ext4: teach ext4_ext_truncate() about the bigalloc feature
[deliverable/linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
21#include <linux/module.h>
22#include <linux/fs.h>
23#include <linux/time.h>
dab291af 24#include <linux/jbd2.h>
ac27a0ec
DK
25#include <linux/highuid.h>
26#include <linux/pagemap.h>
27#include <linux/quotaops.h>
28#include <linux/string.h>
29#include <linux/buffer_head.h>
30#include <linux/writeback.h>
64769240 31#include <linux/pagevec.h>
ac27a0ec 32#include <linux/mpage.h>
e83c1397 33#include <linux/namei.h>
ac27a0ec
DK
34#include <linux/uio.h>
35#include <linux/bio.h>
4c0425ff 36#include <linux/workqueue.h>
744692dc 37#include <linux/kernel.h>
6db26ffc 38#include <linux/printk.h>
5a0e3ad6 39#include <linux/slab.h>
a8901d34 40#include <linux/ratelimit.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
d2a17637 45#include "ext4_extents.h"
9f125d64 46#include "truncate.h"
ac27a0ec 47
9bffad1e
TT
48#include <trace/events/ext4.h>
49
a1d6cc56
AK
50#define MPAGE_DA_EXTENT_TAIL 0x01
51
678aaf48
JK
52static inline int ext4_begin_ordered_truncate(struct inode *inode,
53 loff_t new_size)
54{
7ff9c073 55 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
56 /*
57 * If jinode is zero, then we never opened the file for
58 * writing, so there's no need to call
59 * jbd2_journal_begin_ordered_truncate() since there's no
60 * outstanding writes we need to flush.
61 */
62 if (!EXT4_I(inode)->jinode)
63 return 0;
64 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
65 EXT4_I(inode)->jinode,
66 new_size);
678aaf48
JK
67}
68
64769240 69static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
70static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
71 struct buffer_head *bh_result, int create);
72static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
73static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
74static int __ext4_journalled_writepage(struct page *page, unsigned int len);
75static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
64769240 76
ac27a0ec
DK
77/*
78 * Test whether an inode is a fast symlink.
79 */
617ba13b 80static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 81{
617ba13b 82 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
83 (inode->i_sb->s_blocksize >> 9) : 0;
84
85 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
86}
87
ac27a0ec
DK
88/*
89 * Restart the transaction associated with *handle. This does a commit,
90 * so before we call here everything must be consistently dirtied against
91 * this transaction.
92 */
fa5d1113 93int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 94 int nblocks)
ac27a0ec 95{
487caeef
JK
96 int ret;
97
98 /*
e35fd660 99 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
100 * moment, get_block can be called only for blocks inside i_size since
101 * page cache has been already dropped and writes are blocked by
102 * i_mutex. So we can safely drop the i_data_sem here.
103 */
0390131b 104 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 105 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 106 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 107 ret = ext4_journal_restart(handle, nblocks);
487caeef 108 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 109 ext4_discard_preallocations(inode);
487caeef
JK
110
111 return ret;
ac27a0ec
DK
112}
113
114/*
115 * Called at the last iput() if i_nlink is zero.
116 */
0930fcc1 117void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
118{
119 handle_t *handle;
bc965ab3 120 int err;
ac27a0ec 121
7ff9c073 122 trace_ext4_evict_inode(inode);
2581fdc8 123
2581fdc8
JZ
124 ext4_ioend_wait(inode);
125
0930fcc1 126 if (inode->i_nlink) {
2d859db3
JK
127 /*
128 * When journalling data dirty buffers are tracked only in the
129 * journal. So although mm thinks everything is clean and
130 * ready for reaping the inode might still have some pages to
131 * write in the running transaction or waiting to be
132 * checkpointed. Thus calling jbd2_journal_invalidatepage()
133 * (via truncate_inode_pages()) to discard these buffers can
134 * cause data loss. Also even if we did not discard these
135 * buffers, we would have no way to find them after the inode
136 * is reaped and thus user could see stale data if he tries to
137 * read them before the transaction is checkpointed. So be
138 * careful and force everything to disk here... We use
139 * ei->i_datasync_tid to store the newest transaction
140 * containing inode's data.
141 *
142 * Note that directories do not have this problem because they
143 * don't use page cache.
144 */
145 if (ext4_should_journal_data(inode) &&
146 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
147 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
148 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
149
150 jbd2_log_start_commit(journal, commit_tid);
151 jbd2_log_wait_commit(journal, commit_tid);
152 filemap_write_and_wait(&inode->i_data);
153 }
0930fcc1
AV
154 truncate_inode_pages(&inode->i_data, 0);
155 goto no_delete;
156 }
157
907f4554 158 if (!is_bad_inode(inode))
871a2931 159 dquot_initialize(inode);
907f4554 160
678aaf48
JK
161 if (ext4_should_order_data(inode))
162 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
163 truncate_inode_pages(&inode->i_data, 0);
164
165 if (is_bad_inode(inode))
166 goto no_delete;
167
9f125d64 168 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
ac27a0ec 169 if (IS_ERR(handle)) {
bc965ab3 170 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
171 /*
172 * If we're going to skip the normal cleanup, we still need to
173 * make sure that the in-core orphan linked list is properly
174 * cleaned up.
175 */
617ba13b 176 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
177 goto no_delete;
178 }
179
180 if (IS_SYNC(inode))
0390131b 181 ext4_handle_sync(handle);
ac27a0ec 182 inode->i_size = 0;
bc965ab3
TT
183 err = ext4_mark_inode_dirty(handle, inode);
184 if (err) {
12062ddd 185 ext4_warning(inode->i_sb,
bc965ab3
TT
186 "couldn't mark inode dirty (err %d)", err);
187 goto stop_handle;
188 }
ac27a0ec 189 if (inode->i_blocks)
617ba13b 190 ext4_truncate(inode);
bc965ab3
TT
191
192 /*
193 * ext4_ext_truncate() doesn't reserve any slop when it
194 * restarts journal transactions; therefore there may not be
195 * enough credits left in the handle to remove the inode from
196 * the orphan list and set the dtime field.
197 */
0390131b 198 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
199 err = ext4_journal_extend(handle, 3);
200 if (err > 0)
201 err = ext4_journal_restart(handle, 3);
202 if (err != 0) {
12062ddd 203 ext4_warning(inode->i_sb,
bc965ab3
TT
204 "couldn't extend journal (err %d)", err);
205 stop_handle:
206 ext4_journal_stop(handle);
45388219 207 ext4_orphan_del(NULL, inode);
bc965ab3
TT
208 goto no_delete;
209 }
210 }
211
ac27a0ec 212 /*
617ba13b 213 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 214 * AKPM: I think this can be inside the above `if'.
617ba13b 215 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 216 * deletion of a non-existent orphan - this is because we don't
617ba13b 217 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
218 * (Well, we could do this if we need to, but heck - it works)
219 */
617ba13b
MC
220 ext4_orphan_del(handle, inode);
221 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
222
223 /*
224 * One subtle ordering requirement: if anything has gone wrong
225 * (transaction abort, IO errors, whatever), then we can still
226 * do these next steps (the fs will already have been marked as
227 * having errors), but we can't free the inode if the mark_dirty
228 * fails.
229 */
617ba13b 230 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 231 /* If that failed, just do the required in-core inode clear. */
0930fcc1 232 ext4_clear_inode(inode);
ac27a0ec 233 else
617ba13b
MC
234 ext4_free_inode(handle, inode);
235 ext4_journal_stop(handle);
ac27a0ec
DK
236 return;
237no_delete:
0930fcc1 238 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
239}
240
a9e7f447
DM
241#ifdef CONFIG_QUOTA
242qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 243{
a9e7f447 244 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 245}
a9e7f447 246#endif
9d0be502 247
12219aea
AK
248/*
249 * Calculate the number of metadata blocks need to reserve
9d0be502 250 * to allocate a block located at @lblock
12219aea 251 */
01f49d0b 252static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 253{
12e9b892 254 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 255 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 256
8bb2b247 257 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
258}
259
0637c6f4
TT
260/*
261 * Called with i_data_sem down, which is important since we can call
262 * ext4_discard_preallocations() from here.
263 */
5f634d06
AK
264void ext4_da_update_reserve_space(struct inode *inode,
265 int used, int quota_claim)
12219aea
AK
266{
267 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 268 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
269
270 spin_lock(&ei->i_block_reservation_lock);
f8ec9d68 271 trace_ext4_da_update_reserve_space(inode, used);
0637c6f4
TT
272 if (unlikely(used > ei->i_reserved_data_blocks)) {
273 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
274 "with only %d reserved data blocks\n",
275 __func__, inode->i_ino, used,
276 ei->i_reserved_data_blocks);
277 WARN_ON(1);
278 used = ei->i_reserved_data_blocks;
279 }
12219aea 280
0637c6f4
TT
281 /* Update per-inode reservations */
282 ei->i_reserved_data_blocks -= used;
0637c6f4 283 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
72b8ab9d
ES
284 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
285 used + ei->i_allocated_meta_blocks);
0637c6f4 286 ei->i_allocated_meta_blocks = 0;
6bc6e63f 287
0637c6f4
TT
288 if (ei->i_reserved_data_blocks == 0) {
289 /*
290 * We can release all of the reserved metadata blocks
291 * only when we have written all of the delayed
292 * allocation blocks.
293 */
72b8ab9d
ES
294 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
295 ei->i_reserved_meta_blocks);
ee5f4d9c 296 ei->i_reserved_meta_blocks = 0;
9d0be502 297 ei->i_da_metadata_calc_len = 0;
6bc6e63f 298 }
12219aea 299 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 300
72b8ab9d
ES
301 /* Update quota subsystem for data blocks */
302 if (quota_claim)
5dd4056d 303 dquot_claim_block(inode, used);
72b8ab9d 304 else {
5f634d06
AK
305 /*
306 * We did fallocate with an offset that is already delayed
307 * allocated. So on delayed allocated writeback we should
72b8ab9d 308 * not re-claim the quota for fallocated blocks.
5f634d06 309 */
72b8ab9d 310 dquot_release_reservation_block(inode, used);
5f634d06 311 }
d6014301
AK
312
313 /*
314 * If we have done all the pending block allocations and if
315 * there aren't any writers on the inode, we can discard the
316 * inode's preallocations.
317 */
0637c6f4
TT
318 if ((ei->i_reserved_data_blocks == 0) &&
319 (atomic_read(&inode->i_writecount) == 0))
d6014301 320 ext4_discard_preallocations(inode);
12219aea
AK
321}
322
e29136f8 323static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
324 unsigned int line,
325 struct ext4_map_blocks *map)
6fd058f7 326{
24676da4
TT
327 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
328 map->m_len)) {
c398eda0
TT
329 ext4_error_inode(inode, func, line, map->m_pblk,
330 "lblock %lu mapped to illegal pblock "
331 "(length %d)", (unsigned long) map->m_lblk,
332 map->m_len);
6fd058f7
TT
333 return -EIO;
334 }
335 return 0;
336}
337
e29136f8 338#define check_block_validity(inode, map) \
c398eda0 339 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 340
55138e0b 341/*
1f94533d
TT
342 * Return the number of contiguous dirty pages in a given inode
343 * starting at page frame idx.
55138e0b
TT
344 */
345static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
346 unsigned int max_pages)
347{
348 struct address_space *mapping = inode->i_mapping;
349 pgoff_t index;
350 struct pagevec pvec;
351 pgoff_t num = 0;
352 int i, nr_pages, done = 0;
353
354 if (max_pages == 0)
355 return 0;
356 pagevec_init(&pvec, 0);
357 while (!done) {
358 index = idx;
359 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
360 PAGECACHE_TAG_DIRTY,
361 (pgoff_t)PAGEVEC_SIZE);
362 if (nr_pages == 0)
363 break;
364 for (i = 0; i < nr_pages; i++) {
365 struct page *page = pvec.pages[i];
366 struct buffer_head *bh, *head;
367
368 lock_page(page);
369 if (unlikely(page->mapping != mapping) ||
370 !PageDirty(page) ||
371 PageWriteback(page) ||
372 page->index != idx) {
373 done = 1;
374 unlock_page(page);
375 break;
376 }
1f94533d
TT
377 if (page_has_buffers(page)) {
378 bh = head = page_buffers(page);
379 do {
380 if (!buffer_delay(bh) &&
381 !buffer_unwritten(bh))
382 done = 1;
383 bh = bh->b_this_page;
384 } while (!done && (bh != head));
385 }
55138e0b
TT
386 unlock_page(page);
387 if (done)
388 break;
389 idx++;
390 num++;
659c6009
ES
391 if (num >= max_pages) {
392 done = 1;
55138e0b 393 break;
659c6009 394 }
55138e0b
TT
395 }
396 pagevec_release(&pvec);
397 }
398 return num;
399}
400
f5ab0d1f 401/*
e35fd660 402 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 403 * and returns if the blocks are already mapped.
f5ab0d1f 404 *
f5ab0d1f
MC
405 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
406 * and store the allocated blocks in the result buffer head and mark it
407 * mapped.
408 *
e35fd660
TT
409 * If file type is extents based, it will call ext4_ext_map_blocks(),
410 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
411 * based files
412 *
413 * On success, it returns the number of blocks being mapped or allocate.
414 * if create==0 and the blocks are pre-allocated and uninitialized block,
415 * the result buffer head is unmapped. If the create ==1, it will make sure
416 * the buffer head is mapped.
417 *
418 * It returns 0 if plain look up failed (blocks have not been allocated), in
419 * that casem, buffer head is unmapped
420 *
421 * It returns the error in case of allocation failure.
422 */
e35fd660
TT
423int ext4_map_blocks(handle_t *handle, struct inode *inode,
424 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
425{
426 int retval;
f5ab0d1f 427
e35fd660
TT
428 map->m_flags = 0;
429 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
430 "logical block %lu\n", inode->i_ino, flags, map->m_len,
431 (unsigned long) map->m_lblk);
4df3d265 432 /*
b920c755
TT
433 * Try to see if we can get the block without requesting a new
434 * file system block.
4df3d265
AK
435 */
436 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 437 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 438 retval = ext4_ext_map_blocks(handle, inode, map, 0);
0e855ac8 439 } else {
e35fd660 440 retval = ext4_ind_map_blocks(handle, inode, map, 0);
0e855ac8 441 }
4df3d265 442 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 443
e35fd660 444 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 445 int ret = check_block_validity(inode, map);
6fd058f7
TT
446 if (ret != 0)
447 return ret;
448 }
449
f5ab0d1f 450 /* If it is only a block(s) look up */
c2177057 451 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
452 return retval;
453
454 /*
455 * Returns if the blocks have already allocated
456 *
457 * Note that if blocks have been preallocated
458 * ext4_ext_get_block() returns th create = 0
459 * with buffer head unmapped.
460 */
e35fd660 461 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
462 return retval;
463
2a8964d6
AK
464 /*
465 * When we call get_blocks without the create flag, the
466 * BH_Unwritten flag could have gotten set if the blocks
467 * requested were part of a uninitialized extent. We need to
468 * clear this flag now that we are committed to convert all or
469 * part of the uninitialized extent to be an initialized
470 * extent. This is because we need to avoid the combination
471 * of BH_Unwritten and BH_Mapped flags being simultaneously
472 * set on the buffer_head.
473 */
e35fd660 474 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 475
4df3d265 476 /*
f5ab0d1f
MC
477 * New blocks allocate and/or writing to uninitialized extent
478 * will possibly result in updating i_data, so we take
479 * the write lock of i_data_sem, and call get_blocks()
480 * with create == 1 flag.
4df3d265
AK
481 */
482 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
483
484 /*
485 * if the caller is from delayed allocation writeout path
486 * we have already reserved fs blocks for allocation
487 * let the underlying get_block() function know to
488 * avoid double accounting
489 */
c2177057 490 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 491 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
492 /*
493 * We need to check for EXT4 here because migrate
494 * could have changed the inode type in between
495 */
12e9b892 496 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 497 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 498 } else {
e35fd660 499 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 500
e35fd660 501 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
502 /*
503 * We allocated new blocks which will result in
504 * i_data's format changing. Force the migrate
505 * to fail by clearing migrate flags
506 */
19f5fb7a 507 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 508 }
d2a17637 509
5f634d06
AK
510 /*
511 * Update reserved blocks/metadata blocks after successful
512 * block allocation which had been deferred till now. We don't
513 * support fallocate for non extent files. So we can update
514 * reserve space here.
515 */
516 if ((retval > 0) &&
1296cc85 517 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
518 ext4_da_update_reserve_space(inode, retval, 1);
519 }
2ac3b6e0 520 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 521 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 522
4df3d265 523 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 524 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 525 int ret = check_block_validity(inode, map);
6fd058f7
TT
526 if (ret != 0)
527 return ret;
528 }
0e855ac8
AK
529 return retval;
530}
531
f3bd1f3f
MC
532/* Maximum number of blocks we map for direct IO at once. */
533#define DIO_MAX_BLOCKS 4096
534
2ed88685
TT
535static int _ext4_get_block(struct inode *inode, sector_t iblock,
536 struct buffer_head *bh, int flags)
ac27a0ec 537{
3e4fdaf8 538 handle_t *handle = ext4_journal_current_handle();
2ed88685 539 struct ext4_map_blocks map;
7fb5409d 540 int ret = 0, started = 0;
f3bd1f3f 541 int dio_credits;
ac27a0ec 542
2ed88685
TT
543 map.m_lblk = iblock;
544 map.m_len = bh->b_size >> inode->i_blkbits;
545
546 if (flags && !handle) {
7fb5409d 547 /* Direct IO write... */
2ed88685
TT
548 if (map.m_len > DIO_MAX_BLOCKS)
549 map.m_len = DIO_MAX_BLOCKS;
550 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 551 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 552 if (IS_ERR(handle)) {
ac27a0ec 553 ret = PTR_ERR(handle);
2ed88685 554 return ret;
ac27a0ec 555 }
7fb5409d 556 started = 1;
ac27a0ec
DK
557 }
558
2ed88685 559 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 560 if (ret > 0) {
2ed88685
TT
561 map_bh(bh, inode->i_sb, map.m_pblk);
562 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
563 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 564 ret = 0;
ac27a0ec 565 }
7fb5409d
JK
566 if (started)
567 ext4_journal_stop(handle);
ac27a0ec
DK
568 return ret;
569}
570
2ed88685
TT
571int ext4_get_block(struct inode *inode, sector_t iblock,
572 struct buffer_head *bh, int create)
573{
574 return _ext4_get_block(inode, iblock, bh,
575 create ? EXT4_GET_BLOCKS_CREATE : 0);
576}
577
ac27a0ec
DK
578/*
579 * `handle' can be NULL if create is zero
580 */
617ba13b 581struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 582 ext4_lblk_t block, int create, int *errp)
ac27a0ec 583{
2ed88685
TT
584 struct ext4_map_blocks map;
585 struct buffer_head *bh;
ac27a0ec
DK
586 int fatal = 0, err;
587
588 J_ASSERT(handle != NULL || create == 0);
589
2ed88685
TT
590 map.m_lblk = block;
591 map.m_len = 1;
592 err = ext4_map_blocks(handle, inode, &map,
593 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 594
2ed88685
TT
595 if (err < 0)
596 *errp = err;
597 if (err <= 0)
598 return NULL;
599 *errp = 0;
600
601 bh = sb_getblk(inode->i_sb, map.m_pblk);
602 if (!bh) {
603 *errp = -EIO;
604 return NULL;
ac27a0ec 605 }
2ed88685
TT
606 if (map.m_flags & EXT4_MAP_NEW) {
607 J_ASSERT(create != 0);
608 J_ASSERT(handle != NULL);
ac27a0ec 609
2ed88685
TT
610 /*
611 * Now that we do not always journal data, we should
612 * keep in mind whether this should always journal the
613 * new buffer as metadata. For now, regular file
614 * writes use ext4_get_block instead, so it's not a
615 * problem.
