Merge tag 'perf-urgent-for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
00a1a053 41#include <linux/bitops.h>
9bffad1e 42
3dcf5451 43#include "ext4_jbd2.h"
ac27a0ec
DK
44#include "xattr.h"
45#include "acl.h"
9f125d64 46#include "truncate.h"
ac27a0ec 47
9bffad1e
TT
48#include <trace/events/ext4.h>
49
a1d6cc56
AK
50#define MPAGE_DA_EXTENT_TAIL 0x01
51
814525f4
DW
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54{
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u16 csum_lo;
57 __u16 csum_hi = 0;
58 __u32 csum;
59
171a7f21 60 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
61 raw->i_checksum_lo = 0;
62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 64 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
65 raw->i_checksum_hi = 0;
66 }
67
68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 EXT4_INODE_SIZE(inode->i_sb));
70
171a7f21 71 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 74 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
75
76 return csum;
77}
78
79static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 struct ext4_inode_info *ei)
81{
82 __u32 provided, calculated;
83
84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 86 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98}
99
100static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102{
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 107 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115}
116
678aaf48
JK
117static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119{
7ff9c073 120 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
678aaf48
JK
132}
133
d47992f8
LC
134static void ext4_invalidatepage(struct page *page, unsigned int offset,
135 unsigned int length);
cb20d518
TT
136static int __ext4_journalled_writepage(struct page *page, unsigned int len);
137static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
138static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
139 int pextents);
64769240 140
ac27a0ec
DK
141/*
142 * Test whether an inode is a fast symlink.
143 */
617ba13b 144static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 145{
65eddb56
YY
146 int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec 148
bd9db175
ZL
149 if (ext4_has_inline_data(inode))
150 return 0;
151
ac27a0ec
DK
152 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
153}
154
ac27a0ec
DK
155/*
156 * Restart the transaction associated with *handle. This does a commit,
157 * so before we call here everything must be consistently dirtied against
158 * this transaction.
159 */
fa5d1113 160int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 161 int nblocks)
ac27a0ec 162{
487caeef
JK
163 int ret;
164
165 /*
e35fd660 166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
167 * moment, get_block can be called only for blocks inside i_size since
168 * page cache has been already dropped and writes are blocked by
169 * i_mutex. So we can safely drop the i_data_sem here.
170 */
0390131b 171 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 172 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 173 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 174 ret = ext4_journal_restart(handle, nblocks);
487caeef 175 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 176 ext4_discard_preallocations(inode);
487caeef
JK
177
178 return ret;
ac27a0ec
DK
179}
180
181/*
182 * Called at the last iput() if i_nlink is zero.
183 */
0930fcc1 184void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
185{
186 handle_t *handle;
bc965ab3 187 int err;
ac27a0ec 188
7ff9c073 189 trace_ext4_evict_inode(inode);
2581fdc8 190
0930fcc1 191 if (inode->i_nlink) {
2d859db3
JK
192 /*
193 * When journalling data dirty buffers are tracked only in the
194 * journal. So although mm thinks everything is clean and
195 * ready for reaping the inode might still have some pages to
196 * write in the running transaction or waiting to be
197 * checkpointed. Thus calling jbd2_journal_invalidatepage()
198 * (via truncate_inode_pages()) to discard these buffers can
199 * cause data loss. Also even if we did not discard these
200 * buffers, we would have no way to find them after the inode
201 * is reaped and thus user could see stale data if he tries to
202 * read them before the transaction is checkpointed. So be
203 * careful and force everything to disk here... We use
204 * ei->i_datasync_tid to store the newest transaction
205 * containing inode's data.
206 *
207 * Note that directories do not have this problem because they
208 * don't use page cache.
209 */
210 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
211 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
212 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
213 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
214 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
215
d76a3a77 216 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
217 filemap_write_and_wait(&inode->i_data);
218 }
91b0abe3 219 truncate_inode_pages_final(&inode->i_data);
5dc23bdd
JK
220
221 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
222 goto no_delete;
223 }
224
e2bfb088
TT
225 if (is_bad_inode(inode))
226 goto no_delete;
227 dquot_initialize(inode);
907f4554 228
678aaf48
JK
229 if (ext4_should_order_data(inode))
230 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 231 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 232
5dc23bdd 233 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec 234
8e8ad8a5
JK
235 /*
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
238 */
239 sb_start_intwrite(inode->i_sb);
9924a92a
TT
240 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 242 if (IS_ERR(handle)) {
bc965ab3 243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
244 /*
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
248 */
617ba13b 249 ext4_orphan_del(NULL, inode);
8e8ad8a5 250 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
251 goto no_delete;
252 }
253
254 if (IS_SYNC(inode))
0390131b 255 ext4_handle_sync(handle);
ac27a0ec 256 inode->i_size = 0;
bc965ab3
TT
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
12062ddd 259 ext4_warning(inode->i_sb,
bc965ab3
TT
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
ac27a0ec 263 if (inode->i_blocks)
617ba13b 264 ext4_truncate(inode);
bc965ab3
TT
265
266 /*
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
271 */
0390131b 272 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
12062ddd 277 ext4_warning(inode->i_sb,
bc965ab3
TT
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
45388219 281 ext4_orphan_del(NULL, inode);
8e8ad8a5 282 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
283 goto no_delete;
284 }
285 }
286
ac27a0ec 287 /*
617ba13b 288 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 289 * AKPM: I think this can be inside the above `if'.
617ba13b 290 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 291 * deletion of a non-existent orphan - this is because we don't
617ba13b 292 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
293 * (Well, we could do this if we need to, but heck - it works)
294 */
617ba13b
MC
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
617ba13b 305 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 306 /* If that failed, just do the required in-core inode clear. */
0930fcc1 307 ext4_clear_inode(inode);
ac27a0ec 308 else
617ba13b
MC
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
8e8ad8a5 311 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
312 return;
313no_delete:
0930fcc1 314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
315}
316
a9e7f447
DM
317#ifdef CONFIG_QUOTA
318qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 319{
a9e7f447 320 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 321}
a9e7f447 322#endif
9d0be502 323
0637c6f4
TT
324/*
325 * Called with i_data_sem down, which is important since we can call
326 * ext4_discard_preallocations() from here.
327 */
5f634d06
AK
328void ext4_da_update_reserve_space(struct inode *inode,
329 int used, int quota_claim)
12219aea
AK
330{
331 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 332 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
333
334 spin_lock(&ei->i_block_reservation_lock);
d8990240 335 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 336 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 337 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 338 "with only %d reserved data blocks",
0637c6f4
TT
339 __func__, inode->i_ino, used,
340 ei->i_reserved_data_blocks);
341 WARN_ON(1);
342 used = ei->i_reserved_data_blocks;
343 }
12219aea 344
0637c6f4
TT
345 /* Update per-inode reservations */
346 ei->i_reserved_data_blocks -= used;
71d4f7d0 347 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 348
12219aea 349 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 350
72b8ab9d
ES
351 /* Update quota subsystem for data blocks */
352 if (quota_claim)
7b415bf6 353 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 354 else {
5f634d06
AK
355 /*
356 * We did fallocate with an offset that is already delayed
357 * allocated. So on delayed allocated writeback we should
72b8ab9d 358 * not re-claim the quota for fallocated blocks.
5f634d06 359 */
7b415bf6 360 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 361 }
d6014301
AK
362
363 /*
364 * If we have done all the pending block allocations and if
365 * there aren't any writers on the inode, we can discard the
366 * inode's preallocations.
367 */
0637c6f4
TT
368 if ((ei->i_reserved_data_blocks == 0) &&
369 (atomic_read(&inode->i_writecount) == 0))
d6014301 370 ext4_discard_preallocations(inode);
12219aea
AK
371}
372
e29136f8 373static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
374 unsigned int line,
375 struct ext4_map_blocks *map)
6fd058f7 376{
24676da4
TT
377 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
378 map->m_len)) {
c398eda0
TT
379 ext4_error_inode(inode, func, line, map->m_pblk,
380 "lblock %lu mapped to illegal pblock "
381 "(length %d)", (unsigned long) map->m_lblk,
382 map->m_len);
6fd058f7
TT
383 return -EIO;
384 }
385 return 0;
386}
387
e29136f8 388#define check_block_validity(inode, map) \
c398eda0 389 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 390
921f266b
DM
391#ifdef ES_AGGRESSIVE_TEST
392static void ext4_map_blocks_es_recheck(handle_t *handle,
393 struct inode *inode,
394 struct ext4_map_blocks *es_map,
395 struct ext4_map_blocks *map,
396 int flags)
397{
398 int retval;
399
400 map->m_flags = 0;
401 /*
402 * There is a race window that the result is not the same.
403 * e.g. xfstests #223 when dioread_nolock enables. The reason
404 * is that we lookup a block mapping in extent status tree with
405 * out taking i_data_sem. So at the time the unwritten extent
406 * could be converted.
407 */
408 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 409 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
410 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
411 retval = ext4_ext_map_blocks(handle, inode, map, flags &
412 EXT4_GET_BLOCKS_KEEP_SIZE);
413 } else {
414 retval = ext4_ind_map_blocks(handle, inode, map, flags &
415 EXT4_GET_BLOCKS_KEEP_SIZE);
416 }
417 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
418 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
419
420 /*
421 * We don't check m_len because extent will be collpased in status
422 * tree. So the m_len might not equal.
423 */
424 if (es_map->m_lblk != map->m_lblk ||
425 es_map->m_flags != map->m_flags ||
426 es_map->m_pblk != map->m_pblk) {
bdafe42a 427 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
428 "es_cached ex [%d/%d/%llu/%x] != "
429 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
430 inode->i_ino, es_map->m_lblk, es_map->m_len,
431 es_map->m_pblk, es_map->m_flags, map->m_lblk,
432 map->m_len, map->m_pblk, map->m_flags,
433 retval, flags);
434 }
435}
436#endif /* ES_AGGRESSIVE_TEST */
437
f5ab0d1f 438/*
e35fd660 439 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 440 * and returns if the blocks are already mapped.
f5ab0d1f 441 *
f5ab0d1f
MC
442 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
443 * and store the allocated blocks in the result buffer head and mark it
444 * mapped.
445 *
e35fd660
TT
446 * If file type is extents based, it will call ext4_ext_map_blocks(),
447 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
448 * based files
449 *
556615dc
LC
450 * On success, it returns the number of blocks being mapped or allocated.
451 * if create==0 and the blocks are pre-allocated and unwritten block,
f5ab0d1f
MC
452 * the result buffer head is unmapped. If the create ==1, it will make sure
453 * the buffer head is mapped.
454 *
455 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 456 * that case, buffer head is unmapped
f5ab0d1f
MC
457 *
458 * It returns the error in case of allocation failure.
459 */
e35fd660
TT
460int ext4_map_blocks(handle_t *handle, struct inode *inode,
461 struct ext4_map_blocks *map, int flags)
0e855ac8 462{
d100eef2 463 struct extent_status es;
0e855ac8 464 int retval;
b8a86845 465 int ret = 0;
921f266b
DM
466#ifdef ES_AGGRESSIVE_TEST
467 struct ext4_map_blocks orig_map;
468
469 memcpy(&orig_map, map, sizeof(*map));
470#endif
f5ab0d1f 471
e35fd660
TT
472 map->m_flags = 0;
473 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
474 "logical block %lu\n", inode->i_ino, flags, map->m_len,
475 (unsigned long) map->m_lblk);
d100eef2 476
e861b5e9
TT
477 /*
478 * ext4_map_blocks returns an int, and m_len is an unsigned int
479 */
480 if (unlikely(map->m_len > INT_MAX))
481 map->m_len = INT_MAX;
482
4adb6ab3
KM
483 /* We can handle the block number less than EXT_MAX_BLOCKS */
484 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
485 return -EIO;
486
d100eef2
ZL
487 /* Lookup extent status tree firstly */
488 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
489 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
490 map->m_pblk = ext4_es_pblock(&es) +
491 map->m_lblk - es.es_lblk;
492 map->m_flags |= ext4_es_is_written(&es) ?
493 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
494 retval = es.es_len - (map->m_lblk - es.es_lblk);
495 if (retval > map->m_len)
496 retval = map->m_len;
497 map->m_len = retval;
498 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
499 retval = 0;
500 } else {
501 BUG_ON(1);
502 }
921f266b
DM
503#ifdef ES_AGGRESSIVE_TEST
504 ext4_map_blocks_es_recheck(handle, inode, map,
505 &orig_map, flags);
506#endif
d100eef2
ZL
507 goto found;
508 }
509
4df3d265 510 /*
b920c755
TT
511 * Try to see if we can get the block without requesting a new
512 * file system block.
4df3d265 513 */
729f52c6 514 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 515 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 516 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
517 retval = ext4_ext_map_blocks(handle, inode, map, flags &
518 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 519 } else {
a4e5d88b
DM
520 retval = ext4_ind_map_blocks(handle, inode, map, flags &
521 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 522 }
f7fec032 523 if (retval > 0) {
3be78c73 524 unsigned int status;
f7fec032 525
44fb851d
ZL
526 if (unlikely(retval != map->m_len)) {
527 ext4_warning(inode->i_sb,
528 "ES len assertion failed for inode "
529 "%lu: retval %d != map->m_len %d",
530 inode->i_ino, retval, map->m_len);
531 WARN_ON(1);
921f266b 532 }
921f266b 533
f7fec032
ZL
534 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
535 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
536 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
537 ext4_find_delalloc_range(inode, map->m_lblk,
538 map->m_lblk + map->m_len - 1))
539 status |= EXTENT_STATUS_DELAYED;
540 ret = ext4_es_insert_extent(inode, map->m_lblk,
541 map->m_len, map->m_pblk, status);
542 if (ret < 0)
543 retval = ret;
544 }
729f52c6
ZL
545 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 547
d100eef2 548found:
e35fd660 549 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 550 ret = check_block_validity(inode, map);
6fd058f7
TT
551 if (ret != 0)
552 return ret;
553 }
554
f5ab0d1f 555 /* If it is only a block(s) look up */
c2177057 556 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
557 return retval;
558
559 /*
560 * Returns if the blocks have already allocated
561 *
562 * Note that if blocks have been preallocated
df3ab170 563 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
564 * with buffer head unmapped.
565 */
e35fd660 566 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
567 /*
568 * If we need to convert extent to unwritten
569 * we continue and do the actual work in
570 * ext4_ext_map_blocks()
571 */
572 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
573 return retval;
4df3d265 574
2a8964d6 575 /*
a25a4e1a
ZL
576 * Here we clear m_flags because after allocating an new extent,
577 * it will be set again.
2a8964d6 578 */
a25a4e1a 579 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 580
4df3d265 581 /*
556615dc 582 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 583 * will possibly result in updating i_data, so we take
d91bd2c1 584 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 585 * with create == 1 flag.
4df3d265 586 */
c8b459f4 587 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 588
4df3d265
AK
589 /*
590 * We need to check for EXT4 here because migrate
591 * could have changed the inode type in between
592 */
12e9b892 593 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 594 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 595 } else {
e35fd660 596 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 597
e35fd660 598 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
599 /*
600 * We allocated new blocks which will result in
601 * i_data's format changing. Force the migrate
602 * to fail by clearing migrate flags
603 */
19f5fb7a 604 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 605 }
d2a17637 606
5f634d06
AK
607 /*
608 * Update reserved blocks/metadata blocks after successful
609 * block allocation which had been deferred till now. We don't
610 * support fallocate for non extent files. So we can update
611 * reserve space here.
612 */
613 if ((retval > 0) &&
1296cc85 614 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
615 ext4_da_update_reserve_space(inode, retval, 1);
616 }
2ac3b6e0 617
f7fec032 618 if (retval > 0) {
3be78c73 619 unsigned int status;
f7fec032 620
44fb851d
ZL
621 if (unlikely(retval != map->m_len)) {
622 ext4_warning(inode->i_sb,
623 "ES len assertion failed for inode "
624 "%lu: retval %d != map->m_len %d",
625 inode->i_ino, retval, map->m_len);
626 WARN_ON(1);
921f266b 627 }
921f266b 628
adb23551
ZL
629 /*
630 * If the extent has been zeroed out, we don't need to update
631 * extent status tree.
632 */
633 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
634 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
635 if (ext4_es_is_written(&es))
636 goto has_zeroout;
637 }
f7fec032
ZL
638 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
639 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
640 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
641 ext4_find_delalloc_range(inode, map->m_lblk,
642 map->m_lblk + map->m_len - 1))
643 status |= EXTENT_STATUS_DELAYED;
644 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
645 map->m_pblk, status);
646 if (ret < 0)
647 retval = ret;
5356f261
AK
648 }
649
adb23551 650has_zeroout:
4df3d265 651 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 652 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 653 ret = check_block_validity(inode, map);
6fd058f7
TT
654 if (ret != 0)
655 return ret;
656 }
0e855ac8
AK
657 return retval;
658}
659
923ae0ff
RZ
660static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate)
661{
662 struct inode *inode = bh->b_assoc_map->host;
663 /* XXX: breaks on 32-bit > 16GB. Is that even supported? */
664 loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits;
665 int err;
666 if (!uptodate)
667 return;
668 WARN_ON(!buffer_unwritten(bh));
669 err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size);
670}
671
f3bd1f3f
MC
672/* Maximum number of blocks we map for direct IO at once. */
673#define DIO_MAX_BLOCKS 4096
674
2ed88685
TT
675static int _ext4_get_block(struct inode *inode, sector_t iblock,
676 struct buffer_head *bh, int flags)
ac27a0ec 677{
3e4fdaf8 678 handle_t *handle = ext4_journal_current_handle();
2ed88685 679 struct ext4_map_blocks map;
7fb5409d 680 int ret = 0, started = 0;
f3bd1f3f 681 int dio_credits;
ac27a0ec 682
46c7f254
TM
683 if (ext4_has_inline_data(inode))
684 return -ERANGE;
685
2ed88685
TT
686 map.m_lblk = iblock;
687 map.m_len = bh->b_size >> inode->i_blkbits;
688
8b0f165f 689 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 690 /* Direct IO write... */
2ed88685
TT
691 if (map.m_len > DIO_MAX_BLOCKS)
692 map.m_len = DIO_MAX_BLOCKS;
693 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
694 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
695 dio_credits);
7fb5409d 696 if (IS_ERR(handle)) {
ac27a0ec 697 ret = PTR_ERR(handle);
2ed88685 698 return ret;
ac27a0ec 699 }
7fb5409d 700 started = 1;
ac27a0ec
DK
701 }
702
2ed88685 703 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 704 if (ret > 0) {
7b7a8665
CH
705 ext4_io_end_t *io_end = ext4_inode_aio(inode);
706
2ed88685
TT
707 map_bh(bh, inode->i_sb, map.m_pblk);
708 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
923ae0ff
RZ
709 if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) {
710 bh->b_assoc_map = inode->i_mapping;
711 bh->b_private = (void *)(unsigned long)iblock;
712 bh->b_end_io = ext4_end_io_unwritten;
713 }
7b7a8665
CH
714 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
715 set_buffer_defer_completion(bh);
2ed88685 716 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 717 ret = 0;
ac27a0ec 718 }
7fb5409d
JK
719 if (started)
720 ext4_journal_stop(handle);
ac27a0ec
DK
721 return ret;
722}
723
2ed88685
TT
724int ext4_get_block(struct inode *inode, sector_t iblock,
725 struct buffer_head *bh, int create)
726{
727 return _ext4_get_block(inode, iblock, bh,
728 create ? EXT4_GET_BLOCKS_CREATE : 0);
729}
730
ac27a0ec
DK
731/*
732 * `handle' can be NULL if create is zero
733 */
617ba13b 734struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
10560082 735 ext4_lblk_t block, int create)
ac27a0ec 736{
2ed88685
TT
737 struct ext4_map_blocks map;
738 struct buffer_head *bh;
10560082 739 int err;
ac27a0ec
DK
740
741 J_ASSERT(handle != NULL || create == 0);
742
2ed88685
TT
743 map.m_lblk = block;
744 map.m_len = 1;
745 err = ext4_map_blocks(handle, inode, &map,
746 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 747
10560082
TT
748 if (err == 0)
749 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 750 if (err < 0)
10560082 751 return ERR_PTR(err);
2ed88685
TT
752
753 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
754 if (unlikely(!bh))
755 return ERR_PTR(-ENOMEM);
2ed88685
TT
756 if (map.m_flags & EXT4_MAP_NEW) {
757 J_ASSERT(create != 0);
758 J_ASSERT(handle != NULL);
ac27a0ec 759
2ed88685
TT
760 /*
761 * Now that we do not always journal data, we should
762 * keep in mind whether this should always journal the
763 * new buffer as metadata. For now, regular file
764 * writes use ext4_get_block instead, so it's not a
765 * problem.
