ext4: move test whether extent to map can be extended to one place
[deliverable/linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
814525f4
DW
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u16 csum_lo;
56 __u16 csum_hi = 0;
57 __u32 csum;
58
171a7f21 59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
64 raw->i_checksum_hi = 0;
65 }
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
69
171a7f21 70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
74
75 return csum;
76}
77
78static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
80{
81 __u32 provided, calculated;
82
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98}
99
100static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102{
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 return;
110
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116}
117
678aaf48
JK
118static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 loff_t new_size)
120{
7ff9c073 121 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
122 /*
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
127 */
128 if (!EXT4_I(inode)->jinode)
129 return 0;
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
132 new_size);
678aaf48
JK
133}
134
d47992f8
LC
135static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 unsigned int length);
cb20d518
TT
137static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
139static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 int pextents);
64769240 141
ac27a0ec
DK
142/*
143 * Test whether an inode is a fast symlink.
144 */
617ba13b 145static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 146{
617ba13b 147 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
148 (inode->i_sb->s_blocksize >> 9) : 0;
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151}
152
ac27a0ec
DK
153/*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
fa5d1113 158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 159 int nblocks)
ac27a0ec 160{
487caeef
JK
161 int ret;
162
163 /*
e35fd660 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
0390131b 169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 170 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 171 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 172 ret = ext4_journal_restart(handle, nblocks);
487caeef 173 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 174 ext4_discard_preallocations(inode);
487caeef
JK
175
176 return ret;
ac27a0ec
DK
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
0930fcc1 182void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
183{
184 handle_t *handle;
bc965ab3 185 int err;
ac27a0ec 186
7ff9c073 187 trace_ext4_evict_inode(inode);
2581fdc8 188
0930fcc1 189 if (inode->i_nlink) {
2d859db3
JK
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
d76a3a77 214 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
215 filemap_write_and_wait(&inode->i_data);
216 }
0930fcc1 217 truncate_inode_pages(&inode->i_data, 0);
5dc23bdd
JK
218
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
220 goto no_delete;
221 }
222
907f4554 223 if (!is_bad_inode(inode))
871a2931 224 dquot_initialize(inode);
907f4554 225
678aaf48
JK
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
228 truncate_inode_pages(&inode->i_data, 0);
229
5dc23bdd 230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec
DK
231 if (is_bad_inode(inode))
232 goto no_delete;
233
8e8ad8a5
JK
234 /*
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
237 */
238 sb_start_intwrite(inode->i_sb);
9924a92a
TT
239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 241 if (IS_ERR(handle)) {
bc965ab3 242 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
243 /*
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
246 * cleaned up.
247 */
617ba13b 248 ext4_orphan_del(NULL, inode);
8e8ad8a5 249 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
250 goto no_delete;
251 }
252
253 if (IS_SYNC(inode))
0390131b 254 ext4_handle_sync(handle);
ac27a0ec 255 inode->i_size = 0;
bc965ab3
TT
256 err = ext4_mark_inode_dirty(handle, inode);
257 if (err) {
12062ddd 258 ext4_warning(inode->i_sb,
bc965ab3
TT
259 "couldn't mark inode dirty (err %d)", err);
260 goto stop_handle;
261 }
ac27a0ec 262 if (inode->i_blocks)
617ba13b 263 ext4_truncate(inode);
bc965ab3
TT
264
265 /*
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
270 */
0390131b 271 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
272 err = ext4_journal_extend(handle, 3);
273 if (err > 0)
274 err = ext4_journal_restart(handle, 3);
275 if (err != 0) {
12062ddd 276 ext4_warning(inode->i_sb,
bc965ab3
TT
277 "couldn't extend journal (err %d)", err);
278 stop_handle:
279 ext4_journal_stop(handle);
45388219 280 ext4_orphan_del(NULL, inode);
8e8ad8a5 281 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
282 goto no_delete;
283 }
284 }
285
ac27a0ec 286 /*
617ba13b 287 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 288 * AKPM: I think this can be inside the above `if'.
617ba13b 289 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 290 * deletion of a non-existent orphan - this is because we don't
617ba13b 291 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
292 * (Well, we could do this if we need to, but heck - it works)
293 */
617ba13b
MC
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
296
297 /*
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
302 * fails.
303 */
617ba13b 304 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 305 /* If that failed, just do the required in-core inode clear. */
0930fcc1 306 ext4_clear_inode(inode);
ac27a0ec 307 else
617ba13b
MC
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
8e8ad8a5 310 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
311 return;
312no_delete:
0930fcc1 313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
314}
315
a9e7f447
DM
316#ifdef CONFIG_QUOTA
317qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 318{
a9e7f447 319 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 320}
a9e7f447 321#endif
9d0be502 322
12219aea
AK
323/*
324 * Calculate the number of metadata blocks need to reserve
9d0be502 325 * to allocate a block located at @lblock
12219aea 326 */
01f49d0b 327static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 328{
12e9b892 329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 330 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 331
8bb2b247 332 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
333}
334
0637c6f4
TT
335/*
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
338 */
5f634d06
AK
339void ext4_da_update_reserve_space(struct inode *inode,
340 int used, int quota_claim)
12219aea
AK
341{
342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 343 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
344
345 spin_lock(&ei->i_block_reservation_lock);
d8990240 346 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 347 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 349 "with only %d reserved data blocks",
0637c6f4
TT
350 __func__, inode->i_ino, used,
351 ei->i_reserved_data_blocks);
352 WARN_ON(1);
353 used = ei->i_reserved_data_blocks;
354 }
12219aea 355
97795d2a 356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
01a523eb
TT
357 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks, used,
362 ei->i_reserved_data_blocks);
97795d2a
BF
363 WARN_ON(1);
364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 }
366
0637c6f4
TT
367 /* Update per-inode reservations */
368 ei->i_reserved_data_blocks -= used;
0637c6f4 369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 370 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 371 used + ei->i_allocated_meta_blocks);
0637c6f4 372 ei->i_allocated_meta_blocks = 0;
6bc6e63f 373
0637c6f4
TT
374 if (ei->i_reserved_data_blocks == 0) {
375 /*
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
378 * allocation blocks.
379 */
57042651 380 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 381 ei->i_reserved_meta_blocks);
ee5f4d9c 382 ei->i_reserved_meta_blocks = 0;
9d0be502 383 ei->i_da_metadata_calc_len = 0;
6bc6e63f 384 }
12219aea 385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 386
72b8ab9d
ES
387 /* Update quota subsystem for data blocks */
388 if (quota_claim)
7b415bf6 389 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 390 else {
5f634d06
AK
391 /*
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
72b8ab9d 394 * not re-claim the quota for fallocated blocks.
5f634d06 395 */
7b415bf6 396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 397 }
d6014301
AK
398
399 /*
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
403 */
0637c6f4
TT
404 if ((ei->i_reserved_data_blocks == 0) &&
405 (atomic_read(&inode->i_writecount) == 0))
d6014301 406 ext4_discard_preallocations(inode);
12219aea
AK
407}
408
e29136f8 409static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
410 unsigned int line,
411 struct ext4_map_blocks *map)
6fd058f7 412{
24676da4
TT
413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 map->m_len)) {
c398eda0
TT
415 ext4_error_inode(inode, func, line, map->m_pblk,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map->m_lblk,
418 map->m_len);
6fd058f7
TT
419 return -EIO;
420 }
421 return 0;
422}
423
e29136f8 424#define check_block_validity(inode, map) \
c398eda0 425 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 426
921f266b
DM
427#ifdef ES_AGGRESSIVE_TEST
428static void ext4_map_blocks_es_recheck(handle_t *handle,
429 struct inode *inode,
430 struct ext4_map_blocks *es_map,
431 struct ext4_map_blocks *map,
432 int flags)
433{
434 int retval;
435
436 map->m_flags = 0;
437 /*
438 * There is a race window that the result is not the same.
439 * e.g. xfstests #223 when dioread_nolock enables. The reason
440 * is that we lookup a block mapping in extent status tree with
441 * out taking i_data_sem. So at the time the unwritten extent
442 * could be converted.
443 */
444 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445 down_read((&EXT4_I(inode)->i_data_sem));
446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448 EXT4_GET_BLOCKS_KEEP_SIZE);
449 } else {
450 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
452 }
453 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454 up_read((&EXT4_I(inode)->i_data_sem));
455 /*
456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457 * because it shouldn't be marked in es_map->m_flags.
458 */
459 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461 /*
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
464 */
465 if (es_map->m_lblk != map->m_lblk ||
466 es_map->m_flags != map->m_flags ||
467 es_map->m_pblk != map->m_pblk) {
bdafe42a 468 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode->i_ino, es_map->m_lblk, es_map->m_len,
472 es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 map->m_len, map->m_pblk, map->m_flags,
474 retval, flags);
475 }
476}
477#endif /* ES_AGGRESSIVE_TEST */
478
f5ab0d1f 479/*
e35fd660 480 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 481 * and returns if the blocks are already mapped.
f5ab0d1f 482 *
f5ab0d1f
MC
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
485 * mapped.
486 *
e35fd660
TT
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
489 * based files
490 *
491 * On success, it returns the number of blocks being mapped or allocate.
492 * if create==0 and the blocks are pre-allocated and uninitialized block,
493 * the result buffer head is unmapped. If the create ==1, it will make sure
494 * the buffer head is mapped.
495 *
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 497 * that case, buffer head is unmapped
f5ab0d1f
MC
498 *
499 * It returns the error in case of allocation failure.
500 */
e35fd660
TT
501int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 struct ext4_map_blocks *map, int flags)
0e855ac8 503{
d100eef2 504 struct extent_status es;
0e855ac8 505 int retval;
921f266b
DM
506#ifdef ES_AGGRESSIVE_TEST
507 struct ext4_map_blocks orig_map;
508
509 memcpy(&orig_map, map, sizeof(*map));
510#endif
f5ab0d1f 511
e35fd660
TT
512 map->m_flags = 0;
513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514 "logical block %lu\n", inode->i_ino, flags, map->m_len,
515 (unsigned long) map->m_lblk);
d100eef2
ZL
516
517 /* Lookup extent status tree firstly */
518 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
63b99968 519 ext4_es_lru_add(inode);
d100eef2
ZL
520 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521 map->m_pblk = ext4_es_pblock(&es) +
522 map->m_lblk - es.es_lblk;
523 map->m_flags |= ext4_es_is_written(&es) ?
524 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525 retval = es.es_len - (map->m_lblk - es.es_lblk);
526 if (retval > map->m_len)
527 retval = map->m_len;
528 map->m_len = retval;
529 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
530 retval = 0;
531 } else {
532 BUG_ON(1);
533 }
921f266b
DM
534#ifdef ES_AGGRESSIVE_TEST
535 ext4_map_blocks_es_recheck(handle, inode, map,
536 &orig_map, flags);
537#endif
d100eef2
ZL
538 goto found;
539 }
540
4df3d265 541 /*
b920c755
TT
542 * Try to see if we can get the block without requesting a new
543 * file system block.
4df3d265 544 */
729f52c6
ZL
545 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
548 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 550 } else {
a4e5d88b
DM
551 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 553 }
f7fec032
ZL
554 if (retval > 0) {
555 int ret;
3be78c73 556 unsigned int status;
f7fec032 557
44fb851d
ZL
558 if (unlikely(retval != map->m_len)) {
559 ext4_warning(inode->i_sb,
560 "ES len assertion failed for inode "
561 "%lu: retval %d != map->m_len %d",
562 inode->i_ino, retval, map->m_len);
563 WARN_ON(1);
921f266b 564 }
921f266b 565
f7fec032
ZL
566 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569 ext4_find_delalloc_range(inode, map->m_lblk,
570 map->m_lblk + map->m_len - 1))
571 status |= EXTENT_STATUS_DELAYED;
572 ret = ext4_es_insert_extent(inode, map->m_lblk,
573 map->m_len, map->m_pblk, status);
574 if (ret < 0)
575 retval = ret;
576 }
729f52c6
ZL
577 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
578 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 579
d100eef2 580found:
e35fd660 581 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
f7fec032 582 int ret = check_block_validity(inode, map);
6fd058f7
TT
583 if (ret != 0)
584 return ret;
585 }
586
f5ab0d1f 587 /* If it is only a block(s) look up */
c2177057 588 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
589 return retval;
590
591 /*
592 * Returns if the blocks have already allocated
593 *
594 * Note that if blocks have been preallocated
df3ab170 595 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
596 * with buffer head unmapped.
597 */
e35fd660 598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
599 return retval;
600
2a8964d6 601 /*
a25a4e1a
ZL
602 * Here we clear m_flags because after allocating an new extent,
603 * it will be set again.
2a8964d6 604 */
a25a4e1a 605 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 606
4df3d265 607 /*
f5ab0d1f
MC
608 * New blocks allocate and/or writing to uninitialized extent
609 * will possibly result in updating i_data, so we take
610 * the write lock of i_data_sem, and call get_blocks()
611 * with create == 1 flag.
4df3d265
AK
612 */
613 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
614
615 /*
616 * if the caller is from delayed allocation writeout path
617 * we have already reserved fs blocks for allocation
618 * let the underlying get_block() function know to
619 * avoid double accounting
620 */
c2177057 621 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 622 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
623 /*
624 * We need to check for EXT4 here because migrate
625 * could have changed the inode type in between
626 */
12e9b892 627 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 628 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 629 } else {
e35fd660 630 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 631
e35fd660 632 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
633 /*
634 * We allocated new blocks which will result in
635 * i_data's format changing. Force the migrate
636 * to fail by clearing migrate flags
637 */
19f5fb7a 638 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 639 }
d2a17637 640
5f634d06
AK
641 /*
642 * Update reserved blocks/metadata blocks after successful
643 * block allocation which had been deferred till now. We don't
644 * support fallocate for non extent files. So we can update
645 * reserve space here.
646 */
647 if ((retval > 0) &&
1296cc85 648 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
649 ext4_da_update_reserve_space(inode, retval, 1);
650 }
f7fec032 651 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 652 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 653
f7fec032
ZL
654 if (retval > 0) {
655 int ret;
3be78c73 656 unsigned int status;
f7fec032 657
44fb851d
ZL
658 if (unlikely(retval != map->m_len)) {
659 ext4_warning(inode->i_sb,
660 "ES len assertion failed for inode "
661 "%lu: retval %d != map->m_len %d",
662 inode->i_ino, retval, map->m_len);
663 WARN_ON(1);
921f266b 664 }
921f266b 665
adb23551
ZL
666 /*
667 * If the extent has been zeroed out, we don't need to update
668 * extent status tree.
669 */
670 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
672 if (ext4_es_is_written(&es))
673 goto has_zeroout;
674 }
f7fec032
ZL
675 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678 ext4_find_delalloc_range(inode, map->m_lblk,
679 map->m_lblk + map->m_len - 1))
680 status |= EXTENT_STATUS_DELAYED;
681 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
682 map->m_pblk, status);
683 if (ret < 0)
684 retval = ret;
5356f261
AK
685 }
686
adb23551 687has_zeroout:
4df3d265 688 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 689 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 690 int ret = check_block_validity(inode, map);
6fd058f7
TT
691 if (ret != 0)
692 return ret;
693 }
0e855ac8
AK
694 return retval;
695}
696
f3bd1f3f
MC
697/* Maximum number of blocks we map for direct IO at once. */
698#define DIO_MAX_BLOCKS 4096
699
2ed88685
TT
700static int _ext4_get_block(struct inode *inode, sector_t iblock,
701 struct buffer_head *bh, int flags)
ac27a0ec 702{
3e4fdaf8 703 handle_t *handle = ext4_journal_current_handle();
2ed88685 704 struct ext4_map_blocks map;
7fb5409d 705 int ret = 0, started = 0;
f3bd1f3f 706 int dio_credits;
ac27a0ec 707
46c7f254
TM
708 if (ext4_has_inline_data(inode))
709 return -ERANGE;
710
2ed88685
TT
711 map.m_lblk = iblock;
712 map.m_len = bh->b_size >> inode->i_blkbits;
713
8b0f165f 714 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 715 /* Direct IO write... */
2ed88685
TT
716 if (map.m_len > DIO_MAX_BLOCKS)
717 map.m_len = DIO_MAX_BLOCKS;
718 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
719 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
720 dio_credits);
7fb5409d 721 if (IS_ERR(handle)) {
ac27a0ec 722 ret = PTR_ERR(handle);
2ed88685 723 return ret;
ac27a0ec 724 }
7fb5409d 725 started = 1;
ac27a0ec
DK
726 }
727
2ed88685 728 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 729 if (ret > 0) {
2ed88685
TT
730 map_bh(bh, inode->i_sb, map.m_pblk);
731 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
732 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 733 ret = 0;
ac27a0ec 734 }
7fb5409d
JK
735 if (started)
736 ext4_journal_stop(handle);
ac27a0ec
DK
737 return ret;
738}
739
2ed88685
TT
740int ext4_get_block(struct inode *inode, sector_t iblock,
741 struct buffer_head *bh, int create)
742{
743 return _ext4_get_block(inode, iblock, bh,
744 create ? EXT4_GET_BLOCKS_CREATE : 0);
745}
746
ac27a0ec
DK
747/*
748 * `handle' can be NULL if create is zero
749 */
617ba13b 750struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 751 ext4_lblk_t block, int create, int *errp)
ac27a0ec 752{
2ed88685
TT
753 struct ext4_map_blocks map;
754 struct buffer_head *bh;
ac27a0ec
DK
755 int fatal = 0, err;
756
757 J_ASSERT(handle != NULL || create == 0);
758
2ed88685
TT
759 map.m_lblk = block;
760 map.m_len = 1;
761 err = ext4_map_blocks(handle, inode, &map,
762 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 763
90b0a973
CM
764 /* ensure we send some value back into *errp */
765 *errp = 0;
766
0f70b406
TT
767 if (create && err == 0)
768 err = -ENOSPC; /* should never happen */
2ed88685
TT
769 if (err < 0)
770 *errp = err;
771 if (err <= 0)
772 return NULL;
2ed88685
TT
773
774 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 775 if (unlikely(!bh)) {
860d21e2 776 *errp = -ENOMEM;
2ed88685 777 return NULL;
ac27a0ec 778 }
2ed88685
TT
779 if (map.m_flags & EXT4_MAP_NEW) {
780 J_ASSERT(create != 0);
781 J_ASSERT(handle != NULL);
ac27a0ec 782
2ed88685
TT
783 /*
784 * Now that we do not always journal data, we should
785 * keep in mind whether this should always journal the
786 * new buffer as metadata. For now, regular file
787 * writes use ext4_get_block instead, so it's not a
788 * problem.
789 */
790 lock_buffer(bh);
791 BUFFER_TRACE(bh, "call get_create_access");
792 fatal = ext4_journal_get_create_access(handle, bh);
793 if (!fatal && !buffer_uptodate(bh)) {
794 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
795 set_buffer_uptodate(bh);
ac27a0ec 796 }
2ed88685
TT
797 unlock_buffer(bh);
798 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
799 err = ext4_handle_dirty_metadata(handle, inode, bh);
800 if (!fatal)
801 fatal = err;
802 } else {
803 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 804 }
2ed88685
TT
805 if (fatal) {
806 *errp = fatal;
807 brelse(bh);
808 bh = NULL;
809 }
810 return bh;
ac27a0ec
DK
811}
812
617ba13b 813struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 814 ext4_lblk_t block, int create, int *err)
ac27a0ec 815{
af5bc92d 816 struct buffer_head *bh;
ac27a0ec 817
617ba13b 818 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
819 if (!bh)
820 return bh;
821 if (buffer_uptodate(bh))
822 return bh;
65299a3b 823 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
824 wait_on_buffer(bh);
825 if (buffer_uptodate(bh))
826 return bh;
827 put_bh(bh);
828 *err = -EIO;
829 return NULL;
830}
831
f19d5870
TM
832int ext4_walk_page_buffers(handle_t *handle,
833 struct buffer_head *head,
834 unsigned from,
835 unsigned to,
836 int *partial,
837 int (*fn)(handle_t *handle,
838 struct buffer_head *bh))
ac27a0ec
DK
839{
840 struct buffer_head *bh;
841 unsigned block_start, block_end;
842 unsigned blocksize = head->b_size;
843 int err, ret = 0;
844 struct buffer_head *next;
845
af5bc92d
TT
846 for (bh = head, block_start = 0;
847 ret == 0 && (bh != head || !block_start);
de9a55b8 848 block_start = block_end, bh = next) {
ac27a0ec
DK
849 next = bh->b_this_page;
850 block_end = block_start + blocksize;
851 if (block_end <= from || block_start >= to) {
852 if (partial && !buffer_uptodate(bh))
853 *partial = 1;
854 continue;
855 }
856 err = (*fn)(handle, bh);
857 if (!ret)
858 ret = err;
859 }
860 return ret;
861}
862
863/*
864 * To preserve ordering, it is essential that the hole instantiation and
865 * the data write be encapsulated in a single transaction. We cannot
617ba13b 866 * close off a transaction and start a new one between the ext4_get_block()
dab291af 867 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
868 * prepare_write() is the right place.