616 */
617 lock_buffer(bh);
618 BUFFER_TRACE(bh, "call get_create_access");
619 fatal = ext4_journal_get_create_access(handle, bh);
620 if (!fatal && !buffer_uptodate(bh)) {
621 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
622 set_buffer_uptodate(bh);
ac27a0ec 623 }
2ed88685
TT
624 unlock_buffer(bh);
625 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
626 err = ext4_handle_dirty_metadata(handle, inode, bh);
627 if (!fatal)
628 fatal = err;
629 } else {
630 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 631 }
2ed88685
TT
632 if (fatal) {
633 *errp = fatal;
634 brelse(bh);
635 bh = NULL;
636 }
637 return bh;
ac27a0ec
DK
638}
639
617ba13b 640struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 641 ext4_lblk_t block, int create, int *err)
ac27a0ec 642{
af5bc92d 643 struct buffer_head *bh;
ac27a0ec 644
617ba13b 645 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
646 if (!bh)
647 return bh;
648 if (buffer_uptodate(bh))
649 return bh;
650 ll_rw_block(READ_META, 1, &bh);
651 wait_on_buffer(bh);
652 if (buffer_uptodate(bh))
653 return bh;
654 put_bh(bh);
655 *err = -EIO;
656 return NULL;
657}
658
af5bc92d
TT
659static int walk_page_buffers(handle_t *handle,
660 struct buffer_head *head,
661 unsigned from,
662 unsigned to,
663 int *partial,
664 int (*fn)(handle_t *handle,
665 struct buffer_head *bh))
ac27a0ec
DK
666{
667 struct buffer_head *bh;
668 unsigned block_start, block_end;
669 unsigned blocksize = head->b_size;
670 int err, ret = 0;
671 struct buffer_head *next;
672
af5bc92d
TT
673 for (bh = head, block_start = 0;
674 ret == 0 && (bh != head || !block_start);
de9a55b8 675 block_start = block_end, bh = next) {
ac27a0ec
DK
676 next = bh->b_this_page;
677 block_end = block_start + blocksize;
678 if (block_end <= from || block_start >= to) {
679 if (partial && !buffer_uptodate(bh))
680 *partial = 1;
681 continue;
682 }
683 err = (*fn)(handle, bh);
684 if (!ret)
685 ret = err;
686 }
687 return ret;
688}
689
690/*
691 * To preserve ordering, it is essential that the hole instantiation and
692 * the data write be encapsulated in a single transaction. We cannot
617ba13b 693 * close off a transaction and start a new one between the ext4_get_block()
dab291af 694 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
695 * prepare_write() is the right place.
696 *
617ba13b
MC
697 * Also, this function can nest inside ext4_writepage() ->
698 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
699 * has generated enough buffer credits to do the whole page. So we won't
700 * block on the journal in that case, which is good, because the caller may
701 * be PF_MEMALLOC.
702 *
617ba13b 703 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
704 * quota file writes. If we were to commit the transaction while thus
705 * reentered, there can be a deadlock - we would be holding a quota
706 * lock, and the commit would never complete if another thread had a
707 * transaction open and was blocking on the quota lock - a ranking
708 * violation.
709 *
dab291af 710 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
711 * will _not_ run commit under these circumstances because handle->h_ref
712 * is elevated. We'll still have enough credits for the tiny quotafile
713 * write.
714 */
715static int do_journal_get_write_access(handle_t *handle,
de9a55b8 716 struct buffer_head *bh)
ac27a0ec 717{
56d35a4c
JK
718 int dirty = buffer_dirty(bh);
719 int ret;
720
ac27a0ec
DK
721 if (!buffer_mapped(bh) || buffer_freed(bh))
722 return 0;
56d35a4c 723 /*
ebdec241 724 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
725 * the dirty bit as jbd2_journal_get_write_access() could complain
726 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 727 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
728 * the bit before releasing a page lock and thus writeback cannot
729 * ever write the buffer.
730 */
731 if (dirty)
732 clear_buffer_dirty(bh);
733 ret = ext4_journal_get_write_access(handle, bh);
734 if (!ret && dirty)
735 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
736 return ret;
ac27a0ec
DK
737}
738
744692dc
JZ
739static int ext4_get_block_write(struct inode *inode, sector_t iblock,
740 struct buffer_head *bh_result, int create);
bfc1af65 741static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
742 loff_t pos, unsigned len, unsigned flags,
743 struct page **pagep, void **fsdata)
ac27a0ec 744{
af5bc92d 745 struct inode *inode = mapping->host;
1938a150 746 int ret, needed_blocks;
ac27a0ec
DK
747 handle_t *handle;
748 int retries = 0;
af5bc92d 749 struct page *page;
de9a55b8 750 pgoff_t index;
af5bc92d 751 unsigned from, to;
bfc1af65 752
9bffad1e 753 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
754 /*
755 * Reserve one block more for addition to orphan list in case
756 * we allocate blocks but write fails for some reason
757 */
758 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 759 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
760 from = pos & (PAGE_CACHE_SIZE - 1);
761 to = from + len;
ac27a0ec
DK
762
763retry:
af5bc92d
TT
764 handle = ext4_journal_start(inode, needed_blocks);
765 if (IS_ERR(handle)) {
766 ret = PTR_ERR(handle);
767 goto out;
7479d2b9 768 }
ac27a0ec 769
ebd3610b
JK
770 /* We cannot recurse into the filesystem as the transaction is already
771 * started */
772 flags |= AOP_FLAG_NOFS;
773
54566b2c 774 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
775 if (!page) {
776 ext4_journal_stop(handle);
777 ret = -ENOMEM;
778 goto out;
779 }
780 *pagep = page;
781
744692dc 782 if (ext4_should_dioread_nolock(inode))
6e1db88d 783 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 784 else
6e1db88d 785 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
786
787 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
788 ret = walk_page_buffers(handle, page_buffers(page),
789 from, to, NULL, do_journal_get_write_access);
790 }
bfc1af65
NP
791
792 if (ret) {
af5bc92d 793 unlock_page(page);
af5bc92d 794 page_cache_release(page);
ae4d5372 795 /*
6e1db88d 796 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
797 * outside i_size. Trim these off again. Don't need
798 * i_size_read because we hold i_mutex.
1938a150
AK
799 *
800 * Add inode to orphan list in case we crash before
801 * truncate finishes
ae4d5372 802 */
ffacfa7a 803 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
804 ext4_orphan_add(handle, inode);
805
806 ext4_journal_stop(handle);
807 if (pos + len > inode->i_size) {
b9a4207d 808 ext4_truncate_failed_write(inode);
de9a55b8 809 /*
ffacfa7a 810 * If truncate failed early the inode might
1938a150
AK
811 * still be on the orphan list; we need to
812 * make sure the inode is removed from the
813 * orphan list in that case.
814 */
815 if (inode->i_nlink)
816 ext4_orphan_del(NULL, inode);
817 }
bfc1af65
NP
818 }
819
617ba13b 820 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 821 goto retry;
7479d2b9 822out:
ac27a0ec
DK
823 return ret;
824}
825
bfc1af65
NP
826/* For write_end() in data=journal mode */
827static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
828{
829 if (!buffer_mapped(bh) || buffer_freed(bh))
830 return 0;
831 set_buffer_uptodate(bh);
0390131b 832 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
833}
834
f8514083 835static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
836 struct address_space *mapping,
837 loff_t pos, unsigned len, unsigned copied,
838 struct page *page, void *fsdata)
f8514083
AK
839{
840 int i_size_changed = 0;
841 struct inode *inode = mapping->host;
842 handle_t *handle = ext4_journal_current_handle();
843
844 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
845
846 /*
847 * No need to use i_size_read() here, the i_size
848 * cannot change under us because we hold i_mutex.
849 *
850 * But it's important to update i_size while still holding page lock:
851 * page writeout could otherwise come in and zero beyond i_size.
852 */
853 if (pos + copied > inode->i_size) {
854 i_size_write(inode, pos + copied);
855 i_size_changed = 1;
856 }
857
858 if (pos + copied > EXT4_I(inode)->i_disksize) {
859 /* We need to mark inode dirty even if
860 * new_i_size is less that inode->i_size
861 * bu greater than i_disksize.(hint delalloc)
862 */
863 ext4_update_i_disksize(inode, (pos + copied));
864 i_size_changed = 1;
865 }
866 unlock_page(page);
867 page_cache_release(page);
868
869 /*
870 * Don't mark the inode dirty under page lock. First, it unnecessarily
871 * makes the holding time of page lock longer. Second, it forces lock
872 * ordering of page lock and transaction start for journaling
873 * filesystems.
874 */
875 if (i_size_changed)
876 ext4_mark_inode_dirty(handle, inode);
877
878 return copied;
879}
880
ac27a0ec
DK
881/*
882 * We need to pick up the new inode size which generic_commit_write gave us
883 * `file' can be NULL - eg, when called from page_symlink().
884 *
617ba13b 885 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
886 * buffers are managed internally.
887 */
bfc1af65 888static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
889 struct address_space *mapping,
890 loff_t pos, unsigned len, unsigned copied,
891 struct page *page, void *fsdata)
ac27a0ec 892{
617ba13b 893 handle_t *handle = ext4_journal_current_handle();
cf108bca 894 struct inode *inode = mapping->host;
ac27a0ec
DK
895 int ret = 0, ret2;
896
9bffad1e 897 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 898 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
899
900 if (ret == 0) {
f8514083 901 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 902 page, fsdata);
f8a87d89 903 copied = ret2;
ffacfa7a 904 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
905 /* if we have allocated more blocks and copied
906 * less. We will have blocks allocated outside
907 * inode->i_size. So truncate them
908 */
909 ext4_orphan_add(handle, inode);
f8a87d89
RK
910 if (ret2 < 0)
911 ret = ret2;
ac27a0ec 912 }
617ba13b 913 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
914 if (!ret)
915 ret = ret2;
bfc1af65 916
f8514083 917 if (pos + len > inode->i_size) {
b9a4207d 918 ext4_truncate_failed_write(inode);
de9a55b8 919 /*
ffacfa7a 920 * If truncate failed early the inode might still be
f8514083
AK
921 * on the orphan list; we need to make sure the inode
922 * is removed from the orphan list in that case.
923 */
924 if (inode->i_nlink)
925 ext4_orphan_del(NULL, inode);
926 }
927
928
bfc1af65 929 return ret ? ret : copied;
ac27a0ec
DK
930}
931
bfc1af65 932static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
933 struct address_space *mapping,
934 loff_t pos, unsigned len, unsigned copied,
935 struct page *page, void *fsdata)
ac27a0ec 936{
617ba13b 937 handle_t *handle = ext4_journal_current_handle();
cf108bca 938 struct inode *inode = mapping->host;
ac27a0ec 939 int ret = 0, ret2;
ac27a0ec 940
9bffad1e 941 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 942 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 943 page, fsdata);
f8a87d89 944 copied = ret2;
ffacfa7a 945 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
946 /* if we have allocated more blocks and copied
947 * less. We will have blocks allocated outside
948 * inode->i_size. So truncate them
949 */
950 ext4_orphan_add(handle, inode);
951
f8a87d89
RK
952 if (ret2 < 0)
953 ret = ret2;
ac27a0ec 954
617ba13b 955 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
956 if (!ret)
957 ret = ret2;
bfc1af65 958
f8514083 959 if (pos + len > inode->i_size) {
b9a4207d 960 ext4_truncate_failed_write(inode);
de9a55b8 961 /*
ffacfa7a 962 * If truncate failed early the inode might still be
f8514083
AK
963 * on the orphan list; we need to make sure the inode
964 * is removed from the orphan list in that case.
965 */
966 if (inode->i_nlink)
967 ext4_orphan_del(NULL, inode);
968 }
969
bfc1af65 970 return ret ? ret : copied;
ac27a0ec
DK
971}
972
bfc1af65 973static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
974 struct address_space *mapping,
975 loff_t pos, unsigned len, unsigned copied,
976 struct page *page, void *fsdata)
ac27a0ec 977{
617ba13b 978 handle_t *handle = ext4_journal_current_handle();
bfc1af65 979 struct inode *inode = mapping->host;
ac27a0ec
DK
980 int ret = 0, ret2;
981 int partial = 0;
bfc1af65 982 unsigned from, to;
cf17fea6 983 loff_t new_i_size;
ac27a0ec 984
9bffad1e 985 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
986 from = pos & (PAGE_CACHE_SIZE - 1);
987 to = from + len;
988
441c8508
CW
989 BUG_ON(!ext4_handle_valid(handle));
990
bfc1af65
NP
991 if (copied < len) {
992 if (!PageUptodate(page))
993 copied = 0;
994 page_zero_new_buffers(page, from+copied, to);
995 }
ac27a0ec
DK
996
997 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 998 to, &partial, write_end_fn);
ac27a0ec
DK
999 if (!partial)
1000 SetPageUptodate(page);
cf17fea6
AK
1001 new_i_size = pos + copied;
1002 if (new_i_size > inode->i_size)
bfc1af65 1003 i_size_write(inode, pos+copied);
19f5fb7a 1004 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1005 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1006 if (new_i_size > EXT4_I(inode)->i_disksize) {
1007 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1008 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1009 if (!ret)
1010 ret = ret2;
1011 }
bfc1af65 1012
cf108bca 1013 unlock_page(page);
f8514083 1014 page_cache_release(page);
ffacfa7a 1015 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1016 /* if we have allocated more blocks and copied
1017 * less. We will have blocks allocated outside
1018 * inode->i_size. So truncate them
1019 */
1020 ext4_orphan_add(handle, inode);
1021
617ba13b 1022 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1023 if (!ret)
1024 ret = ret2;
f8514083 1025 if (pos + len > inode->i_size) {
b9a4207d 1026 ext4_truncate_failed_write(inode);
de9a55b8 1027 /*
ffacfa7a 1028 * If truncate failed early the inode might still be
f8514083
AK
1029 * on the orphan list; we need to make sure the inode
1030 * is removed from the orphan list in that case.
1031 */
1032 if (inode->i_nlink)
1033 ext4_orphan_del(NULL, inode);
1034 }
bfc1af65
NP
1035
1036 return ret ? ret : copied;
ac27a0ec 1037}
d2a17637 1038
9d0be502
TT
1039/*
1040 * Reserve a single block located at lblock
1041 */
01f49d0b 1042static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1043{
030ba6bc 1044 int retries = 0;
60e58e0f 1045 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1046 struct ext4_inode_info *ei = EXT4_I(inode);
72b8ab9d 1047 unsigned long md_needed;
5dd4056d 1048 int ret;
d2a17637
MC
1049
1050 /*
1051 * recalculate the amount of metadata blocks to reserve
1052 * in order to allocate nrblocks
1053 * worse case is one extent per block
1054 */
030ba6bc 1055repeat:
0637c6f4 1056 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1057 md_needed = ext4_calc_metadata_amount(inode, lblock);
f8ec9d68 1058 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1059 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1060
60e58e0f 1061 /*
72b8ab9d
ES
1062 * We will charge metadata quota at writeout time; this saves
1063 * us from metadata over-estimation, though we may go over by
1064 * a small amount in the end. Here we just reserve for data.
60e58e0f 1065 */
72b8ab9d 1066 ret = dquot_reserve_block(inode, 1);
5dd4056d
CH
1067 if (ret)
1068 return ret;
72b8ab9d
ES
1069 /*
1070 * We do still charge estimated metadata to the sb though;
1071 * we cannot afford to run out of free blocks.
1072 */
55f020db 1073 if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
72b8ab9d 1074 dquot_release_reservation_block(inode, 1);
030ba6bc
AK
1075 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1076 yield();
1077 goto repeat;
1078 }
d2a17637
MC
1079 return -ENOSPC;
1080 }
0637c6f4 1081 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1082 ei->i_reserved_data_blocks++;
0637c6f4
TT
1083 ei->i_reserved_meta_blocks += md_needed;
1084 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1085
d2a17637
MC
1086 return 0; /* success */
1087}
1088
12219aea 1089static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1090{
1091 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1092 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1093
cd213226
MC
1094 if (!to_free)
1095 return; /* Nothing to release, exit */
1096
d2a17637 1097 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1098
5a58ec87 1099 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1100 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1101 /*
0637c6f4
TT
1102 * if there aren't enough reserved blocks, then the
1103 * counter is messed up somewhere. Since this
1104 * function is called from invalidate page, it's
1105 * harmless to return without any action.
cd213226 1106 */
0637c6f4
TT
1107 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1108 "ino %lu, to_free %d with only %d reserved "
1109 "data blocks\n", inode->i_ino, to_free,
1110 ei->i_reserved_data_blocks);
1111 WARN_ON(1);
1112 to_free = ei->i_reserved_data_blocks;
cd213226 1113 }
0637c6f4 1114 ei->i_reserved_data_blocks -= to_free;
cd213226 1115
0637c6f4
TT
1116 if (ei->i_reserved_data_blocks == 0) {
1117 /*
1118 * We can release all of the reserved metadata blocks
1119 * only when we have written all of the delayed
1120 * allocation blocks.
1121 */
72b8ab9d
ES
1122 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1123 ei->i_reserved_meta_blocks);
ee5f4d9c 1124 ei->i_reserved_meta_blocks = 0;
9d0be502 1125 ei->i_da_metadata_calc_len = 0;
0637c6f4 1126 }
d2a17637 1127
72b8ab9d 1128 /* update fs dirty data blocks counter */
0637c6f4 1129 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
d2a17637 1130
d2a17637 1131 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1132
5dd4056d 1133 dquot_release_reservation_block(inode, to_free);
d2a17637
MC
1134}
1135
1136static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1137 unsigned long offset)
d2a17637
MC
1138{
1139 int to_release = 0;
1140 struct buffer_head *head, *bh;
1141 unsigned int curr_off = 0;
1142
1143 head = page_buffers(page);
1144 bh = head;
1145 do {
1146 unsigned int next_off = curr_off + bh->b_size;
1147
1148 if ((offset <= curr_off) && (buffer_delay(bh))) {
1149 to_release++;
1150 clear_buffer_delay(bh);
1151 }
1152 curr_off = next_off;
1153 } while ((bh = bh->b_this_page) != head);
12219aea 1154 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1155}
ac27a0ec 1156
64769240
AT
1157/*
1158 * Delayed allocation stuff
1159 */
1160
64769240
AT
1161/*
1162 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1163 * them with writepage() call back
64769240
AT
1164 *
1165 * @mpd->inode: inode
1166 * @mpd->first_page: first page of the extent
1167 * @mpd->next_page: page after the last page of the extent
64769240
AT
1168 *
1169 * By the time mpage_da_submit_io() is called we expect all blocks
1170 * to be allocated. this may be wrong if allocation failed.
1171 *
1172 * As pages are already locked by write_cache_pages(), we can't use it
1173 */
1de3e3df
TT
1174static int mpage_da_submit_io(struct mpage_da_data *mpd,
1175 struct ext4_map_blocks *map)
64769240 1176{
791b7f08
AK
1177 struct pagevec pvec;
1178 unsigned long index, end;
1179 int ret = 0, err, nr_pages, i;
1180 struct inode *inode = mpd->inode;
1181 struct address_space *mapping = inode->i_mapping;
cb20d518 1182 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1183 unsigned int len, block_start;
1184 struct buffer_head *bh, *page_bufs = NULL;
cb20d518 1185 int journal_data = ext4_should_journal_data(inode);
1de3e3df 1186 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1187 struct ext4_io_submit io_submit;
64769240
AT
1188
1189 BUG_ON(mpd->next_page <= mpd->first_page);
bd2d0210 1190 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
1191 /*
1192 * We need to start from the first_page to the next_page - 1
1193 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1194 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1195 * at the currently mapped buffer_heads.