766 */
767 lock_buffer(bh);
768 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
769 err = ext4_journal_get_create_access(handle, bh);
770 if (unlikely(err)) {
771 unlock_buffer(bh);
772 goto errout;
773 }
774 if (!buffer_uptodate(bh)) {
2ed88685
TT
775 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
776 set_buffer_uptodate(bh);
ac27a0ec 777 }
2ed88685
TT
778 unlock_buffer(bh);
779 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
780 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
781 if (unlikely(err))
782 goto errout;
783 } else
2ed88685 784 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 785 return bh;
10560082
TT
786errout:
787 brelse(bh);
788 return ERR_PTR(err);
ac27a0ec
DK
789}
790
617ba13b 791struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1c215028 792 ext4_lblk_t block, int create)
ac27a0ec 793{
af5bc92d 794 struct buffer_head *bh;
ac27a0ec 795
10560082 796 bh = ext4_getblk(handle, inode, block, create);
1c215028 797 if (IS_ERR(bh))
ac27a0ec 798 return bh;
1c215028 799 if (!bh || buffer_uptodate(bh))
ac27a0ec 800 return bh;
65299a3b 801 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
802 wait_on_buffer(bh);
803 if (buffer_uptodate(bh))
804 return bh;
805 put_bh(bh);
1c215028 806 return ERR_PTR(-EIO);
ac27a0ec
DK
807}
808
f19d5870
TM
809int ext4_walk_page_buffers(handle_t *handle,
810 struct buffer_head *head,
811 unsigned from,
812 unsigned to,
813 int *partial,
814 int (*fn)(handle_t *handle,
815 struct buffer_head *bh))
ac27a0ec
DK
816{
817 struct buffer_head *bh;
818 unsigned block_start, block_end;
819 unsigned blocksize = head->b_size;
820 int err, ret = 0;
821 struct buffer_head *next;
822
af5bc92d
TT
823 for (bh = head, block_start = 0;
824 ret == 0 && (bh != head || !block_start);
de9a55b8 825 block_start = block_end, bh = next) {
ac27a0ec
DK
826 next = bh->b_this_page;
827 block_end = block_start + blocksize;
828 if (block_end <= from || block_start >= to) {
829 if (partial && !buffer_uptodate(bh))
830 *partial = 1;
831 continue;
832 }
833 err = (*fn)(handle, bh);
834 if (!ret)
835 ret = err;
836 }
837 return ret;
838}
839
840/*
841 * To preserve ordering, it is essential that the hole instantiation and
842 * the data write be encapsulated in a single transaction. We cannot
617ba13b 843 * close off a transaction and start a new one between the ext4_get_block()
dab291af 844 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
845 * prepare_write() is the right place.
846 *
36ade451
JK
847 * Also, this function can nest inside ext4_writepage(). In that case, we
848 * *know* that ext4_writepage() has generated enough buffer credits to do the
849 * whole page. So we won't block on the journal in that case, which is good,
850 * because the caller may be PF_MEMALLOC.
ac27a0ec 851 *
617ba13b 852 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
853 * quota file writes. If we were to commit the transaction while thus
854 * reentered, there can be a deadlock - we would be holding a quota
855 * lock, and the commit would never complete if another thread had a
856 * transaction open and was blocking on the quota lock - a ranking
857 * violation.
858 *
dab291af 859 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
860 * will _not_ run commit under these circumstances because handle->h_ref
861 * is elevated. We'll still have enough credits for the tiny quotafile
862 * write.
863 */
f19d5870
TM
864int do_journal_get_write_access(handle_t *handle,
865 struct buffer_head *bh)
ac27a0ec 866{
56d35a4c
JK
867 int dirty = buffer_dirty(bh);
868 int ret;
869
ac27a0ec
DK
870 if (!buffer_mapped(bh) || buffer_freed(bh))
871 return 0;
56d35a4c 872 /*
ebdec241 873 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
874 * the dirty bit as jbd2_journal_get_write_access() could complain
875 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 876 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
877 * the bit before releasing a page lock and thus writeback cannot
878 * ever write the buffer.
879 */
880 if (dirty)
881 clear_buffer_dirty(bh);
5d601255 882 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
883 ret = ext4_journal_get_write_access(handle, bh);
884 if (!ret && dirty)
885 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
886 return ret;
ac27a0ec
DK
887}
888
8b0f165f
AP
889static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
890 struct buffer_head *bh_result, int create);
bfc1af65 891static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
892 loff_t pos, unsigned len, unsigned flags,
893 struct page **pagep, void **fsdata)
ac27a0ec 894{
af5bc92d 895 struct inode *inode = mapping->host;
1938a150 896 int ret, needed_blocks;
ac27a0ec
DK
897 handle_t *handle;
898 int retries = 0;
af5bc92d 899 struct page *page;
de9a55b8 900 pgoff_t index;
af5bc92d 901 unsigned from, to;
bfc1af65 902
9bffad1e 903 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
904 /*
905 * Reserve one block more for addition to orphan list in case
906 * we allocate blocks but write fails for some reason
907 */
908 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 909 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
910 from = pos & (PAGE_CACHE_SIZE - 1);
911 to = from + len;
ac27a0ec 912
f19d5870
TM
913 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
914 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
915 flags, pagep);
916 if (ret < 0)
47564bfb
TT
917 return ret;
918 if (ret == 1)
919 return 0;
f19d5870
TM
920 }
921
47564bfb
TT
922 /*
923 * grab_cache_page_write_begin() can take a long time if the
924 * system is thrashing due to memory pressure, or if the page
925 * is being written back. So grab it first before we start
926 * the transaction handle. This also allows us to allocate
927 * the page (if needed) without using GFP_NOFS.
928 */
929retry_grab:
930 page = grab_cache_page_write_begin(mapping, index, flags);
931 if (!page)
932 return -ENOMEM;
933 unlock_page(page);
934
935retry_journal:
9924a92a 936 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 937 if (IS_ERR(handle)) {
47564bfb
TT
938 page_cache_release(page);
939 return PTR_ERR(handle);
7479d2b9 940 }
ac27a0ec 941
47564bfb
TT
942 lock_page(page);
943 if (page->mapping != mapping) {
944 /* The page got truncated from under us */
945 unlock_page(page);
946 page_cache_release(page);
cf108bca 947 ext4_journal_stop(handle);
47564bfb 948 goto retry_grab;
cf108bca 949 }
7afe5aa5
DM
950 /* In case writeback began while the page was unlocked */
951 wait_for_stable_page(page);
cf108bca 952
744692dc 953 if (ext4_should_dioread_nolock(inode))
6e1db88d 954 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 955 else
6e1db88d 956 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
957
958 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
959 ret = ext4_walk_page_buffers(handle, page_buffers(page),
960 from, to, NULL,
961 do_journal_get_write_access);
ac27a0ec 962 }
bfc1af65
NP
963
964 if (ret) {
af5bc92d 965 unlock_page(page);
ae4d5372 966 /*
6e1db88d 967 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
968 * outside i_size. Trim these off again. Don't need
969 * i_size_read because we hold i_mutex.
1938a150
AK
970 *
971 * Add inode to orphan list in case we crash before
972 * truncate finishes
ae4d5372 973 */
ffacfa7a 974 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
975 ext4_orphan_add(handle, inode);
976
977 ext4_journal_stop(handle);
978 if (pos + len > inode->i_size) {
b9a4207d 979 ext4_truncate_failed_write(inode);
de9a55b8 980 /*
ffacfa7a 981 * If truncate failed early the inode might
1938a150
AK
982 * still be on the orphan list; we need to
983 * make sure the inode is removed from the
984 * orphan list in that case.
985 */
986 if (inode->i_nlink)
987 ext4_orphan_del(NULL, inode);
988 }
bfc1af65 989
47564bfb
TT
990 if (ret == -ENOSPC &&
991 ext4_should_retry_alloc(inode->i_sb, &retries))
992 goto retry_journal;
993 page_cache_release(page);
994 return ret;
995 }
996 *pagep = page;
ac27a0ec
DK
997 return ret;
998}
999
bfc1af65
NP
1000/* For write_end() in data=journal mode */
1001static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1002{
13fca323 1003 int ret;
ac27a0ec
DK
1004 if (!buffer_mapped(bh) || buffer_freed(bh))
1005 return 0;
1006 set_buffer_uptodate(bh);
13fca323
TT
1007 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1008 clear_buffer_meta(bh);
1009 clear_buffer_prio(bh);
1010 return ret;
ac27a0ec
DK
1011}
1012
eed4333f
ZL
1013/*
1014 * We need to pick up the new inode size which generic_commit_write gave us
1015 * `file' can be NULL - eg, when called from page_symlink().
1016 *
1017 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1018 * buffers are managed internally.
1019 */
1020static int ext4_write_end(struct file *file,
1021 struct address_space *mapping,
1022 loff_t pos, unsigned len, unsigned copied,
1023 struct page *page, void *fsdata)
f8514083 1024{
f8514083 1025 handle_t *handle = ext4_journal_current_handle();
eed4333f 1026 struct inode *inode = mapping->host;
0572639f 1027 loff_t old_size = inode->i_size;
eed4333f
ZL
1028 int ret = 0, ret2;
1029 int i_size_changed = 0;
1030
1031 trace_ext4_write_end(inode, pos, len, copied);
1032 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1033 ret = ext4_jbd2_file_inode(handle, inode);
1034 if (ret) {
1035 unlock_page(page);
1036 page_cache_release(page);
1037 goto errout;
1038 }
1039 }
f8514083 1040
42c832de
TT
1041 if (ext4_has_inline_data(inode)) {
1042 ret = ext4_write_inline_data_end(inode, pos, len,
1043 copied, page);
1044 if (ret < 0)
1045 goto errout;
1046 copied = ret;
1047 } else
f19d5870
TM
1048 copied = block_write_end(file, mapping, pos,
1049 len, copied, page, fsdata);
f8514083 1050 /*
4631dbf6 1051 * it's important to update i_size while still holding page lock:
f8514083
AK
1052 * page writeout could otherwise come in and zero beyond i_size.
1053 */
4631dbf6 1054 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083
AK
1055 unlock_page(page);
1056 page_cache_release(page);
1057
0572639f
XW
1058 if (old_size < pos)
1059 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1060 /*
1061 * Don't mark the inode dirty under page lock. First, it unnecessarily
1062 * makes the holding time of page lock longer. Second, it forces lock
1063 * ordering of page lock and transaction start for journaling
1064 * filesystems.
1065 */
1066 if (i_size_changed)
1067 ext4_mark_inode_dirty(handle, inode);
1068
ffacfa7a 1069 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1070 /* if we have allocated more blocks and copied
1071 * less. We will have blocks allocated outside
1072 * inode->i_size. So truncate them
1073 */
1074 ext4_orphan_add(handle, inode);
74d553aa 1075errout:
617ba13b 1076 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1077 if (!ret)
1078 ret = ret2;
bfc1af65 1079
f8514083 1080 if (pos + len > inode->i_size) {
b9a4207d 1081 ext4_truncate_failed_write(inode);
de9a55b8 1082 /*
ffacfa7a 1083 * If truncate failed early the inode might still be
f8514083
AK
1084 * on the orphan list; we need to make sure the inode
1085 * is removed from the orphan list in that case.
1086 */
1087 if (inode->i_nlink)
1088 ext4_orphan_del(NULL, inode);
1089 }
1090
bfc1af65 1091 return ret ? ret : copied;
ac27a0ec
DK
1092}
1093
bfc1af65 1094static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1095 struct address_space *mapping,
1096 loff_t pos, unsigned len, unsigned copied,
1097 struct page *page, void *fsdata)
ac27a0ec 1098{
617ba13b 1099 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1100 struct inode *inode = mapping->host;
0572639f 1101 loff_t old_size = inode->i_size;
ac27a0ec
DK
1102 int ret = 0, ret2;
1103 int partial = 0;
bfc1af65 1104 unsigned from, to;
4631dbf6 1105 int size_changed = 0;
ac27a0ec 1106
9bffad1e 1107 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1108 from = pos & (PAGE_CACHE_SIZE - 1);
1109 to = from + len;
1110
441c8508
CW
1111 BUG_ON(!ext4_handle_valid(handle));
1112
3fdcfb66
TM
1113 if (ext4_has_inline_data(inode))
1114 copied = ext4_write_inline_data_end(inode, pos, len,
1115 copied, page);
1116 else {
1117 if (copied < len) {
1118 if (!PageUptodate(page))
1119 copied = 0;
1120 page_zero_new_buffers(page, from+copied, to);
1121 }
ac27a0ec 1122
3fdcfb66
TM
1123 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1124 to, &partial, write_end_fn);
1125 if (!partial)
1126 SetPageUptodate(page);
1127 }
4631dbf6 1128 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1129 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1130 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6
DM
1131 unlock_page(page);
1132 page_cache_release(page);
1133
0572639f
XW
1134 if (old_size < pos)
1135 pagecache_isize_extended(inode, old_size, pos);
1136
4631dbf6 1137 if (size_changed) {
617ba13b 1138 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1139 if (!ret)
1140 ret = ret2;
1141 }
bfc1af65 1142
ffacfa7a 1143 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1144 /* if we have allocated more blocks and copied
1145 * less. We will have blocks allocated outside
1146 * inode->i_size. So truncate them
1147 */
1148 ext4_orphan_add(handle, inode);
1149
617ba13b 1150 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1151 if (!ret)
1152 ret = ret2;
f8514083 1153 if (pos + len > inode->i_size) {
b9a4207d 1154 ext4_truncate_failed_write(inode);
de9a55b8 1155 /*
ffacfa7a 1156 * If truncate failed early the inode might still be
f8514083
AK
1157 * on the orphan list; we need to make sure the inode
1158 * is removed from the orphan list in that case.
1159 */
1160 if (inode->i_nlink)
1161 ext4_orphan_del(NULL, inode);
1162 }
bfc1af65
NP
1163
1164 return ret ? ret : copied;
ac27a0ec 1165}
d2a17637 1166
9d0be502 1167/*
7b415bf6 1168 * Reserve a single cluster located at lblock
9d0be502 1169 */
01f49d0b 1170static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1171{
60e58e0f 1172 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1173 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1174 unsigned int md_needed;
5dd4056d 1175 int ret;
03179fe9
TT
1176
1177 /*
1178 * We will charge metadata quota at writeout time; this saves
1179 * us from metadata over-estimation, though we may go over by
1180 * a small amount in the end. Here we just reserve for data.
1181 */
1182 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1183 if (ret)
1184 return ret;
d2a17637
MC
1185
1186 /*
1187 * recalculate the amount of metadata blocks to reserve
1188 * in order to allocate nrblocks
1189 * worse case is one extent per block
1190 */
0637c6f4 1191 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1192 /*
1193 * ext4_calc_metadata_amount() has side effects, which we have
1194 * to be prepared undo if we fail to claim space.
1195 */
71d4f7d0
TT
1196 md_needed = 0;
1197 trace_ext4_da_reserve_space(inode, 0);
d2a17637 1198
71d4f7d0 1199 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1200 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1201 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1202 return -ENOSPC;
1203 }
9d0be502 1204 ei->i_reserved_data_blocks++;
0637c6f4 1205 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1206
d2a17637
MC
1207 return 0; /* success */
1208}
1209
12219aea 1210static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1211{
1212 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1213 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1214
cd213226
MC
1215 if (!to_free)
1216 return; /* Nothing to release, exit */
1217
d2a17637 1218 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1219
5a58ec87 1220 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1221 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1222 /*
0637c6f4
TT
1223 * if there aren't enough reserved blocks, then the
1224 * counter is messed up somewhere. Since this
1225 * function is called from invalidate page, it's
1226 * harmless to return without any action.
cd213226 1227 */
8de5c325 1228 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1229 "ino %lu, to_free %d with only %d reserved "
1084f252 1230 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1231 ei->i_reserved_data_blocks);
1232 WARN_ON(1);
1233 to_free = ei->i_reserved_data_blocks;
cd213226 1234 }
0637c6f4 1235 ei->i_reserved_data_blocks -= to_free;
cd213226 1236
72b8ab9d 1237 /* update fs dirty data blocks counter */
57042651 1238 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1239
d2a17637 1240 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1241
7b415bf6 1242 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1243}
1244
1245static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1246 unsigned int offset,
1247 unsigned int length)
d2a17637
MC
1248{
1249 int to_release = 0;
1250 struct buffer_head *head, *bh;
1251 unsigned int curr_off = 0;
7b415bf6
AK
1252 struct inode *inode = page->mapping->host;
1253 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1254 unsigned int stop = offset + length;
7b415bf6 1255 int num_clusters;
51865fda 1256 ext4_fsblk_t lblk;
d2a17637 1257
ca99fdd2
LC
1258 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1259
d2a17637
MC
1260 head = page_buffers(page);
1261 bh = head;
1262 do {
1263 unsigned int next_off = curr_off + bh->b_size;
1264
ca99fdd2
LC
1265 if (next_off > stop)
1266 break;
1267
d2a17637
MC
1268 if ((offset <= curr_off) && (buffer_delay(bh))) {
1269 to_release++;
1270 clear_buffer_delay(bh);
1271 }
1272 curr_off = next_off;
1273 } while ((bh = bh->b_this_page) != head);
7b415bf6 1274
51865fda
ZL
1275 if (to_release) {
1276 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1277 ext4_es_remove_extent(inode, lblk, to_release);
1278 }
1279
7b415bf6
AK
1280 /* If we have released all the blocks belonging to a cluster, then we
1281 * need to release the reserved space for that cluster. */
1282 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1283 while (num_clusters > 0) {
7b415bf6
AK
1284 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1285 ((num_clusters - 1) << sbi->s_cluster_bits);
1286 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1287 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1288 ext4_da_release_space(inode, 1);
1289
1290 num_clusters--;
1291 }
d2a17637 1292}
ac27a0ec 1293
64769240
AT
1294/*
1295 * Delayed allocation stuff
1296 */
1297
4e7ea81d
JK
1298struct mpage_da_data {
1299 struct inode *inode;
1300 struct writeback_control *wbc;
6b523df4 1301
4e7ea81d
JK
1302 pgoff_t first_page; /* The first page to write */
1303 pgoff_t next_page; /* Current page to examine */
1304 pgoff_t last_page; /* Last page to examine */
791b7f08 1305 /*
4e7ea81d
JK
1306 * Extent to map - this can be after first_page because that can be
1307 * fully mapped. We somewhat abuse m_flags to store whether the extent
1308 * is delalloc or unwritten.
791b7f08 1309 */
4e7ea81d
JK
1310 struct ext4_map_blocks map;
1311 struct ext4_io_submit io_submit; /* IO submission data */
1312};
64769240 1313
4e7ea81d
JK
1314static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1315 bool invalidate)
c4a0c46e
AK
1316{
1317 int nr_pages, i;
1318 pgoff_t index, end;
1319 struct pagevec pvec;
1320 struct inode *inode = mpd->inode;
1321 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1322
1323 /* This is necessary when next_page == 0. */
1324 if (mpd->first_page >= mpd->next_page)
1325 return;
c4a0c46e 1326
c7f5938a
CW
1327 index = mpd->first_page;
1328 end = mpd->next_page - 1;
4e7ea81d
JK
1329 if (invalidate) {
1330 ext4_lblk_t start, last;
1331 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1332 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1333 ext4_es_remove_extent(inode, start, last - start + 1);
1334 }
51865fda 1335
66bea92c 1336 pagevec_init(&pvec, 0);
c4a0c46e
AK
1337 while (index <= end) {
1338 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1339 if (nr_pages == 0)
1340 break;
1341 for (i = 0; i < nr_pages; i++) {
1342 struct page *page = pvec.pages[i];
9b1d0998 1343 if (page->index > end)
c4a0c46e 1344 break;
c4a0c46e
AK
1345 BUG_ON(!PageLocked(page));
1346 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1347 if (invalidate) {
1348 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1349 ClearPageUptodate(page);
1350 }
c4a0c46e
AK
1351 unlock_page(page);
1352 }
9b1d0998
JK
1353 index = pvec.pages[nr_pages - 1]->index + 1;
1354 pagevec_release(&pvec);
c4a0c46e 1355 }
c4a0c46e
AK
1356}
1357
df22291f
AK
1358static void ext4_print_free_blocks(struct inode *inode)
1359{
1360 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1361 struct super_block *sb = inode->i_sb;
f78ee70d 1362 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1363
1364 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1365 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1366 ext4_count_free_clusters(sb)));
92b97816
TT
1367 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1368 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1369 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1370 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1371 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1372 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1373 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1374 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1375 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1376 ei->i_reserved_data_blocks);
df22291f
AK
1377 return;
1378}
1379
c364b22c 1380static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1381{
c364b22c 1382 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1383}
1384
5356f261
AK
1385/*
1386 * This function is grabs code from the very beginning of
1387 * ext4_map_blocks, but assumes that the caller is from delayed write
1388 * time. This function looks up the requested blocks and sets the
1389 * buffer delay bit under the protection of i_data_sem.
1390 */
1391static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1392 struct ext4_map_blocks *map,
1393 struct buffer_head *bh)
1394{
d100eef2 1395 struct extent_status es;
5356f261
AK
1396 int retval;
1397 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1398#ifdef ES_AGGRESSIVE_TEST
1399 struct ext4_map_blocks orig_map;
1400
1401 memcpy(&orig_map, map, sizeof(*map));
1402#endif
5356f261
AK
1403
1404 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1405 invalid_block = ~0;
1406
1407 map->m_flags = 0;
1408 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1409 "logical block %lu\n", inode->i_ino, map->m_len,
1410 (unsigned long) map->m_lblk);
d100eef2
ZL
1411
1412 /* Lookup extent status tree firstly */
1413 if (ext4_es_lookup_extent(inode, iblock, &es)) {
d100eef2
ZL
1414 if (ext4_es_is_hole(&es)) {
1415 retval = 0;
c8b459f4 1416 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1417 goto add_delayed;
1418 }
1419
1420 /*
1421 * Delayed extent could be allocated by fallocate.
