also lock the pages containing
2252 * these buffers. The extent found is returned in @mpd structure (starting at
2253 * mpd->lblk with length mpd->len blocks).
2254 *
2255 * Note that this function can attach bios to one io_end structure which are
2256 * neither logically nor physically contiguous. Although it may seem as an
2257 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2258 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2259 */
4e7ea81d 2260static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2261{
4e7ea81d
JK
2262 struct address_space *mapping = mpd->inode->i_mapping;
2263 struct pagevec pvec;
2264 unsigned int nr_pages;
aeac589a 2265 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2266 pgoff_t index = mpd->first_page;
2267 pgoff_t end = mpd->last_page;
2268 int tag;
2269 int i, err = 0;
2270 int blkbits = mpd->inode->i_blkbits;
2271 ext4_lblk_t lblk;
2272 struct buffer_head *head;
8e48dcfb 2273
4e7ea81d 2274 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2275 tag = PAGECACHE_TAG_TOWRITE;
2276 else
2277 tag = PAGECACHE_TAG_DIRTY;
2278
4e7ea81d
JK
2279 pagevec_init(&pvec, 0);
2280 mpd->map.m_len = 0;
2281 mpd->next_page = index;
4f01b02c 2282 while (index <= end) {
5b41d924 2283 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2284 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2285 if (nr_pages == 0)
4e7ea81d 2286 goto out;
8e48dcfb
TT
2287
2288 for (i = 0; i < nr_pages; i++) {
2289 struct page *page = pvec.pages[i];
2290
2291 /*
2292 * At this point, the page may be truncated or
2293 * invalidated (changing page->mapping to NULL), or
2294 * even swizzled back from swapper_space to tmpfs file
2295 * mapping. However, page->index will not change
2296 * because we have a reference on the page.
2297 */
4f01b02c
TT
2298 if (page->index > end)
2299 goto out;
8e48dcfb 2300
aeac589a
ML
2301 /*
2302 * Accumulated enough dirty pages? This doesn't apply
2303 * to WB_SYNC_ALL mode. For integrity sync we have to
2304 * keep going because someone may be concurrently
2305 * dirtying pages, and we might have synced a lot of
2306 * newly appeared dirty pages, but have not synced all
2307 * of the old dirty pages.
2308 */
2309 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2310 goto out;
2311
4e7ea81d
JK
2312 /* If we can't merge this page, we are done. */
2313 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2314 goto out;
78aaced3 2315
8e48dcfb 2316 lock_page(page);
8e48dcfb 2317 /*
4e7ea81d
JK
2318 * If the page is no longer dirty, or its mapping no
2319 * longer corresponds to inode we are writing (which
2320 * means it has been truncated or invalidated), or the
2321 * page is already under writeback and we are not doing
2322 * a data integrity writeback, skip the page
8e48dcfb 2323 */
4f01b02c
TT
2324 if (!PageDirty(page) ||
2325 (PageWriteback(page) &&
4e7ea81d 2326 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2327 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2328 unlock_page(page);
2329 continue;
2330 }
2331
7cb1a535 2332 wait_on_page_writeback(page);
8e48dcfb 2333 BUG_ON(PageWriteback(page));
8e48dcfb 2334
4e7ea81d 2335 if (mpd->map.m_len == 0)
8eb9e5ce 2336 mpd->first_page = page->index;
8eb9e5ce 2337 mpd->next_page = page->index + 1;
f8bec370 2338 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2339 lblk = ((ext4_lblk_t)page->index) <<
2340 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2341 head = page_buffers(page);
5f1132b2
JK
2342 err = mpage_process_page_bufs(mpd, head, head, lblk);
2343 if (err <= 0)
4e7ea81d 2344 goto out;
5f1132b2 2345 err = 0;
aeac589a 2346 left--;
8e48dcfb
TT
2347 }
2348 pagevec_release(&pvec);
2349 cond_resched();
2350 }
4f01b02c 2351 return 0;
8eb9e5ce
TT
2352out:
2353 pagevec_release(&pvec);
4e7ea81d 2354 return err;
8e48dcfb
TT
2355}
2356
20970ba6
TT
2357static int __writepage(struct page *page, struct writeback_control *wbc,
2358 void *data)
2359{
2360 struct address_space *mapping = data;
2361 int ret = ext4_writepage(page, wbc);
2362 mapping_set_error(mapping, ret);
2363 return ret;
2364}
2365
2366static int ext4_writepages(struct address_space *mapping,
2367 struct writeback_control *wbc)
64769240 2368{
4e7ea81d
JK
2369 pgoff_t writeback_index = 0;
2370 long nr_to_write = wbc->nr_to_write;
22208ded 2371 int range_whole = 0;
4e7ea81d 2372 int cycled = 1;
61628a3f 2373 handle_t *handle = NULL;
df22291f 2374 struct mpage_da_data mpd;
5e745b04 2375 struct inode *inode = mapping->host;
6b523df4 2376 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2377 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2378 bool done;
1bce63d1 2379 struct blk_plug plug;
cb530541 2380 bool give_up_on_write = false;
61628a3f 2381
20970ba6 2382 trace_ext4_writepages(inode, wbc);
ba80b101 2383
61628a3f
MC
2384 /*
2385 * No pages to write? This is mainly a kludge to avoid starting
2386 * a transaction for special inodes like journal inode on last iput()
2387 * because that could violate lock ordering on umount
2388 */
a1d6cc56 2389 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2390 goto out_writepages;
2a21e37e 2391
20970ba6
TT
2392 if (ext4_should_journal_data(inode)) {
2393 struct blk_plug plug;
20970ba6
TT
2394
2395 blk_start_plug(&plug);
2396 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2397 blk_finish_plug(&plug);
bbf023c7 2398 goto out_writepages;
20970ba6
TT
2399 }
2400
2a21e37e
TT
2401 /*
2402 * If the filesystem has aborted, it is read-only, so return
2403 * right away instead of dumping stack traces later on that
2404 * will obscure the real source of the problem. We test
4ab2f15b 2405 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2406 * the latter could be true if the filesystem is mounted
20970ba6 2407 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2408 * *never* be called, so if that ever happens, we would want
2409 * the stack trace.
2410 */
bbf023c7
ML
2411 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2412 ret = -EROFS;
2413 goto out_writepages;
2414 }
2a21e37e 2415
6b523df4
JK
2416 if (ext4_should_dioread_nolock(inode)) {
2417 /*
70261f56 2418 * We may need to convert up to one extent per block in
6b523df4
JK
2419 * the page and we may dirty the inode.
2420 */
2421 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2422 }
2423
4e7ea81d
JK
2424 /*
2425 * If we have inline data and arrive here, it means that
2426 * we will soon create the block for the 1st page, so
2427 * we'd better clear the inline data here.
2428 */
2429 if (ext4_has_inline_data(inode)) {
2430 /* Just inode will be modified... */
2431 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2432 if (IS_ERR(handle)) {
2433 ret = PTR_ERR(handle);
2434 goto out_writepages;
2435 }
2436 BUG_ON(ext4_test_inode_state(inode,
2437 EXT4_STATE_MAY_INLINE_DATA));
2438 ext4_destroy_inline_data(handle, inode);
2439 ext4_journal_stop(handle);
2440 }
2441
22208ded
AK
2442 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2443 range_whole = 1;
61628a3f 2444
2acf2c26 2445 if (wbc->range_cyclic) {
4e7ea81d
JK
2446 writeback_index = mapping->writeback_index;
2447 if (writeback_index)
2acf2c26 2448 cycled = 0;
4e7ea81d
JK
2449 mpd.first_page = writeback_index;
2450 mpd.last_page = -1;
5b41d924 2451 } else {
4e7ea81d
JK
2452 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2453 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2454 }
a1d6cc56 2455
4e7ea81d
JK
2456 mpd.inode = inode;
2457 mpd.wbc = wbc;
2458 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2459retry:
6e6938b6 2460 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2461 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2462 done = false;
1bce63d1 2463 blk_start_plug(&plug);
4e7ea81d
JK
2464 while (!done && mpd.first_page <= mpd.last_page) {
2465 /* For each extent of pages we use new io_end */
2466 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2467 if (!mpd.io_submit.io_end) {
2468 ret = -ENOMEM;
2469 break;
2470 }
a1d6cc56
AK
2471
2472 /*
4e7ea81d
JK
2473 * We have two constraints: We find one extent to map and we
2474 * must always write out whole page (makes a difference when
2475 * blocksize < pagesize) so that we don't block on IO when we
2476 * try to write out the rest of the page. Journalled mode is
2477 * not supported by delalloc.
a1d6cc56
AK
2478 */
2479 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2480 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2481
4e7ea81d 2482 /* start a new transaction */
6b523df4
JK
2483 handle = ext4_journal_start_with_reserve(inode,
2484 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2485 if (IS_ERR(handle)) {
2486 ret = PTR_ERR(handle);
1693918e 2487 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2488 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2489 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2490 /* Release allocated io_end */
2491 ext4_put_io_end(mpd.io_submit.io_end);
2492 break;
61628a3f 2493 }
f63e6005 2494
4e7ea81d
JK
2495 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2496 ret = mpage_prepare_extent_to_map(&mpd);
2497 if (!ret) {
2498 if (mpd.map.m_len)
cb530541
TT
2499 ret = mpage_map_and_submit_extent(handle, &mpd,
2500 &give_up_on_write);
4e7ea81d
JK
2501 else {
2502 /*
2503 * We scanned the whole range (or exhausted
2504 * nr_to_write), submitted what was mapped and
2505 * didn't find anything needing mapping. We are
2506 * done.
2507 */
2508 done = true;
2509 }
f63e6005 2510 }
61628a3f 2511 ext4_journal_stop(handle);
4e7ea81d
JK
2512 /* Submit prepared bio */
2513 ext4_io_submit(&mpd.io_submit);
2514 /* Unlock pages we didn't use */
cb530541 2515 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2516 /* Drop our io_end reference we got from init */
2517 ext4_put_io_end(mpd.io_submit.io_end);
2518
2519 if (ret == -ENOSPC && sbi->s_journal) {
2520 /*
2521 * Commit the transaction which would
22208ded
AK
2522 * free blocks released in the transaction
2523 * and try again
2524 */
df22291f 2525 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2526 ret = 0;
4e7ea81d
JK
2527 continue;
2528 }
2529 /* Fatal error - ENOMEM, EIO... */
2530 if (ret)
61628a3f 2531 break;
a1d6cc56 2532 }
1bce63d1 2533 blk_finish_plug(&plug);
9c12a831 2534 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2535 cycled = 1;
4e7ea81d
JK
2536 mpd.last_page = writeback_index - 1;
2537 mpd.first_page = 0;
2acf2c26
AK
2538 goto retry;
2539 }
22208ded
AK
2540
2541 /* Update index */
22208ded
AK
2542 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2543 /*
4e7ea81d 2544 * Set the writeback_index so that range_cyclic
22208ded
AK
2545 * mode will write it back later
2546 */
4e7ea81d 2547 mapping->writeback_index = mpd.first_page;
a1d6cc56 2548
61628a3f 2549out_writepages:
20970ba6
TT
2550 trace_ext4_writepages_result(inode, wbc, ret,
2551 nr_to_write - wbc->nr_to_write);
61628a3f 2552 return ret;
64769240
AT
2553}
2554
79f0be8d
AK
2555static int ext4_nonda_switch(struct super_block *sb)
2556{
5c1ff336 2557 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2558 struct ext4_sb_info *sbi = EXT4_SB(sb);
2559
2560 /*
2561 * switch to non delalloc mode if we are running low
2562 * on free block. The free block accounting via percpu
179f7ebf 2563 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2564 * accumulated on each CPU without updating global counters
2565 * Delalloc need an accurate free block accounting. So switch
2566 * to non delalloc when we are near to error range.
2567 */
5c1ff336
EW
2568 free_clusters =
2569 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2570 dirty_clusters =
2571 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2572 /*
2573 * Start pushing delalloc when 1/2 of free blocks are dirty.
2574 */
5c1ff336 2575 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2576 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2577
5c1ff336
EW
2578 if (2 * free_clusters < 3 * dirty_clusters ||
2579 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2580 /*
c8afb446
ES
2581 * free block count is less than 150% of dirty blocks
2582 * or free blocks is less than watermark
79f0be8d
AK
2583 */
2584 return 1;
2585 }
2586 return 0;
2587}
2588
0ff8947f
ES
2589/* We always reserve for an inode update; the superblock could be there too */
2590static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2591{
2592 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2593 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2594 return 1;
2595
2596 if (pos + len <= 0x7fffffffULL)
2597 return 1;
2598
2599 /* We might need to update the superblock to set LARGE_FILE */
2600 return 2;
2601}
2602
64769240 2603static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2604 loff_t pos, unsigned len, unsigned flags,
2605 struct page **pagep, void **fsdata)
64769240 2606{
72b8ab9d 2607 int ret, retries = 0;
64769240
AT
2608 struct page *page;
2609 pgoff_t index;
64769240
AT
2610 struct inode *inode = mapping->host;
2611 handle_t *handle;
2612
2613 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2614
2615 if (ext4_nonda_switch(inode->i_sb)) {
2616 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2617 return ext4_write_begin(file, mapping, pos,
2618 len, flags, pagep, fsdata);
2619 }
2620 *fsdata = (void *)0;
9bffad1e 2621 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2622
2623 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2624 ret = ext4_da_write_inline_data_begin(mapping, inode,
2625 pos, len, flags,
2626 pagep, fsdata);
2627 if (ret < 0)
47564bfb
TT
2628 return ret;
2629 if (ret == 1)
2630 return 0;
9c3569b5
TM
2631 }
2632
47564bfb
TT
2633 /*
2634 * grab_cache_page_write_begin() can take a long time if the
2635 * system is thrashing due to memory pressure, or if the page
2636 * is being written back. So grab it first before we start
2637 * the transaction handle. This also allows us to allocate
2638 * the page (if needed) without using GFP_NOFS.