1196 */
64769240
AT
1197 index = mpd->first_page;
1198 end = mpd->next_page - 1;
1199
791b7f08 1200 pagevec_init(&pvec, 0);
64769240 1201 while (index <= end) {
791b7f08 1202 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1203 if (nr_pages == 0)
1204 break;
1205 for (i = 0; i < nr_pages; i++) {
97498956 1206 int commit_write = 0, skip_page = 0;
64769240
AT
1207 struct page *page = pvec.pages[i];
1208
791b7f08
AK
1209 index = page->index;
1210 if (index > end)
1211 break;
cb20d518
TT
1212
1213 if (index == size >> PAGE_CACHE_SHIFT)
1214 len = size & ~PAGE_CACHE_MASK;
1215 else
1216 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1217 if (map) {
1218 cur_logical = index << (PAGE_CACHE_SHIFT -
1219 inode->i_blkbits);
1220 pblock = map->m_pblk + (cur_logical -
1221 map->m_lblk);
1222 }
791b7f08
AK
1223 index++;
1224
1225 BUG_ON(!PageLocked(page));
1226 BUG_ON(PageWriteback(page));
1227
64769240 1228 /*
cb20d518
TT
1229 * If the page does not have buffers (for
1230 * whatever reason), try to create them using
a107e5a3 1231 * __block_write_begin. If this fails,
97498956 1232 * skip the page and move on.
64769240 1233 */
cb20d518 1234 if (!page_has_buffers(page)) {
a107e5a3 1235 if (__block_write_begin(page, 0, len,
cb20d518 1236 noalloc_get_block_write)) {
97498956 1237 skip_page:
cb20d518
TT
1238 unlock_page(page);
1239 continue;
1240 }
1241 commit_write = 1;
1242 }
64769240 1243
3ecdb3a1
TT
1244 bh = page_bufs = page_buffers(page);
1245 block_start = 0;
64769240 1246 do {
1de3e3df 1247 if (!bh)
97498956 1248 goto skip_page;
1de3e3df
TT
1249 if (map && (cur_logical >= map->m_lblk) &&
1250 (cur_logical <= (map->m_lblk +
1251 (map->m_len - 1)))) {
29fa89d0
AK
1252 if (buffer_delay(bh)) {
1253 clear_buffer_delay(bh);
1254 bh->b_blocknr = pblock;
29fa89d0 1255 }
1de3e3df
TT
1256 if (buffer_unwritten(bh) ||
1257 buffer_mapped(bh))
1258 BUG_ON(bh->b_blocknr != pblock);
1259 if (map->m_flags & EXT4_MAP_UNINIT)
1260 set_buffer_uninit(bh);
1261 clear_buffer_unwritten(bh);
1262 }
29fa89d0 1263
97498956 1264 /* skip page if block allocation undone */
1de3e3df 1265 if (buffer_delay(bh) || buffer_unwritten(bh))
97498956 1266 skip_page = 1;
3ecdb3a1
TT
1267 bh = bh->b_this_page;
1268 block_start += bh->b_size;
64769240
AT
1269 cur_logical++;
1270 pblock++;
1de3e3df
TT
1271 } while (bh != page_bufs);
1272
97498956
TT
1273 if (skip_page)
1274 goto skip_page;
cb20d518
TT
1275
1276 if (commit_write)
1277 /* mark the buffer_heads as dirty & uptodate */
1278 block_commit_write(page, 0, len);
1279
97498956 1280 clear_page_dirty_for_io(page);
bd2d0210
TT
1281 /*
1282 * Delalloc doesn't support data journalling,
1283 * but eventually maybe we'll lift this
1284 * restriction.
1285 */
1286 if (unlikely(journal_data && PageChecked(page)))
cb20d518 1287 err = __ext4_journalled_writepage(page, len);
1449032b 1288 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
bd2d0210
TT
1289 err = ext4_bio_write_page(&io_submit, page,
1290 len, mpd->wbc);
9dd75f1f
TT
1291 else if (buffer_uninit(page_bufs)) {
1292 ext4_set_bh_endio(page_bufs, inode);
1293 err = block_write_full_page_endio(page,
1294 noalloc_get_block_write,
1295 mpd->wbc, ext4_end_io_buffer_write);
1296 } else
1449032b
TT
1297 err = block_write_full_page(page,
1298 noalloc_get_block_write, mpd->wbc);
cb20d518
TT
1299
1300 if (!err)
a1d6cc56 1301 mpd->pages_written++;
64769240
AT
1302 /*
1303 * In error case, we have to continue because
1304 * remaining pages are still locked
64769240
AT
1305 */
1306 if (ret == 0)
1307 ret = err;
64769240
AT
1308 }
1309 pagevec_release(&pvec);
1310 }
bd2d0210 1311 ext4_io_submit(&io_submit);
64769240 1312 return ret;
64769240
AT
1313}
1314
c7f5938a 1315static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1316{
1317 int nr_pages, i;
1318 pgoff_t index, end;
1319 struct pagevec pvec;
1320 struct inode *inode = mpd->inode;
1321 struct address_space *mapping = inode->i_mapping;
1322
c7f5938a
CW
1323 index = mpd->first_page;
1324 end = mpd->next_page - 1;
c4a0c46e
AK
1325 while (index <= end) {
1326 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1327 if (nr_pages == 0)
1328 break;
1329 for (i = 0; i < nr_pages; i++) {
1330 struct page *page = pvec.pages[i];
9b1d0998 1331 if (page->index > end)
c4a0c46e 1332 break;
c4a0c46e
AK
1333 BUG_ON(!PageLocked(page));
1334 BUG_ON(PageWriteback(page));
1335 block_invalidatepage(page, 0);
1336 ClearPageUptodate(page);
1337 unlock_page(page);
1338 }
9b1d0998
JK
1339 index = pvec.pages[nr_pages - 1]->index + 1;
1340 pagevec_release(&pvec);
c4a0c46e
AK
1341 }
1342 return;
1343}
1344
df22291f
AK
1345static void ext4_print_free_blocks(struct inode *inode)
1346{
1347 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
1348 printk(KERN_CRIT "Total free blocks count %lld\n",
1349 ext4_count_free_blocks(inode->i_sb));
1350 printk(KERN_CRIT "Free/Dirty block details\n");
1351 printk(KERN_CRIT "free_blocks=%lld\n",
1352 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
1353 printk(KERN_CRIT "dirty_blocks=%lld\n",
1354 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1355 printk(KERN_CRIT "Block reservation details\n");
1356 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1357 EXT4_I(inode)->i_reserved_data_blocks);
1358 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1359 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
1360 return;
1361}
1362
64769240 1363/*
5a87b7a5
TT
1364 * mpage_da_map_and_submit - go through given space, map them
1365 * if necessary, and then submit them for I/O
64769240 1366 *
8dc207c0 1367 * @mpd - bh describing space
64769240
AT
1368 *
1369 * The function skips space we know is already mapped to disk blocks.
1370 *
64769240 1371 */
5a87b7a5 1372static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1373{
2ac3b6e0 1374 int err, blks, get_blocks_flags;
1de3e3df 1375 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1376 sector_t next = mpd->b_blocknr;
1377 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1378 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1379 handle_t *handle = NULL;
64769240
AT
1380
1381 /*
5a87b7a5
TT
1382 * If the blocks are mapped already, or we couldn't accumulate
1383 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1384 */
5a87b7a5
TT
1385 if ((mpd->b_size == 0) ||
1386 ((mpd->b_state & (1 << BH_Mapped)) &&
1387 !(mpd->b_state & (1 << BH_Delay)) &&
1388 !(mpd->b_state & (1 << BH_Unwritten))))
1389 goto submit_io;
2fa3cdfb
TT
1390
1391 handle = ext4_journal_current_handle();
1392 BUG_ON(!handle);
1393
79ffab34 1394 /*
79e83036 1395 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1396 * blocks, or to convert an uninitialized extent to be
1397 * initialized (in the case where we have written into
1398 * one or more preallocated blocks).
1399 *
1400 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1401 * indicate that we are on the delayed allocation path. This
1402 * affects functions in many different parts of the allocation
1403 * call path. This flag exists primarily because we don't
79e83036 1404 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1405 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1406 * inode's allocation semaphore is taken.
1407 *
1408 * If the blocks in questions were delalloc blocks, set
1409 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1410 * variables are updated after the blocks have been allocated.
79ffab34 1411 */
2ed88685
TT
1412 map.m_lblk = next;
1413 map.m_len = max_blocks;
1296cc85 1414 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
1415 if (ext4_should_dioread_nolock(mpd->inode))
1416 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1417 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1418 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1419
2ed88685 1420 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1421 if (blks < 0) {
e3570639
ES
1422 struct super_block *sb = mpd->inode->i_sb;
1423
2fa3cdfb 1424 err = blks;
ed5bde0b 1425 /*
5a87b7a5 1426 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1427 * appears to be free blocks we will just let
1428 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1429 */
1430 if (err == -EAGAIN)
5a87b7a5 1431 goto submit_io;
df22291f
AK
1432
1433 if (err == -ENOSPC &&
e3570639 1434 ext4_count_free_blocks(sb)) {
df22291f 1435 mpd->retval = err;
5a87b7a5 1436 goto submit_io;
df22291f
AK
1437 }
1438
c4a0c46e 1439 /*
ed5bde0b
TT
1440 * get block failure will cause us to loop in
1441 * writepages, because a_ops->writepage won't be able
1442 * to make progress. The page will be redirtied by
1443 * writepage and writepages will again try to write
1444 * the same.
c4a0c46e 1445 */
e3570639
ES
1446 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1447 ext4_msg(sb, KERN_CRIT,
1448 "delayed block allocation failed for inode %lu "
1449 "at logical offset %llu with max blocks %zd "
1450 "with error %d", mpd->inode->i_ino,
1451 (unsigned long long) next,
1452 mpd->b_size >> mpd->inode->i_blkbits, err);
1453 ext4_msg(sb, KERN_CRIT,
1454 "This should not happen!! Data will be lost\n");
1455 if (err == -ENOSPC)
1456 ext4_print_free_blocks(mpd->inode);
030ba6bc 1457 }
2fa3cdfb 1458 /* invalidate all the pages */
c7f5938a 1459 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1460
1461 /* Mark this page range as having been completed */
1462 mpd->io_done = 1;
5a87b7a5 1463 return;
c4a0c46e 1464 }
2fa3cdfb
TT
1465 BUG_ON(blks == 0);
1466
1de3e3df 1467 mapp = &map;
2ed88685
TT
1468 if (map.m_flags & EXT4_MAP_NEW) {
1469 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1470 int i;
64769240 1471
2ed88685
TT
1472 for (i = 0; i < map.m_len; i++)
1473 unmap_underlying_metadata(bdev, map.m_pblk + i);
64769240 1474
decbd919
TT
1475 if (ext4_should_order_data(mpd->inode)) {
1476 err = ext4_jbd2_file_inode(handle, mpd->inode);
1477 if (err)
1478 /* Only if the journal is aborted */
1479 return;
1480 }
2fa3cdfb
TT
1481 }
1482
1483 /*
03f5d8bc 1484 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1485 */
1486 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1487 if (disksize > i_size_read(mpd->inode))
1488 disksize = i_size_read(mpd->inode);
1489 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1490 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1491 err = ext4_mark_inode_dirty(handle, mpd->inode);
1492 if (err)
1493 ext4_error(mpd->inode->i_sb,
1494 "Failed to mark inode %lu dirty",
1495 mpd->inode->i_ino);
2fa3cdfb
TT
1496 }
1497
5a87b7a5 1498submit_io:
1de3e3df 1499 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1500 mpd->io_done = 1;
64769240
AT
1501}
1502
bf068ee2
AK
1503#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1504 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1505
1506/*
1507 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1508 *
1509 * @mpd->lbh - extent of blocks
1510 * @logical - logical number of the block in the file
1511 * @bh - bh of the block (used to access block's state)
1512 *
1513 * the function is used to collect contig. blocks in same state
1514 */
1515static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
1516 sector_t logical, size_t b_size,
1517 unsigned long b_state)
64769240 1518{
64769240 1519 sector_t next;
8dc207c0 1520 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 1521
c445e3e0
ES
1522 /*
1523 * XXX Don't go larger than mballoc is willing to allocate
1524 * This is a stopgap solution. We eventually need to fold
1525 * mpage_da_submit_io() into this function and then call
79e83036 1526 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
1527 */
1528 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1529 goto flush_it;
1530
525f4ed8 1531 /* check if thereserved journal credits might overflow */
12e9b892 1532 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
1533 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1534 /*
1535 * With non-extent format we are limited by the journal
1536 * credit available. Total credit needed to insert
1537 * nrblocks contiguous blocks is dependent on the
1538 * nrblocks. So limit nrblocks.
1539 */
1540 goto flush_it;
1541 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1542 EXT4_MAX_TRANS_DATA) {
1543 /*
1544 * Adding the new buffer_head would make it cross the
1545 * allowed limit for which we have journal credit
1546 * reserved. So limit the new bh->b_size
1547 */
1548 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1549 mpd->inode->i_blkbits;
1550 /* we will do mpage_da_submit_io in the next loop */
1551 }
1552 }
64769240
AT
1553 /*
1554 * First block in the extent
1555 */
8dc207c0
TT
1556 if (mpd->b_size == 0) {
1557 mpd->b_blocknr = logical;
1558 mpd->b_size = b_size;
1559 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1560 return;
1561 }
1562
8dc207c0 1563 next = mpd->b_blocknr + nrblocks;
64769240
AT
1564 /*
1565 * Can we merge the block to our big extent?
1566 */
8dc207c0
TT
1567 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1568 mpd->b_size += b_size;
64769240
AT
1569 return;
1570 }
1571
525f4ed8 1572flush_it:
64769240
AT
1573 /*
1574 * We couldn't merge the block to our extent, so we
1575 * need to flush current extent and start new one
1576 */
5a87b7a5 1577 mpage_da_map_and_submit(mpd);
a1d6cc56 1578 return;
64769240
AT
1579}
1580
c364b22c 1581static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1582{
c364b22c 1583 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1584}
1585
64769240 1586/*
b920c755
TT
1587 * This is a special get_blocks_t callback which is used by
1588 * ext4_da_write_begin(). It will either return mapped block or
1589 * reserve space for a single block.
29fa89d0
AK
1590 *
1591 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1592 * We also have b_blocknr = -1 and b_bdev initialized properly
1593 *
1594 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1595 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1596 * initialized properly.
64769240
AT
1597 */
1598static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 1599 struct buffer_head *bh, int create)
64769240 1600{
2ed88685 1601 struct ext4_map_blocks map;
64769240 1602 int ret = 0;
33b9817e
AK
1603 sector_t invalid_block = ~((sector_t) 0xffff);
1604
1605 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1606 invalid_block = ~0;
64769240
AT
1607
1608 BUG_ON(create == 0);
2ed88685
TT
1609 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1610
1611 map.m_lblk = iblock;
1612 map.m_len = 1;
64769240
AT
1613
1614 /*
1615 * first, we need to know whether the block is allocated already
1616 * preallocated blocks are unmapped but should treated
1617 * the same as allocated blocks.
1618 */
2ed88685
TT
1619 ret = ext4_map_blocks(NULL, inode, &map, 0);
1620 if (ret < 0)
1621 return ret;
1622 if (ret == 0) {
1623 if (buffer_delay(bh))
1624 return 0; /* Not sure this could or should happen */
64769240 1625 /*
ebdec241 1626 * XXX: __block_write_begin() unmaps passed block, is it OK?
64769240 1627 */
9d0be502 1628 ret = ext4_da_reserve_space(inode, iblock);
d2a17637
MC
1629 if (ret)
1630 /* not enough space to reserve */
1631 return ret;
1632
2ed88685
TT
1633 map_bh(bh, inode->i_sb, invalid_block);
1634 set_buffer_new(bh);
1635 set_buffer_delay(bh);
1636 return 0;
64769240
AT
1637 }
1638
2ed88685
TT
1639 map_bh(bh, inode->i_sb, map.m_pblk);
1640 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1641
1642 if (buffer_unwritten(bh)) {
1643 /* A delayed write to unwritten bh should be marked
1644 * new and mapped. Mapped ensures that we don't do
1645 * get_block multiple times when we write to the same
1646 * offset and new ensures that we do proper zero out
1647 * for partial write.
1648 */
1649 set_buffer_new(bh);
c8205636 1650 set_buffer_mapped(bh);
2ed88685
TT
1651 }
1652 return 0;
64769240 1653}
61628a3f 1654
b920c755
TT
1655/*
1656 * This function is used as a standard get_block_t calback function
1657 * when there is no desire to allocate any blocks. It is used as a
ebdec241 1658 * callback function for block_write_begin() and block_write_full_page().
206f7ab4 1659 * These functions should only try to map a single block at a time.
b920c755
TT
1660 *
1661 * Since this function doesn't do block allocations even if the caller
1662 * requests it by passing in create=1, it is critically important that
1663 * any caller checks to make sure that any buffer heads are returned
1664 * by this function are either all already mapped or marked for
206f7ab4
CH
1665 * delayed allocation before calling block_write_full_page(). Otherwise,
1666 * b_blocknr could be left unitialized, and the page write functions will
1667 * be taken by surprise.
b920c755
TT
1668 */
1669static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
1670 struct buffer_head *bh_result, int create)
1671{
a2dc52b5 1672 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 1673 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
1674}
1675
62e086be
AK
1676static int bget_one(handle_t *handle, struct buffer_head *bh)
1677{
1678 get_bh(bh);
1679 return 0;
1680}
1681
1682static int bput_one(handle_t *handle, struct buffer_head *bh)
1683{
1684 put_bh(bh);
1685 return 0;
1686}
1687
1688static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1689 unsigned int len)
1690{
1691 struct address_space *mapping = page->mapping;
1692 struct inode *inode = mapping->host;
1693 struct buffer_head *page_bufs;
1694 handle_t *handle = NULL;
1695 int ret = 0;
1696 int err;
1697
cb20d518 1698 ClearPageChecked(page);
62e086be
AK
1699 page_bufs = page_buffers(page);
1700 BUG_ON(!page_bufs);
1701 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1702 /* As soon as we unlock the page, it can go away, but we have
1703 * references to buffers so we are safe */
1704 unlock_page(page);
1705
1706 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1707 if (IS_ERR(handle)) {
1708 ret = PTR_ERR(handle);
1709 goto out;
1710 }
1711
441c8508
CW
1712 BUG_ON(!ext4_handle_valid(handle));
1713
62e086be
AK
1714 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1715 do_journal_get_write_access);
1716
1717 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1718 write_end_fn);
1719 if (ret == 0)
1720 ret = err;
2d859db3 1721 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1722 err = ext4_journal_stop(handle);
1723 if (!ret)
1724 ret = err;
1725
1726 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 1727 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
1728out:
1729 return ret;
1730}
1731
744692dc
JZ
1732static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1733static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1734
61628a3f 1735/*
43ce1d23
AK
1736 * Note that we don't need to start a transaction unless we're journaling data
1737 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1738 * need to file the inode to the transaction's list in ordered mode because if
1739 * we are writing back data added by write(), the inode is already there and if
25985edc 1740 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1741 * transaction the data will hit the disk. In case we are journaling data, we
1742 * cannot start transaction directly because transaction start ranks above page
1743 * lock so we have to do some magic.
1744 *
b920c755
TT
1745 * This function can get called via...
1746 * - ext4_da_writepages after taking page lock (have journal handle)
1747 * - journal_submit_inode_data_buffers (no journal handle)
1748 * - shrink_page_list via pdflush (no journal handle)
1749 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1750 *
1751 * We don't do any block allocation in this function. If we have page with
1752 * multiple blocks we need to write those buffer_heads that are mapped. This
1753 * is important for mmaped based write. So if we do with blocksize 1K
1754 * truncate(f, 1024);
1755 * a = mmap(f, 0, 4096);
1756 * a[0] = 'a';
1757 * truncate(f, 4096);
1758 * we have in the page first buffer_head mapped via page_mkwrite call back
1759 * but other bufer_heads would be unmapped but dirty(dirty done via the
1760 * do_wp_page). So writepage should write the first block. If we modify
1761 * the mmap area beyond 1024 we will again get a page_fault and the
1762 * page_mkwrite callback will do the block allocation and mark the
1763 * buffer_heads mapped.