1422 * So we need to check it.
1423 */
1424 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1425 map_bh(bh, inode->i_sb, invalid_block);
1426 set_buffer_new(bh);
1427 set_buffer_delay(bh);
1428 return 0;
1429 }
1430
1431 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1432 retval = es.es_len - (iblock - es.es_lblk);
1433 if (retval > map->m_len)
1434 retval = map->m_len;
1435 map->m_len = retval;
1436 if (ext4_es_is_written(&es))
1437 map->m_flags |= EXT4_MAP_MAPPED;
1438 else if (ext4_es_is_unwritten(&es))
1439 map->m_flags |= EXT4_MAP_UNWRITTEN;
1440 else
1441 BUG_ON(1);
1442
921f266b
DM
1443#ifdef ES_AGGRESSIVE_TEST
1444 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1445#endif
d100eef2
ZL
1446 return retval;
1447 }
1448
5356f261
AK
1449 /*
1450 * Try to see if we can get the block without requesting a new
1451 * file system block.
1452 */
c8b459f4 1453 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1454 if (ext4_has_inline_data(inode))
9c3569b5 1455 retval = 0;
cbd7584e 1456 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1457 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1458 else
2f8e0a7c 1459 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1460
d100eef2 1461add_delayed:
5356f261 1462 if (retval == 0) {
f7fec032 1463 int ret;
5356f261
AK
1464 /*
1465 * XXX: __block_prepare_write() unmaps passed block,
1466 * is it OK?
1467 */
386ad67c
LC
1468 /*
1469 * If the block was allocated from previously allocated cluster,
1470 * then we don't need to reserve it again. However we still need
1471 * to reserve metadata for every block we're going to write.
1472 */
cbd7584e
JK
1473 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1474 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
f7fec032
ZL
1475 ret = ext4_da_reserve_space(inode, iblock);
1476 if (ret) {
5356f261 1477 /* not enough space to reserve */
f7fec032 1478 retval = ret;
5356f261 1479 goto out_unlock;
f7fec032 1480 }
5356f261
AK
1481 }
1482
f7fec032
ZL
1483 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1484 ~0, EXTENT_STATUS_DELAYED);
1485 if (ret) {
1486 retval = ret;
51865fda 1487 goto out_unlock;
f7fec032 1488 }
51865fda 1489
5356f261
AK
1490 map_bh(bh, inode->i_sb, invalid_block);
1491 set_buffer_new(bh);
1492 set_buffer_delay(bh);
f7fec032
ZL
1493 } else if (retval > 0) {
1494 int ret;
3be78c73 1495 unsigned int status;
f7fec032 1496
44fb851d
ZL
1497 if (unlikely(retval != map->m_len)) {
1498 ext4_warning(inode->i_sb,
1499 "ES len assertion failed for inode "
1500 "%lu: retval %d != map->m_len %d",
1501 inode->i_ino, retval, map->m_len);
1502 WARN_ON(1);
921f266b 1503 }
921f266b 1504
f7fec032
ZL
1505 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1506 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1507 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1508 map->m_pblk, status);
1509 if (ret != 0)
1510 retval = ret;
5356f261
AK
1511 }
1512
1513out_unlock:
1514 up_read((&EXT4_I(inode)->i_data_sem));
1515
1516 return retval;
1517}
1518
64769240 1519/*
d91bd2c1 1520 * This is a special get_block_t callback which is used by
b920c755
TT
1521 * ext4_da_write_begin(). It will either return mapped block or
1522 * reserve space for a single block.
29fa89d0
AK
1523 *
1524 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1525 * We also have b_blocknr = -1 and b_bdev initialized properly
1526 *
1527 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1528 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1529 * initialized properly.
64769240 1530 */
9c3569b5
TM
1531int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1532 struct buffer_head *bh, int create)
64769240 1533{
2ed88685 1534 struct ext4_map_blocks map;
64769240
AT
1535 int ret = 0;
1536
1537 BUG_ON(create == 0);
2ed88685
TT
1538 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1539
1540 map.m_lblk = iblock;
1541 map.m_len = 1;
64769240
AT
1542
1543 /*
1544 * first, we need to know whether the block is allocated already
1545 * preallocated blocks are unmapped but should treated
1546 * the same as allocated blocks.
1547 */
5356f261
AK
1548 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1549 if (ret <= 0)
2ed88685 1550 return ret;
64769240 1551
2ed88685
TT
1552 map_bh(bh, inode->i_sb, map.m_pblk);
1553 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1554
1555 if (buffer_unwritten(bh)) {
1556 /* A delayed write to unwritten bh should be marked
1557 * new and mapped. Mapped ensures that we don't do
1558 * get_block multiple times when we write to the same
1559 * offset and new ensures that we do proper zero out
1560 * for partial write.
1561 */
1562 set_buffer_new(bh);
c8205636 1563 set_buffer_mapped(bh);
2ed88685
TT
1564 }
1565 return 0;
64769240 1566}
61628a3f 1567
62e086be
AK
1568static int bget_one(handle_t *handle, struct buffer_head *bh)
1569{
1570 get_bh(bh);
1571 return 0;
1572}
1573
1574static int bput_one(handle_t *handle, struct buffer_head *bh)
1575{
1576 put_bh(bh);
1577 return 0;
1578}
1579
1580static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1581 unsigned int len)
1582{
1583 struct address_space *mapping = page->mapping;
1584 struct inode *inode = mapping->host;
3fdcfb66 1585 struct buffer_head *page_bufs = NULL;
62e086be 1586 handle_t *handle = NULL;
3fdcfb66
TM
1587 int ret = 0, err = 0;
1588 int inline_data = ext4_has_inline_data(inode);
1589 struct buffer_head *inode_bh = NULL;
62e086be 1590
cb20d518 1591 ClearPageChecked(page);
3fdcfb66
TM
1592
1593 if (inline_data) {
1594 BUG_ON(page->index != 0);
1595 BUG_ON(len > ext4_get_max_inline_size(inode));
1596 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1597 if (inode_bh == NULL)
1598 goto out;
1599 } else {
1600 page_bufs = page_buffers(page);
1601 if (!page_bufs) {
1602 BUG();
1603 goto out;
1604 }
1605 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1606 NULL, bget_one);
1607 }
62e086be
AK
1608 /* As soon as we unlock the page, it can go away, but we have
1609 * references to buffers so we are safe */
1610 unlock_page(page);
1611
9924a92a
TT
1612 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1613 ext4_writepage_trans_blocks(inode));
62e086be
AK
1614 if (IS_ERR(handle)) {
1615 ret = PTR_ERR(handle);
1616 goto out;
1617 }
1618
441c8508
CW
1619 BUG_ON(!ext4_handle_valid(handle));
1620
3fdcfb66 1621 if (inline_data) {
5d601255 1622 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 1623 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1624
3fdcfb66
TM
1625 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1626
1627 } else {
1628 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1629 do_journal_get_write_access);
1630
1631 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1632 write_end_fn);
1633 }
62e086be
AK
1634 if (ret == 0)
1635 ret = err;
2d859db3 1636 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1637 err = ext4_journal_stop(handle);
1638 if (!ret)
1639 ret = err;
1640
3fdcfb66 1641 if (!ext4_has_inline_data(inode))
8c9367fd 1642 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1643 NULL, bput_one);
19f5fb7a 1644 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1645out:
3fdcfb66 1646 brelse(inode_bh);
62e086be
AK
1647 return ret;
1648}
1649
61628a3f 1650/*
43ce1d23
AK
1651 * Note that we don't need to start a transaction unless we're journaling data
1652 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1653 * need to file the inode to the transaction's list in ordered mode because if
1654 * we are writing back data added by write(), the inode is already there and if
25985edc 1655 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1656 * transaction the data will hit the disk. In case we are journaling data, we
1657 * cannot start transaction directly because transaction start ranks above page
1658 * lock so we have to do some magic.
1659 *
b920c755 1660 * This function can get called via...
20970ba6 1661 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1662 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1663 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1664 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1665 *
1666 * We don't do any block allocation in this function. If we have page with
1667 * multiple blocks we need to write those buffer_heads that are mapped. This
1668 * is important for mmaped based write. So if we do with blocksize 1K
1669 * truncate(f, 1024);
1670 * a = mmap(f, 0, 4096);
1671 * a[0] = 'a';
1672 * truncate(f, 4096);
1673 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1674 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1675 * do_wp_page). So writepage should write the first block. If we modify
1676 * the mmap area beyond 1024 we will again get a page_fault and the
1677 * page_mkwrite callback will do the block allocation and mark the
1678 * buffer_heads mapped.
1679 *
1680 * We redirty the page if we have any buffer_heads that is either delay or
1681 * unwritten in the page.
1682 *
1683 * We can get recursively called as show below.
1684 *
1685 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1686 * ext4_writepage()
1687 *
1688 * But since we don't do any block allocation we should not deadlock.
1689 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1690 */
43ce1d23 1691static int ext4_writepage(struct page *page,
62e086be 1692 struct writeback_control *wbc)
64769240 1693{
f8bec370 1694 int ret = 0;
61628a3f 1695 loff_t size;
498e5f24 1696 unsigned int len;
744692dc 1697 struct buffer_head *page_bufs = NULL;
61628a3f 1698 struct inode *inode = page->mapping->host;
36ade451 1699 struct ext4_io_submit io_submit;
1c8349a1 1700 bool keep_towrite = false;
61628a3f 1701
a9c667f8 1702 trace_ext4_writepage(page);
f0e6c985
AK
1703 size = i_size_read(inode);
1704 if (page->index == size >> PAGE_CACHE_SHIFT)
1705 len = size & ~PAGE_CACHE_MASK;
1706 else
1707 len = PAGE_CACHE_SIZE;
64769240 1708
a42afc5f 1709 page_bufs = page_buffers(page);
a42afc5f 1710 /*
fe386132
JK
1711 * We cannot do block allocation or other extent handling in this
1712 * function. If there are buffers needing that, we have to redirty
1713 * the page. But we may reach here when we do a journal commit via
1714 * journal_submit_inode_data_buffers() and in that case we must write
1715 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 1716 */
f19d5870
TM
1717 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1718 ext4_bh_delay_or_unwritten)) {
f8bec370 1719 redirty_page_for_writepage(wbc, page);
fe386132
JK
1720 if (current->flags & PF_MEMALLOC) {
1721 /*
1722 * For memory cleaning there's no point in writing only
1723 * some buffers. So just bail out. Warn if we came here
1724 * from direct reclaim.
1725 */
1726 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1727 == PF_MEMALLOC);
f0e6c985
AK
1728 unlock_page(page);
1729 return 0;
1730 }
1c8349a1 1731 keep_towrite = true;
a42afc5f 1732 }
64769240 1733
cb20d518 1734 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1735 /*
1736 * It's mmapped pagecache. Add buffers and journal it. There
1737 * doesn't seem much point in redirtying the page here.
1738 */
3f0ca309 1739 return __ext4_journalled_writepage(page, len);
43ce1d23 1740
97a851ed
JK
1741 ext4_io_submit_init(&io_submit, wbc);
1742 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1743 if (!io_submit.io_end) {
1744 redirty_page_for_writepage(wbc, page);
1745 unlock_page(page);
1746 return -ENOMEM;
1747 }
1c8349a1 1748 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 1749 ext4_io_submit(&io_submit);
97a851ed
JK
1750 /* Drop io_end reference we got from init */
1751 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1752 return ret;
1753}
1754
5f1132b2
JK
1755static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1756{
1757 int len;
1758 loff_t size = i_size_read(mpd->inode);
1759 int err;
1760
1761 BUG_ON(page->index != mpd->first_page);
1762 if (page->index == size >> PAGE_CACHE_SHIFT)
1763 len = size & ~PAGE_CACHE_MASK;
1764 else
1765 len = PAGE_CACHE_SIZE;
1766 clear_page_dirty_for_io(page);
1c8349a1 1767 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
1768 if (!err)
1769 mpd->wbc->nr_to_write--;
1770 mpd->first_page++;
1771
1772 return err;
1773}
1774
4e7ea81d
JK
1775#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1776
61628a3f 1777/*
fffb2739
JK
1778 * mballoc gives us at most this number of blocks...
1779 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 1780 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 1781 */
fffb2739 1782#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1783
4e7ea81d
JK
1784/*
1785 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1786 *
1787 * @mpd - extent of blocks
1788 * @lblk - logical number of the block in the file
09930042 1789 * @bh - buffer head we want to add to the extent
4e7ea81d 1790 *
09930042
JK
1791 * The function is used to collect contig. blocks in the same state. If the
1792 * buffer doesn't require mapping for writeback and we haven't started the
1793 * extent of buffers to map yet, the function returns 'true' immediately - the
1794 * caller can write the buffer right away. Otherwise the function returns true
1795 * if the block has been added to the extent, false if the block couldn't be
1796 * added.
4e7ea81d 1797 */
09930042
JK
1798static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1799 struct buffer_head *bh)
4e7ea81d
JK
1800{
1801 struct ext4_map_blocks *map = &mpd->map;
1802
09930042
JK
1803 /* Buffer that doesn't need mapping for writeback? */
1804 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1805 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1806 /* So far no extent to map => we write the buffer right away */
1807 if (map->m_len == 0)
1808 return true;
1809 return false;
1810 }
4e7ea81d
JK
1811
1812 /* First block in the extent? */
1813 if (map->m_len == 0) {
1814 map->m_lblk = lblk;
1815 map->m_len = 1;
09930042
JK
1816 map->m_flags = bh->b_state & BH_FLAGS;
1817 return true;
4e7ea81d
JK
1818 }
1819
09930042
JK
1820 /* Don't go larger than mballoc is willing to allocate */
1821 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1822 return false;
1823
4e7ea81d
JK
1824 /* Can we merge the block to our big extent? */
1825 if (lblk == map->m_lblk + map->m_len &&
09930042 1826 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 1827 map->m_len++;
09930042 1828 return true;
4e7ea81d 1829 }
09930042 1830 return false;
4e7ea81d
JK
1831}
1832
5f1132b2
JK
1833/*
1834 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1835 *
1836 * @mpd - extent of blocks for mapping
1837 * @head - the first buffer in the page
1838 * @bh - buffer we should start processing from
1839 * @lblk - logical number of the block in the file corresponding to @bh
1840 *
1841 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1842 * the page for IO if all buffers in this page were mapped and there's no
1843 * accumulated extent of buffers to map or add buffers in the page to the
1844 * extent of buffers to map. The function returns 1 if the caller can continue
1845 * by processing the next page, 0 if it should stop adding buffers to the
1846 * extent to map because we cannot extend it anymore. It can also return value
1847 * < 0 in case of error during IO submission.
1848 */
1849static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1850 struct buffer_head *head,
1851 struct buffer_head *bh,
1852 ext4_lblk_t lblk)
4e7ea81d
JK
1853{
1854 struct inode *inode = mpd->inode;
5f1132b2 1855 int err;
4e7ea81d
JK
1856 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1857 >> inode->i_blkbits;
1858
1859 do {
1860 BUG_ON(buffer_locked(bh));
1861
09930042 1862 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
1863 /* Found extent to map? */
1864 if (mpd->map.m_len)
5f1132b2 1865 return 0;
09930042 1866 /* Everything mapped so far and we hit EOF */
5f1132b2 1867 break;
4e7ea81d 1868 }
4e7ea81d 1869 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
1870 /* So far everything mapped? Submit the page for IO. */
1871 if (mpd->map.m_len == 0) {
1872 err = mpage_submit_page(mpd, head->b_page);
1873 if (err < 0)
1874 return err;
1875 }
1876 return lblk < blocks;
4e7ea81d
JK
1877}
1878
1879/*
1880 * mpage_map_buffers - update buffers corresponding to changed extent and
1881 * submit fully mapped pages for IO
1882 *
1883 * @mpd - description of extent to map, on return next extent to map
1884 *
1885 * Scan buffers corresponding to changed extent (we expect corresponding pages
1886 * to be already locked) and update buffer state according to new extent state.
1887 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 1888 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
1889 * and do extent conversion after IO is finished. If the last page is not fully
1890 * mapped, we update @map to the next extent in the last page that needs
1891 * mapping. Otherwise we submit the page for IO.
1892 */
1893static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1894{
1895 struct pagevec pvec;
1896 int nr_pages, i;
1897 struct inode *inode = mpd->inode;
1898 struct buffer_head *head, *bh;
1899 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
1900 pgoff_t start, end;
1901 ext4_lblk_t lblk;
1902 sector_t pblock;
1903 int err;
1904
1905 start = mpd->map.m_lblk >> bpp_bits;
1906 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1907 lblk = start << bpp_bits;
1908 pblock = mpd->map.m_pblk;
1909
1910 pagevec_init(&pvec, 0);
1911 while (start <= end) {
1912 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1913 PAGEVEC_SIZE);
1914 if (nr_pages == 0)
1915 break;
1916 for (i = 0; i < nr_pages; i++) {
1917 struct page *page = pvec.pages[i];
1918
1919 if (page->index > end)
1920 break;
70261f56 1921 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
1922 BUG_ON(page->index != start);
1923 bh = head = page_buffers(page);
1924 do {
1925 if (lblk < mpd->map.m_lblk)
1926 continue;
1927 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1928 /*
1929 * Buffer after end of mapped extent.
1930 * Find next buffer in the page to map.
1931 */
1932 mpd->map.m_len = 0;
1933 mpd->map.m_flags = 0;
5f1132b2
JK
1934 /*
1935 * FIXME: If dioread_nolock supports
1936 * blocksize < pagesize, we need to make
1937 * sure we add size mapped so far to
1938 * io_end->size as the following call
1939 * can submit the page for IO.
1940 */
1941 err = mpage_process_page_bufs(mpd, head,
1942 bh, lblk);
4e7ea81d 1943 pagevec_release(&pvec);
5f1132b2
JK
1944 if (err > 0)
1945 err = 0;
1946 return err;
4e7ea81d
JK
1947 }
1948 if (buffer_delay(bh)) {
1949 clear_buffer_delay(bh);
1950 bh->b_blocknr = pblock++;
1951 }
4e7ea81d 1952 clear_buffer_unwritten(bh);
5f1132b2 1953 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
1954
1955 /*
1956 * FIXME: This is going to break if dioread_nolock
1957 * supports blocksize < pagesize as we will try to
1958 * convert potentially unmapped parts of inode.
1959 */
1960 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1961 /* Page fully mapped - let IO run! */
1962 err = mpage_submit_page(mpd, page);
1963 if (err < 0) {
1964 pagevec_release(&pvec);
1965 return err;
1966 }
1967 start++;
1968 }
1969 pagevec_release(&pvec);
1970 }
1971 /* Extent fully mapped and matches with page boundary. We are done. */
1972 mpd->map.m_len = 0;
1973 mpd->map.m_flags = 0;
1974 return 0;
1975}
1976
1977static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1978{
1979 struct inode *inode = mpd->inode;
1980 struct ext4_map_blocks *map = &mpd->map;
1981 int get_blocks_flags;
090f32ee 1982 int err, dioread_nolock;
4e7ea81d
JK
1983
1984 trace_ext4_da_write_pages_extent(inode, map);
1985 /*
1986 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 1987 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
1988 * where we have written into one or more preallocated blocks). It is
1989 * possible that we're going to need more metadata blocks than
1990 * previously reserved. However we must not fail because we're in
1991 * writeback and there is nothing we can do about it so it might result
1992 * in data loss. So use reserved blocks to allocate metadata if
1993 * possible.
1994 *
754cfed6
TT
1995 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1996 * the blocks in question are delalloc blocks. This indicates
1997 * that the blocks and quotas has already been checked when
1998 * the data was copied into the page cache.
4e7ea81d
JK
1999 */
2000 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2001 EXT4_GET_BLOCKS_METADATA_NOFAIL;
090f32ee
LC
2002 dioread_nolock = ext4_should_dioread_nolock(inode);
2003 if (dioread_nolock)
4e7ea81d
JK
2004 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2005 if (map->m_flags & (1 << BH_Delay))
2006 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2007
2008 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2009 if (err < 0)
2010 return err;
090f32ee 2011 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2012 if (!mpd->io_submit.io_end->handle &&
2013 ext4_handle_valid(handle)) {
2014 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2015 handle->h_rsv_handle = NULL;
2016 }
3613d228 2017 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2018 }
4e7ea81d
JK
2019
2020 BUG_ON(map->m_len == 0);
2021 if (map->m_flags & EXT4_MAP_NEW) {
2022 struct block_device *bdev = inode->i_sb->s_bdev;
2023 int i;
2024
2025 for (i = 0; i < map->m_len; i++)
2026 unmap_underlying_metadata(bdev, map->m_pblk + i);
2027 }
2028 return 0;
2029}
2030
2031/*
2032 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2033 * mpd->len and submit pages underlying it for IO
2034 *
2035 * @handle - handle for journal operations
2036 * @mpd - extent to map
7534e854
JK
2037 * @give_up_on_write - we set this to true iff there is a fatal error and there
2038 * is no hope of writing the data. The caller should discard
2039 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2040 *
2041 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2042 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2043 * them to initialized or split the described range from larger unwritten
2044 * extent. Note that we need not map all the described range since allocation
2045 * can return less blocks or the range is covered by more unwritten extents. We
2046 * cannot map more because we are limited by reserved transaction credits. On
2047 * the other hand we always make sure that the last touched page is fully
2048 * mapped so that it can be written out (and thus forward progress is
2049 * guaranteed). After mapping we submit all mapped pages for IO.