2639 */
2640retry_grab:
2641 page = grab_cache_page_write_begin(mapping, index, flags);
2642 if (!page)
2643 return -ENOMEM;
2644 unlock_page(page);
2645
64769240
AT
2646 /*
2647 * With delayed allocation, we don't log the i_disksize update
2648 * if there is delayed block allocation. But we still need
2649 * to journalling the i_disksize update if writes to the end
2650 * of file which has an already mapped buffer.
2651 */
47564bfb 2652retry_journal:
0ff8947f
ES
2653 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2654 ext4_da_write_credits(inode, pos, len));
64769240 2655 if (IS_ERR(handle)) {
47564bfb
TT
2656 page_cache_release(page);
2657 return PTR_ERR(handle);
64769240
AT
2658 }
2659
47564bfb
TT
2660 lock_page(page);
2661 if (page->mapping != mapping) {
2662 /* The page got truncated from under us */
2663 unlock_page(page);
2664 page_cache_release(page);
d5a0d4f7 2665 ext4_journal_stop(handle);
47564bfb 2666 goto retry_grab;
d5a0d4f7 2667 }
47564bfb 2668 /* In case writeback began while the page was unlocked */
7afe5aa5 2669 wait_for_stable_page(page);
64769240 2670
2058f83a
MH
2671#ifdef CONFIG_EXT4_FS_ENCRYPTION
2672 ret = ext4_block_write_begin(page, pos, len,
2673 ext4_da_get_block_prep);
2674#else
6e1db88d 2675 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 2676#endif
64769240
AT
2677 if (ret < 0) {
2678 unlock_page(page);
2679 ext4_journal_stop(handle);
ae4d5372
AK
2680 /*
2681 * block_write_begin may have instantiated a few blocks
2682 * outside i_size. Trim these off again. Don't need
2683 * i_size_read because we hold i_mutex.
2684 */
2685 if (pos + len > inode->i_size)
b9a4207d 2686 ext4_truncate_failed_write(inode);
47564bfb
TT
2687
2688 if (ret == -ENOSPC &&
2689 ext4_should_retry_alloc(inode->i_sb, &retries))
2690 goto retry_journal;
2691
2692 page_cache_release(page);
2693 return ret;
64769240
AT
2694 }
2695
47564bfb 2696 *pagep = page;
64769240
AT
2697 return ret;
2698}
2699
632eaeab
MC
2700/*
2701 * Check if we should update i_disksize
2702 * when write to the end of file but not require block allocation
2703 */
2704static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2705 unsigned long offset)
632eaeab
MC
2706{
2707 struct buffer_head *bh;
2708 struct inode *inode = page->mapping->host;
2709 unsigned int idx;
2710 int i;
2711
2712 bh = page_buffers(page);
2713 idx = offset >> inode->i_blkbits;
2714
af5bc92d 2715 for (i = 0; i < idx; i++)
632eaeab
MC
2716 bh = bh->b_this_page;
2717
29fa89d0 2718 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2719 return 0;
2720 return 1;
2721}
2722
64769240 2723static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2724 struct address_space *mapping,
2725 loff_t pos, unsigned len, unsigned copied,
2726 struct page *page, void *fsdata)
64769240
AT
2727{
2728 struct inode *inode = mapping->host;
2729 int ret = 0, ret2;
2730 handle_t *handle = ext4_journal_current_handle();
2731 loff_t new_i_size;
632eaeab 2732 unsigned long start, end;
79f0be8d
AK
2733 int write_mode = (int)(unsigned long)fsdata;
2734
74d553aa
TT
2735 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2736 return ext4_write_end(file, mapping, pos,
2737 len, copied, page, fsdata);
632eaeab 2738
9bffad1e 2739 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2740 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2741 end = start + copied - 1;
64769240
AT
2742
2743 /*
2744 * generic_write_end() will run mark_inode_dirty() if i_size
2745 * changes. So let's piggyback the i_disksize mark_inode_dirty
2746 * into that.
2747 */
64769240 2748 new_i_size = pos + copied;
ea51d132 2749 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2750 if (ext4_has_inline_data(inode) ||
2751 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 2752 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
2753 /* We need to mark inode dirty even if
2754 * new_i_size is less that inode->i_size
2755 * bu greater than i_disksize.(hint delalloc)
2756 */
2757 ext4_mark_inode_dirty(handle, inode);
64769240 2758 }
632eaeab 2759 }
9c3569b5
TM
2760
2761 if (write_mode != CONVERT_INLINE_DATA &&
2762 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2763 ext4_has_inline_data(inode))
2764 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2765 page);
2766 else
2767 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2768 page, fsdata);
9c3569b5 2769
64769240
AT
2770 copied = ret2;
2771 if (ret2 < 0)
2772 ret = ret2;
2773 ret2 = ext4_journal_stop(handle);
2774 if (!ret)
2775 ret = ret2;
2776
2777 return ret ? ret : copied;
2778}
2779
d47992f8
LC
2780static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2781 unsigned int length)
64769240 2782{
64769240
AT
2783 /*
2784 * Drop reserved blocks
2785 */
2786 BUG_ON(!PageLocked(page));
2787 if (!page_has_buffers(page))
2788 goto out;
2789
ca99fdd2 2790 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2791
2792out:
d47992f8 2793 ext4_invalidatepage(page, offset, length);
64769240
AT
2794
2795 return;
2796}
2797
ccd2506b
TT
2798/*
2799 * Force all delayed allocation blocks to be allocated for a given inode.
2800 */
2801int ext4_alloc_da_blocks(struct inode *inode)
2802{
fb40ba0d
TT
2803 trace_ext4_alloc_da_blocks(inode);
2804
71d4f7d0 2805 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
2806 return 0;
2807
2808 /*
2809 * We do something simple for now. The filemap_flush() will
2810 * also start triggering a write of the data blocks, which is
2811 * not strictly speaking necessary (and for users of
2812 * laptop_mode, not even desirable). However, to do otherwise
2813 * would require replicating code paths in:
de9a55b8 2814 *
20970ba6 2815 * ext4_writepages() ->
ccd2506b
TT
2816 * write_cache_pages() ---> (via passed in callback function)
2817 * __mpage_da_writepage() -->
2818 * mpage_add_bh_to_extent()
2819 * mpage_da_map_blocks()
2820 *
2821 * The problem is that write_cache_pages(), located in
2822 * mm/page-writeback.c, marks pages clean in preparation for
2823 * doing I/O, which is not desirable if we're not planning on
2824 * doing I/O at all.
2825 *
2826 * We could call write_cache_pages(), and then redirty all of
380cf090 2827 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2828 * would be ugly in the extreme. So instead we would need to
2829 * replicate parts of the code in the above functions,
25985edc 2830 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2831 * write out the pages, but rather only collect contiguous
2832 * logical block extents, call the multi-block allocator, and
2833 * then update the buffer heads with the block allocations.
de9a55b8 2834 *
ccd2506b
TT
2835 * For now, though, we'll cheat by calling filemap_flush(),
2836 * which will map the blocks, and start the I/O, but not
2837 * actually wait for the I/O to complete.
2838 */
2839 return filemap_flush(inode->i_mapping);
2840}
64769240 2841
ac27a0ec
DK
2842/*
2843 * bmap() is special. It gets used by applications such as lilo and by
2844 * the swapper to find the on-disk block of a specific piece of data.
2845 *
2846 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2847 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2848 * filesystem and enables swap, then they may get a nasty shock when the
2849 * data getting swapped to that swapfile suddenly gets overwritten by
2850 * the original zero's written out previously to the journal and
2851 * awaiting writeback in the kernel's buffer cache.
2852 *
2853 * So, if we see any bmap calls here on a modified, data-journaled file,
2854 * take extra steps to flush any blocks which might be in the cache.
2855 */
617ba13b 2856static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2857{
2858 struct inode *inode = mapping->host;
2859 journal_t *journal;
2860 int err;
2861
46c7f254
TM
2862 /*
2863 * We can get here for an inline file via the FIBMAP ioctl
2864 */
2865 if (ext4_has_inline_data(inode))
2866 return 0;
2867
64769240
AT
2868 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2869 test_opt(inode->i_sb, DELALLOC)) {
2870 /*
2871 * With delalloc we want to sync the file
2872 * so that we can make sure we allocate
2873 * blocks for file
2874 */
2875 filemap_write_and_wait(mapping);
2876 }
2877
19f5fb7a
TT
2878 if (EXT4_JOURNAL(inode) &&
2879 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2880 /*
2881 * This is a REALLY heavyweight approach, but the use of
2882 * bmap on dirty files is expected to be extremely rare:
2883 * only if we run lilo or swapon on a freshly made file
2884 * do we expect this to happen.
2885 *
2886 * (bmap requires CAP_SYS_RAWIO so this does not
2887 * represent an unprivileged user DOS attack --- we'd be
2888 * in trouble if mortal users could trigger this path at
2889 * will.)
2890 *
617ba13b 2891 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2892 * regular files. If somebody wants to bmap a directory
2893 * or symlink and gets confused because the buffer
2894 * hasn't yet been flushed to disk, they deserve
2895 * everything they get.
2896 */
2897
19f5fb7a 2898 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2899 journal = EXT4_JOURNAL(inode);
dab291af
MC
2900 jbd2_journal_lock_updates(journal);
2901 err = jbd2_journal_flush(journal);
2902 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2903
2904 if (err)
2905 return 0;
2906 }
2907
af5bc92d 2908 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2909}
2910
617ba13b 2911static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2912{
46c7f254
TM
2913 int ret = -EAGAIN;
2914 struct inode *inode = page->mapping->host;
2915
0562e0ba 2916 trace_ext4_readpage(page);
46c7f254
TM
2917
2918 if (ext4_has_inline_data(inode))
2919 ret = ext4_readpage_inline(inode, page);
2920
2921 if (ret == -EAGAIN)
f64e02fe 2922 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
46c7f254
TM
2923
2924 return ret;
ac27a0ec
DK
2925}
2926
2927static int
617ba13b 2928ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2929 struct list_head *pages, unsigned nr_pages)
2930{
46c7f254
TM
2931 struct inode *inode = mapping->host;
2932
2933 /* If the file has inline data, no need to do readpages. */
2934 if (ext4_has_inline_data(inode))
2935 return 0;
2936
f64e02fe 2937 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
ac27a0ec
DK
2938}
2939
d47992f8
LC
2940static void ext4_invalidatepage(struct page *page, unsigned int offset,
2941 unsigned int length)
ac27a0ec 2942{
ca99fdd2 2943 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2944
4520fb3c
JK
2945 /* No journalling happens on data buffers when this function is used */
2946 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2947
ca99fdd2 2948 block_invalidatepage(page, offset, length);
4520fb3c
JK
2949}
2950
53e87268 2951static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2952 unsigned int offset,
2953 unsigned int length)
4520fb3c
JK
2954{
2955 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2956
ca99fdd2 2957 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2958
ac27a0ec
DK
2959 /*
2960 * If it's a full truncate we just forget about the pending dirtying
2961 */
ca99fdd2 2962 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2963 ClearPageChecked(page);
2964
ca99fdd2 2965 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
2966}
2967
2968/* Wrapper for aops... */
2969static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
2970 unsigned int offset,
2971 unsigned int length)
53e87268 2972{
ca99fdd2 2973 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
2974}
2975
617ba13b 2976static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2977{
617ba13b 2978 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2979
0562e0ba
JZ
2980 trace_ext4_releasepage(page);
2981
e1c36595
JK
2982 /* Page has dirty journalled data -> cannot release */
2983 if (PageChecked(page))
ac27a0ec 2984 return 0;
0390131b
FM
2985 if (journal)
2986 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2987 else
2988 return try_to_free_buffers(page);
ac27a0ec
DK
2989}
2990
2ed88685
TT
2991/*
2992 * ext4_get_block used when preparing for a DIO write or buffer write.
2993 * We allocate an uinitialized extent if blocks haven't been allocated.
2994 * The extent will be converted to initialized after the IO is complete.