1764 *
1765 * We redirty the page if we have any buffer_heads that is either delay or
1766 * unwritten in the page.
1767 *
1768 * We can get recursively called as show below.
1769 *
1770 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1771 * ext4_writepage()
1772 *
1773 * But since we don't do any block allocation we should not deadlock.
1774 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1775 */
43ce1d23 1776static int ext4_writepage(struct page *page,
62e086be 1777 struct writeback_control *wbc)
64769240 1778{
a42afc5f 1779 int ret = 0, commit_write = 0;
61628a3f 1780 loff_t size;
498e5f24 1781 unsigned int len;
744692dc 1782 struct buffer_head *page_bufs = NULL;
61628a3f
MC
1783 struct inode *inode = page->mapping->host;
1784
a9c667f8 1785 trace_ext4_writepage(page);
f0e6c985
AK
1786 size = i_size_read(inode);
1787 if (page->index == size >> PAGE_CACHE_SHIFT)
1788 len = size & ~PAGE_CACHE_MASK;
1789 else
1790 len = PAGE_CACHE_SIZE;
64769240 1791
a42afc5f
TT
1792 /*
1793 * If the page does not have buffers (for whatever reason),
a107e5a3 1794 * try to create them using __block_write_begin. If this
a42afc5f
TT
1795 * fails, redirty the page and move on.
1796 */
b1142e8f 1797 if (!page_has_buffers(page)) {
a107e5a3 1798 if (__block_write_begin(page, 0, len,
a42afc5f
TT
1799 noalloc_get_block_write)) {
1800 redirty_page:
f0e6c985
AK
1801 redirty_page_for_writepage(wbc, page);
1802 unlock_page(page);
1803 return 0;
1804 }
a42afc5f
TT
1805 commit_write = 1;
1806 }
1807 page_bufs = page_buffers(page);
1808 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1809 ext4_bh_delay_or_unwritten)) {
f0e6c985 1810 /*
b1142e8f
TT
1811 * We don't want to do block allocation, so redirty
1812 * the page and return. We may reach here when we do
1813 * a journal commit via journal_submit_inode_data_buffers.
1814 * We can also reach here via shrink_page_list
f0e6c985 1815 */
a42afc5f
TT
1816 goto redirty_page;
1817 }
1818 if (commit_write)
ed9b3e33 1819 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 1820 block_commit_write(page, 0, len);
64769240 1821
cb20d518 1822 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1823 /*
1824 * It's mmapped pagecache. Add buffers and journal it. There
1825 * doesn't seem much point in redirtying the page here.
1826 */
3f0ca309 1827 return __ext4_journalled_writepage(page, len);
43ce1d23 1828
a42afc5f 1829 if (buffer_uninit(page_bufs)) {
744692dc
JZ
1830 ext4_set_bh_endio(page_bufs, inode);
1831 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1832 wbc, ext4_end_io_buffer_write);
1833 } else
b920c755
TT
1834 ret = block_write_full_page(page, noalloc_get_block_write,
1835 wbc);
64769240 1836
64769240
AT
1837 return ret;
1838}
1839
61628a3f 1840/*
525f4ed8 1841 * This is called via ext4_da_writepages() to
25985edc 1842 * calculate the total number of credits to reserve to fit
525f4ed8
MC
1843 * a single extent allocation into a single transaction,
1844 * ext4_da_writpeages() will loop calling this before
1845 * the block allocation.
61628a3f 1846 */
525f4ed8
MC
1847
1848static int ext4_da_writepages_trans_blocks(struct inode *inode)
1849{
1850 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1851
1852 /*
1853 * With non-extent format the journal credit needed to
1854 * insert nrblocks contiguous block is dependent on
1855 * number of contiguous block. So we will limit
1856 * number of contiguous block to a sane value
1857 */
12e9b892 1858 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
1859 (max_blocks > EXT4_MAX_TRANS_DATA))
1860 max_blocks = EXT4_MAX_TRANS_DATA;
1861
1862 return ext4_chunk_trans_blocks(inode, max_blocks);
1863}
61628a3f 1864
8e48dcfb
TT
1865/*
1866 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 1867 * address space and accumulate pages that need writing, and call
168fc022
TT
1868 * mpage_da_map_and_submit to map a single contiguous memory region
1869 * and then write them.
8e48dcfb
TT
1870 */
1871static int write_cache_pages_da(struct address_space *mapping,
1872 struct writeback_control *wbc,
72f84e65
ES
1873 struct mpage_da_data *mpd,
1874 pgoff_t *done_index)
8e48dcfb 1875{
4f01b02c 1876 struct buffer_head *bh, *head;
168fc022 1877 struct inode *inode = mapping->host;
4f01b02c
TT
1878 struct pagevec pvec;
1879 unsigned int nr_pages;
1880 sector_t logical;
1881 pgoff_t index, end;
1882 long nr_to_write = wbc->nr_to_write;
1883 int i, tag, ret = 0;
8e48dcfb 1884
168fc022
TT
1885 memset(mpd, 0, sizeof(struct mpage_da_data));
1886 mpd->wbc = wbc;
1887 mpd->inode = inode;
8e48dcfb
TT
1888 pagevec_init(&pvec, 0);
1889 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1890 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1891
6e6938b6 1892 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
1893 tag = PAGECACHE_TAG_TOWRITE;
1894 else
1895 tag = PAGECACHE_TAG_DIRTY;
1896
72f84e65 1897 *done_index = index;
4f01b02c 1898 while (index <= end) {
5b41d924 1899 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
1900 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1901 if (nr_pages == 0)
4f01b02c 1902 return 0;
8e48dcfb
TT
1903
1904 for (i = 0; i < nr_pages; i++) {
1905 struct page *page = pvec.pages[i];
1906
1907 /*
1908 * At this point, the page may be truncated or
1909 * invalidated (changing page->mapping to NULL), or
1910 * even swizzled back from swapper_space to tmpfs file
1911 * mapping. However, page->index will not change
1912 * because we have a reference on the page.
1913 */
4f01b02c
TT
1914 if (page->index > end)
1915 goto out;
8e48dcfb 1916
72f84e65
ES
1917 *done_index = page->index + 1;
1918
78aaced3
TT
1919 /*
1920 * If we can't merge this page, and we have
1921 * accumulated an contiguous region, write it
1922 */
1923 if ((mpd->next_page != page->index) &&
1924 (mpd->next_page != mpd->first_page)) {
1925 mpage_da_map_and_submit(mpd);
1926 goto ret_extent_tail;
1927 }
1928
8e48dcfb
TT
1929 lock_page(page);
1930
1931 /*
4f01b02c
TT
1932 * If the page is no longer dirty, or its
1933 * mapping no longer corresponds to inode we
1934 * are writing (which means it has been
1935 * truncated or invalidated), or the page is
1936 * already under writeback and we are not
1937 * doing a data integrity writeback, skip the page
8e48dcfb 1938 */
4f01b02c
TT
1939 if (!PageDirty(page) ||
1940 (PageWriteback(page) &&
1941 (wbc->sync_mode == WB_SYNC_NONE)) ||
1942 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
1943 unlock_page(page);
1944 continue;
1945 }
1946
7cb1a535 1947 wait_on_page_writeback(page);
8e48dcfb 1948 BUG_ON(PageWriteback(page));
8e48dcfb 1949
168fc022 1950 if (mpd->next_page != page->index)
8eb9e5ce 1951 mpd->first_page = page->index;
8eb9e5ce
TT
1952 mpd->next_page = page->index + 1;
1953 logical = (sector_t) page->index <<
1954 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1955
1956 if (!page_has_buffers(page)) {
4f01b02c
TT
1957 mpage_add_bh_to_extent(mpd, logical,
1958 PAGE_CACHE_SIZE,
8eb9e5ce 1959 (1 << BH_Dirty) | (1 << BH_Uptodate));
4f01b02c
TT
1960 if (mpd->io_done)
1961 goto ret_extent_tail;
8eb9e5ce
TT
1962 } else {
1963 /*
4f01b02c
TT
1964 * Page with regular buffer heads,
1965 * just add all dirty ones
8eb9e5ce
TT
1966 */
1967 head = page_buffers(page);
1968 bh = head;
1969 do {
1970 BUG_ON(buffer_locked(bh));
1971 /*
1972 * We need to try to allocate
1973 * unmapped blocks in the same page.
1974 * Otherwise we won't make progress
1975 * with the page in ext4_writepage
1976 */
1977 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
1978 mpage_add_bh_to_extent(mpd, logical,
1979 bh->b_size,
1980 bh->b_state);
4f01b02c
TT
1981 if (mpd->io_done)
1982 goto ret_extent_tail;
8eb9e5ce
TT
1983 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
1984 /*
4f01b02c
TT
1985 * mapped dirty buffer. We need
1986 * to update the b_state
1987 * because we look at b_state
1988 * in mpage_da_map_blocks. We
1989 * don't update b_size because
1990 * if we find an unmapped
1991 * buffer_head later we need to
1992 * use the b_state flag of that
1993 * buffer_head.
8eb9e5ce
TT
1994 */
1995 if (mpd->b_size == 0)
1996 mpd->b_state = bh->b_state & BH_FLAGS;
1997 }
1998 logical++;
1999 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2000 }
2001
2002 if (nr_to_write > 0) {
2003 nr_to_write--;
2004 if (nr_to_write == 0 &&
4f01b02c 2005 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2006 /*
2007 * We stop writing back only if we are
2008 * not doing integrity sync. In case of
2009 * integrity sync we have to keep going
2010 * because someone may be concurrently
2011 * dirtying pages, and we might have
2012 * synced a lot of newly appeared dirty
2013 * pages, but have not synced all of the
2014 * old dirty pages.
2015 */
4f01b02c 2016 goto out;
8e48dcfb
TT
2017 }
2018 }
2019 pagevec_release(&pvec);
2020 cond_resched();
2021 }
4f01b02c
TT
2022 return 0;
2023ret_extent_tail:
2024 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2025out:
2026 pagevec_release(&pvec);
2027 cond_resched();
8e48dcfb
TT
2028 return ret;
2029}
2030
2031
64769240 2032static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2033 struct writeback_control *wbc)
64769240 2034{
22208ded
AK
2035 pgoff_t index;
2036 int range_whole = 0;
61628a3f 2037 handle_t *handle = NULL;
df22291f 2038 struct mpage_da_data mpd;
5e745b04 2039 struct inode *inode = mapping->host;
498e5f24 2040 int pages_written = 0;
55138e0b 2041 unsigned int max_pages;
2acf2c26 2042 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2043 int needed_blocks, ret = 0;
2044 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2045 loff_t range_start = wbc->range_start;
5e745b04 2046 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2047 pgoff_t done_index = 0;
5b41d924 2048 pgoff_t end;
61628a3f 2049
9bffad1e 2050 trace_ext4_da_writepages(inode, wbc);
ba80b101 2051
61628a3f
MC
2052 /*
2053 * No pages to write? This is mainly a kludge to avoid starting
2054 * a transaction for special inodes like journal inode on last iput()
2055 * because that could violate lock ordering on umount
2056 */
a1d6cc56 2057 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2058 return 0;
2a21e37e
TT
2059
2060 /*
2061 * If the filesystem has aborted, it is read-only, so return
2062 * right away instead of dumping stack traces later on that
2063 * will obscure the real source of the problem. We test
4ab2f15b 2064 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2065 * the latter could be true if the filesystem is mounted
2066 * read-only, and in that case, ext4_da_writepages should
2067 * *never* be called, so if that ever happens, we would want
2068 * the stack trace.
2069 */
4ab2f15b 2070 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2071 return -EROFS;
2072
22208ded
AK
2073 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2074 range_whole = 1;
61628a3f 2075
2acf2c26
AK
2076 range_cyclic = wbc->range_cyclic;
2077 if (wbc->range_cyclic) {
22208ded 2078 index = mapping->writeback_index;
2acf2c26
AK
2079 if (index)
2080 cycled = 0;
2081 wbc->range_start = index << PAGE_CACHE_SHIFT;
2082 wbc->range_end = LLONG_MAX;
2083 wbc->range_cyclic = 0;
5b41d924
ES
2084 end = -1;
2085 } else {
22208ded 2086 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2087 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2088 }
a1d6cc56 2089
55138e0b
TT
2090 /*
2091 * This works around two forms of stupidity. The first is in
2092 * the writeback code, which caps the maximum number of pages
2093 * written to be 1024 pages. This is wrong on multiple
2094 * levels; different architectues have a different page size,
2095 * which changes the maximum amount of data which gets
2096 * written. Secondly, 4 megabytes is way too small. XFS
2097 * forces this value to be 16 megabytes by multiplying
2098 * nr_to_write parameter by four, and then relies on its
2099 * allocator to allocate larger extents to make them
2100 * contiguous. Unfortunately this brings us to the second
2101 * stupidity, which is that ext4's mballoc code only allocates
2102 * at most 2048 blocks. So we force contiguous writes up to
2103 * the number of dirty blocks in the inode, or
2104 * sbi->max_writeback_mb_bump whichever is smaller.
2105 */
2106 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2107 if (!range_cyclic && range_whole) {
2108 if (wbc->nr_to_write == LONG_MAX)
2109 desired_nr_to_write = wbc->nr_to_write;
2110 else
2111 desired_nr_to_write = wbc->nr_to_write * 8;
2112 } else
55138e0b
TT
2113 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2114 max_pages);
2115 if (desired_nr_to_write > max_pages)
2116 desired_nr_to_write = max_pages;
2117
2118 if (wbc->nr_to_write < desired_nr_to_write) {
2119 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2120 wbc->nr_to_write = desired_nr_to_write;
2121 }
2122
2acf2c26 2123retry:
6e6938b6 2124 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2125 tag_pages_for_writeback(mapping, index, end);
2126
22208ded 2127 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2128
2129 /*
2130 * we insert one extent at a time. So we need
2131 * credit needed for single extent allocation.
2132 * journalled mode is currently not supported
2133 * by delalloc
2134 */
2135 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2136 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2137
61628a3f
MC
2138 /* start a new transaction*/
2139 handle = ext4_journal_start(inode, needed_blocks);
2140 if (IS_ERR(handle)) {
2141 ret = PTR_ERR(handle);
1693918e 2142 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2143 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2144 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
2145 goto out_writepages;
2146 }
f63e6005
TT
2147
2148 /*
8eb9e5ce 2149 * Now call write_cache_pages_da() to find the next
f63e6005 2150 * contiguous region of logical blocks that need
8eb9e5ce 2151 * blocks to be allocated by ext4 and submit them.
f63e6005 2152 */
72f84e65 2153 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
f63e6005 2154 /*
af901ca1 2155 * If we have a contiguous extent of pages and we
f63e6005
TT
2156 * haven't done the I/O yet, map the blocks and submit
2157 * them for I/O.
2158 */
2159 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2160 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2161 ret = MPAGE_DA_EXTENT_TAIL;
2162 }
b3a3ca8c 2163 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2164 wbc->nr_to_write -= mpd.pages_written;
df22291f 2165
61628a3f 2166 ext4_journal_stop(handle);
df22291f 2167
8f64b32e 2168 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2169 /* commit the transaction which would
2170 * free blocks released in the transaction
2171 * and try again
2172 */
df22291f 2173 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2174 ret = 0;
2175 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2176 /*
2177 * got one extent now try with
2178 * rest of the pages
2179 */
22208ded 2180 pages_written += mpd.pages_written;
a1d6cc56 2181 ret = 0;
2acf2c26 2182 io_done = 1;
22208ded 2183 } else if (wbc->nr_to_write)
61628a3f
MC
2184 /*
2185 * There is no more writeout needed
2186 * or we requested for a noblocking writeout
2187 * and we found the device congested
2188 */
61628a3f 2189 break;
a1d6cc56 2190 }
2acf2c26
AK
2191 if (!io_done && !cycled) {
2192 cycled = 1;
2193 index = 0;
2194 wbc->range_start = index << PAGE_CACHE_SHIFT;
2195 wbc->range_end = mapping->writeback_index - 1;
2196 goto retry;
2197 }
22208ded
AK
2198
2199 /* Update index */
2acf2c26 2200 wbc->range_cyclic = range_cyclic;
22208ded
AK
2201 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2202 /*
2203 * set the writeback_index so that range_cyclic
2204 * mode will write it back later
2205 */
72f84e65 2206 mapping->writeback_index = done_index;
a1d6cc56 2207
61628a3f 2208out_writepages:
2faf2e19 2209 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2210 wbc->range_start = range_start;
9bffad1e 2211 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2212 return ret;
64769240
AT
2213}
2214
79f0be8d
AK
2215#define FALL_BACK_TO_NONDELALLOC 1
2216static int ext4_nonda_switch(struct super_block *sb)
2217{
2218 s64 free_blocks, dirty_blocks;
2219 struct ext4_sb_info *sbi = EXT4_SB(sb);
2220
2221 /*
2222 * switch to non delalloc mode if we are running low
2223 * on free block. The free block accounting via percpu
179f7ebf 2224 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2225 * accumulated on each CPU without updating global counters
2226 * Delalloc need an accurate free block accounting. So switch
2227 * to non delalloc when we are near to error range.
2228 */
2229 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2230 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2231 if (2 * free_blocks < 3 * dirty_blocks ||
2232 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2233 /*
c8afb446
ES
2234 * free block count is less than 150% of dirty blocks
2235 * or free blocks is less than watermark
79f0be8d
AK
2236 */
2237 return 1;
2238 }
c8afb446
ES
2239 /*
2240 * Even if we don't switch but are nearing capacity,
2241 * start pushing delalloc when 1/2 of free blocks are dirty.
2242 */
2243 if (free_blocks < 2 * dirty_blocks)
2244 writeback_inodes_sb_if_idle(sb);
2245
79f0be8d
AK
2246 return 0;
2247}
2248
64769240 2249static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2250 loff_t pos, unsigned len, unsigned flags,
2251 struct page **pagep, void **fsdata)
64769240 2252{
72b8ab9d 2253 int ret, retries = 0;
64769240
AT
2254 struct page *page;
2255 pgoff_t index;
64769240
AT
2256 struct inode *inode = mapping->host;
2257 handle_t *handle;
02fac129 2258 loff_t page_len;
64769240
AT
2259
2260 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2261
2262 if (ext4_nonda_switch(inode->i_sb)) {
2263 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2264 return ext4_write_begin(file, mapping, pos,
2265 len, flags, pagep, fsdata);
2266 }
2267 *fsdata = (void *)0;
9bffad1e 2268 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 2269retry:
64769240
AT
2270 /*
2271 * With delayed allocation, we don't log the i_disksize update
2272 * if there is delayed block allocation. But we still need
2273 * to journalling the i_disksize update if writes to the end
2274 * of file which has an already mapped buffer.
2275 */
2276 handle = ext4_journal_start(inode, 1);
2277 if (IS_ERR(handle)) {
2278 ret = PTR_ERR(handle);
2279 goto out;
2280 }
ebd3610b
JK
2281 /* We cannot recurse into the filesystem as the transaction is already
2282 * started */
2283 flags |= AOP_FLAG_NOFS;
64769240 2284
54566b2c 2285 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2286 if (!page) {
2287 ext4_journal_stop(handle);
2288 ret = -ENOMEM;
2289 goto out;
2290 }
64769240
AT
2291 *pagep = page;
2292
6e1db88d 2293 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2294 if (ret < 0) {
2295 unlock_page(page);
2296 ext4_journal_stop(handle);
2297 page_cache_release(page);
ae4d5372
AK
2298 /*
2299 * block_write_begin may have instantiated a few blocks
2300 * outside i_size. Trim these off again. Don't need
2301 * i_size_read because we hold i_mutex.