2050 */
2051static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2052 struct mpage_da_data *mpd,
2053 bool *give_up_on_write)
4e7ea81d
JK
2054{
2055 struct inode *inode = mpd->inode;
2056 struct ext4_map_blocks *map = &mpd->map;
2057 int err;
2058 loff_t disksize;
6603120e 2059 int progress = 0;
4e7ea81d
JK
2060
2061 mpd->io_submit.io_end->offset =
2062 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2063 do {
4e7ea81d
JK
2064 err = mpage_map_one_extent(handle, mpd);
2065 if (err < 0) {
2066 struct super_block *sb = inode->i_sb;
2067
cb530541
TT
2068 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2069 goto invalidate_dirty_pages;
4e7ea81d 2070 /*
cb530541
TT
2071 * Let the uper layers retry transient errors.
2072 * In the case of ENOSPC, if ext4_count_free_blocks()
2073 * is non-zero, a commit should free up blocks.
4e7ea81d 2074 */
cb530541 2075 if ((err == -ENOMEM) ||
6603120e
DM
2076 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2077 if (progress)
2078 goto update_disksize;
cb530541 2079 return err;
6603120e 2080 }
cb530541
TT
2081 ext4_msg(sb, KERN_CRIT,
2082 "Delayed block allocation failed for "
2083 "inode %lu at logical offset %llu with"
2084 " max blocks %u with error %d",
2085 inode->i_ino,
2086 (unsigned long long)map->m_lblk,
2087 (unsigned)map->m_len, -err);
2088 ext4_msg(sb, KERN_CRIT,
2089 "This should not happen!! Data will "
2090 "be lost\n");
2091 if (err == -ENOSPC)
2092 ext4_print_free_blocks(inode);
2093 invalidate_dirty_pages:
2094 *give_up_on_write = true;
4e7ea81d
JK
2095 return err;
2096 }
6603120e 2097 progress = 1;
4e7ea81d
JK
2098 /*
2099 * Update buffer state, submit mapped pages, and get us new
2100 * extent to map
2101 */
2102 err = mpage_map_and_submit_buffers(mpd);
2103 if (err < 0)
6603120e 2104 goto update_disksize;
27d7c4ed 2105 } while (map->m_len);
4e7ea81d 2106
6603120e 2107update_disksize:
622cad13
TT
2108 /*
2109 * Update on-disk size after IO is submitted. Races with
2110 * truncate are avoided by checking i_size under i_data_sem.
2111 */
4e7ea81d 2112 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
4e7ea81d
JK
2113 if (disksize > EXT4_I(inode)->i_disksize) {
2114 int err2;
622cad13
TT
2115 loff_t i_size;
2116
2117 down_write(&EXT4_I(inode)->i_data_sem);
2118 i_size = i_size_read(inode);
2119 if (disksize > i_size)
2120 disksize = i_size;
2121 if (disksize > EXT4_I(inode)->i_disksize)
2122 EXT4_I(inode)->i_disksize = disksize;
4e7ea81d 2123 err2 = ext4_mark_inode_dirty(handle, inode);
622cad13 2124 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d
JK
2125 if (err2)
2126 ext4_error(inode->i_sb,
2127 "Failed to mark inode %lu dirty",
2128 inode->i_ino);
2129 if (!err)
2130 err = err2;
2131 }
2132 return err;
2133}
2134
fffb2739
JK
2135/*
2136 * Calculate the total number of credits to reserve for one writepages
20970ba6 2137 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2138 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2139 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2140 * bpp - 1 blocks in bpp different extents.
2141 */
525f4ed8
MC
2142static int ext4_da_writepages_trans_blocks(struct inode *inode)
2143{
fffb2739 2144 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2145
fffb2739
JK
2146 return ext4_meta_trans_blocks(inode,
2147 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2148}
61628a3f 2149
8e48dcfb 2150/*
4e7ea81d
JK
2151 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2152 * and underlying extent to map
2153 *
2154 * @mpd - where to look for pages
2155 *
2156 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2157 * IO immediately. When we find a page which isn't mapped we start accumulating
2158 * extent of buffers underlying these pages that needs mapping (formed by
2159 * either delayed or unwritten buffers). We also lock the pages containing
2160 * these buffers. The extent found is returned in @mpd structure (starting at
2161 * mpd->lblk with length mpd->len blocks).
2162 *
2163 * Note that this function can attach bios to one io_end structure which are
2164 * neither logically nor physically contiguous. Although it may seem as an
2165 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2166 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2167 */
4e7ea81d 2168static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2169{
4e7ea81d
JK
2170 struct address_space *mapping = mpd->inode->i_mapping;
2171 struct pagevec pvec;
2172 unsigned int nr_pages;
aeac589a 2173 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2174 pgoff_t index = mpd->first_page;
2175 pgoff_t end = mpd->last_page;
2176 int tag;
2177 int i, err = 0;
2178 int blkbits = mpd->inode->i_blkbits;
2179 ext4_lblk_t lblk;
2180 struct buffer_head *head;
8e48dcfb 2181
4e7ea81d 2182 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2183 tag = PAGECACHE_TAG_TOWRITE;
2184 else
2185 tag = PAGECACHE_TAG_DIRTY;
2186
4e7ea81d
JK
2187 pagevec_init(&pvec, 0);
2188 mpd->map.m_len = 0;
2189 mpd->next_page = index;
4f01b02c 2190 while (index <= end) {
5b41d924 2191 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2192 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2193 if (nr_pages == 0)
4e7ea81d 2194 goto out;
8e48dcfb
TT
2195
2196 for (i = 0; i < nr_pages; i++) {
2197 struct page *page = pvec.pages[i];
2198
2199 /*
2200 * At this point, the page may be truncated or
2201 * invalidated (changing page->mapping to NULL), or
2202 * even swizzled back from swapper_space to tmpfs file
2203 * mapping. However, page->index will not change
2204 * because we have a reference on the page.
2205 */
4f01b02c
TT
2206 if (page->index > end)
2207 goto out;
8e48dcfb 2208
aeac589a
ML
2209 /*
2210 * Accumulated enough dirty pages? This doesn't apply
2211 * to WB_SYNC_ALL mode. For integrity sync we have to
2212 * keep going because someone may be concurrently
2213 * dirtying pages, and we might have synced a lot of
2214 * newly appeared dirty pages, but have not synced all
2215 * of the old dirty pages.
2216 */
2217 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2218 goto out;
2219
4e7ea81d
JK
2220 /* If we can't merge this page, we are done. */
2221 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2222 goto out;
78aaced3 2223
8e48dcfb 2224 lock_page(page);
8e48dcfb 2225 /*
4e7ea81d
JK
2226 * If the page is no longer dirty, or its mapping no
2227 * longer corresponds to inode we are writing (which
2228 * means it has been truncated or invalidated), or the
2229 * page is already under writeback and we are not doing
2230 * a data integrity writeback, skip the page
8e48dcfb 2231 */
4f01b02c
TT
2232 if (!PageDirty(page) ||
2233 (PageWriteback(page) &&
4e7ea81d 2234 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2235 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2236 unlock_page(page);
2237 continue;
2238 }
2239
7cb1a535 2240 wait_on_page_writeback(page);
8e48dcfb 2241 BUG_ON(PageWriteback(page));
8e48dcfb 2242
4e7ea81d 2243 if (mpd->map.m_len == 0)
8eb9e5ce 2244 mpd->first_page = page->index;
8eb9e5ce 2245 mpd->next_page = page->index + 1;
f8bec370 2246 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2247 lblk = ((ext4_lblk_t)page->index) <<
2248 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2249 head = page_buffers(page);
5f1132b2
JK
2250 err = mpage_process_page_bufs(mpd, head, head, lblk);
2251 if (err <= 0)
4e7ea81d 2252 goto out;
5f1132b2 2253 err = 0;
aeac589a 2254 left--;
8e48dcfb
TT
2255 }
2256 pagevec_release(&pvec);
2257 cond_resched();
2258 }
4f01b02c 2259 return 0;
8eb9e5ce
TT
2260out:
2261 pagevec_release(&pvec);
4e7ea81d 2262 return err;
8e48dcfb
TT
2263}
2264
20970ba6
TT
2265static int __writepage(struct page *page, struct writeback_control *wbc,
2266 void *data)
2267{
2268 struct address_space *mapping = data;
2269 int ret = ext4_writepage(page, wbc);
2270 mapping_set_error(mapping, ret);
2271 return ret;
2272}
2273
2274static int ext4_writepages(struct address_space *mapping,
2275 struct writeback_control *wbc)
64769240 2276{
4e7ea81d
JK
2277 pgoff_t writeback_index = 0;
2278 long nr_to_write = wbc->nr_to_write;
22208ded 2279 int range_whole = 0;
4e7ea81d 2280 int cycled = 1;
61628a3f 2281 handle_t *handle = NULL;
df22291f 2282 struct mpage_da_data mpd;
5e745b04 2283 struct inode *inode = mapping->host;
6b523df4 2284 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2285 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2286 bool done;
1bce63d1 2287 struct blk_plug plug;
cb530541 2288 bool give_up_on_write = false;
61628a3f 2289
20970ba6 2290 trace_ext4_writepages(inode, wbc);
ba80b101 2291
61628a3f
MC
2292 /*
2293 * No pages to write? This is mainly a kludge to avoid starting
2294 * a transaction for special inodes like journal inode on last iput()
2295 * because that could violate lock ordering on umount
2296 */
a1d6cc56 2297 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2298 goto out_writepages;
2a21e37e 2299
20970ba6
TT
2300 if (ext4_should_journal_data(inode)) {
2301 struct blk_plug plug;
20970ba6
TT
2302
2303 blk_start_plug(&plug);
2304 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2305 blk_finish_plug(&plug);
bbf023c7 2306 goto out_writepages;
20970ba6
TT
2307 }
2308
2a21e37e
TT
2309 /*
2310 * If the filesystem has aborted, it is read-only, so return
2311 * right away instead of dumping stack traces later on that
2312 * will obscure the real source of the problem. We test
4ab2f15b 2313 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2314 * the latter could be true if the filesystem is mounted
20970ba6 2315 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2316 * *never* be called, so if that ever happens, we would want
2317 * the stack trace.
2318 */
bbf023c7
ML
2319 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2320 ret = -EROFS;
2321 goto out_writepages;
2322 }
2a21e37e 2323
6b523df4
JK
2324 if (ext4_should_dioread_nolock(inode)) {
2325 /*
70261f56 2326 * We may need to convert up to one extent per block in
6b523df4
JK
2327 * the page and we may dirty the inode.
2328 */
2329 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2330 }
2331
4e7ea81d
JK
2332 /*
2333 * If we have inline data and arrive here, it means that
2334 * we will soon create the block for the 1st page, so
2335 * we'd better clear the inline data here.
2336 */
2337 if (ext4_has_inline_data(inode)) {
2338 /* Just inode will be modified... */
2339 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2340 if (IS_ERR(handle)) {
2341 ret = PTR_ERR(handle);
2342 goto out_writepages;
2343 }
2344 BUG_ON(ext4_test_inode_state(inode,
2345 EXT4_STATE_MAY_INLINE_DATA));
2346 ext4_destroy_inline_data(handle, inode);
2347 ext4_journal_stop(handle);
2348 }
2349
22208ded
AK
2350 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2351 range_whole = 1;
61628a3f 2352
2acf2c26 2353 if (wbc->range_cyclic) {
4e7ea81d
JK
2354 writeback_index = mapping->writeback_index;
2355 if (writeback_index)
2acf2c26 2356 cycled = 0;
4e7ea81d
JK
2357 mpd.first_page = writeback_index;
2358 mpd.last_page = -1;
5b41d924 2359 } else {
4e7ea81d
JK
2360 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2361 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2362 }
a1d6cc56 2363
4e7ea81d
JK
2364 mpd.inode = inode;
2365 mpd.wbc = wbc;
2366 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2367retry:
6e6938b6 2368 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2369 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2370 done = false;
1bce63d1 2371 blk_start_plug(&plug);
4e7ea81d
JK
2372 while (!done && mpd.first_page <= mpd.last_page) {
2373 /* For each extent of pages we use new io_end */
2374 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2375 if (!mpd.io_submit.io_end) {
2376 ret = -ENOMEM;
2377 break;
2378 }
a1d6cc56
AK
2379
2380 /*
4e7ea81d
JK
2381 * We have two constraints: We find one extent to map and we
2382 * must always write out whole page (makes a difference when
2383 * blocksize < pagesize) so that we don't block on IO when we
2384 * try to write out the rest of the page. Journalled mode is
2385 * not supported by delalloc.
a1d6cc56
AK
2386 */
2387 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2388 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2389
4e7ea81d 2390 /* start a new transaction */
6b523df4
JK
2391 handle = ext4_journal_start_with_reserve(inode,
2392 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2393 if (IS_ERR(handle)) {
2394 ret = PTR_ERR(handle);
1693918e 2395 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2396 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2397 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2398 /* Release allocated io_end */
2399 ext4_put_io_end(mpd.io_submit.io_end);
2400 break;
61628a3f 2401 }
f63e6005 2402
4e7ea81d
JK
2403 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2404 ret = mpage_prepare_extent_to_map(&mpd);
2405 if (!ret) {
2406 if (mpd.map.m_len)
cb530541
TT
2407 ret = mpage_map_and_submit_extent(handle, &mpd,
2408 &give_up_on_write);
4e7ea81d
JK
2409 else {
2410 /*
2411 * We scanned the whole range (or exhausted
2412 * nr_to_write), submitted what was mapped and
2413 * didn't find anything needing mapping. We are
2414 * done.
2415 */
2416 done = true;
2417 }
f63e6005 2418 }
61628a3f 2419 ext4_journal_stop(handle);
4e7ea81d
JK
2420 /* Submit prepared bio */
2421 ext4_io_submit(&mpd.io_submit);
2422 /* Unlock pages we didn't use */
cb530541 2423 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2424 /* Drop our io_end reference we got from init */
2425 ext4_put_io_end(mpd.io_submit.io_end);
2426
2427 if (ret == -ENOSPC && sbi->s_journal) {
2428 /*
2429 * Commit the transaction which would
22208ded
AK
2430 * free blocks released in the transaction
2431 * and try again
2432 */
df22291f 2433 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2434 ret = 0;
4e7ea81d
JK
2435 continue;
2436 }
2437 /* Fatal error - ENOMEM, EIO... */
2438 if (ret)
61628a3f 2439 break;
a1d6cc56 2440 }
1bce63d1 2441 blk_finish_plug(&plug);
9c12a831 2442 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2443 cycled = 1;
4e7ea81d
JK
2444 mpd.last_page = writeback_index - 1;
2445 mpd.first_page = 0;
2acf2c26
AK
2446 goto retry;
2447 }
22208ded
AK
2448
2449 /* Update index */
22208ded
AK
2450 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2451 /*
4e7ea81d 2452 * Set the writeback_index so that range_cyclic
22208ded
AK
2453 * mode will write it back later
2454 */
4e7ea81d 2455 mapping->writeback_index = mpd.first_page;
a1d6cc56 2456
61628a3f 2457out_writepages:
20970ba6
TT
2458 trace_ext4_writepages_result(inode, wbc, ret,
2459 nr_to_write - wbc->nr_to_write);
61628a3f 2460 return ret;
64769240
AT
2461}
2462
79f0be8d
AK
2463static int ext4_nonda_switch(struct super_block *sb)
2464{
5c1ff336 2465 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2466 struct ext4_sb_info *sbi = EXT4_SB(sb);
2467
2468 /*
2469 * switch to non delalloc mode if we are running low
2470 * on free block. The free block accounting via percpu
179f7ebf 2471 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2472 * accumulated on each CPU without updating global counters
2473 * Delalloc need an accurate free block accounting. So switch
2474 * to non delalloc when we are near to error range.
2475 */
5c1ff336
EW
2476 free_clusters =
2477 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2478 dirty_clusters =
2479 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2480 /*
2481 * Start pushing delalloc when 1/2 of free blocks are dirty.
2482 */
5c1ff336 2483 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2484 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2485
5c1ff336
EW
2486 if (2 * free_clusters < 3 * dirty_clusters ||
2487 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2488 /*
c8afb446
ES
2489 * free block count is less than 150% of dirty blocks
2490 * or free blocks is less than watermark
79f0be8d
AK
2491 */
2492 return 1;
2493 }
2494 return 0;
2495}
2496
0ff8947f
ES
2497/* We always reserve for an inode update; the superblock could be there too */
2498static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2499{
2500 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2501 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2502 return 1;
2503
2504 if (pos + len <= 0x7fffffffULL)
2505 return 1;
2506
2507 /* We might need to update the superblock to set LARGE_FILE */
2508 return 2;
2509}
2510
64769240 2511static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2512 loff_t pos, unsigned len, unsigned flags,
2513 struct page **pagep, void **fsdata)
64769240 2514{
72b8ab9d 2515 int ret, retries = 0;
64769240
AT
2516 struct page *page;
2517 pgoff_t index;
64769240
AT
2518 struct inode *inode = mapping->host;
2519 handle_t *handle;
2520
2521 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2522
2523 if (ext4_nonda_switch(inode->i_sb)) {
2524 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2525 return ext4_write_begin(file, mapping, pos,
2526 len, flags, pagep, fsdata);
2527 }
2528 *fsdata = (void *)0;
9bffad1e 2529 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2530
2531 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2532 ret = ext4_da_write_inline_data_begin(mapping, inode,
2533 pos, len, flags,
2534 pagep, fsdata);
2535 if (ret < 0)
47564bfb
TT
2536 return ret;
2537 if (ret == 1)
2538 return 0;
9c3569b5
TM
2539 }
2540
47564bfb
TT
2541 /*
2542 * grab_cache_page_write_begin() can take a long time if the
2543 * system is thrashing due to memory pressure, or if the page
2544 * is being written back. So grab it first before we start
2545 * the transaction handle. This also allows us to allocate
2546 * the page (if needed) without using GFP_NOFS.
2547 */
2548retry_grab:
2549 page = grab_cache_page_write_begin(mapping, index, flags);
2550 if (!page)
2551 return -ENOMEM;
2552 unlock_page(page);
2553
64769240
AT
2554 /*
2555 * With delayed allocation, we don't log the i_disksize update
2556 * if there is delayed block allocation. But we still need
2557 * to journalling the i_disksize update if writes to the end
2558 * of file which has an already mapped buffer.
2559 */
47564bfb 2560retry_journal:
0ff8947f
ES
2561 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2562 ext4_da_write_credits(inode, pos, len));
64769240 2563 if (IS_ERR(handle)) {
47564bfb
TT
2564 page_cache_release(page);
2565 return PTR_ERR(handle);
64769240
AT
2566 }
2567
47564bfb
TT
2568 lock_page(page);
2569 if (page->mapping != mapping) {
2570 /* The page got truncated from under us */
2571 unlock_page(page);
2572 page_cache_release(page);
d5a0d4f7 2573 ext4_journal_stop(handle);
47564bfb 2574 goto retry_grab;
d5a0d4f7 2575 }
47564bfb 2576 /* In case writeback began while the page was unlocked */
7afe5aa5 2577 wait_for_stable_page(page);
64769240 2578
6e1db88d 2579 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2580 if (ret < 0) {
2581 unlock_page(page);
2582 ext4_journal_stop(handle);
ae4d5372
AK
2583 /*
2584 * block_write_begin may have instantiated a few blocks
2585 * outside i_size. Trim these off again. Don't need
2586 * i_size_read because we hold i_mutex.
2587 */
2588 if (pos + len > inode->i_size)
b9a4207d 2589 ext4_truncate_failed_write(inode);
47564bfb
TT
2590
2591 if (ret == -ENOSPC &&
2592 ext4_should_retry_alloc(inode->i_sb, &retries))
2593 goto retry_journal;
2594
2595 page_cache_release(page);
2596 return ret;
64769240
AT
2597 }
2598
47564bfb 2599 *pagep = page;
64769240
AT
2600 return ret;
2601}
2602
632eaeab
MC
2603/*
2604 * Check if we should update i_disksize
2605 * when write to the end of file but not require block allocation
2606 */
2607static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2608 unsigned long offset)
632eaeab
MC
2609{
2610 struct buffer_head *bh;
2611 struct inode *inode = page->mapping->host;
2612 unsigned int idx;
2613 int i;
2614
2615 bh = page_buffers(page);
2616 idx = offset >> inode->i_blkbits;
2617
af5bc92d 2618 for (i = 0; i < idx; i++)
632eaeab
MC
2619 bh = bh->b_this_page;
2620
29fa89d0 2621 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2622 return 0;
2623 return 1;
2624}
2625
64769240 2626static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2627 struct address_space *mapping,
2628 loff_t pos, unsigned len, unsigned copied,
2629 struct page *page, void *fsdata)
64769240
AT
2630{
2631 struct inode *inode = mapping->host;
2632 int ret = 0, ret2;
2633 handle_t *handle = ext4_journal_current_handle();
2634 loff_t new_i_size;
632eaeab 2635 unsigned long start, end;
79f0be8d
AK
2636 int write_mode = (int)(unsigned long)fsdata;
2637
74d553aa
TT
2638 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2639 return ext4_write_end(file, mapping, pos,
2640 len, copied, page, fsdata);
632eaeab 2641
9bffad1e 2642 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2643 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2644 end = start + copied - 1;
64769240
AT
2645
2646 /*
2647 * generic_write_end() will run mark_inode_dirty() if i_size
2648 * changes. So let's piggyback the i_disksize mark_inode_dirty
2649 * into that.