2995 */
f19d5870 2996int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2997 struct buffer_head *bh_result, int create)
2998{
c7064ef1 2999 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3000 inode->i_ino, create);
2ed88685
TT
3001 return _ext4_get_block(inode, iblock, bh_result,
3002 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3003}
3004
729f52c6 3005static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 3006 struct buffer_head *bh_result, int create)
729f52c6 3007{
8b0f165f
AP
3008 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3009 inode->i_ino, create);
3010 return _ext4_get_block(inode, iblock, bh_result,
3011 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
3012}
3013
4c0425ff 3014static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3015 ssize_t size, void *private)
4c0425ff
MC
3016{
3017 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3018
97a851ed 3019 /* if not async direct IO just return */
7b7a8665 3020 if (!io_end)
97a851ed 3021 return;
4b70df18 3022
88635ca2 3023 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3024 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3025 iocb->private, io_end->inode->i_ino, iocb, offset,
3026 size);
8d5d02e6 3027
b5a7e970 3028 iocb->private = NULL;
4c0425ff
MC
3029 io_end->offset = offset;
3030 io_end->size = size;
7b7a8665 3031 ext4_put_io_end(io_end);
4c0425ff 3032}
c7064ef1 3033
4c0425ff
MC
3034/*
3035 * For ext4 extent files, ext4 will do direct-io write to holes,
3036 * preallocated extents, and those write extend the file, no need to
3037 * fall back to buffered IO.
3038 *
556615dc 3039 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 3040 * If those blocks were preallocated, we mark sure they are split, but
556615dc 3041 * still keep the range to write as unwritten.
4c0425ff 3042 *
69c499d1 3043 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3044 * For async direct IO, since the IO may still pending when return, we
25985edc 3045 * set up an end_io call back function, which will do the conversion
8d5d02e6 3046 * when async direct IO completed.
4c0425ff
MC
3047 *
3048 * If the O_DIRECT write will extend the file then add this inode to the
3049 * orphan list. So recovery will truncate it back to the original size
3050 * if the machine crashes during the write.
3051 *
3052 */
6f673763
OS
3053static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3054 loff_t offset)
4c0425ff
MC
3055{
3056 struct file *file = iocb->ki_filp;
3057 struct inode *inode = file->f_mapping->host;
3058 ssize_t ret;
a6cbcd4a 3059 size_t count = iov_iter_count(iter);
69c499d1
TT
3060 int overwrite = 0;
3061 get_block_t *get_block_func = NULL;
3062 int dio_flags = 0;
4c0425ff 3063 loff_t final_size = offset + count;
97a851ed 3064 ext4_io_end_t *io_end = NULL;
729f52c6 3065
69c499d1 3066 /* Use the old path for reads and writes beyond i_size. */
6f673763
OS
3067 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3068 return ext4_ind_direct_IO(iocb, iter, offset);
4bd809db 3069
69c499d1 3070 BUG_ON(iocb->private == NULL);
4bd809db 3071
e8340395
JK
3072 /*
3073 * Make all waiters for direct IO properly wait also for extent
3074 * conversion. This also disallows race between truncate() and
3075 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3076 */
6f673763 3077 if (iov_iter_rw(iter) == WRITE)
fe0f07d0 3078 inode_dio_begin(inode);
e8340395 3079
69c499d1
TT
3080 /* If we do a overwrite dio, i_mutex locking can be released */
3081 overwrite = *((int *)iocb->private);
4bd809db 3082
69c499d1 3083 if (overwrite) {
69c499d1
TT
3084 down_read(&EXT4_I(inode)->i_data_sem);
3085 mutex_unlock(&inode->i_mutex);
3086 }
8d5d02e6 3087
69c499d1
TT
3088 /*
3089 * We could direct write to holes and fallocate.
3090 *
3091 * Allocated blocks to fill the hole are marked as
556615dc 3092 * unwritten to prevent parallel buffered read to expose
69c499d1
TT
3093 * the stale data before DIO complete the data IO.
3094 *
3095 * As to previously fallocated extents, ext4 get_block will
3096 * just simply mark the buffer mapped but still keep the
556615dc 3097 * extents unwritten.
69c499d1
TT
3098 *
3099 * For non AIO case, we will convert those unwritten extents
3100 * to written after return back from blockdev_direct_IO.
3101 *
3102 * For async DIO, the conversion needs to be deferred when the
3103 * IO is completed. The ext4 end_io callback function will be
3104 * called to take care of the conversion work. Here for async
3105 * case, we allocate an io_end structure to hook to the iocb.
3106 */
3107 iocb->private = NULL;
3108 ext4_inode_aio_set(inode, NULL);
3109 if (!is_sync_kiocb(iocb)) {
97a851ed 3110 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3111 if (!io_end) {
3112 ret = -ENOMEM;
3113 goto retake_lock;
8b0f165f 3114 }
97a851ed
JK
3115 /*
3116 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3117 */
3118 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3119 /*
69c499d1
TT
3120 * we save the io structure for current async direct
3121 * IO, so that later ext4_map_blocks() could flag the
3122 * io structure whether there is a unwritten extents
3123 * needs to be converted when IO is completed.
8d5d02e6 3124 */
69c499d1
TT
3125 ext4_inode_aio_set(inode, io_end);
3126 }
4bd809db 3127
69c499d1
TT
3128 if (overwrite) {
3129 get_block_func = ext4_get_block_write_nolock;
3130 } else {
3131 get_block_func = ext4_get_block_write;
3132 dio_flags = DIO_LOCKING;
3133 }
2058f83a
MH
3134#ifdef CONFIG_EXT4_FS_ENCRYPTION
3135 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3136#endif
923ae0ff 3137 if (IS_DAX(inode))
a95cd631 3138 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
923ae0ff
RZ
3139 ext4_end_io_dio, dio_flags);
3140 else
17f8c842 3141 ret = __blockdev_direct_IO(iocb, inode,
923ae0ff
RZ
3142 inode->i_sb->s_bdev, iter, offset,
3143 get_block_func,
3144 ext4_end_io_dio, NULL, dio_flags);
69c499d1 3145
69c499d1 3146 /*
97a851ed
JK
3147 * Put our reference to io_end. This can free the io_end structure e.g.
3148 * in sync IO case or in case of error. It can even perform extent
3149 * conversion if all bios we submitted finished before we got here.
3150 * Note that in that case iocb->private can be already set to NULL
3151 * here.
69c499d1 3152 */
97a851ed
JK
3153 if (io_end) {
3154 ext4_inode_aio_set(inode, NULL);
3155 ext4_put_io_end(io_end);
3156 /*
3157 * When no IO was submitted ext4_end_io_dio() was not
3158 * called so we have to put iocb's reference.
3159 */
3160 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3161 WARN_ON(iocb->private != io_end);
3162 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
97a851ed
JK
3163 ext4_put_io_end(io_end);
3164 iocb->private = NULL;
3165 }
3166 }
3167 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3168 EXT4_STATE_DIO_UNWRITTEN)) {
3169 int err;
3170 /*
3171 * for non AIO case, since the IO is already
3172 * completed, we could do the conversion right here
3173 */
6b523df4 3174 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3175 offset, ret);
3176 if (err < 0)
3177 ret = err;
3178 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3179 }
4bd809db 3180
69c499d1 3181retake_lock:
6f673763 3182 if (iov_iter_rw(iter) == WRITE)
fe0f07d0 3183 inode_dio_end(inode);
69c499d1
TT
3184 /* take i_mutex locking again if we do a ovewrite dio */
3185 if (overwrite) {
69c499d1
TT
3186 up_read(&EXT4_I(inode)->i_data_sem);
3187 mutex_lock(&inode->i_mutex);
4c0425ff 3188 }
8d5d02e6 3189
69c499d1 3190 return ret;
4c0425ff
MC
3191}
3192
22c6186e
OS
3193static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3194 loff_t offset)
4c0425ff
MC
3195{
3196 struct file *file = iocb->ki_filp;
3197 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3198 size_t count = iov_iter_count(iter);
0562e0ba 3199 ssize_t ret;
4c0425ff 3200
2058f83a
MH
3201#ifdef CONFIG_EXT4_FS_ENCRYPTION
3202 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3203 return 0;
3204#endif
3205
84ebd795
TT
3206 /*
3207 * If we are doing data journalling we don't support O_DIRECT
3208 */
3209 if (ext4_should_journal_data(inode))
3210 return 0;
3211
46c7f254
TM
3212 /* Let buffer I/O handle the inline data case. */
3213 if (ext4_has_inline_data(inode))
3214 return 0;
3215
6f673763 3216 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
12e9b892 3217 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
6f673763 3218 ret = ext4_ext_direct_IO(iocb, iter, offset);
0562e0ba 3219 else
6f673763
OS
3220 ret = ext4_ind_direct_IO(iocb, iter, offset);
3221 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
0562e0ba 3222 return ret;
4c0425ff
MC
3223}
3224
ac27a0ec 3225/*
617ba13b 3226 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3227 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3228 * much here because ->set_page_dirty is called under VFS locks. The page is
3229 * not necessarily locked.
3230 *
3231 * We cannot just dirty the page and leave attached buffers clean, because the
3232 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3233 * or jbddirty because all the journalling code will explode.
3234 *
3235 * So what we do is to mark the page "pending dirty" and next time writepage
3236 * is called, propagate that into the buffers appropriately.
3237 */
617ba13b 3238static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3239{
3240 SetPageChecked(page);
3241 return __set_page_dirty_nobuffers(page);
3242}
3243
74d553aa 3244static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3245 .readpage = ext4_readpage,
3246 .readpages = ext4_readpages,
43ce1d23 3247 .writepage = ext4_writepage,
20970ba6 3248 .writepages = ext4_writepages,
8ab22b9a 3249 .write_begin = ext4_write_begin,
74d553aa 3250 .write_end = ext4_write_end,
8ab22b9a
HH
3251 .bmap = ext4_bmap,
3252 .invalidatepage = ext4_invalidatepage,
3253 .releasepage = ext4_releasepage,
3254 .direct_IO = ext4_direct_IO,
3255 .migratepage = buffer_migrate_page,
3256 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3257 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3258};
3259
617ba13b 3260static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3261 .readpage = ext4_readpage,
3262 .readpages = ext4_readpages,
43ce1d23 3263 .writepage = ext4_writepage,
20970ba6 3264 .writepages = ext4_writepages,
8ab22b9a
HH
3265 .write_begin = ext4_write_begin,
3266 .write_end = ext4_journalled_write_end,
3267 .set_page_dirty = ext4_journalled_set_page_dirty,
3268 .bmap = ext4_bmap,
4520fb3c 3269 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3270 .releasepage = ext4_releasepage,
84ebd795 3271 .direct_IO = ext4_direct_IO,
8ab22b9a 3272 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3273 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3274};
3275
64769240 3276static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3277 .readpage = ext4_readpage,
3278 .readpages = ext4_readpages,
43ce1d23 3279 .writepage = ext4_writepage,
20970ba6 3280 .writepages = ext4_writepages,
8ab22b9a
HH
3281 .write_begin = ext4_da_write_begin,
3282 .write_end = ext4_da_write_end,
3283 .bmap = ext4_bmap,
3284 .invalidatepage = ext4_da_invalidatepage,
3285 .releasepage = ext4_releasepage,
3286 .direct_IO = ext4_direct_IO,
3287 .migratepage = buffer_migrate_page,
3288 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3289 .error_remove_page = generic_error_remove_page,
64769240
AT
3290};
3291
617ba13b 3292void ext4_set_aops(struct inode *inode)
ac27a0ec 3293{
3d2b1582
LC
3294 switch (ext4_inode_journal_mode(inode)) {
3295 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3296 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3297 break;
3298 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3299 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3300 break;
3301 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3302 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3303 return;
3d2b1582
LC
3304 default:
3305 BUG();
3306 }
74d553aa
TT
3307 if (test_opt(inode->i_sb, DELALLOC))
3308 inode->i_mapping->a_ops = &ext4_da_aops;
3309 else
3310 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3311}
3312
923ae0ff 3313static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3314 struct address_space *mapping, loff_t from, loff_t length)
3315{
3316 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3317 unsigned offset = from & (PAGE_CACHE_SIZE-1);
923ae0ff 3318 unsigned blocksize, pos;
d863dc36
LC
3319 ext4_lblk_t iblock;
3320 struct inode *inode = mapping->host;
3321 struct buffer_head *bh;
3322 struct page *page;
3323 int err = 0;
3324
3325 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3326 mapping_gfp_mask(mapping) & ~__GFP_FS);
3327 if (!page)
3328 return -ENOMEM;
3329
3330 blocksize = inode->i_sb->s_blocksize;
d863dc36
LC
3331
3332 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3333
3334 if (!page_has_buffers(page))
3335 create_empty_buffers(page, blocksize, 0);
3336
3337 /* Find the buffer that contains "offset" */
3338 bh = page_buffers(page);
3339 pos = blocksize;
3340 while (offset >= pos) {
3341 bh = bh->b_this_page;
3342 iblock++;
3343 pos += blocksize;
3344 }
d863dc36
LC
3345 if (buffer_freed(bh)) {
3346 BUFFER_TRACE(bh, "freed: skip");
3347 goto unlock;
3348 }
d863dc36
LC
3349 if (!buffer_mapped(bh)) {
3350 BUFFER_TRACE(bh, "unmapped");
3351 ext4_get_block(inode, iblock, bh, 0);
3352 /* unmapped? It's a hole - nothing to do */
3353 if (!buffer_mapped(bh)) {
3354 BUFFER_TRACE(bh, "still unmapped");
3355 goto unlock;
3356 }
3357 }
3358
3359 /* Ok, it's mapped. Make sure it's up-to-date */
3360 if (PageUptodate(page))
3361 set_buffer_uptodate(bh);
3362
3363 if (!buffer_uptodate(bh)) {
3364 err = -EIO;
3365 ll_rw_block(READ, 1, &bh);
3366 wait_on_buffer(bh);
3367 /* Uhhuh. Read error. Complain and punt. */
3368 if (!buffer_uptodate(bh))
3369 goto unlock;
c9c7429c
MH
3370 if (S_ISREG(inode->i_mode) &&
3371 ext4_encrypted_inode(inode)) {
3372 /* We expect the key to be set. */
3373 BUG_ON(!ext4_has_encryption_key(inode));
3374 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3375 WARN_ON_ONCE(ext4_decrypt_one(inode, page));
3376 }
d863dc36 3377 }
d863dc36
LC
3378 if (ext4_should_journal_data(inode)) {
3379 BUFFER_TRACE(bh, "get write access");
3380 err = ext4_journal_get_write_access(handle, bh);
3381 if (err)
3382 goto unlock;
3383 }
d863dc36 3384 zero_user(page, offset, length);
d863dc36
LC
3385 BUFFER_TRACE(bh, "zeroed end of block");
3386
d863dc36
LC
3387 if (ext4_should_journal_data(inode)) {
3388 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3389 } else {
353eefd3 3390 err = 0;
d863dc36 3391 mark_buffer_dirty(bh);
0713ed0c
LC
3392 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3393 err = ext4_jbd2_file_inode(handle, inode);
3394 }
d863dc36
LC
3395
3396unlock:
3397 unlock_page(page);
3398 page_cache_release(page);
3399 return err;
3400}
3401
923ae0ff
RZ
3402/*
3403 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3404 * starting from file offset 'from'. The range to be zero'd must
3405 * be contained with in one block. If the specified range exceeds
3406 * the end of the block it will be shortened to end of the block
3407 * that cooresponds to 'from'
3408 */
3409static int ext4_block_zero_page_range(handle_t *handle,
3410 struct address_space *mapping, loff_t from, loff_t length)
3411{
3412 struct inode *inode = mapping->host;
3413 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3414 unsigned blocksize = inode->i_sb->s_blocksize;
3415 unsigned max = blocksize - (offset & (blocksize - 1));
3416
3417 /*
3418 * correct length if it does not fall between
3419 * 'from' and the end of the block
3420 */
3421 if (length > max || length < 0)
3422 length = max;
3423
3424 if (IS_DAX(inode))
3425 return dax_zero_page_range(inode, from, length, ext4_get_block);
3426 return __ext4_block_zero_page_range(handle, mapping, from, length);
3427}
3428
94350ab5
MW
3429/*
3430 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3431 * up to the end of the block which corresponds to `from'.