869 *
36ade451
JK
870 * Also, this function can nest inside ext4_writepage(). In that case, we
871 * *know* that ext4_writepage() has generated enough buffer credits to do the
872 * whole page. So we won't block on the journal in that case, which is good,
873 * because the caller may be PF_MEMALLOC.
ac27a0ec 874 *
617ba13b 875 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
876 * quota file writes. If we were to commit the transaction while thus
877 * reentered, there can be a deadlock - we would be holding a quota
878 * lock, and the commit would never complete if another thread had a
879 * transaction open and was blocking on the quota lock - a ranking
880 * violation.
881 *
dab291af 882 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
883 * will _not_ run commit under these circumstances because handle->h_ref
884 * is elevated. We'll still have enough credits for the tiny quotafile
885 * write.
886 */
f19d5870
TM
887int do_journal_get_write_access(handle_t *handle,
888 struct buffer_head *bh)
ac27a0ec 889{
56d35a4c
JK
890 int dirty = buffer_dirty(bh);
891 int ret;
892
ac27a0ec
DK
893 if (!buffer_mapped(bh) || buffer_freed(bh))
894 return 0;
56d35a4c 895 /*
ebdec241 896 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
897 * the dirty bit as jbd2_journal_get_write_access() could complain
898 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 899 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
900 * the bit before releasing a page lock and thus writeback cannot
901 * ever write the buffer.
902 */
903 if (dirty)
904 clear_buffer_dirty(bh);
905 ret = ext4_journal_get_write_access(handle, bh);
906 if (!ret && dirty)
907 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
908 return ret;
ac27a0ec
DK
909}
910
8b0f165f
AP
911static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
912 struct buffer_head *bh_result, int create);
bfc1af65 913static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
914 loff_t pos, unsigned len, unsigned flags,
915 struct page **pagep, void **fsdata)
ac27a0ec 916{
af5bc92d 917 struct inode *inode = mapping->host;
1938a150 918 int ret, needed_blocks;
ac27a0ec
DK
919 handle_t *handle;
920 int retries = 0;
af5bc92d 921 struct page *page;
de9a55b8 922 pgoff_t index;
af5bc92d 923 unsigned from, to;
bfc1af65 924
9bffad1e 925 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
926 /*
927 * Reserve one block more for addition to orphan list in case
928 * we allocate blocks but write fails for some reason
929 */
930 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 931 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
932 from = pos & (PAGE_CACHE_SIZE - 1);
933 to = from + len;
ac27a0ec 934
f19d5870
TM
935 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
936 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
937 flags, pagep);
938 if (ret < 0)
47564bfb
TT
939 return ret;
940 if (ret == 1)
941 return 0;
f19d5870
TM
942 }
943
47564bfb
TT
944 /*
945 * grab_cache_page_write_begin() can take a long time if the
946 * system is thrashing due to memory pressure, or if the page
947 * is being written back. So grab it first before we start
948 * the transaction handle. This also allows us to allocate
949 * the page (if needed) without using GFP_NOFS.
950 */
951retry_grab:
952 page = grab_cache_page_write_begin(mapping, index, flags);
953 if (!page)
954 return -ENOMEM;
955 unlock_page(page);
956
957retry_journal:
9924a92a 958 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 959 if (IS_ERR(handle)) {
47564bfb
TT
960 page_cache_release(page);
961 return PTR_ERR(handle);
7479d2b9 962 }
ac27a0ec 963
47564bfb
TT
964 lock_page(page);
965 if (page->mapping != mapping) {
966 /* The page got truncated from under us */
967 unlock_page(page);
968 page_cache_release(page);
cf108bca 969 ext4_journal_stop(handle);
47564bfb 970 goto retry_grab;
cf108bca 971 }
47564bfb 972 wait_on_page_writeback(page);
cf108bca 973
744692dc 974 if (ext4_should_dioread_nolock(inode))
6e1db88d 975 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 976 else
6e1db88d 977 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
978
979 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
980 ret = ext4_walk_page_buffers(handle, page_buffers(page),
981 from, to, NULL,
982 do_journal_get_write_access);
ac27a0ec 983 }
bfc1af65
NP
984
985 if (ret) {
af5bc92d 986 unlock_page(page);
ae4d5372 987 /*
6e1db88d 988 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
989 * outside i_size. Trim these off again. Don't need
990 * i_size_read because we hold i_mutex.
1938a150
AK
991 *
992 * Add inode to orphan list in case we crash before
993 * truncate finishes
ae4d5372 994 */
ffacfa7a 995 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
996 ext4_orphan_add(handle, inode);
997
998 ext4_journal_stop(handle);
999 if (pos + len > inode->i_size) {
b9a4207d 1000 ext4_truncate_failed_write(inode);
de9a55b8 1001 /*
ffacfa7a 1002 * If truncate failed early the inode might
1938a150
AK
1003 * still be on the orphan list; we need to
1004 * make sure the inode is removed from the
1005 * orphan list in that case.
1006 */
1007 if (inode->i_nlink)
1008 ext4_orphan_del(NULL, inode);
1009 }
bfc1af65 1010
47564bfb
TT
1011 if (ret == -ENOSPC &&
1012 ext4_should_retry_alloc(inode->i_sb, &retries))
1013 goto retry_journal;
1014 page_cache_release(page);
1015 return ret;
1016 }
1017 *pagep = page;
ac27a0ec
DK
1018 return ret;
1019}
1020
bfc1af65
NP
1021/* For write_end() in data=journal mode */
1022static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1023{
13fca323 1024 int ret;
ac27a0ec
DK
1025 if (!buffer_mapped(bh) || buffer_freed(bh))
1026 return 0;
1027 set_buffer_uptodate(bh);
13fca323
TT
1028 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1029 clear_buffer_meta(bh);
1030 clear_buffer_prio(bh);
1031 return ret;
ac27a0ec
DK
1032}
1033
eed4333f
ZL
1034/*
1035 * We need to pick up the new inode size which generic_commit_write gave us
1036 * `file' can be NULL - eg, when called from page_symlink().
1037 *
1038 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1039 * buffers are managed internally.
1040 */
1041static int ext4_write_end(struct file *file,
1042 struct address_space *mapping,
1043 loff_t pos, unsigned len, unsigned copied,
1044 struct page *page, void *fsdata)
f8514083 1045{
f8514083 1046 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1047 struct inode *inode = mapping->host;
1048 int ret = 0, ret2;
1049 int i_size_changed = 0;
1050
1051 trace_ext4_write_end(inode, pos, len, copied);
1052 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1053 ret = ext4_jbd2_file_inode(handle, inode);
1054 if (ret) {
1055 unlock_page(page);
1056 page_cache_release(page);
1057 goto errout;
1058 }
1059 }
f8514083 1060
42c832de
TT
1061 if (ext4_has_inline_data(inode)) {
1062 ret = ext4_write_inline_data_end(inode, pos, len,
1063 copied, page);
1064 if (ret < 0)
1065 goto errout;
1066 copied = ret;
1067 } else
f19d5870
TM
1068 copied = block_write_end(file, mapping, pos,
1069 len, copied, page, fsdata);
f8514083
AK
1070
1071 /*
1072 * No need to use i_size_read() here, the i_size
eed4333f 1073 * cannot change under us because we hole i_mutex.
f8514083
AK
1074 *
1075 * But it's important to update i_size while still holding page lock:
1076 * page writeout could otherwise come in and zero beyond i_size.
1077 */
1078 if (pos + copied > inode->i_size) {
1079 i_size_write(inode, pos + copied);
1080 i_size_changed = 1;
1081 }
1082
eed4333f 1083 if (pos + copied > EXT4_I(inode)->i_disksize) {
f8514083
AK
1084 /* We need to mark inode dirty even if
1085 * new_i_size is less that inode->i_size
eed4333f 1086 * but greater than i_disksize. (hint delalloc)
f8514083
AK
1087 */
1088 ext4_update_i_disksize(inode, (pos + copied));
1089 i_size_changed = 1;
1090 }
1091 unlock_page(page);
1092 page_cache_release(page);
1093
1094 /*
1095 * Don't mark the inode dirty under page lock. First, it unnecessarily
1096 * makes the holding time of page lock longer. Second, it forces lock
1097 * ordering of page lock and transaction start for journaling
1098 * filesystems.
1099 */
1100 if (i_size_changed)
1101 ext4_mark_inode_dirty(handle, inode);
1102
ffacfa7a 1103 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1104 /* if we have allocated more blocks and copied
1105 * less. We will have blocks allocated outside
1106 * inode->i_size. So truncate them
1107 */
1108 ext4_orphan_add(handle, inode);
74d553aa 1109errout:
617ba13b 1110 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1111 if (!ret)
1112 ret = ret2;
bfc1af65 1113
f8514083 1114 if (pos + len > inode->i_size) {
b9a4207d 1115 ext4_truncate_failed_write(inode);
de9a55b8 1116 /*
ffacfa7a 1117 * If truncate failed early the inode might still be
f8514083
AK
1118 * on the orphan list; we need to make sure the inode
1119 * is removed from the orphan list in that case.
1120 */
1121 if (inode->i_nlink)
1122 ext4_orphan_del(NULL, inode);
1123 }
1124
bfc1af65 1125 return ret ? ret : copied;
ac27a0ec
DK
1126}
1127
bfc1af65 1128static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1129 struct address_space *mapping,
1130 loff_t pos, unsigned len, unsigned copied,
1131 struct page *page, void *fsdata)
ac27a0ec 1132{
617ba13b 1133 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1134 struct inode *inode = mapping->host;
ac27a0ec
DK
1135 int ret = 0, ret2;
1136 int partial = 0;
bfc1af65 1137 unsigned from, to;
cf17fea6 1138 loff_t new_i_size;
ac27a0ec 1139
9bffad1e 1140 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1141 from = pos & (PAGE_CACHE_SIZE - 1);
1142 to = from + len;
1143
441c8508
CW
1144 BUG_ON(!ext4_handle_valid(handle));
1145
3fdcfb66
TM
1146 if (ext4_has_inline_data(inode))
1147 copied = ext4_write_inline_data_end(inode, pos, len,
1148 copied, page);
1149 else {
1150 if (copied < len) {
1151 if (!PageUptodate(page))
1152 copied = 0;
1153 page_zero_new_buffers(page, from+copied, to);
1154 }
ac27a0ec 1155
3fdcfb66
TM
1156 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1157 to, &partial, write_end_fn);
1158 if (!partial)
1159 SetPageUptodate(page);
1160 }
cf17fea6
AK
1161 new_i_size = pos + copied;
1162 if (new_i_size > inode->i_size)
bfc1af65 1163 i_size_write(inode, pos+copied);
19f5fb7a 1164 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1165 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1166 if (new_i_size > EXT4_I(inode)->i_disksize) {
1167 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1168 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1169 if (!ret)
1170 ret = ret2;
1171 }
bfc1af65 1172
cf108bca 1173 unlock_page(page);
f8514083 1174 page_cache_release(page);
ffacfa7a 1175 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1176 /* if we have allocated more blocks and copied
1177 * less. We will have blocks allocated outside
1178 * inode->i_size. So truncate them
1179 */
1180 ext4_orphan_add(handle, inode);
1181
617ba13b 1182 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1183 if (!ret)
1184 ret = ret2;
f8514083 1185 if (pos + len > inode->i_size) {
b9a4207d 1186 ext4_truncate_failed_write(inode);
de9a55b8 1187 /*
ffacfa7a 1188 * If truncate failed early the inode might still be
f8514083
AK
1189 * on the orphan list; we need to make sure the inode
1190 * is removed from the orphan list in that case.
1191 */
1192 if (inode->i_nlink)
1193 ext4_orphan_del(NULL, inode);
1194 }
bfc1af65
NP
1195
1196 return ret ? ret : copied;
ac27a0ec 1197}
d2a17637 1198
386ad67c
LC
1199/*
1200 * Reserve a metadata for a single block located at lblock
1201 */
1202static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1203{
1204 int retries = 0;
1205 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1206 struct ext4_inode_info *ei = EXT4_I(inode);
1207 unsigned int md_needed;
1208 ext4_lblk_t save_last_lblock;
1209 int save_len;
1210
1211 /*
1212 * recalculate the amount of metadata blocks to reserve
1213 * in order to allocate nrblocks
1214 * worse case is one extent per block
1215 */
1216repeat:
1217 spin_lock(&ei->i_block_reservation_lock);
1218 /*
1219 * ext4_calc_metadata_amount() has side effects, which we have
1220 * to be prepared undo if we fail to claim space.
1221 */
1222 save_len = ei->i_da_metadata_calc_len;
1223 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1224 md_needed = EXT4_NUM_B2C(sbi,
1225 ext4_calc_metadata_amount(inode, lblock));
1226 trace_ext4_da_reserve_space(inode, md_needed);
1227
1228 /*
1229 * We do still charge estimated metadata to the sb though;
1230 * we cannot afford to run out of free blocks.
1231 */
1232 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1233 ei->i_da_metadata_calc_len = save_len;
1234 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1235 spin_unlock(&ei->i_block_reservation_lock);
1236 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1237 cond_resched();
1238 goto repeat;
1239 }
1240 return -ENOSPC;
1241 }
1242 ei->i_reserved_meta_blocks += md_needed;
1243 spin_unlock(&ei->i_block_reservation_lock);
1244
1245 return 0; /* success */
1246}
1247
9d0be502 1248/*
7b415bf6 1249 * Reserve a single cluster located at lblock
9d0be502 1250 */
01f49d0b 1251static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1252{
030ba6bc 1253 int retries = 0;
60e58e0f 1254 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1255 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1256 unsigned int md_needed;
5dd4056d 1257 int ret;
03179fe9
TT
1258 ext4_lblk_t save_last_lblock;
1259 int save_len;
1260
1261 /*
1262 * We will charge metadata quota at writeout time; this saves
1263 * us from metadata over-estimation, though we may go over by
1264 * a small amount in the end. Here we just reserve for data.
1265 */
1266 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1267 if (ret)
1268 return ret;
d2a17637
MC
1269
1270 /*
1271 * recalculate the amount of metadata blocks to reserve
1272 * in order to allocate nrblocks
1273 * worse case is one extent per block
1274 */
030ba6bc 1275repeat:
0637c6f4 1276 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1277 /*
1278 * ext4_calc_metadata_amount() has side effects, which we have
1279 * to be prepared undo if we fail to claim space.
1280 */
1281 save_len = ei->i_da_metadata_calc_len;
1282 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1283 md_needed = EXT4_NUM_B2C(sbi,
1284 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1285 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1286
72b8ab9d
ES
1287 /*
1288 * We do still charge estimated metadata to the sb though;
1289 * we cannot afford to run out of free blocks.
1290 */
e7d5f315 1291 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1292 ei->i_da_metadata_calc_len = save_len;
1293 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1294 spin_unlock(&ei->i_block_reservation_lock);
030ba6bc 1295 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
bb8b20ed 1296 cond_resched();
030ba6bc
AK
1297 goto repeat;
1298 }
03179fe9 1299 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1300 return -ENOSPC;
1301 }
9d0be502 1302 ei->i_reserved_data_blocks++;
0637c6f4
TT
1303 ei->i_reserved_meta_blocks += md_needed;
1304 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1305
d2a17637
MC
1306 return 0; /* success */
1307}
1308
12219aea 1309static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1310{
1311 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1312 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1313
cd213226
MC
1314 if (!to_free)
1315 return; /* Nothing to release, exit */
1316
d2a17637 1317 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1318
5a58ec87 1319 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1320 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1321 /*
0637c6f4
TT
1322 * if there aren't enough reserved blocks, then the
1323 * counter is messed up somewhere. Since this
1324 * function is called from invalidate page, it's
1325 * harmless to return without any action.
cd213226 1326 */
8de5c325 1327 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1328 "ino %lu, to_free %d with only %d reserved "
1084f252 1329 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1330 ei->i_reserved_data_blocks);
1331 WARN_ON(1);
1332 to_free = ei->i_reserved_data_blocks;
cd213226 1333 }
0637c6f4 1334 ei->i_reserved_data_blocks -= to_free;
cd213226 1335
0637c6f4
TT
1336 if (ei->i_reserved_data_blocks == 0) {
1337 /*
1338 * We can release all of the reserved metadata blocks
1339 * only when we have written all of the delayed
1340 * allocation blocks.
7b415bf6
AK
1341 * Note that in case of bigalloc, i_reserved_meta_blocks,
1342 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1343 */
57042651 1344 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1345 ei->i_reserved_meta_blocks);
ee5f4d9c 1346 ei->i_reserved_meta_blocks = 0;
9d0be502 1347 ei->i_da_metadata_calc_len = 0;
0637c6f4 1348 }
d2a17637 1349
72b8ab9d 1350 /* update fs dirty data blocks counter */
57042651 1351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1352
d2a17637 1353 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1354
7b415bf6 1355 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1356}
1357
1358static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1359 unsigned int offset,
1360 unsigned int length)
d2a17637
MC
1361{
1362 int to_release = 0;
1363 struct buffer_head *head, *bh;
1364 unsigned int curr_off = 0;
7b415bf6
AK
1365 struct inode *inode = page->mapping->host;
1366 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1367 unsigned int stop = offset + length;
7b415bf6 1368 int num_clusters;
51865fda 1369 ext4_fsblk_t lblk;
d2a17637 1370
ca99fdd2
LC
1371 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1372
d2a17637
MC
1373 head = page_buffers(page);
1374 bh = head;
1375 do {
1376 unsigned int next_off = curr_off + bh->b_size;
1377
ca99fdd2
LC
1378 if (next_off > stop)
1379 break;
1380
d2a17637
MC
1381 if ((offset <= curr_off) && (buffer_delay(bh))) {
1382 to_release++;
1383 clear_buffer_delay(bh);
1384 }
1385 curr_off = next_off;
1386 } while ((bh = bh->b_this_page) != head);
7b415bf6 1387
51865fda
ZL
1388 if (to_release) {
1389 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1390 ext4_es_remove_extent(inode, lblk, to_release);
1391 }
1392
7b415bf6
AK
1393 /* If we have released all the blocks belonging to a cluster, then we
1394 * need to release the reserved space for that cluster. */
1395 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1396 while (num_clusters > 0) {
7b415bf6
AK
1397 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1398 ((num_clusters - 1) << sbi->s_cluster_bits);
1399 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1400 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1401 ext4_da_release_space(inode, 1);
1402
1403 num_clusters--;
1404 }
d2a17637 1405}
ac27a0ec 1406
64769240
AT
1407/*
1408 * Delayed allocation stuff
1409 */
1410
4e7ea81d
JK
1411struct mpage_da_data {
1412 struct inode *inode;
1413 struct writeback_control *wbc;
6b523df4 1414
4e7ea81d
JK
1415 pgoff_t first_page; /* The first page to write */
1416 pgoff_t next_page; /* Current page to examine */
1417 pgoff_t last_page; /* Last page to examine */
791b7f08 1418 /*
4e7ea81d
JK
1419 * Extent to map - this can be after first_page because that can be
1420 * fully mapped. We somewhat abuse m_flags to store whether the extent
1421 * is delalloc or unwritten.
791b7f08 1422 */
4e7ea81d
JK
1423 struct ext4_map_blocks map;
1424 struct ext4_io_submit io_submit; /* IO submission data */
1425};
64769240 1426
4e7ea81d
JK
1427static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1428 bool invalidate)
c4a0c46e
AK
1429{
1430 int nr_pages, i;
1431 pgoff_t index, end;
1432 struct pagevec pvec;
1433 struct inode *inode = mpd->inode;
1434 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1435
1436 /* This is necessary when next_page == 0. */
1437 if (mpd->first_page >= mpd->next_page)
1438 return;
c4a0c46e 1439
c7f5938a
CW
1440 index = mpd->first_page;
1441 end = mpd->next_page - 1;
4e7ea81d
JK
1442 if (invalidate) {
1443 ext4_lblk_t start, last;
1444 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1445 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1446 ext4_es_remove_extent(inode, start, last - start + 1);
1447 }
51865fda 1448
66bea92c 1449 pagevec_init(&pvec, 0);
c4a0c46e
AK
1450 while (index <= end) {
1451 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1452 if (nr_pages == 0)
1453 break;
1454 for (i = 0; i < nr_pages; i++) {
1455 struct page *page = pvec.pages[i];
9b1d0998 1456 if (page->index > end)
c4a0c46e 1457 break;
c4a0c46e
AK
1458 BUG_ON(!PageLocked(page));
1459 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1460 if (invalidate) {
1461 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1462 ClearPageUptodate(page);
1463 }
c4a0c46e
AK
1464 unlock_page(page);
1465 }
9b1d0998
JK
1466 index = pvec.pages[nr_pages - 1]->index + 1;
1467 pagevec_release(&pvec);
c4a0c46e 1468 }
c4a0c46e
AK
1469}
1470
df22291f
AK
1471static void ext4_print_free_blocks(struct inode *inode)
1472{
1473 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1474 struct super_block *sb = inode->i_sb;
f78ee70d 1475 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1476
1477 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1478 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1479 ext4_count_free_clusters(sb)));
92b97816
TT
1480 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1481 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1482 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1483 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1484 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1485 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1486 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1487 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1488 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1489 ei->i_reserved_data_blocks);
92b97816 1490 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
f78ee70d
LC
1491 ei->i_reserved_meta_blocks);
1492 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1493 ei->i_allocated_meta_blocks);
df22291f
AK
1494 return;
1495}
1496
c364b22c 1497static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1498{
c364b22c 1499 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1500}
1501
5356f261
AK
1502/*
1503 * This function is grabs code from the very beginning of
1504 * ext4_map_blocks, but assumes that the caller is from delayed write
1505 * time. This function looks up the requested blocks and sets the
1506 * buffer delay bit under the protection of i_data_sem.