2650 */
64769240 2651 new_i_size = pos + copied;
ea51d132 2652 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2653 if (ext4_has_inline_data(inode) ||
2654 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 2655 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
2656 /* We need to mark inode dirty even if
2657 * new_i_size is less that inode->i_size
2658 * bu greater than i_disksize.(hint delalloc)
2659 */
2660 ext4_mark_inode_dirty(handle, inode);
64769240 2661 }
632eaeab 2662 }
9c3569b5
TM
2663
2664 if (write_mode != CONVERT_INLINE_DATA &&
2665 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2666 ext4_has_inline_data(inode))
2667 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2668 page);
2669 else
2670 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2671 page, fsdata);
9c3569b5 2672
64769240
AT
2673 copied = ret2;
2674 if (ret2 < 0)
2675 ret = ret2;
2676 ret2 = ext4_journal_stop(handle);
2677 if (!ret)
2678 ret = ret2;
2679
2680 return ret ? ret : copied;
2681}
2682
d47992f8
LC
2683static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2684 unsigned int length)
64769240 2685{
64769240
AT
2686 /*
2687 * Drop reserved blocks
2688 */
2689 BUG_ON(!PageLocked(page));
2690 if (!page_has_buffers(page))
2691 goto out;
2692
ca99fdd2 2693 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2694
2695out:
d47992f8 2696 ext4_invalidatepage(page, offset, length);
64769240
AT
2697
2698 return;
2699}
2700
ccd2506b
TT
2701/*
2702 * Force all delayed allocation blocks to be allocated for a given inode.
2703 */
2704int ext4_alloc_da_blocks(struct inode *inode)
2705{
fb40ba0d
TT
2706 trace_ext4_alloc_da_blocks(inode);
2707
71d4f7d0 2708 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
2709 return 0;
2710
2711 /*
2712 * We do something simple for now. The filemap_flush() will
2713 * also start triggering a write of the data blocks, which is
2714 * not strictly speaking necessary (and for users of
2715 * laptop_mode, not even desirable). However, to do otherwise
2716 * would require replicating code paths in:
de9a55b8 2717 *
20970ba6 2718 * ext4_writepages() ->
ccd2506b
TT
2719 * write_cache_pages() ---> (via passed in callback function)
2720 * __mpage_da_writepage() -->
2721 * mpage_add_bh_to_extent()
2722 * mpage_da_map_blocks()
2723 *
2724 * The problem is that write_cache_pages(), located in
2725 * mm/page-writeback.c, marks pages clean in preparation for
2726 * doing I/O, which is not desirable if we're not planning on
2727 * doing I/O at all.
2728 *
2729 * We could call write_cache_pages(), and then redirty all of
380cf090 2730 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2731 * would be ugly in the extreme. So instead we would need to
2732 * replicate parts of the code in the above functions,
25985edc 2733 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2734 * write out the pages, but rather only collect contiguous
2735 * logical block extents, call the multi-block allocator, and
2736 * then update the buffer heads with the block allocations.
de9a55b8 2737 *
ccd2506b
TT
2738 * For now, though, we'll cheat by calling filemap_flush(),
2739 * which will map the blocks, and start the I/O, but not
2740 * actually wait for the I/O to complete.
2741 */
2742 return filemap_flush(inode->i_mapping);
2743}
64769240 2744
ac27a0ec
DK
2745/*
2746 * bmap() is special. It gets used by applications such as lilo and by
2747 * the swapper to find the on-disk block of a specific piece of data.
2748 *
2749 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2750 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2751 * filesystem and enables swap, then they may get a nasty shock when the
2752 * data getting swapped to that swapfile suddenly gets overwritten by
2753 * the original zero's written out previously to the journal and
2754 * awaiting writeback in the kernel's buffer cache.
2755 *
2756 * So, if we see any bmap calls here on a modified, data-journaled file,
2757 * take extra steps to flush any blocks which might be in the cache.
2758 */
617ba13b 2759static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2760{
2761 struct inode *inode = mapping->host;
2762 journal_t *journal;
2763 int err;
2764
46c7f254
TM
2765 /*
2766 * We can get here for an inline file via the FIBMAP ioctl
2767 */
2768 if (ext4_has_inline_data(inode))
2769 return 0;
2770
64769240
AT
2771 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2772 test_opt(inode->i_sb, DELALLOC)) {
2773 /*
2774 * With delalloc we want to sync the file
2775 * so that we can make sure we allocate
2776 * blocks for file
2777 */
2778 filemap_write_and_wait(mapping);
2779 }
2780
19f5fb7a
TT
2781 if (EXT4_JOURNAL(inode) &&
2782 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2783 /*
2784 * This is a REALLY heavyweight approach, but the use of
2785 * bmap on dirty files is expected to be extremely rare:
2786 * only if we run lilo or swapon on a freshly made file
2787 * do we expect this to happen.
2788 *
2789 * (bmap requires CAP_SYS_RAWIO so this does not
2790 * represent an unprivileged user DOS attack --- we'd be
2791 * in trouble if mortal users could trigger this path at
2792 * will.)
2793 *
617ba13b 2794 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2795 * regular files. If somebody wants to bmap a directory
2796 * or symlink and gets confused because the buffer
2797 * hasn't yet been flushed to disk, they deserve
2798 * everything they get.
2799 */
2800
19f5fb7a 2801 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2802 journal = EXT4_JOURNAL(inode);
dab291af
MC
2803 jbd2_journal_lock_updates(journal);
2804 err = jbd2_journal_flush(journal);
2805 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2806
2807 if (err)
2808 return 0;
2809 }
2810
af5bc92d 2811 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2812}
2813
617ba13b 2814static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2815{
46c7f254
TM
2816 int ret = -EAGAIN;
2817 struct inode *inode = page->mapping->host;
2818
0562e0ba 2819 trace_ext4_readpage(page);
46c7f254
TM
2820
2821 if (ext4_has_inline_data(inode))
2822 ret = ext4_readpage_inline(inode, page);
2823
2824 if (ret == -EAGAIN)
2825 return mpage_readpage(page, ext4_get_block);
2826
2827 return ret;
ac27a0ec
DK
2828}
2829
2830static int
617ba13b 2831ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2832 struct list_head *pages, unsigned nr_pages)
2833{
46c7f254
TM
2834 struct inode *inode = mapping->host;
2835
2836 /* If the file has inline data, no need to do readpages. */
2837 if (ext4_has_inline_data(inode))
2838 return 0;
2839
617ba13b 2840 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2841}
2842
d47992f8
LC
2843static void ext4_invalidatepage(struct page *page, unsigned int offset,
2844 unsigned int length)
ac27a0ec 2845{
ca99fdd2 2846 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2847
4520fb3c
JK
2848 /* No journalling happens on data buffers when this function is used */
2849 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2850
ca99fdd2 2851 block_invalidatepage(page, offset, length);
4520fb3c
JK
2852}
2853
53e87268 2854static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2855 unsigned int offset,
2856 unsigned int length)
4520fb3c
JK
2857{
2858 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2859
ca99fdd2 2860 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2861
ac27a0ec
DK
2862 /*
2863 * If it's a full truncate we just forget about the pending dirtying
2864 */
ca99fdd2 2865 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2866 ClearPageChecked(page);
2867
ca99fdd2 2868 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
2869}
2870
2871/* Wrapper for aops... */
2872static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
2873 unsigned int offset,
2874 unsigned int length)
53e87268 2875{
ca99fdd2 2876 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
2877}
2878
617ba13b 2879static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2880{
617ba13b 2881 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2882
0562e0ba
JZ
2883 trace_ext4_releasepage(page);
2884
e1c36595
JK
2885 /* Page has dirty journalled data -> cannot release */
2886 if (PageChecked(page))
ac27a0ec 2887 return 0;
0390131b
FM
2888 if (journal)
2889 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2890 else
2891 return try_to_free_buffers(page);
ac27a0ec
DK
2892}
2893
2ed88685
TT
2894/*
2895 * ext4_get_block used when preparing for a DIO write or buffer write.
2896 * We allocate an uinitialized extent if blocks haven't been allocated.
2897 * The extent will be converted to initialized after the IO is complete.
2898 */
f19d5870 2899int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2900 struct buffer_head *bh_result, int create)
2901{
c7064ef1 2902 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2903 inode->i_ino, create);
2ed88685
TT
2904 return _ext4_get_block(inode, iblock, bh_result,
2905 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2906}
2907
729f52c6 2908static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 2909 struct buffer_head *bh_result, int create)
729f52c6 2910{
8b0f165f
AP
2911 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2912 inode->i_ino, create);
2913 return _ext4_get_block(inode, iblock, bh_result,
2914 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
2915}
2916
4c0425ff 2917static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 2918 ssize_t size, void *private)
4c0425ff
MC
2919{
2920 ext4_io_end_t *io_end = iocb->private;
4c0425ff 2921
97a851ed 2922 /* if not async direct IO just return */
7b7a8665 2923 if (!io_end)
97a851ed 2924 return;
4b70df18 2925
88635ca2 2926 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 2927 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
2928 iocb->private, io_end->inode->i_ino, iocb, offset,
2929 size);
8d5d02e6 2930
b5a7e970 2931 iocb->private = NULL;
4c0425ff
MC
2932 io_end->offset = offset;
2933 io_end->size = size;
7b7a8665 2934 ext4_put_io_end(io_end);
4c0425ff 2935}
c7064ef1 2936
4c0425ff
MC
2937/*
2938 * For ext4 extent files, ext4 will do direct-io write to holes,
2939 * preallocated extents, and those write extend the file, no need to
2940 * fall back to buffered IO.
2941 *
556615dc 2942 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 2943 * If those blocks were preallocated, we mark sure they are split, but
556615dc 2944 * still keep the range to write as unwritten.
4c0425ff 2945 *
69c499d1 2946 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 2947 * For async direct IO, since the IO may still pending when return, we
25985edc 2948 * set up an end_io call back function, which will do the conversion
8d5d02e6 2949 * when async direct IO completed.
4c0425ff
MC
2950 *
2951 * If the O_DIRECT write will extend the file then add this inode to the
2952 * orphan list. So recovery will truncate it back to the original size
2953 * if the machine crashes during the write.
2954 *
2955 */
2956static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
16b1f05d 2957 struct iov_iter *iter, loff_t offset)
4c0425ff
MC
2958{
2959 struct file *file = iocb->ki_filp;
2960 struct inode *inode = file->f_mapping->host;
2961 ssize_t ret;
a6cbcd4a 2962 size_t count = iov_iter_count(iter);
69c499d1
TT
2963 int overwrite = 0;
2964 get_block_t *get_block_func = NULL;
2965 int dio_flags = 0;
4c0425ff 2966 loff_t final_size = offset + count;
97a851ed 2967 ext4_io_end_t *io_end = NULL;
729f52c6 2968
69c499d1
TT
2969 /* Use the old path for reads and writes beyond i_size. */
2970 if (rw != WRITE || final_size > inode->i_size)
16b1f05d 2971 return ext4_ind_direct_IO(rw, iocb, iter, offset);
4bd809db 2972
69c499d1 2973 BUG_ON(iocb->private == NULL);
4bd809db 2974
e8340395
JK
2975 /*
2976 * Make all waiters for direct IO properly wait also for extent
2977 * conversion. This also disallows race between truncate() and
2978 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2979 */
2980 if (rw == WRITE)
2981 atomic_inc(&inode->i_dio_count);
2982
69c499d1
TT
2983 /* If we do a overwrite dio, i_mutex locking can be released */
2984 overwrite = *((int *)iocb->private);
4bd809db 2985
69c499d1 2986 if (overwrite) {
69c499d1
TT
2987 down_read(&EXT4_I(inode)->i_data_sem);
2988 mutex_unlock(&inode->i_mutex);
2989 }
8d5d02e6 2990
69c499d1
TT
2991 /*
2992 * We could direct write to holes and fallocate.
2993 *
2994 * Allocated blocks to fill the hole are marked as
556615dc 2995 * unwritten to prevent parallel buffered read to expose
69c499d1
TT
2996 * the stale data before DIO complete the data IO.
2997 *
2998 * As to previously fallocated extents, ext4 get_block will
2999 * just simply mark the buffer mapped but still keep the
556615dc 3000 * extents unwritten.
69c499d1
TT
3001 *
3002 * For non AIO case, we will convert those unwritten extents
3003 * to written after return back from blockdev_direct_IO.
3004 *
3005 * For async DIO, the conversion needs to be deferred when the
3006 * IO is completed. The ext4 end_io callback function will be
3007 * called to take care of the conversion work. Here for async
3008 * case, we allocate an io_end structure to hook to the iocb.
3009 */
3010 iocb->private = NULL;
3011 ext4_inode_aio_set(inode, NULL);
3012 if (!is_sync_kiocb(iocb)) {
97a851ed 3013 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3014 if (!io_end) {
3015 ret = -ENOMEM;
3016 goto retake_lock;
8b0f165f 3017 }
97a851ed
JK
3018 /*
3019 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3020 */
3021 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3022 /*
69c499d1
TT
3023 * we save the io structure for current async direct
3024 * IO, so that later ext4_map_blocks() could flag the
3025 * io structure whether there is a unwritten extents
3026 * needs to be converted when IO is completed.
8d5d02e6 3027 */
69c499d1
TT
3028 ext4_inode_aio_set(inode, io_end);
3029 }
4bd809db 3030
69c499d1
TT
3031 if (overwrite) {
3032 get_block_func = ext4_get_block_write_nolock;
3033 } else {
3034 get_block_func = ext4_get_block_write;
3035 dio_flags = DIO_LOCKING;
3036 }
923ae0ff
RZ
3037 if (IS_DAX(inode))
3038 ret = dax_do_io(rw, iocb, inode, iter, offset, get_block_func,
3039 ext4_end_io_dio, dio_flags);
3040 else
3041 ret = __blockdev_direct_IO(rw, iocb, inode,
3042 inode->i_sb->s_bdev, iter, offset,
3043 get_block_func,
3044 ext4_end_io_dio, NULL, dio_flags);
69c499d1 3045
69c499d1 3046 /*
97a851ed
JK
3047 * Put our reference to io_end. This can free the io_end structure e.g.
3048 * in sync IO case or in case of error. It can even perform extent
3049 * conversion if all bios we submitted finished before we got here.
3050 * Note that in that case iocb->private can be already set to NULL
3051 * here.
69c499d1 3052 */
97a851ed
JK
3053 if (io_end) {
3054 ext4_inode_aio_set(inode, NULL);
3055 ext4_put_io_end(io_end);
3056 /*
3057 * When no IO was submitted ext4_end_io_dio() was not
3058 * called so we have to put iocb's reference.
3059 */
3060 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3061 WARN_ON(iocb->private != io_end);
3062 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
97a851ed
JK
3063 ext4_put_io_end(io_end);
3064 iocb->private = NULL;
3065 }
3066 }
3067 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3068 EXT4_STATE_DIO_UNWRITTEN)) {
3069 int err;
3070 /*
3071 * for non AIO case, since the IO is already
3072 * completed, we could do the conversion right here
3073 */
6b523df4 3074 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3075 offset, ret);
3076 if (err < 0)
3077 ret = err;
3078 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3079 }
4bd809db 3080
69c499d1 3081retake_lock:
e8340395
JK
3082 if (rw == WRITE)
3083 inode_dio_done(inode);
69c499d1
TT
3084 /* take i_mutex locking again if we do a ovewrite dio */
3085 if (overwrite) {
69c499d1
TT
3086 up_read(&EXT4_I(inode)->i_data_sem);
3087 mutex_lock(&inode->i_mutex);
4c0425ff 3088 }
8d5d02e6 3089
69c499d1 3090 return ret;
4c0425ff
MC
3091}
3092
3093static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
d8d3d94b 3094 struct iov_iter *iter, loff_t offset)
4c0425ff
MC
3095{
3096 struct file *file = iocb->ki_filp;
3097 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3098 size_t count = iov_iter_count(iter);
0562e0ba 3099 ssize_t ret;
4c0425ff 3100
84ebd795
TT
3101 /*
3102 * If we are doing data journalling we don't support O_DIRECT
3103 */
3104 if (ext4_should_journal_data(inode))
3105 return 0;
3106
46c7f254
TM
3107 /* Let buffer I/O handle the inline data case. */
3108 if (ext4_has_inline_data(inode))
3109 return 0;
3110
a6cbcd4a 3111 trace_ext4_direct_IO_enter(inode, offset, count, rw);
12e9b892 3112 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
16b1f05d 3113 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
0562e0ba 3114 else
16b1f05d 3115 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
a6cbcd4a 3116 trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
0562e0ba 3117 return ret;
4c0425ff
MC
3118}
3119
ac27a0ec 3120/*
617ba13b 3121 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3122 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3123 * much here because ->set_page_dirty is called under VFS locks. The page is
3124 * not necessarily locked.
3125 *
3126 * We cannot just dirty the page and leave attached buffers clean, because the
3127 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3128 * or jbddirty because all the journalling code will explode.
3129 *
3130 * So what we do is to mark the page "pending dirty" and next time writepage
3131 * is called, propagate that into the buffers appropriately.
3132 */
617ba13b 3133static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3134{
3135 SetPageChecked(page);
3136 return __set_page_dirty_nobuffers(page);
3137}
3138
74d553aa 3139static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3140 .readpage = ext4_readpage,
3141 .readpages = ext4_readpages,
43ce1d23 3142 .writepage = ext4_writepage,
20970ba6 3143 .writepages = ext4_writepages,
8ab22b9a 3144 .write_begin = ext4_write_begin,
74d553aa 3145 .write_end = ext4_write_end,
8ab22b9a
HH
3146 .bmap = ext4_bmap,
3147 .invalidatepage = ext4_invalidatepage,
3148 .releasepage = ext4_releasepage,
3149 .direct_IO = ext4_direct_IO,
3150 .migratepage = buffer_migrate_page,
3151 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3152 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3153};
3154
617ba13b 3155static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3156 .readpage = ext4_readpage,
3157 .readpages = ext4_readpages,
43ce1d23 3158 .writepage = ext4_writepage,
20970ba6 3159 .writepages = ext4_writepages,
8ab22b9a
HH
3160 .write_begin = ext4_write_begin,
3161 .write_end = ext4_journalled_write_end,
3162 .set_page_dirty = ext4_journalled_set_page_dirty,
3163 .bmap = ext4_bmap,
4520fb3c 3164 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3165 .releasepage = ext4_releasepage,
84ebd795 3166 .direct_IO = ext4_direct_IO,
8ab22b9a 3167 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3168 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3169};
3170
64769240 3171static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3172 .readpage = ext4_readpage,
3173 .readpages = ext4_readpages,
43ce1d23 3174 .writepage = ext4_writepage,
20970ba6 3175 .writepages = ext4_writepages,
8ab22b9a
HH
3176 .write_begin = ext4_da_write_begin,
3177 .write_end = ext4_da_write_end,
3178 .bmap = ext4_bmap,
3179 .invalidatepage = ext4_da_invalidatepage,
3180 .releasepage = ext4_releasepage,
3181 .direct_IO = ext4_direct_IO,
3182 .migratepage = buffer_migrate_page,
3183 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3184 .error_remove_page = generic_error_remove_page,
64769240
AT
3185};
3186
617ba13b 3187void ext4_set_aops(struct inode *inode)
ac27a0ec 3188{
3d2b1582
LC
3189 switch (ext4_inode_journal_mode(inode)) {
3190 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3191 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3192 break;
3193 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3194 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3195 break;
3196 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3197 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3198 return;
3d2b1582
LC
3199 default:
3200 BUG();
3201 }
74d553aa
TT
3202 if (test_opt(inode->i_sb, DELALLOC))
3203 inode->i_mapping->a_ops = &ext4_da_aops;
3204 else
3205 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3206}
3207
923ae0ff 3208static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3209 struct address_space *mapping, loff_t from, loff_t length)
3210{
3211 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3212 unsigned offset = from & (PAGE_CACHE_SIZE-1);
923ae0ff 3213 unsigned blocksize, pos;
d863dc36
LC
3214 ext4_lblk_t iblock;
3215 struct inode *inode = mapping->host;
3216 struct buffer_head *bh;
3217 struct page *page;
3218 int err = 0;
3219
3220 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3221 mapping_gfp_mask(mapping) & ~__GFP_FS);
3222 if (!page)
3223 return -ENOMEM;
3224
3225 blocksize = inode->i_sb->s_blocksize;
d863dc36
LC
3226
3227 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3228
3229 if (!page_has_buffers(page))
3230 create_empty_buffers(page, blocksize, 0);
3231
3232 /* Find the buffer that contains "offset" */
3233 bh = page_buffers(page);
3234 pos = blocksize;
3235 while (offset >= pos) {
3236 bh = bh->b_this_page;
3237 iblock++;
3238 pos += blocksize;
3239 }
d863dc36
LC
3240 if (buffer_freed(bh)) {
3241 BUFFER_TRACE(bh, "freed: skip");
3242 goto unlock;
3243 }
d863dc36
LC
3244 if (!buffer_mapped(bh)) {
3245 BUFFER_TRACE(bh, "unmapped");
3246 ext4_get_block(inode, iblock, bh, 0);
3247 /* unmapped? It's a hole - nothing to do */
3248 if (!buffer_mapped(bh)) {
3249 BUFFER_TRACE(bh, "still unmapped");
3250 goto unlock;
3251 }
3252 }
3253
3254 /* Ok, it's mapped. Make sure it's up-to-date */
3255 if (PageUptodate(page))
3256 set_buffer_uptodate(bh);
3257
3258 if (!buffer_uptodate(bh)) {
3259 err = -EIO;
3260 ll_rw_block(READ, 1, &bh);
3261 wait_on_buffer(bh);
3262 /* Uhhuh. Read error. Complain and punt. */
3263 if (!buffer_uptodate(bh))
3264 goto unlock;
3265 }
d863dc36
LC
3266 if (ext4_should_journal_data(inode)) {
3267 BUFFER_TRACE(bh, "get write access");
3268 err = ext4_journal_get_write_access(handle, bh);
3269 if (err)
3270 goto unlock;
3271 }
d863dc36 3272 zero_user(page, offset, length);
d863dc36
LC
3273 BUFFER_TRACE(bh, "zeroed end of block");
3274
d863dc36
LC
3275 if (ext4_should_journal_data(inode)) {
3276 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3277 } else {
353eefd3 3278 err = 0;
d863dc36 3279 mark_buffer_dirty(bh);
0713ed0c
LC
3280 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3281 err = ext4_jbd2_file_inode(handle, inode);
3282 }
d863dc36
LC
3283
3284unlock:
3285 unlock_page(page);
3286 page_cache_release(page);
3287 return err;
3288}
3289
923ae0ff
RZ
3290/*
3291 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3292 * starting from file offset 'from'. The range to be zero'd must
3293 * be contained with in one block. If the specified range exceeds
3294 * the end of the block it will be shortened to end of the block
3295 * that cooresponds to 'from'
3296 */
3297static int ext4_block_zero_page_range(handle_t *handle,
3298 struct address_space *mapping, loff_t from, loff_t length)
3299{
3300 struct inode *inode = mapping->host;
3301 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3302 unsigned blocksize = inode->i_sb->s_blocksize;
3303 unsigned max = blocksize - (offset & (blocksize - 1));
3304
3305 /*
3306 * correct length if it does not fall between
3307 * 'from' and the end of the block
3308 */
3309 if (length > max || length < 0)
3310 length = max;
3311
3312 if (IS_DAX(inode))
3313 return dax_zero_page_range(inode, from, length, ext4_get_block);
3314 return __ext4_block_zero_page_range(handle, mapping, from, length);
3315}
3316
94350ab5
MW
3317/*
3318 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3319 * up to the end of the block which corresponds to `from'.