3432 * This required during truncate. We need to physically zero the tail end
3433 * of that block so it doesn't yield old data if the file is later grown.
3434 */
c197855e 3435static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3436 struct address_space *mapping, loff_t from)
3437{
3438 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3439 unsigned length;
3440 unsigned blocksize;
3441 struct inode *inode = mapping->host;
3442
3443 blocksize = inode->i_sb->s_blocksize;
3444 length = blocksize - (offset & (blocksize - 1));
3445
3446 return ext4_block_zero_page_range(handle, mapping, from, length);
3447}
3448
a87dd18c
LC
3449int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3450 loff_t lstart, loff_t length)
3451{
3452 struct super_block *sb = inode->i_sb;
3453 struct address_space *mapping = inode->i_mapping;
e1be3a92 3454 unsigned partial_start, partial_end;
a87dd18c
LC
3455 ext4_fsblk_t start, end;
3456 loff_t byte_end = (lstart + length - 1);
3457 int err = 0;
3458
e1be3a92
LC
3459 partial_start = lstart & (sb->s_blocksize - 1);
3460 partial_end = byte_end & (sb->s_blocksize - 1);
3461
a87dd18c
LC
3462 start = lstart >> sb->s_blocksize_bits;
3463 end = byte_end >> sb->s_blocksize_bits;
3464
3465 /* Handle partial zero within the single block */
e1be3a92
LC
3466 if (start == end &&
3467 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3468 err = ext4_block_zero_page_range(handle, mapping,
3469 lstart, length);
3470 return err;
3471 }
3472 /* Handle partial zero out on the start of the range */
e1be3a92 3473 if (partial_start) {
a87dd18c
LC
3474 err = ext4_block_zero_page_range(handle, mapping,
3475 lstart, sb->s_blocksize);
3476 if (err)
3477 return err;
3478 }
3479 /* Handle partial zero out on the end of the range */
e1be3a92 3480 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3481 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3482 byte_end - partial_end,
3483 partial_end + 1);
a87dd18c
LC
3484 return err;
3485}
3486
91ef4caf
DG
3487int ext4_can_truncate(struct inode *inode)
3488{
91ef4caf
DG
3489 if (S_ISREG(inode->i_mode))
3490 return 1;
3491 if (S_ISDIR(inode->i_mode))
3492 return 1;
3493 if (S_ISLNK(inode->i_mode))
3494 return !ext4_inode_is_fast_symlink(inode);
3495 return 0;
3496}
3497
a4bb6b64
AH
3498/*
3499 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3500 * associated with the given offset and length
3501 *
3502 * @inode: File inode
3503 * @offset: The offset where the hole will begin
3504 * @len: The length of the hole
3505 *
4907cb7b 3506 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3507 */
3508
aeb2817a 3509int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3510{
26a4c0c6
TT
3511 struct super_block *sb = inode->i_sb;
3512 ext4_lblk_t first_block, stop_block;
3513 struct address_space *mapping = inode->i_mapping;
a87dd18c 3514 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3515 handle_t *handle;
3516 unsigned int credits;
3517 int ret = 0;
3518
a4bb6b64 3519 if (!S_ISREG(inode->i_mode))
73355192 3520 return -EOPNOTSUPP;
a4bb6b64 3521
b8a86845 3522 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 3523
26a4c0c6
TT
3524 /*
3525 * Write out all dirty pages to avoid race conditions
3526 * Then release them.
3527 */
3528 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3529 ret = filemap_write_and_wait_range(mapping, offset,
3530 offset + length - 1);
3531 if (ret)
3532 return ret;
3533 }
3534
3535 mutex_lock(&inode->i_mutex);
9ef06cec 3536
26a4c0c6
TT
3537 /* No need to punch hole beyond i_size */
3538 if (offset >= inode->i_size)
3539 goto out_mutex;
3540
3541 /*
3542 * If the hole extends beyond i_size, set the hole
3543 * to end after the page that contains i_size
3544 */
3545 if (offset + length > inode->i_size) {
3546 length = inode->i_size +
3547 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3548 offset;
3549 }
3550
a361293f
JK
3551 if (offset & (sb->s_blocksize - 1) ||
3552 (offset + length) & (sb->s_blocksize - 1)) {
3553 /*
3554 * Attach jinode to inode for jbd2 if we do any zeroing of
3555 * partial block
3556 */
3557 ret = ext4_inode_attach_jinode(inode);
3558 if (ret < 0)
3559 goto out_mutex;
3560
3561 }
3562
a87dd18c
LC
3563 first_block_offset = round_up(offset, sb->s_blocksize);
3564 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3565
a87dd18c
LC
3566 /* Now release the pages and zero block aligned part of pages*/
3567 if (last_block_offset > first_block_offset)
3568 truncate_pagecache_range(inode, first_block_offset,
3569 last_block_offset);
26a4c0c6
TT
3570
3571 /* Wait all existing dio workers, newcomers will block on i_mutex */
3572 ext4_inode_block_unlocked_dio(inode);
26a4c0c6
TT
3573 inode_dio_wait(inode);
3574
3575 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3576 credits = ext4_writepage_trans_blocks(inode);
3577 else
3578 credits = ext4_blocks_for_truncate(inode);
3579 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3580 if (IS_ERR(handle)) {
3581 ret = PTR_ERR(handle);
3582 ext4_std_error(sb, ret);
3583 goto out_dio;
3584 }
3585
a87dd18c
LC
3586 ret = ext4_zero_partial_blocks(handle, inode, offset,
3587 length);
3588 if (ret)
3589 goto out_stop;
26a4c0c6
TT
3590
3591 first_block = (offset + sb->s_blocksize - 1) >>
3592 EXT4_BLOCK_SIZE_BITS(sb);
3593 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3594
3595 /* If there are no blocks to remove, return now */
3596 if (first_block >= stop_block)
3597 goto out_stop;
3598
3599 down_write(&EXT4_I(inode)->i_data_sem);
3600 ext4_discard_preallocations(inode);
3601
3602 ret = ext4_es_remove_extent(inode, first_block,
3603 stop_block - first_block);
3604 if (ret) {
3605 up_write(&EXT4_I(inode)->i_data_sem);
3606 goto out_stop;
3607 }
3608
3609 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3610 ret = ext4_ext_remove_space(inode, first_block,
3611 stop_block - 1);
3612 else
4f579ae7 3613 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
3614 stop_block);
3615
819c4920 3616 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3617 if (IS_SYNC(inode))
3618 ext4_handle_sync(handle);
e251f9bc
MP
3619
3620 /* Now release the pages again to reduce race window */
3621 if (last_block_offset > first_block_offset)
3622 truncate_pagecache_range(inode, first_block_offset,
3623 last_block_offset);
3624
26a4c0c6
TT
3625 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3626 ext4_mark_inode_dirty(handle, inode);
3627out_stop:
3628 ext4_journal_stop(handle);
3629out_dio:
3630 ext4_inode_resume_unlocked_dio(inode);
3631out_mutex:
3632 mutex_unlock(&inode->i_mutex);
3633 return ret;
a4bb6b64
AH
3634}
3635
a361293f
JK
3636int ext4_inode_attach_jinode(struct inode *inode)
3637{
3638 struct ext4_inode_info *ei = EXT4_I(inode);
3639 struct jbd2_inode *jinode;
3640
3641 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3642 return 0;
3643
3644 jinode = jbd2_alloc_inode(GFP_KERNEL);
3645 spin_lock(&inode->i_lock);
3646 if (!ei->jinode) {
3647 if (!jinode) {
3648 spin_unlock(&inode->i_lock);
3649 return -ENOMEM;
3650 }
3651 ei->jinode = jinode;
3652 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3653 jinode = NULL;
3654 }
3655 spin_unlock(&inode->i_lock);
3656 if (unlikely(jinode != NULL))
3657 jbd2_free_inode(jinode);
3658 return 0;
3659}
3660
ac27a0ec 3661/*
617ba13b 3662 * ext4_truncate()
ac27a0ec 3663 *
617ba13b
MC
3664 * We block out ext4_get_block() block instantiations across the entire
3665 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3666 * simultaneously on behalf of the same inode.
3667 *
42b2aa86 3668 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3669 * is one core, guiding principle: the file's tree must always be consistent on
3670 * disk. We must be able to restart the truncate after a crash.
3671 *
3672 * The file's tree may be transiently inconsistent in memory (although it
3673 * probably isn't), but whenever we close off and commit a journal transaction,
3674 * the contents of (the filesystem + the journal) must be consistent and
3675 * restartable. It's pretty simple, really: bottom up, right to left (although
3676 * left-to-right works OK too).
3677 *
3678 * Note that at recovery time, journal replay occurs *before* the restart of
3679 * truncate against the orphan inode list.
3680 *
3681 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3682 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3683 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3684 * ext4_truncate() to have another go. So there will be instantiated blocks
3685 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3686 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3687 * ext4_truncate() run will find them and release them.
ac27a0ec 3688 */
617ba13b 3689void ext4_truncate(struct inode *inode)
ac27a0ec 3690{
819c4920
TT
3691 struct ext4_inode_info *ei = EXT4_I(inode);
3692 unsigned int credits;
3693 handle_t *handle;
3694 struct address_space *mapping = inode->i_mapping;
819c4920 3695
19b5ef61
TT
3696 /*
3697 * There is a possibility that we're either freeing the inode
e04027e8 3698 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
3699 * have i_mutex locked because it's not necessary.