1507 */
1508static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1509 struct ext4_map_blocks *map,
1510 struct buffer_head *bh)
1511{
d100eef2 1512 struct extent_status es;
5356f261
AK
1513 int retval;
1514 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1515#ifdef ES_AGGRESSIVE_TEST
1516 struct ext4_map_blocks orig_map;
1517
1518 memcpy(&orig_map, map, sizeof(*map));
1519#endif
5356f261
AK
1520
1521 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1522 invalid_block = ~0;
1523
1524 map->m_flags = 0;
1525 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1526 "logical block %lu\n", inode->i_ino, map->m_len,
1527 (unsigned long) map->m_lblk);
d100eef2
ZL
1528
1529 /* Lookup extent status tree firstly */
1530 if (ext4_es_lookup_extent(inode, iblock, &es)) {
63b99968 1531 ext4_es_lru_add(inode);
d100eef2
ZL
1532 if (ext4_es_is_hole(&es)) {
1533 retval = 0;
1534 down_read((&EXT4_I(inode)->i_data_sem));
1535 goto add_delayed;
1536 }
1537
1538 /*
1539 * Delayed extent could be allocated by fallocate.
1540 * So we need to check it.
1541 */
1542 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1543 map_bh(bh, inode->i_sb, invalid_block);
1544 set_buffer_new(bh);
1545 set_buffer_delay(bh);
1546 return 0;
1547 }
1548
1549 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1550 retval = es.es_len - (iblock - es.es_lblk);
1551 if (retval > map->m_len)
1552 retval = map->m_len;
1553 map->m_len = retval;
1554 if (ext4_es_is_written(&es))
1555 map->m_flags |= EXT4_MAP_MAPPED;
1556 else if (ext4_es_is_unwritten(&es))
1557 map->m_flags |= EXT4_MAP_UNWRITTEN;
1558 else
1559 BUG_ON(1);
1560
921f266b
DM
1561#ifdef ES_AGGRESSIVE_TEST
1562 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1563#endif
d100eef2
ZL
1564 return retval;
1565 }
1566
5356f261
AK
1567 /*
1568 * Try to see if we can get the block without requesting a new
1569 * file system block.
1570 */
1571 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1572 if (ext4_has_inline_data(inode)) {
1573 /*
1574 * We will soon create blocks for this page, and let
1575 * us pretend as if the blocks aren't allocated yet.
1576 * In case of clusters, we have to handle the work
1577 * of mapping from cluster so that the reserved space
1578 * is calculated properly.
1579 */
1580 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1581 ext4_find_delalloc_cluster(inode, map->m_lblk))
1582 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1583 retval = 0;
1584 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1585 retval = ext4_ext_map_blocks(NULL, inode, map,
1586 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1587 else
d100eef2
ZL
1588 retval = ext4_ind_map_blocks(NULL, inode, map,
1589 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1590
d100eef2 1591add_delayed:
5356f261 1592 if (retval == 0) {
f7fec032 1593 int ret;
5356f261
AK
1594 /*
1595 * XXX: __block_prepare_write() unmaps passed block,
1596 * is it OK?
1597 */
386ad67c
LC
1598 /*
1599 * If the block was allocated from previously allocated cluster,
1600 * then we don't need to reserve it again. However we still need
1601 * to reserve metadata for every block we're going to write.
1602 */
5356f261 1603 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1604 ret = ext4_da_reserve_space(inode, iblock);
1605 if (ret) {
5356f261 1606 /* not enough space to reserve */
f7fec032 1607 retval = ret;
5356f261 1608 goto out_unlock;
f7fec032 1609 }
386ad67c
LC
1610 } else {
1611 ret = ext4_da_reserve_metadata(inode, iblock);
1612 if (ret) {
1613 /* not enough space to reserve */
1614 retval = ret;
1615 goto out_unlock;
1616 }
5356f261
AK
1617 }
1618
f7fec032
ZL
1619 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1620 ~0, EXTENT_STATUS_DELAYED);
1621 if (ret) {
1622 retval = ret;
51865fda 1623 goto out_unlock;
f7fec032 1624 }
51865fda 1625
5356f261
AK
1626 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1627 * and it should not appear on the bh->b_state.
1628 */
1629 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1630
1631 map_bh(bh, inode->i_sb, invalid_block);
1632 set_buffer_new(bh);
1633 set_buffer_delay(bh);
f7fec032
ZL
1634 } else if (retval > 0) {
1635 int ret;
3be78c73 1636 unsigned int status;
f7fec032 1637
44fb851d
ZL
1638 if (unlikely(retval != map->m_len)) {
1639 ext4_warning(inode->i_sb,
1640 "ES len assertion failed for inode "
1641 "%lu: retval %d != map->m_len %d",
1642 inode->i_ino, retval, map->m_len);
1643 WARN_ON(1);
921f266b 1644 }
921f266b 1645
f7fec032
ZL
1646 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1647 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1648 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1649 map->m_pblk, status);
1650 if (ret != 0)
1651 retval = ret;
5356f261
AK
1652 }
1653
1654out_unlock:
1655 up_read((&EXT4_I(inode)->i_data_sem));
1656
1657 return retval;
1658}
1659
64769240 1660/*
b920c755
TT
1661 * This is a special get_blocks_t callback which is used by
1662 * ext4_da_write_begin(). It will either return mapped block or
1663 * reserve space for a single block.
29fa89d0
AK
1664 *
1665 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1666 * We also have b_blocknr = -1 and b_bdev initialized properly
1667 *
1668 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1669 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1670 * initialized properly.
64769240 1671 */
9c3569b5
TM
1672int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1673 struct buffer_head *bh, int create)
64769240 1674{
2ed88685 1675 struct ext4_map_blocks map;
64769240
AT
1676 int ret = 0;
1677
1678 BUG_ON(create == 0);
2ed88685
TT
1679 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1680
1681 map.m_lblk = iblock;
1682 map.m_len = 1;
64769240
AT
1683
1684 /*
1685 * first, we need to know whether the block is allocated already
1686 * preallocated blocks are unmapped but should treated
1687 * the same as allocated blocks.
1688 */
5356f261
AK
1689 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1690 if (ret <= 0)
2ed88685 1691 return ret;
64769240 1692
2ed88685
TT
1693 map_bh(bh, inode->i_sb, map.m_pblk);
1694 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1695
1696 if (buffer_unwritten(bh)) {
1697 /* A delayed write to unwritten bh should be marked
1698 * new and mapped. Mapped ensures that we don't do
1699 * get_block multiple times when we write to the same
1700 * offset and new ensures that we do proper zero out
1701 * for partial write.
1702 */
1703 set_buffer_new(bh);
c8205636 1704 set_buffer_mapped(bh);
2ed88685
TT
1705 }
1706 return 0;
64769240 1707}
61628a3f 1708
62e086be
AK
1709static int bget_one(handle_t *handle, struct buffer_head *bh)
1710{
1711 get_bh(bh);
1712 return 0;
1713}
1714
1715static int bput_one(handle_t *handle, struct buffer_head *bh)
1716{
1717 put_bh(bh);
1718 return 0;
1719}
1720
1721static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1722 unsigned int len)
1723{
1724 struct address_space *mapping = page->mapping;
1725 struct inode *inode = mapping->host;
3fdcfb66 1726 struct buffer_head *page_bufs = NULL;
62e086be 1727 handle_t *handle = NULL;
3fdcfb66
TM
1728 int ret = 0, err = 0;
1729 int inline_data = ext4_has_inline_data(inode);
1730 struct buffer_head *inode_bh = NULL;
62e086be 1731
cb20d518 1732 ClearPageChecked(page);
3fdcfb66
TM
1733
1734 if (inline_data) {
1735 BUG_ON(page->index != 0);
1736 BUG_ON(len > ext4_get_max_inline_size(inode));
1737 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1738 if (inode_bh == NULL)
1739 goto out;
1740 } else {
1741 page_bufs = page_buffers(page);
1742 if (!page_bufs) {
1743 BUG();
1744 goto out;
1745 }
1746 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1747 NULL, bget_one);
1748 }
62e086be
AK
1749 /* As soon as we unlock the page, it can go away, but we have
1750 * references to buffers so we are safe */
1751 unlock_page(page);
1752
9924a92a
TT
1753 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1754 ext4_writepage_trans_blocks(inode));
62e086be
AK
1755 if (IS_ERR(handle)) {
1756 ret = PTR_ERR(handle);
1757 goto out;
1758 }
1759
441c8508
CW
1760 BUG_ON(!ext4_handle_valid(handle));
1761
3fdcfb66
TM
1762 if (inline_data) {
1763 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1764
3fdcfb66
TM
1765 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1766
1767 } else {
1768 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1769 do_journal_get_write_access);
1770
1771 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1772 write_end_fn);
1773 }
62e086be
AK
1774 if (ret == 0)
1775 ret = err;
2d859db3 1776 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1777 err = ext4_journal_stop(handle);
1778 if (!ret)
1779 ret = err;
1780
3fdcfb66
TM
1781 if (!ext4_has_inline_data(inode))
1782 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1783 NULL, bput_one);
19f5fb7a 1784 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1785out:
3fdcfb66 1786 brelse(inode_bh);
62e086be
AK
1787 return ret;
1788}
1789
61628a3f 1790/*
43ce1d23
AK
1791 * Note that we don't need to start a transaction unless we're journaling data
1792 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1793 * need to file the inode to the transaction's list in ordered mode because if
1794 * we are writing back data added by write(), the inode is already there and if
25985edc 1795 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1796 * transaction the data will hit the disk. In case we are journaling data, we
1797 * cannot start transaction directly because transaction start ranks above page
1798 * lock so we have to do some magic.
1799 *
b920c755 1800 * This function can get called via...
20970ba6 1801 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1802 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1803 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1804 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1805 *
1806 * We don't do any block allocation in this function. If we have page with
1807 * multiple blocks we need to write those buffer_heads that are mapped. This
1808 * is important for mmaped based write. So if we do with blocksize 1K
1809 * truncate(f, 1024);
1810 * a = mmap(f, 0, 4096);
1811 * a[0] = 'a';
1812 * truncate(f, 4096);
1813 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1814 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1815 * do_wp_page). So writepage should write the first block. If we modify
1816 * the mmap area beyond 1024 we will again get a page_fault and the
1817 * page_mkwrite callback will do the block allocation and mark the
1818 * buffer_heads mapped.
1819 *
1820 * We redirty the page if we have any buffer_heads that is either delay or
1821 * unwritten in the page.
1822 *
1823 * We can get recursively called as show below.
1824 *
1825 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1826 * ext4_writepage()
1827 *
1828 * But since we don't do any block allocation we should not deadlock.
1829 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1830 */
43ce1d23 1831static int ext4_writepage(struct page *page,
62e086be 1832 struct writeback_control *wbc)
64769240 1833{
f8bec370 1834 int ret = 0;
61628a3f 1835 loff_t size;
498e5f24 1836 unsigned int len;
744692dc 1837 struct buffer_head *page_bufs = NULL;
61628a3f 1838 struct inode *inode = page->mapping->host;
36ade451 1839 struct ext4_io_submit io_submit;
61628a3f 1840
a9c667f8 1841 trace_ext4_writepage(page);
f0e6c985
AK
1842 size = i_size_read(inode);
1843 if (page->index == size >> PAGE_CACHE_SHIFT)
1844 len = size & ~PAGE_CACHE_MASK;
1845 else
1846 len = PAGE_CACHE_SIZE;
64769240 1847
a42afc5f 1848 page_bufs = page_buffers(page);
a42afc5f 1849 /*
fe386132
JK
1850 * We cannot do block allocation or other extent handling in this
1851 * function. If there are buffers needing that, we have to redirty
1852 * the page. But we may reach here when we do a journal commit via
1853 * journal_submit_inode_data_buffers() and in that case we must write
1854 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 1855 */
f19d5870
TM
1856 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1857 ext4_bh_delay_or_unwritten)) {
f8bec370 1858 redirty_page_for_writepage(wbc, page);
fe386132
JK
1859 if (current->flags & PF_MEMALLOC) {
1860 /*
1861 * For memory cleaning there's no point in writing only
1862 * some buffers. So just bail out. Warn if we came here
1863 * from direct reclaim.
1864 */
1865 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1866 == PF_MEMALLOC);
f0e6c985
AK
1867 unlock_page(page);
1868 return 0;
1869 }
a42afc5f 1870 }
64769240 1871
cb20d518 1872 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1873 /*
1874 * It's mmapped pagecache. Add buffers and journal it. There
1875 * doesn't seem much point in redirtying the page here.
1876 */
3f0ca309 1877 return __ext4_journalled_writepage(page, len);
43ce1d23 1878
97a851ed
JK
1879 ext4_io_submit_init(&io_submit, wbc);
1880 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1881 if (!io_submit.io_end) {
1882 redirty_page_for_writepage(wbc, page);
1883 unlock_page(page);
1884 return -ENOMEM;
1885 }
36ade451
JK
1886 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1887 ext4_io_submit(&io_submit);
97a851ed
JK
1888 /* Drop io_end reference we got from init */
1889 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1890 return ret;
1891}
1892
4e7ea81d
JK
1893#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1894
61628a3f 1895/*
fffb2739
JK
1896 * mballoc gives us at most this number of blocks...
1897 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1898 * The rest of mballoc seems to handle chunks upto full group size.
61628a3f 1899 */
fffb2739 1900#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1901
4e7ea81d
JK
1902/*
1903 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1904 *
1905 * @mpd - extent of blocks
1906 * @lblk - logical number of the block in the file
09930042 1907 * @bh - buffer head we want to add to the extent
4e7ea81d 1908 *
09930042
JK
1909 * The function is used to collect contig. blocks in the same state. If the
1910 * buffer doesn't require mapping for writeback and we haven't started the
1911 * extent of buffers to map yet, the function returns 'true' immediately - the
1912 * caller can write the buffer right away. Otherwise the function returns true
1913 * if the block has been added to the extent, false if the block couldn't be
1914 * added.
4e7ea81d 1915 */
09930042
JK
1916static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1917 struct buffer_head *bh)
4e7ea81d
JK
1918{
1919 struct ext4_map_blocks *map = &mpd->map;
1920
09930042
JK
1921 /* Buffer that doesn't need mapping for writeback? */
1922 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1923 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1924 /* So far no extent to map => we write the buffer right away */
1925 if (map->m_len == 0)
1926 return true;
1927 return false;
1928 }
4e7ea81d
JK
1929
1930 /* First block in the extent? */
1931 if (map->m_len == 0) {
1932 map->m_lblk = lblk;
1933 map->m_len = 1;
09930042
JK
1934 map->m_flags = bh->b_state & BH_FLAGS;
1935 return true;
4e7ea81d
JK
1936 }
1937
09930042
JK
1938 /* Don't go larger than mballoc is willing to allocate */
1939 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1940 return false;
1941
4e7ea81d
JK
1942 /* Can we merge the block to our big extent? */
1943 if (lblk == map->m_lblk + map->m_len &&
09930042 1944 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 1945 map->m_len++;
09930042 1946 return true;
4e7ea81d 1947 }
09930042 1948 return false;
4e7ea81d
JK
1949}
1950
1951static bool add_page_bufs_to_extent(struct mpage_da_data *mpd,
1952 struct buffer_head *head,
1953 struct buffer_head *bh,
1954 ext4_lblk_t lblk)
1955{
1956 struct inode *inode = mpd->inode;
1957 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1958 >> inode->i_blkbits;
1959
1960 do {
1961 BUG_ON(buffer_locked(bh));
1962
09930042 1963 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
1964 /* Found extent to map? */
1965 if (mpd->map.m_len)
1966 return false;
09930042
JK
1967 /* Everything mapped so far and we hit EOF */
1968 return true;
4e7ea81d 1969 }
4e7ea81d
JK
1970 } while (lblk++, (bh = bh->b_this_page) != head);
1971 return true;
1972}
1973
1974static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1975{
1976 int len;
1977 loff_t size = i_size_read(mpd->inode);
1978 int err;
1979
1980 BUG_ON(page->index != mpd->first_page);
1981 if (page->index == size >> PAGE_CACHE_SHIFT)
1982 len = size & ~PAGE_CACHE_MASK;
1983 else
1984 len = PAGE_CACHE_SIZE;
1985 clear_page_dirty_for_io(page);
1986 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1987 if (!err)
1988 mpd->wbc->nr_to_write--;
1989 mpd->first_page++;
1990
1991 return err;
1992}
1993
1994/*
1995 * mpage_map_buffers - update buffers corresponding to changed extent and
1996 * submit fully mapped pages for IO
1997 *
1998 * @mpd - description of extent to map, on return next extent to map
1999 *
2000 * Scan buffers corresponding to changed extent (we expect corresponding pages
2001 * to be already locked) and update buffer state according to new extent state.
2002 * We map delalloc buffers to their physical location, clear unwritten bits,
2003 * and mark buffers as uninit when we perform writes to uninitialized extents
2004 * and do extent conversion after IO is finished. If the last page is not fully
2005 * mapped, we update @map to the next extent in the last page that needs
2006 * mapping. Otherwise we submit the page for IO.
2007 */
2008static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2009{
2010 struct pagevec pvec;
2011 int nr_pages, i;
2012 struct inode *inode = mpd->inode;
2013 struct buffer_head *head, *bh;
2014 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2015 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2016 >> inode->i_blkbits;
2017 pgoff_t start, end;
2018 ext4_lblk_t lblk;
2019 sector_t pblock;
2020 int err;
2021
2022 start = mpd->map.m_lblk >> bpp_bits;
2023 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2024 lblk = start << bpp_bits;
2025 pblock = mpd->map.m_pblk;
2026
2027 pagevec_init(&pvec, 0);
2028 while (start <= end) {
2029 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2030 PAGEVEC_SIZE);
2031 if (nr_pages == 0)
2032 break;
2033 for (i = 0; i < nr_pages; i++) {
2034 struct page *page = pvec.pages[i];
2035
2036 if (page->index > end)
2037 break;
2038 /* Upto 'end' pages must be contiguous */
2039 BUG_ON(page->index != start);
2040 bh = head = page_buffers(page);
2041 do {
2042 if (lblk < mpd->map.m_lblk)
2043 continue;
2044 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2045 /*
2046 * Buffer after end of mapped extent.
2047 * Find next buffer in the page to map.
2048 */
2049 mpd->map.m_len = 0;
2050 mpd->map.m_flags = 0;
2051 add_page_bufs_to_extent(mpd, head, bh,
2052 lblk);
2053 pagevec_release(&pvec);
2054 return 0;
2055 }
2056 if (buffer_delay(bh)) {
2057 clear_buffer_delay(bh);
2058 bh->b_blocknr = pblock++;
2059 }
4e7ea81d
JK
2060 clear_buffer_unwritten(bh);
2061 } while (++lblk < blocks &&
2062 (bh = bh->b_this_page) != head);
2063
2064 /*
2065 * FIXME: This is going to break if dioread_nolock
2066 * supports blocksize < pagesize as we will try to
2067 * convert potentially unmapped parts of inode.