3320 * This required during truncate. We need to physically zero the tail end
3321 * of that block so it doesn't yield old data if the file is later grown.
3322 */
c197855e 3323static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3324 struct address_space *mapping, loff_t from)
3325{
3326 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3327 unsigned length;
3328 unsigned blocksize;
3329 struct inode *inode = mapping->host;
3330
3331 blocksize = inode->i_sb->s_blocksize;
3332 length = blocksize - (offset & (blocksize - 1));
3333
3334 return ext4_block_zero_page_range(handle, mapping, from, length);
3335}
3336
a87dd18c
LC
3337int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3338 loff_t lstart, loff_t length)
3339{
3340 struct super_block *sb = inode->i_sb;
3341 struct address_space *mapping = inode->i_mapping;
e1be3a92 3342 unsigned partial_start, partial_end;
a87dd18c
LC
3343 ext4_fsblk_t start, end;
3344 loff_t byte_end = (lstart + length - 1);
3345 int err = 0;
3346
e1be3a92
LC
3347 partial_start = lstart & (sb->s_blocksize - 1);
3348 partial_end = byte_end & (sb->s_blocksize - 1);
3349
a87dd18c
LC
3350 start = lstart >> sb->s_blocksize_bits;
3351 end = byte_end >> sb->s_blocksize_bits;
3352
3353 /* Handle partial zero within the single block */
e1be3a92
LC
3354 if (start == end &&
3355 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3356 err = ext4_block_zero_page_range(handle, mapping,
3357 lstart, length);
3358 return err;
3359 }
3360 /* Handle partial zero out on the start of the range */
e1be3a92 3361 if (partial_start) {
a87dd18c
LC
3362 err = ext4_block_zero_page_range(handle, mapping,
3363 lstart, sb->s_blocksize);
3364 if (err)
3365 return err;
3366 }
3367 /* Handle partial zero out on the end of the range */
e1be3a92 3368 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3369 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3370 byte_end - partial_end,
3371 partial_end + 1);
a87dd18c
LC
3372 return err;
3373}
3374
91ef4caf
DG
3375int ext4_can_truncate(struct inode *inode)
3376{
91ef4caf
DG
3377 if (S_ISREG(inode->i_mode))
3378 return 1;
3379 if (S_ISDIR(inode->i_mode))
3380 return 1;
3381 if (S_ISLNK(inode->i_mode))
3382 return !ext4_inode_is_fast_symlink(inode);
3383 return 0;
3384}
3385
a4bb6b64
AH
3386/*
3387 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3388 * associated with the given offset and length
3389 *
3390 * @inode: File inode
3391 * @offset: The offset where the hole will begin
3392 * @len: The length of the hole
3393 *
4907cb7b 3394 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3395 */
3396
aeb2817a 3397int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3398{
26a4c0c6
TT
3399 struct super_block *sb = inode->i_sb;
3400 ext4_lblk_t first_block, stop_block;
3401 struct address_space *mapping = inode->i_mapping;
a87dd18c 3402 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3403 handle_t *handle;
3404 unsigned int credits;
3405 int ret = 0;
3406
a4bb6b64 3407 if (!S_ISREG(inode->i_mode))
73355192 3408 return -EOPNOTSUPP;
a4bb6b64 3409
b8a86845 3410 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 3411
26a4c0c6
TT
3412 /*
3413 * Write out all dirty pages to avoid race conditions
3414 * Then release them.
3415 */
3416 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3417 ret = filemap_write_and_wait_range(mapping, offset,
3418 offset + length - 1);
3419 if (ret)
3420 return ret;
3421 }
3422
3423 mutex_lock(&inode->i_mutex);
9ef06cec 3424
26a4c0c6
TT
3425 /* No need to punch hole beyond i_size */
3426 if (offset >= inode->i_size)
3427 goto out_mutex;
3428
3429 /*
3430 * If the hole extends beyond i_size, set the hole
3431 * to end after the page that contains i_size
3432 */
3433 if (offset + length > inode->i_size) {
3434 length = inode->i_size +
3435 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3436 offset;
3437 }
3438
a361293f
JK
3439 if (offset & (sb->s_blocksize - 1) ||
3440 (offset + length) & (sb->s_blocksize - 1)) {
3441 /*
3442 * Attach jinode to inode for jbd2 if we do any zeroing of
3443 * partial block
3444 */
3445 ret = ext4_inode_attach_jinode(inode);
3446 if (ret < 0)
3447 goto out_mutex;
3448
3449 }
3450
a87dd18c
LC
3451 first_block_offset = round_up(offset, sb->s_blocksize);
3452 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3453
a87dd18c
LC
3454 /* Now release the pages and zero block aligned part of pages*/
3455 if (last_block_offset > first_block_offset)
3456 truncate_pagecache_range(inode, first_block_offset,
3457 last_block_offset);
26a4c0c6
TT
3458
3459 /* Wait all existing dio workers, newcomers will block on i_mutex */
3460 ext4_inode_block_unlocked_dio(inode);
26a4c0c6
TT
3461 inode_dio_wait(inode);
3462
3463 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3464 credits = ext4_writepage_trans_blocks(inode);
3465 else
3466 credits = ext4_blocks_for_truncate(inode);
3467 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3468 if (IS_ERR(handle)) {
3469 ret = PTR_ERR(handle);
3470 ext4_std_error(sb, ret);
3471 goto out_dio;
3472 }
3473
a87dd18c
LC
3474 ret = ext4_zero_partial_blocks(handle, inode, offset,
3475 length);
3476 if (ret)
3477 goto out_stop;
26a4c0c6
TT
3478
3479 first_block = (offset + sb->s_blocksize - 1) >>
3480 EXT4_BLOCK_SIZE_BITS(sb);
3481 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3482
3483 /* If there are no blocks to remove, return now */
3484 if (first_block >= stop_block)
3485 goto out_stop;
3486
3487 down_write(&EXT4_I(inode)->i_data_sem);
3488 ext4_discard_preallocations(inode);
3489
3490 ret = ext4_es_remove_extent(inode, first_block,
3491 stop_block - first_block);
3492 if (ret) {
3493 up_write(&EXT4_I(inode)->i_data_sem);
3494 goto out_stop;
3495 }
3496
3497 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3498 ret = ext4_ext_remove_space(inode, first_block,
3499 stop_block - 1);
3500 else
4f579ae7 3501 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
3502 stop_block);
3503
819c4920 3504 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3505 if (IS_SYNC(inode))
3506 ext4_handle_sync(handle);
e251f9bc
MP
3507
3508 /* Now release the pages again to reduce race window */
3509 if (last_block_offset > first_block_offset)
3510 truncate_pagecache_range(inode, first_block_offset,
3511 last_block_offset);
3512
26a4c0c6
TT
3513 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3514 ext4_mark_inode_dirty(handle, inode);
3515out_stop:
3516 ext4_journal_stop(handle);
3517out_dio:
3518 ext4_inode_resume_unlocked_dio(inode);
3519out_mutex:
3520 mutex_unlock(&inode->i_mutex);
3521 return ret;
a4bb6b64
AH
3522}
3523
a361293f
JK
3524int ext4_inode_attach_jinode(struct inode *inode)
3525{
3526 struct ext4_inode_info *ei = EXT4_I(inode);
3527 struct jbd2_inode *jinode;
3528
3529 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3530 return 0;
3531
3532 jinode = jbd2_alloc_inode(GFP_KERNEL);
3533 spin_lock(&inode->i_lock);
3534 if (!ei->jinode) {
3535 if (!jinode) {
3536 spin_unlock(&inode->i_lock);
3537 return -ENOMEM;
3538 }
3539 ei->jinode = jinode;
3540 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3541 jinode = NULL;
3542 }
3543 spin_unlock(&inode->i_lock);
3544 if (unlikely(jinode != NULL))
3545 jbd2_free_inode(jinode);
3546 return 0;
3547}
3548
ac27a0ec 3549/*
617ba13b 3550 * ext4_truncate()
ac27a0ec 3551 *
617ba13b
MC
3552 * We block out ext4_get_block() block instantiations across the entire
3553 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3554 * simultaneously on behalf of the same inode.
3555 *
42b2aa86 3556 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3557 * is one core, guiding principle: the file's tree must always be consistent on
3558 * disk. We must be able to restart the truncate after a crash.
3559 *
3560 * The file's tree may be transiently inconsistent in memory (although it
3561 * probably isn't), but whenever we close off and commit a journal transaction,
3562 * the contents of (the filesystem + the journal) must be consistent and
3563 * restartable. It's pretty simple, really: bottom up, right to left (although
3564 * left-to-right works OK too).
3565 *
3566 * Note that at recovery time, journal replay occurs *before* the restart of
3567 * truncate against the orphan inode list.
3568 *
3569 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3570 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3571 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3572 * ext4_truncate() to have another go. So there will be instantiated blocks
3573 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3574 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3575 * ext4_truncate() run will find them and release them.
ac27a0ec 3576 */
617ba13b 3577void ext4_truncate(struct inode *inode)
ac27a0ec 3578{
819c4920
TT
3579 struct ext4_inode_info *ei = EXT4_I(inode);
3580 unsigned int credits;
3581 handle_t *handle;
3582 struct address_space *mapping = inode->i_mapping;
819c4920 3583
19b5ef61
TT
3584 /*
3585 * There is a possibility that we're either freeing the inode
e04027e8 3586 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
3587 * have i_mutex locked because it's not necessary.
3588 */
3589 if (!(inode->i_state & (I_NEW|I_FREEING)))
3590 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3591 trace_ext4_truncate_enter(inode);
3592
91ef4caf 3593 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3594 return;
3595
12e9b892 3596 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3597
5534fb5b 3598 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3599 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3600
aef1c851
TM
3601 if (ext4_has_inline_data(inode)) {
3602 int has_inline = 1;
3603
3604 ext4_inline_data_truncate(inode, &has_inline);
3605 if (has_inline)
3606 return;
3607 }
3608
a361293f
JK
3609 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3610 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3611 if (ext4_inode_attach_jinode(inode) < 0)
3612 return;
3613 }
3614
819c4920
TT
3615 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3616 credits = ext4_writepage_trans_blocks(inode);
3617 else
3618 credits = ext4_blocks_for_truncate(inode);
3619
3620 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3621 if (IS_ERR(handle)) {
3622 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3623 return;
3624 }
3625
eb3544c6
LC
3626 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3627 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3628
3629 /*
3630 * We add the inode to the orphan list, so that if this
3631 * truncate spans multiple transactions, and we crash, we will
3632 * resume the truncate when the filesystem recovers. It also
3633 * marks the inode dirty, to catch the new size.
3634 *
3635 * Implication: the file must always be in a sane, consistent
3636 * truncatable state while each transaction commits.
3637 */
3638 if (ext4_orphan_add(handle, inode))
3639 goto out_stop;
3640
3641 down_write(&EXT4_I(inode)->i_data_sem);
3642
3643 ext4_discard_preallocations(inode);
3644
ff9893dc 3645 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3646 ext4_ext_truncate(handle, inode);
ff9893dc 3647 else
819c4920
TT
3648 ext4_ind_truncate(handle, inode);
3649
3650 up_write(&ei->i_data_sem);
3651
3652 if (IS_SYNC(inode))
3653 ext4_handle_sync(handle);
3654
3655out_stop:
3656 /*
3657 * If this was a simple ftruncate() and the file will remain alive,
3658 * then we need to clear up the orphan record which we created above.
3659 * However, if this was a real unlink then we were called by
58d86a50 3660 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
3661 * orphan info for us.
3662 */
3663 if (inode->i_nlink)
3664 ext4_orphan_del(handle, inode);
3665
3666 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3667 ext4_mark_inode_dirty(handle, inode);
3668 ext4_journal_stop(handle);
ac27a0ec 3669
0562e0ba 3670 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3671}
3672
ac27a0ec 3673/*
617ba13b 3674 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3675 * underlying buffer_head on success. If 'in_mem' is true, we have all
3676 * data in memory that is needed to recreate the on-disk version of this
3677 * inode.
3678 */
617ba13b
MC
3679static int __ext4_get_inode_loc(struct inode *inode,
3680 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3681{
240799cd
TT
3682 struct ext4_group_desc *gdp;
3683 struct buffer_head *bh;
3684 struct super_block *sb = inode->i_sb;
3685 ext4_fsblk_t block;
3686 int inodes_per_block, inode_offset;
3687
3a06d778 3688 iloc->bh = NULL;
240799cd
TT
3689 if (!ext4_valid_inum(sb, inode->i_ino))
3690 return -EIO;
ac27a0ec 3691
240799cd
TT
3692 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3693 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3694 if (!gdp)
ac27a0ec
DK
3695 return -EIO;
3696
240799cd
TT
3697 /*
3698 * Figure out the offset within the block group inode table
3699 */
00d09882 3700 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3701 inode_offset = ((inode->i_ino - 1) %
3702 EXT4_INODES_PER_GROUP(sb));
3703 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3704 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3705
3706 bh = sb_getblk(sb, block);
aebf0243 3707 if (unlikely(!bh))
860d21e2 3708 return -ENOMEM;
ac27a0ec
DK
3709 if (!buffer_uptodate(bh)) {
3710 lock_buffer(bh);
9c83a923
HK
3711
3712 /*
3713 * If the buffer has the write error flag, we have failed
3714 * to write out another inode in the same block. In this
3715 * case, we don't have to read the block because we may
3716 * read the old inode data successfully.
3717 */
3718 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3719 set_buffer_uptodate(bh);
3720
ac27a0ec
DK
3721 if (buffer_uptodate(bh)) {
3722 /* someone brought it uptodate while we waited */
3723 unlock_buffer(bh);
3724 goto has_buffer;
3725 }
3726
3727 /*
3728 * If we have all information of the inode in memory and this
3729 * is the only valid inode in the block, we need not read the
3730 * block.
3731 */
3732 if (in_mem) {
3733 struct buffer_head *bitmap_bh;
240799cd 3734 int i, start;
ac27a0ec 3735
240799cd 3736 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3737
240799cd
TT
3738 /* Is the inode bitmap in cache? */
3739 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3740 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3741 goto make_io;
3742
3743 /*
3744 * If the inode bitmap isn't in cache then the
3745 * optimisation may end up performing two reads instead
3746 * of one, so skip it.
3747 */
3748 if (!buffer_uptodate(bitmap_bh)) {
3749 brelse(bitmap_bh);
3750 goto make_io;
3751 }
240799cd 3752 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3753 if (i == inode_offset)
3754 continue;
617ba13b 3755 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3756 break;
3757 }
3758 brelse(bitmap_bh);
240799cd 3759 if (i == start + inodes_per_block) {
ac27a0ec
DK
3760 /* all other inodes are free, so skip I/O */
3761 memset(bh->b_data, 0, bh->b_size);
3762 set_buffer_uptodate(bh);
3763 unlock_buffer(bh);
3764 goto has_buffer;
3765 }
3766 }
3767
3768make_io:
240799cd
TT
3769 /*
3770 * If we need to do any I/O, try to pre-readahead extra
3771 * blocks from the inode table.
3772 */
3773 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3774 ext4_fsblk_t b, end, table;
3775 unsigned num;
0d606e2c 3776 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3777
3778 table = ext4_inode_table(sb, gdp);
b713a5ec 3779 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3780 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3781 if (table > b)
3782 b = table;
0d606e2c 3783 end = b + ra_blks;
240799cd 3784 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3785 if (ext4_has_group_desc_csum(sb))
560671a0 3786 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3787 table += num / inodes_per_block;
3788 if (end > table)
3789 end = table;
3790 while (b <= end)
3791 sb_breadahead(sb, b++);
3792 }
3793
ac27a0ec
DK
3794 /*
3795 * There are other valid inodes in the buffer, this inode
3796 * has in-inode xattrs, or we don't have this inode in memory.
3797 * Read the block from disk.