3700 */
3701 if (!(inode->i_state & (I_NEW|I_FREEING)))
3702 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3703 trace_ext4_truncate_enter(inode);
3704
91ef4caf 3705 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3706 return;
3707
12e9b892 3708 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3709
5534fb5b 3710 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3711 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3712
aef1c851
TM
3713 if (ext4_has_inline_data(inode)) {
3714 int has_inline = 1;
3715
3716 ext4_inline_data_truncate(inode, &has_inline);
3717 if (has_inline)
3718 return;
3719 }
3720
a361293f
JK
3721 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3722 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3723 if (ext4_inode_attach_jinode(inode) < 0)
3724 return;
3725 }
3726
819c4920
TT
3727 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3728 credits = ext4_writepage_trans_blocks(inode);
3729 else
3730 credits = ext4_blocks_for_truncate(inode);
3731
3732 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3733 if (IS_ERR(handle)) {
3734 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3735 return;
3736 }
3737
eb3544c6
LC
3738 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3739 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3740
3741 /*
3742 * We add the inode to the orphan list, so that if this
3743 * truncate spans multiple transactions, and we crash, we will
3744 * resume the truncate when the filesystem recovers. It also
3745 * marks the inode dirty, to catch the new size.
3746 *
3747 * Implication: the file must always be in a sane, consistent
3748 * truncatable state while each transaction commits.
3749 */
3750 if (ext4_orphan_add(handle, inode))
3751 goto out_stop;
3752
3753 down_write(&EXT4_I(inode)->i_data_sem);
3754
3755 ext4_discard_preallocations(inode);
3756
ff9893dc 3757 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3758 ext4_ext_truncate(handle, inode);
ff9893dc 3759 else
819c4920
TT
3760 ext4_ind_truncate(handle, inode);
3761
3762 up_write(&ei->i_data_sem);
3763
3764 if (IS_SYNC(inode))
3765 ext4_handle_sync(handle);
3766
3767out_stop:
3768 /*
3769 * If this was a simple ftruncate() and the file will remain alive,
3770 * then we need to clear up the orphan record which we created above.
3771 * However, if this was a real unlink then we were called by
58d86a50 3772 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
3773 * orphan info for us.
3774 */
3775 if (inode->i_nlink)
3776 ext4_orphan_del(handle, inode);
3777
3778 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3779 ext4_mark_inode_dirty(handle, inode);
3780 ext4_journal_stop(handle);
ac27a0ec 3781
0562e0ba 3782 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3783}
3784
ac27a0ec 3785/*
617ba13b 3786 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3787 * underlying buffer_head on success. If 'in_mem' is true, we have all
3788 * data in memory that is needed to recreate the on-disk version of this
3789 * inode.
3790 */
617ba13b
MC
3791static int __ext4_get_inode_loc(struct inode *inode,
3792 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3793{
240799cd
TT
3794 struct ext4_group_desc *gdp;
3795 struct buffer_head *bh;
3796 struct super_block *sb = inode->i_sb;
3797 ext4_fsblk_t block;
3798 int inodes_per_block, inode_offset;
3799
3a06d778 3800 iloc->bh = NULL;
240799cd
TT
3801 if (!ext4_valid_inum(sb, inode->i_ino))
3802 return -EIO;
ac27a0ec 3803
240799cd
TT
3804 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3805 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3806 if (!gdp)
ac27a0ec
DK
3807 return -EIO;
3808
240799cd
TT
3809 /*
3810 * Figure out the offset within the block group inode table
3811 */
00d09882 3812 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3813 inode_offset = ((inode->i_ino - 1) %
3814 EXT4_INODES_PER_GROUP(sb));
3815 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3816 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3817
3818 bh = sb_getblk(sb, block);
aebf0243 3819 if (unlikely(!bh))
860d21e2 3820 return -ENOMEM;
ac27a0ec
DK
3821 if (!buffer_uptodate(bh)) {
3822 lock_buffer(bh);
9c83a923
HK
3823
3824 /*
3825 * If the buffer has the write error flag, we have failed
3826 * to write out another inode in the same block. In this
3827 * case, we don't have to read the block because we may
3828 * read the old inode data successfully.
3829 */
3830 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3831 set_buffer_uptodate(bh);
3832
ac27a0ec
DK
3833 if (buffer_uptodate(bh)) {
3834 /* someone brought it uptodate while we waited */
3835 unlock_buffer(bh);
3836 goto has_buffer;
3837 }
3838
3839 /*
3840 * If we have all information of the inode in memory and this
3841 * is the only valid inode in the block, we need not read the
3842 * block.
3843 */
3844 if (in_mem) {
3845 struct buffer_head *bitmap_bh;
240799cd 3846 int i, start;
ac27a0ec 3847
240799cd 3848 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3849
240799cd
TT
3850 /* Is the inode bitmap in cache? */
3851 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3852 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3853 goto make_io;
3854
3855 /*
3856 * If the inode bitmap isn't in cache then the
3857 * optimisation may end up performing two reads instead
3858 * of one, so skip it.
3859 */
3860 if (!buffer_uptodate(bitmap_bh)) {
3861 brelse(bitmap_bh);
3862 goto make_io;
3863 }
240799cd 3864 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3865 if (i == inode_offset)
3866 continue;
617ba13b 3867 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3868 break;
3869 }
3870 brelse(bitmap_bh);
240799cd 3871 if (i == start + inodes_per_block) {
ac27a0ec
DK
3872 /* all other inodes are free, so skip I/O */
3873 memset(bh->b_data, 0, bh->b_size);
3874 set_buffer_uptodate(bh);
3875 unlock_buffer(bh);
3876 goto has_buffer;
3877 }
3878 }
3879
3880make_io:
240799cd
TT
3881 /*
3882 * If we need to do any I/O, try to pre-readahead extra
3883 * blocks from the inode table.
3884 */
3885 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3886 ext4_fsblk_t b, end, table;
3887 unsigned num;
0d606e2c 3888 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3889
3890 table = ext4_inode_table(sb, gdp);
b713a5ec 3891 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3892 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3893 if (table > b)
3894 b = table;
0d606e2c 3895 end = b + ra_blks;
240799cd 3896 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3897 if (ext4_has_group_desc_csum(sb))
560671a0 3898 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3899 table += num / inodes_per_block;
3900 if (end > table)
3901 end = table;
3902 while (b <= end)
3903 sb_breadahead(sb, b++);
3904 }
3905
ac27a0ec
DK
3906 /*
3907 * There are other valid inodes in the buffer, this inode
3908 * has in-inode xattrs, or we don't have this inode in memory.
3909 * Read the block from disk.
3910 */
0562e0ba 3911 trace_ext4_load_inode(inode);
ac27a0ec
DK
3912 get_bh(bh);
3913 bh->b_end_io = end_buffer_read_sync;
65299a3b 3914 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3915 wait_on_buffer(bh);
3916 if (!buffer_uptodate(bh)) {
c398eda0
TT
3917 EXT4_ERROR_INODE_BLOCK(inode, block,
3918 "unable to read itable block");
ac27a0ec
DK
3919 brelse(bh);
3920 return -EIO;
3921 }
3922 }
3923has_buffer:
3924 iloc->bh = bh;
3925 return 0;
3926}
3927
617ba13b 3928int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3929{
3930 /* We have all inode data except xattrs in memory here. */
617ba13b 3931 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3932 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3933}
3934
617ba13b 3935void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3936{
617ba13b 3937 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 3938 unsigned int new_fl = 0;
ac27a0ec 3939
617ba13b 3940 if (flags & EXT4_SYNC_FL)
00a1a053 3941 new_fl |= S_SYNC;
617ba13b 3942 if (flags & EXT4_APPEND_FL)
00a1a053 3943 new_fl |= S_APPEND;
617ba13b 3944 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 3945 new_fl |= S_IMMUTABLE;
617ba13b 3946 if (flags & EXT4_NOATIME_FL)
00a1a053 3947 new_fl |= S_NOATIME;
617ba13b 3948 if (flags & EXT4_DIRSYNC_FL)
00a1a053 3949 new_fl |= S_DIRSYNC;
923ae0ff
RZ
3950 if (test_opt(inode->i_sb, DAX))
3951 new_fl |= S_DAX;
5f16f322 3952 inode_set_flags(inode, new_fl,
923ae0ff 3953 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
ac27a0ec
DK
3954}
3955
ff9ddf7e
JK
3956/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3957void ext4_get_inode_flags(struct ext4_inode_info *ei)
3958{
84a8dce2
DM
3959 unsigned int vfs_fl;
3960 unsigned long old_fl, new_fl;
3961
3962 do {
3963 vfs_fl = ei->vfs_inode.i_flags;
3964 old_fl = ei->i_flags;
3965 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3966 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3967 EXT4_DIRSYNC_FL);
3968 if (vfs_fl & S_SYNC)
3969 new_fl |= EXT4_SYNC_FL;
3970 if (vfs_fl & S_APPEND)
3971 new_fl |= EXT4_APPEND_FL;
3972 if (vfs_fl & S_IMMUTABLE)
3973 new_fl |= EXT4_IMMUTABLE_FL;
3974 if (vfs_fl & S_NOATIME)
3975 new_fl |= EXT4_NOATIME_FL;
3976 if (vfs_fl & S_DIRSYNC)
3977 new_fl |= EXT4_DIRSYNC_FL;
3978 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3979}
de9a55b8 3980
0fc1b451 3981static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3982 struct ext4_inode_info *ei)
0fc1b451
AK
3983{
3984 blkcnt_t i_blocks ;
8180a562
AK
3985 struct inode *inode = &(ei->vfs_inode);
3986 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3987
3988 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3989 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3990 /* we are using combined 48 bit field */
3991 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3992 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3993 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3994 /* i_blocks represent file system block size */
3995 return i_blocks << (inode->i_blkbits - 9);
3996 } else {
3997 return i_blocks;
3998 }
0fc1b451
AK
3999 } else {
4000 return le32_to_cpu(raw_inode->i_blocks_lo);
4001 }
4002}
ff9ddf7e 4003
152a7b0a
TM
4004static inline void ext4_iget_extra_inode(struct inode *inode,
4005 struct ext4_inode *raw_inode,
4006 struct ext4_inode_info *ei)
4007{
4008 __le32 *magic = (void *)raw_inode +
4009 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 4010 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4011 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4012 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4013 } else
4014 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4015}
4016
1d1fe1ee 4017struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4018{
617ba13b
MC
4019 struct ext4_iloc iloc;
4020 struct ext4_inode *raw_inode;
1d1fe1ee 4021 struct ext4_inode_info *ei;
1d1fe1ee 4022 struct inode *inode;
b436b9be 4023 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4024 long ret;
ac27a0ec 4025 int block;
08cefc7a
EB
4026 uid_t i_uid;
4027 gid_t i_gid;
ac27a0ec 4028
1d1fe1ee
DH
4029 inode = iget_locked(sb, ino);
4030 if (!inode)
4031 return ERR_PTR(-ENOMEM);
4032 if (!(inode->i_state & I_NEW))
4033 return inode;
4034
4035 ei = EXT4_I(inode);
7dc57615 4036 iloc.bh = NULL;
ac27a0ec 4037
1d1fe1ee
DH
4038 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4039 if (ret < 0)
ac27a0ec 4040 goto bad_inode;
617ba13b 4041 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4042
4043 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4044 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4045 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4046 EXT4_INODE_SIZE(inode->i_sb)) {
4047 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4048 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4049 EXT4_INODE_SIZE(inode->i_sb));
4050 ret = -EIO;
4051 goto bad_inode;
4052 }
4053 } else
4054 ei->i_extra_isize = 0;
4055
4056 /* Precompute checksum seed for inode metadata */
9aa5d32b 4057 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4058 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4059 __u32 csum;
4060 __le32 inum = cpu_to_le32(inode->i_ino);
4061 __le32 gen = raw_inode->i_generation;
4062 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4063 sizeof(inum));
4064 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4065 sizeof(gen));
4066 }
4067
4068 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4069 EXT4_ERROR_INODE(inode, "checksum invalid");
4070 ret = -EIO;
4071 goto bad_inode;
4072 }
4073
ac27a0ec 4074 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4075 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4076 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4077 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4078 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4079 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4080 }
08cefc7a
EB
4081 i_uid_write(inode, i_uid);
4082 i_gid_write(inode, i_gid);
bfe86848 4083 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4084
353eb83c 4085 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4086 ei->i_inline_off = 0;
ac27a0ec
DK
4087 ei->i_dir_start_lookup = 0;
4088 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4089 /* We now have enough fields to check if the inode was active or not.
4090 * This is needed because nfsd might try to access dead inodes
4091 * the test is that same one that e2fsck uses
4092 * NeilBrown 1999oct15
4093 */
4094 if (inode->i_nlink == 0) {
393d1d1d
DTB
4095 if ((inode->i_mode == 0 ||
4096 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4097 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4098 /* this inode is deleted */
1d1fe1ee 4099 ret = -ESTALE;
ac27a0ec
DK
4100 goto bad_inode;
4101 }
4102 /* The only unlinked inodes we let through here have
4103 * valid i_mode and are being read by the orphan
4104 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4105 * the process of deleting those.