2068 */
2069 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2070 /* Page fully mapped - let IO run! */
2071 err = mpage_submit_page(mpd, page);
2072 if (err < 0) {
2073 pagevec_release(&pvec);
2074 return err;
2075 }
2076 start++;
2077 }
2078 pagevec_release(&pvec);
2079 }
2080 /* Extent fully mapped and matches with page boundary. We are done. */
2081 mpd->map.m_len = 0;
2082 mpd->map.m_flags = 0;
2083 return 0;
2084}
2085
2086static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2087{
2088 struct inode *inode = mpd->inode;
2089 struct ext4_map_blocks *map = &mpd->map;
2090 int get_blocks_flags;
2091 int err;
2092
2093 trace_ext4_da_write_pages_extent(inode, map);
2094 /*
2095 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2096 * to convert an uninitialized extent to be initialized (in the case
2097 * where we have written into one or more preallocated blocks). It is
2098 * possible that we're going to need more metadata blocks than
2099 * previously reserved. However we must not fail because we're in
2100 * writeback and there is nothing we can do about it so it might result
2101 * in data loss. So use reserved blocks to allocate metadata if
2102 * possible.
2103 *
2104 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2105 * in question are delalloc blocks. This affects functions in many
2106 * different parts of the allocation call path. This flag exists
2107 * primarily because we don't want to change *many* call functions, so
2108 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2109 * once the inode's allocation semaphore is taken.
2110 */
2111 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2112 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2113 if (ext4_should_dioread_nolock(inode))
2114 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2115 if (map->m_flags & (1 << BH_Delay))
2116 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2117
2118 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2119 if (err < 0)
2120 return err;
6b523df4
JK
2121 if (map->m_flags & EXT4_MAP_UNINIT) {
2122 if (!mpd->io_submit.io_end->handle &&
2123 ext4_handle_valid(handle)) {
2124 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2125 handle->h_rsv_handle = NULL;
2126 }
3613d228 2127 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2128 }
4e7ea81d
JK
2129
2130 BUG_ON(map->m_len == 0);
2131 if (map->m_flags & EXT4_MAP_NEW) {
2132 struct block_device *bdev = inode->i_sb->s_bdev;
2133 int i;
2134
2135 for (i = 0; i < map->m_len; i++)
2136 unmap_underlying_metadata(bdev, map->m_pblk + i);
2137 }
2138 return 0;
2139}
2140
2141/*
2142 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2143 * mpd->len and submit pages underlying it for IO
2144 *
2145 * @handle - handle for journal operations
2146 * @mpd - extent to map
2147 *
2148 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2149 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2150 * them to initialized or split the described range from larger unwritten
2151 * extent. Note that we need not map all the described range since allocation
2152 * can return less blocks or the range is covered by more unwritten extents. We
2153 * cannot map more because we are limited by reserved transaction credits. On
2154 * the other hand we always make sure that the last touched page is fully
2155 * mapped so that it can be written out (and thus forward progress is
2156 * guaranteed). After mapping we submit all mapped pages for IO.
2157 */
2158static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2159 struct mpage_da_data *mpd,
2160 bool *give_up_on_write)
4e7ea81d
JK
2161{
2162 struct inode *inode = mpd->inode;
2163 struct ext4_map_blocks *map = &mpd->map;
2164 int err;
2165 loff_t disksize;
2166
2167 mpd->io_submit.io_end->offset =
2168 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2169 do {
4e7ea81d
JK
2170 err = mpage_map_one_extent(handle, mpd);
2171 if (err < 0) {
2172 struct super_block *sb = inode->i_sb;
2173
cb530541
TT
2174 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2175 goto invalidate_dirty_pages;
4e7ea81d 2176 /*
cb530541
TT
2177 * Let the uper layers retry transient errors.
2178 * In the case of ENOSPC, if ext4_count_free_blocks()
2179 * is non-zero, a commit should free up blocks.
4e7ea81d 2180 */
cb530541
TT
2181 if ((err == -ENOMEM) ||
2182 (err == -ENOSPC && ext4_count_free_clusters(sb)))
2183 return err;
2184 ext4_msg(sb, KERN_CRIT,
2185 "Delayed block allocation failed for "
2186 "inode %lu at logical offset %llu with"
2187 " max blocks %u with error %d",
2188 inode->i_ino,
2189 (unsigned long long)map->m_lblk,
2190 (unsigned)map->m_len, -err);
2191 ext4_msg(sb, KERN_CRIT,
2192 "This should not happen!! Data will "
2193 "be lost\n");
2194 if (err == -ENOSPC)
2195 ext4_print_free_blocks(inode);
2196 invalidate_dirty_pages:
2197 *give_up_on_write = true;
4e7ea81d
JK
2198 return err;
2199 }
2200 /*
2201 * Update buffer state, submit mapped pages, and get us new
2202 * extent to map
2203 */
2204 err = mpage_map_and_submit_buffers(mpd);
2205 if (err < 0)
2206 return err;
27d7c4ed 2207 } while (map->m_len);
4e7ea81d
JK
2208
2209 /* Update on-disk size after IO is submitted */
2210 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2211 if (disksize > i_size_read(inode))
2212 disksize = i_size_read(inode);
2213 if (disksize > EXT4_I(inode)->i_disksize) {
2214 int err2;
2215
2216 ext4_update_i_disksize(inode, disksize);
2217 err2 = ext4_mark_inode_dirty(handle, inode);
2218 if (err2)
2219 ext4_error(inode->i_sb,
2220 "Failed to mark inode %lu dirty",
2221 inode->i_ino);
2222 if (!err)
2223 err = err2;
2224 }
2225 return err;
2226}
2227
fffb2739
JK
2228/*
2229 * Calculate the total number of credits to reserve for one writepages
20970ba6 2230 * iteration. This is called from ext4_writepages(). We map an extent of
fffb2739
JK
2231 * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2232 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2233 * bpp - 1 blocks in bpp different extents.
2234 */
525f4ed8
MC
2235static int ext4_da_writepages_trans_blocks(struct inode *inode)
2236{
fffb2739 2237 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2238
fffb2739
JK
2239 return ext4_meta_trans_blocks(inode,
2240 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2241}
61628a3f 2242
8e48dcfb 2243/*
4e7ea81d
JK
2244 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2245 * and underlying extent to map
2246 *
2247 * @mpd - where to look for pages
2248 *
2249 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2250 * IO immediately. When we find a page which isn't mapped we start accumulating
2251 * extent of buffers underlying these pages that needs mapping (formed by
2252 * either delayed or unwritten buffers). We also lock the pages containing
2253 * these buffers. The extent found is returned in @mpd structure (starting at
2254 * mpd->lblk with length mpd->len blocks).
2255 *
2256 * Note that this function can attach bios to one io_end structure which are
2257 * neither logically nor physically contiguous. Although it may seem as an
2258 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2259 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2260 */
4e7ea81d 2261static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2262{
4e7ea81d
JK
2263 struct address_space *mapping = mpd->inode->i_mapping;
2264 struct pagevec pvec;
2265 unsigned int nr_pages;
2266 pgoff_t index = mpd->first_page;
2267 pgoff_t end = mpd->last_page;
2268 int tag;
2269 int i, err = 0;
2270 int blkbits = mpd->inode->i_blkbits;
2271 ext4_lblk_t lblk;
2272 struct buffer_head *head;
8e48dcfb 2273
4e7ea81d 2274 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2275 tag = PAGECACHE_TAG_TOWRITE;
2276 else
2277 tag = PAGECACHE_TAG_DIRTY;
2278
4e7ea81d
JK
2279 pagevec_init(&pvec, 0);
2280 mpd->map.m_len = 0;
2281 mpd->next_page = index;
4f01b02c 2282 while (index <= end) {
5b41d924 2283 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2284 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2285 if (nr_pages == 0)
4e7ea81d 2286 goto out;
8e48dcfb
TT
2287
2288 for (i = 0; i < nr_pages; i++) {
2289 struct page *page = pvec.pages[i];
2290
2291 /*
2292 * At this point, the page may be truncated or
2293 * invalidated (changing page->mapping to NULL), or
2294 * even swizzled back from swapper_space to tmpfs file
2295 * mapping. However, page->index will not change
2296 * because we have a reference on the page.
2297 */
4f01b02c
TT
2298 if (page->index > end)
2299 goto out;
8e48dcfb 2300
4e7ea81d
JK
2301 /* If we can't merge this page, we are done. */
2302 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2303 goto out;
78aaced3 2304
8e48dcfb 2305 lock_page(page);
8e48dcfb 2306 /*
4e7ea81d
JK
2307 * If the page is no longer dirty, or its mapping no
2308 * longer corresponds to inode we are writing (which
2309 * means it has been truncated or invalidated), or the
2310 * page is already under writeback and we are not doing
2311 * a data integrity writeback, skip the page
8e48dcfb 2312 */
4f01b02c
TT
2313 if (!PageDirty(page) ||
2314 (PageWriteback(page) &&
4e7ea81d 2315 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2316 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2317 unlock_page(page);
2318 continue;
2319 }
2320
7cb1a535 2321 wait_on_page_writeback(page);
8e48dcfb 2322 BUG_ON(PageWriteback(page));
8e48dcfb 2323
4e7ea81d 2324 if (mpd->map.m_len == 0)
8eb9e5ce 2325 mpd->first_page = page->index;
8eb9e5ce 2326 mpd->next_page = page->index + 1;
f8bec370 2327 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2328 lblk = ((ext4_lblk_t)page->index) <<
2329 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2330 head = page_buffers(page);
4e7ea81d
JK
2331 if (!add_page_bufs_to_extent(mpd, head, head, lblk))
2332 goto out;
2333 /* So far everything mapped? Submit the page for IO. */
2334 if (mpd->map.m_len == 0) {
2335 err = mpage_submit_page(mpd, page);
2336 if (err < 0)
4f01b02c 2337 goto out;
8e48dcfb 2338 }
4e7ea81d
JK
2339
2340 /*
2341 * Accumulated enough dirty pages? This doesn't apply
2342 * to WB_SYNC_ALL mode. For integrity sync we have to
2343 * keep going because someone may be concurrently
2344 * dirtying pages, and we might have synced a lot of
2345 * newly appeared dirty pages, but have not synced all
2346 * of the old dirty pages.
2347 */
2348 if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2349 mpd->next_page - mpd->first_page >=
2350 mpd->wbc->nr_to_write)
2351 goto out;
8e48dcfb
TT
2352 }
2353 pagevec_release(&pvec);
2354 cond_resched();
2355 }
4f01b02c 2356 return 0;
8eb9e5ce
TT
2357out:
2358 pagevec_release(&pvec);
4e7ea81d 2359 return err;
8e48dcfb
TT
2360}
2361
20970ba6
TT
2362static int __writepage(struct page *page, struct writeback_control *wbc,
2363 void *data)
2364{
2365 struct address_space *mapping = data;
2366 int ret = ext4_writepage(page, wbc);
2367 mapping_set_error(mapping, ret);
2368 return ret;
2369}
2370
2371static int ext4_writepages(struct address_space *mapping,
2372 struct writeback_control *wbc)
64769240 2373{
4e7ea81d
JK
2374 pgoff_t writeback_index = 0;
2375 long nr_to_write = wbc->nr_to_write;
22208ded 2376 int range_whole = 0;
4e7ea81d 2377 int cycled = 1;
61628a3f 2378 handle_t *handle = NULL;
df22291f 2379 struct mpage_da_data mpd;
5e745b04 2380 struct inode *inode = mapping->host;
6b523df4 2381 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2382 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2383 bool done;
1bce63d1 2384 struct blk_plug plug;
cb530541 2385 bool give_up_on_write = false;
61628a3f 2386
20970ba6 2387 trace_ext4_writepages(inode, wbc);
ba80b101 2388
61628a3f
MC
2389 /*
2390 * No pages to write? This is mainly a kludge to avoid starting
2391 * a transaction for special inodes like journal inode on last iput()
2392 * because that could violate lock ordering on umount
2393 */
a1d6cc56 2394 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2395 return 0;
2a21e37e 2396
20970ba6
TT
2397 if (ext4_should_journal_data(inode)) {
2398 struct blk_plug plug;
2399 int ret;
2400
2401 blk_start_plug(&plug);
2402 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2403 blk_finish_plug(&plug);
2404 return ret;
2405 }
2406
2a21e37e
TT
2407 /*
2408 * If the filesystem has aborted, it is read-only, so return
2409 * right away instead of dumping stack traces later on that
2410 * will obscure the real source of the problem. We test
4ab2f15b 2411 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2412 * the latter could be true if the filesystem is mounted
20970ba6 2413 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2414 * *never* be called, so if that ever happens, we would want
2415 * the stack trace.
2416 */
4ab2f15b 2417 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2418 return -EROFS;
2419
6b523df4
JK
2420 if (ext4_should_dioread_nolock(inode)) {
2421 /*
2422 * We may need to convert upto one extent per block in
2423 * the page and we may dirty the inode.
2424 */
2425 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2426 }
2427
4e7ea81d
JK
2428 /*
2429 * If we have inline data and arrive here, it means that
2430 * we will soon create the block for the 1st page, so
2431 * we'd better clear the inline data here.
2432 */
2433 if (ext4_has_inline_data(inode)) {
2434 /* Just inode will be modified... */
2435 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2436 if (IS_ERR(handle)) {
2437 ret = PTR_ERR(handle);
2438 goto out_writepages;
2439 }
2440 BUG_ON(ext4_test_inode_state(inode,
2441 EXT4_STATE_MAY_INLINE_DATA));
2442 ext4_destroy_inline_data(handle, inode);
2443 ext4_journal_stop(handle);
2444 }
2445
22208ded
AK
2446 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2447 range_whole = 1;
61628a3f 2448
2acf2c26 2449 if (wbc->range_cyclic) {
4e7ea81d
JK
2450 writeback_index = mapping->writeback_index;
2451 if (writeback_index)
2acf2c26 2452 cycled = 0;
4e7ea81d
JK
2453 mpd.first_page = writeback_index;
2454 mpd.last_page = -1;
5b41d924 2455 } else {
4e7ea81d
JK
2456 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2457 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2458 }
a1d6cc56 2459
4e7ea81d
JK
2460 mpd.inode = inode;
2461 mpd.wbc = wbc;
2462 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2463retry:
6e6938b6 2464 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2465 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2466 done = false;
1bce63d1 2467 blk_start_plug(&plug);
4e7ea81d
JK
2468 while (!done && mpd.first_page <= mpd.last_page) {
2469 /* For each extent of pages we use new io_end */
2470 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2471 if (!mpd.io_submit.io_end) {
2472 ret = -ENOMEM;
2473 break;
2474 }
a1d6cc56
AK
2475
2476 /*
4e7ea81d
JK
2477 * We have two constraints: We find one extent to map and we
2478 * must always write out whole page (makes a difference when
2479 * blocksize < pagesize) so that we don't block on IO when we
2480 * try to write out the rest of the page. Journalled mode is
2481 * not supported by delalloc.
a1d6cc56
AK
2482 */
2483 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2484 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2485
4e7ea81d 2486 /* start a new transaction */
6b523df4
JK
2487 handle = ext4_journal_start_with_reserve(inode,
2488 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2489 if (IS_ERR(handle)) {
2490 ret = PTR_ERR(handle);
1693918e 2491 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2492 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2493 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2494 /* Release allocated io_end */
2495 ext4_put_io_end(mpd.io_submit.io_end);
2496 break;
61628a3f 2497 }
f63e6005 2498
4e7ea81d
JK
2499 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2500 ret = mpage_prepare_extent_to_map(&mpd);
2501 if (!ret) {
2502 if (mpd.map.m_len)
cb530541
TT
2503 ret = mpage_map_and_submit_extent(handle, &mpd,
2504 &give_up_on_write);
4e7ea81d
JK
2505 else {
2506 /*
2507 * We scanned the whole range (or exhausted
2508 * nr_to_write), submitted what was mapped and
2509 * didn't find anything needing mapping. We are
2510 * done.
2511 */
2512 done = true;
2513 }
f63e6005 2514 }
61628a3f 2515 ext4_journal_stop(handle);
4e7ea81d
JK
2516 /* Submit prepared bio */
2517 ext4_io_submit(&mpd.io_submit);
2518 /* Unlock pages we didn't use */
cb530541 2519 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2520 /* Drop our io_end reference we got from init */
2521 ext4_put_io_end(mpd.io_submit.io_end);
2522
2523 if (ret == -ENOSPC && sbi->s_journal) {
2524 /*
2525 * Commit the transaction which would
22208ded
AK
2526 * free blocks released in the transaction
2527 * and try again
2528 */
df22291f 2529 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2530 ret = 0;
4e7ea81d
JK
2531 continue;
2532 }
2533 /* Fatal error - ENOMEM, EIO... */
2534 if (ret)
61628a3f 2535 break;
a1d6cc56 2536 }
1bce63d1 2537 blk_finish_plug(&plug);
4e7ea81d 2538 if (!ret && !cycled) {
2acf2c26 2539 cycled = 1;
4e7ea81d
JK
2540 mpd.last_page = writeback_index - 1;
2541 mpd.first_page = 0;
2acf2c26
AK
2542 goto retry;
2543 }
22208ded
AK
2544
2545 /* Update index */
22208ded
AK
2546 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2547 /*
4e7ea81d 2548 * Set the writeback_index so that range_cyclic
22208ded
AK
2549 * mode will write it back later
2550 */
4e7ea81d 2551 mapping->writeback_index = mpd.first_page;
a1d6cc56 2552
61628a3f 2553out_writepages:
20970ba6
TT
2554 trace_ext4_writepages_result(inode, wbc, ret,
2555 nr_to_write - wbc->nr_to_write);
61628a3f 2556 return ret;
64769240
AT
2557}
2558
79f0be8d
AK
2559static int ext4_nonda_switch(struct super_block *sb)
2560{
5c1ff336 2561 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2562 struct ext4_sb_info *sbi = EXT4_SB(sb);
2563
2564 /*
2565 * switch to non delalloc mode if we are running low
2566 * on free block. The free block accounting via percpu
179f7ebf 2567 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2568 * accumulated on each CPU without updating global counters
2569 * Delalloc need an accurate free block accounting. So switch
2570 * to non delalloc when we are near to error range.
2571 */
5c1ff336
EW
2572 free_clusters =
2573 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2574 dirty_clusters =
2575 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2576 /*
2577 * Start pushing delalloc when 1/2 of free blocks are dirty.
2578 */
5c1ff336 2579 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2580 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2581
5c1ff336
EW
2582 if (2 * free_clusters < 3 * dirty_clusters ||
2583 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2584 /*
c8afb446
ES
2585 * free block count is less than 150% of dirty blocks
2586 * or free blocks is less than watermark
79f0be8d
AK
2587 */
2588 return 1;
2589 }
2590 return 0;
2591}
2592
64769240 2593static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2594 loff_t pos, unsigned len, unsigned flags,
2595 struct page **pagep, void **fsdata)
64769240 2596{
72b8ab9d 2597 int ret, retries = 0;
64769240
AT
2598 struct page *page;
2599 pgoff_t index;
64769240
AT
2600 struct inode *inode = mapping->host;
2601 handle_t *handle;
2602
2603 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2604
2605 if (ext4_nonda_switch(inode->i_sb)) {
2606 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2607 return ext4_write_begin(file, mapping, pos,
2608 len, flags, pagep, fsdata);
2609 }
2610 *fsdata = (void *)0;
9bffad1e 2611 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2612
2613 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2614 ret = ext4_da_write_inline_data_begin(mapping, inode,
2615 pos, len, flags,
2616 pagep, fsdata);
2617 if (ret < 0)
47564bfb
TT
2618 return ret;
2619 if (ret == 1)
2620 return 0;
9c3569b5
TM
2621 }
2622
47564bfb
TT
2623 /*
2624 * grab_cache_page_write_begin() can take a long time if the
2625 * system is thrashing due to memory pressure, or if the page
2626 * is being written back. So grab it first before we start
2627 * the transaction handle. This also allows us to allocate
2628 * the page (if needed) without using GFP_NOFS.
2629 */
2630retry_grab:
2631 page = grab_cache_page_write_begin(mapping, index, flags);
2632 if (!page)
2633 return -ENOMEM;
2634 unlock_page(page);
2635
64769240
AT
2636 /*
2637 * With delayed allocation, we don't log the i_disksize update
2638 * if there is delayed block allocation. But we still need
2639 * to journalling the i_disksize update if writes to the end
2640 * of file which has an already mapped buffer.
2641 */
47564bfb 2642retry_journal:
9924a92a 2643 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2644 if (IS_ERR(handle)) {
47564bfb
TT
2645 page_cache_release(page);
2646 return PTR_ERR(handle);
64769240
AT
2647 }
2648
47564bfb
TT
2649 lock_page(page);
2650 if (page->mapping != mapping) {
2651 /* The page got truncated from under us */
2652 unlock_page(page);
2653 page_cache_release(page);
d5a0d4f7 2654 ext4_journal_stop(handle);
47564bfb 2655 goto retry_grab;
d5a0d4f7 2656 }
47564bfb
TT
2657 /* In case writeback began while the page was unlocked */
2658 wait_on_page_writeback(page);
64769240 2659
6e1db88d 2660 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2661 if (ret < 0) {
2662 unlock_page(page);
2663 ext4_journal_stop(handle);
ae4d5372
AK
2664 /*
2665 * block_write_begin may have instantiated a few blocks
2666 * outside i_size. Trim these off again. Don't need
2667 * i_size_read because we hold i_mutex.