2302 */
2303 if (pos + len > inode->i_size)
b9a4207d 2304 ext4_truncate_failed_write(inode);
02fac129
AH
2305 } else {
2306 page_len = pos & (PAGE_CACHE_SIZE - 1);
2307 if (page_len > 0) {
2308 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2309 inode, page, pos - page_len, page_len,
2310 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2311 }
64769240
AT
2312 }
2313
d2a17637
MC
2314 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2315 goto retry;
64769240
AT
2316out:
2317 return ret;
2318}
2319
632eaeab
MC
2320/*
2321 * Check if we should update i_disksize
2322 * when write to the end of file but not require block allocation
2323 */
2324static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2325 unsigned long offset)
632eaeab
MC
2326{
2327 struct buffer_head *bh;
2328 struct inode *inode = page->mapping->host;
2329 unsigned int idx;
2330 int i;
2331
2332 bh = page_buffers(page);
2333 idx = offset >> inode->i_blkbits;
2334
af5bc92d 2335 for (i = 0; i < idx; i++)
632eaeab
MC
2336 bh = bh->b_this_page;
2337
29fa89d0 2338 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2339 return 0;
2340 return 1;
2341}
2342
64769240 2343static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2344 struct address_space *mapping,
2345 loff_t pos, unsigned len, unsigned copied,
2346 struct page *page, void *fsdata)
64769240
AT
2347{
2348 struct inode *inode = mapping->host;
2349 int ret = 0, ret2;
2350 handle_t *handle = ext4_journal_current_handle();
2351 loff_t new_i_size;
632eaeab 2352 unsigned long start, end;
79f0be8d 2353 int write_mode = (int)(unsigned long)fsdata;
02fac129 2354 loff_t page_len;
79f0be8d
AK
2355
2356 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2357 if (ext4_should_order_data(inode)) {
2358 return ext4_ordered_write_end(file, mapping, pos,
2359 len, copied, page, fsdata);
2360 } else if (ext4_should_writeback_data(inode)) {
2361 return ext4_writeback_write_end(file, mapping, pos,
2362 len, copied, page, fsdata);
2363 } else {
2364 BUG();
2365 }
2366 }
632eaeab 2367
9bffad1e 2368 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2369 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2370 end = start + copied - 1;
64769240
AT
2371
2372 /*
2373 * generic_write_end() will run mark_inode_dirty() if i_size
2374 * changes. So let's piggyback the i_disksize mark_inode_dirty
2375 * into that.
2376 */
2377
2378 new_i_size = pos + copied;
632eaeab
MC
2379 if (new_i_size > EXT4_I(inode)->i_disksize) {
2380 if (ext4_da_should_update_i_disksize(page, end)) {
2381 down_write(&EXT4_I(inode)->i_data_sem);
2382 if (new_i_size > EXT4_I(inode)->i_disksize) {
2383 /*
2384 * Updating i_disksize when extending file
2385 * without needing block allocation
2386 */
2387 if (ext4_should_order_data(inode))
2388 ret = ext4_jbd2_file_inode(handle,
2389 inode);
64769240 2390
632eaeab
MC
2391 EXT4_I(inode)->i_disksize = new_i_size;
2392 }
2393 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2394 /* We need to mark inode dirty even if
2395 * new_i_size is less that inode->i_size
2396 * bu greater than i_disksize.(hint delalloc)
2397 */
2398 ext4_mark_inode_dirty(handle, inode);
64769240 2399 }
632eaeab 2400 }
64769240
AT
2401 ret2 = generic_write_end(file, mapping, pos, len, copied,
2402 page, fsdata);
02fac129
AH
2403
2404 page_len = PAGE_CACHE_SIZE -
2405 ((pos + copied - 1) & (PAGE_CACHE_SIZE - 1));
2406
2407 if (page_len > 0) {
2408 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2409 inode, page, pos + copied - 1, page_len,
2410 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2411 }
2412
64769240
AT
2413 copied = ret2;
2414 if (ret2 < 0)
2415 ret = ret2;
2416 ret2 = ext4_journal_stop(handle);
2417 if (!ret)
2418 ret = ret2;
2419
2420 return ret ? ret : copied;
2421}
2422
2423static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2424{
64769240
AT
2425 /*
2426 * Drop reserved blocks
2427 */
2428 BUG_ON(!PageLocked(page));
2429 if (!page_has_buffers(page))
2430 goto out;
2431
d2a17637 2432 ext4_da_page_release_reservation(page, offset);
64769240
AT
2433
2434out:
2435 ext4_invalidatepage(page, offset);
2436
2437 return;
2438}
2439
ccd2506b
TT
2440/*
2441 * Force all delayed allocation blocks to be allocated for a given inode.
2442 */
2443int ext4_alloc_da_blocks(struct inode *inode)
2444{
fb40ba0d
TT
2445 trace_ext4_alloc_da_blocks(inode);
2446
ccd2506b
TT
2447 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2448 !EXT4_I(inode)->i_reserved_meta_blocks)
2449 return 0;
2450
2451 /*
2452 * We do something simple for now. The filemap_flush() will
2453 * also start triggering a write of the data blocks, which is
2454 * not strictly speaking necessary (and for users of
2455 * laptop_mode, not even desirable). However, to do otherwise
2456 * would require replicating code paths in:
de9a55b8 2457 *
ccd2506b
TT
2458 * ext4_da_writepages() ->
2459 * write_cache_pages() ---> (via passed in callback function)
2460 * __mpage_da_writepage() -->
2461 * mpage_add_bh_to_extent()
2462 * mpage_da_map_blocks()
2463 *
2464 * The problem is that write_cache_pages(), located in
2465 * mm/page-writeback.c, marks pages clean in preparation for
2466 * doing I/O, which is not desirable if we're not planning on
2467 * doing I/O at all.
2468 *
2469 * We could call write_cache_pages(), and then redirty all of
380cf090 2470 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2471 * would be ugly in the extreme. So instead we would need to
2472 * replicate parts of the code in the above functions,
25985edc 2473 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2474 * write out the pages, but rather only collect contiguous
2475 * logical block extents, call the multi-block allocator, and
2476 * then update the buffer heads with the block allocations.
de9a55b8 2477 *
ccd2506b
TT
2478 * For now, though, we'll cheat by calling filemap_flush(),
2479 * which will map the blocks, and start the I/O, but not
2480 * actually wait for the I/O to complete.
2481 */
2482 return filemap_flush(inode->i_mapping);
2483}
64769240 2484
ac27a0ec
DK
2485/*
2486 * bmap() is special. It gets used by applications such as lilo and by
2487 * the swapper to find the on-disk block of a specific piece of data.
2488 *
2489 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2490 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2491 * filesystem and enables swap, then they may get a nasty shock when the
2492 * data getting swapped to that swapfile suddenly gets overwritten by
2493 * the original zero's written out previously to the journal and
2494 * awaiting writeback in the kernel's buffer cache.
2495 *
2496 * So, if we see any bmap calls here on a modified, data-journaled file,
2497 * take extra steps to flush any blocks which might be in the cache.
2498 */
617ba13b 2499static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2500{
2501 struct inode *inode = mapping->host;
2502 journal_t *journal;
2503 int err;
2504
64769240
AT
2505 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2506 test_opt(inode->i_sb, DELALLOC)) {
2507 /*
2508 * With delalloc we want to sync the file
2509 * so that we can make sure we allocate
2510 * blocks for file
2511 */
2512 filemap_write_and_wait(mapping);
2513 }
2514
19f5fb7a
TT
2515 if (EXT4_JOURNAL(inode) &&
2516 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2517 /*
2518 * This is a REALLY heavyweight approach, but the use of
2519 * bmap on dirty files is expected to be extremely rare:
2520 * only if we run lilo or swapon on a freshly made file
2521 * do we expect this to happen.
2522 *
2523 * (bmap requires CAP_SYS_RAWIO so this does not
2524 * represent an unprivileged user DOS attack --- we'd be
2525 * in trouble if mortal users could trigger this path at
2526 * will.)
2527 *
617ba13b 2528 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2529 * regular files. If somebody wants to bmap a directory
2530 * or symlink and gets confused because the buffer
2531 * hasn't yet been flushed to disk, they deserve
2532 * everything they get.
2533 */
2534
19f5fb7a 2535 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2536 journal = EXT4_JOURNAL(inode);
dab291af
MC
2537 jbd2_journal_lock_updates(journal);
2538 err = jbd2_journal_flush(journal);
2539 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2540
2541 if (err)
2542 return 0;
2543 }
2544
af5bc92d 2545 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2546}
2547
617ba13b 2548static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2549{
0562e0ba 2550 trace_ext4_readpage(page);
617ba13b 2551 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
2552}
2553
2554static int
617ba13b 2555ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2556 struct list_head *pages, unsigned nr_pages)
2557{
617ba13b 2558 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2559}
2560
744692dc
JZ
2561static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2562{
2563 struct buffer_head *head, *bh;
2564 unsigned int curr_off = 0;
2565
2566 if (!page_has_buffers(page))
2567 return;
2568 head = bh = page_buffers(page);
2569 do {
2570 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2571 && bh->b_private) {
2572 ext4_free_io_end(bh->b_private);
2573 bh->b_private = NULL;
2574 bh->b_end_io = NULL;
2575 }
2576 curr_off = curr_off + bh->b_size;
2577 bh = bh->b_this_page;
2578 } while (bh != head);
2579}
2580
617ba13b 2581static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2582{
617ba13b 2583 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2584
0562e0ba
JZ
2585 trace_ext4_invalidatepage(page, offset);
2586
744692dc
JZ
2587 /*
2588 * free any io_end structure allocated for buffers to be discarded
2589 */
2590 if (ext4_should_dioread_nolock(page->mapping->host))
2591 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
2592 /*
2593 * If it's a full truncate we just forget about the pending dirtying
2594 */
2595 if (offset == 0)
2596 ClearPageChecked(page);
2597
0390131b
FM
2598 if (journal)
2599 jbd2_journal_invalidatepage(journal, page, offset);
2600 else
2601 block_invalidatepage(page, offset);
ac27a0ec
DK
2602}
2603
617ba13b 2604static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2605{
617ba13b 2606 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2607
0562e0ba
JZ
2608 trace_ext4_releasepage(page);
2609
ac27a0ec
DK
2610 WARN_ON(PageChecked(page));
2611 if (!page_has_buffers(page))
2612 return 0;
0390131b
FM
2613 if (journal)
2614 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2615 else
2616 return try_to_free_buffers(page);
ac27a0ec
DK
2617}
2618
2ed88685
TT
2619/*
2620 * ext4_get_block used when preparing for a DIO write or buffer write.
2621 * We allocate an uinitialized extent if blocks haven't been allocated.
2622 * The extent will be converted to initialized after the IO is complete.
2623 */
c7064ef1 2624static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2625 struct buffer_head *bh_result, int create)
2626{
c7064ef1 2627 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2628 inode->i_ino, create);
2ed88685
TT
2629 return _ext4_get_block(inode, iblock, bh_result,
2630 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2631}
2632
4c0425ff 2633static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
2634 ssize_t size, void *private, int ret,
2635 bool is_async)
4c0425ff 2636{
72c5052d 2637 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
4c0425ff
MC
2638 ext4_io_end_t *io_end = iocb->private;
2639 struct workqueue_struct *wq;
744692dc
JZ
2640 unsigned long flags;
2641 struct ext4_inode_info *ei;
4c0425ff 2642
4b70df18
M
2643 /* if not async direct IO or dio with 0 bytes write, just return */
2644 if (!io_end || !size)
552ef802 2645 goto out;
4b70df18 2646
8d5d02e6
MC
2647 ext_debug("ext4_end_io_dio(): io_end 0x%p"
2648 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2649 iocb->private, io_end->inode->i_ino, iocb, offset,
2650 size);
8d5d02e6
MC
2651
2652 /* if not aio dio with unwritten extents, just free io and return */
bd2d0210 2653 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
8d5d02e6
MC
2654 ext4_free_io_end(io_end);
2655 iocb->private = NULL;
5b3ff237
JZ
2656out:
2657 if (is_async)
2658 aio_complete(iocb, ret, 0);
72c5052d 2659 inode_dio_done(inode);
5b3ff237 2660 return;
8d5d02e6
MC
2661 }
2662
4c0425ff
MC
2663 io_end->offset = offset;
2664 io_end->size = size;
5b3ff237
JZ
2665 if (is_async) {
2666 io_end->iocb = iocb;
2667 io_end->result = ret;
2668 }
4c0425ff
MC
2669 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2670
8d5d02e6 2671 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
2672 ei = EXT4_I(io_end->inode);
2673 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2674 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2675 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c999af2b
ES
2676
2677 /* queue the work to convert unwritten extents to written */
2678 queue_work(wq, &io_end->work);
4c0425ff 2679 iocb->private = NULL;
72c5052d
CH
2680
2681 /* XXX: probably should move into the real I/O completion handler */
2682 inode_dio_done(inode);
4c0425ff 2683}
c7064ef1 2684
744692dc
JZ
2685static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2686{
2687 ext4_io_end_t *io_end = bh->b_private;
2688 struct workqueue_struct *wq;
2689 struct inode *inode;
2690 unsigned long flags;
2691
2692 if (!test_clear_buffer_uninit(bh) || !io_end)
2693 goto out;
2694
2695 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2696 printk("sb umounted, discard end_io request for inode %lu\n",
2697 io_end->inode->i_ino);
2698 ext4_free_io_end(io_end);
2699 goto out;
2700 }
2701
32c80b32
TM
2702 /*
2703 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2704 * but being more careful is always safe for the future change.
2705 */
744692dc 2706 inode = io_end->inode;
32c80b32
TM
2707 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2708 io_end->flag |= EXT4_IO_END_UNWRITTEN;
2709 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
2710 }
744692dc
JZ
2711
2712 /* Add the io_end to per-inode completed io list*/
2713 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2714 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2715 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2716
2717 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2718 /* queue the work to convert unwritten extents to written */
2719 queue_work(wq, &io_end->work);
2720out:
2721 bh->b_private = NULL;
2722 bh->b_end_io = NULL;
2723 clear_buffer_uninit(bh);
2724 end_buffer_async_write(bh, uptodate);
2725}
2726
2727static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2728{
2729 ext4_io_end_t *io_end;
2730 struct page *page = bh->b_page;
2731 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2732 size_t size = bh->b_size;
2733
2734retry:
2735 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2736 if (!io_end) {
6db26ffc 2737 pr_warn_ratelimited("%s: allocation fail\n", __func__);
744692dc
JZ
2738 schedule();
2739 goto retry;
2740 }
2741 io_end->offset = offset;
2742 io_end->size = size;
2743 /*
2744 * We need to hold a reference to the page to make sure it
2745 * doesn't get evicted before ext4_end_io_work() has a chance
2746 * to convert the extent from written to unwritten.
2747 */
2748 io_end->page = page;
2749 get_page(io_end->page);
2750
2751 bh->b_private = io_end;
2752 bh->b_end_io = ext4_end_io_buffer_write;
2753 return 0;
2754}
2755
4c0425ff
MC
2756/*
2757 * For ext4 extent files, ext4 will do direct-io write to holes,
2758 * preallocated extents, and those write extend the file, no need to
2759 * fall back to buffered IO.
2760 *
b595076a 2761 * For holes, we fallocate those blocks, mark them as uninitialized
4c0425ff 2762 * If those blocks were preallocated, we mark sure they are splited, but
b595076a 2763 * still keep the range to write as uninitialized.
4c0425ff 2764 *
8d5d02e6
MC
2765 * The unwrritten extents will be converted to written when DIO is completed.
2766 * For async direct IO, since the IO may still pending when return, we
25985edc 2767 * set up an end_io call back function, which will do the conversion
8d5d02e6 2768 * when async direct IO completed.
4c0425ff
MC
2769 *
2770 * If the O_DIRECT write will extend the file then add this inode to the
2771 * orphan list. So recovery will truncate it back to the original size
2772 * if the machine crashes during the write.
2773 *
2774 */
2775static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2776 const struct iovec *iov, loff_t offset,
2777 unsigned long nr_segs)
2778{
2779 struct file *file = iocb->ki_filp;
2780 struct inode *inode = file->f_mapping->host;
2781 ssize_t ret;
2782 size_t count = iov_length(iov, nr_segs);
2783
2784 loff_t final_size = offset + count;
2785 if (rw == WRITE && final_size <= inode->i_size) {
2786 /*
8d5d02e6
MC
2787 * We could direct write to holes and fallocate.
2788 *
2789 * Allocated blocks to fill the hole are marked as uninitialized
25985edc 2790 * to prevent parallel buffered read to expose the stale data
4c0425ff 2791 * before DIO complete the data IO.
8d5d02e6
MC
2792 *
2793 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
2794 * will just simply mark the buffer mapped but still
2795 * keep the extents uninitialized.
2796 *
8d5d02e6
MC
2797 * for non AIO case, we will convert those unwritten extents
2798 * to written after return back from blockdev_direct_IO.
2799 *
2800 * for async DIO, the conversion needs to be defered when
2801 * the IO is completed. The ext4 end_io callback function
2802 * will be called to take care of the conversion work.
2803 * Here for async case, we allocate an io_end structure to
2804 * hook to the iocb.
4c0425ff 2805 */
8d5d02e6
MC
2806 iocb->private = NULL;
2807 EXT4_I(inode)->cur_aio_dio = NULL;
2808 if (!is_sync_kiocb(iocb)) {
744692dc 2809 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
8d5d02e6
MC
2810 if (!iocb->private)
2811 return -ENOMEM;
2812 /*
2813 * we save the io structure for current async
79e83036 2814 * direct IO, so that later ext4_map_blocks()
8d5d02e6
MC
2815 * could flag the io structure whether there
2816 * is a unwritten extents needs to be converted
2817 * when IO is completed.
2818 */
2819 EXT4_I(inode)->cur_aio_dio = iocb->private;
2820 }
2821
aacfc19c 2822 ret = __blockdev_direct_IO(rw, iocb, inode,
4c0425ff
MC
2823 inode->i_sb->s_bdev, iov,
2824 offset, nr_segs,
c7064ef1 2825 ext4_get_block_write,
aacfc19c
CH
2826 ext4_end_io_dio,
2827 NULL,
2828 DIO_LOCKING | DIO_SKIP_HOLES);
8d5d02e6
MC
2829 if (iocb->private)
2830 EXT4_I(inode)->cur_aio_dio = NULL;
2831 /*
2832 * The io_end structure takes a reference to the inode,
2833 * that structure needs to be destroyed and the
2834 * reference to the inode need to be dropped, when IO is
2835 * complete, even with 0 byte write, or failed.
2836 *
2837 * In the successful AIO DIO case, the io_end structure will be
2838 * desctroyed and the reference to the inode will be dropped
2839 * after the end_io call back function is called.
2840 *
2841 * In the case there is 0 byte write, or error case, since
2842 * VFS direct IO won't invoke the end_io call back function,
2843 * we need to free the end_io structure here.
2844 */
2845 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2846 ext4_free_io_end(iocb->private);
2847 iocb->private = NULL;
19f5fb7a
TT
2848 } else if (ret > 0 && ext4_test_inode_state(inode,
2849 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 2850 int err;
8d5d02e6
MC
2851 /*
2852 * for non AIO case, since the IO is already
25985edc 2853 * completed, we could do the conversion right here
8d5d02e6 2854 */
109f5565
M
2855 err = ext4_convert_unwritten_extents(inode,
2856 offset, ret);
2857 if (err < 0)
2858 ret = err;
19f5fb7a 2859 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 2860 }
4c0425ff
MC
2861 return ret;
2862 }
8d5d02e6
MC
2863
2864 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
2865 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2866}
2867
2868static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2869 const struct iovec *iov, loff_t offset,
2870 unsigned long nr_segs)
2871{
2872 struct file *file = iocb->ki_filp;
2873 struct inode *inode = file->f_mapping->host;
0562e0ba 2874 ssize_t ret;
4c0425ff 2875
84ebd795
TT
2876 /*
2877 * If we are doing data journalling we don't support O_DIRECT
2878 */
2879 if (ext4_should_journal_data(inode))
2880 return 0;
2881
0562e0ba 2882 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 2883 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
2884 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
2885 else
2886 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2887 trace_ext4_direct_IO_exit(inode, offset,
2888 iov_length(iov, nr_segs), rw, ret);
2889 return ret;
4c0425ff
MC
2890}
2891
ac27a0ec 2892/*
617ba13b 2893 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
2894 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2895 * much here because ->set_page_dirty is called under VFS locks. The page is
2896 * not necessarily locked.