4106 * OR it is the EXT4_BOOT_LOADER_INO which is
4107 * not initialized on a new filesystem. */
ac27a0ec 4108 }
ac27a0ec 4109 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4110 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4111 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4112 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4113 ei->i_file_acl |=
4114 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4115 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4116 ei->i_disksize = inode->i_size;
a9e7f447
DM
4117#ifdef CONFIG_QUOTA
4118 ei->i_reserved_quota = 0;
4119#endif
ac27a0ec
DK
4120 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4121 ei->i_block_group = iloc.block_group;
a4912123 4122 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4123 /*
4124 * NOTE! The in-memory inode i_data array is in little-endian order
4125 * even on big-endian machines: we do NOT byteswap the block numbers!
4126 */
617ba13b 4127 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4128 ei->i_data[block] = raw_inode->i_block[block];
4129 INIT_LIST_HEAD(&ei->i_orphan);
4130
b436b9be
JK
4131 /*
4132 * Set transaction id's of transactions that have to be committed
4133 * to finish f[data]sync. We set them to currently running transaction
4134 * as we cannot be sure that the inode or some of its metadata isn't
4135 * part of the transaction - the inode could have been reclaimed and
4136 * now it is reread from disk.
4137 */
4138 if (journal) {
4139 transaction_t *transaction;
4140 tid_t tid;
4141
a931da6a 4142 read_lock(&journal->j_state_lock);
b436b9be
JK
4143 if (journal->j_running_transaction)
4144 transaction = journal->j_running_transaction;
4145 else
4146 transaction = journal->j_committing_transaction;
4147 if (transaction)
4148 tid = transaction->t_tid;
4149 else
4150 tid = journal->j_commit_sequence;
a931da6a 4151 read_unlock(&journal->j_state_lock);
b436b9be
JK
4152 ei->i_sync_tid = tid;
4153 ei->i_datasync_tid = tid;
4154 }
4155
0040d987 4156 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4157 if (ei->i_extra_isize == 0) {
4158 /* The extra space is currently unused. Use it. */
617ba13b
MC
4159 ei->i_extra_isize = sizeof(struct ext4_inode) -
4160 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4161 } else {
152a7b0a 4162 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4163 }
814525f4 4164 }
ac27a0ec 4165
ef7f3835
KS
4166 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4167 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4168 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4169 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4170
ed3654eb 4171 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4172 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4173 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4174 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4175 inode->i_version |=
4176 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4177 }
25ec56b5
JNC
4178 }
4179
c4b5a614 4180 ret = 0;
485c26ec 4181 if (ei->i_file_acl &&
1032988c 4182 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4183 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4184 ei->i_file_acl);
485c26ec
TT
4185 ret = -EIO;
4186 goto bad_inode;
f19d5870
TM
4187 } else if (!ext4_has_inline_data(inode)) {
4188 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4189 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4190 (S_ISLNK(inode->i_mode) &&
4191 !ext4_inode_is_fast_symlink(inode))))
4192 /* Validate extent which is part of inode */
4193 ret = ext4_ext_check_inode(inode);
4194 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4195 (S_ISLNK(inode->i_mode) &&
4196 !ext4_inode_is_fast_symlink(inode))) {
4197 /* Validate block references which are part of inode */
4198 ret = ext4_ind_check_inode(inode);
4199 }
fe2c8191 4200 }
567f3e9a 4201 if (ret)
de9a55b8 4202 goto bad_inode;
7a262f7c 4203
ac27a0ec 4204 if (S_ISREG(inode->i_mode)) {
617ba13b 4205 inode->i_op = &ext4_file_inode_operations;
be64f884 4206 inode->i_fop = &ext4_file_operations;
617ba13b 4207 ext4_set_aops(inode);
ac27a0ec 4208 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4209 inode->i_op = &ext4_dir_inode_operations;
4210 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4211 } else if (S_ISLNK(inode->i_mode)) {
a7a67e8a
AV
4212 if (ext4_encrypted_inode(inode)) {
4213 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4214 ext4_set_aops(inode);
4215 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 4216 inode->i_link = (char *)ei->i_data;
617ba13b 4217 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4218 nd_terminate_link(ei->i_data, inode->i_size,
4219 sizeof(ei->i_data) - 1);
4220 } else {
617ba13b
MC
4221 inode->i_op = &ext4_symlink_inode_operations;
4222 ext4_set_aops(inode);
ac27a0ec 4223 }
563bdd61
TT
4224 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4225 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4226 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4227 if (raw_inode->i_block[0])
4228 init_special_inode(inode, inode->i_mode,
4229 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4230 else
4231 init_special_inode(inode, inode->i_mode,
4232 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4233 } else if (ino == EXT4_BOOT_LOADER_INO) {
4234 make_bad_inode(inode);
563bdd61 4235 } else {
563bdd61 4236 ret = -EIO;
24676da4 4237 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4238 goto bad_inode;
ac27a0ec 4239 }
af5bc92d 4240 brelse(iloc.bh);
617ba13b 4241 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4242 unlock_new_inode(inode);
4243 return inode;
ac27a0ec
DK
4244
4245bad_inode:
567f3e9a 4246 brelse(iloc.bh);
1d1fe1ee
DH
4247 iget_failed(inode);
4248 return ERR_PTR(ret);
ac27a0ec
DK
4249}
4250
f4bb2981
TT
4251struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4252{
4253 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4254 return ERR_PTR(-EIO);
4255 return ext4_iget(sb, ino);
4256}
4257
0fc1b451
AK
4258static int ext4_inode_blocks_set(handle_t *handle,
4259 struct ext4_inode *raw_inode,
4260 struct ext4_inode_info *ei)
4261{
4262 struct inode *inode = &(ei->vfs_inode);
4263 u64 i_blocks = inode->i_blocks;
4264 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4265
4266 if (i_blocks <= ~0U) {
4267 /*
4907cb7b 4268 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4269 * as multiple of 512 bytes
4270 */
8180a562 4271 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4272 raw_inode->i_blocks_high = 0;
84a8dce2 4273 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4274 return 0;
4275 }
4276 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4277 return -EFBIG;
4278
4279 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4280 /*
4281 * i_blocks can be represented in a 48 bit variable
4282 * as multiple of 512 bytes
4283 */
8180a562 4284 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4285 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4286 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4287 } else {
84a8dce2 4288 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4289 /* i_block is stored in file system block size */
4290 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4291 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4292 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4293 }
f287a1a5 4294 return 0;
0fc1b451
AK
4295}
4296
a26f4992
TT
4297struct other_inode {
4298 unsigned long orig_ino;
4299 struct ext4_inode *raw_inode;
4300};
4301
4302static int other_inode_match(struct inode * inode, unsigned long ino,
4303 void *data)
4304{
4305 struct other_inode *oi = (struct other_inode *) data;
4306
4307 if ((inode->i_ino != ino) ||
4308 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4309 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4310 ((inode->i_state & I_DIRTY_TIME) == 0))
4311 return 0;
4312 spin_lock(&inode->i_lock);
4313 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4314 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4315 (inode->i_state & I_DIRTY_TIME)) {
4316 struct ext4_inode_info *ei = EXT4_I(inode);
4317
4318 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4319 spin_unlock(&inode->i_lock);
4320
4321 spin_lock(&ei->i_raw_lock);
4322 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4323 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4324 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4325 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4326 spin_unlock(&ei->i_raw_lock);
4327 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4328 return -1;
4329 }
4330 spin_unlock(&inode->i_lock);
4331 return -1;
4332}
4333
4334/*
4335 * Opportunistically update the other time fields for other inodes in
4336 * the same inode table block.
4337 */
4338static void ext4_update_other_inodes_time(struct super_block *sb,
4339 unsigned long orig_ino, char *buf)
4340{
4341 struct other_inode oi;
4342 unsigned long ino;
4343 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4344 int inode_size = EXT4_INODE_SIZE(sb);
4345
4346 oi.orig_ino = orig_ino;
8f4d8558 4347 ino = (orig_ino & ~(inodes_per_block - 1)) + 1;
a26f4992
TT
4348 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4349 if (ino == orig_ino)
4350 continue;
4351 oi.raw_inode = (struct ext4_inode *) buf;
4352 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4353 }
4354}
4355
ac27a0ec
DK
4356/*
4357 * Post the struct inode info into an on-disk inode location in the
4358 * buffer-cache. This gobbles the caller's reference to the
4359 * buffer_head in the inode location struct.
4360 *
4361 * The caller must have write access to iloc->bh.
4362 */
617ba13b 4363static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4364 struct inode *inode,
830156c7 4365 struct ext4_iloc *iloc)
ac27a0ec 4366{
617ba13b
MC
4367 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4368 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4369 struct buffer_head *bh = iloc->bh;
202ee5df 4370 struct super_block *sb = inode->i_sb;
ac27a0ec 4371 int err = 0, rc, block;
202ee5df 4372 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4373 uid_t i_uid;
4374 gid_t i_gid;
ac27a0ec 4375
202ee5df
TT
4376 spin_lock(&ei->i_raw_lock);
4377
4378 /* For fields not tracked in the in-memory inode,
ac27a0ec 4379 * initialise them to zero for new inodes. */
19f5fb7a 4380 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4381 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4382
ff9ddf7e 4383 ext4_get_inode_flags(ei);
ac27a0ec 4384 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4385 i_uid = i_uid_read(inode);
4386 i_gid = i_gid_read(inode);
af5bc92d 4387 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4388 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4389 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4390/*
4391 * Fix up interoperability with old kernels. Otherwise, old inodes get
4392 * re-used with the upper 16 bits of the uid/gid intact
4393 */
af5bc92d 4394 if (!ei->i_dtime) {
ac27a0ec 4395 raw_inode->i_uid_high =
08cefc7a 4396 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4397 raw_inode->i_gid_high =
08cefc7a 4398 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4399 } else {
4400 raw_inode->i_uid_high = 0;
4401 raw_inode->i_gid_high = 0;
4402 }
4403 } else {
08cefc7a
EB
4404 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4405 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4406 raw_inode->i_uid_high = 0;
4407 raw_inode->i_gid_high = 0;
4408 }
4409 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4410
4411 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4412 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4413 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4414 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4415
bce92d56
LX
4416 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4417 if (err) {
202ee5df 4418 spin_unlock(&ei->i_raw_lock);
0fc1b451 4419 goto out_brelse;
202ee5df 4420 }
ac27a0ec 4421 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4422 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4423 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4424 raw_inode->i_file_acl_high =
4425 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4426 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4427 if (ei->i_disksize != ext4_isize(raw_inode)) {
4428 ext4_isize_set(raw_inode, ei->i_disksize);
4429 need_datasync = 1;
4430 }
a48380f7 4431 if (ei->i_disksize > 0x7fffffffULL) {
a48380f7
AK
4432 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4433 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4434 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
4435 cpu_to_le32(EXT4_GOOD_OLD_REV))
4436 set_large_file = 1;
ac27a0ec
DK
4437 }
4438 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4439 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4440 if (old_valid_dev(inode->i_rdev)) {
4441 raw_inode->i_block[0] =
4442 cpu_to_le32(old_encode_dev(inode->i_rdev));
4443 raw_inode->i_block[1] = 0;
4444 } else {
4445 raw_inode->i_block[0] = 0;
4446 raw_inode->i_block[1] =
4447 cpu_to_le32(new_encode_dev(inode->i_rdev));
4448 raw_inode->i_block[2] = 0;
4449 }
f19d5870 4450 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4451 for (block = 0; block < EXT4_N_BLOCKS; block++)
4452 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4453 }
ac27a0ec 4454
ed3654eb 4455 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4456 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4457 if (ei->i_extra_isize) {
4458 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4459 raw_inode->i_version_hi =
4460 cpu_to_le32(inode->i_version >> 32);
4461 raw_inode->i_extra_isize =
4462 cpu_to_le16(ei->i_extra_isize);
4463 }
25ec56b5 4464 }
814525f4 4465 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 4466 spin_unlock(&ei->i_raw_lock);
a26f4992
TT
4467 if (inode->i_sb->s_flags & MS_LAZYTIME)
4468 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4469 bh->b_data);
202ee5df 4470
830156c7 4471 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4472 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4473 if (!err)
4474 err = rc;
19f5fb7a 4475 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 4476 if (set_large_file) {
5d601255 4477 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
4478 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4479 if (err)
4480 goto out_brelse;
4481 ext4_update_dynamic_rev(sb);
4482 EXT4_SET_RO_COMPAT_FEATURE(sb,
4483 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4484 ext4_handle_sync(handle);
4485 err = ext4_handle_dirty_super(handle, sb);
4486 }
b71fc079 4487 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4488out_brelse:
af5bc92d 4489 brelse(bh);
617ba13b 4490 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4491 return err;
4492}
4493
4494/*
617ba13b 4495 * ext4_write_inode()
ac27a0ec
DK
4496 *
4497 * We are called from a few places:
4498 *
87f7e416 4499 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 4500 * Here, there will be no transaction running. We wait for any running
4907cb7b 4501 * transaction to commit.
ac27a0ec 4502 *
87f7e416
TT
4503 * - Within flush work (sys_sync(), kupdate and such).