2668 */
2669 if (pos + len > inode->i_size)
b9a4207d 2670 ext4_truncate_failed_write(inode);
47564bfb
TT
2671
2672 if (ret == -ENOSPC &&
2673 ext4_should_retry_alloc(inode->i_sb, &retries))
2674 goto retry_journal;
2675
2676 page_cache_release(page);
2677 return ret;
64769240
AT
2678 }
2679
47564bfb 2680 *pagep = page;
64769240
AT
2681 return ret;
2682}
2683
632eaeab
MC
2684/*
2685 * Check if we should update i_disksize
2686 * when write to the end of file but not require block allocation
2687 */
2688static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2689 unsigned long offset)
632eaeab
MC
2690{
2691 struct buffer_head *bh;
2692 struct inode *inode = page->mapping->host;
2693 unsigned int idx;
2694 int i;
2695
2696 bh = page_buffers(page);
2697 idx = offset >> inode->i_blkbits;
2698
af5bc92d 2699 for (i = 0; i < idx; i++)
632eaeab
MC
2700 bh = bh->b_this_page;
2701
29fa89d0 2702 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2703 return 0;
2704 return 1;
2705}
2706
64769240 2707static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2708 struct address_space *mapping,
2709 loff_t pos, unsigned len, unsigned copied,
2710 struct page *page, void *fsdata)
64769240
AT
2711{
2712 struct inode *inode = mapping->host;
2713 int ret = 0, ret2;
2714 handle_t *handle = ext4_journal_current_handle();
2715 loff_t new_i_size;
632eaeab 2716 unsigned long start, end;
79f0be8d
AK
2717 int write_mode = (int)(unsigned long)fsdata;
2718
74d553aa
TT
2719 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2720 return ext4_write_end(file, mapping, pos,
2721 len, copied, page, fsdata);
632eaeab 2722
9bffad1e 2723 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2724 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2725 end = start + copied - 1;
64769240
AT
2726
2727 /*
2728 * generic_write_end() will run mark_inode_dirty() if i_size
2729 * changes. So let's piggyback the i_disksize mark_inode_dirty
2730 * into that.
2731 */
64769240 2732 new_i_size = pos + copied;
ea51d132 2733 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2734 if (ext4_has_inline_data(inode) ||
2735 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2736 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2737 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2738 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2739 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2740 /* We need to mark inode dirty even if
2741 * new_i_size is less that inode->i_size
2742 * bu greater than i_disksize.(hint delalloc)
2743 */
2744 ext4_mark_inode_dirty(handle, inode);
64769240 2745 }
632eaeab 2746 }
9c3569b5
TM
2747
2748 if (write_mode != CONVERT_INLINE_DATA &&
2749 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2750 ext4_has_inline_data(inode))
2751 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2752 page);
2753 else
2754 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2755 page, fsdata);
9c3569b5 2756
64769240
AT
2757 copied = ret2;
2758 if (ret2 < 0)
2759 ret = ret2;
2760 ret2 = ext4_journal_stop(handle);
2761 if (!ret)
2762 ret = ret2;
2763
2764 return ret ? ret : copied;
2765}
2766
d47992f8
LC
2767static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2768 unsigned int length)
64769240 2769{
64769240
AT
2770 /*
2771 * Drop reserved blocks
2772 */
2773 BUG_ON(!PageLocked(page));
2774 if (!page_has_buffers(page))
2775 goto out;
2776
ca99fdd2 2777 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2778
2779out:
d47992f8 2780 ext4_invalidatepage(page, offset, length);
64769240
AT
2781
2782 return;
2783}
2784
ccd2506b
TT
2785/*
2786 * Force all delayed allocation blocks to be allocated for a given inode.
2787 */
2788int ext4_alloc_da_blocks(struct inode *inode)
2789{
fb40ba0d
TT
2790 trace_ext4_alloc_da_blocks(inode);
2791
ccd2506b
TT
2792 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2793 !EXT4_I(inode)->i_reserved_meta_blocks)
2794 return 0;
2795
2796 /*
2797 * We do something simple for now. The filemap_flush() will
2798 * also start triggering a write of the data blocks, which is
2799 * not strictly speaking necessary (and for users of
2800 * laptop_mode, not even desirable). However, to do otherwise
2801 * would require replicating code paths in:
de9a55b8 2802 *
20970ba6 2803 * ext4_writepages() ->
ccd2506b
TT
2804 * write_cache_pages() ---> (via passed in callback function)
2805 * __mpage_da_writepage() -->
2806 * mpage_add_bh_to_extent()
2807 * mpage_da_map_blocks()
2808 *
2809 * The problem is that write_cache_pages(), located in
2810 * mm/page-writeback.c, marks pages clean in preparation for
2811 * doing I/O, which is not desirable if we're not planning on
2812 * doing I/O at all.
2813 *
2814 * We could call write_cache_pages(), and then redirty all of
380cf090 2815 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2816 * would be ugly in the extreme. So instead we would need to
2817 * replicate parts of the code in the above functions,
25985edc 2818 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2819 * write out the pages, but rather only collect contiguous
2820 * logical block extents, call the multi-block allocator, and
2821 * then update the buffer heads with the block allocations.
de9a55b8 2822 *
ccd2506b
TT
2823 * For now, though, we'll cheat by calling filemap_flush(),
2824 * which will map the blocks, and start the I/O, but not
2825 * actually wait for the I/O to complete.
2826 */
2827 return filemap_flush(inode->i_mapping);
2828}
64769240 2829
ac27a0ec
DK
2830/*
2831 * bmap() is special. It gets used by applications such as lilo and by
2832 * the swapper to find the on-disk block of a specific piece of data.
2833 *
2834 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2835 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2836 * filesystem and enables swap, then they may get a nasty shock when the
2837 * data getting swapped to that swapfile suddenly gets overwritten by
2838 * the original zero's written out previously to the journal and
2839 * awaiting writeback in the kernel's buffer cache.
2840 *
2841 * So, if we see any bmap calls here on a modified, data-journaled file,
2842 * take extra steps to flush any blocks which might be in the cache.
2843 */
617ba13b 2844static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2845{
2846 struct inode *inode = mapping->host;
2847 journal_t *journal;
2848 int err;
2849
46c7f254
TM
2850 /*
2851 * We can get here for an inline file via the FIBMAP ioctl
2852 */
2853 if (ext4_has_inline_data(inode))
2854 return 0;
2855
64769240
AT
2856 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2857 test_opt(inode->i_sb, DELALLOC)) {
2858 /*
2859 * With delalloc we want to sync the file
2860 * so that we can make sure we allocate
2861 * blocks for file
2862 */
2863 filemap_write_and_wait(mapping);
2864 }
2865
19f5fb7a
TT
2866 if (EXT4_JOURNAL(inode) &&
2867 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2868 /*
2869 * This is a REALLY heavyweight approach, but the use of
2870 * bmap on dirty files is expected to be extremely rare:
2871 * only if we run lilo or swapon on a freshly made file
2872 * do we expect this to happen.
2873 *
2874 * (bmap requires CAP_SYS_RAWIO so this does not
2875 * represent an unprivileged user DOS attack --- we'd be
2876 * in trouble if mortal users could trigger this path at
2877 * will.)
2878 *
617ba13b 2879 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2880 * regular files. If somebody wants to bmap a directory
2881 * or symlink and gets confused because the buffer
2882 * hasn't yet been flushed to disk, they deserve
2883 * everything they get.
2884 */
2885
19f5fb7a 2886 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2887 journal = EXT4_JOURNAL(inode);
dab291af
MC
2888 jbd2_journal_lock_updates(journal);
2889 err = jbd2_journal_flush(journal);
2890 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2891
2892 if (err)
2893 return 0;
2894 }
2895
af5bc92d 2896 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2897}
2898
617ba13b 2899static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2900{
46c7f254
TM
2901 int ret = -EAGAIN;
2902 struct inode *inode = page->mapping->host;
2903
0562e0ba 2904 trace_ext4_readpage(page);
46c7f254
TM
2905
2906 if (ext4_has_inline_data(inode))
2907 ret = ext4_readpage_inline(inode, page);
2908
2909 if (ret == -EAGAIN)
2910 return mpage_readpage(page, ext4_get_block);
2911
2912 return ret;
ac27a0ec
DK
2913}
2914
2915static int
617ba13b 2916ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2917 struct list_head *pages, unsigned nr_pages)
2918{
46c7f254
TM
2919 struct inode *inode = mapping->host;
2920
2921 /* If the file has inline data, no need to do readpages. */
2922 if (ext4_has_inline_data(inode))
2923 return 0;
2924
617ba13b 2925 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2926}
2927
d47992f8
LC
2928static void ext4_invalidatepage(struct page *page, unsigned int offset,
2929 unsigned int length)
ac27a0ec 2930{
ca99fdd2 2931 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2932
4520fb3c
JK
2933 /* No journalling happens on data buffers when this function is used */
2934 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2935
ca99fdd2 2936 block_invalidatepage(page, offset, length);
4520fb3c
JK
2937}
2938
53e87268 2939static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2940 unsigned int offset,
2941 unsigned int length)
4520fb3c
JK
2942{
2943 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2944
ca99fdd2 2945 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2946
ac27a0ec
DK
2947 /*
2948 * If it's a full truncate we just forget about the pending dirtying
2949 */
ca99fdd2 2950 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2951 ClearPageChecked(page);
2952
ca99fdd2 2953 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
2954}
2955
2956/* Wrapper for aops... */
2957static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
2958 unsigned int offset,
2959 unsigned int length)
53e87268 2960{
ca99fdd2 2961 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
2962}
2963
617ba13b 2964static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2965{
617ba13b 2966 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2967
0562e0ba
JZ
2968 trace_ext4_releasepage(page);
2969
e1c36595
JK
2970 /* Page has dirty journalled data -> cannot release */
2971 if (PageChecked(page))
ac27a0ec 2972 return 0;
0390131b
FM
2973 if (journal)
2974 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2975 else
2976 return try_to_free_buffers(page);
ac27a0ec
DK
2977}
2978
2ed88685
TT
2979/*
2980 * ext4_get_block used when preparing for a DIO write or buffer write.
2981 * We allocate an uinitialized extent if blocks haven't been allocated.
2982 * The extent will be converted to initialized after the IO is complete.
2983 */
f19d5870 2984int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2985 struct buffer_head *bh_result, int create)
2986{
c7064ef1 2987 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2988 inode->i_ino, create);
2ed88685
TT
2989 return _ext4_get_block(inode, iblock, bh_result,
2990 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2991}
2992
729f52c6 2993static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 2994 struct buffer_head *bh_result, int create)
729f52c6 2995{
8b0f165f
AP
2996 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2997 inode->i_ino, create);
2998 return _ext4_get_block(inode, iblock, bh_result,
2999 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
3000}
3001
4c0425ff 3002static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
3003 ssize_t size, void *private, int ret,
3004 bool is_async)
4c0425ff 3005{
496ad9aa 3006 struct inode *inode = file_inode(iocb->ki_filp);
4c0425ff 3007 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3008
97a851ed
JK
3009 /* if not async direct IO just return */
3010 if (!io_end) {
3011 inode_dio_done(inode);
3012 if (is_async)
3013 aio_complete(iocb, ret, 0);
3014 return;
3015 }
4b70df18 3016
88635ca2 3017 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3018 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3019 iocb->private, io_end->inode->i_ino, iocb, offset,
3020 size);
8d5d02e6 3021
b5a7e970 3022 iocb->private = NULL;
4c0425ff
MC
3023 io_end->offset = offset;
3024 io_end->size = size;
5b3ff237
JZ
3025 if (is_async) {
3026 io_end->iocb = iocb;
3027 io_end->result = ret;
3028 }
97a851ed 3029 ext4_put_io_end_defer(io_end);
4c0425ff 3030}
c7064ef1 3031
4c0425ff
MC
3032/*
3033 * For ext4 extent files, ext4 will do direct-io write to holes,
3034 * preallocated extents, and those write extend the file, no need to
3035 * fall back to buffered IO.
3036 *
b595076a 3037 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 3038 * If those blocks were preallocated, we mark sure they are split, but
b595076a 3039 * still keep the range to write as uninitialized.
4c0425ff 3040 *
69c499d1 3041 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3042 * For async direct IO, since the IO may still pending when return, we
25985edc 3043 * set up an end_io call back function, which will do the conversion
8d5d02e6 3044 * when async direct IO completed.
4c0425ff
MC
3045 *
3046 * If the O_DIRECT write will extend the file then add this inode to the
3047 * orphan list. So recovery will truncate it back to the original size
3048 * if the machine crashes during the write.
3049 *
3050 */
3051static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3052 const struct iovec *iov, loff_t offset,
3053 unsigned long nr_segs)
3054{
3055 struct file *file = iocb->ki_filp;
3056 struct inode *inode = file->f_mapping->host;
3057 ssize_t ret;
3058 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3059 int overwrite = 0;
3060 get_block_t *get_block_func = NULL;
3061 int dio_flags = 0;
4c0425ff 3062 loff_t final_size = offset + count;
97a851ed 3063 ext4_io_end_t *io_end = NULL;
729f52c6 3064
69c499d1
TT
3065 /* Use the old path for reads and writes beyond i_size. */
3066 if (rw != WRITE || final_size > inode->i_size)
3067 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3068
69c499d1 3069 BUG_ON(iocb->private == NULL);
4bd809db 3070
e8340395
JK
3071 /*
3072 * Make all waiters for direct IO properly wait also for extent
3073 * conversion. This also disallows race between truncate() and
3074 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3075 */
3076 if (rw == WRITE)
3077 atomic_inc(&inode->i_dio_count);
3078
69c499d1
TT
3079 /* If we do a overwrite dio, i_mutex locking can be released */
3080 overwrite = *((int *)iocb->private);
4bd809db 3081
69c499d1 3082 if (overwrite) {
69c499d1
TT
3083 down_read(&EXT4_I(inode)->i_data_sem);
3084 mutex_unlock(&inode->i_mutex);
3085 }
8d5d02e6 3086
69c499d1
TT
3087 /*
3088 * We could direct write to holes and fallocate.
3089 *
3090 * Allocated blocks to fill the hole are marked as
3091 * uninitialized to prevent parallel buffered read to expose
3092 * the stale data before DIO complete the data IO.
3093 *
3094 * As to previously fallocated extents, ext4 get_block will
3095 * just simply mark the buffer mapped but still keep the
3096 * extents uninitialized.
3097 *
3098 * For non AIO case, we will convert those unwritten extents
3099 * to written after return back from blockdev_direct_IO.
3100 *
3101 * For async DIO, the conversion needs to be deferred when the
3102 * IO is completed. The ext4 end_io callback function will be
3103 * called to take care of the conversion work. Here for async
3104 * case, we allocate an io_end structure to hook to the iocb.
3105 */
3106 iocb->private = NULL;
3107 ext4_inode_aio_set(inode, NULL);
3108 if (!is_sync_kiocb(iocb)) {
97a851ed 3109 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3110 if (!io_end) {
3111 ret = -ENOMEM;
3112 goto retake_lock;
8b0f165f 3113 }
69c499d1 3114 io_end->flag |= EXT4_IO_END_DIRECT;
97a851ed
JK
3115 /*
3116 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3117 */
3118 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3119 /*
69c499d1
TT
3120 * we save the io structure for current async direct
3121 * IO, so that later ext4_map_blocks() could flag the
3122 * io structure whether there is a unwritten extents
3123 * needs to be converted when IO is completed.
8d5d02e6 3124 */
69c499d1
TT
3125 ext4_inode_aio_set(inode, io_end);
3126 }
4bd809db 3127
69c499d1
TT
3128 if (overwrite) {
3129 get_block_func = ext4_get_block_write_nolock;
3130 } else {
3131 get_block_func = ext4_get_block_write;
3132 dio_flags = DIO_LOCKING;
3133 }
3134 ret = __blockdev_direct_IO(rw, iocb, inode,
3135 inode->i_sb->s_bdev, iov,
3136 offset, nr_segs,
3137 get_block_func,
3138 ext4_end_io_dio,
3139 NULL,
3140 dio_flags);
3141
69c499d1 3142 /*
97a851ed
JK
3143 * Put our reference to io_end. This can free the io_end structure e.g.
3144 * in sync IO case or in case of error. It can even perform extent
3145 * conversion if all bios we submitted finished before we got here.
3146 * Note that in that case iocb->private can be already set to NULL
3147 * here.
69c499d1 3148 */
97a851ed
JK
3149 if (io_end) {
3150 ext4_inode_aio_set(inode, NULL);
3151 ext4_put_io_end(io_end);
3152 /*
3153 * When no IO was submitted ext4_end_io_dio() was not
3154 * called so we have to put iocb's reference.
3155 */
3156 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3157 WARN_ON(iocb->private != io_end);
3158 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3159 WARN_ON(io_end->iocb);
3160 /*
3161 * Generic code already did inode_dio_done() so we
3162 * have to clear EXT4_IO_END_DIRECT to not do it for
3163 * the second time.
3164 */
3165 io_end->flag = 0;
3166 ext4_put_io_end(io_end);
3167 iocb->private = NULL;
3168 }
3169 }
3170 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3171 EXT4_STATE_DIO_UNWRITTEN)) {
3172 int err;
3173 /*
3174 * for non AIO case, since the IO is already
3175 * completed, we could do the conversion right here
3176 */
6b523df4 3177 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3178 offset, ret);
3179 if (err < 0)
3180 ret = err;
3181 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3182 }
4bd809db 3183
69c499d1 3184retake_lock:
e8340395
JK
3185 if (rw == WRITE)
3186 inode_dio_done(inode);
69c499d1
TT
3187 /* take i_mutex locking again if we do a ovewrite dio */
3188 if (overwrite) {
69c499d1
TT
3189 up_read(&EXT4_I(inode)->i_data_sem);
3190 mutex_lock(&inode->i_mutex);
4c0425ff 3191 }
8d5d02e6 3192
69c499d1 3193 return ret;
4c0425ff
MC
3194}
3195
3196static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3197 const struct iovec *iov, loff_t offset,
3198 unsigned long nr_segs)
3199{
3200 struct file *file = iocb->ki_filp;
3201 struct inode *inode = file->f_mapping->host;
0562e0ba 3202 ssize_t ret;
4c0425ff 3203
84ebd795
TT
3204 /*
3205 * If we are doing data journalling we don't support O_DIRECT
3206 */
3207 if (ext4_should_journal_data(inode))
3208 return 0;
3209
46c7f254
TM
3210 /* Let buffer I/O handle the inline data case. */
3211 if (ext4_has_inline_data(inode))
3212 return 0;
3213
0562e0ba 3214 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3215 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3216 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3217 else
3218 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3219 trace_ext4_direct_IO_exit(inode, offset,
3220 iov_length(iov, nr_segs), rw, ret);
3221 return ret;
4c0425ff
MC
3222}
3223
ac27a0ec 3224/*
617ba13b 3225 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3226 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3227 * much here because ->set_page_dirty is called under VFS locks. The page is
3228 * not necessarily locked.
3229 *
3230 * We cannot just dirty the page and leave attached buffers clean, because the
3231 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3232 * or jbddirty because all the journalling code will explode.
3233 *
3234 * So what we do is to mark the page "pending dirty" and next time writepage
3235 * is called, propagate that into the buffers appropriately.