2897 *
2898 * We cannot just dirty the page and leave attached buffers clean, because the
2899 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2900 * or jbddirty because all the journalling code will explode.
2901 *
2902 * So what we do is to mark the page "pending dirty" and next time writepage
2903 * is called, propagate that into the buffers appropriately.
2904 */
617ba13b 2905static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
2906{
2907 SetPageChecked(page);
2908 return __set_page_dirty_nobuffers(page);
2909}
2910
617ba13b 2911static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
2912 .readpage = ext4_readpage,
2913 .readpages = ext4_readpages,
43ce1d23 2914 .writepage = ext4_writepage,
8ab22b9a
HH
2915 .write_begin = ext4_write_begin,
2916 .write_end = ext4_ordered_write_end,
2917 .bmap = ext4_bmap,
2918 .invalidatepage = ext4_invalidatepage,
2919 .releasepage = ext4_releasepage,
2920 .direct_IO = ext4_direct_IO,
2921 .migratepage = buffer_migrate_page,
2922 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2923 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
2924};
2925
617ba13b 2926static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
2927 .readpage = ext4_readpage,
2928 .readpages = ext4_readpages,
43ce1d23 2929 .writepage = ext4_writepage,
8ab22b9a
HH
2930 .write_begin = ext4_write_begin,
2931 .write_end = ext4_writeback_write_end,
2932 .bmap = ext4_bmap,
2933 .invalidatepage = ext4_invalidatepage,
2934 .releasepage = ext4_releasepage,
2935 .direct_IO = ext4_direct_IO,
2936 .migratepage = buffer_migrate_page,
2937 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2938 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
2939};
2940
617ba13b 2941static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
2942 .readpage = ext4_readpage,
2943 .readpages = ext4_readpages,
43ce1d23 2944 .writepage = ext4_writepage,
8ab22b9a
HH
2945 .write_begin = ext4_write_begin,
2946 .write_end = ext4_journalled_write_end,
2947 .set_page_dirty = ext4_journalled_set_page_dirty,
2948 .bmap = ext4_bmap,
2949 .invalidatepage = ext4_invalidatepage,
2950 .releasepage = ext4_releasepage,
84ebd795 2951 .direct_IO = ext4_direct_IO,
8ab22b9a 2952 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2953 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
2954};
2955
64769240 2956static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
2957 .readpage = ext4_readpage,
2958 .readpages = ext4_readpages,
43ce1d23 2959 .writepage = ext4_writepage,
8ab22b9a 2960 .writepages = ext4_da_writepages,
8ab22b9a
HH
2961 .write_begin = ext4_da_write_begin,
2962 .write_end = ext4_da_write_end,
2963 .bmap = ext4_bmap,
2964 .invalidatepage = ext4_da_invalidatepage,
2965 .releasepage = ext4_releasepage,
2966 .direct_IO = ext4_direct_IO,
2967 .migratepage = buffer_migrate_page,
2968 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2969 .error_remove_page = generic_error_remove_page,
64769240
AT
2970};
2971
617ba13b 2972void ext4_set_aops(struct inode *inode)
ac27a0ec 2973{
cd1aac32
AK
2974 if (ext4_should_order_data(inode) &&
2975 test_opt(inode->i_sb, DELALLOC))
2976 inode->i_mapping->a_ops = &ext4_da_aops;
2977 else if (ext4_should_order_data(inode))
617ba13b 2978 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
2979 else if (ext4_should_writeback_data(inode) &&
2980 test_opt(inode->i_sb, DELALLOC))
2981 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
2982 else if (ext4_should_writeback_data(inode))
2983 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 2984 else
617ba13b 2985 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
2986}
2987
4e96b2db
AH
2988
2989/*
2990 * ext4_discard_partial_page_buffers()
2991 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
2992 * This function finds and locks the page containing the offset
2993 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
2994 * Calling functions that already have the page locked should call
2995 * ext4_discard_partial_page_buffers_no_lock directly.
2996 */
2997int ext4_discard_partial_page_buffers(handle_t *handle,
2998 struct address_space *mapping, loff_t from,
2999 loff_t length, int flags)
3000{
3001 struct inode *inode = mapping->host;
3002 struct page *page;
3003 int err = 0;
3004
3005 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3006 mapping_gfp_mask(mapping) & ~__GFP_FS);
3007 if (!page)
3008 return -EINVAL;
3009
3010 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3011 from, length, flags);
3012
3013 unlock_page(page);
3014 page_cache_release(page);
3015 return err;
3016}
3017
3018/*
3019 * ext4_discard_partial_page_buffers_no_lock()
3020 * Zeros a page range of length 'length' starting from offset 'from'.
3021 * Buffer heads that correspond to the block aligned regions of the
3022 * zeroed range will be unmapped. Unblock aligned regions
3023 * will have the corresponding buffer head mapped if needed so that
3024 * that region of the page can be updated with the partial zero out.
3025 *
3026 * This function assumes that the page has already been locked. The
3027 * The range to be discarded must be contained with in the given page.
3028 * If the specified range exceeds the end of the page it will be shortened
3029 * to the end of the page that corresponds to 'from'. This function is
3030 * appropriate for updating a page and it buffer heads to be unmapped and
3031 * zeroed for blocks that have been either released, or are going to be
3032 * released.
3033 *
3034 * handle: The journal handle
3035 * inode: The files inode
3036 * page: A locked page that contains the offset "from"
3037 * from: The starting byte offset (from the begining of the file)
3038 * to begin discarding
3039 * len: The length of bytes to discard
3040 * flags: Optional flags that may be used:
3041 *
3042 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3043 * Only zero the regions of the page whose buffer heads
3044 * have already been unmapped. This flag is appropriate
3045 * for updateing the contents of a page whose blocks may
3046 * have already been released, and we only want to zero
3047 * out the regions that correspond to those released blocks.
3048 *
3049 * Returns zero on sucess or negative on failure.
3050 */
3051int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3052 struct inode *inode, struct page *page, loff_t from,
3053 loff_t length, int flags)
3054{
3055 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3056 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3057 unsigned int blocksize, max, pos;
3058 unsigned int end_of_block, range_to_discard;
3059 ext4_lblk_t iblock;
3060 struct buffer_head *bh;
3061 int err = 0;
3062
3063 blocksize = inode->i_sb->s_blocksize;
3064 max = PAGE_CACHE_SIZE - offset;
3065
3066 if (index != page->index)
3067 return -EINVAL;
3068
3069 /*
3070 * correct length if it does not fall between
3071 * 'from' and the end of the page
3072 */
3073 if (length > max || length < 0)
3074 length = max;
3075
3076 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3077
3078 if (!page_has_buffers(page)) {
3079 /*
3080 * If the range to be discarded covers a partial block
3081 * we need to get the page buffers. This is because
3082 * partial blocks cannot be released and the page needs
3083 * to be updated with the contents of the block before
3084 * we write the zeros on top of it.
3085 */
3086 if (!(from & (blocksize - 1)) ||
3087 !((from + length) & (blocksize - 1))) {
3088 create_empty_buffers(page, blocksize, 0);
3089 } else {
3090 /*
3091 * If there are no partial blocks,
3092 * there is nothing to update,
3093 * so we can return now
3094 */
3095 return 0;
3096 }
3097 }
3098
3099 /* Find the buffer that contains "offset" */
3100 bh = page_buffers(page);
3101 pos = blocksize;
3102 while (offset >= pos) {
3103 bh = bh->b_this_page;
3104 iblock++;
3105 pos += blocksize;
3106 }
3107
3108 pos = offset;
3109 while (pos < offset + length) {
3110 err = 0;
3111
3112 /* The length of space left to zero and unmap */
3113 range_to_discard = offset + length - pos;
3114
3115 /* The length of space until the end of the block */
3116 end_of_block = blocksize - (pos & (blocksize-1));
3117
3118 /*
3119 * Do not unmap or zero past end of block
3120 * for this buffer head
3121 */
3122 if (range_to_discard > end_of_block)
3123 range_to_discard = end_of_block;
3124
3125
3126 /*
3127 * Skip this buffer head if we are only zeroing unampped
3128 * regions of the page
3129 */
3130 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3131 buffer_mapped(bh))
3132 goto next;
3133
3134 /* If the range is block aligned, unmap */
3135 if (range_to_discard == blocksize) {
3136 clear_buffer_dirty(bh);
3137 bh->b_bdev = NULL;
3138 clear_buffer_mapped(bh);
3139 clear_buffer_req(bh);
3140 clear_buffer_new(bh);
3141 clear_buffer_delay(bh);
3142 clear_buffer_unwritten(bh);
3143 clear_buffer_uptodate(bh);
3144 zero_user(page, pos, range_to_discard);
3145 BUFFER_TRACE(bh, "Buffer discarded");
3146 goto next;
3147 }
3148
3149 /*
3150 * If this block is not completely contained in the range
3151 * to be discarded, then it is not going to be released. Because
3152 * we need to keep this block, we need to make sure this part
3153 * of the page is uptodate before we modify it by writeing
3154 * partial zeros on it.
3155 */
3156 if (!buffer_mapped(bh)) {
3157 /*
3158 * Buffer head must be mapped before we can read
3159 * from the block
3160 */
3161 BUFFER_TRACE(bh, "unmapped");
3162 ext4_get_block(inode, iblock, bh, 0);
3163 /* unmapped? It's a hole - nothing to do */
3164 if (!buffer_mapped(bh)) {
3165 BUFFER_TRACE(bh, "still unmapped");
3166 goto next;
3167 }
3168 }
3169
3170 /* Ok, it's mapped. Make sure it's up-to-date */
3171 if (PageUptodate(page))
3172 set_buffer_uptodate(bh);
3173
3174 if (!buffer_uptodate(bh)) {
3175 err = -EIO;
3176 ll_rw_block(READ, 1, &bh);
3177 wait_on_buffer(bh);
3178 /* Uhhuh. Read error. Complain and punt.*/
3179 if (!buffer_uptodate(bh))
3180 goto next;
3181 }
3182
3183 if (ext4_should_journal_data(inode)) {
3184 BUFFER_TRACE(bh, "get write access");
3185 err = ext4_journal_get_write_access(handle, bh);
3186 if (err)
3187 goto next;
3188 }
3189
3190 zero_user(page, pos, range_to_discard);
3191
3192 err = 0;
3193 if (ext4_should_journal_data(inode)) {
3194 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3195 } else
4e96b2db 3196 mark_buffer_dirty(bh);
4e96b2db
AH
3197
3198 BUFFER_TRACE(bh, "Partial buffer zeroed");
3199next:
3200 bh = bh->b_this_page;
3201 iblock++;
3202 pos += range_to_discard;
3203 }
3204
3205 return err;
3206}
3207
ac27a0ec 3208/*
617ba13b 3209 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3210 * up to the end of the block which corresponds to `from'.
3211 * This required during truncate. We need to physically zero the tail end
3212 * of that block so it doesn't yield old data if the file is later grown.
3213 */
cf108bca 3214int ext4_block_truncate_page(handle_t *handle,
ac27a0ec 3215 struct address_space *mapping, loff_t from)
30848851
AH
3216{
3217 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3218 unsigned length;
3219 unsigned blocksize;
3220 struct inode *inode = mapping->host;
3221
3222 blocksize = inode->i_sb->s_blocksize;
3223 length = blocksize - (offset & (blocksize - 1));
3224
3225 return ext4_block_zero_page_range(handle, mapping, from, length);
3226}
3227
3228/*
3229 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3230 * starting from file offset 'from'. The range to be zero'd must
3231 * be contained with in one block. If the specified range exceeds
3232 * the end of the block it will be shortened to end of the block
3233 * that cooresponds to 'from'
3234 */
3235int ext4_block_zero_page_range(handle_t *handle,
3236 struct address_space *mapping, loff_t from, loff_t length)
ac27a0ec 3237{
617ba13b 3238 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3239 unsigned offset = from & (PAGE_CACHE_SIZE-1);
30848851 3240 unsigned blocksize, max, pos;
725d26d3 3241 ext4_lblk_t iblock;
ac27a0ec
DK
3242 struct inode *inode = mapping->host;
3243 struct buffer_head *bh;
cf108bca 3244 struct page *page;
ac27a0ec 3245 int err = 0;
ac27a0ec 3246
f4a01017
TT
3247 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3248 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
3249 if (!page)
3250 return -EINVAL;
3251
ac27a0ec 3252 blocksize = inode->i_sb->s_blocksize;
30848851
AH
3253 max = blocksize - (offset & (blocksize - 1));
3254
3255 /*
3256 * correct length if it does not fall between
3257 * 'from' and the end of the block
3258 */
3259 if (length > max || length < 0)
3260 length = max;
3261
ac27a0ec
DK
3262 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3263
ac27a0ec
DK
3264 if (!page_has_buffers(page))
3265 create_empty_buffers(page, blocksize, 0);
3266
3267 /* Find the buffer that contains "offset" */
3268 bh = page_buffers(page);
3269 pos = blocksize;
3270 while (offset >= pos) {
3271 bh = bh->b_this_page;
3272 iblock++;
3273 pos += blocksize;
3274 }
3275
3276 err = 0;
3277 if (buffer_freed(bh)) {
3278 BUFFER_TRACE(bh, "freed: skip");
3279 goto unlock;
3280 }
3281
3282 if (!buffer_mapped(bh)) {
3283 BUFFER_TRACE(bh, "unmapped");
617ba13b 3284 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3285 /* unmapped? It's a hole - nothing to do */
3286 if (!buffer_mapped(bh)) {
3287 BUFFER_TRACE(bh, "still unmapped");
3288 goto unlock;
3289 }
3290 }
3291
3292 /* Ok, it's mapped. Make sure it's up-to-date */
3293 if (PageUptodate(page))
3294 set_buffer_uptodate(bh);
3295
3296 if (!buffer_uptodate(bh)) {
3297 err = -EIO;
3298 ll_rw_block(READ, 1, &bh);
3299 wait_on_buffer(bh);
3300 /* Uhhuh. Read error. Complain and punt. */
3301 if (!buffer_uptodate(bh))
3302 goto unlock;
3303 }
3304
617ba13b 3305 if (ext4_should_journal_data(inode)) {
ac27a0ec 3306 BUFFER_TRACE(bh, "get write access");
617ba13b 3307 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3308 if (err)
3309 goto unlock;
3310 }
3311
eebd2aa3 3312 zero_user(page, offset, length);
ac27a0ec
DK
3313
3314 BUFFER_TRACE(bh, "zeroed end of block");
3315
3316 err = 0;
617ba13b 3317 if (ext4_should_journal_data(inode)) {
0390131b 3318 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3319 } else
ac27a0ec 3320 mark_buffer_dirty(bh);
ac27a0ec
DK
3321
3322unlock:
3323 unlock_page(page);
3324 page_cache_release(page);
3325 return err;
3326}
3327
91ef4caf
DG
3328int ext4_can_truncate(struct inode *inode)
3329{
91ef4caf
DG
3330 if (S_ISREG(inode->i_mode))
3331 return 1;
3332 if (S_ISDIR(inode->i_mode))
3333 return 1;
3334 if (S_ISLNK(inode->i_mode))
3335 return !ext4_inode_is_fast_symlink(inode);
3336 return 0;
3337}
3338
a4bb6b64
AH
3339/*
3340 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3341 * associated with the given offset and length
3342 *
3343 * @inode: File inode
3344 * @offset: The offset where the hole will begin
3345 * @len: The length of the hole
3346 *
3347 * Returns: 0 on sucess or negative on failure
3348 */
3349
3350int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3351{
3352 struct inode *inode = file->f_path.dentry->d_inode;
3353 if (!S_ISREG(inode->i_mode))
3354 return -ENOTSUPP;
3355
3356 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3357 /* TODO: Add support for non extent hole punching */
3358 return -ENOTSUPP;
3359 }
3360
bab08ab9
TT
3361 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3362 /* TODO: Add support for bigalloc file systems */
3363 return -ENOTSUPP;
3364 }
3365
a4bb6b64
AH
3366 return ext4_ext_punch_hole(file, offset, length);
3367}
3368
ac27a0ec 3369/*
617ba13b 3370 * ext4_truncate()
ac27a0ec 3371 *
617ba13b
MC
3372 * We block out ext4_get_block() block instantiations across the entire
3373 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3374 * simultaneously on behalf of the same inode.
3375 *
3376 * As we work through the truncate and commmit bits of it to the journal there
3377 * is one core, guiding principle: the file's tree must always be consistent on
3378 * disk. We must be able to restart the truncate after a crash.
3379 *
3380 * The file's tree may be transiently inconsistent in memory (although it
3381 * probably isn't), but whenever we close off and commit a journal transaction,
3382 * the contents of (the filesystem + the journal) must be consistent and
3383 * restartable. It's pretty simple, really: bottom up, right to left (although
3384 * left-to-right works OK too).
3385 *
3386 * Note that at recovery time, journal replay occurs *before* the restart of
3387 * truncate against the orphan inode list.
3388 *
3389 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3390 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3391 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3392 * ext4_truncate() to have another go. So there will be instantiated blocks
3393 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3394 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3395 * ext4_truncate() run will find them and release them.
ac27a0ec 3396 */
617ba13b 3397void ext4_truncate(struct inode *inode)
ac27a0ec 3398{
0562e0ba
JZ
3399 trace_ext4_truncate_enter(inode);
3400
91ef4caf 3401 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3402 return;
3403
12e9b892 3404 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3405
5534fb5b 3406 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3407 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3408
ff9893dc 3409 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
cf108bca 3410 ext4_ext_truncate(inode);
ff9893dc
AG
3411 else
3412 ext4_ind_truncate(inode);
ac27a0ec 3413
0562e0ba 3414 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3415}
3416
ac27a0ec 3417/*
617ba13b 3418 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3419 * underlying buffer_head on success. If 'in_mem' is true, we have all
3420 * data in memory that is needed to recreate the on-disk version of this
3421 * inode.
3422 */
617ba13b
MC
3423static int __ext4_get_inode_loc(struct inode *inode,
3424 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3425{
240799cd
TT
3426 struct ext4_group_desc *gdp;
3427 struct buffer_head *bh;
3428 struct super_block *sb = inode->i_sb;
3429 ext4_fsblk_t block;
3430 int inodes_per_block, inode_offset;
3431
3a06d778 3432 iloc->bh = NULL;
240799cd
TT
3433 if (!ext4_valid_inum(sb, inode->i_ino))
3434 return -EIO;
ac27a0ec 3435
240799cd
TT
3436 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3437 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3438 if (!gdp)
ac27a0ec
DK
3439 return -EIO;
3440
240799cd
TT
3441 /*
3442 * Figure out the offset within the block group inode table
3443 */
00d09882 3444 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3445 inode_offset = ((inode->i_ino - 1) %
3446 EXT4_INODES_PER_GROUP(sb));
3447 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3448 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3449
3450 bh = sb_getblk(sb, block);
ac27a0ec 3451 if (!bh) {
c398eda0
TT
3452 EXT4_ERROR_INODE_BLOCK(inode, block,
3453 "unable to read itable block");
ac27a0ec
DK
3454 return -EIO;
3455 }
3456 if (!buffer_uptodate(bh)) {
3457 lock_buffer(bh);
9c83a923
HK
3458
3459 /*
3460 * If the buffer has the write error flag, we have failed
3461 * to write out another inode in the same block. In this
3462 * case, we don't have to read the block because we may
3463 * read the old inode data successfully.