4504 * We wait on commit, if told to.
ac27a0ec 4505 *
87f7e416
TT
4506 * - Within iput_final() -> write_inode_now()
4507 * We wait on commit, if told to.
ac27a0ec
DK
4508 *
4509 * In all cases it is actually safe for us to return without doing anything,
4510 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
4511 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4512 * writeback.
ac27a0ec
DK
4513 *
4514 * Note that we are absolutely dependent upon all inode dirtiers doing the
4515 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4516 * which we are interested.
4517 *
4518 * It would be a bug for them to not do this. The code:
4519 *
4520 * mark_inode_dirty(inode)
4521 * stuff();
4522 * inode->i_size = expr;
4523 *
87f7e416
TT
4524 * is in error because write_inode() could occur while `stuff()' is running,
4525 * and the new i_size will be lost. Plus the inode will no longer be on the
4526 * superblock's dirty inode list.
ac27a0ec 4527 */
a9185b41 4528int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4529{
91ac6f43
FM
4530 int err;
4531
87f7e416 4532 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
4533 return 0;
4534
91ac6f43
FM
4535 if (EXT4_SB(inode->i_sb)->s_journal) {
4536 if (ext4_journal_current_handle()) {
4537 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4538 dump_stack();
4539 return -EIO;
4540 }
ac27a0ec 4541
10542c22
JK
4542 /*
4543 * No need to force transaction in WB_SYNC_NONE mode. Also
4544 * ext4_sync_fs() will force the commit after everything is
4545 * written.
4546 */
4547 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
4548 return 0;
4549
4550 err = ext4_force_commit(inode->i_sb);
4551 } else {
4552 struct ext4_iloc iloc;
ac27a0ec 4553
8b472d73 4554 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4555 if (err)
4556 return err;
10542c22
JK
4557 /*
4558 * sync(2) will flush the whole buffer cache. No need to do
4559 * it here separately for each inode.
4560 */
4561 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
4562 sync_dirty_buffer(iloc.bh);
4563 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4564 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4565 "IO error syncing inode");
830156c7
FM
4566 err = -EIO;
4567 }
fd2dd9fb 4568 brelse(iloc.bh);
91ac6f43
FM
4569 }
4570 return err;
ac27a0ec
DK
4571}
4572
53e87268
JK
4573/*
4574 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4575 * buffers that are attached to a page stradding i_size and are undergoing
4576 * commit. In that case we have to wait for commit to finish and try again.
4577 */
4578static void ext4_wait_for_tail_page_commit(struct inode *inode)
4579{
4580 struct page *page;
4581 unsigned offset;
4582 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4583 tid_t commit_tid = 0;
4584 int ret;
4585
4586 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4587 /*
4588 * All buffers in the last page remain valid? Then there's nothing to
4589 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4590 * blocksize case
4591 */
4592 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4593 return;
4594 while (1) {
4595 page = find_lock_page(inode->i_mapping,
4596 inode->i_size >> PAGE_CACHE_SHIFT);
4597 if (!page)
4598 return;
ca99fdd2
LC
4599 ret = __ext4_journalled_invalidatepage(page, offset,
4600 PAGE_CACHE_SIZE - offset);
53e87268
JK
4601 unlock_page(page);
4602 page_cache_release(page);
4603 if (ret != -EBUSY)
4604 return;
4605 commit_tid = 0;
4606 read_lock(&journal->j_state_lock);
4607 if (journal->j_committing_transaction)
4608 commit_tid = journal->j_committing_transaction->t_tid;
4609 read_unlock(&journal->j_state_lock);
4610 if (commit_tid)
4611 jbd2_log_wait_commit(journal, commit_tid);
4612 }
4613}
4614
ac27a0ec 4615/*
617ba13b 4616 * ext4_setattr()
ac27a0ec
DK
4617 *
4618 * Called from notify_change.
4619 *
4620 * We want to trap VFS attempts to truncate the file as soon as
4621 * possible. In particular, we want to make sure that when the VFS
4622 * shrinks i_size, we put the inode on the orphan list and modify
4623 * i_disksize immediately, so that during the subsequent flushing of
4624 * dirty pages and freeing of disk blocks, we can guarantee that any
4625 * commit will leave the blocks being flushed in an unused state on
4626 * disk. (On recovery, the inode will get truncated and the blocks will
4627 * be freed, so we have a strong guarantee that no future commit will
4628 * leave these blocks visible to the user.)
4629 *
678aaf48
JK
4630 * Another thing we have to assure is that if we are in ordered mode
4631 * and inode is still attached to the committing transaction, we must
4632 * we start writeout of all the dirty pages which are being truncated.
4633 * This way we are sure that all the data written in the previous
4634 * transaction are already on disk (truncate waits for pages under
4635 * writeback).
4636 *
4637 * Called with inode->i_mutex down.
ac27a0ec 4638 */
617ba13b 4639int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec 4640{
2b0143b5 4641 struct inode *inode = d_inode(dentry);
ac27a0ec 4642 int error, rc = 0;
3d287de3 4643 int orphan = 0;
ac27a0ec
DK
4644 const unsigned int ia_valid = attr->ia_valid;
4645
4646 error = inode_change_ok(inode, attr);
4647 if (error)
4648 return error;
4649
12755627 4650 if (is_quota_modification(inode, attr))
871a2931 4651 dquot_initialize(inode);
08cefc7a
EB
4652 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4653 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4654 handle_t *handle;
4655
4656 /* (user+group)*(old+new) structure, inode write (sb,
4657 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4658 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4659 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4660 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4661 if (IS_ERR(handle)) {
4662 error = PTR_ERR(handle);
4663 goto err_out;
4664 }
b43fa828 4665 error = dquot_transfer(inode, attr);
ac27a0ec 4666 if (error) {
617ba13b 4667 ext4_journal_stop(handle);
ac27a0ec
DK
4668 return error;
4669 }
4670 /* Update corresponding info in inode so that everything is in
4671 * one transaction */
4672 if (attr->ia_valid & ATTR_UID)
4673 inode->i_uid = attr->ia_uid;
4674 if (attr->ia_valid & ATTR_GID)
4675 inode->i_gid = attr->ia_gid;
617ba13b
MC
4676 error = ext4_mark_inode_dirty(handle, inode);
4677 ext4_journal_stop(handle);
ac27a0ec
DK
4678 }
4679
3da40c7b 4680 if (attr->ia_valid & ATTR_SIZE) {
5208386c 4681 handle_t *handle;
3da40c7b
JB
4682 loff_t oldsize = inode->i_size;
4683 int shrink = (attr->ia_size <= inode->i_size);
562c72aa 4684
12e9b892 4685 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4686 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4687
0c095c7f
TT
4688 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4689 return -EFBIG;
e2b46574 4690 }
3da40c7b
JB
4691 if (!S_ISREG(inode->i_mode))
4692 return -EINVAL;
dff6efc3
CH
4693
4694 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4695 inode_inc_iversion(inode);
4696
3da40c7b 4697 if (ext4_should_order_data(inode) &&
5208386c 4698 (attr->ia_size < inode->i_size)) {
3da40c7b 4699 error = ext4_begin_ordered_truncate(inode,
678aaf48 4700 attr->ia_size);
3da40c7b
JB
4701 if (error)
4702 goto err_out;
4703 }
4704 if (attr->ia_size != inode->i_size) {
5208386c
JK
4705 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4706 if (IS_ERR(handle)) {
4707 error = PTR_ERR(handle);
4708 goto err_out;
4709 }
3da40c7b 4710 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
4711 error = ext4_orphan_add(handle, inode);
4712 orphan = 1;
4713 }
90e775b7 4714 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4715 EXT4_I(inode)->i_disksize = attr->ia_size;
4716 rc = ext4_mark_inode_dirty(handle, inode);
4717 if (!error)
4718 error = rc;
90e775b7
JK
4719 /*
4720 * We have to update i_size under i_data_sem together
4721 * with i_disksize to avoid races with writeback code
4722 * running ext4_wb_update_i_disksize().
4723 */
4724 if (!error)
4725 i_size_write(inode, attr->ia_size);
4726 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4727 ext4_journal_stop(handle);
4728 if (error) {
3da40c7b
JB
4729 if (orphan)
4730 ext4_orphan_del(NULL, inode);
678aaf48
JK
4731 goto err_out;
4732 }
d6320cbf 4733 }
3da40c7b
JB
4734 if (!shrink)
4735 pagecache_isize_extended(inode, oldsize, inode->i_size);
53e87268 4736
5208386c
JK
4737 /*
4738 * Blocks are going to be removed from the inode. Wait
4739 * for dio in flight. Temporarily disable
4740 * dioread_nolock to prevent livelock.
4741 */
4742 if (orphan) {
4743 if (!ext4_should_journal_data(inode)) {
4744 ext4_inode_block_unlocked_dio(inode);
4745 inode_dio_wait(inode);
4746 ext4_inode_resume_unlocked_dio(inode);
4747 } else
4748 ext4_wait_for_tail_page_commit(inode);
1c9114f9 4749 }
5208386c
JK
4750 /*
4751 * Truncate pagecache after we've waited for commit
4752 * in data=journal mode to make pages freeable.
4753 */
923ae0ff 4754 truncate_pagecache(inode, inode->i_size);
3da40c7b
JB
4755 if (shrink)
4756 ext4_truncate(inode);
072bd7ea 4757 }
ac27a0ec 4758
1025774c
CH
4759 if (!rc) {
4760 setattr_copy(inode, attr);
4761 mark_inode_dirty(inode);
4762 }
4763
4764 /*
4765 * If the call to ext4_truncate failed to get a transaction handle at
4766 * all, we need to clean up the in-core orphan list manually.
4767 */
3d287de3 4768 if (orphan && inode->i_nlink)
617ba13b 4769 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4770
4771 if (!rc && (ia_valid & ATTR_MODE))
64e178a7 4772 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
4773
4774err_out:
617ba13b 4775 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4776 if (!error)
4777 error = rc;
4778 return error;
4779}
4780
3e3398a0
MC
4781int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4782 struct kstat *stat)
4783{
4784 struct inode *inode;
8af8eecc 4785 unsigned long long delalloc_blocks;
3e3398a0 4786
2b0143b5 4787 inode = d_inode(dentry);
3e3398a0
MC
4788 generic_fillattr(inode, stat);
4789
9206c561
AD
4790 /*
4791 * If there is inline data in the inode, the inode will normally not
4792 * have data blocks allocated (it may have an external xattr block).
4793 * Report at least one sector for such files, so tools like tar, rsync,
4794 * others doen't incorrectly think the file is completely sparse.
4795 */
4796 if (unlikely(ext4_has_inline_data(inode)))
4797 stat->blocks += (stat->size + 511) >> 9;
4798
3e3398a0
MC
4799 /*
4800 * We can't update i_blocks if the block allocation is delayed
4801 * otherwise in the case of system crash before the real block
4802 * allocation is done, we will have i_blocks inconsistent with
4803 * on-disk file blocks.
4804 * We always keep i_blocks updated together with real
4805 * allocation. But to not confuse with user, stat
4806 * will return the blocks that include the delayed allocation
4807 * blocks for this file.
4808 */
96607551 4809 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
4810 EXT4_I(inode)->i_reserved_data_blocks);
4811 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
4812 return 0;
4813}
ac27a0ec 4814
fffb2739
JK
4815static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4816 int pextents)
a02908f1 4817{
12e9b892 4818 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4819 return ext4_ind_trans_blocks(inode, lblocks);
4820 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4821}
ac51d837 4822
ac27a0ec 4823/*
a02908f1
MC
4824 * Account for index blocks, block groups bitmaps and block group
4825 * descriptor blocks if modify datablocks and index blocks
4826 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4827 *
a02908f1 4828 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4829 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4830 * they could still across block group boundary.
ac27a0ec 4831 *
a02908f1
MC
4832 * Also account for superblock, inode, quota and xattr blocks
4833 */
fffb2739
JK
4834static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4835 int pextents)
a02908f1 4836{
8df9675f
TT
4837 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4838 int gdpblocks;
a02908f1
MC
4839 int idxblocks;
4840 int ret = 0;
4841
4842 /*
fffb2739
JK
4843 * How many index blocks need to touch to map @lblocks logical blocks
4844 * to @pextents physical extents?
a02908f1 4845 */
fffb2739 4846 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4847
4848 ret = idxblocks;
4849
4850 /*
4851 * Now let's see how many group bitmaps and group descriptors need
4852 * to account
4853 */
fffb2739 4854 groups = idxblocks + pextents;
a02908f1 4855 gdpblocks = groups;
8df9675f
TT
4856 if (groups > ngroups)
4857 groups = ngroups;
a02908f1
MC
4858 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4859 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4860
4861 /* bitmaps and block group descriptor blocks */
4862 ret += groups + gdpblocks;
4863
4864 /* Blocks for super block, inode, quota and xattr blocks */
4865 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4866
4867 return ret;
4868}
4869
4870/*
25985edc 4871 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4872 * the modification of a single pages into a single transaction,
4873 * which may include multiple chunks of block allocations.
ac27a0ec 4874 *
525f4ed8 4875 * This could be called via ext4_write_begin()
ac27a0ec 4876 *
525f4ed8 4877 * We need to consider the worse case, when
a02908f1 4878 * one new block per extent.
ac27a0ec 4879 */
a86c6181 4880int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4881{
617ba13b 4882 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4883 int ret;
4884
fffb2739 4885 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4886
a02908f1 4887 /* Account for data blocks for journalled mode */
617ba13b 4888 if (ext4_should_journal_data(inode))
a02908f1 4889 ret += bpp;
ac27a0ec
DK
4890 return ret;
4891}
f3bd1f3f
MC
4892
4893/*
4894 * Calculate the journal credits for a chunk of data modification.