3236 */
617ba13b 3237static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3238{
3239 SetPageChecked(page);
3240 return __set_page_dirty_nobuffers(page);
3241}
3242
74d553aa 3243static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3244 .readpage = ext4_readpage,
3245 .readpages = ext4_readpages,
43ce1d23 3246 .writepage = ext4_writepage,
20970ba6 3247 .writepages = ext4_writepages,
8ab22b9a 3248 .write_begin = ext4_write_begin,
74d553aa 3249 .write_end = ext4_write_end,
8ab22b9a
HH
3250 .bmap = ext4_bmap,
3251 .invalidatepage = ext4_invalidatepage,
3252 .releasepage = ext4_releasepage,
3253 .direct_IO = ext4_direct_IO,
3254 .migratepage = buffer_migrate_page,
3255 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3256 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3257};
3258
617ba13b 3259static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3260 .readpage = ext4_readpage,
3261 .readpages = ext4_readpages,
43ce1d23 3262 .writepage = ext4_writepage,
20970ba6 3263 .writepages = ext4_writepages,
8ab22b9a
HH
3264 .write_begin = ext4_write_begin,
3265 .write_end = ext4_journalled_write_end,
3266 .set_page_dirty = ext4_journalled_set_page_dirty,
3267 .bmap = ext4_bmap,
4520fb3c 3268 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3269 .releasepage = ext4_releasepage,
84ebd795 3270 .direct_IO = ext4_direct_IO,
8ab22b9a 3271 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3272 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3273};
3274
64769240 3275static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3276 .readpage = ext4_readpage,
3277 .readpages = ext4_readpages,
43ce1d23 3278 .writepage = ext4_writepage,
20970ba6 3279 .writepages = ext4_writepages,
8ab22b9a
HH
3280 .write_begin = ext4_da_write_begin,
3281 .write_end = ext4_da_write_end,
3282 .bmap = ext4_bmap,
3283 .invalidatepage = ext4_da_invalidatepage,
3284 .releasepage = ext4_releasepage,
3285 .direct_IO = ext4_direct_IO,
3286 .migratepage = buffer_migrate_page,
3287 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3288 .error_remove_page = generic_error_remove_page,
64769240
AT
3289};
3290
617ba13b 3291void ext4_set_aops(struct inode *inode)
ac27a0ec 3292{
3d2b1582
LC
3293 switch (ext4_inode_journal_mode(inode)) {
3294 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3295 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3296 break;
3297 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3298 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3299 break;
3300 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3301 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3302 return;
3d2b1582
LC
3303 default:
3304 BUG();
3305 }
74d553aa
TT
3306 if (test_opt(inode->i_sb, DELALLOC))
3307 inode->i_mapping->a_ops = &ext4_da_aops;
3308 else
3309 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3310}
3311
d863dc36
LC
3312/*
3313 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3314 * up to the end of the block which corresponds to `from'.
3315 * This required during truncate. We need to physically zero the tail end
3316 * of that block so it doesn't yield old data if the file is later grown.
3317 */
3318int ext4_block_truncate_page(handle_t *handle,
3319 struct address_space *mapping, loff_t from)
3320{
3321 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3322 unsigned length;
3323 unsigned blocksize;
3324 struct inode *inode = mapping->host;
3325
3326 blocksize = inode->i_sb->s_blocksize;
3327 length = blocksize - (offset & (blocksize - 1));
3328
3329 return ext4_block_zero_page_range(handle, mapping, from, length);
3330}
3331
3332/*
3333 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3334 * starting from file offset 'from'. The range to be zero'd must
3335 * be contained with in one block. If the specified range exceeds
3336 * the end of the block it will be shortened to end of the block
3337 * that cooresponds to 'from'
3338 */
3339int ext4_block_zero_page_range(handle_t *handle,
3340 struct address_space *mapping, loff_t from, loff_t length)
3341{
3342 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3343 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3344 unsigned blocksize, max, pos;
3345 ext4_lblk_t iblock;
3346 struct inode *inode = mapping->host;
3347 struct buffer_head *bh;
3348 struct page *page;
3349 int err = 0;
3350
3351 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3352 mapping_gfp_mask(mapping) & ~__GFP_FS);
3353 if (!page)
3354 return -ENOMEM;
3355
3356 blocksize = inode->i_sb->s_blocksize;
3357 max = blocksize - (offset & (blocksize - 1));
3358
3359 /*
3360 * correct length if it does not fall between
3361 * 'from' and the end of the block
3362 */
3363 if (length > max || length < 0)
3364 length = max;
3365
3366 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3367
3368 if (!page_has_buffers(page))
3369 create_empty_buffers(page, blocksize, 0);
3370
3371 /* Find the buffer that contains "offset" */
3372 bh = page_buffers(page);
3373 pos = blocksize;
3374 while (offset >= pos) {
3375 bh = bh->b_this_page;
3376 iblock++;
3377 pos += blocksize;
3378 }
d863dc36
LC
3379 if (buffer_freed(bh)) {
3380 BUFFER_TRACE(bh, "freed: skip");
3381 goto unlock;
3382 }
d863dc36
LC
3383 if (!buffer_mapped(bh)) {
3384 BUFFER_TRACE(bh, "unmapped");
3385 ext4_get_block(inode, iblock, bh, 0);
3386 /* unmapped? It's a hole - nothing to do */
3387 if (!buffer_mapped(bh)) {
3388 BUFFER_TRACE(bh, "still unmapped");
3389 goto unlock;
3390 }
3391 }
3392
3393 /* Ok, it's mapped. Make sure it's up-to-date */
3394 if (PageUptodate(page))
3395 set_buffer_uptodate(bh);
3396
3397 if (!buffer_uptodate(bh)) {
3398 err = -EIO;
3399 ll_rw_block(READ, 1, &bh);
3400 wait_on_buffer(bh);
3401 /* Uhhuh. Read error. Complain and punt. */
3402 if (!buffer_uptodate(bh))
3403 goto unlock;
3404 }
d863dc36
LC
3405 if (ext4_should_journal_data(inode)) {
3406 BUFFER_TRACE(bh, "get write access");
3407 err = ext4_journal_get_write_access(handle, bh);
3408 if (err)
3409 goto unlock;
3410 }
d863dc36 3411 zero_user(page, offset, length);
d863dc36
LC
3412 BUFFER_TRACE(bh, "zeroed end of block");
3413
d863dc36
LC
3414 if (ext4_should_journal_data(inode)) {
3415 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3416 } else {
353eefd3 3417 err = 0;
d863dc36 3418 mark_buffer_dirty(bh);
0713ed0c
LC
3419 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3420 err = ext4_jbd2_file_inode(handle, inode);
3421 }
d863dc36
LC
3422
3423unlock:
3424 unlock_page(page);
3425 page_cache_release(page);
3426 return err;
3427}
3428
a87dd18c
LC
3429int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3430 loff_t lstart, loff_t length)
3431{
3432 struct super_block *sb = inode->i_sb;
3433 struct address_space *mapping = inode->i_mapping;
e1be3a92 3434 unsigned partial_start, partial_end;
a87dd18c
LC
3435 ext4_fsblk_t start, end;
3436 loff_t byte_end = (lstart + length - 1);
3437 int err = 0;
3438
e1be3a92
LC
3439 partial_start = lstart & (sb->s_blocksize - 1);
3440 partial_end = byte_end & (sb->s_blocksize - 1);
3441
a87dd18c
LC
3442 start = lstart >> sb->s_blocksize_bits;
3443 end = byte_end >> sb->s_blocksize_bits;
3444
3445 /* Handle partial zero within the single block */
e1be3a92
LC
3446 if (start == end &&
3447 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3448 err = ext4_block_zero_page_range(handle, mapping,
3449 lstart, length);
3450 return err;
3451 }
3452 /* Handle partial zero out on the start of the range */
e1be3a92 3453 if (partial_start) {
a87dd18c
LC
3454 err = ext4_block_zero_page_range(handle, mapping,
3455 lstart, sb->s_blocksize);
3456 if (err)
3457 return err;
3458 }
3459 /* Handle partial zero out on the end of the range */
e1be3a92 3460 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3461 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3462 byte_end - partial_end,
3463 partial_end + 1);
a87dd18c
LC
3464 return err;
3465}
3466
91ef4caf
DG
3467int ext4_can_truncate(struct inode *inode)
3468{
91ef4caf
DG
3469 if (S_ISREG(inode->i_mode))
3470 return 1;
3471 if (S_ISDIR(inode->i_mode))
3472 return 1;
3473 if (S_ISLNK(inode->i_mode))
3474 return !ext4_inode_is_fast_symlink(inode);
3475 return 0;
3476}
3477
a4bb6b64
AH
3478/*
3479 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3480 * associated with the given offset and length
3481 *
3482 * @inode: File inode
3483 * @offset: The offset where the hole will begin
3484 * @len: The length of the hole
3485 *
4907cb7b 3486 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3487 */
3488
aeb2817a 3489int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3490{
26a4c0c6
TT
3491 struct super_block *sb = inode->i_sb;
3492 ext4_lblk_t first_block, stop_block;
3493 struct address_space *mapping = inode->i_mapping;
a87dd18c 3494 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3495 handle_t *handle;
3496 unsigned int credits;
3497 int ret = 0;
3498
a4bb6b64 3499 if (!S_ISREG(inode->i_mode))
73355192 3500 return -EOPNOTSUPP;
a4bb6b64 3501
26a4c0c6 3502 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
bab08ab9 3503 /* TODO: Add support for bigalloc file systems */
73355192 3504 return -EOPNOTSUPP;
bab08ab9
TT
3505 }
3506
aaddea81
ZL
3507 trace_ext4_punch_hole(inode, offset, length);
3508
26a4c0c6
TT
3509 /*
3510 * Write out all dirty pages to avoid race conditions
3511 * Then release them.
3512 */
3513 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3514 ret = filemap_write_and_wait_range(mapping, offset,
3515 offset + length - 1);
3516 if (ret)
3517 return ret;
3518 }
3519
3520 mutex_lock(&inode->i_mutex);
3521 /* It's not possible punch hole on append only file */
3522 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3523 ret = -EPERM;
3524 goto out_mutex;
3525 }
3526 if (IS_SWAPFILE(inode)) {
3527 ret = -ETXTBSY;
3528 goto out_mutex;
3529 }
3530
3531 /* No need to punch hole beyond i_size */
3532 if (offset >= inode->i_size)
3533 goto out_mutex;
3534
3535 /*
3536 * If the hole extends beyond i_size, set the hole
3537 * to end after the page that contains i_size
3538 */
3539 if (offset + length > inode->i_size) {
3540 length = inode->i_size +
3541 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3542 offset;
3543 }
3544
a361293f
JK
3545 if (offset & (sb->s_blocksize - 1) ||
3546 (offset + length) & (sb->s_blocksize - 1)) {
3547 /*
3548 * Attach jinode to inode for jbd2 if we do any zeroing of
3549 * partial block
3550 */
3551 ret = ext4_inode_attach_jinode(inode);
3552 if (ret < 0)
3553 goto out_mutex;
3554
3555 }
3556
a87dd18c
LC
3557 first_block_offset = round_up(offset, sb->s_blocksize);
3558 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3559
a87dd18c
LC
3560 /* Now release the pages and zero block aligned part of pages*/
3561 if (last_block_offset > first_block_offset)
3562 truncate_pagecache_range(inode, first_block_offset,
3563 last_block_offset);
26a4c0c6
TT
3564
3565 /* Wait all existing dio workers, newcomers will block on i_mutex */
3566 ext4_inode_block_unlocked_dio(inode);
26a4c0c6
TT
3567 inode_dio_wait(inode);
3568
3569 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3570 credits = ext4_writepage_trans_blocks(inode);
3571 else
3572 credits = ext4_blocks_for_truncate(inode);
3573 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3574 if (IS_ERR(handle)) {
3575 ret = PTR_ERR(handle);
3576 ext4_std_error(sb, ret);
3577 goto out_dio;
3578 }
3579
a87dd18c
LC
3580 ret = ext4_zero_partial_blocks(handle, inode, offset,
3581 length);
3582 if (ret)
3583 goto out_stop;
26a4c0c6
TT
3584
3585 first_block = (offset + sb->s_blocksize - 1) >>
3586 EXT4_BLOCK_SIZE_BITS(sb);
3587 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3588
3589 /* If there are no blocks to remove, return now */
3590 if (first_block >= stop_block)
3591 goto out_stop;
3592
3593 down_write(&EXT4_I(inode)->i_data_sem);
3594 ext4_discard_preallocations(inode);
3595
3596 ret = ext4_es_remove_extent(inode, first_block,
3597 stop_block - first_block);
3598 if (ret) {
3599 up_write(&EXT4_I(inode)->i_data_sem);
3600 goto out_stop;
3601 }
3602
3603 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3604 ret = ext4_ext_remove_space(inode, first_block,
3605 stop_block - 1);
3606 else
3607 ret = ext4_free_hole_blocks(handle, inode, first_block,
3608 stop_block);
3609
3610 ext4_discard_preallocations(inode);
819c4920 3611 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3612 if (IS_SYNC(inode))
3613 ext4_handle_sync(handle);
26a4c0c6
TT
3614 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3615 ext4_mark_inode_dirty(handle, inode);
3616out_stop:
3617 ext4_journal_stop(handle);
3618out_dio:
3619 ext4_inode_resume_unlocked_dio(inode);
3620out_mutex:
3621 mutex_unlock(&inode->i_mutex);
3622 return ret;
a4bb6b64
AH
3623}
3624
a361293f
JK
3625int ext4_inode_attach_jinode(struct inode *inode)
3626{
3627 struct ext4_inode_info *ei = EXT4_I(inode);
3628 struct jbd2_inode *jinode;
3629
3630 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3631 return 0;
3632
3633 jinode = jbd2_alloc_inode(GFP_KERNEL);
3634 spin_lock(&inode->i_lock);
3635 if (!ei->jinode) {
3636 if (!jinode) {
3637 spin_unlock(&inode->i_lock);
3638 return -ENOMEM;
3639 }
3640 ei->jinode = jinode;
3641 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3642 jinode = NULL;
3643 }
3644 spin_unlock(&inode->i_lock);
3645 if (unlikely(jinode != NULL))
3646 jbd2_free_inode(jinode);
3647 return 0;
3648}
3649
ac27a0ec 3650/*
617ba13b 3651 * ext4_truncate()
ac27a0ec 3652 *
617ba13b
MC
3653 * We block out ext4_get_block() block instantiations across the entire
3654 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3655 * simultaneously on behalf of the same inode.
3656 *
42b2aa86 3657 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3658 * is one core, guiding principle: the file's tree must always be consistent on
3659 * disk. We must be able to restart the truncate after a crash.
3660 *
3661 * The file's tree may be transiently inconsistent in memory (although it
3662 * probably isn't), but whenever we close off and commit a journal transaction,
3663 * the contents of (the filesystem + the journal) must be consistent and
3664 * restartable. It's pretty simple, really: bottom up, right to left (although
3665 * left-to-right works OK too).
3666 *
3667 * Note that at recovery time, journal replay occurs *before* the restart of
3668 * truncate against the orphan inode list.
3669 *
3670 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3671 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3672 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3673 * ext4_truncate() to have another go. So there will be instantiated blocks
3674 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3675 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3676 * ext4_truncate() run will find them and release them.
ac27a0ec 3677 */
617ba13b 3678void ext4_truncate(struct inode *inode)
ac27a0ec 3679{
819c4920
TT
3680 struct ext4_inode_info *ei = EXT4_I(inode);
3681 unsigned int credits;
3682 handle_t *handle;
3683 struct address_space *mapping = inode->i_mapping;
819c4920 3684
19b5ef61
TT
3685 /*
3686 * There is a possibility that we're either freeing the inode
3687 * or it completely new indode. In those cases we might not
3688 * have i_mutex locked because it's not necessary.
3689 */
3690 if (!(inode->i_state & (I_NEW|I_FREEING)))
3691 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3692 trace_ext4_truncate_enter(inode);
3693
91ef4caf 3694 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3695 return;
3696
12e9b892 3697 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3698
5534fb5b 3699 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3700 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3701
aef1c851
TM
3702 if (ext4_has_inline_data(inode)) {
3703 int has_inline = 1;
3704
3705 ext4_inline_data_truncate(inode, &has_inline);
3706 if (has_inline)
3707 return;
3708 }
3709
a361293f
JK
3710 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3711 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3712 if (ext4_inode_attach_jinode(inode) < 0)
3713 return;
3714 }
3715
819c4920
TT
3716 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3717 credits = ext4_writepage_trans_blocks(inode);
3718 else
3719 credits = ext4_blocks_for_truncate(inode);
3720
3721 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3722 if (IS_ERR(handle)) {
3723 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3724 return;
3725 }
3726
eb3544c6
LC
3727 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3728 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3729
3730 /*
3731 * We add the inode to the orphan list, so that if this
3732 * truncate spans multiple transactions, and we crash, we will
3733 * resume the truncate when the filesystem recovers. It also
3734 * marks the inode dirty, to catch the new size.
3735 *
3736 * Implication: the file must always be in a sane, consistent
3737 * truncatable state while each transaction commits.
3738 */
3739 if (ext4_orphan_add(handle, inode))
3740 goto out_stop;
3741
3742 down_write(&EXT4_I(inode)->i_data_sem);
3743
3744 ext4_discard_preallocations(inode);
3745
ff9893dc 3746 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3747 ext4_ext_truncate(handle, inode);
ff9893dc 3748 else
819c4920
TT
3749 ext4_ind_truncate(handle, inode);
3750
3751 up_write(&ei->i_data_sem);
3752
3753 if (IS_SYNC(inode))
3754 ext4_handle_sync(handle);
3755
3756out_stop:
3757 /*
3758 * If this was a simple ftruncate() and the file will remain alive,
3759 * then we need to clear up the orphan record which we created above.
3760 * However, if this was a real unlink then we were called by
3761 * ext4_delete_inode(), and we allow that function to clean up the
3762 * orphan info for us.
3763 */
3764 if (inode->i_nlink)
3765 ext4_orphan_del(handle, inode);
3766
3767 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3768 ext4_mark_inode_dirty(handle, inode);
3769 ext4_journal_stop(handle);
ac27a0ec 3770
0562e0ba 3771 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3772}
3773
ac27a0ec 3774/*
617ba13b 3775 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3776 * underlying buffer_head on success. If 'in_mem' is true, we have all
3777 * data in memory that is needed to recreate the on-disk version of this
3778 * inode.
3779 */
617ba13b
MC
3780static int __ext4_get_inode_loc(struct inode *inode,
3781 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3782{
240799cd
TT
3783 struct ext4_group_desc *gdp;
3784 struct buffer_head *bh;
3785 struct super_block *sb = inode->i_sb;
3786 ext4_fsblk_t block;
3787 int inodes_per_block, inode_offset;
3788
3a06d778 3789 iloc->bh = NULL;
240799cd
TT
3790 if (!ext4_valid_inum(sb, inode->i_ino))
3791 return -EIO;
ac27a0ec 3792
240799cd
TT
3793 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3794 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3795 if (!gdp)
ac27a0ec
DK
3796 return -EIO;
3797
240799cd
TT
3798 /*
3799 * Figure out the offset within the block group inode table
3800 */
00d09882 3801 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3802 inode_offset = ((inode->i_ino - 1) %
3803 EXT4_INODES_PER_GROUP(sb));
3804 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3805 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3806
3807 bh = sb_getblk(sb, block);
aebf0243 3808 if (unlikely(!bh))
860d21e2 3809 return -ENOMEM;
ac27a0ec
DK
3810 if (!buffer_uptodate(bh)) {
3811 lock_buffer(bh);
9c83a923
HK
3812
3813 /*
3814 * If the buffer has the write error flag, we have failed
3815 * to write out another inode in the same block. In this
3816 * case, we don't have to read the block because we may
3817 * read the old inode data successfully.
3818 */
3819 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3820 set_buffer_uptodate(bh);
3821
ac27a0ec
DK
3822 if (buffer_uptodate(bh)) {
3823 /* someone brought it uptodate while we waited */
3824 unlock_buffer(bh);
3825 goto has_buffer;
3826 }
3827
3828 /*
3829 * If we have all information of the inode in memory and this
3830 * is the only valid inode in the block, we need not read the
3831 * block.
3832 */
3833 if (in_mem) {
3834 struct buffer_head *bitmap_bh;
240799cd 3835 int i, start;
ac27a0ec 3836
240799cd 3837 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3838
240799cd
TT
3839 /* Is the inode bitmap in cache? */
3840 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3841 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3842 goto make_io;
3843
3844 /*
3845 * If the inode bitmap isn't in cache then the
3846 * optimisation may end up performing two reads instead
3847 * of one, so skip it.
3848 */
3849 if (!buffer_uptodate(bitmap_bh)) {
3850 brelse(bitmap_bh);
3851 goto make_io;
3852 }
240799cd 3853 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3854 if (i == inode_offset)
3855 continue;
617ba13b 3856 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3857 break;
3858 }
3859 brelse(bitmap_bh);
240799cd 3860 if (i == start + inodes_per_block) {
ac27a0ec
DK
3861 /* all other inodes are free, so skip I/O */
3862 memset(bh->b_data, 0, bh->b_size);
3863 set_buffer_uptodate(bh);
3864 unlock_buffer(bh);
3865 goto has_buffer;
3866 }
3867 }
3868
3869make_io:
240799cd
TT
3870 /*
3871 * If we need to do any I/O, try to pre-readahead extra
3872 * blocks from the inode table.
3873 */
3874 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3875 ext4_fsblk_t b, end, table;
3876 unsigned num;
0d606e2c 3877 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3878
3879 table = ext4_inode_table(sb, gdp);
b713a5ec 3880 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3881 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3882 if (table > b)
3883 b = table;
0d606e2c 3884 end = b + ra_blks;
240799cd 3885 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3886 if (ext4_has_group_desc_csum(sb))
560671a0 3887 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3888 table += num / inodes_per_block;
3889 if (end > table)
3890 end = table;
3891 while (b <= end)
3892 sb_breadahead(sb, b++);
3893 }
3894
ac27a0ec
DK
3895 /*
3896 * There are other valid inodes in the buffer, this inode
3897 * has in-inode xattrs, or we don't have this inode in memory.