3798 */
0562e0ba 3799 trace_ext4_load_inode(inode);
ac27a0ec
DK
3800 get_bh(bh);
3801 bh->b_end_io = end_buffer_read_sync;
65299a3b 3802 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3803 wait_on_buffer(bh);
3804 if (!buffer_uptodate(bh)) {
c398eda0
TT
3805 EXT4_ERROR_INODE_BLOCK(inode, block,
3806 "unable to read itable block");
ac27a0ec
DK
3807 brelse(bh);
3808 return -EIO;
3809 }
3810 }
3811has_buffer:
3812 iloc->bh = bh;
3813 return 0;
3814}
3815
617ba13b 3816int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3817{
3818 /* We have all inode data except xattrs in memory here. */
617ba13b 3819 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3820 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3821}
3822
617ba13b 3823void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3824{
617ba13b 3825 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 3826 unsigned int new_fl = 0;
ac27a0ec 3827
617ba13b 3828 if (flags & EXT4_SYNC_FL)
00a1a053 3829 new_fl |= S_SYNC;
617ba13b 3830 if (flags & EXT4_APPEND_FL)
00a1a053 3831 new_fl |= S_APPEND;
617ba13b 3832 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 3833 new_fl |= S_IMMUTABLE;
617ba13b 3834 if (flags & EXT4_NOATIME_FL)
00a1a053 3835 new_fl |= S_NOATIME;
617ba13b 3836 if (flags & EXT4_DIRSYNC_FL)
00a1a053 3837 new_fl |= S_DIRSYNC;
923ae0ff
RZ
3838 if (test_opt(inode->i_sb, DAX))
3839 new_fl |= S_DAX;
5f16f322 3840 inode_set_flags(inode, new_fl,
923ae0ff 3841 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
ac27a0ec
DK
3842}
3843
ff9ddf7e
JK
3844/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3845void ext4_get_inode_flags(struct ext4_inode_info *ei)
3846{
84a8dce2
DM
3847 unsigned int vfs_fl;
3848 unsigned long old_fl, new_fl;
3849
3850 do {
3851 vfs_fl = ei->vfs_inode.i_flags;
3852 old_fl = ei->i_flags;
3853 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3854 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3855 EXT4_DIRSYNC_FL);
3856 if (vfs_fl & S_SYNC)
3857 new_fl |= EXT4_SYNC_FL;
3858 if (vfs_fl & S_APPEND)
3859 new_fl |= EXT4_APPEND_FL;
3860 if (vfs_fl & S_IMMUTABLE)
3861 new_fl |= EXT4_IMMUTABLE_FL;
3862 if (vfs_fl & S_NOATIME)
3863 new_fl |= EXT4_NOATIME_FL;
3864 if (vfs_fl & S_DIRSYNC)
3865 new_fl |= EXT4_DIRSYNC_FL;
3866 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3867}
de9a55b8 3868
0fc1b451 3869static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3870 struct ext4_inode_info *ei)
0fc1b451
AK
3871{
3872 blkcnt_t i_blocks ;
8180a562
AK
3873 struct inode *inode = &(ei->vfs_inode);
3874 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3875
3876 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3877 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3878 /* we are using combined 48 bit field */
3879 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3880 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3881 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3882 /* i_blocks represent file system block size */
3883 return i_blocks << (inode->i_blkbits - 9);
3884 } else {
3885 return i_blocks;
3886 }
0fc1b451
AK
3887 } else {
3888 return le32_to_cpu(raw_inode->i_blocks_lo);
3889 }
3890}
ff9ddf7e 3891
152a7b0a
TM
3892static inline void ext4_iget_extra_inode(struct inode *inode,
3893 struct ext4_inode *raw_inode,
3894 struct ext4_inode_info *ei)
3895{
3896 __le32 *magic = (void *)raw_inode +
3897 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 3898 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 3899 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 3900 ext4_find_inline_data_nolock(inode);
f19d5870
TM
3901 } else
3902 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
3903}
3904
1d1fe1ee 3905struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3906{
617ba13b
MC
3907 struct ext4_iloc iloc;
3908 struct ext4_inode *raw_inode;
1d1fe1ee 3909 struct ext4_inode_info *ei;
1d1fe1ee 3910 struct inode *inode;
b436b9be 3911 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3912 long ret;
ac27a0ec 3913 int block;
08cefc7a
EB
3914 uid_t i_uid;
3915 gid_t i_gid;
ac27a0ec 3916
1d1fe1ee
DH
3917 inode = iget_locked(sb, ino);
3918 if (!inode)
3919 return ERR_PTR(-ENOMEM);
3920 if (!(inode->i_state & I_NEW))
3921 return inode;
3922
3923 ei = EXT4_I(inode);
7dc57615 3924 iloc.bh = NULL;
ac27a0ec 3925
1d1fe1ee
DH
3926 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3927 if (ret < 0)
ac27a0ec 3928 goto bad_inode;
617ba13b 3929 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3930
3931 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3932 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3933 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3934 EXT4_INODE_SIZE(inode->i_sb)) {
3935 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3936 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3937 EXT4_INODE_SIZE(inode->i_sb));
3938 ret = -EIO;
3939 goto bad_inode;
3940 }
3941 } else
3942 ei->i_extra_isize = 0;
3943
3944 /* Precompute checksum seed for inode metadata */
9aa5d32b 3945 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
3946 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3947 __u32 csum;
3948 __le32 inum = cpu_to_le32(inode->i_ino);
3949 __le32 gen = raw_inode->i_generation;
3950 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3951 sizeof(inum));
3952 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3953 sizeof(gen));
3954 }
3955
3956 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3957 EXT4_ERROR_INODE(inode, "checksum invalid");
3958 ret = -EIO;
3959 goto bad_inode;
3960 }
3961
ac27a0ec 3962 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
3963 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3964 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3965 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
3966 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3967 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 3968 }
08cefc7a
EB
3969 i_uid_write(inode, i_uid);
3970 i_gid_write(inode, i_gid);
bfe86848 3971 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 3972
353eb83c 3973 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 3974 ei->i_inline_off = 0;
ac27a0ec
DK
3975 ei->i_dir_start_lookup = 0;
3976 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3977 /* We now have enough fields to check if the inode was active or not.
3978 * This is needed because nfsd might try to access dead inodes
3979 * the test is that same one that e2fsck uses
3980 * NeilBrown 1999oct15
3981 */
3982 if (inode->i_nlink == 0) {
393d1d1d
DTB
3983 if ((inode->i_mode == 0 ||
3984 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3985 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 3986 /* this inode is deleted */
1d1fe1ee 3987 ret = -ESTALE;
ac27a0ec
DK
3988 goto bad_inode;
3989 }
3990 /* The only unlinked inodes we let through here have
3991 * valid i_mode and are being read by the orphan
3992 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
3993 * the process of deleting those.
3994 * OR it is the EXT4_BOOT_LOADER_INO which is
3995 * not initialized on a new filesystem. */
ac27a0ec 3996 }
ac27a0ec 3997 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3998 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3999 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4000 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4001 ei->i_file_acl |=
4002 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4003 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4004 ei->i_disksize = inode->i_size;
a9e7f447
DM
4005#ifdef CONFIG_QUOTA
4006 ei->i_reserved_quota = 0;
4007#endif
ac27a0ec
DK
4008 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4009 ei->i_block_group = iloc.block_group;
a4912123 4010 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4011 /*
4012 * NOTE! The in-memory inode i_data array is in little-endian order
4013 * even on big-endian machines: we do NOT byteswap the block numbers!
4014 */
617ba13b 4015 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4016 ei->i_data[block] = raw_inode->i_block[block];
4017 INIT_LIST_HEAD(&ei->i_orphan);
4018
b436b9be
JK
4019 /*
4020 * Set transaction id's of transactions that have to be committed
4021 * to finish f[data]sync. We set them to currently running transaction
4022 * as we cannot be sure that the inode or some of its metadata isn't
4023 * part of the transaction - the inode could have been reclaimed and
4024 * now it is reread from disk.
4025 */
4026 if (journal) {
4027 transaction_t *transaction;
4028 tid_t tid;
4029
a931da6a 4030 read_lock(&journal->j_state_lock);
b436b9be
JK
4031 if (journal->j_running_transaction)
4032 transaction = journal->j_running_transaction;
4033 else
4034 transaction = journal->j_committing_transaction;
4035 if (transaction)
4036 tid = transaction->t_tid;
4037 else
4038 tid = journal->j_commit_sequence;
a931da6a 4039 read_unlock(&journal->j_state_lock);
b436b9be
JK
4040 ei->i_sync_tid = tid;
4041 ei->i_datasync_tid = tid;
4042 }
4043
0040d987 4044 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4045 if (ei->i_extra_isize == 0) {
4046 /* The extra space is currently unused. Use it. */
617ba13b
MC
4047 ei->i_extra_isize = sizeof(struct ext4_inode) -
4048 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4049 } else {
152a7b0a 4050 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4051 }
814525f4 4052 }
ac27a0ec 4053
ef7f3835
KS
4054 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4055 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4056 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4057 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4058
ed3654eb 4059 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4060 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4061 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4062 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4063 inode->i_version |=
4064 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4065 }
25ec56b5
JNC
4066 }
4067
c4b5a614 4068 ret = 0;
485c26ec 4069 if (ei->i_file_acl &&
1032988c 4070 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4071 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4072 ei->i_file_acl);
485c26ec
TT
4073 ret = -EIO;
4074 goto bad_inode;
f19d5870
TM
4075 } else if (!ext4_has_inline_data(inode)) {
4076 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4077 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4078 (S_ISLNK(inode->i_mode) &&
4079 !ext4_inode_is_fast_symlink(inode))))
4080 /* Validate extent which is part of inode */
4081 ret = ext4_ext_check_inode(inode);
4082 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4083 (S_ISLNK(inode->i_mode) &&
4084 !ext4_inode_is_fast_symlink(inode))) {
4085 /* Validate block references which are part of inode */
4086 ret = ext4_ind_check_inode(inode);
4087 }
fe2c8191 4088 }
567f3e9a 4089 if (ret)
de9a55b8 4090 goto bad_inode;
7a262f7c 4091
ac27a0ec 4092 if (S_ISREG(inode->i_mode)) {
617ba13b 4093 inode->i_op = &ext4_file_inode_operations;
923ae0ff
RZ
4094 if (test_opt(inode->i_sb, DAX))
4095 inode->i_fop = &ext4_dax_file_operations;
4096 else
4097 inode->i_fop = &ext4_file_operations;
617ba13b 4098 ext4_set_aops(inode);
ac27a0ec 4099 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4100 inode->i_op = &ext4_dir_inode_operations;
4101 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4102 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4103 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4104 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4105 nd_terminate_link(ei->i_data, inode->i_size,
4106 sizeof(ei->i_data) - 1);
4107 } else {
617ba13b
MC
4108 inode->i_op = &ext4_symlink_inode_operations;
4109 ext4_set_aops(inode);
ac27a0ec 4110 }
563bdd61
TT
4111 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4112 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4113 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4114 if (raw_inode->i_block[0])
4115 init_special_inode(inode, inode->i_mode,
4116 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4117 else
4118 init_special_inode(inode, inode->i_mode,
4119 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4120 } else if (ino == EXT4_BOOT_LOADER_INO) {
4121 make_bad_inode(inode);
563bdd61 4122 } else {
563bdd61 4123 ret = -EIO;
24676da4 4124 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4125 goto bad_inode;
ac27a0ec 4126 }
af5bc92d 4127 brelse(iloc.bh);
617ba13b 4128 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4129 unlock_new_inode(inode);
4130 return inode;
ac27a0ec
DK
4131
4132bad_inode:
567f3e9a 4133 brelse(iloc.bh);
1d1fe1ee
DH
4134 iget_failed(inode);
4135 return ERR_PTR(ret);
ac27a0ec
DK
4136}
4137
f4bb2981
TT
4138struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4139{
4140 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4141 return ERR_PTR(-EIO);
4142 return ext4_iget(sb, ino);
4143}
4144
0fc1b451
AK
4145static int ext4_inode_blocks_set(handle_t *handle,
4146 struct ext4_inode *raw_inode,
4147 struct ext4_inode_info *ei)
4148{
4149 struct inode *inode = &(ei->vfs_inode);
4150 u64 i_blocks = inode->i_blocks;
4151 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4152
4153 if (i_blocks <= ~0U) {
4154 /*
4907cb7b 4155 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4156 * as multiple of 512 bytes
4157 */
8180a562 4158 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4159 raw_inode->i_blocks_high = 0;
84a8dce2 4160 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4161 return 0;
4162 }
4163 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4164 return -EFBIG;
4165
4166 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4167 /*
4168 * i_blocks can be represented in a 48 bit variable
4169 * as multiple of 512 bytes
4170 */
8180a562 4171 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4172 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4173 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4174 } else {
84a8dce2 4175 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4176 /* i_block is stored in file system block size */
4177 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4178 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4179 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4180 }
f287a1a5 4181 return 0;
0fc1b451
AK
4182}
4183
a26f4992
TT
4184struct other_inode {
4185 unsigned long orig_ino;
4186 struct ext4_inode *raw_inode;
4187};
4188
4189static int other_inode_match(struct inode * inode, unsigned long ino,
4190 void *data)
4191{
4192 struct other_inode *oi = (struct other_inode *) data;
4193
4194 if ((inode->i_ino != ino) ||
4195 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4196 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4197 ((inode->i_state & I_DIRTY_TIME) == 0))
4198 return 0;
4199 spin_lock(&inode->i_lock);
4200 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4201 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4202 (inode->i_state & I_DIRTY_TIME)) {
4203 struct ext4_inode_info *ei = EXT4_I(inode);
4204
4205 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4206 spin_unlock(&inode->i_lock);
4207
4208 spin_lock(&ei->i_raw_lock);
4209 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4210 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4211 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4212 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4213 spin_unlock(&ei->i_raw_lock);
4214 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4215 return -1;
4216 }
4217 spin_unlock(&inode->i_lock);
4218 return -1;
4219}
4220
4221/*
4222 * Opportunistically update the other time fields for other inodes in
4223 * the same inode table block.
4224 */
4225static void ext4_update_other_inodes_time(struct super_block *sb,
4226 unsigned long orig_ino, char *buf)
4227{
4228 struct other_inode oi;
4229 unsigned long ino;
4230 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4231 int inode_size = EXT4_INODE_SIZE(sb);
4232
4233 oi.orig_ino = orig_ino;
4234 ino = orig_ino & ~(inodes_per_block - 1);
4235 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4236 if (ino == orig_ino)
4237 continue;
4238 oi.raw_inode = (struct ext4_inode *) buf;
4239 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4240 }
4241}
4242
ac27a0ec
DK
4243/*
4244 * Post the struct inode info into an on-disk inode location in the
4245 * buffer-cache. This gobbles the caller's reference to the
4246 * buffer_head in the inode location struct.
4247 *
4248 * The caller must have write access to iloc->bh.
4249 */
617ba13b 4250static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4251 struct inode *inode,
830156c7 4252 struct ext4_iloc *iloc)
ac27a0ec 4253{
617ba13b
MC
4254 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4255 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4256 struct buffer_head *bh = iloc->bh;
202ee5df 4257 struct super_block *sb = inode->i_sb;
ac27a0ec 4258 int err = 0, rc, block;
202ee5df 4259 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4260 uid_t i_uid;
4261 gid_t i_gid;
ac27a0ec 4262
202ee5df
TT
4263 spin_lock(&ei->i_raw_lock);
4264
4265 /* For fields not tracked in the in-memory inode,
ac27a0ec 4266 * initialise them to zero for new inodes. */
19f5fb7a 4267 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4268 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4269
ff9ddf7e 4270 ext4_get_inode_flags(ei);
ac27a0ec 4271 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4272 i_uid = i_uid_read(inode);
4273 i_gid = i_gid_read(inode);
af5bc92d 4274 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4275 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4276 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4277/*
4278 * Fix up interoperability with old kernels. Otherwise, old inodes get
4279 * re-used with the upper 16 bits of the uid/gid intact
4280 */
af5bc92d 4281 if (!ei->i_dtime) {
ac27a0ec 4282 raw_inode->i_uid_high =
08cefc7a 4283 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4284 raw_inode->i_gid_high =
08cefc7a 4285 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4286 } else {
4287 raw_inode->i_uid_high = 0;
4288 raw_inode->i_gid_high = 0;
4289 }
4290 } else {
08cefc7a
EB
4291 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4292 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4293 raw_inode->i_uid_high = 0;
4294 raw_inode->i_gid_high = 0;
4295 }
4296 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4297
4298 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4299 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4300 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4301 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4302
bce92d56
LX
4303 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4304 if (err) {
202ee5df 4305 spin_unlock(&ei->i_raw_lock);
0fc1b451 4306 goto out_brelse;
202ee5df 4307 }
ac27a0ec 4308 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4309 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4310 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4311 raw_inode->i_file_acl_high =
4312 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4313 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4314 if (ei->i_disksize != ext4_isize(raw_inode)) {
4315 ext4_isize_set(raw_inode, ei->i_disksize);
4316 need_datasync = 1;
4317 }
a48380f7 4318 if (ei->i_disksize > 0x7fffffffULL) {
a48380f7
AK
4319 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4320 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4321 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
4322 cpu_to_le32(EXT4_GOOD_OLD_REV))
4323 set_large_file = 1;
ac27a0ec
DK
4324 }
4325 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4326 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4327 if (old_valid_dev(inode->i_rdev)) {
4328 raw_inode->i_block[0] =
4329 cpu_to_le32(old_encode_dev(inode->i_rdev));
4330 raw_inode->i_block[1] = 0;
4331 } else {
4332 raw_inode->i_block[0] = 0;
4333 raw_inode->i_block[1] =
4334 cpu_to_le32(new_encode_dev(inode->i_rdev));
4335 raw_inode->i_block[2] = 0;
4336 }
f19d5870 4337 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4338 for (block = 0; block < EXT4_N_BLOCKS; block++)
4339 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4340 }
ac27a0ec 4341
ed3654eb 4342 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4343 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4344 if (ei->i_extra_isize) {
4345 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4346 raw_inode->i_version_hi =
4347 cpu_to_le32(inode->i_version >> 32);
4348 raw_inode->i_extra_isize =
4349 cpu_to_le16(ei->i_extra_isize);
4350 }
25ec56b5 4351 }
814525f4 4352 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 4353 spin_unlock(&ei->i_raw_lock);
a26f4992
TT
4354 if (inode->i_sb->s_flags & MS_LAZYTIME)
4355 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4356 bh->b_data);
202ee5df 4357
830156c7 4358 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4359 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4360 if (!err)
4361 err = rc;
19f5fb7a 4362 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 4363 if (set_large_file) {
5d601255 4364 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
4365 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4366 if (err)
4367 goto out_brelse;
4368 ext4_update_dynamic_rev(sb);
4369 EXT4_SET_RO_COMPAT_FEATURE(sb,
4370 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4371 ext4_handle_sync(handle);
4372 err = ext4_handle_dirty_super(handle, sb);
4373 }
b71fc079 4374 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4375out_brelse:
af5bc92d 4376 brelse(bh);
617ba13b 4377 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4378 return err;
4379}
4380
4381/*
617ba13b 4382 * ext4_write_inode()
ac27a0ec
DK
4383 *
4384 * We are called from a few places:
4385 *
87f7e416 4386 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 4387 * Here, there will be no transaction running. We wait for any running
4907cb7b 4388 * transaction to commit.
ac27a0ec 4389 *
87f7e416
TT
4390 * - Within flush work (sys_sync(), kupdate and such).
4391 * We wait on commit, if told to.
ac27a0ec 4392 *
87f7e416
TT
4393 * - Within iput_final() -> write_inode_now()
4394 * We wait on commit, if told to.
ac27a0ec
DK
4395 *
4396 * In all cases it is actually safe for us to return without doing anything,
4397 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
4398 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4399 * writeback.
ac27a0ec
DK
4400 *
4401 * Note that we are absolutely dependent upon all inode dirtiers doing the
4402 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4403 * which we are interested.
4404 *
4405 * It would be a bug for them to not do this. The code:
4406 *
4407 * mark_inode_dirty(inode)
4408 * stuff();
4409 * inode->i_size = expr;
4410 *
87f7e416
TT
4411 * is in error because write_inode() could occur while `stuff()' is running,
4412 * and the new i_size will be lost. Plus the inode will no longer be on the
4413 * superblock's dirty inode list.
ac27a0ec 4414 */
a9185b41 4415int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4416{
91ac6f43
FM
4417 int err;
4418
87f7e416 4419 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
4420 return 0;
4421
91ac6f43
FM
4422 if (EXT4_SB(inode->i_sb)->s_journal) {
4423 if (ext4_journal_current_handle()) {
4424 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4425 dump_stack();
4426 return -EIO;
4427 }
ac27a0ec 4428
10542c22
JK
4429 /*
4430 * No need to force transaction in WB_SYNC_NONE mode. Also
4431 * ext4_sync_fs() will force the commit after everything is
4432 * written.
4433 */
4434 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
4435 return 0;
4436
4437 err = ext4_force_commit(inode->i_sb);
4438 } else {
4439 struct ext4_iloc iloc;
ac27a0ec 4440
8b472d73 4441 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4442 if (err)
4443 return err;
10542c22
JK
4444 /*
4445 * sync(2) will flush the whole buffer cache. No need to do
4446 * it here separately for each inode.
4447 */
4448 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
4449 sync_dirty_buffer(iloc.bh);
4450 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4451 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4452 "IO error syncing inode");
830156c7
FM
4453 err = -EIO;
4454 }
fd2dd9fb 4455 brelse(iloc.bh);
91ac6f43
FM
4456 }
4457 return err;
ac27a0ec
DK
4458}
4459
53e87268
JK
4460/*
4461 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4462 * buffers that are attached to a page stradding i_size and are undergoing
4463 * commit. In that case we have to wait for commit to finish and try again.
4464 */
4465static void ext4_wait_for_tail_page_commit(struct inode *inode)
4466{
4467 struct page *page;
4468 unsigned offset;
4469 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4470 tid_t commit_tid = 0;
4471 int ret;
4472
4473 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4474 /*
4475 * All buffers in the last page remain valid? Then there's nothing to
4476 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4477 * blocksize case
4478 */
4479 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4480 return;
4481 while (1) {
4482 page = find_lock_page(inode->i_mapping,
4483 inode->i_size >> PAGE_CACHE_SHIFT);
4484 if (!page)
4485 return;
ca99fdd2
LC
4486 ret = __ext4_journalled_invalidatepage(page, offset,
4487 PAGE_CACHE_SIZE - offset);
53e87268
JK
4488 unlock_page(page);
4489 page_cache_release(page);
4490 if (ret != -EBUSY)
4491 return;
4492 commit_tid = 0;
4493 read_lock(&journal->j_state_lock);
4494 if (journal->j_committing_transaction)
4495 commit_tid = journal->j_committing_transaction->t_tid;
4496 read_unlock(&journal->j_state_lock);
4497 if (commit_tid)
4498 jbd2_log_wait_commit(journal, commit_tid);
4499 }
4500}
4501
ac27a0ec 4502/*
617ba13b 4503 * ext4_setattr()
ac27a0ec
DK
4504 *
4505 * Called from notify_change.
4506 *
4507 * We want to trap VFS attempts to truncate the file as soon as
4508 * possible. In particular, we want to make sure that when the VFS
4509 * shrinks i_size, we put the inode on the orphan list and modify
4510 * i_disksize immediately, so that during the subsequent flushing of
4511 * dirty pages and freeing of disk blocks, we can guarantee that any
4512 * commit will leave the blocks being flushed in an unused state on
4513 * disk. (On recovery, the inode will get truncated and the blocks will
4514 * be freed, so we have a strong guarantee that no future commit will
4515 * leave these blocks visible to the user.)
4516 *
678aaf48
JK
4517 * Another thing we have to assure is that if we are in ordered mode
4518 * and inode is still attached to the committing transaction, we must
4519 * we start writeout of all the dirty pages which are being truncated.
4520 * This way we are sure that all the data written in the previous
4521 * transaction are already on disk (truncate waits for pages under
4522 * writeback).