4895 *
4896 * This is called from DIO, fallocate or whoever calling
79e83036 4897 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4898 *
4899 * journal buffers for data blocks are not included here, as DIO
4900 * and fallocate do no need to journal data buffers.
4901 */
4902int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4903{
4904 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4905}
4906
ac27a0ec 4907/*
617ba13b 4908 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4909 * Give this, we know that the caller already has write access to iloc->bh.
4910 */
617ba13b 4911int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4912 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4913{
4914 int err = 0;
4915
c64db50e 4916 if (IS_I_VERSION(inode))
25ec56b5
JNC
4917 inode_inc_iversion(inode);
4918
ac27a0ec
DK
4919 /* the do_update_inode consumes one bh->b_count */
4920 get_bh(iloc->bh);
4921
dab291af 4922 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4923 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4924 put_bh(iloc->bh);
4925 return err;
4926}
4927
4928/*
4929 * On success, We end up with an outstanding reference count against
4930 * iloc->bh. This _must_ be cleaned up later.
4931 */
4932
4933int
617ba13b
MC
4934ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4935 struct ext4_iloc *iloc)
ac27a0ec 4936{
0390131b
FM
4937 int err;
4938
4939 err = ext4_get_inode_loc(inode, iloc);
4940 if (!err) {
4941 BUFFER_TRACE(iloc->bh, "get_write_access");
4942 err = ext4_journal_get_write_access(handle, iloc->bh);
4943 if (err) {
4944 brelse(iloc->bh);
4945 iloc->bh = NULL;
ac27a0ec
DK
4946 }
4947 }
617ba13b 4948 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4949 return err;
4950}
4951
6dd4ee7c
KS
4952/*
4953 * Expand an inode by new_extra_isize bytes.
4954 * Returns 0 on success or negative error number on failure.
4955 */
1d03ec98
AK
4956static int ext4_expand_extra_isize(struct inode *inode,
4957 unsigned int new_extra_isize,
4958 struct ext4_iloc iloc,
4959 handle_t *handle)
6dd4ee7c
KS
4960{
4961 struct ext4_inode *raw_inode;
4962 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4963
4964 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4965 return 0;
4966
4967 raw_inode = ext4_raw_inode(&iloc);
4968
4969 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4970
4971 /* No extended attributes present */
19f5fb7a
TT
4972 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4973 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4974 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4975 new_extra_isize);
4976 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4977 return 0;
4978 }
4979
4980 /* try to expand with EAs present */
4981 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4982 raw_inode, handle);
4983}
4984
ac27a0ec
DK
4985/*
4986 * What we do here is to mark the in-core inode as clean with respect to inode
4987 * dirtiness (it may still be data-dirty).
4988 * This means that the in-core inode may be reaped by prune_icache
4989 * without having to perform any I/O. This is a very good thing,
4990 * because *any* task may call prune_icache - even ones which
4991 * have a transaction open against a different journal.
4992 *
4993 * Is this cheating? Not really. Sure, we haven't written the
4994 * inode out, but prune_icache isn't a user-visible syncing function.
4995 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4996 * we start and wait on commits.
ac27a0ec 4997 */
617ba13b 4998int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4999{
617ba13b 5000 struct ext4_iloc iloc;
6dd4ee7c
KS
5001 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5002 static unsigned int mnt_count;
5003 int err, ret;
ac27a0ec
DK
5004
5005 might_sleep();
7ff9c073 5006 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5007 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5008 if (ext4_handle_valid(handle) &&
5009 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5010 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5011 /*
5012 * We need extra buffer credits since we may write into EA block
5013 * with this same handle. If journal_extend fails, then it will
5014 * only result in a minor loss of functionality for that inode.
5015 * If this is felt to be critical, then e2fsck should be run to
5016 * force a large enough s_min_extra_isize.
5017 */
5018 if ((jbd2_journal_extend(handle,
5019 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5020 ret = ext4_expand_extra_isize(inode,
5021 sbi->s_want_extra_isize,
5022 iloc, handle);
5023 if (ret) {
19f5fb7a
TT
5024 ext4_set_inode_state(inode,
5025 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5026 if (mnt_count !=
5027 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5028 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5029 "Unable to expand inode %lu. Delete"
5030 " some EAs or run e2fsck.",
5031 inode->i_ino);
c1bddad9
AK
5032 mnt_count =
5033 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5034 }
5035 }
5036 }
5037 }
ac27a0ec 5038 if (!err)
617ba13b 5039 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5040 return err;
5041}
5042
5043/*
617ba13b 5044 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5045 *
5046 * We're really interested in the case where a file is being extended.
5047 * i_size has been changed by generic_commit_write() and we thus need
5048 * to include the updated inode in the current transaction.
5049 *
5dd4056d 5050 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5051 * are allocated to the file.
5052 *
5053 * If the inode is marked synchronous, we don't honour that here - doing
5054 * so would cause a commit on atime updates, which we don't bother doing.
5055 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
5056 *
5057 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5058 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5059 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 5060 */
aa385729 5061void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5062{
ac27a0ec
DK
5063 handle_t *handle;
5064
0ae45f63
TT
5065 if (flags == I_DIRTY_TIME)
5066 return;
9924a92a 5067 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5068 if (IS_ERR(handle))
5069 goto out;
f3dc272f 5070
f3dc272f
CW
5071 ext4_mark_inode_dirty(handle, inode);
5072
617ba13b 5073 ext4_journal_stop(handle);
ac27a0ec
DK
5074out:
5075 return;
5076}
5077
5078#if 0
5079/*
5080 * Bind an inode's backing buffer_head into this transaction, to prevent
5081 * it from being flushed to disk early. Unlike
617ba13b 5082 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5083 * returns no iloc structure, so the caller needs to repeat the iloc
5084 * lookup to mark the inode dirty later.
5085 */
617ba13b 5086static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5087{
617ba13b 5088 struct ext4_iloc iloc;
ac27a0ec
DK
5089
5090 int err = 0;
5091 if (handle) {
617ba13b 5092 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5093 if (!err) {
5094 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5095 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5096 if (!err)
0390131b 5097 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5098 NULL,
0390131b 5099 iloc.bh);
ac27a0ec
DK
5100 brelse(iloc.bh);
5101 }
5102 }
617ba13b 5103 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5104 return err;
5105}
5106#endif
5107
617ba13b 5108int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5109{
5110 journal_t *journal;
5111 handle_t *handle;
5112 int err;
5113
5114 /*
5115 * We have to be very careful here: changing a data block's
5116 * journaling status dynamically is dangerous. If we write a
5117 * data block to the journal, change the status and then delete
5118 * that block, we risk forgetting to revoke the old log record
5119 * from the journal and so a subsequent replay can corrupt data.
5120 * So, first we make sure that the journal is empty and that
5121 * nobody is changing anything.
5122 */
5123
617ba13b 5124 journal = EXT4_JOURNAL(inode);
0390131b
FM
5125 if (!journal)
5126 return 0;
d699594d 5127 if (is_journal_aborted(journal))
ac27a0ec 5128 return -EROFS;
2aff57b0
YY
5129 /* We have to allocate physical blocks for delalloc blocks
5130 * before flushing journal. otherwise delalloc blocks can not
5131 * be allocated any more. even more truncate on delalloc blocks
5132 * could trigger BUG by flushing delalloc blocks in journal.
5133 * There is no delalloc block in non-journal data mode.
5134 */
5135 if (val && test_opt(inode->i_sb, DELALLOC)) {
5136 err = ext4_alloc_da_blocks(inode);
5137 if (err < 0)
5138 return err;
5139 }
ac27a0ec 5140
17335dcc
DM
5141 /* Wait for all existing dio workers */
5142 ext4_inode_block_unlocked_dio(inode);
5143 inode_dio_wait(inode);
5144
dab291af 5145 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5146
5147 /*
5148 * OK, there are no updates running now, and all cached data is
5149 * synced to disk. We are now in a completely consistent state
5150 * which doesn't have anything in the journal, and we know that
5151 * no filesystem updates are running, so it is safe to modify
5152 * the inode's in-core data-journaling state flag now.
5153 */
5154
5155 if (val)
12e9b892 5156 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5157 else {
4f879ca6
JK
5158 err = jbd2_journal_flush(journal);
5159 if (err < 0) {
5160 jbd2_journal_unlock_updates(journal);
5161 ext4_inode_resume_unlocked_dio(inode);
5162 return err;
5163 }
12e9b892 5164 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5165 }
617ba13b 5166 ext4_set_aops(inode);
ac27a0ec 5167
dab291af 5168 jbd2_journal_unlock_updates(journal);
17335dcc 5169 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5170
5171 /* Finally we can mark the inode as dirty. */
5172
9924a92a 5173 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5174 if (IS_ERR(handle))
5175 return PTR_ERR(handle);
5176
617ba13b 5177 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5178 ext4_handle_sync(handle);
617ba13b
MC
5179 ext4_journal_stop(handle);
5180 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5181
5182 return err;
5183}
2e9ee850
AK
5184
5185static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5186{
5187 return !buffer_mapped(bh);
5188}
5189
c2ec175c 5190int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5191{
c2ec175c 5192 struct page *page = vmf->page;
2e9ee850
AK
5193 loff_t size;
5194 unsigned long len;
9ea7df53 5195 int ret;
2e9ee850 5196 struct file *file = vma->vm_file;
496ad9aa 5197 struct inode *inode = file_inode(file);
2e9ee850 5198 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5199 handle_t *handle;
5200 get_block_t *get_block;
5201 int retries = 0;
2e9ee850 5202
8e8ad8a5 5203 sb_start_pagefault(inode->i_sb);
041bbb6d 5204 file_update_time(vma->vm_file);
9ea7df53
JK
5205 /* Delalloc case is easy... */
5206 if (test_opt(inode->i_sb, DELALLOC) &&
5207 !ext4_should_journal_data(inode) &&
5208 !ext4_nonda_switch(inode->i_sb)) {
5209 do {
5210 ret = __block_page_mkwrite(vma, vmf,
5211 ext4_da_get_block_prep);
5212 } while (ret == -ENOSPC &&
5213 ext4_should_retry_alloc(inode->i_sb, &retries));
5214 goto out_ret;
2e9ee850 5215 }
0e499890
DW
5216
5217 lock_page(page);
9ea7df53
JK
5218 size = i_size_read(inode);
5219 /* Page got truncated from under us? */
5220 if (page->mapping != mapping || page_offset(page) > size) {
5221 unlock_page(page);
5222 ret = VM_FAULT_NOPAGE;
5223 goto out;
0e499890 5224 }
2e9ee850
AK
5225
5226 if (page->index == size >> PAGE_CACHE_SHIFT)
5227 len = size & ~PAGE_CACHE_MASK;
5228 else
5229 len = PAGE_CACHE_SIZE;
a827eaff 5230 /*
9ea7df53
JK
5231 * Return if we have all the buffers mapped. This avoids the need to do
5232 * journal_start/journal_stop which can block and take a long time
a827eaff 5233 */
2e9ee850 5234 if (page_has_buffers(page)) {
f19d5870
TM
5235 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5236 0, len, NULL,
5237 ext4_bh_unmapped)) {
9ea7df53 5238 /* Wait so that we don't change page under IO */
1d1d1a76 5239 wait_for_stable_page(page);
9ea7df53
JK
5240 ret = VM_FAULT_LOCKED;
5241 goto out;
a827eaff 5242 }
2e9ee850 5243 }
a827eaff 5244 unlock_page(page);
9ea7df53
JK
5245 /* OK, we need to fill the hole... */
5246 if (ext4_should_dioread_nolock(inode))
5247 get_block = ext4_get_block_write;
5248 else
5249 get_block = ext4_get_block;
5250retry_alloc:
9924a92a
TT
5251 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5252 ext4_writepage_trans_blocks(inode));
9ea7df53 5253 if (IS_ERR(handle)) {
c2ec175c 5254 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5255 goto out;
5256 }
5257 ret = __block_page_mkwrite(vma, vmf, get_block);
5258 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5259 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5260 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5261 unlock_page(page);
5262 ret = VM_FAULT_SIGBUS;
fcbb5515 5263 ext4_journal_stop(handle);
9ea7df53
JK
5264 goto out;
5265 }
5266 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5267 }
5268 ext4_journal_stop(handle);
5269 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5270 goto retry_alloc;
5271out_ret:
5272 ret = block_page_mkwrite_return(ret);
5273out:
8e8ad8a5 5274 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5275 return ret;
5276}
This page took 1.100878 seconds and 5 git commands to generate.