3898 * Read the block from disk.
3899 */
0562e0ba 3900 trace_ext4_load_inode(inode);
ac27a0ec
DK
3901 get_bh(bh);
3902 bh->b_end_io = end_buffer_read_sync;
65299a3b 3903 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3904 wait_on_buffer(bh);
3905 if (!buffer_uptodate(bh)) {
c398eda0
TT
3906 EXT4_ERROR_INODE_BLOCK(inode, block,
3907 "unable to read itable block");
ac27a0ec
DK
3908 brelse(bh);
3909 return -EIO;
3910 }
3911 }
3912has_buffer:
3913 iloc->bh = bh;
3914 return 0;
3915}
3916
617ba13b 3917int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3918{
3919 /* We have all inode data except xattrs in memory here. */
617ba13b 3920 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3921 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3922}
3923
617ba13b 3924void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3925{
617ba13b 3926 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3927
3928 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3929 if (flags & EXT4_SYNC_FL)
ac27a0ec 3930 inode->i_flags |= S_SYNC;
617ba13b 3931 if (flags & EXT4_APPEND_FL)
ac27a0ec 3932 inode->i_flags |= S_APPEND;
617ba13b 3933 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3934 inode->i_flags |= S_IMMUTABLE;
617ba13b 3935 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3936 inode->i_flags |= S_NOATIME;
617ba13b 3937 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3938 inode->i_flags |= S_DIRSYNC;
3939}
3940
ff9ddf7e
JK
3941/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3942void ext4_get_inode_flags(struct ext4_inode_info *ei)
3943{
84a8dce2
DM
3944 unsigned int vfs_fl;
3945 unsigned long old_fl, new_fl;
3946
3947 do {
3948 vfs_fl = ei->vfs_inode.i_flags;
3949 old_fl = ei->i_flags;
3950 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3951 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3952 EXT4_DIRSYNC_FL);
3953 if (vfs_fl & S_SYNC)
3954 new_fl |= EXT4_SYNC_FL;
3955 if (vfs_fl & S_APPEND)
3956 new_fl |= EXT4_APPEND_FL;
3957 if (vfs_fl & S_IMMUTABLE)
3958 new_fl |= EXT4_IMMUTABLE_FL;
3959 if (vfs_fl & S_NOATIME)
3960 new_fl |= EXT4_NOATIME_FL;
3961 if (vfs_fl & S_DIRSYNC)
3962 new_fl |= EXT4_DIRSYNC_FL;
3963 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3964}
de9a55b8 3965
0fc1b451 3966static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3967 struct ext4_inode_info *ei)
0fc1b451
AK
3968{
3969 blkcnt_t i_blocks ;
8180a562
AK
3970 struct inode *inode = &(ei->vfs_inode);
3971 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3972
3973 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3974 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3975 /* we are using combined 48 bit field */
3976 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3977 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3978 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3979 /* i_blocks represent file system block size */
3980 return i_blocks << (inode->i_blkbits - 9);
3981 } else {
3982 return i_blocks;
3983 }
0fc1b451
AK
3984 } else {
3985 return le32_to_cpu(raw_inode->i_blocks_lo);
3986 }
3987}
ff9ddf7e 3988
152a7b0a
TM
3989static inline void ext4_iget_extra_inode(struct inode *inode,
3990 struct ext4_inode *raw_inode,
3991 struct ext4_inode_info *ei)
3992{
3993 __le32 *magic = (void *)raw_inode +
3994 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 3995 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 3996 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 3997 ext4_find_inline_data_nolock(inode);
f19d5870
TM
3998 } else
3999 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4000}
4001
1d1fe1ee 4002struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4003{
617ba13b
MC
4004 struct ext4_iloc iloc;
4005 struct ext4_inode *raw_inode;
1d1fe1ee 4006 struct ext4_inode_info *ei;
1d1fe1ee 4007 struct inode *inode;
b436b9be 4008 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4009 long ret;
ac27a0ec 4010 int block;
08cefc7a
EB
4011 uid_t i_uid;
4012 gid_t i_gid;
ac27a0ec 4013
1d1fe1ee
DH
4014 inode = iget_locked(sb, ino);
4015 if (!inode)
4016 return ERR_PTR(-ENOMEM);
4017 if (!(inode->i_state & I_NEW))
4018 return inode;
4019
4020 ei = EXT4_I(inode);
7dc57615 4021 iloc.bh = NULL;
ac27a0ec 4022
1d1fe1ee
DH
4023 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4024 if (ret < 0)
ac27a0ec 4025 goto bad_inode;
617ba13b 4026 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4027
4028 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4029 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4030 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4031 EXT4_INODE_SIZE(inode->i_sb)) {
4032 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4033 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4034 EXT4_INODE_SIZE(inode->i_sb));
4035 ret = -EIO;
4036 goto bad_inode;
4037 }
4038 } else
4039 ei->i_extra_isize = 0;
4040
4041 /* Precompute checksum seed for inode metadata */
4042 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4043 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4044 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4045 __u32 csum;
4046 __le32 inum = cpu_to_le32(inode->i_ino);
4047 __le32 gen = raw_inode->i_generation;
4048 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4049 sizeof(inum));
4050 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4051 sizeof(gen));
4052 }
4053
4054 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4055 EXT4_ERROR_INODE(inode, "checksum invalid");
4056 ret = -EIO;
4057 goto bad_inode;
4058 }
4059
ac27a0ec 4060 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4061 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4062 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4063 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4064 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4065 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4066 }
08cefc7a
EB
4067 i_uid_write(inode, i_uid);
4068 i_gid_write(inode, i_gid);
bfe86848 4069 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4070
353eb83c 4071 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4072 ei->i_inline_off = 0;
ac27a0ec
DK
4073 ei->i_dir_start_lookup = 0;
4074 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4075 /* We now have enough fields to check if the inode was active or not.
4076 * This is needed because nfsd might try to access dead inodes
4077 * the test is that same one that e2fsck uses
4078 * NeilBrown 1999oct15
4079 */
4080 if (inode->i_nlink == 0) {
393d1d1d
DTB
4081 if ((inode->i_mode == 0 ||
4082 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4083 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4084 /* this inode is deleted */
1d1fe1ee 4085 ret = -ESTALE;
ac27a0ec
DK
4086 goto bad_inode;
4087 }
4088 /* The only unlinked inodes we let through here have
4089 * valid i_mode and are being read by the orphan
4090 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4091 * the process of deleting those.
4092 * OR it is the EXT4_BOOT_LOADER_INO which is
4093 * not initialized on a new filesystem. */
ac27a0ec 4094 }
ac27a0ec 4095 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4096 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4097 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4098 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4099 ei->i_file_acl |=
4100 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4101 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4102 ei->i_disksize = inode->i_size;
a9e7f447
DM
4103#ifdef CONFIG_QUOTA
4104 ei->i_reserved_quota = 0;
4105#endif
ac27a0ec
DK
4106 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4107 ei->i_block_group = iloc.block_group;
a4912123 4108 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4109 /*
4110 * NOTE! The in-memory inode i_data array is in little-endian order
4111 * even on big-endian machines: we do NOT byteswap the block numbers!
4112 */
617ba13b 4113 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4114 ei->i_data[block] = raw_inode->i_block[block];
4115 INIT_LIST_HEAD(&ei->i_orphan);
4116
b436b9be
JK
4117 /*
4118 * Set transaction id's of transactions that have to be committed
4119 * to finish f[data]sync. We set them to currently running transaction
4120 * as we cannot be sure that the inode or some of its metadata isn't
4121 * part of the transaction - the inode could have been reclaimed and
4122 * now it is reread from disk.
4123 */
4124 if (journal) {
4125 transaction_t *transaction;
4126 tid_t tid;
4127
a931da6a 4128 read_lock(&journal->j_state_lock);
b436b9be
JK
4129 if (journal->j_running_transaction)
4130 transaction = journal->j_running_transaction;
4131 else
4132 transaction = journal->j_committing_transaction;
4133 if (transaction)
4134 tid = transaction->t_tid;
4135 else
4136 tid = journal->j_commit_sequence;
a931da6a 4137 read_unlock(&journal->j_state_lock);
b436b9be
JK
4138 ei->i_sync_tid = tid;
4139 ei->i_datasync_tid = tid;
4140 }
4141
0040d987 4142 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4143 if (ei->i_extra_isize == 0) {
4144 /* The extra space is currently unused. Use it. */
617ba13b
MC
4145 ei->i_extra_isize = sizeof(struct ext4_inode) -
4146 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4147 } else {
152a7b0a 4148 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4149 }
814525f4 4150 }
ac27a0ec 4151
ef7f3835
KS
4152 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4153 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4154 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4155 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4156
25ec56b5
JNC
4157 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4158 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4159 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4160 inode->i_version |=
4161 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4162 }
4163
c4b5a614 4164 ret = 0;
485c26ec 4165 if (ei->i_file_acl &&
1032988c 4166 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4167 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4168 ei->i_file_acl);
485c26ec
TT
4169 ret = -EIO;
4170 goto bad_inode;
f19d5870
TM
4171 } else if (!ext4_has_inline_data(inode)) {
4172 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4173 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4174 (S_ISLNK(inode->i_mode) &&
4175 !ext4_inode_is_fast_symlink(inode))))
4176 /* Validate extent which is part of inode */
4177 ret = ext4_ext_check_inode(inode);
4178 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4179 (S_ISLNK(inode->i_mode) &&
4180 !ext4_inode_is_fast_symlink(inode))) {
4181 /* Validate block references which are part of inode */
4182 ret = ext4_ind_check_inode(inode);
4183 }
fe2c8191 4184 }
567f3e9a 4185 if (ret)
de9a55b8 4186 goto bad_inode;
7a262f7c 4187
ac27a0ec 4188 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4189 inode->i_op = &ext4_file_inode_operations;
4190 inode->i_fop = &ext4_file_operations;
4191 ext4_set_aops(inode);
ac27a0ec 4192 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4193 inode->i_op = &ext4_dir_inode_operations;
4194 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4195 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4196 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4197 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4198 nd_terminate_link(ei->i_data, inode->i_size,
4199 sizeof(ei->i_data) - 1);
4200 } else {
617ba13b
MC
4201 inode->i_op = &ext4_symlink_inode_operations;
4202 ext4_set_aops(inode);
ac27a0ec 4203 }
563bdd61
TT
4204 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4205 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4206 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4207 if (raw_inode->i_block[0])
4208 init_special_inode(inode, inode->i_mode,
4209 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4210 else
4211 init_special_inode(inode, inode->i_mode,
4212 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4213 } else if (ino == EXT4_BOOT_LOADER_INO) {
4214 make_bad_inode(inode);
563bdd61 4215 } else {
563bdd61 4216 ret = -EIO;
24676da4 4217 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4218 goto bad_inode;
ac27a0ec 4219 }
af5bc92d 4220 brelse(iloc.bh);
617ba13b 4221 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4222 unlock_new_inode(inode);
4223 return inode;
ac27a0ec
DK
4224
4225bad_inode:
567f3e9a 4226 brelse(iloc.bh);
1d1fe1ee
DH
4227 iget_failed(inode);
4228 return ERR_PTR(ret);
ac27a0ec
DK
4229}
4230
0fc1b451
AK
4231static int ext4_inode_blocks_set(handle_t *handle,
4232 struct ext4_inode *raw_inode,
4233 struct ext4_inode_info *ei)
4234{
4235 struct inode *inode = &(ei->vfs_inode);
4236 u64 i_blocks = inode->i_blocks;
4237 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4238
4239 if (i_blocks <= ~0U) {
4240 /*
4907cb7b 4241 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4242 * as multiple of 512 bytes
4243 */
8180a562 4244 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4245 raw_inode->i_blocks_high = 0;
84a8dce2 4246 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4247 return 0;
4248 }
4249 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4250 return -EFBIG;
4251
4252 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4253 /*
4254 * i_blocks can be represented in a 48 bit variable
4255 * as multiple of 512 bytes
4256 */
8180a562 4257 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4258 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4259 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4260 } else {
84a8dce2 4261 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4262 /* i_block is stored in file system block size */
4263 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4264 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4265 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4266 }
f287a1a5 4267 return 0;
0fc1b451
AK
4268}
4269
ac27a0ec
DK
4270/*
4271 * Post the struct inode info into an on-disk inode location in the
4272 * buffer-cache. This gobbles the caller's reference to the
4273 * buffer_head in the inode location struct.
4274 *
4275 * The caller must have write access to iloc->bh.
4276 */
617ba13b 4277static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4278 struct inode *inode,
830156c7 4279 struct ext4_iloc *iloc)
ac27a0ec 4280{
617ba13b
MC
4281 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4282 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4283 struct buffer_head *bh = iloc->bh;
4284 int err = 0, rc, block;
b71fc079 4285 int need_datasync = 0;
08cefc7a
EB
4286 uid_t i_uid;
4287 gid_t i_gid;
ac27a0ec
DK
4288
4289 /* For fields not not tracking in the in-memory inode,
4290 * initialise them to zero for new inodes. */
19f5fb7a 4291 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4292 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4293
ff9ddf7e 4294 ext4_get_inode_flags(ei);
ac27a0ec 4295 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4296 i_uid = i_uid_read(inode);
4297 i_gid = i_gid_read(inode);
af5bc92d 4298 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4299 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4300 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4301/*
4302 * Fix up interoperability with old kernels. Otherwise, old inodes get
4303 * re-used with the upper 16 bits of the uid/gid intact
4304 */
af5bc92d 4305 if (!ei->i_dtime) {
ac27a0ec 4306 raw_inode->i_uid_high =
08cefc7a 4307 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4308 raw_inode->i_gid_high =
08cefc7a 4309 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4310 } else {
4311 raw_inode->i_uid_high = 0;
4312 raw_inode->i_gid_high = 0;
4313 }
4314 } else {
08cefc7a
EB
4315 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4316 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4317 raw_inode->i_uid_high = 0;
4318 raw_inode->i_gid_high = 0;
4319 }
4320 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4321
4322 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4323 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4324 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4325 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4326
0fc1b451
AK
4327 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4328 goto out_brelse;
ac27a0ec 4329 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4330 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4331 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4332 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4333 raw_inode->i_file_acl_high =
4334 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4335 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4336 if (ei->i_disksize != ext4_isize(raw_inode)) {
4337 ext4_isize_set(raw_inode, ei->i_disksize);
4338 need_datasync = 1;
4339 }
a48380f7
AK
4340 if (ei->i_disksize > 0x7fffffffULL) {
4341 struct super_block *sb = inode->i_sb;
4342 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4343 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4344 EXT4_SB(sb)->s_es->s_rev_level ==
4345 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4346 /* If this is the first large file
4347 * created, add a flag to the superblock.
4348 */
4349 err = ext4_journal_get_write_access(handle,
4350 EXT4_SB(sb)->s_sbh);
4351 if (err)
4352 goto out_brelse;
4353 ext4_update_dynamic_rev(sb);
4354 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4355 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4356 ext4_handle_sync(handle);
b50924c2 4357 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4358 }
4359 }
4360 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4361 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4362 if (old_valid_dev(inode->i_rdev)) {
4363 raw_inode->i_block[0] =
4364 cpu_to_le32(old_encode_dev(inode->i_rdev));
4365 raw_inode->i_block[1] = 0;
4366 } else {
4367 raw_inode->i_block[0] = 0;
4368 raw_inode->i_block[1] =
4369 cpu_to_le32(new_encode_dev(inode->i_rdev));
4370 raw_inode->i_block[2] = 0;
4371 }
f19d5870 4372 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4373 for (block = 0; block < EXT4_N_BLOCKS; block++)
4374 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4375 }
ac27a0ec 4376
25ec56b5
JNC
4377 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4378 if (ei->i_extra_isize) {
4379 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4380 raw_inode->i_version_hi =
4381 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4382 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4383 }
4384
814525f4
DW
4385 ext4_inode_csum_set(inode, raw_inode, ei);
4386
830156c7 4387 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4388 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4389 if (!err)
4390 err = rc;
19f5fb7a 4391 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4392
b71fc079 4393 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4394out_brelse:
af5bc92d 4395 brelse(bh);
617ba13b 4396 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4397 return err;
4398}
4399
4400/*
617ba13b 4401 * ext4_write_inode()
ac27a0ec
DK
4402 *
4403 * We are called from a few places:
4404 *
4405 * - Within generic_file_write() for O_SYNC files.
4406 * Here, there will be no transaction running. We wait for any running
4907cb7b 4407 * transaction to commit.
ac27a0ec
DK
4408 *
4409 * - Within sys_sync(), kupdate and such.
4410 * We wait on commit, if tol to.
4411 *
4412 * - Within prune_icache() (PF_MEMALLOC == true)
4413 * Here we simply return. We can't afford to block kswapd on the
4414 * journal commit.
4415 *
4416 * In all cases it is actually safe for us to return without doing anything,
4417 * because the inode has been copied into a raw inode buffer in
617ba13b 4418 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4419 * knfsd.
4420 *
4421 * Note that we are absolutely dependent upon all inode dirtiers doing the
4422 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4423 * which we are interested.
4424 *
4425 * It would be a bug for them to not do this. The code:
4426 *
4427 * mark_inode_dirty(inode)
4428 * stuff();
4429 * inode->i_size = expr;
4430 *
4431 * is in error because a kswapd-driven write_inode() could occur while
4432 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4433 * will no longer be on the superblock's dirty inode list.
4434 */
a9185b41 4435int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4436{
91ac6f43
FM
4437 int err;
4438
ac27a0ec
DK
4439 if (current->flags & PF_MEMALLOC)
4440 return 0;
4441
91ac6f43
FM
4442 if (EXT4_SB(inode->i_sb)->s_journal) {
4443 if (ext4_journal_current_handle()) {
4444 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4445 dump_stack();
4446 return -EIO;
4447 }
ac27a0ec 4448
a9185b41 4449 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4450 return 0;
4451
4452 err = ext4_force_commit(inode->i_sb);
4453 } else {
4454 struct ext4_iloc iloc;
ac27a0ec 4455
8b472d73 4456 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4457 if (err)
4458 return err;
a9185b41 4459 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4460 sync_dirty_buffer(iloc.bh);
4461 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4462 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4463 "IO error syncing inode");
830156c7
FM
4464 err = -EIO;
4465 }
fd2dd9fb 4466 brelse(iloc.bh);
91ac6f43
FM
4467 }
4468 return err;
ac27a0ec
DK
4469}
4470
53e87268
JK
4471/*
4472 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4473 * buffers that are attached to a page stradding i_size and are undergoing
4474 * commit. In that case we have to wait for commit to finish and try again.
4475 */
4476static void ext4_wait_for_tail_page_commit(struct inode *inode)
4477{
4478 struct page *page;
4479 unsigned offset;
4480 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4481 tid_t commit_tid = 0;
4482 int ret;
4483
4484 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4485 /*
4486 * All buffers in the last page remain valid? Then there's nothing to
4487 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4488 * blocksize case
4489 */
4490 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4491 return;
4492 while (1) {
4493 page = find_lock_page(inode->i_mapping,
4494 inode->i_size >> PAGE_CACHE_SHIFT);
4495 if (!page)
4496 return;
ca99fdd2
LC
4497 ret = __ext4_journalled_invalidatepage(page, offset,
4498 PAGE_CACHE_SIZE - offset);
53e87268
JK
4499 unlock_page(page);
4500 page_cache_release(page);
4501 if (ret != -EBUSY)
4502 return;
4503 commit_tid = 0;
4504 read_lock(&journal->j_state_lock);
4505 if (journal->j_committing_transaction)
4506 commit_tid = journal->j_committing_transaction->t_tid;
4507 read_unlock(&journal->j_state_lock);
4508 if (commit_tid)
4509 jbd2_log_wait_commit(journal, commit_tid);
4510 }
4511}
4512
ac27a0ec 4513/*
617ba13b 4514 * ext4_setattr()
ac27a0ec
DK
4515 *
4516 * Called from notify_change.
4517 *
4518 * We want to trap VFS attempts to truncate the file as soon as
4519 * possible. In particular, we want to make sure that when the VFS
4520 * shrinks i_size, we put the inode on the orphan list and modify
4521 * i_disksize immediately, so that during the subsequent flushing of
4522 * dirty pages and freeing of disk blocks, we can guarantee that any
4523 * commit will leave the blocks being flushed in an unused state on
4524 * disk. (On recovery, the inode will get truncated and the blocks will
4525 * be freed, so we have a strong guarantee that no future commit will
4526 * leave these blocks visible to the user.)