3464 */
3465 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3466 set_buffer_uptodate(bh);
3467
ac27a0ec
DK
3468 if (buffer_uptodate(bh)) {
3469 /* someone brought it uptodate while we waited */
3470 unlock_buffer(bh);
3471 goto has_buffer;
3472 }
3473
3474 /*
3475 * If we have all information of the inode in memory and this
3476 * is the only valid inode in the block, we need not read the
3477 * block.
3478 */
3479 if (in_mem) {
3480 struct buffer_head *bitmap_bh;
240799cd 3481 int i, start;
ac27a0ec 3482
240799cd 3483 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3484
240799cd
TT
3485 /* Is the inode bitmap in cache? */
3486 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
3487 if (!bitmap_bh)
3488 goto make_io;
3489
3490 /*
3491 * If the inode bitmap isn't in cache then the
3492 * optimisation may end up performing two reads instead
3493 * of one, so skip it.
3494 */
3495 if (!buffer_uptodate(bitmap_bh)) {
3496 brelse(bitmap_bh);
3497 goto make_io;
3498 }
240799cd 3499 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3500 if (i == inode_offset)
3501 continue;
617ba13b 3502 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3503 break;
3504 }
3505 brelse(bitmap_bh);
240799cd 3506 if (i == start + inodes_per_block) {
ac27a0ec
DK
3507 /* all other inodes are free, so skip I/O */
3508 memset(bh->b_data, 0, bh->b_size);
3509 set_buffer_uptodate(bh);
3510 unlock_buffer(bh);
3511 goto has_buffer;
3512 }
3513 }
3514
3515make_io:
240799cd
TT
3516 /*
3517 * If we need to do any I/O, try to pre-readahead extra
3518 * blocks from the inode table.
3519 */
3520 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3521 ext4_fsblk_t b, end, table;
3522 unsigned num;
3523
3524 table = ext4_inode_table(sb, gdp);
b713a5ec 3525 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
3526 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3527 if (table > b)
3528 b = table;
3529 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3530 num = EXT4_INODES_PER_GROUP(sb);
3531 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3532 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 3533 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3534 table += num / inodes_per_block;
3535 if (end > table)
3536 end = table;
3537 while (b <= end)
3538 sb_breadahead(sb, b++);
3539 }
3540
ac27a0ec
DK
3541 /*
3542 * There are other valid inodes in the buffer, this inode
3543 * has in-inode xattrs, or we don't have this inode in memory.
3544 * Read the block from disk.
3545 */
0562e0ba 3546 trace_ext4_load_inode(inode);
ac27a0ec
DK
3547 get_bh(bh);
3548 bh->b_end_io = end_buffer_read_sync;
3549 submit_bh(READ_META, bh);
3550 wait_on_buffer(bh);
3551 if (!buffer_uptodate(bh)) {
c398eda0
TT
3552 EXT4_ERROR_INODE_BLOCK(inode, block,
3553 "unable to read itable block");
ac27a0ec
DK
3554 brelse(bh);
3555 return -EIO;
3556 }
3557 }
3558has_buffer:
3559 iloc->bh = bh;
3560 return 0;
3561}
3562
617ba13b 3563int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3564{
3565 /* We have all inode data except xattrs in memory here. */
617ba13b 3566 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3567 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3568}
3569
617ba13b 3570void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3571{
617ba13b 3572 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3573
3574 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3575 if (flags & EXT4_SYNC_FL)
ac27a0ec 3576 inode->i_flags |= S_SYNC;
617ba13b 3577 if (flags & EXT4_APPEND_FL)
ac27a0ec 3578 inode->i_flags |= S_APPEND;
617ba13b 3579 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3580 inode->i_flags |= S_IMMUTABLE;
617ba13b 3581 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3582 inode->i_flags |= S_NOATIME;
617ba13b 3583 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3584 inode->i_flags |= S_DIRSYNC;
3585}
3586
ff9ddf7e
JK
3587/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3588void ext4_get_inode_flags(struct ext4_inode_info *ei)
3589{
84a8dce2
DM
3590 unsigned int vfs_fl;
3591 unsigned long old_fl, new_fl;
3592
3593 do {
3594 vfs_fl = ei->vfs_inode.i_flags;
3595 old_fl = ei->i_flags;
3596 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3597 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3598 EXT4_DIRSYNC_FL);
3599 if (vfs_fl & S_SYNC)
3600 new_fl |= EXT4_SYNC_FL;
3601 if (vfs_fl & S_APPEND)
3602 new_fl |= EXT4_APPEND_FL;
3603 if (vfs_fl & S_IMMUTABLE)
3604 new_fl |= EXT4_IMMUTABLE_FL;
3605 if (vfs_fl & S_NOATIME)
3606 new_fl |= EXT4_NOATIME_FL;
3607 if (vfs_fl & S_DIRSYNC)
3608 new_fl |= EXT4_DIRSYNC_FL;
3609 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3610}
de9a55b8 3611
0fc1b451 3612static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3613 struct ext4_inode_info *ei)
0fc1b451
AK
3614{
3615 blkcnt_t i_blocks ;
8180a562
AK
3616 struct inode *inode = &(ei->vfs_inode);
3617 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3618
3619 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3620 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3621 /* we are using combined 48 bit field */
3622 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3623 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3624 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3625 /* i_blocks represent file system block size */
3626 return i_blocks << (inode->i_blkbits - 9);
3627 } else {
3628 return i_blocks;
3629 }
0fc1b451
AK
3630 } else {
3631 return le32_to_cpu(raw_inode->i_blocks_lo);
3632 }
3633}
ff9ddf7e 3634
1d1fe1ee 3635struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3636{
617ba13b
MC
3637 struct ext4_iloc iloc;
3638 struct ext4_inode *raw_inode;
1d1fe1ee 3639 struct ext4_inode_info *ei;
1d1fe1ee 3640 struct inode *inode;
b436b9be 3641 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3642 long ret;
ac27a0ec
DK
3643 int block;
3644
1d1fe1ee
DH
3645 inode = iget_locked(sb, ino);
3646 if (!inode)
3647 return ERR_PTR(-ENOMEM);
3648 if (!(inode->i_state & I_NEW))
3649 return inode;
3650
3651 ei = EXT4_I(inode);
7dc57615 3652 iloc.bh = NULL;
ac27a0ec 3653
1d1fe1ee
DH
3654 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3655 if (ret < 0)
ac27a0ec 3656 goto bad_inode;
617ba13b 3657 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
3658 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3659 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3660 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3661 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
3662 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3663 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3664 }
3665 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec 3666
353eb83c 3667 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
ac27a0ec
DK
3668 ei->i_dir_start_lookup = 0;
3669 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3670 /* We now have enough fields to check if the inode was active or not.
3671 * This is needed because nfsd might try to access dead inodes
3672 * the test is that same one that e2fsck uses
3673 * NeilBrown 1999oct15
3674 */
3675 if (inode->i_nlink == 0) {
3676 if (inode->i_mode == 0 ||
617ba13b 3677 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 3678 /* this inode is deleted */
1d1fe1ee 3679 ret = -ESTALE;
ac27a0ec
DK
3680 goto bad_inode;
3681 }
3682 /* The only unlinked inodes we let through here have
3683 * valid i_mode and are being read by the orphan
3684 * recovery code: that's fine, we're about to complete
3685 * the process of deleting those. */
3686 }
ac27a0ec 3687 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3688 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3689 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 3690 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
3691 ei->i_file_acl |=
3692 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 3693 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 3694 ei->i_disksize = inode->i_size;
a9e7f447
DM
3695#ifdef CONFIG_QUOTA
3696 ei->i_reserved_quota = 0;
3697#endif
ac27a0ec
DK
3698 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3699 ei->i_block_group = iloc.block_group;
a4912123 3700 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
3701 /*
3702 * NOTE! The in-memory inode i_data array is in little-endian order
3703 * even on big-endian machines: we do NOT byteswap the block numbers!
3704 */
617ba13b 3705 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3706 ei->i_data[block] = raw_inode->i_block[block];
3707 INIT_LIST_HEAD(&ei->i_orphan);
3708
b436b9be
JK
3709 /*
3710 * Set transaction id's of transactions that have to be committed
3711 * to finish f[data]sync. We set them to currently running transaction
3712 * as we cannot be sure that the inode or some of its metadata isn't
3713 * part of the transaction - the inode could have been reclaimed and
3714 * now it is reread from disk.
3715 */
3716 if (journal) {
3717 transaction_t *transaction;
3718 tid_t tid;
3719
a931da6a 3720 read_lock(&journal->j_state_lock);
b436b9be
JK
3721 if (journal->j_running_transaction)
3722 transaction = journal->j_running_transaction;
3723 else
3724 transaction = journal->j_committing_transaction;
3725 if (transaction)
3726 tid = transaction->t_tid;
3727 else
3728 tid = journal->j_commit_sequence;
a931da6a 3729 read_unlock(&journal->j_state_lock);
b436b9be
JK
3730 ei->i_sync_tid = tid;
3731 ei->i_datasync_tid = tid;
3732 }
3733
0040d987 3734 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 3735 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 3736 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 3737 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 3738 ret = -EIO;
ac27a0ec 3739 goto bad_inode;
e5d2861f 3740 }
ac27a0ec
DK
3741 if (ei->i_extra_isize == 0) {
3742 /* The extra space is currently unused. Use it. */
617ba13b
MC
3743 ei->i_extra_isize = sizeof(struct ext4_inode) -
3744 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
3745 } else {
3746 __le32 *magic = (void *)raw_inode +
617ba13b 3747 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 3748 ei->i_extra_isize;
617ba13b 3749 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 3750 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec
DK
3751 }
3752 } else
3753 ei->i_extra_isize = 0;
3754
ef7f3835
KS
3755 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3756 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3757 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3758 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3759
25ec56b5
JNC
3760 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3761 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3762 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3763 inode->i_version |=
3764 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3765 }
3766
c4b5a614 3767 ret = 0;
485c26ec 3768 if (ei->i_file_acl &&
1032988c 3769 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
3770 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3771 ei->i_file_acl);
485c26ec
TT
3772 ret = -EIO;
3773 goto bad_inode;
07a03824 3774 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
c4b5a614
TT
3775 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3776 (S_ISLNK(inode->i_mode) &&
3777 !ext4_inode_is_fast_symlink(inode)))
3778 /* Validate extent which is part of inode */
3779 ret = ext4_ext_check_inode(inode);
de9a55b8 3780 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
3781 (S_ISLNK(inode->i_mode) &&
3782 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 3783 /* Validate block references which are part of inode */
1f7d1e77 3784 ret = ext4_ind_check_inode(inode);
fe2c8191 3785 }
567f3e9a 3786 if (ret)
de9a55b8 3787 goto bad_inode;
7a262f7c 3788
ac27a0ec 3789 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
3790 inode->i_op = &ext4_file_inode_operations;
3791 inode->i_fop = &ext4_file_operations;
3792 ext4_set_aops(inode);
ac27a0ec 3793 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
3794 inode->i_op = &ext4_dir_inode_operations;
3795 inode->i_fop = &ext4_dir_operations;
ac27a0ec 3796 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 3797 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 3798 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
3799 nd_terminate_link(ei->i_data, inode->i_size,
3800 sizeof(ei->i_data) - 1);
3801 } else {
617ba13b
MC
3802 inode->i_op = &ext4_symlink_inode_operations;
3803 ext4_set_aops(inode);
ac27a0ec 3804 }
563bdd61
TT
3805 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3806 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 3807 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
3808 if (raw_inode->i_block[0])
3809 init_special_inode(inode, inode->i_mode,
3810 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3811 else
3812 init_special_inode(inode, inode->i_mode,
3813 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 3814 } else {
563bdd61 3815 ret = -EIO;
24676da4 3816 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 3817 goto bad_inode;
ac27a0ec 3818 }
af5bc92d 3819 brelse(iloc.bh);
617ba13b 3820 ext4_set_inode_flags(inode);
1d1fe1ee
DH
3821 unlock_new_inode(inode);
3822 return inode;
ac27a0ec
DK
3823
3824bad_inode:
567f3e9a 3825 brelse(iloc.bh);
1d1fe1ee
DH
3826 iget_failed(inode);
3827 return ERR_PTR(ret);
ac27a0ec
DK
3828}
3829
0fc1b451
AK
3830static int ext4_inode_blocks_set(handle_t *handle,
3831 struct ext4_inode *raw_inode,
3832 struct ext4_inode_info *ei)
3833{
3834 struct inode *inode = &(ei->vfs_inode);
3835 u64 i_blocks = inode->i_blocks;
3836 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3837
3838 if (i_blocks <= ~0U) {
3839 /*
3840 * i_blocks can be represnted in a 32 bit variable
3841 * as multiple of 512 bytes
3842 */
8180a562 3843 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3844 raw_inode->i_blocks_high = 0;
84a8dce2 3845 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
3846 return 0;
3847 }
3848 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3849 return -EFBIG;
3850
3851 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
3852 /*
3853 * i_blocks can be represented in a 48 bit variable
3854 * as multiple of 512 bytes
3855 */
8180a562 3856 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3857 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 3858 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 3859 } else {
84a8dce2 3860 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
3861 /* i_block is stored in file system block size */
3862 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3863 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3864 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 3865 }
f287a1a5 3866 return 0;
0fc1b451
AK
3867}
3868
ac27a0ec
DK
3869/*
3870 * Post the struct inode info into an on-disk inode location in the
3871 * buffer-cache. This gobbles the caller's reference to the
3872 * buffer_head in the inode location struct.
3873 *
3874 * The caller must have write access to iloc->bh.
3875 */
617ba13b 3876static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 3877 struct inode *inode,
830156c7 3878 struct ext4_iloc *iloc)
ac27a0ec 3879{
617ba13b
MC
3880 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3881 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
3882 struct buffer_head *bh = iloc->bh;
3883 int err = 0, rc, block;
3884
3885 /* For fields not not tracking in the in-memory inode,
3886 * initialise them to zero for new inodes. */
19f5fb7a 3887 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 3888 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 3889
ff9ddf7e 3890 ext4_get_inode_flags(ei);
ac27a0ec 3891 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 3892 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
3893 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3894 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3895/*
3896 * Fix up interoperability with old kernels. Otherwise, old inodes get
3897 * re-used with the upper 16 bits of the uid/gid intact
3898 */
af5bc92d 3899 if (!ei->i_dtime) {
ac27a0ec
DK
3900 raw_inode->i_uid_high =
3901 cpu_to_le16(high_16_bits(inode->i_uid));
3902 raw_inode->i_gid_high =
3903 cpu_to_le16(high_16_bits(inode->i_gid));
3904 } else {
3905 raw_inode->i_uid_high = 0;
3906 raw_inode->i_gid_high = 0;
3907 }
3908 } else {
3909 raw_inode->i_uid_low =
3910 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3911 raw_inode->i_gid_low =
3912 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3913 raw_inode->i_uid_high = 0;
3914 raw_inode->i_gid_high = 0;
3915 }
3916 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
3917
3918 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3919 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3920 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3921 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3922
0fc1b451
AK
3923 if (ext4_inode_blocks_set(handle, raw_inode, ei))
3924 goto out_brelse;
ac27a0ec 3925 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 3926 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
3927 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3928 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
3929 raw_inode->i_file_acl_high =
3930 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 3931 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
3932 ext4_isize_set(raw_inode, ei->i_disksize);
3933 if (ei->i_disksize > 0x7fffffffULL) {
3934 struct super_block *sb = inode->i_sb;
3935 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3936 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3937 EXT4_SB(sb)->s_es->s_rev_level ==
3938 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3939 /* If this is the first large file
3940 * created, add a flag to the superblock.
3941 */
3942 err = ext4_journal_get_write_access(handle,
3943 EXT4_SB(sb)->s_sbh);
3944 if (err)
3945 goto out_brelse;
3946 ext4_update_dynamic_rev(sb);
3947 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 3948 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 3949 sb->s_dirt = 1;
0390131b 3950 ext4_handle_sync(handle);
73b50c1c 3951 err = ext4_handle_dirty_metadata(handle, NULL,
a48380f7 3952 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
3953 }
3954 }
3955 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3956 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3957 if (old_valid_dev(inode->i_rdev)) {
3958 raw_inode->i_block[0] =
3959 cpu_to_le32(old_encode_dev(inode->i_rdev));
3960 raw_inode->i_block[1] = 0;
3961 } else {
3962 raw_inode->i_block[0] = 0;
3963 raw_inode->i_block[1] =
3964 cpu_to_le32(new_encode_dev(inode->i_rdev));
3965 raw_inode->i_block[2] = 0;
3966 }
de9a55b8
TT
3967 } else
3968 for (block = 0; block < EXT4_N_BLOCKS; block++)
3969 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 3970
25ec56b5
JNC
3971 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3972 if (ei->i_extra_isize) {
3973 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3974 raw_inode->i_version_hi =
3975 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 3976 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
3977 }
3978
830156c7 3979 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 3980 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
3981 if (!err)
3982 err = rc;
19f5fb7a 3983 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 3984
b436b9be 3985 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 3986out_brelse:
af5bc92d 3987 brelse(bh);
617ba13b 3988 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
3989 return err;
3990}
3991
3992/*
617ba13b 3993 * ext4_write_inode()
ac27a0ec
DK
3994 *
3995 * We are called from a few places:
3996 *
3997 * - Within generic_file_write() for O_SYNC files.
3998 * Here, there will be no transaction running. We wait for any running
3999 * trasnaction to commit.
4000 *
4001 * - Within sys_sync(), kupdate and such.
4002 * We wait on commit, if tol to.
4003 *
4004 * - Within prune_icache() (PF_MEMALLOC == true)
4005 * Here we simply return. We can't afford to block kswapd on the
4006 * journal commit.
4007 *
4008 * In all cases it is actually safe for us to return without doing anything,
4009 * because the inode has been copied into a raw inode buffer in
617ba13b 4010 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4011 * knfsd.
4012 *
4013 * Note that we are absolutely dependent upon all inode dirtiers doing the
4014 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4015 * which we are interested.
4016 *
4017 * It would be a bug for them to not do this. The code:
4018 *
4019 * mark_inode_dirty(inode)
4020 * stuff();
4021 * inode->i_size = expr;
4022 *
4023 * is in error because a kswapd-driven write_inode() could occur while
4024 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4025 * will no longer be on the superblock's dirty inode list.
4026 */
a9185b41 4027int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4028{
91ac6f43
FM
4029 int err;
4030
ac27a0ec
DK
4031 if (current->flags & PF_MEMALLOC)
4032 return 0;
4033
91ac6f43
FM
4034 if (EXT4_SB(inode->i_sb)->s_journal) {
4035 if (ext4_journal_current_handle()) {
4036 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4037 dump_stack();
4038 return -EIO;
4039 }
ac27a0ec 4040
a9185b41 4041 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4042 return 0;
4043
4044 err = ext4_force_commit(inode->i_sb);
4045 } else {
4046 struct ext4_iloc iloc;
ac27a0ec 4047
8b472d73 4048 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4049 if (err)
4050 return err;
a9185b41 4051 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4052 sync_dirty_buffer(iloc.bh);
4053 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4054 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4055 "IO error syncing inode");
830156c7
FM
4056 err = -EIO;
4057 }
fd2dd9fb 4058 brelse(iloc.bh);
91ac6f43
FM
4059 }
4060 return err;
ac27a0ec
DK
4061}
4062
4063/*
617ba13b 4064 * ext4_setattr()
ac27a0ec
DK
4065 *
4066 * Called from notify_change.