4523 *
4524 * Called with inode->i_mutex down.
ac27a0ec 4525 */
617ba13b 4526int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4527{
4528 struct inode *inode = dentry->d_inode;
4529 int error, rc = 0;
3d287de3 4530 int orphan = 0;
ac27a0ec
DK
4531 const unsigned int ia_valid = attr->ia_valid;
4532
4533 error = inode_change_ok(inode, attr);
4534 if (error)
4535 return error;
4536
12755627 4537 if (is_quota_modification(inode, attr))
871a2931 4538 dquot_initialize(inode);
08cefc7a
EB
4539 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4540 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4541 handle_t *handle;
4542
4543 /* (user+group)*(old+new) structure, inode write (sb,
4544 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4545 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4546 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4547 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4548 if (IS_ERR(handle)) {
4549 error = PTR_ERR(handle);
4550 goto err_out;
4551 }
b43fa828 4552 error = dquot_transfer(inode, attr);
ac27a0ec 4553 if (error) {
617ba13b 4554 ext4_journal_stop(handle);
ac27a0ec
DK
4555 return error;
4556 }
4557 /* Update corresponding info in inode so that everything is in
4558 * one transaction */
4559 if (attr->ia_valid & ATTR_UID)
4560 inode->i_uid = attr->ia_uid;
4561 if (attr->ia_valid & ATTR_GID)
4562 inode->i_gid = attr->ia_gid;
617ba13b
MC
4563 error = ext4_mark_inode_dirty(handle, inode);
4564 ext4_journal_stop(handle);
ac27a0ec
DK
4565 }
4566
5208386c
JK
4567 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4568 handle_t *handle;
562c72aa 4569
12e9b892 4570 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4571 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4572
0c095c7f
TT
4573 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4574 return -EFBIG;
e2b46574 4575 }
dff6efc3
CH
4576
4577 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4578 inode_inc_iversion(inode);
4579
5208386c
JK
4580 if (S_ISREG(inode->i_mode) &&
4581 (attr->ia_size < inode->i_size)) {
4582 if (ext4_should_order_data(inode)) {
4583 error = ext4_begin_ordered_truncate(inode,
678aaf48 4584 attr->ia_size);
5208386c 4585 if (error)
678aaf48 4586 goto err_out;
5208386c
JK
4587 }
4588 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4589 if (IS_ERR(handle)) {
4590 error = PTR_ERR(handle);
4591 goto err_out;
4592 }
4593 if (ext4_handle_valid(handle)) {
4594 error = ext4_orphan_add(handle, inode);
4595 orphan = 1;
4596 }
90e775b7 4597 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4598 EXT4_I(inode)->i_disksize = attr->ia_size;
4599 rc = ext4_mark_inode_dirty(handle, inode);
4600 if (!error)
4601 error = rc;
90e775b7
JK
4602 /*
4603 * We have to update i_size under i_data_sem together
4604 * with i_disksize to avoid races with writeback code
4605 * running ext4_wb_update_i_disksize().
4606 */
4607 if (!error)
4608 i_size_write(inode, attr->ia_size);
4609 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4610 ext4_journal_stop(handle);
4611 if (error) {
4612 ext4_orphan_del(NULL, inode);
678aaf48
JK
4613 goto err_out;
4614 }
d6320cbf
JK
4615 } else {
4616 loff_t oldsize = inode->i_size;
4617
90e775b7 4618 i_size_write(inode, attr->ia_size);
d6320cbf
JK
4619 pagecache_isize_extended(inode, oldsize, inode->i_size);
4620 }
53e87268 4621
5208386c
JK
4622 /*
4623 * Blocks are going to be removed from the inode. Wait
4624 * for dio in flight. Temporarily disable
4625 * dioread_nolock to prevent livelock.
4626 */
4627 if (orphan) {
4628 if (!ext4_should_journal_data(inode)) {
4629 ext4_inode_block_unlocked_dio(inode);
4630 inode_dio_wait(inode);
4631 ext4_inode_resume_unlocked_dio(inode);
4632 } else
4633 ext4_wait_for_tail_page_commit(inode);
1c9114f9 4634 }
5208386c
JK
4635 /*
4636 * Truncate pagecache after we've waited for commit
4637 * in data=journal mode to make pages freeable.
4638 */
923ae0ff 4639 truncate_pagecache(inode, inode->i_size);
072bd7ea 4640 }
5208386c
JK
4641 /*
4642 * We want to call ext4_truncate() even if attr->ia_size ==
4643 * inode->i_size for cases like truncation of fallocated space
4644 */
4645 if (attr->ia_valid & ATTR_SIZE)
4646 ext4_truncate(inode);
ac27a0ec 4647
1025774c
CH
4648 if (!rc) {
4649 setattr_copy(inode, attr);
4650 mark_inode_dirty(inode);
4651 }
4652
4653 /*
4654 * If the call to ext4_truncate failed to get a transaction handle at
4655 * all, we need to clean up the in-core orphan list manually.
4656 */
3d287de3 4657 if (orphan && inode->i_nlink)
617ba13b 4658 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4659
4660 if (!rc && (ia_valid & ATTR_MODE))
64e178a7 4661 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
4662
4663err_out:
617ba13b 4664 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4665 if (!error)
4666 error = rc;
4667 return error;
4668}
4669
3e3398a0
MC
4670int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4671 struct kstat *stat)
4672{
4673 struct inode *inode;
8af8eecc 4674 unsigned long long delalloc_blocks;
3e3398a0
MC
4675
4676 inode = dentry->d_inode;
4677 generic_fillattr(inode, stat);
4678
9206c561
AD
4679 /*
4680 * If there is inline data in the inode, the inode will normally not
4681 * have data blocks allocated (it may have an external xattr block).
4682 * Report at least one sector for such files, so tools like tar, rsync,
4683 * others doen't incorrectly think the file is completely sparse.
4684 */
4685 if (unlikely(ext4_has_inline_data(inode)))
4686 stat->blocks += (stat->size + 511) >> 9;
4687
3e3398a0
MC
4688 /*
4689 * We can't update i_blocks if the block allocation is delayed
4690 * otherwise in the case of system crash before the real block
4691 * allocation is done, we will have i_blocks inconsistent with
4692 * on-disk file blocks.
4693 * We always keep i_blocks updated together with real
4694 * allocation. But to not confuse with user, stat
4695 * will return the blocks that include the delayed allocation
4696 * blocks for this file.
4697 */
96607551 4698 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
4699 EXT4_I(inode)->i_reserved_data_blocks);
4700 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
4701 return 0;
4702}
ac27a0ec 4703
fffb2739
JK
4704static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4705 int pextents)
a02908f1 4706{
12e9b892 4707 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4708 return ext4_ind_trans_blocks(inode, lblocks);
4709 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4710}
ac51d837 4711
ac27a0ec 4712/*
a02908f1
MC
4713 * Account for index blocks, block groups bitmaps and block group
4714 * descriptor blocks if modify datablocks and index blocks
4715 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4716 *
a02908f1 4717 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4718 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4719 * they could still across block group boundary.
ac27a0ec 4720 *
a02908f1
MC
4721 * Also account for superblock, inode, quota and xattr blocks
4722 */
fffb2739
JK
4723static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4724 int pextents)
a02908f1 4725{
8df9675f
TT
4726 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4727 int gdpblocks;
a02908f1
MC
4728 int idxblocks;
4729 int ret = 0;
4730
4731 /*
fffb2739
JK
4732 * How many index blocks need to touch to map @lblocks logical blocks
4733 * to @pextents physical extents?
a02908f1 4734 */
fffb2739 4735 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4736
4737 ret = idxblocks;
4738
4739 /*
4740 * Now let's see how many group bitmaps and group descriptors need
4741 * to account
4742 */
fffb2739 4743 groups = idxblocks + pextents;
a02908f1 4744 gdpblocks = groups;
8df9675f
TT
4745 if (groups > ngroups)
4746 groups = ngroups;
a02908f1
MC
4747 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4748 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4749
4750 /* bitmaps and block group descriptor blocks */
4751 ret += groups + gdpblocks;
4752
4753 /* Blocks for super block, inode, quota and xattr blocks */
4754 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4755
4756 return ret;
4757}
4758
4759/*
25985edc 4760 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4761 * the modification of a single pages into a single transaction,
4762 * which may include multiple chunks of block allocations.
ac27a0ec 4763 *
525f4ed8 4764 * This could be called via ext4_write_begin()
ac27a0ec 4765 *
525f4ed8 4766 * We need to consider the worse case, when
a02908f1 4767 * one new block per extent.
ac27a0ec 4768 */
a86c6181 4769int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4770{
617ba13b 4771 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4772 int ret;
4773
fffb2739 4774 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4775
a02908f1 4776 /* Account for data blocks for journalled mode */
617ba13b 4777 if (ext4_should_journal_data(inode))
a02908f1 4778 ret += bpp;
ac27a0ec
DK
4779 return ret;
4780}
f3bd1f3f
MC
4781
4782/*
4783 * Calculate the journal credits for a chunk of data modification.
4784 *
4785 * This is called from DIO, fallocate or whoever calling
79e83036 4786 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4787 *
4788 * journal buffers for data blocks are not included here, as DIO
4789 * and fallocate do no need to journal data buffers.
4790 */
4791int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4792{
4793 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4794}
4795
ac27a0ec 4796/*
617ba13b 4797 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4798 * Give this, we know that the caller already has write access to iloc->bh.
4799 */
617ba13b 4800int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4801 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4802{
4803 int err = 0;
4804
c64db50e 4805 if (IS_I_VERSION(inode))
25ec56b5
JNC
4806 inode_inc_iversion(inode);
4807
ac27a0ec
DK
4808 /* the do_update_inode consumes one bh->b_count */
4809 get_bh(iloc->bh);
4810
dab291af 4811 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4812 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4813 put_bh(iloc->bh);
4814 return err;
4815}
4816
4817/*
4818 * On success, We end up with an outstanding reference count against
4819 * iloc->bh. This _must_ be cleaned up later.
4820 */
4821
4822int
617ba13b
MC
4823ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4824 struct ext4_iloc *iloc)
ac27a0ec 4825{
0390131b
FM
4826 int err;
4827
4828 err = ext4_get_inode_loc(inode, iloc);
4829 if (!err) {
4830 BUFFER_TRACE(iloc->bh, "get_write_access");
4831 err = ext4_journal_get_write_access(handle, iloc->bh);
4832 if (err) {
4833 brelse(iloc->bh);
4834 iloc->bh = NULL;
ac27a0ec
DK
4835 }
4836 }
617ba13b 4837 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4838 return err;
4839}
4840
6dd4ee7c
KS
4841/*
4842 * Expand an inode by new_extra_isize bytes.
4843 * Returns 0 on success or negative error number on failure.
4844 */
1d03ec98
AK
4845static int ext4_expand_extra_isize(struct inode *inode,
4846 unsigned int new_extra_isize,
4847 struct ext4_iloc iloc,
4848 handle_t *handle)
6dd4ee7c
KS
4849{
4850 struct ext4_inode *raw_inode;
4851 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4852
4853 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4854 return 0;
4855
4856 raw_inode = ext4_raw_inode(&iloc);
4857
4858 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4859
4860 /* No extended attributes present */
19f5fb7a
TT
4861 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4862 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4863 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4864 new_extra_isize);
4865 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4866 return 0;
4867 }
4868
4869 /* try to expand with EAs present */
4870 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4871 raw_inode, handle);
4872}
4873
ac27a0ec
DK
4874/*
4875 * What we do here is to mark the in-core inode as clean with respect to inode
4876 * dirtiness (it may still be data-dirty).
4877 * This means that the in-core inode may be reaped by prune_icache
4878 * without having to perform any I/O. This is a very good thing,
4879 * because *any* task may call prune_icache - even ones which
4880 * have a transaction open against a different journal.
4881 *
4882 * Is this cheating? Not really. Sure, we haven't written the
4883 * inode out, but prune_icache isn't a user-visible syncing function.
4884 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4885 * we start and wait on commits.
ac27a0ec 4886 */
617ba13b 4887int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4888{
617ba13b 4889 struct ext4_iloc iloc;
6dd4ee7c
KS
4890 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4891 static unsigned int mnt_count;
4892 int err, ret;
ac27a0ec
DK
4893
4894 might_sleep();
7ff9c073 4895 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4896 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4897 if (ext4_handle_valid(handle) &&
4898 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4899 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4900 /*
4901 * We need extra buffer credits since we may write into EA block
4902 * with this same handle. If journal_extend fails, then it will
4903 * only result in a minor loss of functionality for that inode.
4904 * If this is felt to be critical, then e2fsck should be run to
4905 * force a large enough s_min_extra_isize.
4906 */
4907 if ((jbd2_journal_extend(handle,
4908 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4909 ret = ext4_expand_extra_isize(inode,
4910 sbi->s_want_extra_isize,
4911 iloc, handle);
4912 if (ret) {
19f5fb7a
TT
4913 ext4_set_inode_state(inode,
4914 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4915 if (mnt_count !=
4916 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4917 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4918 "Unable to expand inode %lu. Delete"
4919 " some EAs or run e2fsck.",
4920 inode->i_ino);
c1bddad9
AK
4921 mnt_count =
4922 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4923 }
4924 }
4925 }
4926 }
ac27a0ec 4927 if (!err)
617ba13b 4928 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4929 return err;
4930}
4931
4932/*
617ba13b 4933 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4934 *
4935 * We're really interested in the case where a file is being extended.
4936 * i_size has been changed by generic_commit_write() and we thus need
4937 * to include the updated inode in the current transaction.
4938 *
5dd4056d 4939 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4940 * are allocated to the file.
4941 *
4942 * If the inode is marked synchronous, we don't honour that here - doing
4943 * so would cause a commit on atime updates, which we don't bother doing.
4944 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
4945 *
4946 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
4947 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
4948 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 4949 */
aa385729 4950void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4951{
ac27a0ec
DK
4952 handle_t *handle;
4953
0ae45f63
TT
4954 if (flags == I_DIRTY_TIME)
4955 return;
9924a92a 4956 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4957 if (IS_ERR(handle))
4958 goto out;
f3dc272f 4959
f3dc272f
CW
4960 ext4_mark_inode_dirty(handle, inode);
4961
617ba13b 4962 ext4_journal_stop(handle);
ac27a0ec
DK
4963out:
4964 return;
4965}
4966
4967#if 0
4968/*
4969 * Bind an inode's backing buffer_head into this transaction, to prevent
4970 * it from being flushed to disk early. Unlike
617ba13b 4971 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4972 * returns no iloc structure, so the caller needs to repeat the iloc
4973 * lookup to mark the inode dirty later.
4974 */
617ba13b 4975static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4976{
617ba13b 4977 struct ext4_iloc iloc;
ac27a0ec
DK
4978
4979 int err = 0;
4980 if (handle) {
617ba13b 4981 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4982 if (!err) {
4983 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4984 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4985 if (!err)
0390131b 4986 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4987 NULL,
0390131b 4988 iloc.bh);
ac27a0ec
DK
4989 brelse(iloc.bh);
4990 }
4991 }
617ba13b 4992 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4993 return err;
4994}
4995#endif
4996
617ba13b 4997int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4998{
4999 journal_t *journal;
5000 handle_t *handle;
5001 int err;
5002
5003 /*
5004 * We have to be very careful here: changing a data block's
5005 * journaling status dynamically is dangerous. If we write a
5006 * data block to the journal, change the status and then delete
5007 * that block, we risk forgetting to revoke the old log record
5008 * from the journal and so a subsequent replay can corrupt data.
5009 * So, first we make sure that the journal is empty and that
5010 * nobody is changing anything.
5011 */
5012
617ba13b 5013 journal = EXT4_JOURNAL(inode);
0390131b
FM
5014 if (!journal)
5015 return 0;
d699594d 5016 if (is_journal_aborted(journal))
ac27a0ec 5017 return -EROFS;
2aff57b0
YY
5018 /* We have to allocate physical blocks for delalloc blocks
5019 * before flushing journal. otherwise delalloc blocks can not
5020 * be allocated any more. even more truncate on delalloc blocks
5021 * could trigger BUG by flushing delalloc blocks in journal.
5022 * There is no delalloc block in non-journal data mode.
5023 */
5024 if (val && test_opt(inode->i_sb, DELALLOC)) {
5025 err = ext4_alloc_da_blocks(inode);
5026 if (err < 0)
5027 return err;
5028 }
ac27a0ec 5029
17335dcc
DM
5030 /* Wait for all existing dio workers */
5031 ext4_inode_block_unlocked_dio(inode);
5032 inode_dio_wait(inode);
5033
dab291af 5034 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5035
5036 /*
5037 * OK, there are no updates running now, and all cached data is
5038 * synced to disk. We are now in a completely consistent state
5039 * which doesn't have anything in the journal, and we know that
5040 * no filesystem updates are running, so it is safe to modify
5041 * the inode's in-core data-journaling state flag now.
5042 */
5043
5044 if (val)
12e9b892 5045 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5046 else {
4f879ca6
JK
5047 err = jbd2_journal_flush(journal);
5048 if (err < 0) {
5049 jbd2_journal_unlock_updates(journal);
5050 ext4_inode_resume_unlocked_dio(inode);
5051 return err;
5052 }
12e9b892 5053 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5054 }
617ba13b 5055 ext4_set_aops(inode);
ac27a0ec 5056
dab291af 5057 jbd2_journal_unlock_updates(journal);
17335dcc 5058 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5059
5060 /* Finally we can mark the inode as dirty. */
5061
9924a92a 5062 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5063 if (IS_ERR(handle))
5064 return PTR_ERR(handle);
5065
617ba13b 5066 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5067 ext4_handle_sync(handle);
617ba13b
MC
5068 ext4_journal_stop(handle);
5069 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5070
5071 return err;
5072}
2e9ee850
AK
5073
5074static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5075{
5076 return !buffer_mapped(bh);
5077}
5078
c2ec175c 5079int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5080{
c2ec175c 5081 struct page *page = vmf->page;
2e9ee850
AK
5082 loff_t size;
5083 unsigned long len;
9ea7df53 5084 int ret;
2e9ee850 5085 struct file *file = vma->vm_file;
496ad9aa 5086 struct inode *inode = file_inode(file);
2e9ee850 5087 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5088 handle_t *handle;
5089 get_block_t *get_block;
5090 int retries = 0;
2e9ee850 5091
8e8ad8a5 5092 sb_start_pagefault(inode->i_sb);
041bbb6d 5093 file_update_time(vma->vm_file);
9ea7df53
JK
5094 /* Delalloc case is easy... */
5095 if (test_opt(inode->i_sb, DELALLOC) &&
5096 !ext4_should_journal_data(inode) &&
5097 !ext4_nonda_switch(inode->i_sb)) {
5098 do {
5099 ret = __block_page_mkwrite(vma, vmf,
5100 ext4_da_get_block_prep);
5101 } while (ret == -ENOSPC &&
5102 ext4_should_retry_alloc(inode->i_sb, &retries));
5103 goto out_ret;
2e9ee850 5104 }
0e499890
DW
5105
5106 lock_page(page);
9ea7df53
JK
5107 size = i_size_read(inode);
5108 /* Page got truncated from under us? */
5109 if (page->mapping != mapping || page_offset(page) > size) {
5110 unlock_page(page);
5111 ret = VM_FAULT_NOPAGE;
5112 goto out;
0e499890 5113 }
2e9ee850
AK
5114
5115 if (page->index == size >> PAGE_CACHE_SHIFT)
5116 len = size & ~PAGE_CACHE_MASK;
5117 else
5118 len = PAGE_CACHE_SIZE;
a827eaff 5119 /*
9ea7df53
JK
5120 * Return if we have all the buffers mapped. This avoids the need to do
5121 * journal_start/journal_stop which can block and take a long time
a827eaff 5122 */
2e9ee850 5123 if (page_has_buffers(page)) {
f19d5870
TM
5124 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5125 0, len, NULL,
5126 ext4_bh_unmapped)) {
9ea7df53 5127 /* Wait so that we don't change page under IO */
1d1d1a76 5128 wait_for_stable_page(page);
9ea7df53
JK
5129 ret = VM_FAULT_LOCKED;
5130 goto out;
a827eaff 5131 }
2e9ee850 5132 }
a827eaff 5133 unlock_page(page);
9ea7df53
JK
5134 /* OK, we need to fill the hole... */
5135 if (ext4_should_dioread_nolock(inode))
5136 get_block = ext4_get_block_write;
5137 else
5138 get_block = ext4_get_block;
5139retry_alloc:
9924a92a
TT
5140 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5141 ext4_writepage_trans_blocks(inode));
9ea7df53 5142 if (IS_ERR(handle)) {
c2ec175c 5143 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5144 goto out;
5145 }
5146 ret = __block_page_mkwrite(vma, vmf, get_block);
5147 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5148 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5149 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5150 unlock_page(page);
5151 ret = VM_FAULT_SIGBUS;
fcbb5515 5152 ext4_journal_stop(handle);
9ea7df53
JK
5153 goto out;
5154 }
5155 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5156 }
5157 ext4_journal_stop(handle);
5158 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5159 goto retry_alloc;
5160out_ret:
5161 ret = block_page_mkwrite_return(ret);
5162out:
8e8ad8a5 5163 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5164 return ret;
5165}
This page took 1.202038 seconds and 5 git commands to generate.