4527 *
678aaf48
JK
4528 * Another thing we have to assure is that if we are in ordered mode
4529 * and inode is still attached to the committing transaction, we must
4530 * we start writeout of all the dirty pages which are being truncated.
4531 * This way we are sure that all the data written in the previous
4532 * transaction are already on disk (truncate waits for pages under
4533 * writeback).
4534 *
4535 * Called with inode->i_mutex down.
ac27a0ec 4536 */
617ba13b 4537int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4538{
4539 struct inode *inode = dentry->d_inode;
4540 int error, rc = 0;
3d287de3 4541 int orphan = 0;
ac27a0ec
DK
4542 const unsigned int ia_valid = attr->ia_valid;
4543
4544 error = inode_change_ok(inode, attr);
4545 if (error)
4546 return error;
4547
12755627 4548 if (is_quota_modification(inode, attr))
871a2931 4549 dquot_initialize(inode);
08cefc7a
EB
4550 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4551 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4552 handle_t *handle;
4553
4554 /* (user+group)*(old+new) structure, inode write (sb,
4555 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4556 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4557 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4558 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4559 if (IS_ERR(handle)) {
4560 error = PTR_ERR(handle);
4561 goto err_out;
4562 }
b43fa828 4563 error = dquot_transfer(inode, attr);
ac27a0ec 4564 if (error) {
617ba13b 4565 ext4_journal_stop(handle);
ac27a0ec
DK
4566 return error;
4567 }
4568 /* Update corresponding info in inode so that everything is in
4569 * one transaction */
4570 if (attr->ia_valid & ATTR_UID)
4571 inode->i_uid = attr->ia_uid;
4572 if (attr->ia_valid & ATTR_GID)
4573 inode->i_gid = attr->ia_gid;
617ba13b
MC
4574 error = ext4_mark_inode_dirty(handle, inode);
4575 ext4_journal_stop(handle);
ac27a0ec
DK
4576 }
4577
e2b46574 4578 if (attr->ia_valid & ATTR_SIZE) {
562c72aa 4579
12e9b892 4580 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4581 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4582
0c095c7f
TT
4583 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4584 return -EFBIG;
e2b46574
ES
4585 }
4586 }
4587
ac27a0ec 4588 if (S_ISREG(inode->i_mode) &&
c8d46e41 4589 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4590 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4591 handle_t *handle;
4592
9924a92a 4593 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
ac27a0ec
DK
4594 if (IS_ERR(handle)) {
4595 error = PTR_ERR(handle);
4596 goto err_out;
4597 }
3d287de3
DM
4598 if (ext4_handle_valid(handle)) {
4599 error = ext4_orphan_add(handle, inode);
4600 orphan = 1;
4601 }
617ba13b
MC
4602 EXT4_I(inode)->i_disksize = attr->ia_size;
4603 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4604 if (!error)
4605 error = rc;
617ba13b 4606 ext4_journal_stop(handle);
678aaf48
JK
4607
4608 if (ext4_should_order_data(inode)) {
4609 error = ext4_begin_ordered_truncate(inode,
4610 attr->ia_size);
4611 if (error) {
4612 /* Do as much error cleanup as possible */
9924a92a
TT
4613 handle = ext4_journal_start(inode,
4614 EXT4_HT_INODE, 3);
678aaf48
JK
4615 if (IS_ERR(handle)) {
4616 ext4_orphan_del(NULL, inode);
4617 goto err_out;
4618 }
4619 ext4_orphan_del(handle, inode);
3d287de3 4620 orphan = 0;
678aaf48
JK
4621 ext4_journal_stop(handle);
4622 goto err_out;
4623 }
4624 }
ac27a0ec
DK
4625 }
4626
072bd7ea 4627 if (attr->ia_valid & ATTR_SIZE) {
53e87268
JK
4628 if (attr->ia_size != inode->i_size) {
4629 loff_t oldsize = inode->i_size;
4630
4631 i_size_write(inode, attr->ia_size);
4632 /*
4633 * Blocks are going to be removed from the inode. Wait
4634 * for dio in flight. Temporarily disable
4635 * dioread_nolock to prevent livelock.
4636 */
1b65007e 4637 if (orphan) {
53e87268
JK
4638 if (!ext4_should_journal_data(inode)) {
4639 ext4_inode_block_unlocked_dio(inode);
4640 inode_dio_wait(inode);
4641 ext4_inode_resume_unlocked_dio(inode);
4642 } else
4643 ext4_wait_for_tail_page_commit(inode);
1b65007e 4644 }
53e87268
JK
4645 /*
4646 * Truncate pagecache after we've waited for commit
4647 * in data=journal mode to make pages freeable.
4648 */
4649 truncate_pagecache(inode, oldsize, inode->i_size);
1c9114f9 4650 }
afcff5d8 4651 ext4_truncate(inode);
072bd7ea 4652 }
ac27a0ec 4653
1025774c
CH
4654 if (!rc) {
4655 setattr_copy(inode, attr);
4656 mark_inode_dirty(inode);
4657 }
4658
4659 /*
4660 * If the call to ext4_truncate failed to get a transaction handle at
4661 * all, we need to clean up the in-core orphan list manually.
4662 */
3d287de3 4663 if (orphan && inode->i_nlink)
617ba13b 4664 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4665
4666 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4667 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4668
4669err_out:
617ba13b 4670 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4671 if (!error)
4672 error = rc;
4673 return error;
4674}
4675
3e3398a0
MC
4676int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4677 struct kstat *stat)
4678{
4679 struct inode *inode;
8af8eecc 4680 unsigned long long delalloc_blocks;
3e3398a0
MC
4681
4682 inode = dentry->d_inode;
4683 generic_fillattr(inode, stat);
4684
4685 /*
4686 * We can't update i_blocks if the block allocation is delayed
4687 * otherwise in the case of system crash before the real block
4688 * allocation is done, we will have i_blocks inconsistent with
4689 * on-disk file blocks.
4690 * We always keep i_blocks updated together with real
4691 * allocation. But to not confuse with user, stat
4692 * will return the blocks that include the delayed allocation
4693 * blocks for this file.
4694 */
96607551
TM
4695 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4696 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0 4697
8af8eecc 4698 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
3e3398a0
MC
4699 return 0;
4700}
ac27a0ec 4701
fffb2739
JK
4702static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4703 int pextents)
a02908f1 4704{
12e9b892 4705 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4706 return ext4_ind_trans_blocks(inode, lblocks);
4707 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4708}
ac51d837 4709
ac27a0ec 4710/*
a02908f1
MC
4711 * Account for index blocks, block groups bitmaps and block group
4712 * descriptor blocks if modify datablocks and index blocks
4713 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4714 *
a02908f1 4715 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4716 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4717 * they could still across block group boundary.
ac27a0ec 4718 *
a02908f1
MC
4719 * Also account for superblock, inode, quota and xattr blocks
4720 */
fffb2739
JK
4721static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4722 int pextents)
a02908f1 4723{
8df9675f
TT
4724 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4725 int gdpblocks;
a02908f1
MC
4726 int idxblocks;
4727 int ret = 0;
4728
4729 /*
fffb2739
JK
4730 * How many index blocks need to touch to map @lblocks logical blocks
4731 * to @pextents physical extents?
a02908f1 4732 */
fffb2739 4733 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4734
4735 ret = idxblocks;
4736
4737 /*
4738 * Now let's see how many group bitmaps and group descriptors need
4739 * to account
4740 */
fffb2739 4741 groups = idxblocks + pextents;
a02908f1 4742 gdpblocks = groups;
8df9675f
TT
4743 if (groups > ngroups)
4744 groups = ngroups;
a02908f1
MC
4745 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4746 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4747
4748 /* bitmaps and block group descriptor blocks */
4749 ret += groups + gdpblocks;
4750
4751 /* Blocks for super block, inode, quota and xattr blocks */
4752 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4753
4754 return ret;
4755}
4756
4757/*
25985edc 4758 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4759 * the modification of a single pages into a single transaction,
4760 * which may include multiple chunks of block allocations.
ac27a0ec 4761 *
525f4ed8 4762 * This could be called via ext4_write_begin()
ac27a0ec 4763 *
525f4ed8 4764 * We need to consider the worse case, when
a02908f1 4765 * one new block per extent.
ac27a0ec 4766 */
a86c6181 4767int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4768{
617ba13b 4769 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4770 int ret;
4771
fffb2739 4772 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4773
a02908f1 4774 /* Account for data blocks for journalled mode */
617ba13b 4775 if (ext4_should_journal_data(inode))
a02908f1 4776 ret += bpp;
ac27a0ec
DK
4777 return ret;
4778}
f3bd1f3f
MC
4779
4780/*
4781 * Calculate the journal credits for a chunk of data modification.
4782 *
4783 * This is called from DIO, fallocate or whoever calling
79e83036 4784 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4785 *
4786 * journal buffers for data blocks are not included here, as DIO
4787 * and fallocate do no need to journal data buffers.
4788 */
4789int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4790{
4791 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4792}
4793
ac27a0ec 4794/*
617ba13b 4795 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4796 * Give this, we know that the caller already has write access to iloc->bh.
4797 */
617ba13b 4798int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4799 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4800{
4801 int err = 0;
4802
c64db50e 4803 if (IS_I_VERSION(inode))
25ec56b5
JNC
4804 inode_inc_iversion(inode);
4805
ac27a0ec
DK
4806 /* the do_update_inode consumes one bh->b_count */
4807 get_bh(iloc->bh);
4808
dab291af 4809 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4810 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4811 put_bh(iloc->bh);
4812 return err;
4813}
4814
4815/*
4816 * On success, We end up with an outstanding reference count against
4817 * iloc->bh. This _must_ be cleaned up later.
4818 */
4819
4820int
617ba13b
MC
4821ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4822 struct ext4_iloc *iloc)
ac27a0ec 4823{
0390131b
FM
4824 int err;
4825
4826 err = ext4_get_inode_loc(inode, iloc);
4827 if (!err) {
4828 BUFFER_TRACE(iloc->bh, "get_write_access");
4829 err = ext4_journal_get_write_access(handle, iloc->bh);
4830 if (err) {
4831 brelse(iloc->bh);
4832 iloc->bh = NULL;
ac27a0ec
DK
4833 }
4834 }
617ba13b 4835 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4836 return err;
4837}
4838
6dd4ee7c
KS
4839/*
4840 * Expand an inode by new_extra_isize bytes.
4841 * Returns 0 on success or negative error number on failure.
4842 */
1d03ec98
AK
4843static int ext4_expand_extra_isize(struct inode *inode,
4844 unsigned int new_extra_isize,
4845 struct ext4_iloc iloc,
4846 handle_t *handle)
6dd4ee7c
KS
4847{
4848 struct ext4_inode *raw_inode;
4849 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4850
4851 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4852 return 0;
4853
4854 raw_inode = ext4_raw_inode(&iloc);
4855
4856 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4857
4858 /* No extended attributes present */
19f5fb7a
TT
4859 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4860 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4861 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4862 new_extra_isize);
4863 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4864 return 0;
4865 }
4866
4867 /* try to expand with EAs present */
4868 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4869 raw_inode, handle);
4870}
4871
ac27a0ec
DK
4872/*
4873 * What we do here is to mark the in-core inode as clean with respect to inode
4874 * dirtiness (it may still be data-dirty).
4875 * This means that the in-core inode may be reaped by prune_icache
4876 * without having to perform any I/O. This is a very good thing,
4877 * because *any* task may call prune_icache - even ones which
4878 * have a transaction open against a different journal.
4879 *
4880 * Is this cheating? Not really. Sure, we haven't written the
4881 * inode out, but prune_icache isn't a user-visible syncing function.
4882 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4883 * we start and wait on commits.
ac27a0ec 4884 */
617ba13b 4885int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4886{
617ba13b 4887 struct ext4_iloc iloc;
6dd4ee7c
KS
4888 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4889 static unsigned int mnt_count;
4890 int err, ret;
ac27a0ec
DK
4891
4892 might_sleep();
7ff9c073 4893 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4894 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4895 if (ext4_handle_valid(handle) &&
4896 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4897 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4898 /*
4899 * We need extra buffer credits since we may write into EA block
4900 * with this same handle. If journal_extend fails, then it will
4901 * only result in a minor loss of functionality for that inode.
4902 * If this is felt to be critical, then e2fsck should be run to
4903 * force a large enough s_min_extra_isize.
4904 */
4905 if ((jbd2_journal_extend(handle,
4906 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4907 ret = ext4_expand_extra_isize(inode,
4908 sbi->s_want_extra_isize,
4909 iloc, handle);
4910 if (ret) {
19f5fb7a
TT
4911 ext4_set_inode_state(inode,
4912 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4913 if (mnt_count !=
4914 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4915 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4916 "Unable to expand inode %lu. Delete"
4917 " some EAs or run e2fsck.",
4918 inode->i_ino);
c1bddad9
AK
4919 mnt_count =
4920 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4921 }
4922 }
4923 }
4924 }
ac27a0ec 4925 if (!err)
617ba13b 4926 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4927 return err;
4928}
4929
4930/*
617ba13b 4931 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4932 *
4933 * We're really interested in the case where a file is being extended.
4934 * i_size has been changed by generic_commit_write() and we thus need
4935 * to include the updated inode in the current transaction.
4936 *
5dd4056d 4937 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4938 * are allocated to the file.
4939 *
4940 * If the inode is marked synchronous, we don't honour that here - doing
4941 * so would cause a commit on atime updates, which we don't bother doing.
4942 * We handle synchronous inodes at the highest possible level.
4943 */
aa385729 4944void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4945{
ac27a0ec
DK
4946 handle_t *handle;
4947
9924a92a 4948 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4949 if (IS_ERR(handle))
4950 goto out;
f3dc272f 4951
f3dc272f
CW
4952 ext4_mark_inode_dirty(handle, inode);
4953
617ba13b 4954 ext4_journal_stop(handle);
ac27a0ec
DK
4955out:
4956 return;
4957}
4958
4959#if 0
4960/*
4961 * Bind an inode's backing buffer_head into this transaction, to prevent
4962 * it from being flushed to disk early. Unlike
617ba13b 4963 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4964 * returns no iloc structure, so the caller needs to repeat the iloc
4965 * lookup to mark the inode dirty later.
4966 */
617ba13b 4967static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4968{
617ba13b 4969 struct ext4_iloc iloc;
ac27a0ec
DK
4970
4971 int err = 0;
4972 if (handle) {
617ba13b 4973 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4974 if (!err) {
4975 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4976 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4977 if (!err)
0390131b 4978 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4979 NULL,
0390131b 4980 iloc.bh);
ac27a0ec
DK
4981 brelse(iloc.bh);
4982 }
4983 }
617ba13b 4984 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4985 return err;
4986}
4987#endif
4988
617ba13b 4989int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4990{
4991 journal_t *journal;
4992 handle_t *handle;
4993 int err;
4994
4995 /*
4996 * We have to be very careful here: changing a data block's
4997 * journaling status dynamically is dangerous. If we write a
4998 * data block to the journal, change the status and then delete
4999 * that block, we risk forgetting to revoke the old log record
5000 * from the journal and so a subsequent replay can corrupt data.
5001 * So, first we make sure that the journal is empty and that
5002 * nobody is changing anything.
5003 */
5004
617ba13b 5005 journal = EXT4_JOURNAL(inode);
0390131b
FM
5006 if (!journal)
5007 return 0;
d699594d 5008 if (is_journal_aborted(journal))
ac27a0ec 5009 return -EROFS;
2aff57b0
YY
5010 /* We have to allocate physical blocks for delalloc blocks
5011 * before flushing journal. otherwise delalloc blocks can not
5012 * be allocated any more. even more truncate on delalloc blocks
5013 * could trigger BUG by flushing delalloc blocks in journal.
5014 * There is no delalloc block in non-journal data mode.
5015 */
5016 if (val && test_opt(inode->i_sb, DELALLOC)) {
5017 err = ext4_alloc_da_blocks(inode);
5018 if (err < 0)
5019 return err;
5020 }
ac27a0ec 5021
17335dcc
DM
5022 /* Wait for all existing dio workers */
5023 ext4_inode_block_unlocked_dio(inode);
5024 inode_dio_wait(inode);
5025
dab291af 5026 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5027
5028 /*
5029 * OK, there are no updates running now, and all cached data is
5030 * synced to disk. We are now in a completely consistent state
5031 * which doesn't have anything in the journal, and we know that
5032 * no filesystem updates are running, so it is safe to modify
5033 * the inode's in-core data-journaling state flag now.
5034 */
5035
5036 if (val)
12e9b892 5037 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
5038 else {
5039 jbd2_journal_flush(journal);
12e9b892 5040 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5041 }
617ba13b 5042 ext4_set_aops(inode);
ac27a0ec 5043
dab291af 5044 jbd2_journal_unlock_updates(journal);
17335dcc 5045 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5046
5047 /* Finally we can mark the inode as dirty. */
5048
9924a92a 5049 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5050 if (IS_ERR(handle))
5051 return PTR_ERR(handle);
5052
617ba13b 5053 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5054 ext4_handle_sync(handle);
617ba13b
MC
5055 ext4_journal_stop(handle);
5056 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5057
5058 return err;
5059}
2e9ee850
AK
5060
5061static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5062{
5063 return !buffer_mapped(bh);
5064}
5065
c2ec175c 5066int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5067{
c2ec175c 5068 struct page *page = vmf->page;
2e9ee850
AK
5069 loff_t size;
5070 unsigned long len;
9ea7df53 5071 int ret;
2e9ee850 5072 struct file *file = vma->vm_file;
496ad9aa 5073 struct inode *inode = file_inode(file);
2e9ee850 5074 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5075 handle_t *handle;
5076 get_block_t *get_block;
5077 int retries = 0;
2e9ee850 5078
8e8ad8a5 5079 sb_start_pagefault(inode->i_sb);
041bbb6d 5080 file_update_time(vma->vm_file);
9ea7df53
JK
5081 /* Delalloc case is easy... */
5082 if (test_opt(inode->i_sb, DELALLOC) &&
5083 !ext4_should_journal_data(inode) &&
5084 !ext4_nonda_switch(inode->i_sb)) {
5085 do {
5086 ret = __block_page_mkwrite(vma, vmf,
5087 ext4_da_get_block_prep);
5088 } while (ret == -ENOSPC &&
5089 ext4_should_retry_alloc(inode->i_sb, &retries));
5090 goto out_ret;
2e9ee850 5091 }
0e499890
DW
5092
5093 lock_page(page);
9ea7df53
JK
5094 size = i_size_read(inode);
5095 /* Page got truncated from under us? */
5096 if (page->mapping != mapping || page_offset(page) > size) {
5097 unlock_page(page);
5098 ret = VM_FAULT_NOPAGE;
5099 goto out;
0e499890 5100 }
2e9ee850
AK
5101
5102 if (page->index == size >> PAGE_CACHE_SHIFT)
5103 len = size & ~PAGE_CACHE_MASK;
5104 else
5105 len = PAGE_CACHE_SIZE;
a827eaff 5106 /*
9ea7df53
JK
5107 * Return if we have all the buffers mapped. This avoids the need to do
5108 * journal_start/journal_stop which can block and take a long time
a827eaff 5109 */
2e9ee850 5110 if (page_has_buffers(page)) {
f19d5870
TM
5111 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5112 0, len, NULL,
5113 ext4_bh_unmapped)) {
9ea7df53 5114 /* Wait so that we don't change page under IO */
1d1d1a76 5115 wait_for_stable_page(page);
9ea7df53
JK
5116 ret = VM_FAULT_LOCKED;
5117 goto out;
a827eaff 5118 }
2e9ee850 5119 }
a827eaff 5120 unlock_page(page);
9ea7df53
JK
5121 /* OK, we need to fill the hole... */
5122 if (ext4_should_dioread_nolock(inode))
5123 get_block = ext4_get_block_write;
5124 else
5125 get_block = ext4_get_block;
5126retry_alloc:
9924a92a
TT
5127 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5128 ext4_writepage_trans_blocks(inode));
9ea7df53 5129 if (IS_ERR(handle)) {
c2ec175c 5130 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5131 goto out;
5132 }
5133 ret = __block_page_mkwrite(vma, vmf, get_block);
5134 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5135 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5136 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5137 unlock_page(page);
5138 ret = VM_FAULT_SIGBUS;
fcbb5515 5139 ext4_journal_stop(handle);
9ea7df53
JK
5140 goto out;
5141 }
5142 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5143 }
5144 ext4_journal_stop(handle);
5145 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5146 goto retry_alloc;
5147out_ret:
5148 ret = block_page_mkwrite_return(ret);
5149out:
8e8ad8a5 5150 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5151 return ret;
5152}
This page took 0.964042 seconds and 5 git commands to generate.