4067 *
4068 * We want to trap VFS attempts to truncate the file as soon as
4069 * possible. In particular, we want to make sure that when the VFS
4070 * shrinks i_size, we put the inode on the orphan list and modify
4071 * i_disksize immediately, so that during the subsequent flushing of
4072 * dirty pages and freeing of disk blocks, we can guarantee that any
4073 * commit will leave the blocks being flushed in an unused state on
4074 * disk. (On recovery, the inode will get truncated and the blocks will
4075 * be freed, so we have a strong guarantee that no future commit will
4076 * leave these blocks visible to the user.)
4077 *
678aaf48
JK
4078 * Another thing we have to assure is that if we are in ordered mode
4079 * and inode is still attached to the committing transaction, we must
4080 * we start writeout of all the dirty pages which are being truncated.
4081 * This way we are sure that all the data written in the previous
4082 * transaction are already on disk (truncate waits for pages under
4083 * writeback).
4084 *
4085 * Called with inode->i_mutex down.
ac27a0ec 4086 */
617ba13b 4087int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4088{
4089 struct inode *inode = dentry->d_inode;
4090 int error, rc = 0;
3d287de3 4091 int orphan = 0;
ac27a0ec
DK
4092 const unsigned int ia_valid = attr->ia_valid;
4093
4094 error = inode_change_ok(inode, attr);
4095 if (error)
4096 return error;
4097
12755627 4098 if (is_quota_modification(inode, attr))
871a2931 4099 dquot_initialize(inode);
ac27a0ec
DK
4100 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4101 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4102 handle_t *handle;
4103
4104 /* (user+group)*(old+new) structure, inode write (sb,
4105 * inode block, ? - but truncate inode update has it) */
5aca07eb 4106 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 4107 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4108 if (IS_ERR(handle)) {
4109 error = PTR_ERR(handle);
4110 goto err_out;
4111 }
b43fa828 4112 error = dquot_transfer(inode, attr);
ac27a0ec 4113 if (error) {
617ba13b 4114 ext4_journal_stop(handle);
ac27a0ec
DK
4115 return error;
4116 }
4117 /* Update corresponding info in inode so that everything is in
4118 * one transaction */
4119 if (attr->ia_valid & ATTR_UID)
4120 inode->i_uid = attr->ia_uid;
4121 if (attr->ia_valid & ATTR_GID)
4122 inode->i_gid = attr->ia_gid;
617ba13b
MC
4123 error = ext4_mark_inode_dirty(handle, inode);
4124 ext4_journal_stop(handle);
ac27a0ec
DK
4125 }
4126
e2b46574 4127 if (attr->ia_valid & ATTR_SIZE) {
562c72aa
CH
4128 inode_dio_wait(inode);
4129
12e9b892 4130 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4131 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4132
0c095c7f
TT
4133 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4134 return -EFBIG;
e2b46574
ES
4135 }
4136 }
4137
ac27a0ec 4138 if (S_ISREG(inode->i_mode) &&
c8d46e41 4139 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4140 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4141 handle_t *handle;
4142
617ba13b 4143 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4144 if (IS_ERR(handle)) {
4145 error = PTR_ERR(handle);
4146 goto err_out;
4147 }
3d287de3
DM
4148 if (ext4_handle_valid(handle)) {
4149 error = ext4_orphan_add(handle, inode);
4150 orphan = 1;
4151 }
617ba13b
MC
4152 EXT4_I(inode)->i_disksize = attr->ia_size;
4153 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4154 if (!error)
4155 error = rc;
617ba13b 4156 ext4_journal_stop(handle);
678aaf48
JK
4157
4158 if (ext4_should_order_data(inode)) {
4159 error = ext4_begin_ordered_truncate(inode,
4160 attr->ia_size);
4161 if (error) {
4162 /* Do as much error cleanup as possible */
4163 handle = ext4_journal_start(inode, 3);
4164 if (IS_ERR(handle)) {
4165 ext4_orphan_del(NULL, inode);
4166 goto err_out;
4167 }
4168 ext4_orphan_del(handle, inode);
3d287de3 4169 orphan = 0;
678aaf48
JK
4170 ext4_journal_stop(handle);
4171 goto err_out;
4172 }
4173 }
ac27a0ec
DK
4174 }
4175
072bd7ea
TT
4176 if (attr->ia_valid & ATTR_SIZE) {
4177 if (attr->ia_size != i_size_read(inode)) {
4178 truncate_setsize(inode, attr->ia_size);
4179 ext4_truncate(inode);
4180 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4181 ext4_truncate(inode);
4182 }
ac27a0ec 4183
1025774c
CH
4184 if (!rc) {
4185 setattr_copy(inode, attr);
4186 mark_inode_dirty(inode);
4187 }
4188
4189 /*
4190 * If the call to ext4_truncate failed to get a transaction handle at
4191 * all, we need to clean up the in-core orphan list manually.
4192 */
3d287de3 4193 if (orphan && inode->i_nlink)
617ba13b 4194 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4195
4196 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4197 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4198
4199err_out:
617ba13b 4200 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4201 if (!error)
4202 error = rc;
4203 return error;
4204}
4205
3e3398a0
MC
4206int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4207 struct kstat *stat)
4208{
4209 struct inode *inode;
4210 unsigned long delalloc_blocks;
4211
4212 inode = dentry->d_inode;
4213 generic_fillattr(inode, stat);
4214
4215 /*
4216 * We can't update i_blocks if the block allocation is delayed
4217 * otherwise in the case of system crash before the real block
4218 * allocation is done, we will have i_blocks inconsistent with
4219 * on-disk file blocks.
4220 * We always keep i_blocks updated together with real
4221 * allocation. But to not confuse with user, stat
4222 * will return the blocks that include the delayed allocation
4223 * blocks for this file.
4224 */
3e3398a0 4225 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
3e3398a0
MC
4226
4227 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4228 return 0;
4229}
ac27a0ec 4230
a02908f1
MC
4231static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4232{
12e9b892 4233 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 4234 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 4235 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4236}
ac51d837 4237
ac27a0ec 4238/*
a02908f1
MC
4239 * Account for index blocks, block groups bitmaps and block group
4240 * descriptor blocks if modify datablocks and index blocks
4241 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4242 *
a02908f1 4243 * If datablocks are discontiguous, they are possible to spread over
af901ca1 4244 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 4245 * they could still across block group boundary.
ac27a0ec 4246 *
a02908f1
MC
4247 * Also account for superblock, inode, quota and xattr blocks
4248 */
1f109d5a 4249static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4250{
8df9675f
TT
4251 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4252 int gdpblocks;
a02908f1
MC
4253 int idxblocks;
4254 int ret = 0;
4255
4256 /*
4257 * How many index blocks need to touch to modify nrblocks?
4258 * The "Chunk" flag indicating whether the nrblocks is
4259 * physically contiguous on disk
4260 *
4261 * For Direct IO and fallocate, they calls get_block to allocate
4262 * one single extent at a time, so they could set the "Chunk" flag
4263 */
4264 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4265
4266 ret = idxblocks;
4267
4268 /*
4269 * Now let's see how many group bitmaps and group descriptors need
4270 * to account
4271 */
4272 groups = idxblocks;
4273 if (chunk)
4274 groups += 1;
4275 else
4276 groups += nrblocks;
4277
4278 gdpblocks = groups;
8df9675f
TT
4279 if (groups > ngroups)
4280 groups = ngroups;
a02908f1
MC
4281 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4282 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4283
4284 /* bitmaps and block group descriptor blocks */
4285 ret += groups + gdpblocks;
4286
4287 /* Blocks for super block, inode, quota and xattr blocks */
4288 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4289
4290 return ret;
4291}
4292
4293/*
25985edc 4294 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4295 * the modification of a single pages into a single transaction,
4296 * which may include multiple chunks of block allocations.
ac27a0ec 4297 *
525f4ed8 4298 * This could be called via ext4_write_begin()
ac27a0ec 4299 *
525f4ed8 4300 * We need to consider the worse case, when
a02908f1 4301 * one new block per extent.
ac27a0ec 4302 */
a86c6181 4303int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4304{
617ba13b 4305 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4306 int ret;
4307
a02908f1 4308 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4309
a02908f1 4310 /* Account for data blocks for journalled mode */
617ba13b 4311 if (ext4_should_journal_data(inode))
a02908f1 4312 ret += bpp;
ac27a0ec
DK
4313 return ret;
4314}
f3bd1f3f
MC
4315
4316/*
4317 * Calculate the journal credits for a chunk of data modification.
4318 *
4319 * This is called from DIO, fallocate or whoever calling
79e83036 4320 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4321 *
4322 * journal buffers for data blocks are not included here, as DIO
4323 * and fallocate do no need to journal data buffers.
4324 */
4325int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4326{
4327 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4328}
4329
ac27a0ec 4330/*
617ba13b 4331 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4332 * Give this, we know that the caller already has write access to iloc->bh.
4333 */
617ba13b 4334int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4335 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4336{
4337 int err = 0;
4338
25ec56b5
JNC
4339 if (test_opt(inode->i_sb, I_VERSION))
4340 inode_inc_iversion(inode);
4341
ac27a0ec
DK
4342 /* the do_update_inode consumes one bh->b_count */
4343 get_bh(iloc->bh);
4344
dab291af 4345 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4346 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4347 put_bh(iloc->bh);
4348 return err;
4349}
4350
4351/*
4352 * On success, We end up with an outstanding reference count against
4353 * iloc->bh. This _must_ be cleaned up later.
4354 */
4355
4356int
617ba13b
MC
4357ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4358 struct ext4_iloc *iloc)
ac27a0ec 4359{
0390131b
FM
4360 int err;
4361
4362 err = ext4_get_inode_loc(inode, iloc);
4363 if (!err) {
4364 BUFFER_TRACE(iloc->bh, "get_write_access");
4365 err = ext4_journal_get_write_access(handle, iloc->bh);
4366 if (err) {
4367 brelse(iloc->bh);
4368 iloc->bh = NULL;
ac27a0ec
DK
4369 }
4370 }
617ba13b 4371 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4372 return err;
4373}
4374
6dd4ee7c
KS
4375/*
4376 * Expand an inode by new_extra_isize bytes.
4377 * Returns 0 on success or negative error number on failure.
4378 */
1d03ec98
AK
4379static int ext4_expand_extra_isize(struct inode *inode,
4380 unsigned int new_extra_isize,
4381 struct ext4_iloc iloc,
4382 handle_t *handle)
6dd4ee7c
KS
4383{
4384 struct ext4_inode *raw_inode;
4385 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4386
4387 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4388 return 0;
4389
4390 raw_inode = ext4_raw_inode(&iloc);
4391
4392 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4393
4394 /* No extended attributes present */
19f5fb7a
TT
4395 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4396 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4397 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4398 new_extra_isize);
4399 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4400 return 0;
4401 }
4402
4403 /* try to expand with EAs present */
4404 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4405 raw_inode, handle);
4406}
4407
ac27a0ec
DK
4408/*
4409 * What we do here is to mark the in-core inode as clean with respect to inode
4410 * dirtiness (it may still be data-dirty).
4411 * This means that the in-core inode may be reaped by prune_icache
4412 * without having to perform any I/O. This is a very good thing,
4413 * because *any* task may call prune_icache - even ones which
4414 * have a transaction open against a different journal.
4415 *
4416 * Is this cheating? Not really. Sure, we haven't written the
4417 * inode out, but prune_icache isn't a user-visible syncing function.
4418 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4419 * we start and wait on commits.
4420 *
4421 * Is this efficient/effective? Well, we're being nice to the system
4422 * by cleaning up our inodes proactively so they can be reaped
4423 * without I/O. But we are potentially leaving up to five seconds'
4424 * worth of inodes floating about which prune_icache wants us to
4425 * write out. One way to fix that would be to get prune_icache()
4426 * to do a write_super() to free up some memory. It has the desired
4427 * effect.
4428 */
617ba13b 4429int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4430{
617ba13b 4431 struct ext4_iloc iloc;
6dd4ee7c
KS
4432 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4433 static unsigned int mnt_count;
4434 int err, ret;
ac27a0ec
DK
4435
4436 might_sleep();
7ff9c073 4437 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4438 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4439 if (ext4_handle_valid(handle) &&
4440 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4441 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4442 /*
4443 * We need extra buffer credits since we may write into EA block
4444 * with this same handle. If journal_extend fails, then it will
4445 * only result in a minor loss of functionality for that inode.
4446 * If this is felt to be critical, then e2fsck should be run to
4447 * force a large enough s_min_extra_isize.
4448 */
4449 if ((jbd2_journal_extend(handle,
4450 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4451 ret = ext4_expand_extra_isize(inode,
4452 sbi->s_want_extra_isize,
4453 iloc, handle);
4454 if (ret) {
19f5fb7a
TT
4455 ext4_set_inode_state(inode,
4456 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4457 if (mnt_count !=
4458 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4459 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4460 "Unable to expand inode %lu. Delete"
4461 " some EAs or run e2fsck.",
4462 inode->i_ino);
c1bddad9
AK
4463 mnt_count =
4464 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4465 }
4466 }
4467 }
4468 }
ac27a0ec 4469 if (!err)
617ba13b 4470 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4471 return err;
4472}
4473
4474/*
617ba13b 4475 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4476 *
4477 * We're really interested in the case where a file is being extended.
4478 * i_size has been changed by generic_commit_write() and we thus need
4479 * to include the updated inode in the current transaction.
4480 *
5dd4056d 4481 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4482 * are allocated to the file.
4483 *
4484 * If the inode is marked synchronous, we don't honour that here - doing
4485 * so would cause a commit on atime updates, which we don't bother doing.
4486 * We handle synchronous inodes at the highest possible level.
4487 */
aa385729 4488void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4489{
ac27a0ec
DK
4490 handle_t *handle;
4491
617ba13b 4492 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4493 if (IS_ERR(handle))
4494 goto out;
f3dc272f 4495
f3dc272f
CW
4496 ext4_mark_inode_dirty(handle, inode);
4497
617ba13b 4498 ext4_journal_stop(handle);
ac27a0ec
DK
4499out:
4500 return;
4501}
4502
4503#if 0
4504/*
4505 * Bind an inode's backing buffer_head into this transaction, to prevent
4506 * it from being flushed to disk early. Unlike
617ba13b 4507 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4508 * returns no iloc structure, so the caller needs to repeat the iloc
4509 * lookup to mark the inode dirty later.
4510 */
617ba13b 4511static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4512{
617ba13b 4513 struct ext4_iloc iloc;
ac27a0ec
DK
4514
4515 int err = 0;
4516 if (handle) {
617ba13b 4517 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4518 if (!err) {
4519 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4520 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4521 if (!err)
0390131b 4522 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4523 NULL,
0390131b 4524 iloc.bh);
ac27a0ec
DK
4525 brelse(iloc.bh);
4526 }
4527 }
617ba13b 4528 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4529 return err;
4530}
4531#endif
4532
617ba13b 4533int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4534{
4535 journal_t *journal;
4536 handle_t *handle;
4537 int err;
4538
4539 /*
4540 * We have to be very careful here: changing a data block's
4541 * journaling status dynamically is dangerous. If we write a
4542 * data block to the journal, change the status and then delete
4543 * that block, we risk forgetting to revoke the old log record
4544 * from the journal and so a subsequent replay can corrupt data.
4545 * So, first we make sure that the journal is empty and that
4546 * nobody is changing anything.
4547 */
4548
617ba13b 4549 journal = EXT4_JOURNAL(inode);
0390131b
FM
4550 if (!journal)
4551 return 0;
d699594d 4552 if (is_journal_aborted(journal))
ac27a0ec
DK
4553 return -EROFS;
4554
dab291af
MC
4555 jbd2_journal_lock_updates(journal);
4556 jbd2_journal_flush(journal);
ac27a0ec
DK
4557
4558 /*
4559 * OK, there are no updates running now, and all cached data is
4560 * synced to disk. We are now in a completely consistent state
4561 * which doesn't have anything in the journal, and we know that
4562 * no filesystem updates are running, so it is safe to modify
4563 * the inode's in-core data-journaling state flag now.
4564 */
4565
4566 if (val)
12e9b892 4567 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
ac27a0ec 4568 else
12e9b892 4569 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
617ba13b 4570 ext4_set_aops(inode);
ac27a0ec 4571
dab291af 4572 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
4573
4574 /* Finally we can mark the inode as dirty. */
4575
617ba13b 4576 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4577 if (IS_ERR(handle))
4578 return PTR_ERR(handle);
4579
617ba13b 4580 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4581 ext4_handle_sync(handle);
617ba13b
MC
4582 ext4_journal_stop(handle);
4583 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4584
4585 return err;
4586}
2e9ee850
AK
4587
4588static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4589{
4590 return !buffer_mapped(bh);
4591}
4592
c2ec175c 4593int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 4594{
c2ec175c 4595 struct page *page = vmf->page;
2e9ee850
AK
4596 loff_t size;
4597 unsigned long len;
9ea7df53 4598 int ret;
2e9ee850
AK
4599 struct file *file = vma->vm_file;
4600 struct inode *inode = file->f_path.dentry->d_inode;
4601 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
4602 handle_t *handle;
4603 get_block_t *get_block;
4604 int retries = 0;
2e9ee850
AK
4605
4606 /*
9ea7df53
JK
4607 * This check is racy but catches the common case. We rely on
4608 * __block_page_mkwrite() to do a reliable check.
2e9ee850 4609 */
9ea7df53
JK
4610 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4611 /* Delalloc case is easy... */
4612 if (test_opt(inode->i_sb, DELALLOC) &&
4613 !ext4_should_journal_data(inode) &&
4614 !ext4_nonda_switch(inode->i_sb)) {
4615 do {
4616 ret = __block_page_mkwrite(vma, vmf,
4617 ext4_da_get_block_prep);
4618 } while (ret == -ENOSPC &&
4619 ext4_should_retry_alloc(inode->i_sb, &retries));
4620 goto out_ret;
2e9ee850 4621 }
0e499890
DW
4622
4623 lock_page(page);
9ea7df53
JK
4624 size = i_size_read(inode);
4625 /* Page got truncated from under us? */
4626 if (page->mapping != mapping || page_offset(page) > size) {
4627 unlock_page(page);
4628 ret = VM_FAULT_NOPAGE;
4629 goto out;
0e499890 4630 }
2e9ee850
AK
4631
4632 if (page->index == size >> PAGE_CACHE_SHIFT)
4633 len = size & ~PAGE_CACHE_MASK;
4634 else
4635 len = PAGE_CACHE_SIZE;
a827eaff 4636 /*
9ea7df53
JK
4637 * Return if we have all the buffers mapped. This avoids the need to do
4638 * journal_start/journal_stop which can block and take a long time
a827eaff 4639 */
2e9ee850 4640 if (page_has_buffers(page)) {
2e9ee850 4641 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff 4642 ext4_bh_unmapped)) {
9ea7df53
JK
4643 /* Wait so that we don't change page under IO */
4644 wait_on_page_writeback(page);
4645 ret = VM_FAULT_LOCKED;
4646 goto out;
a827eaff 4647 }
2e9ee850 4648 }
a827eaff 4649 unlock_page(page);
9ea7df53
JK
4650 /* OK, we need to fill the hole... */
4651 if (ext4_should_dioread_nolock(inode))
4652 get_block = ext4_get_block_write;
4653 else
4654 get_block = ext4_get_block;
4655retry_alloc:
4656 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4657 if (IS_ERR(handle)) {
c2ec175c 4658 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
4659 goto out;
4660 }
4661 ret = __block_page_mkwrite(vma, vmf, get_block);
4662 if (!ret && ext4_should_journal_data(inode)) {
4663 if (walk_page_buffers(handle, page_buffers(page), 0,
4664 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4665 unlock_page(page);
4666 ret = VM_FAULT_SIGBUS;
4667 goto out;
4668 }
4669 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4670 }
4671 ext4_journal_stop(handle);
4672 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4673 goto retry_alloc;
4674out_ret:
4675 ret = block_page_mkwrite_return(ret);
4676out:
2e9ee850
AK
4677 return ret;
4678}
This page took 0.799999 seconds and 5 git commands to generate.